2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
41 #include <asm/tlbflush.h>
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/migrate.h>
49 * migrate_prep() needs to be called before we start compiling a list of pages
50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51 * undesirable, use migrate_prep_local()
53 int migrate_prep(void)
56 * Clear the LRU lists so pages can be isolated.
57 * Note that pages may be moved off the LRU after we have
58 * drained them. Those pages will fail to migrate like other
59 * pages that may be busy.
66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
67 int migrate_prep_local(void)
75 * Put previously isolated pages back onto the appropriate lists
76 * from where they were once taken off for compaction/migration.
78 * This function shall be used whenever the isolated pageset has been
79 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
80 * and isolate_huge_page().
82 void putback_movable_pages(struct list_head
*l
)
87 list_for_each_entry_safe(page
, page2
, l
, lru
) {
88 if (unlikely(PageHuge(page
))) {
89 putback_active_hugepage(page
);
93 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
94 page_is_file_cache(page
));
95 if (unlikely(isolated_balloon_page(page
)))
96 balloon_page_putback(page
);
98 putback_lru_page(page
);
103 * Restore a potential migration pte to a working pte entry
105 static int remove_migration_pte(struct page
*new, struct vm_area_struct
*vma
,
106 unsigned long addr
, void *old
)
108 struct mm_struct
*mm
= vma
->vm_mm
;
114 if (unlikely(PageHuge(new))) {
115 ptep
= huge_pte_offset(mm
, addr
);
118 ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, ptep
);
120 pmd
= mm_find_pmd(mm
, addr
);
123 if (pmd_trans_huge(*pmd
))
126 ptep
= pte_offset_map(pmd
, addr
);
129 * Peek to check is_swap_pte() before taking ptlock? No, we
130 * can race mremap's move_ptes(), which skips anon_vma lock.
133 ptl
= pte_lockptr(mm
, pmd
);
138 if (!is_swap_pte(pte
))
141 entry
= pte_to_swp_entry(pte
);
143 if (!is_migration_entry(entry
) ||
144 migration_entry_to_page(entry
) != old
)
148 pte
= pte_mkold(mk_pte(new, vma
->vm_page_prot
));
149 if (pte_swp_soft_dirty(*ptep
))
150 pte
= pte_mksoft_dirty(pte
);
152 /* Recheck VMA as permissions can change since migration started */
153 if (is_write_migration_entry(entry
))
154 pte
= maybe_mkwrite(pte
, vma
);
156 #ifdef CONFIG_HUGETLB_PAGE
158 pte
= pte_mkhuge(pte
);
159 pte
= arch_make_huge_pte(pte
, vma
, new, 0);
162 flush_dcache_page(new);
163 set_pte_at(mm
, addr
, ptep
, pte
);
167 hugepage_add_anon_rmap(new, vma
, addr
);
170 } else if (PageAnon(new))
171 page_add_anon_rmap(new, vma
, addr
);
173 page_add_file_rmap(new);
175 /* No need to invalidate - it was non-present before */
176 update_mmu_cache(vma
, addr
, ptep
);
178 pte_unmap_unlock(ptep
, ptl
);
184 * Congratulations to trinity for discovering this bug.
185 * mm/fremap.c's remap_file_pages() accepts any range within a single vma to
186 * convert that vma to VM_NONLINEAR; and generic_file_remap_pages() will then
187 * replace the specified range by file ptes throughout (maybe populated after).
188 * If page migration finds a page within that range, while it's still located
189 * by vma_interval_tree rather than lost to i_mmap_nonlinear list, no problem:
190 * zap_pte() clears the temporary migration entry before mmap_sem is dropped.
191 * But if the migrating page is in a part of the vma outside the range to be
192 * remapped, then it will not be cleared, and remove_migration_ptes() needs to
193 * deal with it. Fortunately, this part of the vma is of course still linear,
194 * so we just need to use linear location on the nonlinear list.
196 static int remove_linear_migration_ptes_from_nonlinear(struct page
*page
,
197 struct address_space
*mapping
, void *arg
)
199 struct vm_area_struct
*vma
;
200 /* hugetlbfs does not support remap_pages, so no huge pgoff worries */
201 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
204 list_for_each_entry(vma
,
205 &mapping
->i_mmap_nonlinear
, shared
.nonlinear
) {
207 addr
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
208 if (addr
>= vma
->vm_start
&& addr
< vma
->vm_end
)
209 remove_migration_pte(page
, vma
, addr
, arg
);
215 * Get rid of all migration entries and replace them by
216 * references to the indicated page.
218 static void remove_migration_ptes(struct page
*old
, struct page
*new)
220 struct rmap_walk_control rwc
= {
221 .rmap_one
= remove_migration_pte
,
223 .file_nonlinear
= remove_linear_migration_ptes_from_nonlinear
,
226 rmap_walk(new, &rwc
);
230 * Something used the pte of a page under migration. We need to
231 * get to the page and wait until migration is finished.
232 * When we return from this function the fault will be retried.
234 static void __migration_entry_wait(struct mm_struct
*mm
, pte_t
*ptep
,
243 if (!is_swap_pte(pte
))
246 entry
= pte_to_swp_entry(pte
);
247 if (!is_migration_entry(entry
))
250 page
= migration_entry_to_page(entry
);
253 * Once radix-tree replacement of page migration started, page_count
254 * *must* be zero. And, we don't want to call wait_on_page_locked()
255 * against a page without get_page().
256 * So, we use get_page_unless_zero(), here. Even failed, page fault
259 if (!get_page_unless_zero(page
))
261 pte_unmap_unlock(ptep
, ptl
);
262 wait_on_page_locked(page
);
266 pte_unmap_unlock(ptep
, ptl
);
269 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
270 unsigned long address
)
272 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
273 pte_t
*ptep
= pte_offset_map(pmd
, address
);
274 __migration_entry_wait(mm
, ptep
, ptl
);
277 void migration_entry_wait_huge(struct vm_area_struct
*vma
,
278 struct mm_struct
*mm
, pte_t
*pte
)
280 spinlock_t
*ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, pte
);
281 __migration_entry_wait(mm
, pte
, ptl
);
285 /* Returns true if all buffers are successfully locked */
286 static bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
287 enum migrate_mode mode
)
289 struct buffer_head
*bh
= head
;
291 /* Simple case, sync compaction */
292 if (mode
!= MIGRATE_ASYNC
) {
296 bh
= bh
->b_this_page
;
298 } while (bh
!= head
);
303 /* async case, we cannot block on lock_buffer so use trylock_buffer */
306 if (!trylock_buffer(bh
)) {
308 * We failed to lock the buffer and cannot stall in
309 * async migration. Release the taken locks
311 struct buffer_head
*failed_bh
= bh
;
314 while (bh
!= failed_bh
) {
317 bh
= bh
->b_this_page
;
322 bh
= bh
->b_this_page
;
323 } while (bh
!= head
);
327 static inline bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
328 enum migrate_mode mode
)
332 #endif /* CONFIG_BLOCK */
335 * Replace the page in the mapping.
337 * The number of remaining references must be:
338 * 1 for anonymous pages without a mapping
339 * 2 for pages with a mapping
340 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
342 int migrate_page_move_mapping(struct address_space
*mapping
,
343 struct page
*newpage
, struct page
*page
,
344 struct buffer_head
*head
, enum migrate_mode mode
,
347 int expected_count
= 1 + extra_count
;
351 /* Anonymous page without mapping */
352 if (page_count(page
) != expected_count
)
354 return MIGRATEPAGE_SUCCESS
;
357 spin_lock_irq(&mapping
->tree_lock
);
359 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
362 expected_count
+= 1 + page_has_private(page
);
363 if (page_count(page
) != expected_count
||
364 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
365 spin_unlock_irq(&mapping
->tree_lock
);
369 if (!page_freeze_refs(page
, expected_count
)) {
370 spin_unlock_irq(&mapping
->tree_lock
);
375 * In the async migration case of moving a page with buffers, lock the
376 * buffers using trylock before the mapping is moved. If the mapping
377 * was moved, we later failed to lock the buffers and could not move
378 * the mapping back due to an elevated page count, we would have to
379 * block waiting on other references to be dropped.
381 if (mode
== MIGRATE_ASYNC
&& head
&&
382 !buffer_migrate_lock_buffers(head
, mode
)) {
383 page_unfreeze_refs(page
, expected_count
);
384 spin_unlock_irq(&mapping
->tree_lock
);
389 * Now we know that no one else is looking at the page.
391 get_page(newpage
); /* add cache reference */
392 if (PageSwapCache(page
)) {
393 SetPageSwapCache(newpage
);
394 set_page_private(newpage
, page_private(page
));
397 radix_tree_replace_slot(pslot
, newpage
);
400 * Drop cache reference from old page by unfreezing
401 * to one less reference.
402 * We know this isn't the last reference.
404 page_unfreeze_refs(page
, expected_count
- 1);
407 * If moved to a different zone then also account
408 * the page for that zone. Other VM counters will be
409 * taken care of when we establish references to the
410 * new page and drop references to the old page.
412 * Note that anonymous pages are accounted for
413 * via NR_FILE_PAGES and NR_ANON_PAGES if they
414 * are mapped to swap space.
416 __dec_zone_page_state(page
, NR_FILE_PAGES
);
417 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
418 if (!PageSwapCache(page
) && PageSwapBacked(page
)) {
419 __dec_zone_page_state(page
, NR_SHMEM
);
420 __inc_zone_page_state(newpage
, NR_SHMEM
);
422 spin_unlock_irq(&mapping
->tree_lock
);
424 return MIGRATEPAGE_SUCCESS
;
428 * The expected number of remaining references is the same as that
429 * of migrate_page_move_mapping().
431 int migrate_huge_page_move_mapping(struct address_space
*mapping
,
432 struct page
*newpage
, struct page
*page
)
438 if (page_count(page
) != 1)
440 return MIGRATEPAGE_SUCCESS
;
443 spin_lock_irq(&mapping
->tree_lock
);
445 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
448 expected_count
= 2 + page_has_private(page
);
449 if (page_count(page
) != expected_count
||
450 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
451 spin_unlock_irq(&mapping
->tree_lock
);
455 if (!page_freeze_refs(page
, expected_count
)) {
456 spin_unlock_irq(&mapping
->tree_lock
);
462 radix_tree_replace_slot(pslot
, newpage
);
464 page_unfreeze_refs(page
, expected_count
- 1);
466 spin_unlock_irq(&mapping
->tree_lock
);
467 return MIGRATEPAGE_SUCCESS
;
471 * Gigantic pages are so large that we do not guarantee that page++ pointer
472 * arithmetic will work across the entire page. We need something more
475 static void __copy_gigantic_page(struct page
*dst
, struct page
*src
,
479 struct page
*dst_base
= dst
;
480 struct page
*src_base
= src
;
482 for (i
= 0; i
< nr_pages
; ) {
484 copy_highpage(dst
, src
);
487 dst
= mem_map_next(dst
, dst_base
, i
);
488 src
= mem_map_next(src
, src_base
, i
);
492 static void copy_huge_page(struct page
*dst
, struct page
*src
)
499 struct hstate
*h
= page_hstate(src
);
500 nr_pages
= pages_per_huge_page(h
);
502 if (unlikely(nr_pages
> MAX_ORDER_NR_PAGES
)) {
503 __copy_gigantic_page(dst
, src
, nr_pages
);
508 BUG_ON(!PageTransHuge(src
));
509 nr_pages
= hpage_nr_pages(src
);
512 for (i
= 0; i
< nr_pages
; i
++) {
514 copy_highpage(dst
+ i
, src
+ i
);
519 * Copy the page to its new location
521 void migrate_page_copy(struct page
*newpage
, struct page
*page
)
525 if (PageHuge(page
) || PageTransHuge(page
))
526 copy_huge_page(newpage
, page
);
528 copy_highpage(newpage
, page
);
531 SetPageError(newpage
);
532 if (PageReferenced(page
))
533 SetPageReferenced(newpage
);
534 if (PageUptodate(page
))
535 SetPageUptodate(newpage
);
536 if (TestClearPageActive(page
)) {
537 VM_BUG_ON_PAGE(PageUnevictable(page
), page
);
538 SetPageActive(newpage
);
539 } else if (TestClearPageUnevictable(page
))
540 SetPageUnevictable(newpage
);
541 if (PageChecked(page
))
542 SetPageChecked(newpage
);
543 if (PageMappedToDisk(page
))
544 SetPageMappedToDisk(newpage
);
546 if (PageDirty(page
)) {
547 clear_page_dirty_for_io(page
);
549 * Want to mark the page and the radix tree as dirty, and
550 * redo the accounting that clear_page_dirty_for_io undid,
551 * but we can't use set_page_dirty because that function
552 * is actually a signal that all of the page has become dirty.
553 * Whereas only part of our page may be dirty.
555 if (PageSwapBacked(page
))
556 SetPageDirty(newpage
);
558 __set_page_dirty_nobuffers(newpage
);
562 * Copy NUMA information to the new page, to prevent over-eager
563 * future migrations of this same page.
565 cpupid
= page_cpupid_xchg_last(page
, -1);
566 page_cpupid_xchg_last(newpage
, cpupid
);
568 mlock_migrate_page(newpage
, page
);
569 ksm_migrate_page(newpage
, page
);
571 * Please do not reorder this without considering how mm/ksm.c's
572 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
574 ClearPageSwapCache(page
);
575 ClearPagePrivate(page
);
576 set_page_private(page
, 0);
579 * If any waiters have accumulated on the new page then
582 if (PageWriteback(newpage
))
583 end_page_writeback(newpage
);
586 /************************************************************
587 * Migration functions
588 ***********************************************************/
591 * Common logic to directly migrate a single page suitable for
592 * pages that do not use PagePrivate/PagePrivate2.
594 * Pages are locked upon entry and exit.
596 int migrate_page(struct address_space
*mapping
,
597 struct page
*newpage
, struct page
*page
,
598 enum migrate_mode mode
)
602 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
604 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, NULL
, mode
, 0);
606 if (rc
!= MIGRATEPAGE_SUCCESS
)
609 migrate_page_copy(newpage
, page
);
610 return MIGRATEPAGE_SUCCESS
;
612 EXPORT_SYMBOL(migrate_page
);
616 * Migration function for pages with buffers. This function can only be used
617 * if the underlying filesystem guarantees that no other references to "page"
620 int buffer_migrate_page(struct address_space
*mapping
,
621 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
623 struct buffer_head
*bh
, *head
;
626 if (!page_has_buffers(page
))
627 return migrate_page(mapping
, newpage
, page
, mode
);
629 head
= page_buffers(page
);
631 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, head
, mode
, 0);
633 if (rc
!= MIGRATEPAGE_SUCCESS
)
637 * In the async case, migrate_page_move_mapping locked the buffers
638 * with an IRQ-safe spinlock held. In the sync case, the buffers
639 * need to be locked now
641 if (mode
!= MIGRATE_ASYNC
)
642 BUG_ON(!buffer_migrate_lock_buffers(head
, mode
));
644 ClearPagePrivate(page
);
645 set_page_private(newpage
, page_private(page
));
646 set_page_private(page
, 0);
652 set_bh_page(bh
, newpage
, bh_offset(bh
));
653 bh
= bh
->b_this_page
;
655 } while (bh
!= head
);
657 SetPagePrivate(newpage
);
659 migrate_page_copy(newpage
, page
);
665 bh
= bh
->b_this_page
;
667 } while (bh
!= head
);
669 return MIGRATEPAGE_SUCCESS
;
671 EXPORT_SYMBOL(buffer_migrate_page
);
675 * Writeback a page to clean the dirty state
677 static int writeout(struct address_space
*mapping
, struct page
*page
)
679 struct writeback_control wbc
= {
680 .sync_mode
= WB_SYNC_NONE
,
683 .range_end
= LLONG_MAX
,
688 if (!mapping
->a_ops
->writepage
)
689 /* No write method for the address space */
692 if (!clear_page_dirty_for_io(page
))
693 /* Someone else already triggered a write */
697 * A dirty page may imply that the underlying filesystem has
698 * the page on some queue. So the page must be clean for
699 * migration. Writeout may mean we loose the lock and the
700 * page state is no longer what we checked for earlier.
701 * At this point we know that the migration attempt cannot
704 remove_migration_ptes(page
, page
);
706 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
708 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
709 /* unlocked. Relock */
712 return (rc
< 0) ? -EIO
: -EAGAIN
;
716 * Default handling if a filesystem does not provide a migration function.
718 static int fallback_migrate_page(struct address_space
*mapping
,
719 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
721 if (PageDirty(page
)) {
722 /* Only writeback pages in full synchronous migration */
723 if (mode
!= MIGRATE_SYNC
)
725 return writeout(mapping
, page
);
729 * Buffers may be managed in a filesystem specific way.
730 * We must have no buffers or drop them.
732 if (page_has_private(page
) &&
733 !try_to_release_page(page
, GFP_KERNEL
))
736 return migrate_page(mapping
, newpage
, page
, mode
);
740 * Move a page to a newly allocated page
741 * The page is locked and all ptes have been successfully removed.
743 * The new page will have replaced the old page if this function
748 * MIGRATEPAGE_SUCCESS - success
750 static int move_to_new_page(struct page
*newpage
, struct page
*page
,
751 int remap_swapcache
, enum migrate_mode mode
)
753 struct address_space
*mapping
;
757 * Block others from accessing the page when we get around to
758 * establishing additional references. We are the only one
759 * holding a reference to the new page at this point.
761 if (!trylock_page(newpage
))
764 /* Prepare mapping for the new page.*/
765 newpage
->index
= page
->index
;
766 newpage
->mapping
= page
->mapping
;
767 if (PageSwapBacked(page
))
768 SetPageSwapBacked(newpage
);
770 mapping
= page_mapping(page
);
772 rc
= migrate_page(mapping
, newpage
, page
, mode
);
773 else if (mapping
->a_ops
->migratepage
)
775 * Most pages have a mapping and most filesystems provide a
776 * migratepage callback. Anonymous pages are part of swap
777 * space which also has its own migratepage callback. This
778 * is the most common path for page migration.
780 rc
= mapping
->a_ops
->migratepage(mapping
,
781 newpage
, page
, mode
);
783 rc
= fallback_migrate_page(mapping
, newpage
, page
, mode
);
785 if (rc
!= MIGRATEPAGE_SUCCESS
) {
786 newpage
->mapping
= NULL
;
789 remove_migration_ptes(page
, newpage
);
790 page
->mapping
= NULL
;
793 unlock_page(newpage
);
798 static int __unmap_and_move(struct page
*page
, struct page
*newpage
,
799 int force
, enum migrate_mode mode
)
802 int remap_swapcache
= 1;
803 struct mem_cgroup
*mem
;
804 struct anon_vma
*anon_vma
= NULL
;
806 if (!trylock_page(page
)) {
807 if (!force
|| mode
== MIGRATE_ASYNC
)
811 * It's not safe for direct compaction to call lock_page.
812 * For example, during page readahead pages are added locked
813 * to the LRU. Later, when the IO completes the pages are
814 * marked uptodate and unlocked. However, the queueing
815 * could be merging multiple pages for one bio (e.g.
816 * mpage_readpages). If an allocation happens for the
817 * second or third page, the process can end up locking
818 * the same page twice and deadlocking. Rather than
819 * trying to be clever about what pages can be locked,
820 * avoid the use of lock_page for direct compaction
823 if (current
->flags
& PF_MEMALLOC
)
829 /* charge against new page */
830 mem_cgroup_prepare_migration(page
, newpage
, &mem
);
832 if (PageWriteback(page
)) {
834 * Only in the case of a full synchronous migration is it
835 * necessary to wait for PageWriteback. In the async case,
836 * the retry loop is too short and in the sync-light case,
837 * the overhead of stalling is too much
839 if (mode
!= MIGRATE_SYNC
) {
845 wait_on_page_writeback(page
);
848 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
849 * we cannot notice that anon_vma is freed while we migrates a page.
850 * This get_anon_vma() delays freeing anon_vma pointer until the end
851 * of migration. File cache pages are no problem because of page_lock()
852 * File Caches may use write_page() or lock_page() in migration, then,
853 * just care Anon page here.
855 if (PageAnon(page
) && !PageKsm(page
)) {
857 * Only page_lock_anon_vma_read() understands the subtleties of
858 * getting a hold on an anon_vma from outside one of its mms.
860 anon_vma
= page_get_anon_vma(page
);
865 } else if (PageSwapCache(page
)) {
867 * We cannot be sure that the anon_vma of an unmapped
868 * swapcache page is safe to use because we don't
869 * know in advance if the VMA that this page belonged
870 * to still exists. If the VMA and others sharing the
871 * data have been freed, then the anon_vma could
872 * already be invalid.
874 * To avoid this possibility, swapcache pages get
875 * migrated but are not remapped when migration
884 if (unlikely(balloon_page_movable(page
))) {
886 * A ballooned page does not need any special attention from
887 * physical to virtual reverse mapping procedures.
888 * Skip any attempt to unmap PTEs or to remap swap cache,
889 * in order to avoid burning cycles at rmap level, and perform
890 * the page migration right away (proteced by page lock).
892 rc
= balloon_page_migrate(newpage
, page
, mode
);
897 * Corner case handling:
898 * 1. When a new swap-cache page is read into, it is added to the LRU
899 * and treated as swapcache but it has no rmap yet.
900 * Calling try_to_unmap() against a page->mapping==NULL page will
901 * trigger a BUG. So handle it here.
902 * 2. An orphaned page (see truncate_complete_page) might have
903 * fs-private metadata. The page can be picked up due to memory
904 * offlining. Everywhere else except page reclaim, the page is
905 * invisible to the vm, so the page can not be migrated. So try to
906 * free the metadata, so the page can be freed.
908 if (!page
->mapping
) {
909 VM_BUG_ON_PAGE(PageAnon(page
), page
);
910 if (page_has_private(page
)) {
911 try_to_free_buffers(page
);
917 /* Establish migration ptes or remove ptes */
918 try_to_unmap(page
, TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
921 if (!page_mapped(page
))
922 rc
= move_to_new_page(newpage
, page
, remap_swapcache
, mode
);
924 if (rc
&& remap_swapcache
)
925 remove_migration_ptes(page
, page
);
927 /* Drop an anon_vma reference if we took one */
929 put_anon_vma(anon_vma
);
932 mem_cgroup_end_migration(mem
, page
, newpage
,
933 (rc
== MIGRATEPAGE_SUCCESS
||
934 rc
== MIGRATEPAGE_BALLOON_SUCCESS
));
941 * Obtain the lock on page, remove all ptes and migrate the page
942 * to the newly allocated page in newpage.
944 static int unmap_and_move(new_page_t get_new_page
, free_page_t put_new_page
,
945 unsigned long private, struct page
*page
, int force
,
946 enum migrate_mode mode
)
950 struct page
*newpage
= get_new_page(page
, private, &result
);
955 if (page_count(page
) == 1) {
956 /* page was freed from under us. So we are done. */
960 if (unlikely(PageTransHuge(page
)))
961 if (unlikely(split_huge_page(page
)))
964 rc
= __unmap_and_move(page
, newpage
, force
, mode
);
966 if (unlikely(rc
== MIGRATEPAGE_BALLOON_SUCCESS
)) {
968 * A ballooned page has been migrated already.
969 * Now, it's the time to wrap-up counters,
970 * handle the page back to Buddy and return.
972 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
973 page_is_file_cache(page
));
974 balloon_page_free(page
);
975 return MIGRATEPAGE_SUCCESS
;
980 * A page that has been migrated has all references
981 * removed and will be freed. A page that has not been
982 * migrated will have kepts its references and be
985 list_del(&page
->lru
);
986 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
987 page_is_file_cache(page
));
988 putback_lru_page(page
);
992 * If migration was not successful and there's a freeing callback, use
993 * it. Otherwise, putback_lru_page() will drop the reference grabbed
996 if (rc
!= MIGRATEPAGE_SUCCESS
&& put_new_page
) {
997 ClearPageSwapBacked(newpage
);
998 put_new_page(newpage
, private);
1000 putback_lru_page(newpage
);
1006 *result
= page_to_nid(newpage
);
1012 * Counterpart of unmap_and_move_page() for hugepage migration.
1014 * This function doesn't wait the completion of hugepage I/O
1015 * because there is no race between I/O and migration for hugepage.
1016 * Note that currently hugepage I/O occurs only in direct I/O
1017 * where no lock is held and PG_writeback is irrelevant,
1018 * and writeback status of all subpages are counted in the reference
1019 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1020 * under direct I/O, the reference of the head page is 512 and a bit more.)
1021 * This means that when we try to migrate hugepage whose subpages are
1022 * doing direct I/O, some references remain after try_to_unmap() and
1023 * hugepage migration fails without data corruption.
1025 * There is also no race when direct I/O is issued on the page under migration,
1026 * because then pte is replaced with migration swap entry and direct I/O code
1027 * will wait in the page fault for migration to complete.
1029 static int unmap_and_move_huge_page(new_page_t get_new_page
,
1030 free_page_t put_new_page
, unsigned long private,
1031 struct page
*hpage
, int force
,
1032 enum migrate_mode mode
)
1036 struct page
*new_hpage
;
1037 struct anon_vma
*anon_vma
= NULL
;
1040 * Movability of hugepages depends on architectures and hugepage size.
1041 * This check is necessary because some callers of hugepage migration
1042 * like soft offline and memory hotremove don't walk through page
1043 * tables or check whether the hugepage is pmd-based or not before
1044 * kicking migration.
1046 if (!hugepage_migration_support(page_hstate(hpage
))) {
1047 putback_active_hugepage(hpage
);
1051 new_hpage
= get_new_page(hpage
, private, &result
);
1057 if (!trylock_page(hpage
)) {
1058 if (!force
|| mode
!= MIGRATE_SYNC
)
1063 if (PageAnon(hpage
))
1064 anon_vma
= page_get_anon_vma(hpage
);
1066 try_to_unmap(hpage
, TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
1068 if (!page_mapped(hpage
))
1069 rc
= move_to_new_page(new_hpage
, hpage
, 1, mode
);
1071 if (rc
!= MIGRATEPAGE_SUCCESS
)
1072 remove_migration_ptes(hpage
, hpage
);
1075 put_anon_vma(anon_vma
);
1077 if (rc
== MIGRATEPAGE_SUCCESS
)
1078 hugetlb_cgroup_migrate(hpage
, new_hpage
);
1083 putback_active_hugepage(hpage
);
1086 * If migration was not successful and there's a freeing callback, use
1087 * it. Otherwise, put_page() will drop the reference grabbed during
1090 if (rc
!= MIGRATEPAGE_SUCCESS
&& put_new_page
)
1091 put_new_page(new_hpage
, private);
1093 put_page(new_hpage
);
1099 *result
= page_to_nid(new_hpage
);
1105 * migrate_pages - migrate the pages specified in a list, to the free pages
1106 * supplied as the target for the page migration
1108 * @from: The list of pages to be migrated.
1109 * @get_new_page: The function used to allocate free pages to be used
1110 * as the target of the page migration.
1111 * @put_new_page: The function used to free target pages if migration
1112 * fails, or NULL if no special handling is necessary.
1113 * @private: Private data to be passed on to get_new_page()
1114 * @mode: The migration mode that specifies the constraints for
1115 * page migration, if any.
1116 * @reason: The reason for page migration.
1118 * The function returns after 10 attempts or if no pages are movable any more
1119 * because the list has become empty or no retryable pages exist any more.
1120 * The caller should call putback_lru_pages() to return pages to the LRU
1121 * or free list only if ret != 0.
1123 * Returns the number of pages that were not migrated, or an error code.
1125 int migrate_pages(struct list_head
*from
, new_page_t get_new_page
,
1126 free_page_t put_new_page
, unsigned long private,
1127 enum migrate_mode mode
, int reason
)
1131 int nr_succeeded
= 0;
1135 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
1139 current
->flags
|= PF_SWAPWRITE
;
1141 for(pass
= 0; pass
< 10 && retry
; pass
++) {
1144 list_for_each_entry_safe(page
, page2
, from
, lru
) {
1148 rc
= unmap_and_move_huge_page(get_new_page
,
1149 put_new_page
, private, page
,
1152 rc
= unmap_and_move(get_new_page
, put_new_page
,
1153 private, page
, pass
> 2, mode
);
1161 case MIGRATEPAGE_SUCCESS
:
1166 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1167 * unlike -EAGAIN case, the failed page is
1168 * removed from migration page list and not
1169 * retried in the next outer loop.
1176 rc
= nr_failed
+ retry
;
1179 count_vm_events(PGMIGRATE_SUCCESS
, nr_succeeded
);
1181 count_vm_events(PGMIGRATE_FAIL
, nr_failed
);
1182 trace_mm_migrate_pages(nr_succeeded
, nr_failed
, mode
, reason
);
1185 current
->flags
&= ~PF_SWAPWRITE
;
1192 * Move a list of individual pages
1194 struct page_to_node
{
1201 static struct page
*new_page_node(struct page
*p
, unsigned long private,
1204 struct page_to_node
*pm
= (struct page_to_node
*)private;
1206 while (pm
->node
!= MAX_NUMNODES
&& pm
->page
!= p
)
1209 if (pm
->node
== MAX_NUMNODES
)
1212 *result
= &pm
->status
;
1215 return alloc_huge_page_node(page_hstate(compound_head(p
)),
1218 return alloc_pages_exact_node(pm
->node
,
1219 GFP_HIGHUSER_MOVABLE
| __GFP_THISNODE
, 0);
1223 * Move a set of pages as indicated in the pm array. The addr
1224 * field must be set to the virtual address of the page to be moved
1225 * and the node number must contain a valid target node.
1226 * The pm array ends with node = MAX_NUMNODES.
1228 static int do_move_page_to_node_array(struct mm_struct
*mm
,
1229 struct page_to_node
*pm
,
1233 struct page_to_node
*pp
;
1234 LIST_HEAD(pagelist
);
1236 down_read(&mm
->mmap_sem
);
1239 * Build a list of pages to migrate
1241 for (pp
= pm
; pp
->node
!= MAX_NUMNODES
; pp
++) {
1242 struct vm_area_struct
*vma
;
1246 vma
= find_vma(mm
, pp
->addr
);
1247 if (!vma
|| pp
->addr
< vma
->vm_start
|| !vma_migratable(vma
))
1250 page
= follow_page(vma
, pp
->addr
, FOLL_GET
|FOLL_SPLIT
);
1252 err
= PTR_ERR(page
);
1260 /* Use PageReserved to check for zero page */
1261 if (PageReserved(page
))
1265 err
= page_to_nid(page
);
1267 if (err
== pp
->node
)
1269 * Node already in the right place
1274 if (page_mapcount(page
) > 1 &&
1278 if (PageHuge(page
)) {
1279 isolate_huge_page(page
, &pagelist
);
1283 err
= isolate_lru_page(page
);
1285 list_add_tail(&page
->lru
, &pagelist
);
1286 inc_zone_page_state(page
, NR_ISOLATED_ANON
+
1287 page_is_file_cache(page
));
1291 * Either remove the duplicate refcount from
1292 * isolate_lru_page() or drop the page ref if it was
1301 if (!list_empty(&pagelist
)) {
1302 err
= migrate_pages(&pagelist
, new_page_node
, NULL
,
1303 (unsigned long)pm
, MIGRATE_SYNC
, MR_SYSCALL
);
1305 putback_movable_pages(&pagelist
);
1308 up_read(&mm
->mmap_sem
);
1313 * Migrate an array of page address onto an array of nodes and fill
1314 * the corresponding array of status.
1316 static int do_pages_move(struct mm_struct
*mm
, nodemask_t task_nodes
,
1317 unsigned long nr_pages
,
1318 const void __user
* __user
*pages
,
1319 const int __user
*nodes
,
1320 int __user
*status
, int flags
)
1322 struct page_to_node
*pm
;
1323 unsigned long chunk_nr_pages
;
1324 unsigned long chunk_start
;
1328 pm
= (struct page_to_node
*)__get_free_page(GFP_KERNEL
);
1335 * Store a chunk of page_to_node array in a page,
1336 * but keep the last one as a marker
1338 chunk_nr_pages
= (PAGE_SIZE
/ sizeof(struct page_to_node
)) - 1;
1340 for (chunk_start
= 0;
1341 chunk_start
< nr_pages
;
1342 chunk_start
+= chunk_nr_pages
) {
1345 if (chunk_start
+ chunk_nr_pages
> nr_pages
)
1346 chunk_nr_pages
= nr_pages
- chunk_start
;
1348 /* fill the chunk pm with addrs and nodes from user-space */
1349 for (j
= 0; j
< chunk_nr_pages
; j
++) {
1350 const void __user
*p
;
1354 if (get_user(p
, pages
+ j
+ chunk_start
))
1356 pm
[j
].addr
= (unsigned long) p
;
1358 if (get_user(node
, nodes
+ j
+ chunk_start
))
1362 if (node
< 0 || node
>= MAX_NUMNODES
)
1365 if (!node_state(node
, N_MEMORY
))
1369 if (!node_isset(node
, task_nodes
))
1375 /* End marker for this chunk */
1376 pm
[chunk_nr_pages
].node
= MAX_NUMNODES
;
1378 /* Migrate this chunk */
1379 err
= do_move_page_to_node_array(mm
, pm
,
1380 flags
& MPOL_MF_MOVE_ALL
);
1384 /* Return status information */
1385 for (j
= 0; j
< chunk_nr_pages
; j
++)
1386 if (put_user(pm
[j
].status
, status
+ j
+ chunk_start
)) {
1394 free_page((unsigned long)pm
);
1400 * Determine the nodes of an array of pages and store it in an array of status.
1402 static void do_pages_stat_array(struct mm_struct
*mm
, unsigned long nr_pages
,
1403 const void __user
**pages
, int *status
)
1407 down_read(&mm
->mmap_sem
);
1409 for (i
= 0; i
< nr_pages
; i
++) {
1410 unsigned long addr
= (unsigned long)(*pages
);
1411 struct vm_area_struct
*vma
;
1415 vma
= find_vma(mm
, addr
);
1416 if (!vma
|| addr
< vma
->vm_start
)
1419 page
= follow_page(vma
, addr
, 0);
1421 err
= PTR_ERR(page
);
1426 /* Use PageReserved to check for zero page */
1427 if (!page
|| PageReserved(page
))
1430 err
= page_to_nid(page
);
1438 up_read(&mm
->mmap_sem
);
1442 * Determine the nodes of a user array of pages and store it in
1443 * a user array of status.
1445 static int do_pages_stat(struct mm_struct
*mm
, unsigned long nr_pages
,
1446 const void __user
* __user
*pages
,
1449 #define DO_PAGES_STAT_CHUNK_NR 16
1450 const void __user
*chunk_pages
[DO_PAGES_STAT_CHUNK_NR
];
1451 int chunk_status
[DO_PAGES_STAT_CHUNK_NR
];
1454 unsigned long chunk_nr
;
1456 chunk_nr
= nr_pages
;
1457 if (chunk_nr
> DO_PAGES_STAT_CHUNK_NR
)
1458 chunk_nr
= DO_PAGES_STAT_CHUNK_NR
;
1460 if (copy_from_user(chunk_pages
, pages
, chunk_nr
* sizeof(*chunk_pages
)))
1463 do_pages_stat_array(mm
, chunk_nr
, chunk_pages
, chunk_status
);
1465 if (copy_to_user(status
, chunk_status
, chunk_nr
* sizeof(*status
)))
1470 nr_pages
-= chunk_nr
;
1472 return nr_pages
? -EFAULT
: 0;
1476 * Move a list of pages in the address space of the currently executing
1479 SYSCALL_DEFINE6(move_pages
, pid_t
, pid
, unsigned long, nr_pages
,
1480 const void __user
* __user
*, pages
,
1481 const int __user
*, nodes
,
1482 int __user
*, status
, int, flags
)
1484 const struct cred
*cred
= current_cred(), *tcred
;
1485 struct task_struct
*task
;
1486 struct mm_struct
*mm
;
1488 nodemask_t task_nodes
;
1491 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
1494 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1497 /* Find the mm_struct */
1499 task
= pid
? find_task_by_vpid(pid
) : current
;
1504 get_task_struct(task
);
1507 * Check if this process has the right to modify the specified
1508 * process. The right exists if the process has administrative
1509 * capabilities, superuser privileges or the same
1510 * userid as the target process.
1512 tcred
= __task_cred(task
);
1513 if (!uid_eq(cred
->euid
, tcred
->suid
) && !uid_eq(cred
->euid
, tcred
->uid
) &&
1514 !uid_eq(cred
->uid
, tcred
->suid
) && !uid_eq(cred
->uid
, tcred
->uid
) &&
1515 !capable(CAP_SYS_NICE
)) {
1522 err
= security_task_movememory(task
);
1526 task_nodes
= cpuset_mems_allowed(task
);
1527 mm
= get_task_mm(task
);
1528 put_task_struct(task
);
1534 err
= do_pages_move(mm
, task_nodes
, nr_pages
, pages
,
1535 nodes
, status
, flags
);
1537 err
= do_pages_stat(mm
, nr_pages
, pages
, status
);
1543 put_task_struct(task
);
1548 * Call migration functions in the vma_ops that may prepare
1549 * memory in a vm for migration. migration functions may perform
1550 * the migration for vmas that do not have an underlying page struct.
1552 int migrate_vmas(struct mm_struct
*mm
, const nodemask_t
*to
,
1553 const nodemask_t
*from
, unsigned long flags
)
1555 struct vm_area_struct
*vma
;
1558 for (vma
= mm
->mmap
; vma
&& !err
; vma
= vma
->vm_next
) {
1559 if (vma
->vm_ops
&& vma
->vm_ops
->migrate
) {
1560 err
= vma
->vm_ops
->migrate(vma
, to
, from
, flags
);
1568 #ifdef CONFIG_NUMA_BALANCING
1570 * Returns true if this is a safe migration target node for misplaced NUMA
1571 * pages. Currently it only checks the watermarks which crude
1573 static bool migrate_balanced_pgdat(struct pglist_data
*pgdat
,
1574 unsigned long nr_migrate_pages
)
1577 for (z
= pgdat
->nr_zones
- 1; z
>= 0; z
--) {
1578 struct zone
*zone
= pgdat
->node_zones
+ z
;
1580 if (!populated_zone(zone
))
1583 if (!zone_reclaimable(zone
))
1586 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1587 if (!zone_watermark_ok(zone
, 0,
1588 high_wmark_pages(zone
) +
1597 static struct page
*alloc_misplaced_dst_page(struct page
*page
,
1601 int nid
= (int) data
;
1602 struct page
*newpage
;
1604 newpage
= alloc_pages_exact_node(nid
,
1605 (GFP_HIGHUSER_MOVABLE
|
1606 __GFP_THISNODE
| __GFP_NOMEMALLOC
|
1607 __GFP_NORETRY
| __GFP_NOWARN
) &
1614 * page migration rate limiting control.
1615 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1616 * window of time. Default here says do not migrate more than 1280M per second.
1617 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1618 * as it is faults that reset the window, pte updates will happen unconditionally
1619 * if there has not been a fault since @pteupdate_interval_millisecs after the
1620 * throttle window closed.
1622 static unsigned int migrate_interval_millisecs __read_mostly
= 100;
1623 static unsigned int pteupdate_interval_millisecs __read_mostly
= 1000;
1624 static unsigned int ratelimit_pages __read_mostly
= 128 << (20 - PAGE_SHIFT
);
1626 /* Returns true if NUMA migration is currently rate limited */
1627 bool migrate_ratelimited(int node
)
1629 pg_data_t
*pgdat
= NODE_DATA(node
);
1631 if (time_after(jiffies
, pgdat
->numabalancing_migrate_next_window
+
1632 msecs_to_jiffies(pteupdate_interval_millisecs
)))
1635 if (pgdat
->numabalancing_migrate_nr_pages
< ratelimit_pages
)
1641 /* Returns true if the node is migrate rate-limited after the update */
1642 static bool numamigrate_update_ratelimit(pg_data_t
*pgdat
,
1643 unsigned long nr_pages
)
1646 * Rate-limit the amount of data that is being migrated to a node.
1647 * Optimal placement is no good if the memory bus is saturated and
1648 * all the time is being spent migrating!
1650 if (time_after(jiffies
, pgdat
->numabalancing_migrate_next_window
)) {
1651 spin_lock(&pgdat
->numabalancing_migrate_lock
);
1652 pgdat
->numabalancing_migrate_nr_pages
= 0;
1653 pgdat
->numabalancing_migrate_next_window
= jiffies
+
1654 msecs_to_jiffies(migrate_interval_millisecs
);
1655 spin_unlock(&pgdat
->numabalancing_migrate_lock
);
1657 if (pgdat
->numabalancing_migrate_nr_pages
> ratelimit_pages
) {
1658 trace_mm_numa_migrate_ratelimit(current
, pgdat
->node_id
,
1664 * This is an unlocked non-atomic update so errors are possible.
1665 * The consequences are failing to migrate when we potentiall should
1666 * have which is not severe enough to warrant locking. If it is ever
1667 * a problem, it can be converted to a per-cpu counter.
1669 pgdat
->numabalancing_migrate_nr_pages
+= nr_pages
;
1673 static int numamigrate_isolate_page(pg_data_t
*pgdat
, struct page
*page
)
1677 VM_BUG_ON_PAGE(compound_order(page
) && !PageTransHuge(page
), page
);
1679 /* Avoid migrating to a node that is nearly full */
1680 if (!migrate_balanced_pgdat(pgdat
, 1UL << compound_order(page
)))
1683 if (isolate_lru_page(page
))
1687 * migrate_misplaced_transhuge_page() skips page migration's usual
1688 * check on page_count(), so we must do it here, now that the page
1689 * has been isolated: a GUP pin, or any other pin, prevents migration.
1690 * The expected page count is 3: 1 for page's mapcount and 1 for the
1691 * caller's pin and 1 for the reference taken by isolate_lru_page().
1693 if (PageTransHuge(page
) && page_count(page
) != 3) {
1694 putback_lru_page(page
);
1698 page_lru
= page_is_file_cache(page
);
1699 mod_zone_page_state(page_zone(page
), NR_ISOLATED_ANON
+ page_lru
,
1700 hpage_nr_pages(page
));
1703 * Isolating the page has taken another reference, so the
1704 * caller's reference can be safely dropped without the page
1705 * disappearing underneath us during migration.
1711 bool pmd_trans_migrating(pmd_t pmd
)
1713 struct page
*page
= pmd_page(pmd
);
1714 return PageLocked(page
);
1717 void wait_migrate_huge_page(struct anon_vma
*anon_vma
, pmd_t
*pmd
)
1719 struct page
*page
= pmd_page(*pmd
);
1720 wait_on_page_locked(page
);
1724 * Attempt to migrate a misplaced page to the specified destination
1725 * node. Caller is expected to have an elevated reference count on
1726 * the page that will be dropped by this function before returning.
1728 int migrate_misplaced_page(struct page
*page
, struct vm_area_struct
*vma
,
1731 pg_data_t
*pgdat
= NODE_DATA(node
);
1734 LIST_HEAD(migratepages
);
1737 * Don't migrate file pages that are mapped in multiple processes
1738 * with execute permissions as they are probably shared libraries.
1740 if (page_mapcount(page
) != 1 && page_is_file_cache(page
) &&
1741 (vma
->vm_flags
& VM_EXEC
))
1745 * Rate-limit the amount of data that is being migrated to a node.
1746 * Optimal placement is no good if the memory bus is saturated and
1747 * all the time is being spent migrating!
1749 if (numamigrate_update_ratelimit(pgdat
, 1))
1752 isolated
= numamigrate_isolate_page(pgdat
, page
);
1756 list_add(&page
->lru
, &migratepages
);
1757 nr_remaining
= migrate_pages(&migratepages
, alloc_misplaced_dst_page
,
1758 NULL
, node
, MIGRATE_ASYNC
,
1761 if (!list_empty(&migratepages
)) {
1762 list_del(&page
->lru
);
1763 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
1764 page_is_file_cache(page
));
1765 putback_lru_page(page
);
1769 count_vm_numa_event(NUMA_PAGE_MIGRATE
);
1770 BUG_ON(!list_empty(&migratepages
));
1777 #endif /* CONFIG_NUMA_BALANCING */
1779 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1781 * Migrates a THP to a given target node. page must be locked and is unlocked
1784 int migrate_misplaced_transhuge_page(struct mm_struct
*mm
,
1785 struct vm_area_struct
*vma
,
1786 pmd_t
*pmd
, pmd_t entry
,
1787 unsigned long address
,
1788 struct page
*page
, int node
)
1791 pg_data_t
*pgdat
= NODE_DATA(node
);
1793 struct page
*new_page
= NULL
;
1794 struct mem_cgroup
*memcg
= NULL
;
1795 int page_lru
= page_is_file_cache(page
);
1796 unsigned long mmun_start
= address
& HPAGE_PMD_MASK
;
1797 unsigned long mmun_end
= mmun_start
+ HPAGE_PMD_SIZE
;
1801 * Rate-limit the amount of data that is being migrated to a node.
1802 * Optimal placement is no good if the memory bus is saturated and
1803 * all the time is being spent migrating!
1805 if (numamigrate_update_ratelimit(pgdat
, HPAGE_PMD_NR
))
1808 new_page
= alloc_pages_node(node
,
1809 (GFP_TRANSHUGE
| __GFP_THISNODE
) & ~__GFP_WAIT
,
1814 isolated
= numamigrate_isolate_page(pgdat
, page
);
1820 if (mm_tlb_flush_pending(mm
))
1821 flush_tlb_range(vma
, mmun_start
, mmun_end
);
1823 /* Prepare a page as a migration target */
1824 __set_page_locked(new_page
);
1825 SetPageSwapBacked(new_page
);
1827 /* anon mapping, we can simply copy page->mapping to the new page: */
1828 new_page
->mapping
= page
->mapping
;
1829 new_page
->index
= page
->index
;
1830 migrate_page_copy(new_page
, page
);
1831 WARN_ON(PageLRU(new_page
));
1833 /* Recheck the target PMD */
1834 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1835 ptl
= pmd_lock(mm
, pmd
);
1836 if (unlikely(!pmd_same(*pmd
, entry
) || page_count(page
) != 2)) {
1839 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1841 /* Reverse changes made by migrate_page_copy() */
1842 if (TestClearPageActive(new_page
))
1843 SetPageActive(page
);
1844 if (TestClearPageUnevictable(new_page
))
1845 SetPageUnevictable(page
);
1846 mlock_migrate_page(page
, new_page
);
1848 unlock_page(new_page
);
1849 put_page(new_page
); /* Free it */
1851 /* Retake the callers reference and putback on LRU */
1853 putback_lru_page(page
);
1854 mod_zone_page_state(page_zone(page
),
1855 NR_ISOLATED_ANON
+ page_lru
, -HPAGE_PMD_NR
);
1861 * Traditional migration needs to prepare the memcg charge
1862 * transaction early to prevent the old page from being
1863 * uncharged when installing migration entries. Here we can
1864 * save the potential rollback and start the charge transfer
1865 * only when migration is already known to end successfully.
1867 mem_cgroup_prepare_migration(page
, new_page
, &memcg
);
1870 entry
= mk_pmd(new_page
, vma
->vm_page_prot
);
1871 entry
= pmd_mkhuge(entry
);
1872 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1875 * Clear the old entry under pagetable lock and establish the new PTE.
1876 * Any parallel GUP will either observe the old page blocking on the
1877 * page lock, block on the page table lock or observe the new page.
1878 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1879 * guarantee the copy is visible before the pagetable update.
1881 flush_cache_range(vma
, mmun_start
, mmun_end
);
1882 page_add_new_anon_rmap(new_page
, vma
, mmun_start
);
1883 pmdp_clear_flush(vma
, mmun_start
, pmd
);
1884 set_pmd_at(mm
, mmun_start
, pmd
, entry
);
1885 flush_tlb_range(vma
, mmun_start
, mmun_end
);
1886 update_mmu_cache_pmd(vma
, address
, &entry
);
1888 if (page_count(page
) != 2) {
1889 set_pmd_at(mm
, mmun_start
, pmd
, orig_entry
);
1890 flush_tlb_range(vma
, mmun_start
, mmun_end
);
1891 update_mmu_cache_pmd(vma
, address
, &entry
);
1892 page_remove_rmap(new_page
);
1896 page_remove_rmap(page
);
1899 * Finish the charge transaction under the page table lock to
1900 * prevent split_huge_page() from dividing up the charge
1901 * before it's fully transferred to the new page.
1903 mem_cgroup_end_migration(memcg
, page
, new_page
, true);
1905 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1907 unlock_page(new_page
);
1909 put_page(page
); /* Drop the rmap reference */
1910 put_page(page
); /* Drop the LRU isolation reference */
1912 count_vm_events(PGMIGRATE_SUCCESS
, HPAGE_PMD_NR
);
1913 count_vm_numa_events(NUMA_PAGE_MIGRATE
, HPAGE_PMD_NR
);
1915 mod_zone_page_state(page_zone(page
),
1916 NR_ISOLATED_ANON
+ page_lru
,
1921 count_vm_events(PGMIGRATE_FAIL
, HPAGE_PMD_NR
);
1923 ptl
= pmd_lock(mm
, pmd
);
1924 if (pmd_same(*pmd
, entry
)) {
1925 entry
= pmd_mknonnuma(entry
);
1926 set_pmd_at(mm
, mmun_start
, pmd
, entry
);
1927 update_mmu_cache_pmd(vma
, address
, &entry
);
1936 #endif /* CONFIG_NUMA_BALANCING */
1938 #endif /* CONFIG_NUMA */