Lynx framebuffers multidomain implementation.
[linux/elbrus.git] / mm / memory-failure.c
blob9502057c3c5452be1a4cf2ecbb9871bb89878848
1 /*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
29 * VM.
33 * Notebook:
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/page-flags.h>
41 #include <linux/kernel-page-flags.h>
42 #include <linux/sched.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/export.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/backing-dev.h>
49 #include <linux/migrate.h>
50 #include <linux/page-isolation.h>
51 #include <linux/suspend.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/kfifo.h>
58 #include "internal.h"
60 int sysctl_memory_failure_early_kill __read_mostly = 0;
62 int sysctl_memory_failure_recovery __read_mostly = 1;
64 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
66 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
68 u32 hwpoison_filter_enable = 0;
69 u32 hwpoison_filter_dev_major = ~0U;
70 u32 hwpoison_filter_dev_minor = ~0U;
71 u64 hwpoison_filter_flags_mask;
72 u64 hwpoison_filter_flags_value;
73 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
74 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
75 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
79 static int hwpoison_filter_dev(struct page *p)
81 struct address_space *mapping;
82 dev_t dev;
84 if (hwpoison_filter_dev_major == ~0U &&
85 hwpoison_filter_dev_minor == ~0U)
86 return 0;
89 * page_mapping() does not accept slab pages.
91 if (PageSlab(p))
92 return -EINVAL;
94 mapping = page_mapping(p);
95 if (mapping == NULL || mapping->host == NULL)
96 return -EINVAL;
98 dev = mapping->host->i_sb->s_dev;
99 if (hwpoison_filter_dev_major != ~0U &&
100 hwpoison_filter_dev_major != MAJOR(dev))
101 return -EINVAL;
102 if (hwpoison_filter_dev_minor != ~0U &&
103 hwpoison_filter_dev_minor != MINOR(dev))
104 return -EINVAL;
106 return 0;
109 static int hwpoison_filter_flags(struct page *p)
111 if (!hwpoison_filter_flags_mask)
112 return 0;
114 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
115 hwpoison_filter_flags_value)
116 return 0;
117 else
118 return -EINVAL;
122 * This allows stress tests to limit test scope to a collection of tasks
123 * by putting them under some memcg. This prevents killing unrelated/important
124 * processes such as /sbin/init. Note that the target task may share clean
125 * pages with init (eg. libc text), which is harmless. If the target task
126 * share _dirty_ pages with another task B, the test scheme must make sure B
127 * is also included in the memcg. At last, due to race conditions this filter
128 * can only guarantee that the page either belongs to the memcg tasks, or is
129 * a freed page.
131 #ifdef CONFIG_MEMCG_SWAP
132 u64 hwpoison_filter_memcg;
133 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
134 static int hwpoison_filter_task(struct page *p)
136 struct mem_cgroup *mem;
137 struct cgroup_subsys_state *css;
138 unsigned long ino;
140 if (!hwpoison_filter_memcg)
141 return 0;
143 mem = try_get_mem_cgroup_from_page(p);
144 if (!mem)
145 return -EINVAL;
147 css = mem_cgroup_css(mem);
148 /* root_mem_cgroup has NULL dentries */
149 if (!css->cgroup->dentry)
150 return -EINVAL;
152 ino = css->cgroup->dentry->d_inode->i_ino;
153 css_put(css);
155 if (ino != hwpoison_filter_memcg)
156 return -EINVAL;
158 return 0;
160 #else
161 static int hwpoison_filter_task(struct page *p) { return 0; }
162 #endif
164 int hwpoison_filter(struct page *p)
166 if (!hwpoison_filter_enable)
167 return 0;
169 if (hwpoison_filter_dev(p))
170 return -EINVAL;
172 if (hwpoison_filter_flags(p))
173 return -EINVAL;
175 if (hwpoison_filter_task(p))
176 return -EINVAL;
178 return 0;
180 #else
181 int hwpoison_filter(struct page *p)
183 return 0;
185 #endif
187 EXPORT_SYMBOL_GPL(hwpoison_filter);
190 * Send all the processes who have the page mapped a signal.
191 * ``action optional'' if they are not immediately affected by the error
192 * ``action required'' if error happened in current execution context
194 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
195 unsigned long pfn, struct page *page, int flags)
197 struct siginfo si;
198 int ret;
200 printk(KERN_ERR
201 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
202 pfn, t->comm, t->pid);
203 si.si_signo = SIGBUS;
204 si.si_errno = 0;
205 si.si_addr = (void *)addr;
206 #ifdef __ARCH_SI_TRAPNO
207 si.si_trapno = trapno;
208 #endif
209 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
211 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
212 si.si_code = BUS_MCEERR_AR;
213 ret = force_sig_info(SIGBUS, &si, current);
214 } else {
216 * Don't use force here, it's convenient if the signal
217 * can be temporarily blocked.
218 * This could cause a loop when the user sets SIGBUS
219 * to SIG_IGN, but hopefully no one will do that?
221 si.si_code = BUS_MCEERR_AO;
222 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
224 if (ret < 0)
225 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
226 t->comm, t->pid, ret);
227 return ret;
231 * When a unknown page type is encountered drain as many buffers as possible
232 * in the hope to turn the page into a LRU or free page, which we can handle.
234 void shake_page(struct page *p, int access)
236 if (!PageSlab(p)) {
237 lru_add_drain_all();
238 if (PageLRU(p))
239 return;
240 drain_all_pages();
241 if (PageLRU(p) || is_free_buddy_page(p))
242 return;
246 * Only call shrink_slab here (which would also shrink other caches) if
247 * access is not potentially fatal.
249 if (access) {
250 int nr;
251 int nid = page_to_nid(p);
252 do {
253 struct shrink_control shrink = {
254 .gfp_mask = GFP_KERNEL,
256 node_set(nid, shrink.nodes_to_scan);
258 nr = shrink_slab(&shrink, 1000, 1000);
259 if (page_count(p) == 1)
260 break;
261 } while (nr > 10);
264 EXPORT_SYMBOL_GPL(shake_page);
267 * Kill all processes that have a poisoned page mapped and then isolate
268 * the page.
270 * General strategy:
271 * Find all processes having the page mapped and kill them.
272 * But we keep a page reference around so that the page is not
273 * actually freed yet.
274 * Then stash the page away
276 * There's no convenient way to get back to mapped processes
277 * from the VMAs. So do a brute-force search over all
278 * running processes.
280 * Remember that machine checks are not common (or rather
281 * if they are common you have other problems), so this shouldn't
282 * be a performance issue.
284 * Also there are some races possible while we get from the
285 * error detection to actually handle it.
288 struct to_kill {
289 struct list_head nd;
290 struct task_struct *tsk;
291 unsigned long addr;
292 char addr_valid;
296 * Failure handling: if we can't find or can't kill a process there's
297 * not much we can do. We just print a message and ignore otherwise.
301 * Schedule a process for later kill.
302 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
303 * TBD would GFP_NOIO be enough?
305 static void add_to_kill(struct task_struct *tsk, struct page *p,
306 struct vm_area_struct *vma,
307 struct list_head *to_kill,
308 struct to_kill **tkc)
310 struct to_kill *tk;
312 if (*tkc) {
313 tk = *tkc;
314 *tkc = NULL;
315 } else {
316 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
317 if (!tk) {
318 printk(KERN_ERR
319 "MCE: Out of memory while machine check handling\n");
320 return;
323 tk->addr = page_address_in_vma(p, vma);
324 tk->addr_valid = 1;
327 * In theory we don't have to kill when the page was
328 * munmaped. But it could be also a mremap. Since that's
329 * likely very rare kill anyways just out of paranoia, but use
330 * a SIGKILL because the error is not contained anymore.
332 if (tk->addr == -EFAULT) {
333 pr_info("MCE: Unable to find user space address %lx in %s\n",
334 page_to_pfn(p), tsk->comm);
335 tk->addr_valid = 0;
337 get_task_struct(tsk);
338 tk->tsk = tsk;
339 list_add_tail(&tk->nd, to_kill);
343 * Kill the processes that have been collected earlier.
345 * Only do anything when DOIT is set, otherwise just free the list
346 * (this is used for clean pages which do not need killing)
347 * Also when FAIL is set do a force kill because something went
348 * wrong earlier.
350 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
351 int fail, struct page *page, unsigned long pfn,
352 int flags)
354 struct to_kill *tk, *next;
356 list_for_each_entry_safe (tk, next, to_kill, nd) {
357 if (forcekill) {
359 * In case something went wrong with munmapping
360 * make sure the process doesn't catch the
361 * signal and then access the memory. Just kill it.
363 if (fail || tk->addr_valid == 0) {
364 printk(KERN_ERR
365 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
366 pfn, tk->tsk->comm, tk->tsk->pid);
367 force_sig(SIGKILL, tk->tsk);
371 * In theory the process could have mapped
372 * something else on the address in-between. We could
373 * check for that, but we need to tell the
374 * process anyways.
376 else if (kill_proc(tk->tsk, tk->addr, trapno,
377 pfn, page, flags) < 0)
378 printk(KERN_ERR
379 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
380 pfn, tk->tsk->comm, tk->tsk->pid);
382 put_task_struct(tk->tsk);
383 kfree(tk);
388 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
389 * on behalf of the thread group. Return task_struct of the (first found)
390 * dedicated thread if found, and return NULL otherwise.
392 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
393 * have to call rcu_read_lock/unlock() in this function.
395 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
397 struct task_struct *t;
399 for_each_thread(tsk, t)
400 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
401 return t;
402 return NULL;
406 * Determine whether a given process is "early kill" process which expects
407 * to be signaled when some page under the process is hwpoisoned.
408 * Return task_struct of the dedicated thread (main thread unless explicitly
409 * specified) if the process is "early kill," and otherwise returns NULL.
411 static struct task_struct *task_early_kill(struct task_struct *tsk,
412 int force_early)
414 struct task_struct *t;
415 if (!tsk->mm)
416 return NULL;
417 if (force_early)
418 return tsk;
419 t = find_early_kill_thread(tsk);
420 if (t)
421 return t;
422 if (sysctl_memory_failure_early_kill)
423 return tsk;
424 return NULL;
428 * Collect processes when the error hit an anonymous page.
430 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
431 struct to_kill **tkc, int force_early)
433 struct vm_area_struct *vma;
434 struct task_struct *tsk;
435 struct anon_vma *av;
436 pgoff_t pgoff;
438 av = page_lock_anon_vma_read(page);
439 if (av == NULL) /* Not actually mapped anymore */
440 return;
442 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
443 read_lock(&tasklist_lock);
444 for_each_process (tsk) {
445 struct anon_vma_chain *vmac;
446 struct task_struct *t = task_early_kill(tsk, force_early);
448 if (!t)
449 continue;
450 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
451 pgoff, pgoff) {
452 vma = vmac->vma;
453 if (!page_mapped_in_vma(page, vma))
454 continue;
455 if (vma->vm_mm == t->mm)
456 add_to_kill(t, page, vma, to_kill, tkc);
459 read_unlock(&tasklist_lock);
460 page_unlock_anon_vma_read(av);
464 * Collect processes when the error hit a file mapped page.
466 static void collect_procs_file(struct page *page, struct list_head *to_kill,
467 struct to_kill **tkc, int force_early)
469 struct vm_area_struct *vma;
470 struct task_struct *tsk;
471 struct address_space *mapping = page->mapping;
473 mutex_lock(&mapping->i_mmap_mutex);
474 read_lock(&tasklist_lock);
475 for_each_process(tsk) {
476 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
477 struct task_struct *t = task_early_kill(tsk, force_early);
479 if (!t)
480 continue;
481 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
482 pgoff) {
484 * Send early kill signal to tasks where a vma covers
485 * the page but the corrupted page is not necessarily
486 * mapped it in its pte.
487 * Assume applications who requested early kill want
488 * to be informed of all such data corruptions.
490 if (vma->vm_mm == t->mm)
491 add_to_kill(t, page, vma, to_kill, tkc);
494 read_unlock(&tasklist_lock);
495 mutex_unlock(&mapping->i_mmap_mutex);
499 * Collect the processes who have the corrupted page mapped to kill.
500 * This is done in two steps for locking reasons.
501 * First preallocate one tokill structure outside the spin locks,
502 * so that we can kill at least one process reasonably reliable.
504 static void collect_procs(struct page *page, struct list_head *tokill,
505 int force_early)
507 struct to_kill *tk;
509 if (!page->mapping)
510 return;
512 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
513 if (!tk)
514 return;
515 if (PageAnon(page))
516 collect_procs_anon(page, tokill, &tk, force_early);
517 else
518 collect_procs_file(page, tokill, &tk, force_early);
519 kfree(tk);
523 * Error handlers for various types of pages.
526 enum outcome {
527 IGNORED, /* Error: cannot be handled */
528 FAILED, /* Error: handling failed */
529 DELAYED, /* Will be handled later */
530 RECOVERED, /* Successfully recovered */
533 static const char *action_name[] = {
534 [IGNORED] = "Ignored",
535 [FAILED] = "Failed",
536 [DELAYED] = "Delayed",
537 [RECOVERED] = "Recovered",
541 * XXX: It is possible that a page is isolated from LRU cache,
542 * and then kept in swap cache or failed to remove from page cache.
543 * The page count will stop it from being freed by unpoison.
544 * Stress tests should be aware of this memory leak problem.
546 static int delete_from_lru_cache(struct page *p)
548 if (!isolate_lru_page(p)) {
550 * Clear sensible page flags, so that the buddy system won't
551 * complain when the page is unpoison-and-freed.
553 ClearPageActive(p);
554 ClearPageUnevictable(p);
556 * drop the page count elevated by isolate_lru_page()
558 page_cache_release(p);
559 return 0;
561 return -EIO;
565 * Error hit kernel page.
566 * Do nothing, try to be lucky and not touch this instead. For a few cases we
567 * could be more sophisticated.
569 static int me_kernel(struct page *p, unsigned long pfn)
571 return IGNORED;
575 * Page in unknown state. Do nothing.
577 static int me_unknown(struct page *p, unsigned long pfn)
579 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
580 return FAILED;
584 * Clean (or cleaned) page cache page.
586 static int me_pagecache_clean(struct page *p, unsigned long pfn)
588 int err;
589 int ret = FAILED;
590 struct address_space *mapping;
592 delete_from_lru_cache(p);
595 * For anonymous pages we're done the only reference left
596 * should be the one m_f() holds.
598 if (PageAnon(p))
599 return RECOVERED;
602 * Now truncate the page in the page cache. This is really
603 * more like a "temporary hole punch"
604 * Don't do this for block devices when someone else
605 * has a reference, because it could be file system metadata
606 * and that's not safe to truncate.
608 mapping = page_mapping(p);
609 if (!mapping) {
611 * Page has been teared down in the meanwhile
613 return FAILED;
617 * Truncation is a bit tricky. Enable it per file system for now.
619 * Open: to take i_mutex or not for this? Right now we don't.
621 if (mapping->a_ops->error_remove_page) {
622 err = mapping->a_ops->error_remove_page(mapping, p);
623 if (err != 0) {
624 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
625 pfn, err);
626 } else if (page_has_private(p) &&
627 !try_to_release_page(p, GFP_NOIO)) {
628 pr_info("MCE %#lx: failed to release buffers\n", pfn);
629 } else {
630 ret = RECOVERED;
632 } else {
634 * If the file system doesn't support it just invalidate
635 * This fails on dirty or anything with private pages
637 if (invalidate_inode_page(p))
638 ret = RECOVERED;
639 else
640 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
641 pfn);
643 return ret;
647 * Dirty pagecache page
648 * Issues: when the error hit a hole page the error is not properly
649 * propagated.
651 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
653 struct address_space *mapping = page_mapping(p);
655 SetPageError(p);
656 /* TBD: print more information about the file. */
657 if (mapping) {
659 * IO error will be reported by write(), fsync(), etc.
660 * who check the mapping.
661 * This way the application knows that something went
662 * wrong with its dirty file data.
664 * There's one open issue:
666 * The EIO will be only reported on the next IO
667 * operation and then cleared through the IO map.
668 * Normally Linux has two mechanisms to pass IO error
669 * first through the AS_EIO flag in the address space
670 * and then through the PageError flag in the page.
671 * Since we drop pages on memory failure handling the
672 * only mechanism open to use is through AS_AIO.
674 * This has the disadvantage that it gets cleared on
675 * the first operation that returns an error, while
676 * the PageError bit is more sticky and only cleared
677 * when the page is reread or dropped. If an
678 * application assumes it will always get error on
679 * fsync, but does other operations on the fd before
680 * and the page is dropped between then the error
681 * will not be properly reported.
683 * This can already happen even without hwpoisoned
684 * pages: first on metadata IO errors (which only
685 * report through AS_EIO) or when the page is dropped
686 * at the wrong time.
688 * So right now we assume that the application DTRT on
689 * the first EIO, but we're not worse than other parts
690 * of the kernel.
692 mapping_set_error(mapping, EIO);
695 return me_pagecache_clean(p, pfn);
699 * Clean and dirty swap cache.
701 * Dirty swap cache page is tricky to handle. The page could live both in page
702 * cache and swap cache(ie. page is freshly swapped in). So it could be
703 * referenced concurrently by 2 types of PTEs:
704 * normal PTEs and swap PTEs. We try to handle them consistently by calling
705 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
706 * and then
707 * - clear dirty bit to prevent IO
708 * - remove from LRU
709 * - but keep in the swap cache, so that when we return to it on
710 * a later page fault, we know the application is accessing
711 * corrupted data and shall be killed (we installed simple
712 * interception code in do_swap_page to catch it).
714 * Clean swap cache pages can be directly isolated. A later page fault will
715 * bring in the known good data from disk.
717 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
719 ClearPageDirty(p);
720 /* Trigger EIO in shmem: */
721 ClearPageUptodate(p);
723 if (!delete_from_lru_cache(p))
724 return DELAYED;
725 else
726 return FAILED;
729 static int me_swapcache_clean(struct page *p, unsigned long pfn)
731 delete_from_swap_cache(p);
733 if (!delete_from_lru_cache(p))
734 return RECOVERED;
735 else
736 return FAILED;
740 * Huge pages. Needs work.
741 * Issues:
742 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
743 * To narrow down kill region to one page, we need to break up pmd.
745 static int me_huge_page(struct page *p, unsigned long pfn)
747 int res = 0;
748 struct page *hpage = compound_head(p);
750 * We can safely recover from error on free or reserved (i.e.
751 * not in-use) hugepage by dequeuing it from freelist.
752 * To check whether a hugepage is in-use or not, we can't use
753 * page->lru because it can be used in other hugepage operations,
754 * such as __unmap_hugepage_range() and gather_surplus_pages().
755 * So instead we use page_mapping() and PageAnon().
756 * We assume that this function is called with page lock held,
757 * so there is no race between isolation and mapping/unmapping.
759 if (!(page_mapping(hpage) || PageAnon(hpage))) {
760 res = dequeue_hwpoisoned_huge_page(hpage);
761 if (!res)
762 return RECOVERED;
764 return DELAYED;
768 * Various page states we can handle.
770 * A page state is defined by its current page->flags bits.
771 * The table matches them in order and calls the right handler.
773 * This is quite tricky because we can access page at any time
774 * in its live cycle, so all accesses have to be extremely careful.
776 * This is not complete. More states could be added.
777 * For any missing state don't attempt recovery.
780 #define dirty (1UL << PG_dirty)
781 #define sc (1UL << PG_swapcache)
782 #define unevict (1UL << PG_unevictable)
783 #define mlock (1UL << PG_mlocked)
784 #define writeback (1UL << PG_writeback)
785 #define lru (1UL << PG_lru)
786 #define swapbacked (1UL << PG_swapbacked)
787 #define head (1UL << PG_head)
788 #define tail (1UL << PG_tail)
789 #define compound (1UL << PG_compound)
790 #define slab (1UL << PG_slab)
791 #define reserved (1UL << PG_reserved)
793 static struct page_state {
794 unsigned long mask;
795 unsigned long res;
796 char *msg;
797 int (*action)(struct page *p, unsigned long pfn);
798 } error_states[] = {
799 { reserved, reserved, "reserved kernel", me_kernel },
801 * free pages are specially detected outside this table:
802 * PG_buddy pages only make a small fraction of all free pages.
806 * Could in theory check if slab page is free or if we can drop
807 * currently unused objects without touching them. But just
808 * treat it as standard kernel for now.
810 { slab, slab, "kernel slab", me_kernel },
812 #ifdef CONFIG_PAGEFLAGS_EXTENDED
813 { head, head, "huge", me_huge_page },
814 { tail, tail, "huge", me_huge_page },
815 #else
816 { compound, compound, "huge", me_huge_page },
817 #endif
819 { sc|dirty, sc|dirty, "dirty swapcache", me_swapcache_dirty },
820 { sc|dirty, sc, "clean swapcache", me_swapcache_clean },
822 { mlock|dirty, mlock|dirty, "dirty mlocked LRU", me_pagecache_dirty },
823 { mlock|dirty, mlock, "clean mlocked LRU", me_pagecache_clean },
825 { unevict|dirty, unevict|dirty, "dirty unevictable LRU", me_pagecache_dirty },
826 { unevict|dirty, unevict, "clean unevictable LRU", me_pagecache_clean },
828 { lru|dirty, lru|dirty, "dirty LRU", me_pagecache_dirty },
829 { lru|dirty, lru, "clean LRU", me_pagecache_clean },
832 * Catchall entry: must be at end.
834 { 0, 0, "unknown page state", me_unknown },
837 #undef dirty
838 #undef sc
839 #undef unevict
840 #undef mlock
841 #undef writeback
842 #undef lru
843 #undef swapbacked
844 #undef head
845 #undef tail
846 #undef compound
847 #undef slab
848 #undef reserved
851 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
852 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
854 static void action_result(unsigned long pfn, char *msg, int result)
856 pr_err("MCE %#lx: %s page recovery: %s\n",
857 pfn, msg, action_name[result]);
860 static int page_action(struct page_state *ps, struct page *p,
861 unsigned long pfn)
863 int result;
864 int count;
866 result = ps->action(p, pfn);
867 action_result(pfn, ps->msg, result);
869 count = page_count(p) - 1;
870 if (ps->action == me_swapcache_dirty && result == DELAYED)
871 count--;
872 if (count != 0) {
873 printk(KERN_ERR
874 "MCE %#lx: %s page still referenced by %d users\n",
875 pfn, ps->msg, count);
876 result = FAILED;
879 /* Could do more checks here if page looks ok */
881 * Could adjust zone counters here to correct for the missing page.
884 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
888 * Do all that is necessary to remove user space mappings. Unmap
889 * the pages and send SIGBUS to the processes if the data was dirty.
891 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
892 int trapno, int flags, struct page **hpagep)
894 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
895 struct address_space *mapping;
896 LIST_HEAD(tokill);
897 int ret;
898 int kill = 1, forcekill;
899 struct page *hpage = *hpagep;
900 struct page *ppage;
902 if (PageReserved(p) || PageSlab(p))
903 return SWAP_SUCCESS;
906 * This check implies we don't kill processes if their pages
907 * are in the swap cache early. Those are always late kills.
909 if (!page_mapped(hpage))
910 return SWAP_SUCCESS;
912 if (PageKsm(p))
913 return SWAP_FAIL;
915 if (PageSwapCache(p)) {
916 printk(KERN_ERR
917 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
918 ttu |= TTU_IGNORE_HWPOISON;
922 * Propagate the dirty bit from PTEs to struct page first, because we
923 * need this to decide if we should kill or just drop the page.
924 * XXX: the dirty test could be racy: set_page_dirty() may not always
925 * be called inside page lock (it's recommended but not enforced).
927 mapping = page_mapping(hpage);
928 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
929 mapping_cap_writeback_dirty(mapping)) {
930 if (page_mkclean(hpage)) {
931 SetPageDirty(hpage);
932 } else {
933 kill = 0;
934 ttu |= TTU_IGNORE_HWPOISON;
935 printk(KERN_INFO
936 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
937 pfn);
942 * ppage: poisoned page
943 * if p is regular page(4k page)
944 * ppage == real poisoned page;
945 * else p is hugetlb or THP, ppage == head page.
947 ppage = hpage;
949 if (PageTransHuge(hpage)) {
951 * Verify that this isn't a hugetlbfs head page, the check for
952 * PageAnon is just for avoid tripping a split_huge_page
953 * internal debug check, as split_huge_page refuses to deal with
954 * anything that isn't an anon page. PageAnon can't go away fro
955 * under us because we hold a refcount on the hpage, without a
956 * refcount on the hpage. split_huge_page can't be safely called
957 * in the first place, having a refcount on the tail isn't
958 * enough * to be safe.
960 if (!PageHuge(hpage) && PageAnon(hpage)) {
961 if (unlikely(split_huge_page(hpage))) {
963 * FIXME: if splitting THP is failed, it is
964 * better to stop the following operation rather
965 * than causing panic by unmapping. System might
966 * survive if the page is freed later.
968 printk(KERN_INFO
969 "MCE %#lx: failed to split THP\n", pfn);
971 BUG_ON(!PageHWPoison(p));
972 return SWAP_FAIL;
975 * We pinned the head page for hwpoison handling,
976 * now we split the thp and we are interested in
977 * the hwpoisoned raw page, so move the refcount
978 * to it. Similarly, page lock is shifted.
980 if (hpage != p) {
981 if (!(flags & MF_COUNT_INCREASED)) {
982 put_page(hpage);
983 get_page(p);
985 lock_page(p);
986 unlock_page(hpage);
987 *hpagep = p;
989 /* THP is split, so ppage should be the real poisoned page. */
990 ppage = p;
995 * First collect all the processes that have the page
996 * mapped in dirty form. This has to be done before try_to_unmap,
997 * because ttu takes the rmap data structures down.
999 * Error handling: We ignore errors here because
1000 * there's nothing that can be done.
1002 if (kill)
1003 collect_procs(ppage, &tokill, flags & MF_ACTION_REQUIRED);
1005 ret = try_to_unmap(ppage, ttu);
1006 if (ret != SWAP_SUCCESS)
1007 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
1008 pfn, page_mapcount(ppage));
1011 * Now that the dirty bit has been propagated to the
1012 * struct page and all unmaps done we can decide if
1013 * killing is needed or not. Only kill when the page
1014 * was dirty or the process is not restartable,
1015 * otherwise the tokill list is merely
1016 * freed. When there was a problem unmapping earlier
1017 * use a more force-full uncatchable kill to prevent
1018 * any accesses to the poisoned memory.
1020 forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
1021 kill_procs(&tokill, forcekill, trapno,
1022 ret != SWAP_SUCCESS, p, pfn, flags);
1024 return ret;
1027 static void set_page_hwpoison_huge_page(struct page *hpage)
1029 int i;
1030 int nr_pages = 1 << compound_order(hpage);
1031 for (i = 0; i < nr_pages; i++)
1032 SetPageHWPoison(hpage + i);
1035 static void clear_page_hwpoison_huge_page(struct page *hpage)
1037 int i;
1038 int nr_pages = 1 << compound_order(hpage);
1039 for (i = 0; i < nr_pages; i++)
1040 ClearPageHWPoison(hpage + i);
1044 * memory_failure - Handle memory failure of a page.
1045 * @pfn: Page Number of the corrupted page
1046 * @trapno: Trap number reported in the signal to user space.
1047 * @flags: fine tune action taken
1049 * This function is called by the low level machine check code
1050 * of an architecture when it detects hardware memory corruption
1051 * of a page. It tries its best to recover, which includes
1052 * dropping pages, killing processes etc.
1054 * The function is primarily of use for corruptions that
1055 * happen outside the current execution context (e.g. when
1056 * detected by a background scrubber)
1058 * Must run in process context (e.g. a work queue) with interrupts
1059 * enabled and no spinlocks hold.
1061 int memory_failure(unsigned long pfn, int trapno, int flags)
1063 struct page_state *ps;
1064 struct page *p;
1065 struct page *hpage;
1066 int res;
1067 unsigned int nr_pages;
1068 unsigned long page_flags;
1070 if (!sysctl_memory_failure_recovery)
1071 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1073 if (!pfn_valid(pfn)) {
1074 printk(KERN_ERR
1075 "MCE %#lx: memory outside kernel control\n",
1076 pfn);
1077 return -ENXIO;
1080 p = pfn_to_page(pfn);
1081 hpage = compound_head(p);
1082 if (TestSetPageHWPoison(p)) {
1083 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1084 return 0;
1088 * Currently errors on hugetlbfs pages are measured in hugepage units,
1089 * so nr_pages should be 1 << compound_order. OTOH when errors are on
1090 * transparent hugepages, they are supposed to be split and error
1091 * measurement is done in normal page units. So nr_pages should be one
1092 * in this case.
1094 if (PageHuge(p))
1095 nr_pages = 1 << compound_order(hpage);
1096 else /* normal page or thp */
1097 nr_pages = 1;
1098 atomic_long_add(nr_pages, &num_poisoned_pages);
1101 * We need/can do nothing about count=0 pages.
1102 * 1) it's a free page, and therefore in safe hand:
1103 * prep_new_page() will be the gate keeper.
1104 * 2) it's a free hugepage, which is also safe:
1105 * an affected hugepage will be dequeued from hugepage freelist,
1106 * so there's no concern about reusing it ever after.
1107 * 3) it's part of a non-compound high order page.
1108 * Implies some kernel user: cannot stop them from
1109 * R/W the page; let's pray that the page has been
1110 * used and will be freed some time later.
1111 * In fact it's dangerous to directly bump up page count from 0,
1112 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1114 if (!(flags & MF_COUNT_INCREASED) &&
1115 !get_page_unless_zero(hpage)) {
1116 if (is_free_buddy_page(p)) {
1117 action_result(pfn, "free buddy", DELAYED);
1118 return 0;
1119 } else if (PageHuge(hpage)) {
1121 * Check "filter hit" and "race with other subpage."
1123 lock_page(hpage);
1124 if (PageHWPoison(hpage)) {
1125 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1126 || (p != hpage && TestSetPageHWPoison(hpage))) {
1127 atomic_long_sub(nr_pages, &num_poisoned_pages);
1128 unlock_page(hpage);
1129 return 0;
1132 set_page_hwpoison_huge_page(hpage);
1133 res = dequeue_hwpoisoned_huge_page(hpage);
1134 action_result(pfn, "free huge",
1135 res ? IGNORED : DELAYED);
1136 unlock_page(hpage);
1137 return res;
1138 } else {
1139 action_result(pfn, "high order kernel", IGNORED);
1140 return -EBUSY;
1145 * We ignore non-LRU pages for good reasons.
1146 * - PG_locked is only well defined for LRU pages and a few others
1147 * - to avoid races with __set_page_locked()
1148 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1149 * The check (unnecessarily) ignores LRU pages being isolated and
1150 * walked by the page reclaim code, however that's not a big loss.
1152 if (!PageHuge(p)) {
1153 if (!PageLRU(hpage))
1154 shake_page(hpage, 0);
1155 if (!PageLRU(hpage)) {
1157 * shake_page could have turned it free.
1159 if (is_free_buddy_page(p)) {
1160 if (flags & MF_COUNT_INCREASED)
1161 action_result(pfn, "free buddy", DELAYED);
1162 else
1163 action_result(pfn, "free buddy, 2nd try", DELAYED);
1164 return 0;
1166 action_result(pfn, "non LRU", IGNORED);
1167 put_page(p);
1168 return -EBUSY;
1173 * Lock the page and wait for writeback to finish.
1174 * It's very difficult to mess with pages currently under IO
1175 * and in many cases impossible, so we just avoid it here.
1177 lock_page(hpage);
1180 * We use page flags to determine what action should be taken, but
1181 * the flags can be modified by the error containment action. One
1182 * example is an mlocked page, where PG_mlocked is cleared by
1183 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1184 * correctly, we save a copy of the page flags at this time.
1186 page_flags = p->flags;
1189 * unpoison always clear PG_hwpoison inside page lock
1191 if (!PageHWPoison(p)) {
1192 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1193 atomic_long_sub(nr_pages, &num_poisoned_pages);
1194 put_page(hpage);
1195 res = 0;
1196 goto out;
1198 if (hwpoison_filter(p)) {
1199 if (TestClearPageHWPoison(p))
1200 atomic_long_sub(nr_pages, &num_poisoned_pages);
1201 unlock_page(hpage);
1202 put_page(hpage);
1203 return 0;
1207 * For error on the tail page, we should set PG_hwpoison
1208 * on the head page to show that the hugepage is hwpoisoned
1210 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1211 action_result(pfn, "hugepage already hardware poisoned",
1212 IGNORED);
1213 unlock_page(hpage);
1214 put_page(hpage);
1215 return 0;
1218 * Set PG_hwpoison on all pages in an error hugepage,
1219 * because containment is done in hugepage unit for now.
1220 * Since we have done TestSetPageHWPoison() for the head page with
1221 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1223 if (PageHuge(p))
1224 set_page_hwpoison_huge_page(hpage);
1226 wait_on_page_writeback(p);
1229 * Now take care of user space mappings.
1230 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1232 * When the raw error page is thp tail page, hpage points to the raw
1233 * page after thp split.
1235 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1236 != SWAP_SUCCESS) {
1237 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1238 res = -EBUSY;
1239 goto out;
1243 * Torn down by someone else?
1245 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1246 action_result(pfn, "already truncated LRU", IGNORED);
1247 res = -EBUSY;
1248 goto out;
1251 res = -EBUSY;
1253 * The first check uses the current page flags which may not have any
1254 * relevant information. The second check with the saved page flagss is
1255 * carried out only if the first check can't determine the page status.
1257 for (ps = error_states;; ps++)
1258 if ((p->flags & ps->mask) == ps->res)
1259 break;
1261 page_flags |= (p->flags & (1UL << PG_dirty));
1263 if (!ps->mask)
1264 for (ps = error_states;; ps++)
1265 if ((page_flags & ps->mask) == ps->res)
1266 break;
1267 res = page_action(ps, p, pfn);
1268 out:
1269 unlock_page(hpage);
1270 return res;
1272 EXPORT_SYMBOL_GPL(memory_failure);
1274 #define MEMORY_FAILURE_FIFO_ORDER 4
1275 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1277 struct memory_failure_entry {
1278 unsigned long pfn;
1279 int trapno;
1280 int flags;
1283 struct memory_failure_cpu {
1284 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1285 MEMORY_FAILURE_FIFO_SIZE);
1286 spinlock_t lock;
1287 struct work_struct work;
1290 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1293 * memory_failure_queue - Schedule handling memory failure of a page.
1294 * @pfn: Page Number of the corrupted page
1295 * @trapno: Trap number reported in the signal to user space.
1296 * @flags: Flags for memory failure handling
1298 * This function is called by the low level hardware error handler
1299 * when it detects hardware memory corruption of a page. It schedules
1300 * the recovering of error page, including dropping pages, killing
1301 * processes etc.
1303 * The function is primarily of use for corruptions that
1304 * happen outside the current execution context (e.g. when
1305 * detected by a background scrubber)
1307 * Can run in IRQ context.
1309 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1311 struct memory_failure_cpu *mf_cpu;
1312 unsigned long proc_flags;
1313 struct memory_failure_entry entry = {
1314 .pfn = pfn,
1315 .trapno = trapno,
1316 .flags = flags,
1319 mf_cpu = &get_cpu_var(memory_failure_cpu);
1320 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1321 if (kfifo_put(&mf_cpu->fifo, entry))
1322 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1323 else
1324 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1325 pfn);
1326 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1327 put_cpu_var(memory_failure_cpu);
1329 EXPORT_SYMBOL_GPL(memory_failure_queue);
1331 static void memory_failure_work_func(struct work_struct *work)
1333 struct memory_failure_cpu *mf_cpu;
1334 struct memory_failure_entry entry = { 0, };
1335 unsigned long proc_flags;
1336 int gotten;
1338 mf_cpu = &__get_cpu_var(memory_failure_cpu);
1339 for (;;) {
1340 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1341 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1342 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1343 if (!gotten)
1344 break;
1345 if (entry.flags & MF_SOFT_OFFLINE)
1346 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1347 else
1348 memory_failure(entry.pfn, entry.trapno, entry.flags);
1352 static int __init memory_failure_init(void)
1354 struct memory_failure_cpu *mf_cpu;
1355 int cpu;
1357 for_each_possible_cpu(cpu) {
1358 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1359 spin_lock_init(&mf_cpu->lock);
1360 INIT_KFIFO(mf_cpu->fifo);
1361 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1364 return 0;
1366 core_initcall(memory_failure_init);
1369 * unpoison_memory - Unpoison a previously poisoned page
1370 * @pfn: Page number of the to be unpoisoned page
1372 * Software-unpoison a page that has been poisoned by
1373 * memory_failure() earlier.
1375 * This is only done on the software-level, so it only works
1376 * for linux injected failures, not real hardware failures
1378 * Returns 0 for success, otherwise -errno.
1380 int unpoison_memory(unsigned long pfn)
1382 struct page *page;
1383 struct page *p;
1384 int freeit = 0;
1385 unsigned int nr_pages;
1387 if (!pfn_valid(pfn))
1388 return -ENXIO;
1390 p = pfn_to_page(pfn);
1391 page = compound_head(p);
1393 if (!PageHWPoison(p)) {
1394 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1395 return 0;
1399 * unpoison_memory() can encounter thp only when the thp is being
1400 * worked by memory_failure() and the page lock is not held yet.
1401 * In such case, we yield to memory_failure() and make unpoison fail.
1403 if (!PageHuge(page) && PageTransHuge(page)) {
1404 pr_info("MCE: Memory failure is now running on %#lx\n", pfn);
1405 return 0;
1408 nr_pages = 1 << compound_order(page);
1410 if (!get_page_unless_zero(page)) {
1412 * Since HWPoisoned hugepage should have non-zero refcount,
1413 * race between memory failure and unpoison seems to happen.
1414 * In such case unpoison fails and memory failure runs
1415 * to the end.
1417 if (PageHuge(page)) {
1418 pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1419 return 0;
1421 if (TestClearPageHWPoison(p))
1422 atomic_long_dec(&num_poisoned_pages);
1423 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1424 return 0;
1427 lock_page(page);
1429 * This test is racy because PG_hwpoison is set outside of page lock.
1430 * That's acceptable because that won't trigger kernel panic. Instead,
1431 * the PG_hwpoison page will be caught and isolated on the entrance to
1432 * the free buddy page pool.
1434 if (TestClearPageHWPoison(page)) {
1435 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1436 atomic_long_sub(nr_pages, &num_poisoned_pages);
1437 freeit = 1;
1438 if (PageHuge(page))
1439 clear_page_hwpoison_huge_page(page);
1441 unlock_page(page);
1443 put_page(page);
1444 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1445 put_page(page);
1447 return 0;
1449 EXPORT_SYMBOL(unpoison_memory);
1451 static struct page *new_page(struct page *p, unsigned long private, int **x)
1453 int nid = page_to_nid(p);
1454 if (PageHuge(p))
1455 return alloc_huge_page_node(page_hstate(compound_head(p)),
1456 nid);
1457 else
1458 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1462 * Safely get reference count of an arbitrary page.
1463 * Returns 0 for a free page, -EIO for a zero refcount page
1464 * that is not free, and 1 for any other page type.
1465 * For 1 the page is returned with increased page count, otherwise not.
1467 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1469 int ret;
1471 if (flags & MF_COUNT_INCREASED)
1472 return 1;
1475 * When the target page is a free hugepage, just remove it
1476 * from free hugepage list.
1478 if (!get_page_unless_zero(compound_head(p))) {
1479 if (PageHuge(p)) {
1480 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1481 ret = 0;
1482 } else if (is_free_buddy_page(p)) {
1483 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1484 ret = 0;
1485 } else {
1486 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1487 __func__, pfn, p->flags);
1488 ret = -EIO;
1490 } else {
1491 /* Not a free page */
1492 ret = 1;
1494 return ret;
1497 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1499 int ret = __get_any_page(page, pfn, flags);
1501 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1503 * Try to free it.
1505 put_page(page);
1506 shake_page(page, 1);
1509 * Did it turn free?
1511 ret = __get_any_page(page, pfn, 0);
1512 if (!PageLRU(page)) {
1513 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1514 pfn, page->flags);
1515 return -EIO;
1518 return ret;
1521 static int soft_offline_huge_page(struct page *page, int flags)
1523 int ret;
1524 unsigned long pfn = page_to_pfn(page);
1525 struct page *hpage = compound_head(page);
1526 LIST_HEAD(pagelist);
1529 * This double-check of PageHWPoison is to avoid the race with
1530 * memory_failure(). See also comment in __soft_offline_page().
1532 lock_page(hpage);
1533 if (PageHWPoison(hpage)) {
1534 unlock_page(hpage);
1535 put_page(hpage);
1536 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1537 return -EBUSY;
1539 unlock_page(hpage);
1541 /* Keep page count to indicate a given hugepage is isolated. */
1542 list_move(&hpage->lru, &pagelist);
1543 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1544 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1545 if (ret) {
1546 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1547 pfn, ret, page->flags);
1549 * We know that soft_offline_huge_page() tries to migrate
1550 * only one hugepage pointed to by hpage, so we need not
1551 * run through the pagelist here.
1553 putback_active_hugepage(hpage);
1554 if (ret > 0)
1555 ret = -EIO;
1556 } else {
1557 /* overcommit hugetlb page will be freed to buddy */
1558 if (PageHuge(page)) {
1559 set_page_hwpoison_huge_page(hpage);
1560 dequeue_hwpoisoned_huge_page(hpage);
1561 atomic_long_add(1 << compound_order(hpage),
1562 &num_poisoned_pages);
1563 } else {
1564 SetPageHWPoison(page);
1565 atomic_long_inc(&num_poisoned_pages);
1568 return ret;
1571 static int __soft_offline_page(struct page *page, int flags)
1573 int ret;
1574 unsigned long pfn = page_to_pfn(page);
1577 * Check PageHWPoison again inside page lock because PageHWPoison
1578 * is set by memory_failure() outside page lock. Note that
1579 * memory_failure() also double-checks PageHWPoison inside page lock,
1580 * so there's no race between soft_offline_page() and memory_failure().
1582 lock_page(page);
1583 wait_on_page_writeback(page);
1584 if (PageHWPoison(page)) {
1585 unlock_page(page);
1586 put_page(page);
1587 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1588 return -EBUSY;
1591 * Try to invalidate first. This should work for
1592 * non dirty unmapped page cache pages.
1594 ret = invalidate_inode_page(page);
1595 unlock_page(page);
1597 * RED-PEN would be better to keep it isolated here, but we
1598 * would need to fix isolation locking first.
1600 if (ret == 1) {
1601 put_page(page);
1602 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1603 SetPageHWPoison(page);
1604 atomic_long_inc(&num_poisoned_pages);
1605 return 0;
1609 * Simple invalidation didn't work.
1610 * Try to migrate to a new page instead. migrate.c
1611 * handles a large number of cases for us.
1613 ret = isolate_lru_page(page);
1615 * Drop page reference which is came from get_any_page()
1616 * successful isolate_lru_page() already took another one.
1618 put_page(page);
1619 if (!ret) {
1620 LIST_HEAD(pagelist);
1621 inc_zone_page_state(page, NR_ISOLATED_ANON +
1622 page_is_file_cache(page));
1623 list_add(&page->lru, &pagelist);
1624 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1625 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1626 if (ret) {
1627 if (!list_empty(&pagelist)) {
1628 list_del(&page->lru);
1629 dec_zone_page_state(page, NR_ISOLATED_ANON +
1630 page_is_file_cache(page));
1631 putback_lru_page(page);
1634 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1635 pfn, ret, page->flags);
1636 if (ret > 0)
1637 ret = -EIO;
1638 } else {
1640 * After page migration succeeds, the source page can
1641 * be trapped in pagevec and actual freeing is delayed.
1642 * Freeing code works differently based on PG_hwpoison,
1643 * so there's a race. We need to make sure that the
1644 * source page should be freed back to buddy before
1645 * setting PG_hwpoison.
1647 if (!is_free_buddy_page(page))
1648 drain_all_pages();
1649 SetPageHWPoison(page);
1650 if (!is_free_buddy_page(page))
1651 pr_info("soft offline: %#lx: page leaked\n",
1652 pfn);
1653 atomic_long_inc(&num_poisoned_pages);
1655 } else {
1656 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1657 pfn, ret, page_count(page), page->flags);
1659 return ret;
1663 * soft_offline_page - Soft offline a page.
1664 * @page: page to offline
1665 * @flags: flags. Same as memory_failure().
1667 * Returns 0 on success, otherwise negated errno.
1669 * Soft offline a page, by migration or invalidation,
1670 * without killing anything. This is for the case when
1671 * a page is not corrupted yet (so it's still valid to access),
1672 * but has had a number of corrected errors and is better taken
1673 * out.
1675 * The actual policy on when to do that is maintained by
1676 * user space.
1678 * This should never impact any application or cause data loss,
1679 * however it might take some time.
1681 * This is not a 100% solution for all memory, but tries to be
1682 * ``good enough'' for the majority of memory.
1684 int soft_offline_page(struct page *page, int flags)
1686 int ret;
1687 unsigned long pfn = page_to_pfn(page);
1688 struct page *hpage = compound_head(page);
1690 if (PageHWPoison(page)) {
1691 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1692 return -EBUSY;
1694 if (!PageHuge(page) && PageTransHuge(hpage)) {
1695 if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1696 pr_info("soft offline: %#lx: failed to split THP\n",
1697 pfn);
1698 return -EBUSY;
1703 * The lock_memory_hotplug prevents a race with memory hotplug.
1704 * This is a big hammer, a better would be nicer.
1706 lock_memory_hotplug();
1709 * Isolate the page, so that it doesn't get reallocated if it
1710 * was free. This flag should be kept set until the source page
1711 * is freed and PG_hwpoison on it is set.
1713 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
1714 set_migratetype_isolate(page, true);
1716 ret = get_any_page(page, pfn, flags);
1717 unlock_memory_hotplug();
1718 if (ret > 0) { /* for in-use pages */
1719 if (PageHuge(page))
1720 ret = soft_offline_huge_page(page, flags);
1721 else
1722 ret = __soft_offline_page(page, flags);
1723 } else if (ret == 0) { /* for free pages */
1724 if (PageHuge(page)) {
1725 set_page_hwpoison_huge_page(hpage);
1726 if (!dequeue_hwpoisoned_huge_page(hpage))
1727 atomic_long_add(1 << compound_order(hpage),
1728 &num_poisoned_pages);
1729 } else {
1730 if (!TestSetPageHWPoison(page))
1731 atomic_long_inc(&num_poisoned_pages);
1734 unset_migratetype_isolate(page, MIGRATE_MOVABLE);
1735 return ret;