4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/delay.h>
53 #include <linux/init.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 #include <linux/gfp.h>
61 #include <linux/migrate.h>
62 #include <linux/string.h>
63 #include <linux/dma-debug.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr
;
83 EXPORT_SYMBOL(max_mapnr
);
84 EXPORT_SYMBOL(mem_map
);
88 * A number of key systems in x86 including ioremap() rely on the assumption
89 * that high_memory defines the upper bound on direct map memory, then end
90 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
96 EXPORT_SYMBOL(high_memory
);
99 * Randomize the address space (stacks, mmaps, brk, etc.).
101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102 * as ancient (libc5 based) binaries can segfault. )
104 int randomize_va_space __read_mostly
=
105 #ifdef CONFIG_COMPAT_BRK
111 static int __init
disable_randmaps(char *s
)
113 randomize_va_space
= 0;
116 __setup("norandmaps", disable_randmaps
);
118 unsigned long zero_pfn __read_mostly
;
119 unsigned long highest_memmap_pfn __read_mostly
;
122 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
124 static int __init
init_zero_pfn(void)
126 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
129 core_initcall(init_zero_pfn
);
132 #if defined(SPLIT_RSS_COUNTING)
134 void sync_mm_rss(struct mm_struct
*mm
)
138 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
139 if (current
->rss_stat
.count
[i
]) {
140 add_mm_counter(mm
, i
, current
->rss_stat
.count
[i
]);
141 current
->rss_stat
.count
[i
] = 0;
144 current
->rss_stat
.events
= 0;
147 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
149 struct task_struct
*task
= current
;
151 if (likely(task
->mm
== mm
))
152 task
->rss_stat
.count
[member
] += val
;
154 add_mm_counter(mm
, member
, val
);
156 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
157 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
159 /* sync counter once per 64 page faults */
160 #define TASK_RSS_EVENTS_THRESH (64)
161 static void check_sync_rss_stat(struct task_struct
*task
)
163 if (unlikely(task
!= current
))
165 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
166 sync_mm_rss(task
->mm
);
168 #else /* SPLIT_RSS_COUNTING */
170 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
171 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
173 static void check_sync_rss_stat(struct task_struct
*task
)
177 #endif /* SPLIT_RSS_COUNTING */
179 #ifdef HAVE_GENERIC_MMU_GATHER
181 static int tlb_next_batch(struct mmu_gather
*tlb
)
183 struct mmu_gather_batch
*batch
;
187 tlb
->active
= batch
->next
;
191 if (tlb
->batch_count
== MAX_GATHER_BATCH_COUNT
)
194 batch
= (void *)__get_free_pages(GFP_NOWAIT
| __GFP_NOWARN
, 0);
201 batch
->max
= MAX_GATHER_BATCH
;
203 tlb
->active
->next
= batch
;
210 * Called to initialize an (on-stack) mmu_gather structure for page-table
211 * tear-down from @mm. The @fullmm argument is used when @mm is without
212 * users and we're going to destroy the full address space (exit/execve).
214 void tlb_gather_mmu(struct mmu_gather
*tlb
, struct mm_struct
*mm
, unsigned long start
, unsigned long end
)
218 /* Is it from 0 to ~0? */
219 tlb
->fullmm
= !(start
| (end
+1));
220 tlb
->need_flush_all
= 0;
224 tlb
->local
.next
= NULL
;
226 tlb
->local
.max
= ARRAY_SIZE(tlb
->__pages
);
227 tlb
->active
= &tlb
->local
;
228 tlb
->batch_count
= 0;
230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
235 void tlb_flush_mmu(struct mmu_gather
*tlb
)
237 struct mmu_gather_batch
*batch
;
239 if (!tlb
->need_flush
)
243 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
244 tlb_table_flush(tlb
);
247 for (batch
= &tlb
->local
; batch
; batch
= batch
->next
) {
248 free_pages_and_swap_cache(batch
->pages
, batch
->nr
);
251 tlb
->active
= &tlb
->local
;
255 * Called at the end of the shootdown operation to free up any resources
256 * that were required.
258 void tlb_finish_mmu(struct mmu_gather
*tlb
, unsigned long start
, unsigned long end
)
260 struct mmu_gather_batch
*batch
, *next
;
264 /* keep the page table cache within bounds */
267 for (batch
= tlb
->local
.next
; batch
; batch
= next
) {
269 free_pages((unsigned long)batch
, 0);
271 tlb
->local
.next
= NULL
;
275 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
276 * handling the additional races in SMP caused by other CPUs caching valid
277 * mappings in their TLBs. Returns the number of free page slots left.
278 * When out of page slots we must call tlb_flush_mmu().
280 int __tlb_remove_page(struct mmu_gather
*tlb
, struct page
*page
)
282 struct mmu_gather_batch
*batch
;
284 VM_BUG_ON(!tlb
->need_flush
);
287 batch
->pages
[batch
->nr
++] = page
;
288 if (batch
->nr
== batch
->max
) {
289 if (!tlb_next_batch(tlb
))
293 VM_BUG_ON_PAGE(batch
->nr
> batch
->max
, page
);
295 return batch
->max
- batch
->nr
;
298 #endif /* HAVE_GENERIC_MMU_GATHER */
300 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
303 * See the comment near struct mmu_table_batch.
306 static void tlb_remove_table_smp_sync(void *arg
)
308 /* Simply deliver the interrupt */
311 static void tlb_remove_table_one(void *table
)
314 * This isn't an RCU grace period and hence the page-tables cannot be
315 * assumed to be actually RCU-freed.
317 * It is however sufficient for software page-table walkers that rely on
318 * IRQ disabling. See the comment near struct mmu_table_batch.
320 smp_call_function(tlb_remove_table_smp_sync
, NULL
, 1);
321 __tlb_remove_table(table
);
324 static void tlb_remove_table_rcu(struct rcu_head
*head
)
326 struct mmu_table_batch
*batch
;
329 batch
= container_of(head
, struct mmu_table_batch
, rcu
);
331 for (i
= 0; i
< batch
->nr
; i
++)
332 __tlb_remove_table(batch
->tables
[i
]);
334 free_page((unsigned long)batch
);
337 void tlb_table_flush(struct mmu_gather
*tlb
)
339 struct mmu_table_batch
**batch
= &tlb
->batch
;
342 call_rcu_sched(&(*batch
)->rcu
, tlb_remove_table_rcu
);
347 void tlb_remove_table(struct mmu_gather
*tlb
, void *table
)
349 struct mmu_table_batch
**batch
= &tlb
->batch
;
354 * When there's less then two users of this mm there cannot be a
355 * concurrent page-table walk.
357 if (atomic_read(&tlb
->mm
->mm_users
) < 2) {
358 __tlb_remove_table(table
);
362 if (*batch
== NULL
) {
363 *batch
= (struct mmu_table_batch
*)__get_free_page(GFP_NOWAIT
| __GFP_NOWARN
);
364 if (*batch
== NULL
) {
365 tlb_remove_table_one(table
);
370 (*batch
)->tables
[(*batch
)->nr
++] = table
;
371 if ((*batch
)->nr
== MAX_TABLE_BATCH
)
372 tlb_table_flush(tlb
);
375 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
378 * Note: this doesn't free the actual pages themselves. That
379 * has been handled earlier when unmapping all the memory regions.
381 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
384 pgtable_t token
= pmd_pgtable(*pmd
);
386 pte_free_tlb(tlb
, token
, addr
);
387 atomic_long_dec(&tlb
->mm
->nr_ptes
);
390 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
391 unsigned long addr
, unsigned long end
,
392 unsigned long floor
, unsigned long ceiling
)
399 pmd
= pmd_offset(pud
, addr
);
401 next
= pmd_addr_end(addr
, end
);
402 if (pmd_none_or_clear_bad(pmd
))
404 free_pte_range(tlb
, pmd
, addr
);
405 } while (pmd
++, addr
= next
, addr
!= end
);
415 if (end
- 1 > ceiling
- 1)
418 pmd
= pmd_offset(pud
, start
);
420 pmd_free_tlb(tlb
, pmd
, start
);
423 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
424 unsigned long addr
, unsigned long end
,
425 unsigned long floor
, unsigned long ceiling
)
432 pud
= pud_offset(pgd
, addr
);
434 next
= pud_addr_end(addr
, end
);
435 if (pud_none_or_clear_bad(pud
))
437 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
438 } while (pud
++, addr
= next
, addr
!= end
);
444 ceiling
&= PGDIR_MASK
;
448 if (end
- 1 > ceiling
- 1)
451 pud
= pud_offset(pgd
, start
);
453 pud_free_tlb(tlb
, pud
, start
);
457 * This function frees user-level page tables of a process.
459 void free_pgd_range(struct mmu_gather
*tlb
,
460 unsigned long addr
, unsigned long end
,
461 unsigned long floor
, unsigned long ceiling
)
467 * The next few lines have given us lots of grief...
469 * Why are we testing PMD* at this top level? Because often
470 * there will be no work to do at all, and we'd prefer not to
471 * go all the way down to the bottom just to discover that.
473 * Why all these "- 1"s? Because 0 represents both the bottom
474 * of the address space and the top of it (using -1 for the
475 * top wouldn't help much: the masks would do the wrong thing).
476 * The rule is that addr 0 and floor 0 refer to the bottom of
477 * the address space, but end 0 and ceiling 0 refer to the top
478 * Comparisons need to use "end - 1" and "ceiling - 1" (though
479 * that end 0 case should be mythical).
481 * Wherever addr is brought up or ceiling brought down, we must
482 * be careful to reject "the opposite 0" before it confuses the
483 * subsequent tests. But what about where end is brought down
484 * by PMD_SIZE below? no, end can't go down to 0 there.
486 * Whereas we round start (addr) and ceiling down, by different
487 * masks at different levels, in order to test whether a table
488 * now has no other vmas using it, so can be freed, we don't
489 * bother to round floor or end up - the tests don't need that.
503 if (end
- 1 > ceiling
- 1)
508 pgd
= pgd_offset(tlb
->mm
, addr
);
510 next
= pgd_addr_end(addr
, end
);
511 if (pgd_none_or_clear_bad(pgd
))
513 free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
514 } while (pgd
++, addr
= next
, addr
!= end
);
517 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
518 unsigned long floor
, unsigned long ceiling
)
521 struct vm_area_struct
*next
= vma
->vm_next
;
522 unsigned long addr
= vma
->vm_start
;
525 * Hide vma from rmap and truncate_pagecache before freeing
528 unlink_anon_vmas(vma
);
529 unlink_file_vma(vma
);
531 if (is_vm_hugetlb_page(vma
)) {
532 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
533 floor
, next
? next
->vm_start
: ceiling
);
536 * Optimization: gather nearby vmas into one call down
538 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
539 && !is_vm_hugetlb_page(next
)) {
542 unlink_anon_vmas(vma
);
543 unlink_file_vma(vma
);
545 free_pgd_range(tlb
, addr
, vma
->vm_end
,
546 floor
, next
? next
->vm_start
: ceiling
);
552 int __pte_alloc(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
553 pmd_t
*pmd
, unsigned long address
)
556 pgtable_t
new = pte_alloc_one(mm
, address
);
557 int wait_split_huge_page
;
562 * Ensure all pte setup (eg. pte page lock and page clearing) are
563 * visible before the pte is made visible to other CPUs by being
564 * put into page tables.
566 * The other side of the story is the pointer chasing in the page
567 * table walking code (when walking the page table without locking;
568 * ie. most of the time). Fortunately, these data accesses consist
569 * of a chain of data-dependent loads, meaning most CPUs (alpha
570 * being the notable exception) will already guarantee loads are
571 * seen in-order. See the alpha page table accessors for the
572 * smp_read_barrier_depends() barriers in page table walking code.
574 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
576 ptl
= pmd_lock(mm
, pmd
);
577 wait_split_huge_page
= 0;
578 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
579 atomic_long_inc(&mm
->nr_ptes
);
580 pmd_populate(mm
, pmd
, new);
582 } else if (unlikely(pmd_trans_splitting(*pmd
)))
583 wait_split_huge_page
= 1;
587 if (wait_split_huge_page
)
588 wait_split_huge_page(vma
->anon_vma
, pmd
);
592 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
594 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
598 smp_wmb(); /* See comment in __pte_alloc */
600 spin_lock(&init_mm
.page_table_lock
);
601 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
602 pmd_populate_kernel(&init_mm
, pmd
, new);
605 VM_BUG_ON(pmd_trans_splitting(*pmd
));
606 spin_unlock(&init_mm
.page_table_lock
);
608 pte_free_kernel(&init_mm
, new);
612 static inline void init_rss_vec(int *rss
)
614 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
617 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
621 if (current
->mm
== mm
)
623 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
625 add_mm_counter(mm
, i
, rss
[i
]);
629 * This function is called to print an error when a bad pte
630 * is found. For example, we might have a PFN-mapped pte in
631 * a region that doesn't allow it.
633 * The calling function must still handle the error.
635 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
636 pte_t pte
, struct page
*page
)
638 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
639 pud_t
*pud
= pud_offset(pgd
, addr
);
640 pmd_t
*pmd
= pmd_offset(pud
, addr
);
641 struct address_space
*mapping
;
643 static unsigned long resume
;
644 static unsigned long nr_shown
;
645 static unsigned long nr_unshown
;
648 * Allow a burst of 60 reports, then keep quiet for that minute;
649 * or allow a steady drip of one report per second.
651 if (nr_shown
== 60) {
652 if (time_before(jiffies
, resume
)) {
658 "BUG: Bad page map: %lu messages suppressed\n",
665 resume
= jiffies
+ 60 * HZ
;
667 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
668 index
= linear_page_index(vma
, addr
);
671 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
673 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
675 dump_page(page
, "bad pte");
677 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
678 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
680 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
683 printk(KERN_ALERT
"vma->vm_ops->fault: %pSR\n",
686 printk(KERN_ALERT
"vma->vm_file->f_op->mmap: %pSR\n",
687 vma
->vm_file
->f_op
->mmap
);
689 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
692 static inline bool is_cow_mapping(vm_flags_t flags
)
694 return (flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
698 * vm_normal_page -- This function gets the "struct page" associated with a pte.
700 * "Special" mappings do not wish to be associated with a "struct page" (either
701 * it doesn't exist, or it exists but they don't want to touch it). In this
702 * case, NULL is returned here. "Normal" mappings do have a struct page.
704 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
705 * pte bit, in which case this function is trivial. Secondly, an architecture
706 * may not have a spare pte bit, which requires a more complicated scheme,
709 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
710 * special mapping (even if there are underlying and valid "struct pages").
711 * COWed pages of a VM_PFNMAP are always normal.
713 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
714 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
715 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
716 * mapping will always honor the rule
718 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
720 * And for normal mappings this is false.
722 * This restricts such mappings to be a linear translation from virtual address
723 * to pfn. To get around this restriction, we allow arbitrary mappings so long
724 * as the vma is not a COW mapping; in that case, we know that all ptes are
725 * special (because none can have been COWed).
728 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
730 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
731 * page" backing, however the difference is that _all_ pages with a struct
732 * page (that is, those where pfn_valid is true) are refcounted and considered
733 * normal pages by the VM. The disadvantage is that pages are refcounted
734 * (which can be slower and simply not an option for some PFNMAP users). The
735 * advantage is that we don't have to follow the strict linearity rule of
736 * PFNMAP mappings in order to support COWable mappings.
739 #ifdef __HAVE_ARCH_PTE_SPECIAL
740 # define HAVE_PTE_SPECIAL 1
742 # define HAVE_PTE_SPECIAL 0
744 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
747 unsigned long pfn
= pte_pfn(pte
);
749 if (HAVE_PTE_SPECIAL
) {
750 if (likely(!pte_special(pte
)))
752 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
754 if (!is_zero_pfn(pfn
))
755 print_bad_pte(vma
, addr
, pte
, NULL
);
759 /* !HAVE_PTE_SPECIAL case follows: */
761 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
762 if (vma
->vm_flags
& VM_MIXEDMAP
) {
768 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
769 if (pfn
== vma
->vm_pgoff
+ off
)
771 if (!is_cow_mapping(vma
->vm_flags
))
776 if (is_zero_pfn(pfn
))
779 if (unlikely(pfn
> highest_memmap_pfn
)) {
780 print_bad_pte(vma
, addr
, pte
, NULL
);
785 * NOTE! We still have PageReserved() pages in the page tables.
786 * eg. VDSO mappings can cause them to exist.
789 return pfn_to_page(pfn
);
793 * copy one vm_area from one task to the other. Assumes the page tables
794 * already present in the new task to be cleared in the whole range
795 * covered by this vma.
798 static inline unsigned long
799 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
800 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
801 unsigned long addr
, int *rss
)
803 unsigned long vm_flags
= vma
->vm_flags
;
804 pte_t pte
= *src_pte
;
807 /* pte contains position in swap or file, so copy. */
808 if (unlikely(!pte_present(pte
))) {
809 if (!pte_file(pte
)) {
810 swp_entry_t entry
= pte_to_swp_entry(pte
);
812 if (likely(!non_swap_entry(entry
))) {
813 if (swap_duplicate(entry
) < 0)
816 /* make sure dst_mm is on swapoff's mmlist. */
817 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
818 spin_lock(&mmlist_lock
);
819 if (list_empty(&dst_mm
->mmlist
))
820 list_add(&dst_mm
->mmlist
,
822 spin_unlock(&mmlist_lock
);
825 } else if (is_migration_entry(entry
)) {
826 page
= migration_entry_to_page(entry
);
833 if (is_write_migration_entry(entry
) &&
834 is_cow_mapping(vm_flags
)) {
836 * COW mappings require pages in both
837 * parent and child to be set to read.
839 make_migration_entry_read(&entry
);
840 pte
= swp_entry_to_pte(entry
);
841 if (pte_swp_soft_dirty(*src_pte
))
842 pte
= pte_swp_mksoft_dirty(pte
);
843 set_pte_at(src_mm
, addr
, src_pte
, pte
);
851 * If it's a COW mapping, write protect it both
852 * in the parent and the child
854 if (is_cow_mapping(vm_flags
)) {
855 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
856 pte
= pte_wrprotect(pte
);
860 * If it's a shared mapping, mark it clean in
863 if (vm_flags
& VM_SHARED
)
864 pte
= pte_mkclean(pte
);
865 pte
= pte_mkold(pte
);
867 page
= vm_normal_page(vma
, addr
, pte
);
878 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
882 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
883 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
884 unsigned long addr
, unsigned long end
)
886 pte_t
*orig_src_pte
, *orig_dst_pte
;
887 pte_t
*src_pte
, *dst_pte
;
889 spinlock_t
*src_ptl
, *uninitialized_var(dst_ptl
);
891 spinlock_t
*src_ptl
, *dst_ptl
;
894 int rss
[NR_MM_COUNTERS
];
895 swp_entry_t entry
= (swp_entry_t
){0};
900 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
903 src_pte
= pte_offset_map(src_pmd
, addr
);
904 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
905 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
906 orig_src_pte
= src_pte
;
907 orig_dst_pte
= dst_pte
;
908 arch_enter_lazy_mmu_mode();
912 * We are holding two locks at this point - either of them
913 * could generate latencies in another task on another CPU.
915 if (progress
>= 32) {
917 if (need_resched() ||
918 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
921 if (pte_none(*src_pte
)) {
925 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
930 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
932 arch_leave_lazy_mmu_mode();
933 spin_unlock(src_ptl
);
934 pte_unmap(orig_src_pte
);
935 add_mm_rss_vec(dst_mm
, rss
);
936 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
940 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
949 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
950 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
951 unsigned long addr
, unsigned long end
)
953 pmd_t
*src_pmd
, *dst_pmd
;
955 #if defined(CONFIG_E2K) && defined(CONFIG_SECONDARY_SPACE_SUPPORT)
956 unsigned long sec
= ((pud_secondary(*src_pud
) && !IS_UPT_E3S
) ?
959 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
| sec
);
961 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
965 src_pmd
= pmd_offset(src_pud
, addr
);
967 next
= pmd_addr_end(addr
, end
);
968 if (pmd_trans_huge(*src_pmd
)) {
970 VM_BUG_ON(next
-addr
!= HPAGE_PMD_SIZE
);
971 err
= copy_huge_pmd(dst_mm
, src_mm
,
972 dst_pmd
, src_pmd
, addr
, vma
);
979 if (pmd_none_or_clear_bad(src_pmd
))
981 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
984 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
988 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
989 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
990 unsigned long addr
, unsigned long end
)
992 pud_t
*src_pud
, *dst_pud
;
995 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
998 src_pud
= pud_offset(src_pgd
, addr
);
1000 next
= pud_addr_end(addr
, end
);
1001 if (pud_none_or_clear_bad(src_pud
))
1003 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
1006 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
1010 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1011 struct vm_area_struct
*vma
)
1013 pgd_t
*src_pgd
, *dst_pgd
;
1015 unsigned long addr
= vma
->vm_start
;
1016 unsigned long end
= vma
->vm_end
;
1017 unsigned long mmun_start
; /* For mmu_notifiers */
1018 unsigned long mmun_end
; /* For mmu_notifiers */
1023 * Don't copy ptes where a page fault will fill them correctly.
1024 * Fork becomes much lighter when there are big shared or private
1025 * readonly mappings. The tradeoff is that copy_page_range is more
1026 * efficient than faulting.
1028 if (!(vma
->vm_flags
& (VM_HUGETLB
| VM_NONLINEAR
|
1029 VM_PFNMAP
| VM_MIXEDMAP
))) {
1034 if (is_vm_hugetlb_page(vma
))
1035 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
1037 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
1039 * We do not free on error cases below as remove_vma
1040 * gets called on error from higher level routine
1042 ret
= track_pfn_copy(vma
);
1048 * We need to invalidate the secondary MMU mappings only when
1049 * there could be a permission downgrade on the ptes of the
1050 * parent mm. And a permission downgrade will only happen if
1051 * is_cow_mapping() returns true.
1053 is_cow
= is_cow_mapping(vma
->vm_flags
);
1057 mmu_notifier_invalidate_range_start(src_mm
, mmun_start
,
1061 dst_pgd
= pgd_offset(dst_mm
, addr
);
1062 src_pgd
= pgd_offset(src_mm
, addr
);
1064 next
= pgd_addr_end(addr
, end
);
1065 if (pgd_none_or_clear_bad(src_pgd
))
1067 if (unlikely(copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
1068 vma
, addr
, next
))) {
1072 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1075 mmu_notifier_invalidate_range_end(src_mm
, mmun_start
, mmun_end
);
1079 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1080 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1081 unsigned long addr
, unsigned long end
,
1082 struct zap_details
*details
)
1084 struct mm_struct
*mm
= tlb
->mm
;
1085 int force_flush
= 0;
1086 int rss
[NR_MM_COUNTERS
];
1093 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1095 arch_enter_lazy_mmu_mode();
1098 if (pte_none(ptent
)) {
1099 #if defined(CONFIG_E2K) && defined(CONFIG_MAKE_ALL_PAGES_VALID)
1100 if (pte_valid(ptent
)) {
1101 if (!test_ts_flag(TS_KEEP_PAGES_VALID
))
1102 pte_clear_not_present_full(mm
, addr
,
1109 if (pte_present(ptent
)) {
1112 page
= vm_normal_page(vma
, addr
, ptent
);
1113 if (unlikely(details
) && page
) {
1115 * unmap_shared_mapping_pages() wants to
1116 * invalidate cache without truncating:
1117 * unmap shared but keep private pages.
1119 if (details
->check_mapping
&&
1120 details
->check_mapping
!= page
->mapping
)
1123 * Each page->index must be checked when
1124 * invalidating or truncating nonlinear.
1126 if (details
->nonlinear_vma
&&
1127 (page
->index
< details
->first_index
||
1128 page
->index
> details
->last_index
))
1131 #if defined(CONFIG_E2K) && defined(CONFIG_MAKE_ALL_PAGES_VALID)
1132 if (test_ts_flag(TS_KEEP_PAGES_VALID
))
1133 ptent
= ptep_get_and_clear_as_valid(mm
, addr
,
1137 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
1139 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1140 if (unlikely(!page
))
1142 if (unlikely(details
) && details
->nonlinear_vma
1143 && linear_page_index(details
->nonlinear_vma
,
1144 addr
) != page
->index
) {
1145 pte_t ptfile
= pgoff_to_pte(page
->index
);
1146 if (pte_soft_dirty(ptent
))
1147 ptfile
= pte_file_mksoft_dirty(ptfile
);
1148 set_pte_at(mm
, addr
, pte
, ptfile
);
1151 rss
[MM_ANONPAGES
]--;
1153 if (pte_dirty(ptent
))
1154 set_page_dirty(page
);
1155 if (pte_young(ptent
) &&
1156 likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
1157 mark_page_accessed(page
);
1158 rss
[MM_FILEPAGES
]--;
1160 page_remove_rmap(page
);
1161 if (unlikely(page_mapcount(page
) < 0))
1162 print_bad_pte(vma
, addr
, ptent
, page
);
1163 force_flush
= !__tlb_remove_page(tlb
, page
);
1169 * If details->check_mapping, we leave swap entries;
1170 * if details->nonlinear_vma, we leave file entries.
1172 if (unlikely(details
))
1174 if (pte_file(ptent
)) {
1175 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
)))
1176 print_bad_pte(vma
, addr
, ptent
, NULL
);
1178 swp_entry_t entry
= pte_to_swp_entry(ptent
);
1180 if (!non_swap_entry(entry
))
1182 else if (is_migration_entry(entry
)) {
1185 page
= migration_entry_to_page(entry
);
1188 rss
[MM_ANONPAGES
]--;
1190 rss
[MM_FILEPAGES
]--;
1192 if (unlikely(!free_swap_and_cache(entry
)))
1193 print_bad_pte(vma
, addr
, ptent
, NULL
);
1195 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1196 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1198 add_mm_rss_vec(mm
, rss
);
1199 arch_leave_lazy_mmu_mode();
1200 pte_unmap_unlock(start_pte
, ptl
);
1203 * mmu_gather ran out of room to batch pages, we break out of
1204 * the PTE lock to avoid doing the potential expensive TLB invalidate
1205 * and page-free while holding it.
1208 unsigned long old_end
;
1213 * Flush the TLB just for the previous segment,
1214 * then update the range to be the remaining
1232 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1233 struct vm_area_struct
*vma
, pud_t
*pud
,
1234 unsigned long addr
, unsigned long end
,
1235 struct zap_details
*details
)
1240 pmd
= pmd_offset(pud
, addr
);
1242 next
= pmd_addr_end(addr
, end
);
1243 if (pmd_trans_huge(*pmd
)) {
1244 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1245 #ifdef CONFIG_DEBUG_VM
1246 if (!rwsem_is_locked(&tlb
->mm
->mmap_sem
)) {
1247 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1248 __func__
, addr
, end
,
1254 split_huge_page_pmd(vma
, addr
, pmd
);
1255 } else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
))
1260 * Here there can be other concurrent MADV_DONTNEED or
1261 * trans huge page faults running, and if the pmd is
1262 * none or trans huge it can change under us. This is
1263 * because MADV_DONTNEED holds the mmap_sem in read
1266 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1268 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1271 } while (pmd
++, addr
= next
, addr
!= end
);
1276 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1277 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1278 unsigned long addr
, unsigned long end
,
1279 struct zap_details
*details
)
1284 pud
= pud_offset(pgd
, addr
);
1286 next
= pud_addr_end(addr
, end
);
1287 if (pud_none_or_clear_bad(pud
))
1289 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1290 } while (pud
++, addr
= next
, addr
!= end
);
1295 static void unmap_page_range(struct mmu_gather
*tlb
,
1296 struct vm_area_struct
*vma
,
1297 unsigned long addr
, unsigned long end
,
1298 struct zap_details
*details
)
1303 if (details
&& !details
->check_mapping
&& !details
->nonlinear_vma
)
1306 BUG_ON(addr
>= end
);
1307 mem_cgroup_uncharge_start();
1308 tlb_start_vma(tlb
, vma
);
1309 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1311 next
= pgd_addr_end(addr
, end
);
1312 if (pgd_none_or_clear_bad(pgd
))
1314 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
, details
);
1315 } while (pgd
++, addr
= next
, addr
!= end
);
1316 tlb_end_vma(tlb
, vma
);
1317 mem_cgroup_uncharge_end();
1321 static void unmap_single_vma(struct mmu_gather
*tlb
,
1322 struct vm_area_struct
*vma
, unsigned long start_addr
,
1323 unsigned long end_addr
,
1324 struct zap_details
*details
)
1326 unsigned long start
= max(vma
->vm_start
, start_addr
);
1329 if (start
>= vma
->vm_end
)
1331 end
= min(vma
->vm_end
, end_addr
);
1332 if (end
<= vma
->vm_start
)
1336 uprobe_munmap(vma
, start
, end
);
1338 if (unlikely(vma
->vm_flags
& VM_PFNMAP
))
1339 untrack_pfn(vma
, 0, 0);
1342 if (unlikely(is_vm_hugetlb_page(vma
))) {
1344 * It is undesirable to test vma->vm_file as it
1345 * should be non-null for valid hugetlb area.
1346 * However, vm_file will be NULL in the error
1347 * cleanup path of do_mmap_pgoff. When
1348 * hugetlbfs ->mmap method fails,
1349 * do_mmap_pgoff() nullifies vma->vm_file
1350 * before calling this function to clean up.
1351 * Since no pte has actually been setup, it is
1352 * safe to do nothing in this case.
1355 mutex_lock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
1356 __unmap_hugepage_range_final(tlb
, vma
, start
, end
, NULL
);
1357 mutex_unlock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
1360 unmap_page_range(tlb
, vma
, start
, end
, details
);
1365 * unmap_vmas - unmap a range of memory covered by a list of vma's
1366 * @tlb: address of the caller's struct mmu_gather
1367 * @vma: the starting vma
1368 * @start_addr: virtual address at which to start unmapping
1369 * @end_addr: virtual address at which to end unmapping
1371 * Unmap all pages in the vma list.
1373 * Only addresses between `start' and `end' will be unmapped.
1375 * The VMA list must be sorted in ascending virtual address order.
1377 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1378 * range after unmap_vmas() returns. So the only responsibility here is to
1379 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1380 * drops the lock and schedules.
1382 void unmap_vmas(struct mmu_gather
*tlb
,
1383 struct vm_area_struct
*vma
, unsigned long start_addr
,
1384 unsigned long end_addr
)
1386 struct mm_struct
*mm
= vma
->vm_mm
;
1388 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1389 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
)
1390 unmap_single_vma(tlb
, vma
, start_addr
, end_addr
, NULL
);
1391 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1395 * zap_page_range - remove user pages in a given range
1396 * @vma: vm_area_struct holding the applicable pages
1397 * @start: starting address of pages to zap
1398 * @size: number of bytes to zap
1399 * @details: details of nonlinear truncation or shared cache invalidation
1401 * Caller must protect the VMA list
1403 void zap_page_range(struct vm_area_struct
*vma
, unsigned long start
,
1404 unsigned long size
, struct zap_details
*details
)
1406 struct mm_struct
*mm
= vma
->vm_mm
;
1407 struct mmu_gather tlb
;
1408 unsigned long end
= start
+ size
;
1411 tlb_gather_mmu(&tlb
, mm
, start
, end
);
1412 update_hiwater_rss(mm
);
1413 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1414 for ( ; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
)
1415 unmap_single_vma(&tlb
, vma
, start
, end
, details
);
1416 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1417 tlb_finish_mmu(&tlb
, start
, end
);
1421 * zap_page_range_single - remove user pages in a given range
1422 * @vma: vm_area_struct holding the applicable pages
1423 * @address: starting address of pages to zap
1424 * @size: number of bytes to zap
1425 * @details: details of nonlinear truncation or shared cache invalidation
1427 * The range must fit into one VMA.
1429 static void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
1430 unsigned long size
, struct zap_details
*details
)
1432 struct mm_struct
*mm
= vma
->vm_mm
;
1433 struct mmu_gather tlb
;
1434 unsigned long end
= address
+ size
;
1437 tlb_gather_mmu(&tlb
, mm
, address
, end
);
1438 update_hiwater_rss(mm
);
1439 mmu_notifier_invalidate_range_start(mm
, address
, end
);
1440 unmap_single_vma(&tlb
, vma
, address
, end
, details
);
1441 mmu_notifier_invalidate_range_end(mm
, address
, end
);
1442 tlb_finish_mmu(&tlb
, address
, end
);
1446 * zap_vma_ptes - remove ptes mapping the vma
1447 * @vma: vm_area_struct holding ptes to be zapped
1448 * @address: starting address of pages to zap
1449 * @size: number of bytes to zap
1451 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1453 * The entire address range must be fully contained within the vma.
1455 * Returns 0 if successful.
1457 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1460 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1461 !(vma
->vm_flags
& VM_PFNMAP
))
1463 zap_page_range_single(vma
, address
, size
, NULL
);
1466 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1469 * follow_page_mask - look up a page descriptor from a user-virtual address
1470 * @vma: vm_area_struct mapping @address
1471 * @address: virtual address to look up
1472 * @flags: flags modifying lookup behaviour
1473 * @page_mask: on output, *page_mask is set according to the size of the page
1475 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1477 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1478 * an error pointer if there is a mapping to something not represented
1479 * by a page descriptor (see also vm_normal_page()).
1481 struct page
*follow_page_mask(struct vm_area_struct
*vma
,
1482 unsigned long address
, unsigned int flags
,
1483 unsigned int *page_mask
)
1491 struct mm_struct
*mm
= vma
->vm_mm
;
1495 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
1496 if (!IS_ERR(page
)) {
1497 BUG_ON(flags
& FOLL_GET
);
1502 pgd
= pgd_offset(mm
, address
);
1503 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
1506 pud
= pud_offset(pgd
, address
);
1509 if (pud_huge(*pud
) && vma
->vm_flags
& VM_HUGETLB
) {
1510 if (flags
& FOLL_GET
)
1512 page
= follow_huge_pud(mm
, address
, pud
, flags
& FOLL_WRITE
);
1515 if (unlikely(pud_bad(*pud
)))
1518 pmd
= pmd_offset(pud
, address
);
1521 if (pmd_huge(*pmd
) && vma
->vm_flags
& VM_HUGETLB
) {
1522 page
= follow_huge_pmd(mm
, address
, pmd
, flags
& FOLL_WRITE
);
1523 if (flags
& FOLL_GET
) {
1525 * Refcount on tail pages are not well-defined and
1526 * shouldn't be taken. The caller should handle a NULL
1527 * return when trying to follow tail pages.
1538 if ((flags
& FOLL_NUMA
) && pmd_numa(*pmd
))
1540 if (pmd_trans_huge(*pmd
)) {
1541 if (flags
& FOLL_SPLIT
) {
1542 split_huge_page_pmd(vma
, address
, pmd
);
1543 goto split_fallthrough
;
1545 ptl
= pmd_lock(mm
, pmd
);
1546 if (likely(pmd_trans_huge(*pmd
))) {
1547 if (unlikely(pmd_trans_splitting(*pmd
))) {
1549 wait_split_huge_page(vma
->anon_vma
, pmd
);
1551 page
= follow_trans_huge_pmd(vma
, address
,
1554 *page_mask
= HPAGE_PMD_NR
- 1;
1562 if (unlikely(pmd_bad(*pmd
)))
1565 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1568 if (!pte_present(pte
)) {
1571 * KSM's break_ksm() relies upon recognizing a ksm page
1572 * even while it is being migrated, so for that case we
1573 * need migration_entry_wait().
1575 if (likely(!(flags
& FOLL_MIGRATION
)))
1577 if (pte_none(pte
) || pte_file(pte
))
1579 entry
= pte_to_swp_entry(pte
);
1580 if (!is_migration_entry(entry
))
1582 pte_unmap_unlock(ptep
, ptl
);
1583 migration_entry_wait(mm
, pmd
, address
);
1584 goto split_fallthrough
;
1586 if ((flags
& FOLL_NUMA
) && pte_numa(pte
))
1588 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
1591 page
= vm_normal_page(vma
, address
, pte
);
1592 if (unlikely(!page
)) {
1593 if ((flags
& FOLL_DUMP
) ||
1594 !is_zero_pfn(pte_pfn(pte
)))
1596 page
= pte_page(pte
);
1599 if (flags
& FOLL_GET
)
1600 get_page_foll(page
);
1601 if (flags
& FOLL_TOUCH
) {
1602 if ((flags
& FOLL_WRITE
) &&
1603 !pte_dirty(pte
) && !PageDirty(page
))
1604 set_page_dirty(page
);
1606 * pte_mkyoung() would be more correct here, but atomic care
1607 * is needed to avoid losing the dirty bit: it is easier to use
1608 * mark_page_accessed().
1610 mark_page_accessed(page
);
1612 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
1614 * The preliminary mapping check is mainly to avoid the
1615 * pointless overhead of lock_page on the ZERO_PAGE
1616 * which might bounce very badly if there is contention.
1618 * If the page is already locked, we don't need to
1619 * handle it now - vmscan will handle it later if and
1620 * when it attempts to reclaim the page.
1622 if (page
->mapping
&& trylock_page(page
)) {
1623 lru_add_drain(); /* push cached pages to LRU */
1625 * Because we lock page here, and migration is
1626 * blocked by the pte's page reference, and we
1627 * know the page is still mapped, we don't even
1628 * need to check for file-cache page truncation.
1630 mlock_vma_page(page
);
1635 pte_unmap_unlock(ptep
, ptl
);
1640 pte_unmap_unlock(ptep
, ptl
);
1641 return ERR_PTR(-EFAULT
);
1644 pte_unmap_unlock(ptep
, ptl
);
1650 * When core dumping an enormous anonymous area that nobody
1651 * has touched so far, we don't want to allocate unnecessary pages or
1652 * page tables. Return error instead of NULL to skip handle_mm_fault,
1653 * then get_dump_page() will return NULL to leave a hole in the dump.
1654 * But we can only make this optimization where a hole would surely
1655 * be zero-filled if handle_mm_fault() actually did handle it.
1657 if ((flags
& FOLL_DUMP
) &&
1658 (!vma
->vm_ops
|| !vma
->vm_ops
->fault
))
1659 return ERR_PTR(-EFAULT
);
1663 static inline int stack_guard_page(struct vm_area_struct
*vma
, unsigned long addr
)
1665 return stack_guard_page_start(vma
, addr
) ||
1666 stack_guard_page_end(vma
, addr
+PAGE_SIZE
);
1670 * __get_user_pages() - pin user pages in memory
1671 * @tsk: task_struct of target task
1672 * @mm: mm_struct of target mm
1673 * @start: starting user address
1674 * @nr_pages: number of pages from start to pin
1675 * @gup_flags: flags modifying pin behaviour
1676 * @pages: array that receives pointers to the pages pinned.
1677 * Should be at least nr_pages long. Or NULL, if caller
1678 * only intends to ensure the pages are faulted in.
1679 * @vmas: array of pointers to vmas corresponding to each page.
1680 * Or NULL if the caller does not require them.
1681 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1683 * Returns number of pages pinned. This may be fewer than the number
1684 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1685 * were pinned, returns -errno. Each page returned must be released
1686 * with a put_page() call when it is finished with. vmas will only
1687 * remain valid while mmap_sem is held.
1689 * Must be called with mmap_sem held for read or write.
1691 * __get_user_pages walks a process's page tables and takes a reference to
1692 * each struct page that each user address corresponds to at a given
1693 * instant. That is, it takes the page that would be accessed if a user
1694 * thread accesses the given user virtual address at that instant.
1696 * This does not guarantee that the page exists in the user mappings when
1697 * __get_user_pages returns, and there may even be a completely different
1698 * page there in some cases (eg. if mmapped pagecache has been invalidated
1699 * and subsequently re faulted). However it does guarantee that the page
1700 * won't be freed completely. And mostly callers simply care that the page
1701 * contains data that was valid *at some point in time*. Typically, an IO
1702 * or similar operation cannot guarantee anything stronger anyway because
1703 * locks can't be held over the syscall boundary.
1705 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1706 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1707 * appropriate) must be called after the page is finished with, and
1708 * before put_page is called.
1710 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1711 * or mmap_sem contention, and if waiting is needed to pin all pages,
1712 * *@nonblocking will be set to 0.
1714 * In most cases, get_user_pages or get_user_pages_fast should be used
1715 * instead of __get_user_pages. __get_user_pages should be used only if
1716 * you need some special @gup_flags.
1718 long __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1719 unsigned long start
, unsigned long nr_pages
,
1720 unsigned int gup_flags
, struct page
**pages
,
1721 struct vm_area_struct
**vmas
, int *nonblocking
)
1724 unsigned long vm_flags
;
1725 unsigned int page_mask
;
1730 VM_BUG_ON(!!pages
!= !!(gup_flags
& FOLL_GET
));
1733 * Require read or write permissions.
1734 * If FOLL_FORCE is set, we only require the "MAY" flags.
1736 vm_flags
= (gup_flags
& FOLL_WRITE
) ?
1737 (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
1738 vm_flags
&= (gup_flags
& FOLL_FORCE
) ?
1739 (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
1742 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1743 * would be called on PROT_NONE ranges. We must never invoke
1744 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1745 * page faults would unprotect the PROT_NONE ranges if
1746 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1747 * bitflag. So to avoid that, don't set FOLL_NUMA if
1748 * FOLL_FORCE is set.
1750 if (!(gup_flags
& FOLL_FORCE
))
1751 gup_flags
|= FOLL_NUMA
;
1756 struct vm_area_struct
*vma
;
1758 vma
= find_extend_vma(mm
, start
);
1759 if (!vma
&& in_gate_area(mm
, start
)) {
1760 unsigned long pg
= start
& PAGE_MASK
;
1766 /* user gate pages are read-only */
1767 if (gup_flags
& FOLL_WRITE
)
1768 return i
? : -EFAULT
;
1770 pgd
= pgd_offset_k(pg
);
1772 pgd
= pgd_offset_gate(mm
, pg
);
1773 BUG_ON(pgd_none(*pgd
));
1774 pud
= pud_offset(pgd
, pg
);
1775 BUG_ON(pud_none(*pud
));
1776 pmd
= pmd_offset(pud
, pg
);
1778 return i
? : -EFAULT
;
1779 VM_BUG_ON(pmd_trans_huge(*pmd
));
1780 pte
= pte_offset_map(pmd
, pg
);
1781 if (pte_none(*pte
)) {
1783 return i
? : -EFAULT
;
1785 vma
= get_gate_vma(mm
);
1789 page
= vm_normal_page(vma
, start
, *pte
);
1791 if (!(gup_flags
& FOLL_DUMP
) &&
1792 is_zero_pfn(pte_pfn(*pte
)))
1793 page
= pte_page(*pte
);
1796 return i
? : -EFAULT
;
1808 (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
1809 !(vm_flags
& vma
->vm_flags
))
1810 return i
? : -EFAULT
;
1812 if (is_vm_hugetlb_page(vma
)) {
1813 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
1814 &start
, &nr_pages
, i
, gup_flags
);
1820 unsigned int foll_flags
= gup_flags
;
1821 unsigned int page_increm
;
1824 * If we have a pending SIGKILL, don't keep faulting
1825 * pages and potentially allocating memory.
1827 if (unlikely(fatal_signal_pending(current
)))
1828 return i
? i
: -ERESTARTSYS
;
1831 while (!(page
= follow_page_mask(vma
, start
,
1832 foll_flags
, &page_mask
))) {
1834 unsigned int fault_flags
= 0;
1836 /* For mlock, just skip the stack guard page. */
1837 if (foll_flags
& FOLL_MLOCK
) {
1838 if (stack_guard_page(vma
, start
))
1841 if (foll_flags
& FOLL_WRITE
)
1842 fault_flags
|= FAULT_FLAG_WRITE
;
1844 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
1845 if (foll_flags
& FOLL_NOWAIT
)
1846 fault_flags
|= (FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_RETRY_NOWAIT
);
1848 ret
= handle_mm_fault(mm
, vma
, start
,
1851 if (ret
& VM_FAULT_ERROR
) {
1852 if (ret
& VM_FAULT_OOM
)
1853 return i
? i
: -ENOMEM
;
1854 if (ret
& (VM_FAULT_HWPOISON
|
1855 VM_FAULT_HWPOISON_LARGE
)) {
1858 else if (gup_flags
& FOLL_HWPOISON
)
1863 if (ret
& (VM_FAULT_SIGBUS
|
1865 return i
? i
: -EFAULT
;
1870 if (ret
& VM_FAULT_MAJOR
)
1876 if (ret
& VM_FAULT_RETRY
) {
1883 * The VM_FAULT_WRITE bit tells us that
1884 * do_wp_page has broken COW when necessary,
1885 * even if maybe_mkwrite decided not to set
1886 * pte_write. We can thus safely do subsequent
1887 * page lookups as if they were reads. But only
1888 * do so when looping for pte_write is futile:
1889 * in some cases userspace may also be wanting
1890 * to write to the gotten user page, which a
1891 * read fault here might prevent (a readonly
1892 * page might get reCOWed by userspace write).
1894 if ((ret
& VM_FAULT_WRITE
) &&
1895 !(vma
->vm_flags
& VM_WRITE
))
1896 foll_flags
&= ~FOLL_WRITE
;
1901 return i
? i
: PTR_ERR(page
);
1905 flush_anon_page(vma
, page
, start
);
1906 flush_dcache_page(page
);
1914 page_increm
= 1 + (~(start
>> PAGE_SHIFT
) & page_mask
);
1915 if (page_increm
> nr_pages
)
1916 page_increm
= nr_pages
;
1918 start
+= page_increm
* PAGE_SIZE
;
1919 nr_pages
-= page_increm
;
1920 } while (nr_pages
&& start
< vma
->vm_end
);
1924 EXPORT_SYMBOL(__get_user_pages
);
1927 * fixup_user_fault() - manually resolve a user page fault
1928 * @tsk: the task_struct to use for page fault accounting, or
1929 * NULL if faults are not to be recorded.
1930 * @mm: mm_struct of target mm
1931 * @address: user address
1932 * @fault_flags:flags to pass down to handle_mm_fault()
1934 * This is meant to be called in the specific scenario where for locking reasons
1935 * we try to access user memory in atomic context (within a pagefault_disable()
1936 * section), this returns -EFAULT, and we want to resolve the user fault before
1939 * Typically this is meant to be used by the futex code.
1941 * The main difference with get_user_pages() is that this function will
1942 * unconditionally call handle_mm_fault() which will in turn perform all the
1943 * necessary SW fixup of the dirty and young bits in the PTE, while
1944 * handle_mm_fault() only guarantees to update these in the struct page.
1946 * This is important for some architectures where those bits also gate the
1947 * access permission to the page because they are maintained in software. On
1948 * such architectures, gup() will not be enough to make a subsequent access
1951 * This should be called with the mm_sem held for read.
1953 int fixup_user_fault(struct task_struct
*tsk
, struct mm_struct
*mm
,
1954 unsigned long address
, unsigned int fault_flags
)
1956 struct vm_area_struct
*vma
;
1957 vm_flags_t vm_flags
;
1960 vma
= find_extend_vma(mm
, address
);
1961 if (!vma
|| address
< vma
->vm_start
)
1964 vm_flags
= (fault_flags
& FAULT_FLAG_WRITE
) ? VM_WRITE
: VM_READ
;
1965 if (!(vm_flags
& vma
->vm_flags
))
1968 ret
= handle_mm_fault(mm
, vma
, address
, fault_flags
);
1969 if (ret
& VM_FAULT_ERROR
) {
1970 if (ret
& VM_FAULT_OOM
)
1972 if (ret
& (VM_FAULT_HWPOISON
| VM_FAULT_HWPOISON_LARGE
))
1974 if (ret
& (VM_FAULT_SIGBUS
| VM_FAULT_SIGSEGV
))
1979 if (ret
& VM_FAULT_MAJOR
)
1988 * get_user_pages() - pin user pages in memory
1989 * @tsk: the task_struct to use for page fault accounting, or
1990 * NULL if faults are not to be recorded.
1991 * @mm: mm_struct of target mm
1992 * @start: starting user address
1993 * @nr_pages: number of pages from start to pin
1994 * @write: whether pages will be written to by the caller
1995 * @force: whether to force write access even if user mapping is
1996 * readonly. This will result in the page being COWed even
1997 * in MAP_SHARED mappings. You do not want this.
1998 * @pages: array that receives pointers to the pages pinned.
1999 * Should be at least nr_pages long. Or NULL, if caller
2000 * only intends to ensure the pages are faulted in.
2001 * @vmas: array of pointers to vmas corresponding to each page.
2002 * Or NULL if the caller does not require them.
2004 * Returns number of pages pinned. This may be fewer than the number
2005 * requested. If nr_pages is 0 or negative, returns 0. If no pages
2006 * were pinned, returns -errno. Each page returned must be released
2007 * with a put_page() call when it is finished with. vmas will only
2008 * remain valid while mmap_sem is held.
2010 * Must be called with mmap_sem held for read or write.
2012 * get_user_pages walks a process's page tables and takes a reference to
2013 * each struct page that each user address corresponds to at a given
2014 * instant. That is, it takes the page that would be accessed if a user
2015 * thread accesses the given user virtual address at that instant.
2017 * This does not guarantee that the page exists in the user mappings when
2018 * get_user_pages returns, and there may even be a completely different
2019 * page there in some cases (eg. if mmapped pagecache has been invalidated
2020 * and subsequently re faulted). However it does guarantee that the page
2021 * won't be freed completely. And mostly callers simply care that the page
2022 * contains data that was valid *at some point in time*. Typically, an IO
2023 * or similar operation cannot guarantee anything stronger anyway because
2024 * locks can't be held over the syscall boundary.
2026 * If write=0, the page must not be written to. If the page is written to,
2027 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
2028 * after the page is finished with, and before put_page is called.
2030 * get_user_pages is typically used for fewer-copy IO operations, to get a
2031 * handle on the memory by some means other than accesses via the user virtual
2032 * addresses. The pages may be submitted for DMA to devices or accessed via
2033 * their kernel linear mapping (via the kmap APIs). Care should be taken to
2034 * use the correct cache flushing APIs.
2036 * See also get_user_pages_fast, for performance critical applications.
2038 long get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
2039 unsigned long start
, unsigned long nr_pages
, int write
,
2040 int force
, struct page
**pages
, struct vm_area_struct
**vmas
)
2042 int flags
= FOLL_TOUCH
;
2047 flags
|= FOLL_WRITE
;
2049 flags
|= FOLL_FORCE
;
2051 return __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
, vmas
,
2054 EXPORT_SYMBOL(get_user_pages
);
2057 * get_dump_page() - pin user page in memory while writing it to core dump
2058 * @addr: user address
2060 * Returns struct page pointer of user page pinned for dump,
2061 * to be freed afterwards by page_cache_release() or put_page().
2063 * Returns NULL on any kind of failure - a hole must then be inserted into
2064 * the corefile, to preserve alignment with its headers; and also returns
2065 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2066 * allowing a hole to be left in the corefile to save diskspace.
2068 * Called without mmap_sem, but after all other threads have been killed.
2070 #ifdef CONFIG_ELF_CORE
2071 struct page
*get_dump_page(unsigned long addr
)
2073 struct vm_area_struct
*vma
;
2076 if (__get_user_pages(current
, current
->mm
, addr
, 1,
2077 FOLL_FORCE
| FOLL_DUMP
| FOLL_GET
, &page
, &vma
,
2080 flush_cache_page(vma
, addr
, page_to_pfn(page
));
2083 #endif /* CONFIG_ELF_CORE */
2085 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
2088 pgd_t
* pgd
= pgd_offset(mm
, addr
);
2089 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
2091 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
2093 VM_BUG_ON(pmd_trans_huge(*pmd
));
2094 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
2101 * This is the old fallback for page remapping.
2103 * For historical reasons, it only allows reserved pages. Only
2104 * old drivers should use this, and they needed to mark their
2105 * pages reserved for the old functions anyway.
2107 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
2108 struct page
*page
, pgprot_t prot
)
2110 struct mm_struct
*mm
= vma
->vm_mm
;
2119 flush_dcache_page(page
);
2120 pte
= get_locked_pte(mm
, addr
, &ptl
);
2124 if (!pte_none(*pte
))
2127 /* Ok, finally just insert the thing.. */
2129 inc_mm_counter_fast(mm
, MM_FILEPAGES
);
2130 page_add_file_rmap(page
);
2131 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
2134 pte_unmap_unlock(pte
, ptl
);
2137 pte_unmap_unlock(pte
, ptl
);
2143 * vm_insert_page - insert single page into user vma
2144 * @vma: user vma to map to
2145 * @addr: target user address of this page
2146 * @page: source kernel page
2148 * This allows drivers to insert individual pages they've allocated
2151 * The page has to be a nice clean _individual_ kernel allocation.
2152 * If you allocate a compound page, you need to have marked it as
2153 * such (__GFP_COMP), or manually just split the page up yourself
2154 * (see split_page()).
2156 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2157 * took an arbitrary page protection parameter. This doesn't allow
2158 * that. Your vma protection will have to be set up correctly, which
2159 * means that if you want a shared writable mapping, you'd better
2160 * ask for a shared writable mapping!
2162 * The page does not need to be reserved.
2164 * Usually this function is called from f_op->mmap() handler
2165 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2166 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2167 * function from other places, for example from page-fault handler.
2169 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
2172 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
2174 if (!page_count(page
))
2176 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
2177 BUG_ON(down_read_trylock(&vma
->vm_mm
->mmap_sem
));
2178 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
2179 vma
->vm_flags
|= VM_MIXEDMAP
;
2181 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
2183 EXPORT_SYMBOL(vm_insert_page
);
2185 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
2186 unsigned long pfn
, pgprot_t prot
)
2188 struct mm_struct
*mm
= vma
->vm_mm
;
2194 pte
= get_locked_pte(mm
, addr
, &ptl
);
2198 if (!pte_none(*pte
))
2201 /* Ok, finally just insert the thing.. */
2202 entry
= pte_mkspecial(pfn_pte(pfn
, prot
));
2203 set_pte_at(mm
, addr
, pte
, entry
);
2204 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
2208 pte_unmap_unlock(pte
, ptl
);
2214 * vm_insert_pfn - insert single pfn into user vma
2215 * @vma: user vma to map to
2216 * @addr: target user address of this page
2217 * @pfn: source kernel pfn
2219 * Similar to vm_insert_page, this allows drivers to insert individual pages
2220 * they've allocated into a user vma. Same comments apply.
2222 * This function should only be called from a vm_ops->fault handler, and
2223 * in that case the handler should return NULL.
2225 * vma cannot be a COW mapping.
2227 * As this is called only for pages that do not currently exist, we
2228 * do not need to flush old virtual caches or the TLB.
2230 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
2234 pgprot_t pgprot
= vma
->vm_page_prot
;
2236 * Technically, architectures with pte_special can avoid all these
2237 * restrictions (same for remap_pfn_range). However we would like
2238 * consistency in testing and feature parity among all, so we should
2239 * try to keep these invariants in place for everybody.
2241 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
2242 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
2243 (VM_PFNMAP
|VM_MIXEDMAP
));
2244 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
2245 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
2247 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
2249 if (track_pfn_insert(vma
, &pgprot
, pfn
))
2252 ret
= insert_pfn(vma
, addr
, pfn
, pgprot
);
2256 EXPORT_SYMBOL(vm_insert_pfn
);
2258 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
2261 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
2263 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
2267 * If we don't have pte special, then we have to use the pfn_valid()
2268 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2269 * refcount the page if pfn_valid is true (hence insert_page rather
2270 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2271 * without pte special, it would there be refcounted as a normal page.
2273 if (!HAVE_PTE_SPECIAL
&& pfn_valid(pfn
)) {
2276 page
= pfn_to_page(pfn
);
2277 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
2279 return insert_pfn(vma
, addr
, pfn
, vma
->vm_page_prot
);
2281 EXPORT_SYMBOL(vm_insert_mixed
);
2284 * maps a range of physical memory into the requested pages. the old
2285 * mappings are removed. any references to nonexistent pages results
2286 * in null mappings (currently treated as "copy-on-access")
2288 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
2289 unsigned long addr
, unsigned long end
,
2290 unsigned long pfn
, pgprot_t prot
)
2294 spinlock_t
*uninitialized_var(ptl
);
2299 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
2302 arch_enter_lazy_mmu_mode();
2304 BUG_ON(!pte_none(*pte
));
2305 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
2307 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
2308 arch_leave_lazy_mmu_mode();
2309 pte_unmap_unlock(pte
- 1, ptl
);
2313 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2314 unsigned long addr
, unsigned long end
,
2315 unsigned long pfn
, pgprot_t prot
)
2320 pfn
-= addr
>> PAGE_SHIFT
;
2321 pmd
= pmd_alloc(mm
, pud
, addr
);
2324 VM_BUG_ON(pmd_trans_huge(*pmd
));
2326 next
= pmd_addr_end(addr
, end
);
2327 if (remap_pte_range(mm
, pmd
, addr
, next
,
2328 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
2330 } while (pmd
++, addr
= next
, addr
!= end
);
2334 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2335 unsigned long addr
, unsigned long end
,
2336 unsigned long pfn
, pgprot_t prot
)
2341 pfn
-= addr
>> PAGE_SHIFT
;
2342 pud
= pud_alloc(mm
, pgd
, addr
);
2346 next
= pud_addr_end(addr
, end
);
2347 if (remap_pmd_range(mm
, pud
, addr
, next
,
2348 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
2350 } while (pud
++, addr
= next
, addr
!= end
);
2355 * remap_pfn_range - remap kernel memory to userspace
2356 * @vma: user vma to map to
2357 * @addr: target user address to start at
2358 * @pfn: physical address of kernel memory
2359 * @size: size of map area
2360 * @prot: page protection flags for this mapping
2362 * Note: this is only safe if the mm semaphore is held when called.
2364 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
2365 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
2369 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2370 struct mm_struct
*mm
= vma
->vm_mm
;
2374 * Physically remapped pages are special. Tell the
2375 * rest of the world about it:
2376 * VM_IO tells people not to look at these pages
2377 * (accesses can have side effects).
2378 * VM_PFNMAP tells the core MM that the base pages are just
2379 * raw PFN mappings, and do not have a "struct page" associated
2382 * Disable vma merging and expanding with mremap().
2384 * Omit vma from core dump, even when VM_IO turned off.
2386 * There's a horrible special case to handle copy-on-write
2387 * behaviour that some programs depend on. We mark the "original"
2388 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2389 * See vm_normal_page() for details.
2391 if (is_cow_mapping(vma
->vm_flags
)) {
2392 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
2394 vma
->vm_pgoff
= pfn
;
2397 err
= track_pfn_remap(vma
, &prot
, pfn
, addr
, PAGE_ALIGN(size
));
2401 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
2403 BUG_ON(addr
>= end
);
2404 pfn
-= addr
>> PAGE_SHIFT
;
2405 pgd
= pgd_offset(mm
, addr
);
2406 flush_cache_range(vma
, addr
, end
);
2408 next
= pgd_addr_end(addr
, end
);
2409 err
= remap_pud_range(mm
, pgd
, addr
, next
,
2410 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2413 } while (pgd
++, addr
= next
, addr
!= end
);
2416 untrack_pfn(vma
, pfn
, PAGE_ALIGN(size
));
2420 EXPORT_SYMBOL(remap_pfn_range
);
2423 * vm_iomap_memory - remap memory to userspace
2424 * @vma: user vma to map to
2425 * @start: start of area
2426 * @len: size of area
2428 * This is a simplified io_remap_pfn_range() for common driver use. The
2429 * driver just needs to give us the physical memory range to be mapped,
2430 * we'll figure out the rest from the vma information.
2432 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2433 * whatever write-combining details or similar.
2435 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
2437 unsigned long vm_len
, pfn
, pages
;
2439 /* Check that the physical memory area passed in looks valid */
2440 if (start
+ len
< start
)
2443 * You *really* shouldn't map things that aren't page-aligned,
2444 * but we've historically allowed it because IO memory might
2445 * just have smaller alignment.
2447 len
+= start
& ~PAGE_MASK
;
2448 pfn
= start
>> PAGE_SHIFT
;
2449 pages
= (len
+ ~PAGE_MASK
) >> PAGE_SHIFT
;
2450 if (pfn
+ pages
< pfn
)
2453 /* We start the mapping 'vm_pgoff' pages into the area */
2454 if (vma
->vm_pgoff
> pages
)
2456 pfn
+= vma
->vm_pgoff
;
2457 pages
-= vma
->vm_pgoff
;
2459 /* Can we fit all of the mapping? */
2460 vm_len
= vma
->vm_end
- vma
->vm_start
;
2461 if (vm_len
>> PAGE_SHIFT
> pages
)
2464 /* Ok, let it rip */
2465 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
2467 EXPORT_SYMBOL(vm_iomap_memory
);
2469 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
2470 unsigned long addr
, unsigned long end
,
2471 pte_fn_t fn
, void *data
)
2476 spinlock_t
*uninitialized_var(ptl
);
2478 pte
= (mm
== &init_mm
) ?
2479 pte_alloc_kernel(pmd
, addr
) :
2480 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
2484 BUG_ON(pmd_huge(*pmd
));
2486 arch_enter_lazy_mmu_mode();
2488 token
= pmd_pgtable(*pmd
);
2491 err
= fn(pte
++, token
, addr
, data
);
2494 } while (addr
+= PAGE_SIZE
, addr
!= end
);
2496 arch_leave_lazy_mmu_mode();
2499 pte_unmap_unlock(pte
-1, ptl
);
2503 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2504 unsigned long addr
, unsigned long end
,
2505 pte_fn_t fn
, void *data
)
2511 BUG_ON(pud_huge(*pud
));
2513 pmd
= pmd_alloc(mm
, pud
, addr
);
2517 next
= pmd_addr_end(addr
, end
);
2518 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
2521 } while (pmd
++, addr
= next
, addr
!= end
);
2525 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2526 unsigned long addr
, unsigned long end
,
2527 pte_fn_t fn
, void *data
)
2533 pud
= pud_alloc(mm
, pgd
, addr
);
2537 next
= pud_addr_end(addr
, end
);
2538 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
2541 } while (pud
++, addr
= next
, addr
!= end
);
2546 * Scan a region of virtual memory, filling in page tables as necessary
2547 * and calling a provided function on each leaf page table.
2549 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
2550 unsigned long size
, pte_fn_t fn
, void *data
)
2554 unsigned long end
= addr
+ size
;
2557 BUG_ON(addr
>= end
);
2558 pgd
= pgd_offset(mm
, addr
);
2560 next
= pgd_addr_end(addr
, end
);
2561 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
2564 } while (pgd
++, addr
= next
, addr
!= end
);
2568 EXPORT_SYMBOL_GPL(apply_to_page_range
);
2571 * handle_pte_fault chooses page fault handler according to an entry
2572 * which was read non-atomically. Before making any commitment, on
2573 * those architectures or configurations (e.g. i386 with PAE) which
2574 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2575 * must check under lock before unmapping the pte and proceeding
2576 * (but do_wp_page is only called after already making such a check;
2577 * and do_anonymous_page can safely check later on).
2579 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
2580 pte_t
*page_table
, pte_t orig_pte
)
2583 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2584 if (sizeof(pte_t
) > sizeof(unsigned long)) {
2585 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
2587 same
= pte_same(*page_table
, orig_pte
);
2591 pte_unmap(page_table
);
2595 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
2597 debug_dma_assert_idle(src
);
2600 * If the source page was a PFN mapping, we don't have
2601 * a "struct page" for it. We do a best-effort copy by
2602 * just copying from the original user address. If that
2603 * fails, we just zero-fill it. Live with it.
2605 if (unlikely(!src
)) {
2606 void *kaddr
= kmap_atomic(dst
);
2607 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
2610 * This really shouldn't fail, because the page is there
2611 * in the page tables. But it might just be unreadable,
2612 * in which case we just give up and fill the result with
2615 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
2617 kunmap_atomic(kaddr
);
2618 flush_dcache_page(dst
);
2620 copy_user_highpage(dst
, src
, va
, vma
);
2624 * This routine handles present pages, when users try to write
2625 * to a shared page. It is done by copying the page to a new address
2626 * and decrementing the shared-page counter for the old page.
2628 * Note that this routine assumes that the protection checks have been
2629 * done by the caller (the low-level page fault routine in most cases).
2630 * Thus we can safely just mark it writable once we've done any necessary
2633 * We also mark the page dirty at this point even though the page will
2634 * change only once the write actually happens. This avoids a few races,
2635 * and potentially makes it more efficient.
2637 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2638 * but allow concurrent faults), with pte both mapped and locked.
2639 * We return with mmap_sem still held, but pte unmapped and unlocked.
2641 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2642 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2643 spinlock_t
*ptl
, pte_t orig_pte
)
2646 struct page
*old_page
, *new_page
= NULL
;
2649 int page_mkwrite
= 0;
2650 struct page
*dirty_page
= NULL
;
2651 unsigned long mmun_start
= 0; /* For mmu_notifiers */
2652 unsigned long mmun_end
= 0; /* For mmu_notifiers */
2654 old_page
= vm_normal_page(vma
, address
, orig_pte
);
2657 * VM_MIXEDMAP !pfn_valid() case
2659 * We should not cow pages in a shared writeable mapping.
2660 * Just mark the pages writable as we can't do any dirty
2661 * accounting on raw pfn maps.
2663 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2664 (VM_WRITE
|VM_SHARED
))
2670 * Take out anonymous pages first, anonymous shared vmas are
2671 * not dirty accountable.
2673 if (PageAnon(old_page
) && !PageKsm(old_page
)) {
2674 if (!trylock_page(old_page
)) {
2675 page_cache_get(old_page
);
2676 pte_unmap_unlock(page_table
, ptl
);
2677 lock_page(old_page
);
2678 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2680 if (!pte_same(*page_table
, orig_pte
)) {
2681 unlock_page(old_page
);
2684 page_cache_release(old_page
);
2686 if (reuse_swap_page(old_page
)) {
2688 * The page is all ours. Move it to our anon_vma so
2689 * the rmap code will not search our parent or siblings.
2690 * Protected against the rmap code by the page lock.
2692 page_move_anon_rmap(old_page
, vma
, address
);
2693 unlock_page(old_page
);
2696 unlock_page(old_page
);
2697 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2698 (VM_WRITE
|VM_SHARED
))) {
2700 * Only catch write-faults on shared writable pages,
2701 * read-only shared pages can get COWed by
2702 * get_user_pages(.write=1, .force=1).
2704 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2705 struct vm_fault vmf
;
2708 vmf
.virtual_address
= (void __user
*)(address
&
2710 vmf
.pgoff
= old_page
->index
;
2711 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2712 vmf
.page
= old_page
;
2715 * Notify the address space that the page is about to
2716 * become writable so that it can prohibit this or wait
2717 * for the page to get into an appropriate state.
2719 * We do this without the lock held, so that it can
2720 * sleep if it needs to.
2722 page_cache_get(old_page
);
2723 pte_unmap_unlock(page_table
, ptl
);
2725 tmp
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
2727 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2729 goto unwritable_page
;
2731 if (unlikely(!(tmp
& VM_FAULT_LOCKED
))) {
2732 lock_page(old_page
);
2733 if (!old_page
->mapping
) {
2734 ret
= 0; /* retry the fault */
2735 unlock_page(old_page
);
2736 goto unwritable_page
;
2739 VM_BUG_ON_PAGE(!PageLocked(old_page
), old_page
);
2742 * Since we dropped the lock we need to revalidate
2743 * the PTE as someone else may have changed it. If
2744 * they did, we just return, as we can count on the
2745 * MMU to tell us if they didn't also make it writable.
2747 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2749 if (!pte_same(*page_table
, orig_pte
)) {
2750 unlock_page(old_page
);
2756 dirty_page
= old_page
;
2757 get_page(dirty_page
);
2761 * Clear the pages cpupid information as the existing
2762 * information potentially belongs to a now completely
2763 * unrelated process.
2766 page_cpupid_xchg_last(old_page
, (1 << LAST_CPUPID_SHIFT
) - 1);
2768 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2769 entry
= pte_mkyoung(orig_pte
);
2770 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2771 if (ptep_set_access_flags(vma
, address
, page_table
, entry
,1))
2772 update_mmu_cache(vma
, address
, page_table
);
2773 pte_unmap_unlock(page_table
, ptl
);
2774 ret
|= VM_FAULT_WRITE
;
2780 * Yes, Virginia, this is actually required to prevent a race
2781 * with clear_page_dirty_for_io() from clearing the page dirty
2782 * bit after it clear all dirty ptes, but before a racing
2783 * do_wp_page installs a dirty pte.
2785 * __do_fault is protected similarly.
2787 if (!page_mkwrite
) {
2788 wait_on_page_locked(dirty_page
);
2789 set_page_dirty_balance(dirty_page
, page_mkwrite
);
2790 /* file_update_time outside page_lock */
2792 file_update_time(vma
->vm_file
);
2794 put_page(dirty_page
);
2796 struct address_space
*mapping
= dirty_page
->mapping
;
2798 set_page_dirty(dirty_page
);
2799 unlock_page(dirty_page
);
2800 page_cache_release(dirty_page
);
2803 * Some device drivers do not set page.mapping
2804 * but still dirty their pages
2806 balance_dirty_pages_ratelimited(mapping
);
2814 * Ok, we need to copy. Oh, well..
2816 page_cache_get(old_page
);
2818 pte_unmap_unlock(page_table
, ptl
);
2820 if (unlikely(anon_vma_prepare(vma
)))
2823 if (is_zero_pfn(pte_pfn(orig_pte
))) {
2824 new_page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2828 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2831 cow_user_page(new_page
, old_page
, address
, vma
);
2833 __SetPageUptodate(new_page
);
2835 if (mem_cgroup_newpage_charge(new_page
, mm
, GFP_KERNEL
))
2838 mmun_start
= address
& PAGE_MASK
;
2839 mmun_end
= mmun_start
+ PAGE_SIZE
;
2840 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2843 * Re-check the pte - we dropped the lock
2845 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2846 if (likely(pte_same(*page_table
, orig_pte
))) {
2848 if (!PageAnon(old_page
)) {
2849 dec_mm_counter_fast(mm
, MM_FILEPAGES
);
2850 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2853 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2854 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2855 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2856 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2858 * Clear the pte entry and flush it first, before updating the
2859 * pte with the new entry. This will avoid a race condition
2860 * seen in the presence of one thread doing SMC and another
2863 #if defined(CONFIG_E2K) && defined(CONFIG_MAKE_ALL_PAGES_VALID)
2864 ptep_clear_flush_as_valid(vma
, address
, page_table
);
2866 ptep_clear_flush(vma
, address
, page_table
);
2868 page_add_new_anon_rmap(new_page
, vma
, address
);
2870 * We call the notify macro here because, when using secondary
2871 * mmu page tables (such as kvm shadow page tables), we want the
2872 * new page to be mapped directly into the secondary page table.
2874 set_pte_at_notify(mm
, address
, page_table
, entry
);
2875 update_mmu_cache(vma
, address
, page_table
);
2878 * Only after switching the pte to the new page may
2879 * we remove the mapcount here. Otherwise another
2880 * process may come and find the rmap count decremented
2881 * before the pte is switched to the new page, and
2882 * "reuse" the old page writing into it while our pte
2883 * here still points into it and can be read by other
2886 * The critical issue is to order this
2887 * page_remove_rmap with the ptp_clear_flush above.
2888 * Those stores are ordered by (if nothing else,)
2889 * the barrier present in the atomic_add_negative
2890 * in page_remove_rmap.
2892 * Then the TLB flush in ptep_clear_flush ensures that
2893 * no process can access the old page before the
2894 * decremented mapcount is visible. And the old page
2895 * cannot be reused until after the decremented
2896 * mapcount is visible. So transitively, TLBs to
2897 * old page will be flushed before it can be reused.
2899 page_remove_rmap(old_page
);
2902 /* Free the old page.. */
2903 new_page
= old_page
;
2904 ret
|= VM_FAULT_WRITE
;
2906 mem_cgroup_uncharge_page(new_page
);
2909 page_cache_release(new_page
);
2911 pte_unmap_unlock(page_table
, ptl
);
2912 if (mmun_end
> mmun_start
)
2913 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2916 * Don't let another task, with possibly unlocked vma,
2917 * keep the mlocked page.
2919 if ((ret
& VM_FAULT_WRITE
) && (vma
->vm_flags
& VM_LOCKED
)) {
2920 lock_page(old_page
); /* LRU manipulation */
2921 munlock_vma_page(old_page
);
2922 unlock_page(old_page
);
2924 page_cache_release(old_page
);
2928 page_cache_release(new_page
);
2931 page_cache_release(old_page
);
2932 return VM_FAULT_OOM
;
2935 page_cache_release(old_page
);
2939 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2940 unsigned long start_addr
, unsigned long end_addr
,
2941 struct zap_details
*details
)
2943 #if defined(CONFIG_E2K) && defined(CONFIG_MAKE_ALL_PAGES_VALID)
2945 * vma is not destroyed here, but zap_page_range will clear
2946 * vma ptes, so keep valid bit to handle pagefaults.
2948 set_ts_flag(TS_KEEP_PAGES_VALID
);
2950 zap_page_range_single(vma
, start_addr
, end_addr
- start_addr
, details
);
2951 #if defined(CONFIG_E2K) && defined(CONFIG_MAKE_ALL_PAGES_VALID)
2952 clear_ts_flag(TS_KEEP_PAGES_VALID
);
2956 static inline void unmap_mapping_range_tree(struct rb_root
*root
,
2957 struct zap_details
*details
)
2959 struct vm_area_struct
*vma
;
2960 pgoff_t vba
, vea
, zba
, zea
;
2962 vma_interval_tree_foreach(vma
, root
,
2963 details
->first_index
, details
->last_index
) {
2965 vba
= vma
->vm_pgoff
;
2966 vea
= vba
+ vma_pages(vma
) - 1;
2967 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2968 zba
= details
->first_index
;
2971 zea
= details
->last_index
;
2975 unmap_mapping_range_vma(vma
,
2976 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2977 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2982 static inline void unmap_mapping_range_list(struct list_head
*head
,
2983 struct zap_details
*details
)
2985 struct vm_area_struct
*vma
;
2988 * In nonlinear VMAs there is no correspondence between virtual address
2989 * offset and file offset. So we must perform an exhaustive search
2990 * across *all* the pages in each nonlinear VMA, not just the pages
2991 * whose virtual address lies outside the file truncation point.
2993 list_for_each_entry(vma
, head
, shared
.nonlinear
) {
2994 details
->nonlinear_vma
= vma
;
2995 unmap_mapping_range_vma(vma
, vma
->vm_start
, vma
->vm_end
, details
);
3000 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3001 * @mapping: the address space containing mmaps to be unmapped.
3002 * @holebegin: byte in first page to unmap, relative to the start of
3003 * the underlying file. This will be rounded down to a PAGE_SIZE
3004 * boundary. Note that this is different from truncate_pagecache(), which
3005 * must keep the partial page. In contrast, we must get rid of
3007 * @holelen: size of prospective hole in bytes. This will be rounded
3008 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3010 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3011 * but 0 when invalidating pagecache, don't throw away private data.
3013 void unmap_mapping_range(struct address_space
*mapping
,
3014 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
3016 struct zap_details details
;
3017 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
3018 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
3020 /* Check for overflow. */
3021 if (sizeof(holelen
) > sizeof(hlen
)) {
3023 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
3024 if (holeend
& ~(long long)ULONG_MAX
)
3025 hlen
= ULONG_MAX
- hba
+ 1;
3028 details
.check_mapping
= even_cows
? NULL
: mapping
;
3029 details
.nonlinear_vma
= NULL
;
3030 details
.first_index
= hba
;
3031 details
.last_index
= hba
+ hlen
- 1;
3032 if (details
.last_index
< details
.first_index
)
3033 details
.last_index
= ULONG_MAX
;
3036 mutex_lock(&mapping
->i_mmap_mutex
);
3037 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
)))
3038 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
3039 if (unlikely(!list_empty(&mapping
->i_mmap_nonlinear
)))
3040 unmap_mapping_range_list(&mapping
->i_mmap_nonlinear
, &details
);
3041 mutex_unlock(&mapping
->i_mmap_mutex
);
3043 EXPORT_SYMBOL(unmap_mapping_range
);
3046 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3047 * but allow concurrent faults), and pte mapped but not yet locked.
3048 * We return with mmap_sem still held, but pte unmapped and unlocked.
3050 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3051 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3052 unsigned int flags
, pte_t orig_pte
)
3055 struct page
*page
, *swapcache
;
3059 struct mem_cgroup
*ptr
;
3063 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
3066 entry
= pte_to_swp_entry(orig_pte
);
3067 if (unlikely(non_swap_entry(entry
))) {
3068 if (is_migration_entry(entry
)) {
3069 migration_entry_wait(mm
, pmd
, address
);
3070 } else if (is_hwpoison_entry(entry
)) {
3071 ret
= VM_FAULT_HWPOISON
;
3073 print_bad_pte(vma
, address
, orig_pte
, NULL
);
3074 ret
= VM_FAULT_SIGBUS
;
3078 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
3079 page
= lookup_swap_cache(entry
);
3081 page
= swapin_readahead(entry
,
3082 GFP_HIGHUSER_MOVABLE
, vma
, address
);
3085 * Back out if somebody else faulted in this pte
3086 * while we released the pte lock.
3088 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3089 if (likely(pte_same(*page_table
, orig_pte
)))
3091 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
3095 /* Had to read the page from swap area: Major fault */
3096 ret
= VM_FAULT_MAJOR
;
3097 count_vm_event(PGMAJFAULT
);
3098 mem_cgroup_count_vm_event(mm
, PGMAJFAULT
);
3099 } else if (PageHWPoison(page
)) {
3101 * hwpoisoned dirty swapcache pages are kept for killing
3102 * owner processes (which may be unknown at hwpoison time)
3104 ret
= VM_FAULT_HWPOISON
;
3105 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
3111 locked
= lock_page_or_retry(page
, mm
, flags
);
3113 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
3115 ret
|= VM_FAULT_RETRY
;
3120 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3121 * release the swapcache from under us. The page pin, and pte_same
3122 * test below, are not enough to exclude that. Even if it is still
3123 * swapcache, we need to check that the page's swap has not changed.
3125 if (unlikely(!PageSwapCache(page
) || page_private(page
) != entry
.val
))
3128 page
= ksm_might_need_to_copy(page
, vma
, address
);
3129 if (unlikely(!page
)) {
3135 if (mem_cgroup_try_charge_swapin(mm
, page
, GFP_KERNEL
, &ptr
)) {
3141 * Back out if somebody else already faulted in this pte.
3143 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3144 if (unlikely(!pte_same(*page_table
, orig_pte
)))
3147 if (unlikely(!PageUptodate(page
))) {
3148 ret
= VM_FAULT_SIGBUS
;
3153 * The page isn't present yet, go ahead with the fault.
3155 * Be careful about the sequence of operations here.
3156 * To get its accounting right, reuse_swap_page() must be called
3157 * while the page is counted on swap but not yet in mapcount i.e.
3158 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3159 * must be called after the swap_free(), or it will never succeed.
3160 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3161 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3162 * in page->private. In this case, a record in swap_cgroup is silently
3163 * discarded at swap_free().
3166 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
3167 dec_mm_counter_fast(mm
, MM_SWAPENTS
);
3168 pte
= mk_pte(page
, vma
->vm_page_prot
);
3169 if ((flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
)) {
3170 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
3171 flags
&= ~FAULT_FLAG_WRITE
;
3172 ret
|= VM_FAULT_WRITE
;
3175 flush_icache_page(vma
, page
);
3176 if (pte_swp_soft_dirty(orig_pte
))
3177 pte
= pte_mksoft_dirty(pte
);
3178 set_pte_at(mm
, address
, page_table
, pte
);
3179 if (page
== swapcache
)
3180 do_page_add_anon_rmap(page
, vma
, address
, exclusive
);
3181 else /* ksm created a completely new copy */
3182 page_add_new_anon_rmap(page
, vma
, address
);
3183 /* It's better to call commit-charge after rmap is established */
3184 mem_cgroup_commit_charge_swapin(page
, ptr
);
3187 if (vm_swap_full() || (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
3188 try_to_free_swap(page
);
3190 if (page
!= swapcache
) {
3192 * Hold the lock to avoid the swap entry to be reused
3193 * until we take the PT lock for the pte_same() check
3194 * (to avoid false positives from pte_same). For
3195 * further safety release the lock after the swap_free
3196 * so that the swap count won't change under a
3197 * parallel locked swapcache.
3199 unlock_page(swapcache
);
3200 page_cache_release(swapcache
);
3203 if (flags
& FAULT_FLAG_WRITE
) {
3204 ret
|= do_wp_page(mm
, vma
, address
, page_table
, pmd
, ptl
, pte
);
3205 if (ret
& VM_FAULT_ERROR
)
3206 ret
&= VM_FAULT_ERROR
;
3210 /* No need to invalidate - it was non-present before */
3211 update_mmu_cache(vma
, address
, page_table
);
3213 pte_unmap_unlock(page_table
, ptl
);
3217 mem_cgroup_cancel_charge_swapin(ptr
);
3218 pte_unmap_unlock(page_table
, ptl
);
3222 page_cache_release(page
);
3223 if (page
!= swapcache
) {
3224 unlock_page(swapcache
);
3225 page_cache_release(swapcache
);
3231 * This is like a special single-page "expand_{down|up}wards()",
3232 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3233 * doesn't hit another vma.
3235 static inline int check_stack_guard_page(struct vm_area_struct
*vma
, unsigned long address
)
3237 address
&= PAGE_MASK
;
3238 if ((vma
->vm_flags
& VM_GROWSDOWN
) && address
== vma
->vm_start
) {
3239 struct vm_area_struct
*prev
= vma
->vm_prev
;
3242 * Is there a mapping abutting this one below?
3244 * That's only ok if it's the same stack mapping
3245 * that has gotten split..
3247 if (prev
&& prev
->vm_end
== address
)
3248 return prev
->vm_flags
& VM_GROWSDOWN
? 0 : -ENOMEM
;
3250 return expand_downwards(vma
, address
- PAGE_SIZE
);
3252 if ((vma
->vm_flags
& VM_GROWSUP
) && address
+ PAGE_SIZE
== vma
->vm_end
) {
3253 struct vm_area_struct
*next
= vma
->vm_next
;
3255 /* As VM_GROWSDOWN but s/below/above/ */
3256 if (next
&& next
->vm_start
== address
+ PAGE_SIZE
)
3257 return next
->vm_flags
& VM_GROWSUP
? 0 : -ENOMEM
;
3259 return expand_upwards(vma
, address
+ PAGE_SIZE
);
3265 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3266 * but allow concurrent faults), and pte mapped but not yet locked.
3267 * We return with mmap_sem still held, but pte unmapped and unlocked.
3269 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3270 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3277 pte_unmap(page_table
);
3279 /* Check if we need to add a guard page to the stack */
3280 if (check_stack_guard_page(vma
, address
) < 0)
3281 return VM_FAULT_SIGSEGV
;
3283 /* Use the zero-page for reads */
3284 if (!(flags
& FAULT_FLAG_WRITE
)) {
3285 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(address
),
3286 vma
->vm_page_prot
));
3287 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3288 if (!pte_none(*page_table
))
3293 /* Allocate our own private page. */
3294 if (unlikely(anon_vma_prepare(vma
)))
3296 page
= alloc_zeroed_user_highpage_movable(vma
, address
);
3300 * The memory barrier inside __SetPageUptodate makes sure that
3301 * preceeding stores to the page contents become visible before
3302 * the set_pte_at() write.
3304 __SetPageUptodate(page
);
3306 if (mem_cgroup_newpage_charge(page
, mm
, GFP_KERNEL
))
3309 entry
= mk_pte(page
, vma
->vm_page_prot
);
3310 if (vma
->vm_flags
& VM_WRITE
)
3311 entry
= pte_mkwrite(pte_mkdirty(entry
));
3313 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3314 if (!pte_none(*page_table
))
3317 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
3318 page_add_new_anon_rmap(page
, vma
, address
);
3320 set_pte_at(mm
, address
, page_table
, entry
);
3322 /* No need to invalidate - it was non-present before */
3323 update_mmu_cache(vma
, address
, page_table
);
3325 pte_unmap_unlock(page_table
, ptl
);
3328 mem_cgroup_uncharge_page(page
);
3329 page_cache_release(page
);
3332 page_cache_release(page
);
3334 return VM_FAULT_OOM
;
3337 #if defined(CONFIG_E2K) && defined(CONFIG_SECONDARY_SPACE_SUPPORT)
3338 struct sec_space_page
{
3339 unsigned long address
;
3340 struct vm_area_struct
*vma
;
3343 static struct page
*new_sec_space_page(struct page
*p
,
3344 unsigned long private, int **result
)
3347 struct sec_space_page
*params
= (struct sec_space_page
*) private;
3351 page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
,
3352 params
->vma
, params
->address
);
3359 * __do_fault() tries to create a new page mapping. It aggressively
3360 * tries to share with existing pages, but makes a separate copy if
3361 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3362 * the next page fault.
3364 * As this is called only for pages that do not currently exist, we
3365 * do not need to flush old virtual caches or the TLB.
3367 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3368 * but allow concurrent faults), and pte neither mapped nor locked.
3369 * We return with mmap_sem still held, but pte unmapped and unlocked.
3371 static int __do_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3372 unsigned long address
, pmd_t
*pmd
,
3373 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
3378 struct page
*cow_page
;
3381 struct page
*dirty_page
= NULL
;
3382 struct vm_fault vmf
;
3384 int page_mkwrite
= 0;
3387 * If we do COW later, allocate page befor taking lock_page()
3388 * on the file cache page. This will reduce lock holding time.
3390 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3392 if (unlikely(anon_vma_prepare(vma
)))
3393 return VM_FAULT_OOM
;
3395 cow_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
3397 return VM_FAULT_OOM
;
3399 if (mem_cgroup_newpage_charge(cow_page
, mm
, GFP_KERNEL
)) {
3400 page_cache_release(cow_page
);
3401 return VM_FAULT_OOM
;
3406 #if defined(CONFIG_E2K) && defined(CONFIG_SECONDARY_SPACE_SUPPORT)
3409 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
3414 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
3415 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
|
3419 if (unlikely(PageHWPoison(vmf
.page
))) {
3420 if (ret
& VM_FAULT_LOCKED
)
3421 unlock_page(vmf
.page
);
3422 ret
= VM_FAULT_HWPOISON
;
3423 page_cache_release(vmf
.page
);
3428 * For consistency in subsequent calls, make the faulted page always
3431 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
3432 lock_page(vmf
.page
);
3434 VM_BUG_ON_PAGE(!PageLocked(vmf
.page
), vmf
.page
);
3436 #if defined(CONFIG_E2K) && defined(CONFIG_SECONDARY_SPACE_SUPPORT)
3437 if (TASK_IS_BINCO(current
) && !IS_UPT_E3S
&& ADDR_IN_SS(address
) &&
3438 !PAGE_IN_SS(vmf
.page
)) {
3439 struct sec_space_page params
= { address
, vma
};
3440 LIST_HEAD(pagelist
);
3443 unlock_page(vmf
.page
);
3447 err
= isolate_lru_page(vmf
.page
);
3449 * Either remove the duplicate refcount from
3450 * isolate_lru_page() or drop the page ref if it was
3456 pr_info_ratelimited("Error %d on LRU isolating secondary space page\n",
3462 list_add_tail(&vmf
.page
->lru
, &pagelist
);
3463 err
= migrate_pages(&pagelist
, new_sec_space_page
, NULL
,
3464 (unsigned long) ¶ms
,
3465 MIGRATE_SYNC
, MR_SYSCALL
);
3467 putback_movable_pages(&pagelist
);
3468 pr_notice("Error %d on migrating secondary space page, mapcount %d, count %d, LRU %d\n",
3469 err
, page_mapcount(vmf
.page
),
3470 page_count(vmf
.page
), PageLRU(vmf
.page
));
3472 ret
= (err
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SS
;
3484 * Should we do an early C-O-W break?
3487 if (flags
& FAULT_FLAG_WRITE
) {
3488 if (!(vma
->vm_flags
& VM_SHARED
)) {
3491 copy_user_highpage(page
, vmf
.page
, address
, vma
);
3492 __SetPageUptodate(page
);
3495 * If the page will be shareable, see if the backing
3496 * address space wants to know that the page is about
3497 * to become writable
3499 if (vma
->vm_ops
->page_mkwrite
) {
3503 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
3504 tmp
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
3506 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
3508 goto unwritable_page
;
3510 if (unlikely(!(tmp
& VM_FAULT_LOCKED
))) {
3512 if (!page
->mapping
) {
3513 ret
= 0; /* retry the fault */
3515 goto unwritable_page
;
3518 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
3525 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3528 * This silly early PAGE_DIRTY setting removes a race
3529 * due to the bad i386 page protection. But it's valid
3530 * for other architectures too.
3532 * Note that if FAULT_FLAG_WRITE is set, we either now have
3533 * an exclusive copy of the page, or this is a shared mapping,
3534 * so we can make it writable and dirty to avoid having to
3535 * handle that later.
3537 /* Only go through if we didn't race with anybody else... */
3538 if (likely(pte_same(*page_table
, orig_pte
))) {
3539 flush_icache_page(vma
, page
);
3540 entry
= mk_pte(page
, vma
->vm_page_prot
);
3541 if (flags
& FAULT_FLAG_WRITE
)
3542 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
3543 else if (pte_file(orig_pte
) && pte_file_soft_dirty(orig_pte
))
3544 pte_mksoft_dirty(entry
);
3546 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
3547 page_add_new_anon_rmap(page
, vma
, address
);
3549 inc_mm_counter_fast(mm
, MM_FILEPAGES
);
3550 page_add_file_rmap(page
);
3551 if (flags
& FAULT_FLAG_WRITE
) {
3553 get_page(dirty_page
);
3556 set_pte_at(mm
, address
, page_table
, entry
);
3558 /* no need to invalidate: a not-present page won't be cached */
3559 update_mmu_cache(vma
, address
, page_table
);
3562 mem_cgroup_uncharge_page(cow_page
);
3564 page_cache_release(page
);
3566 anon
= 1; /* no anon but release faulted_page */
3569 pte_unmap_unlock(page_table
, ptl
);
3572 struct address_space
*mapping
= page
->mapping
;
3575 if (set_page_dirty(dirty_page
))
3577 unlock_page(dirty_page
);
3578 put_page(dirty_page
);
3579 if ((dirtied
|| page_mkwrite
) && mapping
) {
3581 * Some device drivers do not set page.mapping but still
3584 balance_dirty_pages_ratelimited(mapping
);
3587 /* file_update_time outside page_lock */
3588 if (vma
->vm_file
&& !page_mkwrite
)
3589 file_update_time(vma
->vm_file
);
3591 unlock_page(vmf
.page
);
3593 page_cache_release(vmf
.page
);
3599 page_cache_release(page
);
3602 /* fs's fault handler get error */
3604 mem_cgroup_uncharge_page(cow_page
);
3605 page_cache_release(cow_page
);
3610 static int do_linear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3611 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3612 unsigned int flags
, pte_t orig_pte
)
3614 pgoff_t pgoff
= (((address
& PAGE_MASK
)
3615 - vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
3617 pte_unmap(page_table
);
3618 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3622 * Fault of a previously existing named mapping. Repopulate the pte
3623 * from the encoded file_pte if possible. This enables swappable
3626 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3627 * but allow concurrent faults), and pte mapped but not yet locked.
3628 * We return with mmap_sem still held, but pte unmapped and unlocked.
3630 static int do_nonlinear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3631 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3632 unsigned int flags
, pte_t orig_pte
)
3636 flags
|= FAULT_FLAG_NONLINEAR
;
3638 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
3641 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
3643 * Page table corrupted: show pte and kill process.
3645 print_bad_pte(vma
, address
, orig_pte
, NULL
);
3646 return VM_FAULT_SIGBUS
;
3649 pgoff
= pte_to_pgoff(orig_pte
);
3650 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3653 int numa_migrate_prep(struct page
*page
, struct vm_area_struct
*vma
,
3654 unsigned long addr
, int page_nid
,
3659 count_vm_numa_event(NUMA_HINT_FAULTS
);
3660 if (page_nid
== numa_node_id()) {
3661 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
3662 *flags
|= TNF_FAULT_LOCAL
;
3665 return mpol_misplaced(page
, vma
, addr
);
3668 int do_numa_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3669 unsigned long addr
, pte_t pte
, pte_t
*ptep
, pmd_t
*pmd
)
3671 struct page
*page
= NULL
;
3676 bool migrated
= false;
3680 * The "pte" at this point cannot be used safely without
3681 * validation through pte_unmap_same(). It's of NUMA type but
3682 * the pfn may be screwed if the read is non atomic.
3684 * ptep_modify_prot_start is not called as this is clearing
3685 * the _PAGE_NUMA bit and it is not really expected that there
3686 * would be concurrent hardware modifications to the PTE.
3688 ptl
= pte_lockptr(mm
, pmd
);
3690 if (unlikely(!pte_same(*ptep
, pte
))) {
3691 pte_unmap_unlock(ptep
, ptl
);
3695 pte
= pte_mknonnuma(pte
);
3696 set_pte_at(mm
, addr
, ptep
, pte
);
3697 update_mmu_cache(vma
, addr
, ptep
);
3699 page
= vm_normal_page(vma
, addr
, pte
);
3701 pte_unmap_unlock(ptep
, ptl
);
3704 BUG_ON(is_zero_pfn(page_to_pfn(page
)));
3707 * Avoid grouping on DSO/COW pages in specific and RO pages
3708 * in general, RO pages shouldn't hurt as much anyway since
3709 * they can be in shared cache state.
3711 if (!pte_write(pte
))
3712 flags
|= TNF_NO_GROUP
;
3715 * Flag if the page is shared between multiple address spaces. This
3716 * is later used when determining whether to group tasks together
3718 if (page_mapcount(page
) > 1 && (vma
->vm_flags
& VM_SHARED
))
3719 flags
|= TNF_SHARED
;
3721 last_cpupid
= page_cpupid_last(page
);
3722 page_nid
= page_to_nid(page
);
3723 target_nid
= numa_migrate_prep(page
, vma
, addr
, page_nid
, &flags
);
3724 pte_unmap_unlock(ptep
, ptl
);
3725 if (target_nid
== -1) {
3730 /* Migrate to the requested node */
3731 migrated
= migrate_misplaced_page(page
, vma
, target_nid
);
3733 page_nid
= target_nid
;
3734 flags
|= TNF_MIGRATED
;
3739 task_numa_fault(last_cpupid
, page_nid
, 1, flags
);
3744 * These routines also need to handle stuff like marking pages dirty
3745 * and/or accessed for architectures that don't do it in hardware (most
3746 * RISC architectures). The early dirtying is also good on the i386.
3748 * There is also a hook called "update_mmu_cache()" that architectures
3749 * with external mmu caches can use to update those (ie the Sparc or
3750 * PowerPC hashed page tables that act as extended TLBs).
3752 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3753 * but allow concurrent faults), and pte mapped but not yet locked.
3754 * We return with mmap_sem still held, but pte unmapped and unlocked.
3756 static int handle_pte_fault(struct mm_struct
*mm
,
3757 struct vm_area_struct
*vma
, unsigned long address
,
3758 pte_t
*pte
, pmd_t
*pmd
, unsigned int flags
)
3763 entry
= ACCESS_ONCE(*pte
);
3764 if (!pte_present(entry
)) {
3765 if (pte_none(entry
)) {
3767 if (likely(vma
->vm_ops
->fault
))
3768 return do_linear_fault(mm
, vma
, address
,
3769 pte
, pmd
, flags
, entry
);
3771 return do_anonymous_page(mm
, vma
, address
,
3774 if (pte_file(entry
))
3775 return do_nonlinear_fault(mm
, vma
, address
,
3776 pte
, pmd
, flags
, entry
);
3777 return do_swap_page(mm
, vma
, address
,
3778 pte
, pmd
, flags
, entry
);
3781 if (pte_numa(entry
))
3782 return do_numa_page(mm
, vma
, address
, entry
, pte
, pmd
);
3784 ptl
= pte_lockptr(mm
, pmd
);
3786 if (unlikely(!pte_same(*pte
, entry
)))
3788 if (flags
& FAULT_FLAG_WRITE
) {
3789 if (!pte_write(entry
))
3790 return do_wp_page(mm
, vma
, address
,
3791 pte
, pmd
, ptl
, entry
);
3792 entry
= pte_mkdirty(entry
);
3794 entry
= pte_mkyoung(entry
);
3795 if (ptep_set_access_flags(vma
, address
, pte
, entry
, flags
& FAULT_FLAG_WRITE
)) {
3796 update_mmu_cache(vma
, address
, pte
);
3799 * This is needed only for protection faults but the arch code
3800 * is not yet telling us if this is a protection fault or not.
3801 * This still avoids useless tlb flushes for .text page faults
3804 if (flags
& FAULT_FLAG_WRITE
)
3805 flush_tlb_fix_spurious_fault(vma
, address
);
3808 pte_unmap_unlock(pte
, ptl
);
3812 #ifdef CONFIG_PREEMPT_RT_FULL
3813 void pagefault_disable(void)
3816 current
->pagefault_disabled
++;
3818 * make sure to have issued the store before a pagefault
3823 EXPORT_SYMBOL(pagefault_disable
);
3825 void pagefault_enable(void)
3828 * make sure to issue those last loads/stores before enabling
3829 * the pagefault handler again.
3832 current
->pagefault_disabled
--;
3835 EXPORT_SYMBOL(pagefault_enable
);
3839 * By the time we get here, we already hold the mm semaphore
3841 static int __handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3842 unsigned long address
, unsigned int flags
)
3849 #ifdef CONFIG_MCST_RT
3850 if (mm
->extra_vm_flags
& VM_MLOCK_DONE
) {
3851 /* Attempt to allocate page when VM_MLOCK_DONE set */
3852 /* for gracefully exit() */
3853 mm
->extra_vm_flags
&= ~VM_MLOCK_DONE
;
3854 pr_err("Attempt to allocate page when VM_MLOCK_DONE"
3855 "(after mlockall())\n");
3856 return VM_FAULT_SIGBUS
;
3858 #endif /* CONFIG_MCST_RT */
3860 if (unlikely(is_vm_hugetlb_page(vma
)))
3861 return hugetlb_fault(mm
, vma
, address
, flags
);
3863 pgd
= pgd_offset(mm
, address
);
3864 pud
= pud_alloc(mm
, pgd
, address
);
3866 return VM_FAULT_OOM
;
3867 pmd
= pmd_alloc(mm
, pud
, address
);
3869 return VM_FAULT_OOM
;
3870 if (pmd_none(*pmd
) && transparent_hugepage_enabled(vma
)) {
3871 int ret
= VM_FAULT_FALLBACK
;
3873 ret
= do_huge_pmd_anonymous_page(mm
, vma
, address
,
3875 if (!(ret
& VM_FAULT_FALLBACK
))
3878 pmd_t orig_pmd
= *pmd
;
3882 if (pmd_trans_huge(orig_pmd
)) {
3883 unsigned int dirty
= flags
& FAULT_FLAG_WRITE
;
3886 * If the pmd is splitting, return and retry the
3887 * the fault. Alternative: wait until the split
3888 * is done, and goto retry.
3890 if (pmd_trans_splitting(orig_pmd
))
3893 if (pmd_numa(orig_pmd
))
3894 return do_huge_pmd_numa_page(mm
, vma
, address
,
3897 if (dirty
&& !pmd_write(orig_pmd
)) {
3898 ret
= do_huge_pmd_wp_page(mm
, vma
, address
, pmd
,
3900 if (!(ret
& VM_FAULT_FALLBACK
))
3903 huge_pmd_set_accessed(mm
, vma
, address
, pmd
,
3911 * Use __pte_alloc instead of pte_alloc_map, because we can't
3912 * run pte_offset_map on the pmd, if an huge pmd could
3913 * materialize from under us from a different thread.
3915 if (unlikely(pmd_none(*pmd
)) &&
3916 unlikely(__pte_alloc(mm
, vma
, pmd
, address
)))
3917 return VM_FAULT_OOM
;
3918 /* if an huge pmd materialized from under us just retry later */
3919 if (unlikely(pmd_trans_huge(*pmd
)))
3922 * A regular pmd is established and it can't morph into a huge pmd
3923 * from under us anymore at this point because we hold the mmap_sem
3924 * read mode and khugepaged takes it in write mode. So now it's
3925 * safe to run pte_offset_map().
3927 pte
= pte_offset_map(pmd
, address
);
3929 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, flags
);
3932 int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3933 unsigned long address
, unsigned int flags
)
3937 __set_current_state(TASK_RUNNING
);
3939 count_vm_event(PGFAULT
);
3940 mem_cgroup_count_vm_event(mm
, PGFAULT
);
3942 /* do counter updates before entering really critical section. */
3943 check_sync_rss_stat(current
);
3946 * Enable the memcg OOM handling for faults triggered in user
3947 * space. Kernel faults are handled more gracefully.
3949 if (flags
& FAULT_FLAG_USER
)
3950 mem_cgroup_oom_enable();
3952 ret
= __handle_mm_fault(mm
, vma
, address
, flags
);
3954 if (flags
& FAULT_FLAG_USER
) {
3955 mem_cgroup_oom_disable();
3957 * The task may have entered a memcg OOM situation but
3958 * if the allocation error was handled gracefully (no
3959 * VM_FAULT_OOM), there is no need to kill anything.
3960 * Just clean up the OOM state peacefully.
3962 if (task_in_memcg_oom(current
) && !(ret
& VM_FAULT_OOM
))
3963 mem_cgroup_oom_synchronize(false);
3969 #ifndef __PAGETABLE_PUD_FOLDED
3971 * Allocate page upper directory.
3972 * We've already handled the fast-path in-line.
3974 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
3976 pud_t
*new = pud_alloc_one(mm
, address
);
3980 smp_wmb(); /* See comment in __pte_alloc */
3982 spin_lock(&mm
->page_table_lock
);
3983 if (pgd_present(*pgd
)) /* Another has populated it */
3986 pgd_populate(mm
, pgd
, new);
3987 spin_unlock(&mm
->page_table_lock
);
3990 #endif /* __PAGETABLE_PUD_FOLDED */
3992 #ifndef __PAGETABLE_PMD_FOLDED
3994 * Allocate page middle directory.
3995 * We've already handled the fast-path in-line.
3997 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
3999 pmd_t
*new = pmd_alloc_one(mm
, address
);
4003 smp_wmb(); /* See comment in __pte_alloc */
4005 spin_lock(&mm
->page_table_lock
);
4006 #ifndef __ARCH_HAS_4LEVEL_HACK
4007 if (pud_present(*pud
)) /* Another has populated it */
4010 pud_populate(mm
, pud
, new);
4012 if (pgd_present(*pud
)) /* Another has populated it */
4015 pgd_populate(mm
, pud
, new);
4016 #endif /* __ARCH_HAS_4LEVEL_HACK */
4017 spin_unlock(&mm
->page_table_lock
);
4020 #endif /* __PAGETABLE_PMD_FOLDED */
4022 #if !defined(__HAVE_ARCH_GATE_AREA)
4024 #if defined(AT_SYSINFO_EHDR)
4025 static struct vm_area_struct gate_vma
;
4027 static int __init
gate_vma_init(void)
4029 gate_vma
.vm_mm
= NULL
;
4030 gate_vma
.vm_start
= FIXADDR_USER_START
;
4031 gate_vma
.vm_end
= FIXADDR_USER_END
;
4032 gate_vma
.vm_flags
= VM_READ
| VM_MAYREAD
| VM_EXEC
| VM_MAYEXEC
;
4033 gate_vma
.vm_page_prot
= __P101
;
4037 __initcall(gate_vma_init
);
4040 struct vm_area_struct
*get_gate_vma(struct mm_struct
*mm
)
4042 #ifdef AT_SYSINFO_EHDR
4049 int in_gate_area_no_mm(unsigned long addr
)
4051 #ifdef AT_SYSINFO_EHDR
4052 if ((addr
>= FIXADDR_USER_START
) && (addr
< FIXADDR_USER_END
))
4058 #endif /* __HAVE_ARCH_GATE_AREA */
4060 static int __follow_pte(struct mm_struct
*mm
, unsigned long address
,
4061 pte_t
**ptepp
, spinlock_t
**ptlp
)
4068 pgd
= pgd_offset(mm
, address
);
4069 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
4072 pud
= pud_offset(pgd
, address
);
4073 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
4076 pmd
= pmd_offset(pud
, address
);
4077 VM_BUG_ON(pmd_trans_huge(*pmd
));
4078 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
4081 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
4085 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
4088 if (!pte_present(*ptep
))
4093 pte_unmap_unlock(ptep
, *ptlp
);
4098 static inline int follow_pte(struct mm_struct
*mm
, unsigned long address
,
4099 pte_t
**ptepp
, spinlock_t
**ptlp
)
4103 /* (void) is needed to make gcc happy */
4104 (void) __cond_lock(*ptlp
,
4105 !(res
= __follow_pte(mm
, address
, ptepp
, ptlp
)));
4110 * follow_pfn - look up PFN at a user virtual address
4111 * @vma: memory mapping
4112 * @address: user virtual address
4113 * @pfn: location to store found PFN
4115 * Only IO mappings and raw PFN mappings are allowed.
4117 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4119 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
4126 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
4129 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
4132 *pfn
= pte_pfn(*ptep
);
4133 pte_unmap_unlock(ptep
, ptl
);
4136 EXPORT_SYMBOL(follow_pfn
);
4138 #ifdef CONFIG_HAVE_IOREMAP_PROT
4139 int follow_phys(struct vm_area_struct
*vma
,
4140 unsigned long address
, unsigned int flags
,
4141 unsigned long *prot
, resource_size_t
*phys
)
4147 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
4150 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
4154 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
4157 *prot
= pgprot_val(pte_pgprot(pte
));
4158 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
4162 pte_unmap_unlock(ptep
, ptl
);
4167 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
4168 void *buf
, int len
, int write
)
4170 resource_size_t phys_addr
;
4171 unsigned long prot
= 0;
4172 void __iomem
*maddr
;
4173 int offset
= addr
& (PAGE_SIZE
-1);
4175 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
4178 maddr
= ioremap_prot(phys_addr
, PAGE_ALIGN(len
+ offset
), prot
);
4180 memcpy_toio(maddr
+ offset
, buf
, len
);
4182 memcpy_fromio(buf
, maddr
+ offset
, len
);
4187 EXPORT_SYMBOL_GPL(generic_access_phys
);
4191 * Access another process' address space as given in mm. If non-NULL, use the
4192 * given task for page fault accounting.
4194 static int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
4195 unsigned long addr
, void *buf
, int len
, int write
)
4197 struct vm_area_struct
*vma
;
4198 void *old_buf
= buf
;
4200 down_read(&mm
->mmap_sem
);
4201 /* ignore errors, just check how much was successfully transferred */
4203 int bytes
, ret
, offset
;
4205 struct page
*page
= NULL
;
4207 ret
= get_user_pages(tsk
, mm
, addr
, 1,
4208 write
, 1, &page
, &vma
);
4211 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4212 * we can access using slightly different code.
4214 #ifdef CONFIG_HAVE_IOREMAP_PROT
4215 vma
= find_vma(mm
, addr
);
4216 if (!vma
|| vma
->vm_start
> addr
)
4218 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
4219 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
4227 offset
= addr
& (PAGE_SIZE
-1);
4228 if (bytes
> PAGE_SIZE
-offset
)
4229 bytes
= PAGE_SIZE
-offset
;
4233 copy_to_user_page(vma
, page
, addr
,
4234 maddr
+ offset
, buf
, bytes
);
4235 set_page_dirty_lock(page
);
4237 copy_from_user_page(vma
, page
, addr
,
4238 buf
, maddr
+ offset
, bytes
);
4241 page_cache_release(page
);
4247 up_read(&mm
->mmap_sem
);
4249 return buf
- old_buf
;
4253 * access_remote_vm - access another process' address space
4254 * @mm: the mm_struct of the target address space
4255 * @addr: start address to access
4256 * @buf: source or destination buffer
4257 * @len: number of bytes to transfer
4258 * @write: whether the access is a write
4260 * The caller must hold a reference on @mm.
4262 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
4263 void *buf
, int len
, int write
)
4265 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, write
);
4269 * Access another process' address space.
4270 * Source/target buffer must be kernel space,
4271 * Do not walk the page table directly, use get_user_pages
4273 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
4274 void *buf
, int len
, int write
)
4276 struct mm_struct
*mm
;
4279 mm
= get_task_mm(tsk
);
4283 ret
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, write
);
4290 * Print the name of a VMA.
4292 void print_vma_addr(char *prefix
, unsigned long ip
)
4294 struct mm_struct
*mm
= current
->mm
;
4295 struct vm_area_struct
*vma
;
4298 * Do not print if we are in atomic
4299 * contexts (in exception stacks, etc.):
4301 if (preempt_count())
4304 down_read(&mm
->mmap_sem
);
4305 vma
= find_vma(mm
, ip
);
4306 if (vma
&& vma
->vm_file
) {
4307 struct file
*f
= vma
->vm_file
;
4308 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
4312 p
= d_path(&f
->f_path
, buf
, PAGE_SIZE
);
4315 printk("%s%s[%lx+%lx]", prefix
, kbasename(p
),
4317 vma
->vm_end
- vma
->vm_start
);
4318 free_page((unsigned long)buf
);
4321 up_read(&mm
->mmap_sem
);
4324 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4325 void might_fault(void)
4328 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4329 * holding the mmap_sem, this is safe because kernel memory doesn't
4330 * get paged out, therefore we'll never actually fault, and the
4331 * below annotations will generate false positives.
4333 if (segment_eq(get_fs(), KERNEL_DS
))
4337 * it would be nicer only to annotate paths which are not under
4338 * pagefault_disable, however that requires a larger audit and
4339 * providing helpers like get_user_atomic.
4344 __might_sleep(__FILE__
, __LINE__
, 0);
4347 might_lock_read(¤t
->mm
->mmap_sem
);
4349 EXPORT_SYMBOL(might_fault
);
4352 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4353 static void clear_gigantic_page(struct page
*page
,
4355 unsigned int pages_per_huge_page
)
4358 struct page
*p
= page
;
4361 for (i
= 0; i
< pages_per_huge_page
;
4362 i
++, p
= mem_map_next(p
, page
, i
)) {
4364 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
4367 void clear_huge_page(struct page
*page
,
4368 unsigned long addr
, unsigned int pages_per_huge_page
)
4372 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4373 clear_gigantic_page(page
, addr
, pages_per_huge_page
);
4378 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4380 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
4384 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
4386 struct vm_area_struct
*vma
,
4387 unsigned int pages_per_huge_page
)
4390 struct page
*dst_base
= dst
;
4391 struct page
*src_base
= src
;
4393 for (i
= 0; i
< pages_per_huge_page
; ) {
4395 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
4398 dst
= mem_map_next(dst
, dst_base
, i
);
4399 src
= mem_map_next(src
, src_base
, i
);
4403 void copy_user_huge_page(struct page
*dst
, struct page
*src
,
4404 unsigned long addr
, struct vm_area_struct
*vma
,
4405 unsigned int pages_per_huge_page
)
4409 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4410 copy_user_gigantic_page(dst
, src
, addr
, vma
,
4411 pages_per_huge_page
);
4416 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4418 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
4421 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4423 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4425 static struct kmem_cache
*page_ptl_cachep
;
4427 void __init
ptlock_cache_init(void)
4429 page_ptl_cachep
= kmem_cache_create("page->ptl", sizeof(spinlock_t
), 0,
4433 bool ptlock_alloc(struct page
*page
)
4437 ptl
= kmem_cache_alloc(page_ptl_cachep
, GFP_KERNEL
);
4444 void ptlock_free(struct page
*page
)
4446 kmem_cache_free(page_ptl_cachep
, page
->ptl
);