Lynx framebuffers multidomain implementation.
[linux/elbrus.git] / mm / nommu.c
blob76b3f90ada7b56ea395d1460d9caaa7c1148f301
1 /*
2 * linux/mm/nommu.c
4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
7 * See Documentation/nommu-mmap.txt
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/vmacache.h>
19 #include <linux/mman.h>
20 #include <linux/swap.h>
21 #include <linux/file.h>
22 #include <linux/highmem.h>
23 #include <linux/pagemap.h>
24 #include <linux/slab.h>
25 #include <linux/vmalloc.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/audit.h>
33 #include <linux/sched/sysctl.h>
35 #include <asm/uaccess.h>
36 #include <asm/tlb.h>
37 #include <asm/tlbflush.h>
38 #include <asm/mmu_context.h>
39 #include "internal.h"
41 #if 0
42 #define kenter(FMT, ...) \
43 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
44 #define kleave(FMT, ...) \
45 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
46 #define kdebug(FMT, ...) \
47 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
48 #else
49 #define kenter(FMT, ...) \
50 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
51 #define kleave(FMT, ...) \
52 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
53 #define kdebug(FMT, ...) \
54 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
55 #endif
57 void *high_memory;
58 struct page *mem_map;
59 unsigned long max_mapnr;
60 unsigned long highest_memmap_pfn;
61 struct percpu_counter vm_committed_as;
62 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
63 int sysctl_overcommit_ratio = 50; /* default is 50% */
64 unsigned long sysctl_overcommit_kbytes __read_mostly;
65 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
66 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
67 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
68 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
69 int heap_stack_gap = 0;
71 atomic_long_t mmap_pages_allocated;
74 * The global memory commitment made in the system can be a metric
75 * that can be used to drive ballooning decisions when Linux is hosted
76 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
77 * balancing memory across competing virtual machines that are hosted.
78 * Several metrics drive this policy engine including the guest reported
79 * memory commitment.
81 unsigned long vm_memory_committed(void)
83 return percpu_counter_read_positive(&vm_committed_as);
86 EXPORT_SYMBOL_GPL(vm_memory_committed);
88 EXPORT_SYMBOL(mem_map);
90 /* list of mapped, potentially shareable regions */
91 static struct kmem_cache *vm_region_jar;
92 struct rb_root nommu_region_tree = RB_ROOT;
93 DECLARE_RWSEM(nommu_region_sem);
95 const struct vm_operations_struct generic_file_vm_ops = {
99 * Return the total memory allocated for this pointer, not
100 * just what the caller asked for.
102 * Doesn't have to be accurate, i.e. may have races.
104 unsigned int kobjsize(const void *objp)
106 struct page *page;
109 * If the object we have should not have ksize performed on it,
110 * return size of 0
112 if (!objp || !virt_addr_valid(objp))
113 return 0;
115 page = virt_to_head_page(objp);
118 * If the allocator sets PageSlab, we know the pointer came from
119 * kmalloc().
121 if (PageSlab(page))
122 return ksize(objp);
125 * If it's not a compound page, see if we have a matching VMA
126 * region. This test is intentionally done in reverse order,
127 * so if there's no VMA, we still fall through and hand back
128 * PAGE_SIZE for 0-order pages.
130 if (!PageCompound(page)) {
131 struct vm_area_struct *vma;
133 vma = find_vma(current->mm, (unsigned long)objp);
134 if (vma)
135 return vma->vm_end - vma->vm_start;
139 * The ksize() function is only guaranteed to work for pointers
140 * returned by kmalloc(). So handle arbitrary pointers here.
142 return PAGE_SIZE << compound_order(page);
145 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
146 unsigned long start, unsigned long nr_pages,
147 unsigned int foll_flags, struct page **pages,
148 struct vm_area_struct **vmas, int *nonblocking)
150 struct vm_area_struct *vma;
151 unsigned long vm_flags;
152 int i;
154 /* calculate required read or write permissions.
155 * If FOLL_FORCE is set, we only require the "MAY" flags.
157 vm_flags = (foll_flags & FOLL_WRITE) ?
158 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
159 vm_flags &= (foll_flags & FOLL_FORCE) ?
160 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
162 for (i = 0; i < nr_pages; i++) {
163 vma = find_vma(mm, start);
164 if (!vma)
165 goto finish_or_fault;
167 /* protect what we can, including chardevs */
168 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
169 !(vm_flags & vma->vm_flags))
170 goto finish_or_fault;
172 if (pages) {
173 pages[i] = virt_to_page(start);
174 if (pages[i])
175 page_cache_get(pages[i]);
177 if (vmas)
178 vmas[i] = vma;
179 start = (start + PAGE_SIZE) & PAGE_MASK;
182 return i;
184 finish_or_fault:
185 return i ? : -EFAULT;
189 * get a list of pages in an address range belonging to the specified process
190 * and indicate the VMA that covers each page
191 * - this is potentially dodgy as we may end incrementing the page count of a
192 * slab page or a secondary page from a compound page
193 * - don't permit access to VMAs that don't support it, such as I/O mappings
195 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
196 unsigned long start, unsigned long nr_pages,
197 int write, int force, struct page **pages,
198 struct vm_area_struct **vmas)
200 int flags = 0;
202 if (write)
203 flags |= FOLL_WRITE;
204 if (force)
205 flags |= FOLL_FORCE;
207 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
208 NULL);
210 EXPORT_SYMBOL(get_user_pages);
213 * follow_pfn - look up PFN at a user virtual address
214 * @vma: memory mapping
215 * @address: user virtual address
216 * @pfn: location to store found PFN
218 * Only IO mappings and raw PFN mappings are allowed.
220 * Returns zero and the pfn at @pfn on success, -ve otherwise.
222 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
223 unsigned long *pfn)
225 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
226 return -EINVAL;
228 *pfn = address >> PAGE_SHIFT;
229 return 0;
231 EXPORT_SYMBOL(follow_pfn);
233 LIST_HEAD(vmap_area_list);
235 void vfree(const void *addr)
237 kfree(addr);
239 EXPORT_SYMBOL(vfree);
241 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
244 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
245 * returns only a logical address.
247 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
249 EXPORT_SYMBOL(__vmalloc);
251 void *vmalloc_user(unsigned long size)
253 void *ret;
255 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
256 PAGE_KERNEL);
257 if (ret) {
258 struct vm_area_struct *vma;
260 down_write(&current->mm->mmap_sem);
261 vma = find_vma(current->mm, (unsigned long)ret);
262 if (vma)
263 vma->vm_flags |= VM_USERMAP;
264 up_write(&current->mm->mmap_sem);
267 return ret;
269 EXPORT_SYMBOL(vmalloc_user);
271 struct page *vmalloc_to_page(const void *addr)
273 return virt_to_page(addr);
275 EXPORT_SYMBOL(vmalloc_to_page);
277 unsigned long vmalloc_to_pfn(const void *addr)
279 return page_to_pfn(virt_to_page(addr));
281 EXPORT_SYMBOL(vmalloc_to_pfn);
283 long vread(char *buf, char *addr, unsigned long count)
285 /* Don't allow overflow */
286 if ((unsigned long) buf + count < count)
287 count = -(unsigned long) buf;
289 memcpy(buf, addr, count);
290 return count;
293 long vwrite(char *buf, char *addr, unsigned long count)
295 /* Don't allow overflow */
296 if ((unsigned long) addr + count < count)
297 count = -(unsigned long) addr;
299 memcpy(addr, buf, count);
300 return(count);
304 * vmalloc - allocate virtually continguos memory
306 * @size: allocation size
308 * Allocate enough pages to cover @size from the page level
309 * allocator and map them into continguos kernel virtual space.
311 * For tight control over page level allocator and protection flags
312 * use __vmalloc() instead.
314 void *vmalloc(unsigned long size)
316 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
318 EXPORT_SYMBOL(vmalloc);
321 * vzalloc - allocate virtually continguos memory with zero fill
323 * @size: allocation size
325 * Allocate enough pages to cover @size from the page level
326 * allocator and map them into continguos kernel virtual space.
327 * The memory allocated is set to zero.
329 * For tight control over page level allocator and protection flags
330 * use __vmalloc() instead.
332 void *vzalloc(unsigned long size)
334 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
335 PAGE_KERNEL);
337 EXPORT_SYMBOL(vzalloc);
340 * vmalloc_node - allocate memory on a specific node
341 * @size: allocation size
342 * @node: numa node
344 * Allocate enough pages to cover @size from the page level
345 * allocator and map them into contiguous kernel virtual space.
347 * For tight control over page level allocator and protection flags
348 * use __vmalloc() instead.
350 void *vmalloc_node(unsigned long size, int node)
352 return vmalloc(size);
354 EXPORT_SYMBOL(vmalloc_node);
357 * vzalloc_node - allocate memory on a specific node with zero fill
358 * @size: allocation size
359 * @node: numa node
361 * Allocate enough pages to cover @size from the page level
362 * allocator and map them into contiguous kernel virtual space.
363 * The memory allocated is set to zero.
365 * For tight control over page level allocator and protection flags
366 * use __vmalloc() instead.
368 void *vzalloc_node(unsigned long size, int node)
370 return vzalloc(size);
372 EXPORT_SYMBOL(vzalloc_node);
374 #ifndef PAGE_KERNEL_EXEC
375 # define PAGE_KERNEL_EXEC PAGE_KERNEL
376 #endif
379 * vmalloc_exec - allocate virtually contiguous, executable memory
380 * @size: allocation size
382 * Kernel-internal function to allocate enough pages to cover @size
383 * the page level allocator and map them into contiguous and
384 * executable kernel virtual space.
386 * For tight control over page level allocator and protection flags
387 * use __vmalloc() instead.
390 void *vmalloc_exec(unsigned long size)
392 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
396 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
397 * @size: allocation size
399 * Allocate enough 32bit PA addressable pages to cover @size from the
400 * page level allocator and map them into continguos kernel virtual space.
402 void *vmalloc_32(unsigned long size)
404 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
406 EXPORT_SYMBOL(vmalloc_32);
409 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
410 * @size: allocation size
412 * The resulting memory area is 32bit addressable and zeroed so it can be
413 * mapped to userspace without leaking data.
415 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
416 * remap_vmalloc_range() are permissible.
418 void *vmalloc_32_user(unsigned long size)
421 * We'll have to sort out the ZONE_DMA bits for 64-bit,
422 * but for now this can simply use vmalloc_user() directly.
424 return vmalloc_user(size);
426 EXPORT_SYMBOL(vmalloc_32_user);
428 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
430 BUG();
431 return NULL;
433 EXPORT_SYMBOL(vmap);
435 void vunmap(const void *addr)
437 BUG();
439 EXPORT_SYMBOL(vunmap);
441 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
443 BUG();
444 return NULL;
446 EXPORT_SYMBOL(vm_map_ram);
448 void vm_unmap_ram(const void *mem, unsigned int count)
450 BUG();
452 EXPORT_SYMBOL(vm_unmap_ram);
454 void vm_unmap_aliases(void)
457 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
460 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
461 * have one.
463 void __attribute__((weak)) vmalloc_sync_all(void)
468 * alloc_vm_area - allocate a range of kernel address space
469 * @size: size of the area
471 * Returns: NULL on failure, vm_struct on success
473 * This function reserves a range of kernel address space, and
474 * allocates pagetables to map that range. No actual mappings
475 * are created. If the kernel address space is not shared
476 * between processes, it syncs the pagetable across all
477 * processes.
479 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
481 BUG();
482 return NULL;
484 EXPORT_SYMBOL_GPL(alloc_vm_area);
486 void free_vm_area(struct vm_struct *area)
488 BUG();
490 EXPORT_SYMBOL_GPL(free_vm_area);
492 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
493 struct page *page)
495 return -EINVAL;
497 EXPORT_SYMBOL(vm_insert_page);
500 * sys_brk() for the most part doesn't need the global kernel
501 * lock, except when an application is doing something nasty
502 * like trying to un-brk an area that has already been mapped
503 * to a regular file. in this case, the unmapping will need
504 * to invoke file system routines that need the global lock.
506 SYSCALL_DEFINE1(brk, unsigned long, brk)
508 struct mm_struct *mm = current->mm;
510 if (brk < mm->start_brk || brk > mm->context.end_brk)
511 return mm->brk;
513 if (mm->brk == brk)
514 return mm->brk;
517 * Always allow shrinking brk
519 if (brk <= mm->brk) {
520 mm->brk = brk;
521 return brk;
525 * Ok, looks good - let it rip.
527 flush_icache_range(mm->brk, brk);
528 return mm->brk = brk;
532 * initialise the VMA and region record slabs
534 void __init mmap_init(void)
536 int ret;
538 ret = percpu_counter_init(&vm_committed_as, 0);
539 VM_BUG_ON(ret);
540 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
544 * validate the region tree
545 * - the caller must hold the region lock
547 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
548 static noinline void validate_nommu_regions(void)
550 struct vm_region *region, *last;
551 struct rb_node *p, *lastp;
553 lastp = rb_first(&nommu_region_tree);
554 if (!lastp)
555 return;
557 last = rb_entry(lastp, struct vm_region, vm_rb);
558 BUG_ON(unlikely(last->vm_end <= last->vm_start));
559 BUG_ON(unlikely(last->vm_top < last->vm_end));
561 while ((p = rb_next(lastp))) {
562 region = rb_entry(p, struct vm_region, vm_rb);
563 last = rb_entry(lastp, struct vm_region, vm_rb);
565 BUG_ON(unlikely(region->vm_end <= region->vm_start));
566 BUG_ON(unlikely(region->vm_top < region->vm_end));
567 BUG_ON(unlikely(region->vm_start < last->vm_top));
569 lastp = p;
572 #else
573 static void validate_nommu_regions(void)
576 #endif
579 * add a region into the global tree
581 static void add_nommu_region(struct vm_region *region)
583 struct vm_region *pregion;
584 struct rb_node **p, *parent;
586 validate_nommu_regions();
588 parent = NULL;
589 p = &nommu_region_tree.rb_node;
590 while (*p) {
591 parent = *p;
592 pregion = rb_entry(parent, struct vm_region, vm_rb);
593 if (region->vm_start < pregion->vm_start)
594 p = &(*p)->rb_left;
595 else if (region->vm_start > pregion->vm_start)
596 p = &(*p)->rb_right;
597 else if (pregion == region)
598 return;
599 else
600 BUG();
603 rb_link_node(&region->vm_rb, parent, p);
604 rb_insert_color(&region->vm_rb, &nommu_region_tree);
606 validate_nommu_regions();
610 * delete a region from the global tree
612 static void delete_nommu_region(struct vm_region *region)
614 BUG_ON(!nommu_region_tree.rb_node);
616 validate_nommu_regions();
617 rb_erase(&region->vm_rb, &nommu_region_tree);
618 validate_nommu_regions();
622 * free a contiguous series of pages
624 static void free_page_series(unsigned long from, unsigned long to)
626 for (; from < to; from += PAGE_SIZE) {
627 struct page *page = virt_to_page(from);
629 kdebug("- free %lx", from);
630 atomic_long_dec(&mmap_pages_allocated);
631 if (page_count(page) != 1)
632 kdebug("free page %p: refcount not one: %d",
633 page, page_count(page));
634 put_page(page);
639 * release a reference to a region
640 * - the caller must hold the region semaphore for writing, which this releases
641 * - the region may not have been added to the tree yet, in which case vm_top
642 * will equal vm_start
644 static void __put_nommu_region(struct vm_region *region)
645 __releases(nommu_region_sem)
647 kenter("%p{%d}", region, region->vm_usage);
649 BUG_ON(!nommu_region_tree.rb_node);
651 if (--region->vm_usage == 0) {
652 if (region->vm_top > region->vm_start)
653 delete_nommu_region(region);
654 up_write(&nommu_region_sem);
656 if (region->vm_file)
657 fput(region->vm_file);
659 /* IO memory and memory shared directly out of the pagecache
660 * from ramfs/tmpfs mustn't be released here */
661 if (region->vm_flags & VM_MAPPED_COPY) {
662 kdebug("free series");
663 free_page_series(region->vm_start, region->vm_top);
665 kmem_cache_free(vm_region_jar, region);
666 } else {
667 up_write(&nommu_region_sem);
672 * release a reference to a region
674 static void put_nommu_region(struct vm_region *region)
676 down_write(&nommu_region_sem);
677 __put_nommu_region(region);
681 * update protection on a vma
683 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
685 #ifdef CONFIG_MPU
686 struct mm_struct *mm = vma->vm_mm;
687 long start = vma->vm_start & PAGE_MASK;
688 while (start < vma->vm_end) {
689 protect_page(mm, start, flags);
690 start += PAGE_SIZE;
692 update_protections(mm);
693 #endif
697 * add a VMA into a process's mm_struct in the appropriate place in the list
698 * and tree and add to the address space's page tree also if not an anonymous
699 * page
700 * - should be called with mm->mmap_sem held writelocked
702 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
704 struct vm_area_struct *pvma, *prev;
705 struct address_space *mapping;
706 struct rb_node **p, *parent, *rb_prev;
708 kenter(",%p", vma);
710 BUG_ON(!vma->vm_region);
712 mm->map_count++;
713 vma->vm_mm = mm;
715 protect_vma(vma, vma->vm_flags);
717 /* add the VMA to the mapping */
718 if (vma->vm_file) {
719 mapping = vma->vm_file->f_mapping;
721 mutex_lock(&mapping->i_mmap_mutex);
722 flush_dcache_mmap_lock(mapping);
723 vma_interval_tree_insert(vma, &mapping->i_mmap);
724 flush_dcache_mmap_unlock(mapping);
725 mutex_unlock(&mapping->i_mmap_mutex);
728 /* add the VMA to the tree */
729 parent = rb_prev = NULL;
730 p = &mm->mm_rb.rb_node;
731 while (*p) {
732 parent = *p;
733 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
735 /* sort by: start addr, end addr, VMA struct addr in that order
736 * (the latter is necessary as we may get identical VMAs) */
737 if (vma->vm_start < pvma->vm_start)
738 p = &(*p)->rb_left;
739 else if (vma->vm_start > pvma->vm_start) {
740 rb_prev = parent;
741 p = &(*p)->rb_right;
742 } else if (vma->vm_end < pvma->vm_end)
743 p = &(*p)->rb_left;
744 else if (vma->vm_end > pvma->vm_end) {
745 rb_prev = parent;
746 p = &(*p)->rb_right;
747 } else if (vma < pvma)
748 p = &(*p)->rb_left;
749 else if (vma > pvma) {
750 rb_prev = parent;
751 p = &(*p)->rb_right;
752 } else
753 BUG();
756 rb_link_node(&vma->vm_rb, parent, p);
757 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
759 /* add VMA to the VMA list also */
760 prev = NULL;
761 if (rb_prev)
762 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
764 __vma_link_list(mm, vma, prev, parent);
768 * delete a VMA from its owning mm_struct and address space
770 static void delete_vma_from_mm(struct vm_area_struct *vma)
772 int i;
773 struct address_space *mapping;
774 struct mm_struct *mm = vma->vm_mm;
775 struct task_struct *curr = current;
777 kenter("%p", vma);
779 protect_vma(vma, 0);
781 mm->map_count--;
782 for (i = 0; i < VMACACHE_SIZE; i++) {
783 /* if the vma is cached, invalidate the entire cache */
784 if (curr->vmacache[i] == vma) {
785 vmacache_invalidate(curr->mm);
786 break;
790 /* remove the VMA from the mapping */
791 if (vma->vm_file) {
792 mapping = vma->vm_file->f_mapping;
794 mutex_lock(&mapping->i_mmap_mutex);
795 flush_dcache_mmap_lock(mapping);
796 vma_interval_tree_remove(vma, &mapping->i_mmap);
797 flush_dcache_mmap_unlock(mapping);
798 mutex_unlock(&mapping->i_mmap_mutex);
801 /* remove from the MM's tree and list */
802 rb_erase(&vma->vm_rb, &mm->mm_rb);
804 if (vma->vm_prev)
805 vma->vm_prev->vm_next = vma->vm_next;
806 else
807 mm->mmap = vma->vm_next;
809 if (vma->vm_next)
810 vma->vm_next->vm_prev = vma->vm_prev;
814 * destroy a VMA record
816 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
818 kenter("%p", vma);
819 if (vma->vm_ops && vma->vm_ops->close)
820 vma->vm_ops->close(vma);
821 if (vma->vm_file)
822 fput(vma->vm_file);
823 put_nommu_region(vma->vm_region);
824 kmem_cache_free(vm_area_cachep, vma);
828 * look up the first VMA in which addr resides, NULL if none
829 * - should be called with mm->mmap_sem at least held readlocked
831 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
833 struct vm_area_struct *vma;
835 /* check the cache first */
836 vma = vmacache_find(mm, addr);
837 if (likely(vma))
838 return vma;
840 /* trawl the list (there may be multiple mappings in which addr
841 * resides) */
842 for (vma = mm->mmap; vma; vma = vma->vm_next) {
843 if (vma->vm_start > addr)
844 return NULL;
845 if (vma->vm_end > addr) {
846 vmacache_update(addr, vma);
847 return vma;
851 return NULL;
853 EXPORT_SYMBOL(find_vma);
856 * find a VMA
857 * - we don't extend stack VMAs under NOMMU conditions
859 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
861 return find_vma(mm, addr);
865 * expand a stack to a given address
866 * - not supported under NOMMU conditions
868 int expand_stack(struct vm_area_struct *vma, unsigned long address)
870 return -ENOMEM;
874 * look up the first VMA exactly that exactly matches addr
875 * - should be called with mm->mmap_sem at least held readlocked
877 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
878 unsigned long addr,
879 unsigned long len)
881 struct vm_area_struct *vma;
882 unsigned long end = addr + len;
884 /* check the cache first */
885 vma = vmacache_find_exact(mm, addr, end);
886 if (vma)
887 return vma;
889 /* trawl the list (there may be multiple mappings in which addr
890 * resides) */
891 for (vma = mm->mmap; vma; vma = vma->vm_next) {
892 if (vma->vm_start < addr)
893 continue;
894 if (vma->vm_start > addr)
895 return NULL;
896 if (vma->vm_end == end) {
897 vmacache_update(addr, vma);
898 return vma;
902 return NULL;
906 * determine whether a mapping should be permitted and, if so, what sort of
907 * mapping we're capable of supporting
909 static int validate_mmap_request(struct file *file,
910 unsigned long addr,
911 unsigned long len,
912 unsigned long prot,
913 unsigned long flags,
914 unsigned long pgoff,
915 unsigned long *_capabilities)
917 unsigned long capabilities, rlen;
918 int ret;
920 /* do the simple checks first */
921 if (flags & MAP_FIXED) {
922 printk(KERN_DEBUG
923 "%d: Can't do fixed-address/overlay mmap of RAM\n",
924 current->pid);
925 return -EINVAL;
928 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
929 (flags & MAP_TYPE) != MAP_SHARED)
930 return -EINVAL;
932 if (!len)
933 return -EINVAL;
935 /* Careful about overflows.. */
936 rlen = PAGE_ALIGN(len);
937 if (!rlen || rlen > TASK_SIZE)
938 return -ENOMEM;
940 /* offset overflow? */
941 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
942 return -EOVERFLOW;
944 if (file) {
945 /* validate file mapping requests */
946 struct address_space *mapping;
948 /* files must support mmap */
949 if (!file->f_op->mmap)
950 return -ENODEV;
952 /* work out if what we've got could possibly be shared
953 * - we support chardevs that provide their own "memory"
954 * - we support files/blockdevs that are memory backed
956 mapping = file->f_mapping;
957 if (!mapping)
958 mapping = file_inode(file)->i_mapping;
960 capabilities = 0;
961 if (mapping && mapping->backing_dev_info)
962 capabilities = mapping->backing_dev_info->capabilities;
964 if (!capabilities) {
965 /* no explicit capabilities set, so assume some
966 * defaults */
967 switch (file_inode(file)->i_mode & S_IFMT) {
968 case S_IFREG:
969 case S_IFBLK:
970 capabilities = BDI_CAP_MAP_COPY;
971 break;
973 case S_IFCHR:
974 capabilities =
975 BDI_CAP_MAP_DIRECT |
976 BDI_CAP_READ_MAP |
977 BDI_CAP_WRITE_MAP;
978 break;
980 default:
981 return -EINVAL;
985 /* eliminate any capabilities that we can't support on this
986 * device */
987 if (!file->f_op->get_unmapped_area)
988 capabilities &= ~BDI_CAP_MAP_DIRECT;
989 if (!file->f_op->read)
990 capabilities &= ~BDI_CAP_MAP_COPY;
992 /* The file shall have been opened with read permission. */
993 if (!(file->f_mode & FMODE_READ))
994 return -EACCES;
996 if (flags & MAP_SHARED) {
997 /* do checks for writing, appending and locking */
998 if ((prot & PROT_WRITE) &&
999 !(file->f_mode & FMODE_WRITE))
1000 return -EACCES;
1002 if (IS_APPEND(file_inode(file)) &&
1003 (file->f_mode & FMODE_WRITE))
1004 return -EACCES;
1006 if (locks_verify_locked(file_inode(file)))
1007 return -EAGAIN;
1009 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1010 return -ENODEV;
1012 /* we mustn't privatise shared mappings */
1013 capabilities &= ~BDI_CAP_MAP_COPY;
1015 else {
1016 /* we're going to read the file into private memory we
1017 * allocate */
1018 if (!(capabilities & BDI_CAP_MAP_COPY))
1019 return -ENODEV;
1021 /* we don't permit a private writable mapping to be
1022 * shared with the backing device */
1023 if (prot & PROT_WRITE)
1024 capabilities &= ~BDI_CAP_MAP_DIRECT;
1027 if (capabilities & BDI_CAP_MAP_DIRECT) {
1028 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) ||
1029 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1030 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP))
1032 capabilities &= ~BDI_CAP_MAP_DIRECT;
1033 if (flags & MAP_SHARED) {
1034 printk(KERN_WARNING
1035 "MAP_SHARED not completely supported on !MMU\n");
1036 return -EINVAL;
1041 /* handle executable mappings and implied executable
1042 * mappings */
1043 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1044 if (prot & PROT_EXEC)
1045 return -EPERM;
1047 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1048 /* handle implication of PROT_EXEC by PROT_READ */
1049 if (current->personality & READ_IMPLIES_EXEC) {
1050 if (capabilities & BDI_CAP_EXEC_MAP)
1051 prot |= PROT_EXEC;
1054 else if ((prot & PROT_READ) &&
1055 (prot & PROT_EXEC) &&
1056 !(capabilities & BDI_CAP_EXEC_MAP)
1058 /* backing file is not executable, try to copy */
1059 capabilities &= ~BDI_CAP_MAP_DIRECT;
1062 else {
1063 /* anonymous mappings are always memory backed and can be
1064 * privately mapped
1066 capabilities = BDI_CAP_MAP_COPY;
1068 /* handle PROT_EXEC implication by PROT_READ */
1069 if ((prot & PROT_READ) &&
1070 (current->personality & READ_IMPLIES_EXEC))
1071 prot |= PROT_EXEC;
1074 /* allow the security API to have its say */
1075 ret = security_mmap_addr(addr);
1076 if (ret < 0)
1077 return ret;
1079 /* looks okay */
1080 *_capabilities = capabilities;
1081 return 0;
1085 * we've determined that we can make the mapping, now translate what we
1086 * now know into VMA flags
1088 static unsigned long determine_vm_flags(struct file *file,
1089 unsigned long prot,
1090 unsigned long flags,
1091 unsigned long capabilities)
1093 unsigned long vm_flags;
1095 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1096 /* vm_flags |= mm->def_flags; */
1098 if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1099 /* attempt to share read-only copies of mapped file chunks */
1100 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1101 if (file && !(prot & PROT_WRITE))
1102 vm_flags |= VM_MAYSHARE;
1103 } else {
1104 /* overlay a shareable mapping on the backing device or inode
1105 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1106 * romfs/cramfs */
1107 vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1108 if (flags & MAP_SHARED)
1109 vm_flags |= VM_SHARED;
1112 /* refuse to let anyone share private mappings with this process if
1113 * it's being traced - otherwise breakpoints set in it may interfere
1114 * with another untraced process
1116 if ((flags & MAP_PRIVATE) && current->ptrace)
1117 vm_flags &= ~VM_MAYSHARE;
1119 return vm_flags;
1123 * set up a shared mapping on a file (the driver or filesystem provides and
1124 * pins the storage)
1126 static int do_mmap_shared_file(struct vm_area_struct *vma)
1128 int ret;
1130 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1131 if (ret == 0) {
1132 vma->vm_region->vm_top = vma->vm_region->vm_end;
1133 return 0;
1135 if (ret != -ENOSYS)
1136 return ret;
1138 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1139 * opposed to tried but failed) so we can only give a suitable error as
1140 * it's not possible to make a private copy if MAP_SHARED was given */
1141 return -ENODEV;
1145 * set up a private mapping or an anonymous shared mapping
1147 static int do_mmap_private(struct vm_area_struct *vma,
1148 struct vm_region *region,
1149 unsigned long len,
1150 unsigned long capabilities)
1152 struct page *pages;
1153 unsigned long total, point, n;
1154 void *base;
1155 int ret, order;
1157 /* invoke the file's mapping function so that it can keep track of
1158 * shared mappings on devices or memory
1159 * - VM_MAYSHARE will be set if it may attempt to share
1161 if (capabilities & BDI_CAP_MAP_DIRECT) {
1162 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1163 if (ret == 0) {
1164 /* shouldn't return success if we're not sharing */
1165 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1166 vma->vm_region->vm_top = vma->vm_region->vm_end;
1167 return 0;
1169 if (ret != -ENOSYS)
1170 return ret;
1172 /* getting an ENOSYS error indicates that direct mmap isn't
1173 * possible (as opposed to tried but failed) so we'll try to
1174 * make a private copy of the data and map that instead */
1178 /* allocate some memory to hold the mapping
1179 * - note that this may not return a page-aligned address if the object
1180 * we're allocating is smaller than a page
1182 order = get_order(len);
1183 kdebug("alloc order %d for %lx", order, len);
1185 pages = alloc_pages(GFP_KERNEL, order);
1186 if (!pages)
1187 goto enomem;
1189 total = 1 << order;
1190 atomic_long_add(total, &mmap_pages_allocated);
1192 point = len >> PAGE_SHIFT;
1194 /* we allocated a power-of-2 sized page set, so we may want to trim off
1195 * the excess */
1196 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1197 while (total > point) {
1198 order = ilog2(total - point);
1199 n = 1 << order;
1200 kdebug("shave %lu/%lu @%lu", n, total - point, total);
1201 atomic_long_sub(n, &mmap_pages_allocated);
1202 total -= n;
1203 set_page_refcounted(pages + total);
1204 __free_pages(pages + total, order);
1208 for (point = 1; point < total; point++)
1209 set_page_refcounted(&pages[point]);
1211 base = page_address(pages);
1212 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1213 region->vm_start = (unsigned long) base;
1214 region->vm_end = region->vm_start + len;
1215 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1217 vma->vm_start = region->vm_start;
1218 vma->vm_end = region->vm_start + len;
1220 if (vma->vm_file) {
1221 /* read the contents of a file into the copy */
1222 mm_segment_t old_fs;
1223 loff_t fpos;
1225 fpos = vma->vm_pgoff;
1226 fpos <<= PAGE_SHIFT;
1228 old_fs = get_fs();
1229 set_fs(KERNEL_DS);
1230 ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1231 set_fs(old_fs);
1233 if (ret < 0)
1234 goto error_free;
1236 /* clear the last little bit */
1237 if (ret < len)
1238 memset(base + ret, 0, len - ret);
1242 return 0;
1244 error_free:
1245 free_page_series(region->vm_start, region->vm_top);
1246 region->vm_start = vma->vm_start = 0;
1247 region->vm_end = vma->vm_end = 0;
1248 region->vm_top = 0;
1249 return ret;
1251 enomem:
1252 printk("Allocation of length %lu from process %d (%s) failed\n",
1253 len, current->pid, current->comm);
1254 show_free_areas(0);
1255 return -ENOMEM;
1259 * handle mapping creation for uClinux
1261 unsigned long do_mmap_pgoff(struct file *file,
1262 unsigned long addr,
1263 unsigned long len,
1264 unsigned long prot,
1265 unsigned long flags,
1266 unsigned long pgoff,
1267 unsigned long *populate)
1269 struct vm_area_struct *vma;
1270 struct vm_region *region;
1271 struct rb_node *rb;
1272 unsigned long capabilities, vm_flags, result;
1273 int ret;
1275 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1277 *populate = 0;
1279 /* decide whether we should attempt the mapping, and if so what sort of
1280 * mapping */
1281 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1282 &capabilities);
1283 if (ret < 0) {
1284 kleave(" = %d [val]", ret);
1285 return ret;
1288 /* we ignore the address hint */
1289 addr = 0;
1290 len = PAGE_ALIGN(len);
1292 /* we've determined that we can make the mapping, now translate what we
1293 * now know into VMA flags */
1294 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1296 /* we're going to need to record the mapping */
1297 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1298 if (!region)
1299 goto error_getting_region;
1301 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1302 if (!vma)
1303 goto error_getting_vma;
1305 region->vm_usage = 1;
1306 region->vm_flags = vm_flags;
1307 region->vm_pgoff = pgoff;
1309 INIT_LIST_HEAD(&vma->anon_vma_chain);
1310 vma->vm_flags = vm_flags;
1311 vma->vm_pgoff = pgoff;
1313 if (file) {
1314 region->vm_file = get_file(file);
1315 vma->vm_file = get_file(file);
1318 down_write(&nommu_region_sem);
1320 /* if we want to share, we need to check for regions created by other
1321 * mmap() calls that overlap with our proposed mapping
1322 * - we can only share with a superset match on most regular files
1323 * - shared mappings on character devices and memory backed files are
1324 * permitted to overlap inexactly as far as we are concerned for in
1325 * these cases, sharing is handled in the driver or filesystem rather
1326 * than here
1328 if (vm_flags & VM_MAYSHARE) {
1329 struct vm_region *pregion;
1330 unsigned long pglen, rpglen, pgend, rpgend, start;
1332 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1333 pgend = pgoff + pglen;
1335 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1336 pregion = rb_entry(rb, struct vm_region, vm_rb);
1338 if (!(pregion->vm_flags & VM_MAYSHARE))
1339 continue;
1341 /* search for overlapping mappings on the same file */
1342 if (file_inode(pregion->vm_file) !=
1343 file_inode(file))
1344 continue;
1346 if (pregion->vm_pgoff >= pgend)
1347 continue;
1349 rpglen = pregion->vm_end - pregion->vm_start;
1350 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1351 rpgend = pregion->vm_pgoff + rpglen;
1352 if (pgoff >= rpgend)
1353 continue;
1355 /* handle inexactly overlapping matches between
1356 * mappings */
1357 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1358 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1359 /* new mapping is not a subset of the region */
1360 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1361 goto sharing_violation;
1362 continue;
1365 /* we've found a region we can share */
1366 pregion->vm_usage++;
1367 vma->vm_region = pregion;
1368 start = pregion->vm_start;
1369 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1370 vma->vm_start = start;
1371 vma->vm_end = start + len;
1373 if (pregion->vm_flags & VM_MAPPED_COPY) {
1374 kdebug("share copy");
1375 vma->vm_flags |= VM_MAPPED_COPY;
1376 } else {
1377 kdebug("share mmap");
1378 ret = do_mmap_shared_file(vma);
1379 if (ret < 0) {
1380 vma->vm_region = NULL;
1381 vma->vm_start = 0;
1382 vma->vm_end = 0;
1383 pregion->vm_usage--;
1384 pregion = NULL;
1385 goto error_just_free;
1388 fput(region->vm_file);
1389 kmem_cache_free(vm_region_jar, region);
1390 region = pregion;
1391 result = start;
1392 goto share;
1395 /* obtain the address at which to make a shared mapping
1396 * - this is the hook for quasi-memory character devices to
1397 * tell us the location of a shared mapping
1399 if (capabilities & BDI_CAP_MAP_DIRECT) {
1400 addr = file->f_op->get_unmapped_area(file, addr, len,
1401 pgoff, flags);
1402 if (IS_ERR_VALUE(addr)) {
1403 ret = addr;
1404 if (ret != -ENOSYS)
1405 goto error_just_free;
1407 /* the driver refused to tell us where to site
1408 * the mapping so we'll have to attempt to copy
1409 * it */
1410 ret = -ENODEV;
1411 if (!(capabilities & BDI_CAP_MAP_COPY))
1412 goto error_just_free;
1414 capabilities &= ~BDI_CAP_MAP_DIRECT;
1415 } else {
1416 vma->vm_start = region->vm_start = addr;
1417 vma->vm_end = region->vm_end = addr + len;
1422 vma->vm_region = region;
1424 /* set up the mapping
1425 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1427 if (file && vma->vm_flags & VM_SHARED)
1428 ret = do_mmap_shared_file(vma);
1429 else
1430 ret = do_mmap_private(vma, region, len, capabilities);
1431 if (ret < 0)
1432 goto error_just_free;
1433 add_nommu_region(region);
1435 /* clear anonymous mappings that don't ask for uninitialized data */
1436 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1437 memset((void *)region->vm_start, 0,
1438 region->vm_end - region->vm_start);
1440 /* okay... we have a mapping; now we have to register it */
1441 result = vma->vm_start;
1443 current->mm->total_vm += len >> PAGE_SHIFT;
1445 share:
1446 add_vma_to_mm(current->mm, vma);
1448 /* we flush the region from the icache only when the first executable
1449 * mapping of it is made */
1450 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1451 flush_icache_range(region->vm_start, region->vm_end);
1452 region->vm_icache_flushed = true;
1455 up_write(&nommu_region_sem);
1457 kleave(" = %lx", result);
1458 return result;
1460 error_just_free:
1461 up_write(&nommu_region_sem);
1462 error:
1463 if (region->vm_file)
1464 fput(region->vm_file);
1465 kmem_cache_free(vm_region_jar, region);
1466 if (vma->vm_file)
1467 fput(vma->vm_file);
1468 kmem_cache_free(vm_area_cachep, vma);
1469 kleave(" = %d", ret);
1470 return ret;
1472 sharing_violation:
1473 up_write(&nommu_region_sem);
1474 printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1475 ret = -EINVAL;
1476 goto error;
1478 error_getting_vma:
1479 kmem_cache_free(vm_region_jar, region);
1480 printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1481 " from process %d failed\n",
1482 len, current->pid);
1483 show_free_areas(0);
1484 return -ENOMEM;
1486 error_getting_region:
1487 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1488 " from process %d failed\n",
1489 len, current->pid);
1490 show_free_areas(0);
1491 return -ENOMEM;
1494 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1495 unsigned long, prot, unsigned long, flags,
1496 unsigned long, fd, unsigned long, pgoff)
1498 struct file *file = NULL;
1499 unsigned long retval = -EBADF;
1501 audit_mmap_fd(fd, flags);
1502 if (!(flags & MAP_ANONYMOUS)) {
1503 file = fget(fd);
1504 if (!file)
1505 goto out;
1508 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1510 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1512 if (file)
1513 fput(file);
1514 out:
1515 return retval;
1518 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1519 struct mmap_arg_struct {
1520 unsigned long addr;
1521 unsigned long len;
1522 unsigned long prot;
1523 unsigned long flags;
1524 unsigned long fd;
1525 unsigned long offset;
1528 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1530 struct mmap_arg_struct a;
1532 if (copy_from_user(&a, arg, sizeof(a)))
1533 return -EFAULT;
1534 if (a.offset & ~PAGE_MASK)
1535 return -EINVAL;
1537 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1538 a.offset >> PAGE_SHIFT);
1540 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1543 * split a vma into two pieces at address 'addr', a new vma is allocated either
1544 * for the first part or the tail.
1546 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1547 unsigned long addr, int new_below)
1549 struct vm_area_struct *new;
1550 struct vm_region *region;
1551 unsigned long npages;
1553 kenter("");
1555 /* we're only permitted to split anonymous regions (these should have
1556 * only a single usage on the region) */
1557 if (vma->vm_file)
1558 return -ENOMEM;
1560 if (mm->map_count >= sysctl_max_map_count)
1561 return -ENOMEM;
1563 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1564 if (!region)
1565 return -ENOMEM;
1567 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1568 if (!new) {
1569 kmem_cache_free(vm_region_jar, region);
1570 return -ENOMEM;
1573 /* most fields are the same, copy all, and then fixup */
1574 *new = *vma;
1575 *region = *vma->vm_region;
1576 new->vm_region = region;
1578 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1580 if (new_below) {
1581 region->vm_top = region->vm_end = new->vm_end = addr;
1582 } else {
1583 region->vm_start = new->vm_start = addr;
1584 region->vm_pgoff = new->vm_pgoff += npages;
1587 if (new->vm_ops && new->vm_ops->open)
1588 new->vm_ops->open(new);
1590 delete_vma_from_mm(vma);
1591 down_write(&nommu_region_sem);
1592 delete_nommu_region(vma->vm_region);
1593 if (new_below) {
1594 vma->vm_region->vm_start = vma->vm_start = addr;
1595 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1596 } else {
1597 vma->vm_region->vm_end = vma->vm_end = addr;
1598 vma->vm_region->vm_top = addr;
1600 add_nommu_region(vma->vm_region);
1601 add_nommu_region(new->vm_region);
1602 up_write(&nommu_region_sem);
1603 add_vma_to_mm(mm, vma);
1604 add_vma_to_mm(mm, new);
1605 return 0;
1609 * shrink a VMA by removing the specified chunk from either the beginning or
1610 * the end
1612 static int shrink_vma(struct mm_struct *mm,
1613 struct vm_area_struct *vma,
1614 unsigned long from, unsigned long to)
1616 struct vm_region *region;
1618 kenter("");
1620 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1621 * and list */
1622 delete_vma_from_mm(vma);
1623 if (from > vma->vm_start)
1624 vma->vm_end = from;
1625 else
1626 vma->vm_start = to;
1627 add_vma_to_mm(mm, vma);
1629 /* cut the backing region down to size */
1630 region = vma->vm_region;
1631 BUG_ON(region->vm_usage != 1);
1633 down_write(&nommu_region_sem);
1634 delete_nommu_region(region);
1635 if (from > region->vm_start) {
1636 to = region->vm_top;
1637 region->vm_top = region->vm_end = from;
1638 } else {
1639 region->vm_start = to;
1641 add_nommu_region(region);
1642 up_write(&nommu_region_sem);
1644 free_page_series(from, to);
1645 return 0;
1649 * release a mapping
1650 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1651 * VMA, though it need not cover the whole VMA
1653 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1655 struct vm_area_struct *vma;
1656 unsigned long end;
1657 int ret;
1659 kenter(",%lx,%zx", start, len);
1661 len = PAGE_ALIGN(len);
1662 if (len == 0)
1663 return -EINVAL;
1665 end = start + len;
1667 /* find the first potentially overlapping VMA */
1668 vma = find_vma(mm, start);
1669 if (!vma) {
1670 static int limit = 0;
1671 if (limit < 5) {
1672 printk(KERN_WARNING
1673 "munmap of memory not mmapped by process %d"
1674 " (%s): 0x%lx-0x%lx\n",
1675 current->pid, current->comm,
1676 start, start + len - 1);
1677 limit++;
1679 return -EINVAL;
1682 /* we're allowed to split an anonymous VMA but not a file-backed one */
1683 if (vma->vm_file) {
1684 do {
1685 if (start > vma->vm_start) {
1686 kleave(" = -EINVAL [miss]");
1687 return -EINVAL;
1689 if (end == vma->vm_end)
1690 goto erase_whole_vma;
1691 vma = vma->vm_next;
1692 } while (vma);
1693 kleave(" = -EINVAL [split file]");
1694 return -EINVAL;
1695 } else {
1696 /* the chunk must be a subset of the VMA found */
1697 if (start == vma->vm_start && end == vma->vm_end)
1698 goto erase_whole_vma;
1699 if (start < vma->vm_start || end > vma->vm_end) {
1700 kleave(" = -EINVAL [superset]");
1701 return -EINVAL;
1703 if (start & ~PAGE_MASK) {
1704 kleave(" = -EINVAL [unaligned start]");
1705 return -EINVAL;
1707 if (end != vma->vm_end && end & ~PAGE_MASK) {
1708 kleave(" = -EINVAL [unaligned split]");
1709 return -EINVAL;
1711 if (start != vma->vm_start && end != vma->vm_end) {
1712 ret = split_vma(mm, vma, start, 1);
1713 if (ret < 0) {
1714 kleave(" = %d [split]", ret);
1715 return ret;
1718 return shrink_vma(mm, vma, start, end);
1721 erase_whole_vma:
1722 delete_vma_from_mm(vma);
1723 delete_vma(mm, vma);
1724 kleave(" = 0");
1725 return 0;
1727 EXPORT_SYMBOL(do_munmap);
1729 int vm_munmap(unsigned long addr, size_t len)
1731 struct mm_struct *mm = current->mm;
1732 int ret;
1734 down_write(&mm->mmap_sem);
1735 ret = do_munmap(mm, addr, len);
1736 up_write(&mm->mmap_sem);
1737 return ret;
1739 EXPORT_SYMBOL(vm_munmap);
1741 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1743 return vm_munmap(addr, len);
1747 * release all the mappings made in a process's VM space
1749 void exit_mmap(struct mm_struct *mm)
1751 struct vm_area_struct *vma;
1753 if (!mm)
1754 return;
1756 kenter("");
1758 mm->total_vm = 0;
1760 while ((vma = mm->mmap)) {
1761 mm->mmap = vma->vm_next;
1762 delete_vma_from_mm(vma);
1763 delete_vma(mm, vma);
1764 cond_resched();
1767 kleave("");
1770 unsigned long vm_brk(unsigned long addr, unsigned long len)
1772 return -ENOMEM;
1776 * expand (or shrink) an existing mapping, potentially moving it at the same
1777 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1779 * under NOMMU conditions, we only permit changing a mapping's size, and only
1780 * as long as it stays within the region allocated by do_mmap_private() and the
1781 * block is not shareable
1783 * MREMAP_FIXED is not supported under NOMMU conditions
1785 static unsigned long do_mremap(unsigned long addr,
1786 unsigned long old_len, unsigned long new_len,
1787 unsigned long flags, unsigned long new_addr)
1789 struct vm_area_struct *vma;
1791 /* insanity checks first */
1792 old_len = PAGE_ALIGN(old_len);
1793 new_len = PAGE_ALIGN(new_len);
1794 if (old_len == 0 || new_len == 0)
1795 return (unsigned long) -EINVAL;
1797 if (addr & ~PAGE_MASK)
1798 return -EINVAL;
1800 if (flags & MREMAP_FIXED && new_addr != addr)
1801 return (unsigned long) -EINVAL;
1803 vma = find_vma_exact(current->mm, addr, old_len);
1804 if (!vma)
1805 return (unsigned long) -EINVAL;
1807 if (vma->vm_end != vma->vm_start + old_len)
1808 return (unsigned long) -EFAULT;
1810 if (vma->vm_flags & VM_MAYSHARE)
1811 return (unsigned long) -EPERM;
1813 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1814 return (unsigned long) -ENOMEM;
1816 /* all checks complete - do it */
1817 vma->vm_end = vma->vm_start + new_len;
1818 return vma->vm_start;
1821 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1822 unsigned long, new_len, unsigned long, flags,
1823 unsigned long, new_addr)
1825 unsigned long ret;
1827 down_write(&current->mm->mmap_sem);
1828 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1829 up_write(&current->mm->mmap_sem);
1830 return ret;
1833 struct page *follow_page_mask(struct vm_area_struct *vma,
1834 unsigned long address, unsigned int flags,
1835 unsigned int *page_mask)
1837 *page_mask = 0;
1838 return NULL;
1841 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1842 unsigned long pfn, unsigned long size, pgprot_t prot)
1844 if (addr != (pfn << PAGE_SHIFT))
1845 return -EINVAL;
1847 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1848 return 0;
1850 EXPORT_SYMBOL(remap_pfn_range);
1852 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1854 unsigned long pfn = start >> PAGE_SHIFT;
1855 unsigned long vm_len = vma->vm_end - vma->vm_start;
1857 pfn += vma->vm_pgoff;
1858 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1860 EXPORT_SYMBOL(vm_iomap_memory);
1862 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1863 unsigned long pgoff)
1865 unsigned int size = vma->vm_end - vma->vm_start;
1867 if (!(vma->vm_flags & VM_USERMAP))
1868 return -EINVAL;
1870 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1871 vma->vm_end = vma->vm_start + size;
1873 return 0;
1875 EXPORT_SYMBOL(remap_vmalloc_range);
1877 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1878 unsigned long len, unsigned long pgoff, unsigned long flags)
1880 return -ENOMEM;
1883 void unmap_mapping_range(struct address_space *mapping,
1884 loff_t const holebegin, loff_t const holelen,
1885 int even_cows)
1888 EXPORT_SYMBOL(unmap_mapping_range);
1891 * Check that a process has enough memory to allocate a new virtual
1892 * mapping. 0 means there is enough memory for the allocation to
1893 * succeed and -ENOMEM implies there is not.
1895 * We currently support three overcommit policies, which are set via the
1896 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1898 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1899 * Additional code 2002 Jul 20 by Robert Love.
1901 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1903 * Note this is a helper function intended to be used by LSMs which
1904 * wish to use this logic.
1906 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1908 long free, allowed, reserve;
1910 vm_acct_memory(pages);
1913 * Sometimes we want to use more memory than we have
1915 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1916 return 0;
1918 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1919 free = global_page_state(NR_FREE_PAGES);
1920 free += global_page_state(NR_FILE_PAGES);
1923 * shmem pages shouldn't be counted as free in this
1924 * case, they can't be purged, only swapped out, and
1925 * that won't affect the overall amount of available
1926 * memory in the system.
1928 free -= global_page_state(NR_SHMEM);
1930 free += get_nr_swap_pages();
1933 * Any slabs which are created with the
1934 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1935 * which are reclaimable, under pressure. The dentry
1936 * cache and most inode caches should fall into this
1938 free += global_page_state(NR_SLAB_RECLAIMABLE);
1941 * Leave reserved pages. The pages are not for anonymous pages.
1943 if (free <= totalreserve_pages)
1944 goto error;
1945 else
1946 free -= totalreserve_pages;
1949 * Reserve some for root
1951 if (!cap_sys_admin)
1952 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1954 if (free > pages)
1955 return 0;
1957 goto error;
1960 allowed = vm_commit_limit();
1962 * Reserve some 3% for root
1964 if (!cap_sys_admin)
1965 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1968 * Don't let a single process grow so big a user can't recover
1970 if (mm) {
1971 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1972 allowed -= min_t(long, mm->total_vm / 32, reserve);
1975 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1976 return 0;
1978 error:
1979 vm_unacct_memory(pages);
1981 return -ENOMEM;
1984 int in_gate_area_no_mm(unsigned long addr)
1986 return 0;
1989 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1991 BUG();
1992 return 0;
1994 EXPORT_SYMBOL(filemap_fault);
1996 int generic_file_remap_pages(struct vm_area_struct *vma, unsigned long addr,
1997 unsigned long size, pgoff_t pgoff)
1999 BUG();
2000 return 0;
2002 EXPORT_SYMBOL(generic_file_remap_pages);
2004 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
2005 unsigned long addr, void *buf, int len, int write)
2007 struct vm_area_struct *vma;
2009 down_read(&mm->mmap_sem);
2011 /* the access must start within one of the target process's mappings */
2012 vma = find_vma(mm, addr);
2013 if (vma) {
2014 /* don't overrun this mapping */
2015 if (addr + len >= vma->vm_end)
2016 len = vma->vm_end - addr;
2018 /* only read or write mappings where it is permitted */
2019 if (write && vma->vm_flags & VM_MAYWRITE)
2020 copy_to_user_page(vma, NULL, addr,
2021 (void *) addr, buf, len);
2022 else if (!write && vma->vm_flags & VM_MAYREAD)
2023 copy_from_user_page(vma, NULL, addr,
2024 buf, (void *) addr, len);
2025 else
2026 len = 0;
2027 } else {
2028 len = 0;
2031 up_read(&mm->mmap_sem);
2033 return len;
2037 * @access_remote_vm - access another process' address space
2038 * @mm: the mm_struct of the target address space
2039 * @addr: start address to access
2040 * @buf: source or destination buffer
2041 * @len: number of bytes to transfer
2042 * @write: whether the access is a write
2044 * The caller must hold a reference on @mm.
2046 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2047 void *buf, int len, int write)
2049 return __access_remote_vm(NULL, mm, addr, buf, len, write);
2053 * Access another process' address space.
2054 * - source/target buffer must be kernel space
2056 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2058 struct mm_struct *mm;
2060 if (addr + len < addr)
2061 return 0;
2063 mm = get_task_mm(tsk);
2064 if (!mm)
2065 return 0;
2067 len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2069 mmput(mm);
2070 return len;
2074 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2075 * @inode: The inode to check
2076 * @size: The current filesize of the inode
2077 * @newsize: The proposed filesize of the inode
2079 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2080 * make sure that that any outstanding VMAs aren't broken and then shrink the
2081 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2082 * automatically grant mappings that are too large.
2084 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2085 size_t newsize)
2087 struct vm_area_struct *vma;
2088 struct vm_region *region;
2089 pgoff_t low, high;
2090 size_t r_size, r_top;
2092 low = newsize >> PAGE_SHIFT;
2093 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2095 down_write(&nommu_region_sem);
2096 mutex_lock(&inode->i_mapping->i_mmap_mutex);
2098 /* search for VMAs that fall within the dead zone */
2099 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2100 /* found one - only interested if it's shared out of the page
2101 * cache */
2102 if (vma->vm_flags & VM_SHARED) {
2103 mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2104 up_write(&nommu_region_sem);
2105 return -ETXTBSY; /* not quite true, but near enough */
2109 /* reduce any regions that overlap the dead zone - if in existence,
2110 * these will be pointed to by VMAs that don't overlap the dead zone
2112 * we don't check for any regions that start beyond the EOF as there
2113 * shouldn't be any
2115 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap,
2116 0, ULONG_MAX) {
2117 if (!(vma->vm_flags & VM_SHARED))
2118 continue;
2120 region = vma->vm_region;
2121 r_size = region->vm_top - region->vm_start;
2122 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2124 if (r_top > newsize) {
2125 region->vm_top -= r_top - newsize;
2126 if (region->vm_end > region->vm_top)
2127 region->vm_end = region->vm_top;
2131 mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2132 up_write(&nommu_region_sem);
2133 return 0;
2137 * Initialise sysctl_user_reserve_kbytes.
2139 * This is intended to prevent a user from starting a single memory hogging
2140 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2141 * mode.
2143 * The default value is min(3% of free memory, 128MB)
2144 * 128MB is enough to recover with sshd/login, bash, and top/kill.
2146 static int __meminit init_user_reserve(void)
2148 unsigned long free_kbytes;
2150 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2152 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
2153 return 0;
2155 module_init(init_user_reserve)
2158 * Initialise sysctl_admin_reserve_kbytes.
2160 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2161 * to log in and kill a memory hogging process.
2163 * Systems with more than 256MB will reserve 8MB, enough to recover
2164 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2165 * only reserve 3% of free pages by default.
2167 static int __meminit init_admin_reserve(void)
2169 unsigned long free_kbytes;
2171 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2173 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
2174 return 0;
2176 module_init(init_admin_reserve)