Lynx framebuffers multidomain implementation.
[linux/elbrus.git] / mm / page_alloc.c
blobee803149cc2133fe87a3db9a2200030d067df700
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page-debug-flags.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/locallock.h>
66 #include <asm/sections.h>
67 #include <asm/tlbflush.h>
68 #include <asm/div64.h>
69 #include "internal.h"
71 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
72 static DEFINE_MUTEX(pcp_batch_high_lock);
73 #define MIN_PERCPU_PAGELIST_FRACTION (8)
75 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
76 DEFINE_PER_CPU(int, numa_node);
77 EXPORT_PER_CPU_SYMBOL(numa_node);
78 #endif
80 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
82 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
83 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
84 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
85 * defined in <linux/topology.h>.
87 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
88 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
89 #endif
92 * Array of node states.
94 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
95 [N_POSSIBLE] = NODE_MASK_ALL,
96 [N_ONLINE] = { { [0] = 1UL } },
97 #ifndef CONFIG_NUMA
98 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
99 #ifdef CONFIG_HIGHMEM
100 [N_HIGH_MEMORY] = { { [0] = 1UL } },
101 #endif
102 #ifdef CONFIG_MOVABLE_NODE
103 [N_MEMORY] = { { [0] = 1UL } },
104 #endif
105 [N_CPU] = { { [0] = 1UL } },
106 #endif /* NUMA */
108 EXPORT_SYMBOL(node_states);
110 /* Protect totalram_pages and zone->managed_pages */
111 static DEFINE_SPINLOCK(managed_page_count_lock);
113 unsigned long totalram_pages __read_mostly;
114 unsigned long totalreal_mem __read_mostly = 0;
115 unsigned long totalreserve_pages __read_mostly;
117 * When calculating the number of globally allowed dirty pages, there
118 * is a certain number of per-zone reserves that should not be
119 * considered dirtyable memory. This is the sum of those reserves
120 * over all existing zones that contribute dirtyable memory.
122 unsigned long dirty_balance_reserve __read_mostly;
124 int percpu_pagelist_fraction;
125 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
127 #ifdef CONFIG_PM_SLEEP
129 * The following functions are used by the suspend/hibernate code to temporarily
130 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
131 * while devices are suspended. To avoid races with the suspend/hibernate code,
132 * they should always be called with pm_mutex held (gfp_allowed_mask also should
133 * only be modified with pm_mutex held, unless the suspend/hibernate code is
134 * guaranteed not to run in parallel with that modification).
137 static gfp_t saved_gfp_mask;
139 void pm_restore_gfp_mask(void)
141 WARN_ON(!mutex_is_locked(&pm_mutex));
142 if (saved_gfp_mask) {
143 gfp_allowed_mask = saved_gfp_mask;
144 saved_gfp_mask = 0;
148 void pm_restrict_gfp_mask(void)
150 WARN_ON(!mutex_is_locked(&pm_mutex));
151 WARN_ON(saved_gfp_mask);
152 saved_gfp_mask = gfp_allowed_mask;
153 gfp_allowed_mask &= ~GFP_IOFS;
156 bool pm_suspended_storage(void)
158 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
159 return false;
160 return true;
162 #endif /* CONFIG_PM_SLEEP */
164 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
165 int pageblock_order __read_mostly;
166 #endif
168 static void __free_pages_ok(struct page *page, unsigned int order);
171 * results with 256, 32 in the lowmem_reserve sysctl:
172 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
173 * 1G machine -> (16M dma, 784M normal, 224M high)
174 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
175 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
176 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
178 * TBD: should special case ZONE_DMA32 machines here - in those we normally
179 * don't need any ZONE_NORMAL reservation
181 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
182 #ifdef CONFIG_ZONE_DMA
183 256,
184 #endif
185 #ifdef CONFIG_ZONE_DMA32
186 256,
187 #endif
188 #ifdef CONFIG_HIGHMEM
190 #endif
194 EXPORT_SYMBOL(totalram_pages);
195 EXPORT_SYMBOL(totalreal_mem);
197 static char * const zone_names[MAX_NR_ZONES] = {
198 #ifdef CONFIG_ZONE_DMA
199 "DMA",
200 #endif
201 #ifdef CONFIG_ZONE_DMA32
202 "DMA32",
203 #endif
204 "Normal",
205 #ifdef CONFIG_HIGHMEM
206 "HighMem",
207 #endif
208 "Movable",
211 int min_free_kbytes = 1024;
212 int user_min_free_kbytes = -1;
214 static unsigned long __meminitdata nr_kernel_pages;
215 static unsigned long __meminitdata nr_all_pages;
216 static unsigned long __meminitdata dma_reserve;
218 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
219 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
220 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
221 static unsigned long __initdata required_kernelcore;
222 static unsigned long __initdata required_movablecore;
223 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
225 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
226 int movable_zone;
227 EXPORT_SYMBOL(movable_zone);
228 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
230 #if MAX_NUMNODES > 1
231 int nr_node_ids __read_mostly = MAX_NUMNODES;
232 int nr_online_nodes __read_mostly = 1;
233 EXPORT_SYMBOL(nr_node_ids);
234 EXPORT_SYMBOL(nr_online_nodes);
235 #endif
237 static DEFINE_LOCAL_IRQ_LOCK(pa_lock);
239 #ifdef CONFIG_PREEMPT_RT_BASE
240 # define cpu_lock_irqsave(cpu, flags) \
241 local_lock_irqsave_on(pa_lock, flags, cpu)
242 # define cpu_unlock_irqrestore(cpu, flags) \
243 local_unlock_irqrestore_on(pa_lock, flags, cpu)
244 #else
245 # define cpu_lock_irqsave(cpu, flags) local_irq_save(flags)
246 # define cpu_unlock_irqrestore(cpu, flags) local_irq_restore(flags)
247 #endif
249 int page_group_by_mobility_disabled __read_mostly;
251 void set_pageblock_migratetype(struct page *page, int migratetype)
253 if (unlikely(page_group_by_mobility_disabled &&
254 migratetype < MIGRATE_PCPTYPES))
255 migratetype = MIGRATE_UNMOVABLE;
257 set_pageblock_flags_group(page, (unsigned long)migratetype,
258 PB_migrate, PB_migrate_end);
261 bool oom_killer_disabled __read_mostly;
263 #ifdef CONFIG_DEBUG_VM
264 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
266 int ret = 0;
267 unsigned seq;
268 unsigned long pfn = page_to_pfn(page);
269 unsigned long sp, start_pfn;
271 do {
272 seq = zone_span_seqbegin(zone);
273 start_pfn = zone->zone_start_pfn;
274 sp = zone->spanned_pages;
275 if (!zone_spans_pfn(zone, pfn))
276 ret = 1;
277 } while (zone_span_seqretry(zone, seq));
279 if (ret)
280 pr_err("page %lu outside zone [ %lu - %lu ]\n",
281 pfn, start_pfn, start_pfn + sp);
283 return ret;
286 static int page_is_consistent(struct zone *zone, struct page *page)
288 if (!pfn_valid_within(page_to_pfn(page)))
289 return 0;
290 if (zone != page_zone(page))
291 return 0;
293 return 1;
296 * Temporary debugging check for pages not lying within a given zone.
298 static int bad_range(struct zone *zone, struct page *page)
300 if (page_outside_zone_boundaries(zone, page))
301 return 1;
302 if (!page_is_consistent(zone, page))
303 return 1;
305 return 0;
307 #else
308 static inline int bad_range(struct zone *zone, struct page *page)
310 return 0;
312 #endif
314 static void bad_page(struct page *page, char *reason, unsigned long bad_flags)
316 static unsigned long resume;
317 static unsigned long nr_shown;
318 static unsigned long nr_unshown;
320 /* Don't complain about poisoned pages */
321 if (PageHWPoison(page)) {
322 page_mapcount_reset(page); /* remove PageBuddy */
323 return;
327 * Allow a burst of 60 reports, then keep quiet for that minute;
328 * or allow a steady drip of one report per second.
330 if (nr_shown == 60) {
331 if (time_before(jiffies, resume)) {
332 nr_unshown++;
333 goto out;
335 if (nr_unshown) {
336 printk(KERN_ALERT
337 "BUG: Bad page state: %lu messages suppressed\n",
338 nr_unshown);
339 nr_unshown = 0;
341 nr_shown = 0;
343 if (nr_shown++ == 0)
344 resume = jiffies + 60 * HZ;
346 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
347 current->comm, page_to_pfn(page));
348 dump_page_badflags(page, reason, bad_flags);
350 print_modules();
351 dump_stack();
352 out:
353 /* Leave bad fields for debug, except PageBuddy could make trouble */
354 page_mapcount_reset(page); /* remove PageBuddy */
355 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
359 * Higher-order pages are called "compound pages". They are structured thusly:
361 * The first PAGE_SIZE page is called the "head page".
363 * The remaining PAGE_SIZE pages are called "tail pages".
365 * All pages have PG_compound set. All tail pages have their ->first_page
366 * pointing at the head page.
368 * The first tail page's ->lru.next holds the address of the compound page's
369 * put_page() function. Its ->lru.prev holds the order of allocation.
370 * This usage means that zero-order pages may not be compound.
373 static void free_compound_page(struct page *page)
375 __free_pages_ok(page, compound_order(page));
378 void prep_compound_page(struct page *page, unsigned long order)
380 int i;
381 int nr_pages = 1 << order;
383 set_compound_page_dtor(page, free_compound_page);
384 set_compound_order(page, order);
385 __SetPageHead(page);
386 for (i = 1; i < nr_pages; i++) {
387 struct page *p = page + i;
388 set_page_count(p, 0);
389 p->first_page = page;
390 /* Make sure p->first_page is always valid for PageTail() */
391 smp_wmb();
392 __SetPageTail(p);
396 /* update __split_huge_page_refcount if you change this function */
397 static int destroy_compound_page(struct page *page, unsigned long order)
399 int i;
400 int nr_pages = 1 << order;
401 int bad = 0;
403 if (unlikely(compound_order(page) != order)) {
404 bad_page(page, "wrong compound order", 0);
405 bad++;
408 __ClearPageHead(page);
410 for (i = 1; i < nr_pages; i++) {
411 struct page *p = page + i;
413 if (unlikely(!PageTail(p))) {
414 bad_page(page, "PageTail not set", 0);
415 bad++;
416 } else if (unlikely(p->first_page != page)) {
417 bad_page(page, "first_page not consistent", 0);
418 bad++;
420 __ClearPageTail(p);
423 return bad;
426 static inline void prep_zero_page(struct page *page, unsigned int order,
427 gfp_t gfp_flags)
429 int i;
432 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
433 * and __GFP_HIGHMEM from hard or soft interrupt context.
435 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
436 for (i = 0; i < (1 << order); i++)
437 clear_highpage(page + i);
440 #ifdef CONFIG_DEBUG_PAGEALLOC
441 unsigned int _debug_guardpage_minorder;
443 static int __init debug_guardpage_minorder_setup(char *buf)
445 unsigned long res;
447 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
448 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
449 return 0;
451 _debug_guardpage_minorder = res;
452 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
453 return 0;
455 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
457 static inline void set_page_guard_flag(struct page *page)
459 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
462 static inline void clear_page_guard_flag(struct page *page)
464 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
466 #else
467 static inline void set_page_guard_flag(struct page *page) { }
468 static inline void clear_page_guard_flag(struct page *page) { }
469 #endif
471 static inline void set_page_order(struct page *page, unsigned int order)
473 set_page_private(page, order);
474 __SetPageBuddy(page);
477 static inline void rmv_page_order(struct page *page)
479 __ClearPageBuddy(page);
480 set_page_private(page, 0);
484 * Locate the struct page for both the matching buddy in our
485 * pair (buddy1) and the combined O(n+1) page they form (page).
487 * 1) Any buddy B1 will have an order O twin B2 which satisfies
488 * the following equation:
489 * B2 = B1 ^ (1 << O)
490 * For example, if the starting buddy (buddy2) is #8 its order
491 * 1 buddy is #10:
492 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
494 * 2) Any buddy B will have an order O+1 parent P which
495 * satisfies the following equation:
496 * P = B & ~(1 << O)
498 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
500 static inline unsigned long
501 __find_buddy_index(unsigned long page_idx, unsigned int order)
503 return page_idx ^ (1 << order);
507 * This function checks whether a page is free && is the buddy
508 * we can do coalesce a page and its buddy if
509 * (a) the buddy is not in a hole &&
510 * (b) the buddy is in the buddy system &&
511 * (c) a page and its buddy have the same order &&
512 * (d) a page and its buddy are in the same zone.
514 * For recording whether a page is in the buddy system, we set ->_mapcount
515 * PAGE_BUDDY_MAPCOUNT_VALUE.
516 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
517 * serialized by zone->lock.
519 * For recording page's order, we use page_private(page).
521 static inline int page_is_buddy(struct page *page, struct page *buddy,
522 unsigned int order)
524 if (!pfn_valid_within(page_to_pfn(buddy)))
525 return 0;
527 if (page_is_guard(buddy) && page_order(buddy) == order) {
528 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
530 if (page_zone_id(page) != page_zone_id(buddy))
531 return 0;
533 return 1;
536 if (PageBuddy(buddy) && page_order(buddy) == order) {
537 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
540 * zone check is done late to avoid uselessly
541 * calculating zone/node ids for pages that could
542 * never merge.
544 if (page_zone_id(page) != page_zone_id(buddy))
545 return 0;
547 return 1;
549 return 0;
553 * Freeing function for a buddy system allocator.
555 * The concept of a buddy system is to maintain direct-mapped table
556 * (containing bit values) for memory blocks of various "orders".
557 * The bottom level table contains the map for the smallest allocatable
558 * units of memory (here, pages), and each level above it describes
559 * pairs of units from the levels below, hence, "buddies".
560 * At a high level, all that happens here is marking the table entry
561 * at the bottom level available, and propagating the changes upward
562 * as necessary, plus some accounting needed to play nicely with other
563 * parts of the VM system.
564 * At each level, we keep a list of pages, which are heads of continuous
565 * free pages of length of (1 << order) and marked with _mapcount
566 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
567 * field.
568 * So when we are allocating or freeing one, we can derive the state of the
569 * other. That is, if we allocate a small block, and both were
570 * free, the remainder of the region must be split into blocks.
571 * If a block is freed, and its buddy is also free, then this
572 * triggers coalescing into a block of larger size.
574 * -- nyc
577 static inline void __free_one_page(struct page *page,
578 unsigned long pfn,
579 struct zone *zone, unsigned int order,
580 int migratetype)
582 unsigned long page_idx;
583 unsigned long combined_idx;
584 unsigned long uninitialized_var(buddy_idx);
585 struct page *buddy;
587 VM_BUG_ON(!zone_is_initialized(zone));
589 if (unlikely(PageCompound(page)))
590 if (unlikely(destroy_compound_page(page, order)))
591 return;
593 VM_BUG_ON(migratetype == -1);
595 page_idx = pfn & ((1 << MAX_ORDER) - 1);
597 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
598 VM_BUG_ON_PAGE(bad_range(zone, page), page);
600 while (order < MAX_ORDER-1) {
601 buddy_idx = __find_buddy_index(page_idx, order);
602 buddy = page + (buddy_idx - page_idx);
603 if (!page_is_buddy(page, buddy, order))
604 break;
606 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
607 * merge with it and move up one order.
609 if (page_is_guard(buddy)) {
610 clear_page_guard_flag(buddy);
611 set_page_private(page, 0);
612 __mod_zone_freepage_state(zone, 1 << order,
613 migratetype);
614 } else {
615 list_del(&buddy->lru);
616 zone->free_area[order].nr_free--;
617 rmv_page_order(buddy);
619 combined_idx = buddy_idx & page_idx;
620 page = page + (combined_idx - page_idx);
621 page_idx = combined_idx;
622 order++;
624 set_page_order(page, order);
627 * If this is not the largest possible page, check if the buddy
628 * of the next-highest order is free. If it is, it's possible
629 * that pages are being freed that will coalesce soon. In case,
630 * that is happening, add the free page to the tail of the list
631 * so it's less likely to be used soon and more likely to be merged
632 * as a higher order page
634 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
635 struct page *higher_page, *higher_buddy;
636 combined_idx = buddy_idx & page_idx;
637 higher_page = page + (combined_idx - page_idx);
638 buddy_idx = __find_buddy_index(combined_idx, order + 1);
639 higher_buddy = higher_page + (buddy_idx - combined_idx);
640 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
641 list_add_tail(&page->lru,
642 &zone->free_area[order].free_list[migratetype]);
643 goto out;
647 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
648 out:
649 zone->free_area[order].nr_free++;
652 static inline int free_pages_check(struct page *page)
654 char *bad_reason = NULL;
655 unsigned long bad_flags = 0;
657 if (unlikely(page_mapcount(page)))
658 bad_reason = "nonzero mapcount";
659 if (unlikely(page->mapping != NULL))
660 bad_reason = "non-NULL mapping";
661 if (unlikely(atomic_read(&page->_count) != 0))
662 bad_reason = "nonzero _count";
663 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
664 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
665 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
667 if (unlikely(mem_cgroup_bad_page_check(page)))
668 bad_reason = "cgroup check failed";
669 if (unlikely(bad_reason)) {
670 bad_page(page, bad_reason, bad_flags);
671 return 1;
673 page_cpupid_reset_last(page);
674 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
675 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
676 return 0;
680 * Frees a number of pages which have been collected from the pcp lists.
681 * Assumes all pages on list are in same zone, and of same order.
682 * count is the number of pages to free.
684 * If the zone was previously in an "all pages pinned" state then look to
685 * see if this freeing clears that state.
687 * And clear the zone's pages_scanned counter, to hold off the "all pages are
688 * pinned" detection logic.
690 static void free_pcppages_bulk(struct zone *zone, int count,
691 struct list_head *list)
693 int to_free = count;
694 unsigned long nr_scanned;
695 unsigned long flags;
697 spin_lock_irqsave(&zone->lock, flags);
698 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
699 if (nr_scanned)
700 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
702 while (!list_empty(list)) {
703 struct page *page = list_first_entry(list, struct page, lru);
704 int mt; /* migratetype of the to-be-freed page */
706 /* must delete as __free_one_page list manipulates */
707 list_del(&page->lru);
709 mt = get_freepage_migratetype(page);
710 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
711 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
712 trace_mm_page_pcpu_drain(page, 0, mt);
713 if (likely(!is_migrate_isolate_page(page))) {
714 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
715 if (is_migrate_cma(mt))
716 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
719 to_free--;
721 WARN_ON(to_free != 0);
722 spin_unlock_irqrestore(&zone->lock, flags);
726 * Moves a number of pages from the PCP lists to free list which
727 * is freed outside of the locked region.
729 * Assumes all pages on list are in same zone, and of same order.
730 * count is the number of pages to free.
732 static void isolate_pcp_pages(int to_free, struct per_cpu_pages *src,
733 struct list_head *dst)
735 int migratetype = 0, batch_free = 0;
737 while (to_free) {
738 struct page *page;
739 struct list_head *list;
742 * Remove pages from lists in a round-robin fashion. A
743 * batch_free count is maintained that is incremented when an
744 * empty list is encountered. This is so more pages are freed
745 * off fuller lists instead of spinning excessively around empty
746 * lists
748 do {
749 batch_free++;
750 if (++migratetype == MIGRATE_PCPTYPES)
751 migratetype = 0;
752 list = &src->lists[migratetype];
753 } while (list_empty(list));
755 /* This is the only non-empty list. Free them all. */
756 if (batch_free == MIGRATE_PCPTYPES)
757 batch_free = to_free;
759 do {
760 page = list_last_entry(list, struct page, lru);
761 list_del(&page->lru);
762 list_add(&page->lru, dst);
763 } while (--to_free && --batch_free && !list_empty(list));
767 static void free_one_page(struct zone *zone,
768 struct page *page, unsigned long pfn,
769 unsigned int order,
770 int migratetype)
772 unsigned long nr_scanned;
773 unsigned long flags;
775 spin_lock_irqsave(&zone->lock, flags);
776 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
777 if (nr_scanned)
778 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
780 __free_one_page(page, pfn, zone, order, migratetype);
781 if (unlikely(!is_migrate_isolate(migratetype)))
782 __mod_zone_freepage_state(zone, 1 << order, migratetype);
783 spin_unlock_irqrestore(&zone->lock, flags);
786 static bool free_pages_prepare(struct page *page, unsigned int order)
788 int i;
789 int bad = 0;
791 trace_mm_page_free(page, order);
792 kmemcheck_free_shadow(page, order);
794 if (PageAnon(page))
795 page->mapping = NULL;
796 for (i = 0; i < (1 << order); i++)
797 bad += free_pages_check(page + i);
798 if (bad)
799 return false;
801 if (!PageHighMem(page)) {
802 debug_check_no_locks_freed(page_address(page),
803 PAGE_SIZE << order);
804 debug_check_no_obj_freed(page_address(page),
805 PAGE_SIZE << order);
807 arch_free_page(page, order);
808 kernel_map_pages(page, 1 << order, 0);
810 return true;
813 static void __free_pages_ok(struct page *page, unsigned int order)
815 unsigned long flags;
816 int migratetype;
817 unsigned long pfn = page_to_pfn(page);
819 if (!free_pages_prepare(page, order))
820 return;
822 migratetype = get_pfnblock_migratetype(page, pfn);
823 local_lock_irqsave(pa_lock, flags);
824 __count_vm_events(PGFREE, 1 << order);
825 set_freepage_migratetype(page, migratetype);
826 free_one_page(page_zone(page), page, pfn, order, migratetype);
827 local_unlock_irqrestore(pa_lock, flags);
830 void __init __free_pages_bootmem(struct page *page, unsigned int order)
832 unsigned int nr_pages = 1 << order;
833 struct page *p = page;
834 unsigned int loop;
836 prefetchw(p);
837 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
838 prefetchw(p + 1);
839 __ClearPageReserved(p);
840 set_page_count(p, 0);
842 __ClearPageReserved(p);
843 set_page_count(p, 0);
845 page_zone(page)->managed_pages += nr_pages;
846 set_page_refcounted(page);
847 __free_pages(page, order);
850 #ifdef CONFIG_CMA
851 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
852 void __init init_cma_reserved_pageblock(struct page *page)
854 unsigned i = pageblock_nr_pages;
855 struct page *p = page;
857 do {
858 __ClearPageReserved(p);
859 set_page_count(p, 0);
860 } while (++p, --i);
862 set_pageblock_migratetype(page, MIGRATE_CMA);
864 if (pageblock_order >= MAX_ORDER) {
865 i = pageblock_nr_pages;
866 p = page;
867 do {
868 set_page_refcounted(p);
869 __free_pages(p, MAX_ORDER - 1);
870 p += MAX_ORDER_NR_PAGES;
871 } while (i -= MAX_ORDER_NR_PAGES);
872 } else {
873 set_page_refcounted(page);
874 __free_pages(page, pageblock_order);
877 adjust_managed_page_count(page, pageblock_nr_pages);
879 #endif
882 * The order of subdivision here is critical for the IO subsystem.
883 * Please do not alter this order without good reasons and regression
884 * testing. Specifically, as large blocks of memory are subdivided,
885 * the order in which smaller blocks are delivered depends on the order
886 * they're subdivided in this function. This is the primary factor
887 * influencing the order in which pages are delivered to the IO
888 * subsystem according to empirical testing, and this is also justified
889 * by considering the behavior of a buddy system containing a single
890 * large block of memory acted on by a series of small allocations.
891 * This behavior is a critical factor in sglist merging's success.
893 * -- nyc
895 static inline void expand(struct zone *zone, struct page *page,
896 int low, int high, struct free_area *area,
897 int migratetype)
899 unsigned long size = 1 << high;
901 while (high > low) {
902 area--;
903 high--;
904 size >>= 1;
905 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
907 #ifdef CONFIG_DEBUG_PAGEALLOC
908 if (high < debug_guardpage_minorder()) {
910 * Mark as guard pages (or page), that will allow to
911 * merge back to allocator when buddy will be freed.
912 * Corresponding page table entries will not be touched,
913 * pages will stay not present in virtual address space
915 INIT_LIST_HEAD(&page[size].lru);
916 set_page_guard_flag(&page[size]);
917 set_page_private(&page[size], high);
918 /* Guard pages are not available for any usage */
919 __mod_zone_freepage_state(zone, -(1 << high),
920 migratetype);
921 continue;
923 #endif
924 list_add(&page[size].lru, &area->free_list[migratetype]);
925 area->nr_free++;
926 set_page_order(&page[size], high);
931 * This page is about to be returned from the page allocator
933 static inline int check_new_page(struct page *page)
935 char *bad_reason = NULL;
936 unsigned long bad_flags = 0;
938 if (unlikely(page_mapcount(page)))
939 bad_reason = "nonzero mapcount";
940 if (unlikely(page->mapping != NULL))
941 bad_reason = "non-NULL mapping";
942 if (unlikely(atomic_read(&page->_count) != 0))
943 bad_reason = "nonzero _count";
944 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
945 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
946 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
948 if (unlikely(mem_cgroup_bad_page_check(page)))
949 bad_reason = "cgroup check failed";
950 if (unlikely(bad_reason)) {
951 bad_page(page, bad_reason, bad_flags);
952 return 1;
954 return 0;
957 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
959 int i;
961 for (i = 0; i < (1 << order); i++) {
962 struct page *p = page + i;
963 if (unlikely(check_new_page(p)))
964 return 1;
967 set_page_private(page, 0);
968 set_page_refcounted(page);
970 arch_alloc_page(page, order);
971 kernel_map_pages(page, 1 << order, 1);
973 if (gfp_flags & __GFP_ZERO)
974 prep_zero_page(page, order, gfp_flags);
976 if (order && (gfp_flags & __GFP_COMP))
977 prep_compound_page(page, order);
979 return 0;
983 * Go through the free lists for the given migratetype and remove
984 * the smallest available page from the freelists
986 static inline
987 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
988 int migratetype)
990 unsigned int current_order;
991 struct free_area *area;
992 struct page *page;
994 /* Find a page of the appropriate size in the preferred list */
995 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
996 area = &(zone->free_area[current_order]);
997 if (list_empty(&area->free_list[migratetype]))
998 continue;
1000 page = list_entry(area->free_list[migratetype].next,
1001 struct page, lru);
1002 list_del(&page->lru);
1003 rmv_page_order(page);
1004 area->nr_free--;
1005 expand(zone, page, order, current_order, area, migratetype);
1006 set_freepage_migratetype(page, migratetype);
1007 return page;
1010 return NULL;
1015 * This array describes the order lists are fallen back to when
1016 * the free lists for the desirable migrate type are depleted
1018 static int fallbacks[MIGRATE_TYPES][4] = {
1019 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1020 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1021 #ifdef CONFIG_CMA
1022 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1023 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
1024 #else
1025 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1026 #endif
1027 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
1028 #ifdef CONFIG_MEMORY_ISOLATION
1029 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
1030 #endif
1034 * Move the free pages in a range to the free lists of the requested type.
1035 * Note that start_page and end_pages are not aligned on a pageblock
1036 * boundary. If alignment is required, use move_freepages_block()
1038 int move_freepages(struct zone *zone,
1039 struct page *start_page, struct page *end_page,
1040 int migratetype)
1042 struct page *page;
1043 unsigned long order;
1044 int pages_moved = 0;
1046 #ifndef CONFIG_HOLES_IN_ZONE
1048 * page_zone is not safe to call in this context when
1049 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1050 * anyway as we check zone boundaries in move_freepages_block().
1051 * Remove at a later date when no bug reports exist related to
1052 * grouping pages by mobility
1054 BUG_ON(page_zone(start_page) != page_zone(end_page));
1055 #endif
1057 for (page = start_page; page <= end_page;) {
1058 /* Make sure we are not inadvertently changing nodes */
1059 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1061 if (!pfn_valid_within(page_to_pfn(page))) {
1062 page++;
1063 continue;
1066 if (!PageBuddy(page)) {
1067 page++;
1068 continue;
1071 order = page_order(page);
1072 list_move(&page->lru,
1073 &zone->free_area[order].free_list[migratetype]);
1074 set_freepage_migratetype(page, migratetype);
1075 page += 1 << order;
1076 pages_moved += 1 << order;
1079 return pages_moved;
1082 int move_freepages_block(struct zone *zone, struct page *page,
1083 int migratetype)
1085 unsigned long start_pfn, end_pfn;
1086 struct page *start_page, *end_page;
1088 start_pfn = page_to_pfn(page);
1089 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1090 start_page = pfn_to_page(start_pfn);
1091 end_page = start_page + pageblock_nr_pages - 1;
1092 end_pfn = start_pfn + pageblock_nr_pages - 1;
1094 /* Do not cross zone boundaries */
1095 if (!zone_spans_pfn(zone, start_pfn))
1096 start_page = page;
1097 if (!zone_spans_pfn(zone, end_pfn))
1098 return 0;
1100 return move_freepages(zone, start_page, end_page, migratetype);
1103 static void change_pageblock_range(struct page *pageblock_page,
1104 int start_order, int migratetype)
1106 int nr_pageblocks = 1 << (start_order - pageblock_order);
1108 while (nr_pageblocks--) {
1109 set_pageblock_migratetype(pageblock_page, migratetype);
1110 pageblock_page += pageblock_nr_pages;
1115 * If breaking a large block of pages, move all free pages to the preferred
1116 * allocation list. If falling back for a reclaimable kernel allocation, be
1117 * more aggressive about taking ownership of free pages.
1119 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1120 * nor move CMA pages to different free lists. We don't want unmovable pages
1121 * to be allocated from MIGRATE_CMA areas.
1123 * Returns the allocation migratetype if free pages were stolen, or the
1124 * fallback migratetype if it was decided not to steal.
1126 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1127 int start_type, int fallback_type)
1129 int current_order = page_order(page);
1132 * When borrowing from MIGRATE_CMA, we need to release the excess
1133 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1134 * is set to CMA so it is returned to the correct freelist in case
1135 * the page ends up being not actually allocated from the pcp lists.
1137 if (is_migrate_cma(fallback_type))
1138 return fallback_type;
1140 /* Take ownership for orders >= pageblock_order */
1141 if (current_order >= pageblock_order) {
1142 change_pageblock_range(page, current_order, start_type);
1143 return start_type;
1146 if (current_order >= pageblock_order / 2 ||
1147 start_type == MIGRATE_RECLAIMABLE ||
1148 page_group_by_mobility_disabled) {
1149 int pages;
1151 pages = move_freepages_block(zone, page, start_type);
1153 /* Claim the whole block if over half of it is free */
1154 if (pages >= (1 << (pageblock_order-1)) ||
1155 page_group_by_mobility_disabled)
1156 set_pageblock_migratetype(page, start_type);
1158 return start_type;
1161 return fallback_type;
1164 /* Remove an element from the buddy allocator from the fallback list */
1165 static inline struct page *
1166 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1168 struct free_area *area;
1169 unsigned int current_order;
1170 struct page *page;
1171 int migratetype, new_type, i;
1173 /* Find the largest possible block of pages in the other list */
1174 for (current_order = MAX_ORDER-1;
1175 current_order >= order && current_order <= MAX_ORDER-1;
1176 --current_order) {
1177 for (i = 0;; i++) {
1178 migratetype = fallbacks[start_migratetype][i];
1180 /* MIGRATE_RESERVE handled later if necessary */
1181 if (migratetype == MIGRATE_RESERVE)
1182 break;
1184 area = &(zone->free_area[current_order]);
1185 if (list_empty(&area->free_list[migratetype]))
1186 continue;
1188 page = list_entry(area->free_list[migratetype].next,
1189 struct page, lru);
1190 area->nr_free--;
1192 new_type = try_to_steal_freepages(zone, page,
1193 start_migratetype,
1194 migratetype);
1196 /* Remove the page from the freelists */
1197 list_del(&page->lru);
1198 rmv_page_order(page);
1200 expand(zone, page, order, current_order, area,
1201 new_type);
1202 /* The freepage_migratetype may differ from pageblock's
1203 * migratetype depending on the decisions in
1204 * try_to_steal_freepages. This is OK as long as it does
1205 * not differ for MIGRATE_CMA type.
1207 set_freepage_migratetype(page, new_type);
1209 trace_mm_page_alloc_extfrag(page, order, current_order,
1210 start_migratetype, migratetype);
1212 return page;
1216 return NULL;
1220 * Do the hard work of removing an element from the buddy allocator.
1221 * Call me with the zone->lock already held.
1223 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1224 int migratetype)
1226 struct page *page;
1228 retry_reserve:
1229 page = __rmqueue_smallest(zone, order, migratetype);
1231 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1232 page = __rmqueue_fallback(zone, order, migratetype);
1235 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1236 * is used because __rmqueue_smallest is an inline function
1237 * and we want just one call site
1239 if (!page) {
1240 migratetype = MIGRATE_RESERVE;
1241 goto retry_reserve;
1245 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1246 return page;
1250 * Obtain a specified number of elements from the buddy allocator, all under
1251 * a single hold of the lock, for efficiency. Add them to the supplied list.
1252 * Returns the number of new pages which were placed at *list.
1254 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1255 unsigned long count, struct list_head *list,
1256 int migratetype, bool cold)
1258 int i;
1260 spin_lock(&zone->lock);
1261 for (i = 0; i < count; ++i) {
1262 struct page *page = __rmqueue(zone, order, migratetype);
1263 if (unlikely(page == NULL))
1264 break;
1267 * Split buddy pages returned by expand() are received here
1268 * in physical page order. The page is added to the callers and
1269 * list and the list head then moves forward. From the callers
1270 * perspective, the linked list is ordered by page number in
1271 * some conditions. This is useful for IO devices that can
1272 * merge IO requests if the physical pages are ordered
1273 * properly.
1275 if (likely(!cold))
1276 list_add(&page->lru, list);
1277 else
1278 list_add_tail(&page->lru, list);
1279 list = &page->lru;
1280 if (is_migrate_cma(get_freepage_migratetype(page)))
1281 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1282 -(1 << order));
1284 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1285 spin_unlock(&zone->lock);
1286 return i;
1289 #ifdef CONFIG_NUMA
1291 * Called from the vmstat counter updater to drain pagesets of this
1292 * currently executing processor on remote nodes after they have
1293 * expired.
1295 * Note that this function must be called with the thread pinned to
1296 * a single processor.
1298 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1300 unsigned long flags;
1301 LIST_HEAD(dst);
1302 int to_drain;
1303 unsigned long batch;
1305 local_lock_irqsave(pa_lock, flags);
1306 batch = ACCESS_ONCE(pcp->batch);
1307 if (pcp->count >= batch)
1308 to_drain = batch;
1309 else
1310 to_drain = pcp->count;
1311 if (to_drain > 0) {
1312 isolate_pcp_pages(to_drain, pcp, &dst);
1313 pcp->count -= to_drain;
1315 local_unlock_irqrestore(pa_lock, flags);
1316 free_pcppages_bulk(zone, to_drain, &dst);
1318 #endif
1321 * Drain pages of the indicated processor.
1323 * The processor must either be the current processor and the
1324 * thread pinned to the current processor or a processor that
1325 * is not online.
1327 static void drain_pages(unsigned int cpu)
1329 unsigned long flags;
1330 struct zone *zone;
1332 for_each_populated_zone(zone) {
1333 struct per_cpu_pageset *pset;
1334 struct per_cpu_pages *pcp;
1335 LIST_HEAD(dst);
1336 int count;
1338 cpu_lock_irqsave(cpu, flags);
1339 pset = per_cpu_ptr(zone->pageset, cpu);
1341 pcp = &pset->pcp;
1342 count = pcp->count;
1343 if (count) {
1344 isolate_pcp_pages(count, pcp, &dst);
1345 pcp->count = 0;
1347 cpu_unlock_irqrestore(cpu, flags);
1348 if (count)
1349 free_pcppages_bulk(zone, count, &dst);
1354 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1356 void drain_local_pages(void *arg)
1358 drain_pages(smp_processor_id());
1362 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1364 * Note that this code is protected against sending an IPI to an offline
1365 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1366 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1367 * nothing keeps CPUs from showing up after we populated the cpumask and
1368 * before the call to on_each_cpu_mask().
1370 void drain_all_pages(void)
1372 int cpu;
1373 struct per_cpu_pageset *pcp;
1374 struct zone *zone;
1377 * Allocate in the BSS so we wont require allocation in
1378 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1380 static cpumask_t cpus_with_pcps;
1383 * We don't care about racing with CPU hotplug event
1384 * as offline notification will cause the notified
1385 * cpu to drain that CPU pcps and on_each_cpu_mask
1386 * disables preemption as part of its processing
1388 for_each_online_cpu(cpu) {
1389 bool has_pcps = false;
1390 for_each_populated_zone(zone) {
1391 pcp = per_cpu_ptr(zone->pageset, cpu);
1392 if (pcp->pcp.count) {
1393 has_pcps = true;
1394 break;
1397 if (has_pcps)
1398 cpumask_set_cpu(cpu, &cpus_with_pcps);
1399 else
1400 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1402 #ifndef CONFIG_PREEMPT_RT_BASE
1403 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1404 #else
1405 for_each_cpu(cpu, &cpus_with_pcps)
1406 drain_pages(cpu);
1407 #endif
1410 #ifdef CONFIG_HIBERNATION
1412 void mark_free_pages(struct zone *zone)
1414 unsigned long pfn, max_zone_pfn;
1415 unsigned long flags;
1416 unsigned int order, t;
1417 struct list_head *curr;
1419 if (zone_is_empty(zone))
1420 return;
1422 spin_lock_irqsave(&zone->lock, flags);
1424 max_zone_pfn = zone_end_pfn(zone);
1425 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1426 if (pfn_valid(pfn)) {
1427 struct page *page = pfn_to_page(pfn);
1429 if (!swsusp_page_is_forbidden(page))
1430 swsusp_unset_page_free(page);
1433 for_each_migratetype_order(order, t) {
1434 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1435 unsigned long i;
1437 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1438 for (i = 0; i < (1UL << order); i++)
1439 swsusp_set_page_free(pfn_to_page(pfn + i));
1442 spin_unlock_irqrestore(&zone->lock, flags);
1444 #endif /* CONFIG_PM */
1447 * Free a 0-order page
1448 * cold == true ? free a cold page : free a hot page
1450 void free_hot_cold_page(struct page *page, bool cold)
1452 struct zone *zone = page_zone(page);
1453 struct per_cpu_pages *pcp;
1454 unsigned long flags;
1455 unsigned long pfn = page_to_pfn(page);
1456 int migratetype;
1458 if (!free_pages_prepare(page, 0))
1459 return;
1461 migratetype = get_pfnblock_migratetype(page, pfn);
1462 set_freepage_migratetype(page, migratetype);
1463 local_lock_irqsave(pa_lock, flags);
1464 __count_vm_event(PGFREE);
1467 * We only track unmovable, reclaimable and movable on pcp lists.
1468 * Free ISOLATE pages back to the allocator because they are being
1469 * offlined but treat RESERVE as movable pages so we can get those
1470 * areas back if necessary. Otherwise, we may have to free
1471 * excessively into the page allocator
1473 if (migratetype >= MIGRATE_PCPTYPES) {
1474 if (unlikely(is_migrate_isolate(migratetype))) {
1475 free_one_page(zone, page, pfn, 0, migratetype);
1476 goto out;
1478 migratetype = MIGRATE_MOVABLE;
1481 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1482 if (!cold)
1483 list_add(&page->lru, &pcp->lists[migratetype]);
1484 else
1485 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1486 pcp->count++;
1487 if (pcp->count >= pcp->high) {
1488 unsigned long batch = ACCESS_ONCE(pcp->batch);
1489 LIST_HEAD(dst);
1491 isolate_pcp_pages(batch, pcp, &dst);
1492 pcp->count -= batch;
1493 local_unlock_irqrestore(pa_lock, flags);
1494 free_pcppages_bulk(zone, batch, &dst);
1495 return;
1498 out:
1499 local_unlock_irqrestore(pa_lock, flags);
1503 * Free a list of 0-order pages
1505 void free_hot_cold_page_list(struct list_head *list, bool cold)
1507 struct page *page, *next;
1509 list_for_each_entry_safe(page, next, list, lru) {
1510 trace_mm_page_free_batched(page, cold);
1511 free_hot_cold_page(page, cold);
1516 * split_page takes a non-compound higher-order page, and splits it into
1517 * n (1<<order) sub-pages: page[0..n]
1518 * Each sub-page must be freed individually.
1520 * Note: this is probably too low level an operation for use in drivers.
1521 * Please consult with lkml before using this in your driver.
1523 void split_page(struct page *page, unsigned int order)
1525 int i;
1527 VM_BUG_ON_PAGE(PageCompound(page), page);
1528 VM_BUG_ON_PAGE(!page_count(page), page);
1530 #ifdef CONFIG_KMEMCHECK
1532 * Split shadow pages too, because free(page[0]) would
1533 * otherwise free the whole shadow.
1535 if (kmemcheck_page_is_tracked(page))
1536 split_page(virt_to_page(page[0].shadow), order);
1537 #endif
1539 for (i = 1; i < (1 << order); i++)
1540 set_page_refcounted(page + i);
1542 EXPORT_SYMBOL_GPL(split_page);
1544 static int __isolate_free_page(struct page *page, unsigned int order)
1546 unsigned long watermark;
1547 struct zone *zone;
1548 int mt;
1550 BUG_ON(!PageBuddy(page));
1552 zone = page_zone(page);
1553 mt = get_pageblock_migratetype(page);
1555 if (!is_migrate_isolate(mt)) {
1556 /* Obey watermarks as if the page was being allocated */
1557 watermark = low_wmark_pages(zone) + (1 << order);
1558 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1559 return 0;
1561 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1564 /* Remove page from free list */
1565 list_del(&page->lru);
1566 zone->free_area[order].nr_free--;
1567 rmv_page_order(page);
1569 /* Set the pageblock if the isolated page is at least a pageblock */
1570 if (order >= pageblock_order - 1) {
1571 struct page *endpage = page + (1 << order) - 1;
1572 for (; page < endpage; page += pageblock_nr_pages) {
1573 int mt = get_pageblock_migratetype(page);
1574 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1575 set_pageblock_migratetype(page,
1576 MIGRATE_MOVABLE);
1580 return 1UL << order;
1584 * Similar to split_page except the page is already free. As this is only
1585 * being used for migration, the migratetype of the block also changes.
1586 * As this is called with interrupts disabled, the caller is responsible
1587 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1588 * are enabled.
1590 * Note: this is probably too low level an operation for use in drivers.
1591 * Please consult with lkml before using this in your driver.
1593 int split_free_page(struct page *page)
1595 unsigned int order;
1596 int nr_pages;
1598 order = page_order(page);
1600 nr_pages = __isolate_free_page(page, order);
1601 if (!nr_pages)
1602 return 0;
1604 /* Split into individual pages */
1605 set_page_refcounted(page);
1606 split_page(page, order);
1607 return nr_pages;
1611 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1612 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1613 * or two.
1615 static inline
1616 struct page *buffered_rmqueue(struct zone *preferred_zone,
1617 struct zone *zone, unsigned int order,
1618 gfp_t gfp_flags, int migratetype)
1620 unsigned long flags;
1621 struct page *page;
1622 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1624 again:
1625 if (likely(order == 0)) {
1626 struct per_cpu_pages *pcp;
1627 struct list_head *list;
1629 local_lock_irqsave(pa_lock, flags);
1630 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1631 list = &pcp->lists[migratetype];
1632 if (list_empty(list)) {
1633 pcp->count += rmqueue_bulk(zone, 0,
1634 pcp->batch, list,
1635 migratetype, cold);
1636 if (unlikely(list_empty(list)))
1637 goto failed;
1640 if (cold)
1641 page = list_entry(list->prev, struct page, lru);
1642 else
1643 page = list_entry(list->next, struct page, lru);
1645 list_del(&page->lru);
1646 pcp->count--;
1647 } else {
1648 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1650 * __GFP_NOFAIL is not to be used in new code.
1652 * All __GFP_NOFAIL callers should be fixed so that they
1653 * properly detect and handle allocation failures.
1655 * We most definitely don't want callers attempting to
1656 * allocate greater than order-1 page units with
1657 * __GFP_NOFAIL.
1659 WARN_ON_ONCE(order > 1);
1661 local_spin_lock_irqsave(pa_lock, &zone->lock, flags);
1662 page = __rmqueue(zone, order, migratetype);
1663 if (!page) {
1664 spin_unlock(&zone->lock);
1665 goto failed;
1667 __mod_zone_freepage_state(zone, -(1 << order),
1668 get_freepage_migratetype(page));
1669 spin_unlock(&zone->lock);
1672 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1673 if (zone_page_state(zone, NR_ALLOC_BATCH) == 0 &&
1674 !zone_is_fair_depleted(zone))
1675 zone_set_flag(zone, ZONE_FAIR_DEPLETED);
1677 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1678 zone_statistics(preferred_zone, zone, gfp_flags);
1679 local_unlock_irqrestore(pa_lock, flags);
1681 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1682 if (prep_new_page(page, order, gfp_flags))
1683 goto again;
1684 return page;
1686 failed:
1687 local_unlock_irqrestore(pa_lock, flags);
1688 return NULL;
1691 #ifdef CONFIG_FAIL_PAGE_ALLOC
1693 static struct {
1694 struct fault_attr attr;
1696 u32 ignore_gfp_highmem;
1697 u32 ignore_gfp_wait;
1698 u32 min_order;
1699 } fail_page_alloc = {
1700 .attr = FAULT_ATTR_INITIALIZER,
1701 .ignore_gfp_wait = 1,
1702 .ignore_gfp_highmem = 1,
1703 .min_order = 1,
1706 static int __init setup_fail_page_alloc(char *str)
1708 return setup_fault_attr(&fail_page_alloc.attr, str);
1710 __setup("fail_page_alloc=", setup_fail_page_alloc);
1712 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1714 if (order < fail_page_alloc.min_order)
1715 return false;
1716 if (gfp_mask & __GFP_NOFAIL)
1717 return false;
1718 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1719 return false;
1720 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1721 return false;
1723 return should_fail(&fail_page_alloc.attr, 1 << order);
1726 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1728 static int __init fail_page_alloc_debugfs(void)
1730 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1731 struct dentry *dir;
1733 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1734 &fail_page_alloc.attr);
1735 if (IS_ERR(dir))
1736 return PTR_ERR(dir);
1738 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1739 &fail_page_alloc.ignore_gfp_wait))
1740 goto fail;
1741 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1742 &fail_page_alloc.ignore_gfp_highmem))
1743 goto fail;
1744 if (!debugfs_create_u32("min-order", mode, dir,
1745 &fail_page_alloc.min_order))
1746 goto fail;
1748 return 0;
1749 fail:
1750 debugfs_remove_recursive(dir);
1752 return -ENOMEM;
1755 late_initcall(fail_page_alloc_debugfs);
1757 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1759 #else /* CONFIG_FAIL_PAGE_ALLOC */
1761 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1763 return false;
1766 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1769 * Return true if free pages are above 'mark'. This takes into account the order
1770 * of the allocation.
1772 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1773 unsigned long mark, int classzone_idx, int alloc_flags,
1774 long free_pages)
1776 /* free_pages my go negative - that's OK */
1777 long min = mark;
1778 int o;
1779 long free_cma = 0;
1781 free_pages -= (1 << order) - 1;
1782 if (alloc_flags & ALLOC_HIGH)
1783 min -= min / 2;
1784 if (alloc_flags & ALLOC_HARDER)
1785 min -= min / 4;
1786 #ifdef CONFIG_CMA
1787 /* If allocation can't use CMA areas don't use free CMA pages */
1788 if (!(alloc_flags & ALLOC_CMA))
1789 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1790 #endif
1792 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
1793 return false;
1794 for (o = 0; o < order; o++) {
1795 /* At the next order, this order's pages become unavailable */
1796 free_pages -= z->free_area[o].nr_free << o;
1798 /* Require fewer higher order pages to be free */
1799 min >>= 1;
1801 if (free_pages <= min)
1802 return false;
1804 return true;
1807 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1808 int classzone_idx, int alloc_flags)
1810 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1811 zone_page_state(z, NR_FREE_PAGES));
1814 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1815 unsigned long mark, int classzone_idx, int alloc_flags)
1817 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1819 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1820 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1822 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1823 free_pages);
1826 #ifdef CONFIG_NUMA
1828 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1829 * skip over zones that are not allowed by the cpuset, or that have
1830 * been recently (in last second) found to be nearly full. See further
1831 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1832 * that have to skip over a lot of full or unallowed zones.
1834 * If the zonelist cache is present in the passed zonelist, then
1835 * returns a pointer to the allowed node mask (either the current
1836 * tasks mems_allowed, or node_states[N_MEMORY].)
1838 * If the zonelist cache is not available for this zonelist, does
1839 * nothing and returns NULL.
1841 * If the fullzones BITMAP in the zonelist cache is stale (more than
1842 * a second since last zap'd) then we zap it out (clear its bits.)
1844 * We hold off even calling zlc_setup, until after we've checked the
1845 * first zone in the zonelist, on the theory that most allocations will
1846 * be satisfied from that first zone, so best to examine that zone as
1847 * quickly as we can.
1849 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1851 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1852 nodemask_t *allowednodes; /* zonelist_cache approximation */
1854 zlc = zonelist->zlcache_ptr;
1855 if (!zlc)
1856 return NULL;
1858 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1859 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1860 zlc->last_full_zap = jiffies;
1863 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1864 &cpuset_current_mems_allowed :
1865 &node_states[N_MEMORY];
1866 return allowednodes;
1870 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1871 * if it is worth looking at further for free memory:
1872 * 1) Check that the zone isn't thought to be full (doesn't have its
1873 * bit set in the zonelist_cache fullzones BITMAP).
1874 * 2) Check that the zones node (obtained from the zonelist_cache
1875 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1876 * Return true (non-zero) if zone is worth looking at further, or
1877 * else return false (zero) if it is not.
1879 * This check -ignores- the distinction between various watermarks,
1880 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1881 * found to be full for any variation of these watermarks, it will
1882 * be considered full for up to one second by all requests, unless
1883 * we are so low on memory on all allowed nodes that we are forced
1884 * into the second scan of the zonelist.
1886 * In the second scan we ignore this zonelist cache and exactly
1887 * apply the watermarks to all zones, even it is slower to do so.
1888 * We are low on memory in the second scan, and should leave no stone
1889 * unturned looking for a free page.
1891 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1892 nodemask_t *allowednodes)
1894 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1895 int i; /* index of *z in zonelist zones */
1896 int n; /* node that zone *z is on */
1898 zlc = zonelist->zlcache_ptr;
1899 if (!zlc)
1900 return 1;
1902 i = z - zonelist->_zonerefs;
1903 n = zlc->z_to_n[i];
1905 /* This zone is worth trying if it is allowed but not full */
1906 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1910 * Given 'z' scanning a zonelist, set the corresponding bit in
1911 * zlc->fullzones, so that subsequent attempts to allocate a page
1912 * from that zone don't waste time re-examining it.
1914 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1916 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1917 int i; /* index of *z in zonelist zones */
1919 zlc = zonelist->zlcache_ptr;
1920 if (!zlc)
1921 return;
1923 i = z - zonelist->_zonerefs;
1925 set_bit(i, zlc->fullzones);
1929 * clear all zones full, called after direct reclaim makes progress so that
1930 * a zone that was recently full is not skipped over for up to a second
1932 static void zlc_clear_zones_full(struct zonelist *zonelist)
1934 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1936 zlc = zonelist->zlcache_ptr;
1937 if (!zlc)
1938 return;
1940 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1943 static bool zone_local(struct zone *local_zone, struct zone *zone)
1945 return local_zone->node == zone->node;
1948 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1950 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1953 static void __paginginit init_zone_allows_reclaim(int nid)
1955 int i;
1957 for_each_node_state(i, N_MEMORY)
1958 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1959 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1960 else
1961 zone_reclaim_mode = 1;
1964 #else /* CONFIG_NUMA */
1966 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1968 return NULL;
1971 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1972 nodemask_t *allowednodes)
1974 return 1;
1977 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1981 static void zlc_clear_zones_full(struct zonelist *zonelist)
1985 static bool zone_local(struct zone *local_zone, struct zone *zone)
1987 return true;
1990 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1992 return true;
1995 static inline void init_zone_allows_reclaim(int nid)
1998 #endif /* CONFIG_NUMA */
2000 static void reset_alloc_batches(struct zone *preferred_zone)
2002 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2004 do {
2005 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2006 high_wmark_pages(zone) - low_wmark_pages(zone) -
2007 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2008 zone_clear_flag(zone, ZONE_FAIR_DEPLETED);
2009 } while (zone++ != preferred_zone);
2013 * get_page_from_freelist goes through the zonelist trying to allocate
2014 * a page.
2016 static struct page *
2017 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
2018 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
2019 struct zone *preferred_zone, int classzone_idx, int migratetype)
2021 struct zoneref *z;
2022 struct page *page = NULL;
2023 struct zone *zone;
2024 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2025 int zlc_active = 0; /* set if using zonelist_cache */
2026 int did_zlc_setup = 0; /* just call zlc_setup() one time */
2027 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2028 (gfp_mask & __GFP_WRITE);
2029 int nr_fair_skipped = 0;
2030 bool zonelist_rescan;
2032 zonelist_scan:
2033 zonelist_rescan = false;
2036 * Scan zonelist, looking for a zone with enough free.
2037 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
2039 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2040 high_zoneidx, nodemask) {
2041 unsigned long mark;
2043 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2044 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2045 continue;
2046 if (cpusets_enabled() &&
2047 (alloc_flags & ALLOC_CPUSET) &&
2048 !cpuset_zone_allowed_softwall(zone, gfp_mask))
2049 continue;
2051 * Distribute pages in proportion to the individual
2052 * zone size to ensure fair page aging. The zone a
2053 * page was allocated in should have no effect on the
2054 * time the page has in memory before being reclaimed.
2056 if (alloc_flags & ALLOC_FAIR) {
2057 if (!zone_local(preferred_zone, zone))
2058 break;
2059 if (zone_is_fair_depleted(zone)) {
2060 nr_fair_skipped++;
2061 continue;
2065 * When allocating a page cache page for writing, we
2066 * want to get it from a zone that is within its dirty
2067 * limit, such that no single zone holds more than its
2068 * proportional share of globally allowed dirty pages.
2069 * The dirty limits take into account the zone's
2070 * lowmem reserves and high watermark so that kswapd
2071 * should be able to balance it without having to
2072 * write pages from its LRU list.
2074 * This may look like it could increase pressure on
2075 * lower zones by failing allocations in higher zones
2076 * before they are full. But the pages that do spill
2077 * over are limited as the lower zones are protected
2078 * by this very same mechanism. It should not become
2079 * a practical burden to them.
2081 * XXX: For now, allow allocations to potentially
2082 * exceed the per-zone dirty limit in the slowpath
2083 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2084 * which is important when on a NUMA setup the allowed
2085 * zones are together not big enough to reach the
2086 * global limit. The proper fix for these situations
2087 * will require awareness of zones in the
2088 * dirty-throttling and the flusher threads.
2090 if (consider_zone_dirty && !zone_dirty_ok(zone))
2091 continue;
2093 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2094 if (!zone_watermark_ok(zone, order, mark,
2095 classzone_idx, alloc_flags)) {
2096 int ret;
2098 /* Checked here to keep the fast path fast */
2099 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2100 if (alloc_flags & ALLOC_NO_WATERMARKS)
2101 goto try_this_zone;
2103 if (IS_ENABLED(CONFIG_NUMA) &&
2104 !did_zlc_setup && nr_online_nodes > 1) {
2106 * we do zlc_setup if there are multiple nodes
2107 * and before considering the first zone allowed
2108 * by the cpuset.
2110 allowednodes = zlc_setup(zonelist, alloc_flags);
2111 zlc_active = 1;
2112 did_zlc_setup = 1;
2115 if (zone_reclaim_mode == 0 ||
2116 !zone_allows_reclaim(preferred_zone, zone))
2117 goto this_zone_full;
2120 * As we may have just activated ZLC, check if the first
2121 * eligible zone has failed zone_reclaim recently.
2123 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2124 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2125 continue;
2127 ret = zone_reclaim(zone, gfp_mask, order);
2128 switch (ret) {
2129 case ZONE_RECLAIM_NOSCAN:
2130 /* did not scan */
2131 continue;
2132 case ZONE_RECLAIM_FULL:
2133 /* scanned but unreclaimable */
2134 continue;
2135 default:
2136 /* did we reclaim enough */
2137 if (zone_watermark_ok(zone, order, mark,
2138 classzone_idx, alloc_flags))
2139 goto try_this_zone;
2142 * Failed to reclaim enough to meet watermark.
2143 * Only mark the zone full if checking the min
2144 * watermark or if we failed to reclaim just
2145 * 1<<order pages or else the page allocator
2146 * fastpath will prematurely mark zones full
2147 * when the watermark is between the low and
2148 * min watermarks.
2150 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2151 ret == ZONE_RECLAIM_SOME)
2152 goto this_zone_full;
2154 continue;
2158 try_this_zone:
2159 page = buffered_rmqueue(preferred_zone, zone, order,
2160 gfp_mask, migratetype);
2161 if (page)
2162 break;
2163 this_zone_full:
2164 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2165 zlc_mark_zone_full(zonelist, z);
2168 if (page) {
2170 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2171 * necessary to allocate the page. The expectation is
2172 * that the caller is taking steps that will free more
2173 * memory. The caller should avoid the page being used
2174 * for !PFMEMALLOC purposes.
2176 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2177 return page;
2181 * The first pass makes sure allocations are spread fairly within the
2182 * local node. However, the local node might have free pages left
2183 * after the fairness batches are exhausted, and remote zones haven't
2184 * even been considered yet. Try once more without fairness, and
2185 * include remote zones now, before entering the slowpath and waking
2186 * kswapd: prefer spilling to a remote zone over swapping locally.
2188 if (alloc_flags & ALLOC_FAIR) {
2189 alloc_flags &= ~ALLOC_FAIR;
2190 if (nr_fair_skipped) {
2191 zonelist_rescan = true;
2192 reset_alloc_batches(preferred_zone);
2194 if (nr_online_nodes > 1)
2195 zonelist_rescan = true;
2198 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2199 /* Disable zlc cache for second zonelist scan */
2200 zlc_active = 0;
2201 zonelist_rescan = true;
2204 if (zonelist_rescan)
2205 goto zonelist_scan;
2207 return NULL;
2211 * Large machines with many possible nodes should not always dump per-node
2212 * meminfo in irq context.
2214 static inline bool should_suppress_show_mem(void)
2216 bool ret = false;
2218 #if NODES_SHIFT > 8
2219 ret = in_interrupt();
2220 #endif
2221 return ret;
2224 static DEFINE_RATELIMIT_STATE(nopage_rs,
2225 DEFAULT_RATELIMIT_INTERVAL,
2226 DEFAULT_RATELIMIT_BURST);
2228 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2230 unsigned int filter = SHOW_MEM_FILTER_NODES;
2232 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2233 debug_guardpage_minorder() > 0)
2234 return;
2237 * This documents exceptions given to allocations in certain
2238 * contexts that are allowed to allocate outside current's set
2239 * of allowed nodes.
2241 if (!(gfp_mask & __GFP_NOMEMALLOC))
2242 if (test_thread_flag(TIF_MEMDIE) ||
2243 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2244 filter &= ~SHOW_MEM_FILTER_NODES;
2245 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2246 filter &= ~SHOW_MEM_FILTER_NODES;
2248 if (fmt) {
2249 struct va_format vaf;
2250 va_list args;
2252 va_start(args, fmt);
2254 vaf.fmt = fmt;
2255 vaf.va = &args;
2257 pr_warn("%pV", &vaf);
2259 va_end(args);
2262 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2263 current->comm, order, gfp_mask);
2265 dump_stack();
2266 if (!should_suppress_show_mem())
2267 show_mem(filter);
2270 static inline int
2271 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2272 unsigned long did_some_progress,
2273 unsigned long pages_reclaimed)
2275 /* Do not loop if specifically requested */
2276 if (gfp_mask & __GFP_NORETRY)
2277 return 0;
2279 /* Always retry if specifically requested */
2280 if (gfp_mask & __GFP_NOFAIL)
2281 return 1;
2284 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2285 * making forward progress without invoking OOM. Suspend also disables
2286 * storage devices so kswapd will not help. Bail if we are suspending.
2288 if (!did_some_progress && pm_suspended_storage())
2289 return 0;
2292 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2293 * means __GFP_NOFAIL, but that may not be true in other
2294 * implementations.
2296 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2297 return 1;
2300 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2301 * specified, then we retry until we no longer reclaim any pages
2302 * (above), or we've reclaimed an order of pages at least as
2303 * large as the allocation's order. In both cases, if the
2304 * allocation still fails, we stop retrying.
2306 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2307 return 1;
2309 return 0;
2312 static inline struct page *
2313 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2314 struct zonelist *zonelist, enum zone_type high_zoneidx,
2315 nodemask_t *nodemask, struct zone *preferred_zone,
2316 int classzone_idx, int migratetype)
2318 struct page *page;
2320 /* Acquire the OOM killer lock for the zones in zonelist */
2321 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2322 schedule_timeout_uninterruptible(1);
2323 return NULL;
2327 * PM-freezer should be notified that there might be an OOM killer on
2328 * its way to kill and wake somebody up. This is too early and we might
2329 * end up not killing anything but false positives are acceptable.
2330 * See freeze_processes.
2332 note_oom_kill();
2335 * Go through the zonelist yet one more time, keep very high watermark
2336 * here, this is only to catch a parallel oom killing, we must fail if
2337 * we're still under heavy pressure.
2339 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2340 order, zonelist, high_zoneidx,
2341 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2342 preferred_zone, classzone_idx, migratetype);
2343 if (page)
2344 goto out;
2346 if (!(gfp_mask & __GFP_NOFAIL)) {
2347 /* The OOM killer will not help higher order allocs */
2348 if (order > PAGE_ALLOC_COSTLY_ORDER)
2349 goto out;
2350 /* The OOM killer does not needlessly kill tasks for lowmem */
2351 if (high_zoneidx < ZONE_NORMAL)
2352 goto out;
2354 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2355 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2356 * The caller should handle page allocation failure by itself if
2357 * it specifies __GFP_THISNODE.
2358 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2360 if (gfp_mask & __GFP_THISNODE)
2361 goto out;
2363 /* Exhausted what can be done so it's blamo time */
2364 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2366 out:
2367 clear_zonelist_oom(zonelist, gfp_mask);
2368 return page;
2371 #ifdef CONFIG_COMPACTION
2372 /* Try memory compaction for high-order allocations before reclaim */
2373 static struct page *
2374 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2375 struct zonelist *zonelist, enum zone_type high_zoneidx,
2376 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2377 int classzone_idx, int migratetype, enum migrate_mode mode,
2378 bool *contended_compaction, bool *deferred_compaction,
2379 unsigned long *did_some_progress)
2381 if (!order)
2382 return NULL;
2384 if (compaction_deferred(preferred_zone, order)) {
2385 *deferred_compaction = true;
2386 return NULL;
2389 current->flags |= PF_MEMALLOC;
2390 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2391 nodemask, mode,
2392 contended_compaction);
2393 current->flags &= ~PF_MEMALLOC;
2395 if (*did_some_progress != COMPACT_SKIPPED) {
2396 struct page *page;
2398 /* Page migration frees to the PCP lists but we want merging */
2399 drain_pages(get_cpu_light());
2400 put_cpu_light();
2402 page = get_page_from_freelist(gfp_mask, nodemask,
2403 order, zonelist, high_zoneidx,
2404 alloc_flags & ~ALLOC_NO_WATERMARKS,
2405 preferred_zone, classzone_idx, migratetype);
2406 if (page) {
2407 preferred_zone->compact_blockskip_flush = false;
2408 compaction_defer_reset(preferred_zone, order, true);
2409 count_vm_event(COMPACTSUCCESS);
2410 return page;
2414 * It's bad if compaction run occurs and fails.
2415 * The most likely reason is that pages exist,
2416 * but not enough to satisfy watermarks.
2418 count_vm_event(COMPACTFAIL);
2421 * As async compaction considers a subset of pageblocks, only
2422 * defer if the failure was a sync compaction failure.
2424 if (mode != MIGRATE_ASYNC)
2425 defer_compaction(preferred_zone, order);
2427 cond_resched();
2430 return NULL;
2432 #else
2433 static inline struct page *
2434 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2435 struct zonelist *zonelist, enum zone_type high_zoneidx,
2436 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2437 int classzone_idx, int migratetype,
2438 enum migrate_mode mode, bool *contended_compaction,
2439 bool *deferred_compaction, unsigned long *did_some_progress)
2441 return NULL;
2443 #endif /* CONFIG_COMPACTION */
2445 /* Perform direct synchronous page reclaim */
2446 static int
2447 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2448 nodemask_t *nodemask)
2450 struct reclaim_state reclaim_state;
2451 int progress;
2453 cond_resched();
2455 /* We now go into synchronous reclaim */
2456 cpuset_memory_pressure_bump();
2457 current->flags |= PF_MEMALLOC;
2458 lockdep_set_current_reclaim_state(gfp_mask);
2459 reclaim_state.reclaimed_slab = 0;
2460 current->reclaim_state = &reclaim_state;
2462 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2464 current->reclaim_state = NULL;
2465 lockdep_clear_current_reclaim_state();
2466 current->flags &= ~PF_MEMALLOC;
2468 cond_resched();
2470 return progress;
2473 /* The really slow allocator path where we enter direct reclaim */
2474 static inline struct page *
2475 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2476 struct zonelist *zonelist, enum zone_type high_zoneidx,
2477 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2478 int classzone_idx, int migratetype, unsigned long *did_some_progress)
2480 struct page *page = NULL;
2481 bool drained = false;
2483 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2484 nodemask);
2485 if (unlikely(!(*did_some_progress)))
2486 return NULL;
2488 /* After successful reclaim, reconsider all zones for allocation */
2489 if (IS_ENABLED(CONFIG_NUMA))
2490 zlc_clear_zones_full(zonelist);
2492 retry:
2493 page = get_page_from_freelist(gfp_mask, nodemask, order,
2494 zonelist, high_zoneidx,
2495 alloc_flags & ~ALLOC_NO_WATERMARKS,
2496 preferred_zone, classzone_idx,
2497 migratetype);
2500 * If an allocation failed after direct reclaim, it could be because
2501 * pages are pinned on the per-cpu lists. Drain them and try again
2503 if (!page && !drained) {
2504 drain_all_pages();
2505 drained = true;
2506 goto retry;
2509 return page;
2513 * This is called in the allocator slow-path if the allocation request is of
2514 * sufficient urgency to ignore watermarks and take other desperate measures
2516 static inline struct page *
2517 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2518 struct zonelist *zonelist, enum zone_type high_zoneidx,
2519 nodemask_t *nodemask, struct zone *preferred_zone,
2520 int classzone_idx, int migratetype)
2522 struct page *page;
2524 do {
2525 page = get_page_from_freelist(gfp_mask, nodemask, order,
2526 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2527 preferred_zone, classzone_idx, migratetype);
2529 if (!page && gfp_mask & __GFP_NOFAIL)
2530 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2531 } while (!page && (gfp_mask & __GFP_NOFAIL));
2533 return page;
2536 static void wake_all_kswapds(unsigned int order,
2537 struct zonelist *zonelist,
2538 enum zone_type high_zoneidx,
2539 struct zone *preferred_zone)
2541 struct zoneref *z;
2542 struct zone *zone;
2544 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2545 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2548 static inline int
2549 gfp_to_alloc_flags(gfp_t gfp_mask)
2551 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2552 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2554 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2555 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2558 * The caller may dip into page reserves a bit more if the caller
2559 * cannot run direct reclaim, or if the caller has realtime scheduling
2560 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2561 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2563 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2565 if (atomic) {
2567 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2568 * if it can't schedule.
2570 if (!(gfp_mask & __GFP_NOMEMALLOC))
2571 alloc_flags |= ALLOC_HARDER;
2573 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2574 * comment for __cpuset_node_allowed_softwall().
2576 alloc_flags &= ~ALLOC_CPUSET;
2577 } else if (unlikely(rt_task(current)) && !in_interrupt())
2578 alloc_flags |= ALLOC_HARDER;
2580 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2581 if (gfp_mask & __GFP_MEMALLOC)
2582 alloc_flags |= ALLOC_NO_WATERMARKS;
2583 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2584 alloc_flags |= ALLOC_NO_WATERMARKS;
2585 else if (!in_interrupt() &&
2586 ((current->flags & PF_MEMALLOC) ||
2587 unlikely(test_thread_flag(TIF_MEMDIE))))
2588 alloc_flags |= ALLOC_NO_WATERMARKS;
2590 #ifdef CONFIG_CMA
2591 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2592 alloc_flags |= ALLOC_CMA;
2593 #endif
2594 return alloc_flags;
2597 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2599 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2602 static inline struct page *
2603 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2604 struct zonelist *zonelist, enum zone_type high_zoneidx,
2605 nodemask_t *nodemask, struct zone *preferred_zone,
2606 int classzone_idx, int migratetype)
2608 const gfp_t wait = gfp_mask & __GFP_WAIT;
2609 struct page *page = NULL;
2610 int alloc_flags;
2611 unsigned long pages_reclaimed = 0;
2612 unsigned long did_some_progress;
2613 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2614 bool deferred_compaction = false;
2615 bool contended_compaction = false;
2618 * In the slowpath, we sanity check order to avoid ever trying to
2619 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2620 * be using allocators in order of preference for an area that is
2621 * too large.
2623 if (order >= MAX_ORDER) {
2624 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2625 return NULL;
2629 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2630 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2631 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2632 * using a larger set of nodes after it has established that the
2633 * allowed per node queues are empty and that nodes are
2634 * over allocated.
2636 if (IS_ENABLED(CONFIG_NUMA) &&
2637 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2638 goto nopage;
2640 restart:
2641 if (!(gfp_mask & __GFP_NO_KSWAPD))
2642 wake_all_kswapds(order, zonelist, high_zoneidx, preferred_zone);
2645 * OK, we're below the kswapd watermark and have kicked background
2646 * reclaim. Now things get more complex, so set up alloc_flags according
2647 * to how we want to proceed.
2649 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2652 * Find the true preferred zone if the allocation is unconstrained by
2653 * cpusets.
2655 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
2656 struct zoneref *preferred_zoneref;
2657 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2658 NULL,
2659 &preferred_zone);
2660 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2663 rebalance:
2664 /* This is the last chance, in general, before the goto nopage. */
2665 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2666 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2667 preferred_zone, classzone_idx, migratetype);
2668 if (page)
2669 goto got_pg;
2671 /* Allocate without watermarks if the context allows */
2672 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2674 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2675 * the allocation is high priority and these type of
2676 * allocations are system rather than user orientated
2678 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2680 page = __alloc_pages_high_priority(gfp_mask, order,
2681 zonelist, high_zoneidx, nodemask,
2682 preferred_zone, classzone_idx, migratetype);
2683 if (page) {
2684 goto got_pg;
2688 /* Atomic allocations - we can't balance anything */
2689 if (!wait) {
2691 * All existing users of the deprecated __GFP_NOFAIL are
2692 * blockable, so warn of any new users that actually allow this
2693 * type of allocation to fail.
2695 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2696 goto nopage;
2699 /* Avoid recursion of direct reclaim */
2700 if (current->flags & PF_MEMALLOC)
2701 goto nopage;
2703 /* Avoid allocations with no watermarks from looping endlessly */
2704 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2705 goto nopage;
2708 * Try direct compaction. The first pass is asynchronous. Subsequent
2709 * attempts after direct reclaim are synchronous
2711 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2712 high_zoneidx, nodemask, alloc_flags,
2713 preferred_zone,
2714 classzone_idx, migratetype,
2715 migration_mode, &contended_compaction,
2716 &deferred_compaction,
2717 &did_some_progress);
2718 if (page)
2719 goto got_pg;
2720 migration_mode = MIGRATE_SYNC_LIGHT;
2723 * If compaction is deferred for high-order allocations, it is because
2724 * sync compaction recently failed. In this is the case and the caller
2725 * requested a movable allocation that does not heavily disrupt the
2726 * system then fail the allocation instead of entering direct reclaim.
2728 if ((deferred_compaction || contended_compaction) &&
2729 (gfp_mask & __GFP_NO_KSWAPD))
2730 goto nopage;
2732 /* Try direct reclaim and then allocating */
2733 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2734 zonelist, high_zoneidx,
2735 nodemask,
2736 alloc_flags, preferred_zone,
2737 classzone_idx, migratetype,
2738 &did_some_progress);
2739 if (page)
2740 goto got_pg;
2743 * If we failed to make any progress reclaiming, then we are
2744 * running out of options and have to consider going OOM
2746 if (!did_some_progress) {
2747 if (oom_gfp_allowed(gfp_mask)) {
2748 if (oom_killer_disabled)
2749 goto nopage;
2750 /* Coredumps can quickly deplete all memory reserves */
2751 if ((current->flags & PF_DUMPCORE) &&
2752 !(gfp_mask & __GFP_NOFAIL))
2753 goto nopage;
2754 page = __alloc_pages_may_oom(gfp_mask, order,
2755 zonelist, high_zoneidx,
2756 nodemask, preferred_zone,
2757 classzone_idx, migratetype);
2758 if (page)
2759 goto got_pg;
2761 if (!(gfp_mask & __GFP_NOFAIL)) {
2763 * The oom killer is not called for high-order
2764 * allocations that may fail, so if no progress
2765 * is being made, there are no other options and
2766 * retrying is unlikely to help.
2768 if (order > PAGE_ALLOC_COSTLY_ORDER)
2769 goto nopage;
2771 * The oom killer is not called for lowmem
2772 * allocations to prevent needlessly killing
2773 * innocent tasks.
2775 if (high_zoneidx < ZONE_NORMAL)
2776 goto nopage;
2779 goto restart;
2783 /* Check if we should retry the allocation */
2784 pages_reclaimed += did_some_progress;
2785 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2786 pages_reclaimed)) {
2787 /* Wait for some write requests to complete then retry */
2788 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2789 goto rebalance;
2790 } else {
2792 * High-order allocations do not necessarily loop after
2793 * direct reclaim and reclaim/compaction depends on compaction
2794 * being called after reclaim so call directly if necessary
2796 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2797 high_zoneidx, nodemask, alloc_flags,
2798 preferred_zone,
2799 classzone_idx, migratetype,
2800 migration_mode, &contended_compaction,
2801 &deferred_compaction,
2802 &did_some_progress);
2803 if (page)
2804 goto got_pg;
2807 nopage:
2808 warn_alloc_failed(gfp_mask, order, NULL);
2809 return page;
2810 got_pg:
2811 if (kmemcheck_enabled)
2812 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2814 return page;
2818 * This is the 'heart' of the zoned buddy allocator.
2820 struct page *
2821 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2822 struct zonelist *zonelist, nodemask_t *nodemask)
2824 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2825 struct zone *preferred_zone;
2826 struct zoneref *preferred_zoneref;
2827 struct page *page = NULL;
2828 int migratetype = allocflags_to_migratetype(gfp_mask);
2829 unsigned int cpuset_mems_cookie;
2830 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2831 struct mem_cgroup *memcg = NULL;
2832 int classzone_idx;
2834 gfp_mask &= gfp_allowed_mask;
2836 lockdep_trace_alloc(gfp_mask);
2838 might_sleep_if(gfp_mask & __GFP_WAIT);
2840 if (should_fail_alloc_page(gfp_mask, order))
2841 return NULL;
2844 * Check the zones suitable for the gfp_mask contain at least one
2845 * valid zone. It's possible to have an empty zonelist as a result
2846 * of GFP_THISNODE and a memoryless node
2848 if (unlikely(!zonelist->_zonerefs->zone))
2849 return NULL;
2852 * Will only have any effect when __GFP_KMEMCG is set. This is
2853 * verified in the (always inline) callee
2855 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2856 return NULL;
2858 retry_cpuset:
2859 cpuset_mems_cookie = read_mems_allowed_begin();
2861 /* The preferred zone is used for statistics later */
2862 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2863 nodemask ? : &cpuset_current_mems_allowed,
2864 &preferred_zone);
2865 if (!preferred_zone)
2866 goto out;
2867 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2869 #ifdef CONFIG_CMA
2870 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2871 alloc_flags |= ALLOC_CMA;
2872 #endif
2873 /* First allocation attempt */
2874 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2875 zonelist, high_zoneidx, alloc_flags,
2876 preferred_zone, classzone_idx, migratetype);
2877 if (unlikely(!page)) {
2879 * Runtime PM, block IO and its error handling path
2880 * can deadlock because I/O on the device might not
2881 * complete.
2883 gfp_mask = memalloc_noio_flags(gfp_mask);
2884 page = __alloc_pages_slowpath(gfp_mask, order,
2885 zonelist, high_zoneidx, nodemask,
2886 preferred_zone, classzone_idx, migratetype);
2889 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2891 out:
2893 * When updating a task's mems_allowed, it is possible to race with
2894 * parallel threads in such a way that an allocation can fail while
2895 * the mask is being updated. If a page allocation is about to fail,
2896 * check if the cpuset changed during allocation and if so, retry.
2898 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2899 goto retry_cpuset;
2901 memcg_kmem_commit_charge(page, memcg, order);
2903 return page;
2905 EXPORT_SYMBOL(__alloc_pages_nodemask);
2908 * Common helper functions.
2910 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2912 struct page *page;
2915 * __get_free_pages() returns a 32-bit address, which cannot represent
2916 * a highmem page
2918 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2920 page = alloc_pages(gfp_mask, order);
2921 if (!page)
2922 return 0;
2923 return (unsigned long) page_address(page);
2925 EXPORT_SYMBOL(__get_free_pages);
2927 unsigned long get_zeroed_page(gfp_t gfp_mask)
2929 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2931 EXPORT_SYMBOL(get_zeroed_page);
2933 void __free_pages(struct page *page, unsigned int order)
2935 if (put_page_testzero(page)) {
2936 if (order == 0)
2937 free_hot_cold_page(page, false);
2938 else
2939 __free_pages_ok(page, order);
2943 EXPORT_SYMBOL(__free_pages);
2945 void free_pages(unsigned long addr, unsigned int order)
2947 if (addr != 0) {
2948 VM_BUG_ON(!virt_addr_valid((void *)addr));
2949 __free_pages(virt_to_page((void *)addr), order);
2953 EXPORT_SYMBOL(free_pages);
2956 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2957 * pages allocated with __GFP_KMEMCG.
2959 * Those pages are accounted to a particular memcg, embedded in the
2960 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2961 * for that information only to find out that it is NULL for users who have no
2962 * interest in that whatsoever, we provide these functions.
2964 * The caller knows better which flags it relies on.
2966 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2968 memcg_kmem_uncharge_pages(page, order);
2969 __free_pages(page, order);
2972 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2974 if (addr != 0) {
2975 VM_BUG_ON(!virt_addr_valid((void *)addr));
2976 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2980 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2982 if (addr) {
2983 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2984 unsigned long used = addr + PAGE_ALIGN(size);
2986 split_page(virt_to_page((void *)addr), order);
2987 while (used < alloc_end) {
2988 free_page(used);
2989 used += PAGE_SIZE;
2992 return (void *)addr;
2996 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2997 * @size: the number of bytes to allocate
2998 * @gfp_mask: GFP flags for the allocation
3000 * This function is similar to alloc_pages(), except that it allocates the
3001 * minimum number of pages to satisfy the request. alloc_pages() can only
3002 * allocate memory in power-of-two pages.
3004 * This function is also limited by MAX_ORDER.
3006 * Memory allocated by this function must be released by free_pages_exact().
3008 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3010 unsigned int order = get_order(size);
3011 unsigned long addr;
3013 addr = __get_free_pages(gfp_mask, order);
3014 return make_alloc_exact(addr, order, size);
3016 EXPORT_SYMBOL(alloc_pages_exact);
3019 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3020 * pages on a node.
3021 * @nid: the preferred node ID where memory should be allocated
3022 * @size: the number of bytes to allocate
3023 * @gfp_mask: GFP flags for the allocation
3025 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3026 * back.
3027 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3028 * but is not exact.
3030 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3032 unsigned order = get_order(size);
3033 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3034 if (!p)
3035 return NULL;
3036 return make_alloc_exact((unsigned long)page_address(p), order, size);
3038 EXPORT_SYMBOL(alloc_pages_exact_nid);
3041 * free_pages_exact - release memory allocated via alloc_pages_exact()
3042 * @virt: the value returned by alloc_pages_exact.
3043 * @size: size of allocation, same value as passed to alloc_pages_exact().
3045 * Release the memory allocated by a previous call to alloc_pages_exact.
3047 void free_pages_exact(void *virt, size_t size)
3049 unsigned long addr = (unsigned long)virt;
3050 unsigned long end = addr + PAGE_ALIGN(size);
3052 while (addr < end) {
3053 free_page(addr);
3054 addr += PAGE_SIZE;
3057 EXPORT_SYMBOL(free_pages_exact);
3060 * nr_free_zone_pages - count number of pages beyond high watermark
3061 * @offset: The zone index of the highest zone
3063 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3064 * high watermark within all zones at or below a given zone index. For each
3065 * zone, the number of pages is calculated as:
3066 * managed_pages - high_pages
3068 static unsigned long nr_free_zone_pages(int offset)
3070 struct zoneref *z;
3071 struct zone *zone;
3073 /* Just pick one node, since fallback list is circular */
3074 unsigned long sum = 0;
3076 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3078 for_each_zone_zonelist(zone, z, zonelist, offset) {
3079 unsigned long size = zone->managed_pages;
3080 unsigned long high = high_wmark_pages(zone);
3081 if (size > high)
3082 sum += size - high;
3085 return sum;
3089 * nr_free_buffer_pages - count number of pages beyond high watermark
3091 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3092 * watermark within ZONE_DMA and ZONE_NORMAL.
3094 unsigned long nr_free_buffer_pages(void)
3096 return nr_free_zone_pages(gfp_zone(GFP_USER));
3098 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3101 * nr_free_pagecache_pages - count number of pages beyond high watermark
3103 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3104 * high watermark within all zones.
3106 unsigned long nr_free_pagecache_pages(void)
3108 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3111 static inline void show_node(struct zone *zone)
3113 if (IS_ENABLED(CONFIG_NUMA))
3114 printk("Node %d ", zone_to_nid(zone));
3117 void si_meminfo(struct sysinfo *val)
3119 val->totalram = totalram_pages;
3120 val->sharedram = 0;
3121 val->freeram = global_page_state(NR_FREE_PAGES);
3122 val->bufferram = nr_blockdev_pages();
3123 val->totalhigh = totalhigh_pages;
3124 val->freehigh = nr_free_highpages();
3125 val->mem_unit = PAGE_SIZE;
3128 EXPORT_SYMBOL(si_meminfo);
3130 #ifdef CONFIG_NUMA
3131 void si_meminfo_node(struct sysinfo *val, int nid)
3133 int zone_type; /* needs to be signed */
3134 unsigned long managed_pages = 0;
3135 pg_data_t *pgdat = NODE_DATA(nid);
3137 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3138 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3139 val->totalram = managed_pages;
3140 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3141 #ifdef CONFIG_HIGHMEM
3142 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3143 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3144 NR_FREE_PAGES);
3145 #else
3146 val->totalhigh = 0;
3147 val->freehigh = 0;
3148 #endif
3149 val->mem_unit = PAGE_SIZE;
3151 #endif
3154 * Determine whether the node should be displayed or not, depending on whether
3155 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3157 bool skip_free_areas_node(unsigned int flags, int nid)
3159 bool ret = false;
3160 unsigned int cpuset_mems_cookie;
3162 if (!(flags & SHOW_MEM_FILTER_NODES))
3163 goto out;
3165 do {
3166 cpuset_mems_cookie = read_mems_allowed_begin();
3167 ret = !node_isset(nid, cpuset_current_mems_allowed);
3168 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3169 out:
3170 return ret;
3173 #define K(x) ((x) << (PAGE_SHIFT-10))
3175 static void show_migration_types(unsigned char type)
3177 static const char types[MIGRATE_TYPES] = {
3178 [MIGRATE_UNMOVABLE] = 'U',
3179 [MIGRATE_RECLAIMABLE] = 'E',
3180 [MIGRATE_MOVABLE] = 'M',
3181 [MIGRATE_RESERVE] = 'R',
3182 #ifdef CONFIG_CMA
3183 [MIGRATE_CMA] = 'C',
3184 #endif
3185 #ifdef CONFIG_MEMORY_ISOLATION
3186 [MIGRATE_ISOLATE] = 'I',
3187 #endif
3189 char tmp[MIGRATE_TYPES + 1];
3190 char *p = tmp;
3191 int i;
3193 for (i = 0; i < MIGRATE_TYPES; i++) {
3194 if (type & (1 << i))
3195 *p++ = types[i];
3198 *p = '\0';
3199 printk("(%s) ", tmp);
3203 * Show free area list (used inside shift_scroll-lock stuff)
3204 * We also calculate the percentage fragmentation. We do this by counting the
3205 * memory on each free list with the exception of the first item on the list.
3206 * Suppresses nodes that are not allowed by current's cpuset if
3207 * SHOW_MEM_FILTER_NODES is passed.
3209 void show_free_areas(unsigned int filter)
3211 int cpu;
3212 struct zone *zone;
3214 for_each_populated_zone(zone) {
3215 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3216 continue;
3217 show_node(zone);
3218 printk("%s per-cpu:\n", zone->name);
3220 for_each_online_cpu(cpu) {
3221 struct per_cpu_pageset *pageset;
3223 pageset = per_cpu_ptr(zone->pageset, cpu);
3225 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3226 cpu, pageset->pcp.high,
3227 pageset->pcp.batch, pageset->pcp.count);
3231 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3232 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3233 " unevictable:%lu"
3234 " dirty:%lu writeback:%lu unstable:%lu\n"
3235 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3236 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3237 " free_cma:%lu\n",
3238 global_page_state(NR_ACTIVE_ANON),
3239 global_page_state(NR_INACTIVE_ANON),
3240 global_page_state(NR_ISOLATED_ANON),
3241 global_page_state(NR_ACTIVE_FILE),
3242 global_page_state(NR_INACTIVE_FILE),
3243 global_page_state(NR_ISOLATED_FILE),
3244 global_page_state(NR_UNEVICTABLE),
3245 global_page_state(NR_FILE_DIRTY),
3246 global_page_state(NR_WRITEBACK),
3247 global_page_state(NR_UNSTABLE_NFS),
3248 global_page_state(NR_FREE_PAGES),
3249 global_page_state(NR_SLAB_RECLAIMABLE),
3250 global_page_state(NR_SLAB_UNRECLAIMABLE),
3251 global_page_state(NR_FILE_MAPPED),
3252 global_page_state(NR_SHMEM),
3253 global_page_state(NR_PAGETABLE),
3254 global_page_state(NR_BOUNCE),
3255 global_page_state(NR_FREE_CMA_PAGES));
3257 for_each_populated_zone(zone) {
3258 int i;
3260 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3261 continue;
3262 show_node(zone);
3263 printk("%s"
3264 " free:%lukB"
3265 " min:%lukB"
3266 " low:%lukB"
3267 " high:%lukB"
3268 " active_anon:%lukB"
3269 " inactive_anon:%lukB"
3270 " active_file:%lukB"
3271 " inactive_file:%lukB"
3272 " unevictable:%lukB"
3273 " isolated(anon):%lukB"
3274 " isolated(file):%lukB"
3275 " present:%lukB"
3276 " managed:%lukB"
3277 " mlocked:%lukB"
3278 " dirty:%lukB"
3279 " writeback:%lukB"
3280 " mapped:%lukB"
3281 " shmem:%lukB"
3282 " slab_reclaimable:%lukB"
3283 " slab_unreclaimable:%lukB"
3284 " kernel_stack:%lukB"
3285 " pagetables:%lukB"
3286 " unstable:%lukB"
3287 " bounce:%lukB"
3288 " free_cma:%lukB"
3289 " writeback_tmp:%lukB"
3290 " pages_scanned:%lu"
3291 " all_unreclaimable? %s"
3292 "\n",
3293 zone->name,
3294 K(zone_page_state(zone, NR_FREE_PAGES)),
3295 K(min_wmark_pages(zone)),
3296 K(low_wmark_pages(zone)),
3297 K(high_wmark_pages(zone)),
3298 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3299 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3300 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3301 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3302 K(zone_page_state(zone, NR_UNEVICTABLE)),
3303 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3304 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3305 K(zone->present_pages),
3306 K(zone->managed_pages),
3307 K(zone_page_state(zone, NR_MLOCK)),
3308 K(zone_page_state(zone, NR_FILE_DIRTY)),
3309 K(zone_page_state(zone, NR_WRITEBACK)),
3310 K(zone_page_state(zone, NR_FILE_MAPPED)),
3311 K(zone_page_state(zone, NR_SHMEM)),
3312 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3313 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3314 zone_page_state(zone, NR_KERNEL_STACK) *
3315 THREAD_SIZE / 1024,
3316 K(zone_page_state(zone, NR_PAGETABLE)),
3317 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3318 K(zone_page_state(zone, NR_BOUNCE)),
3319 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3320 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3321 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3322 (!zone_reclaimable(zone) ? "yes" : "no")
3324 printk("lowmem_reserve[]:");
3325 for (i = 0; i < MAX_NR_ZONES; i++)
3326 printk(" %ld", zone->lowmem_reserve[i]);
3327 printk("\n");
3330 for_each_populated_zone(zone) {
3331 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3332 unsigned char types[MAX_ORDER];
3334 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3335 continue;
3336 show_node(zone);
3337 printk("%s: ", zone->name);
3339 spin_lock_irqsave(&zone->lock, flags);
3340 for (order = 0; order < MAX_ORDER; order++) {
3341 struct free_area *area = &zone->free_area[order];
3342 int type;
3344 nr[order] = area->nr_free;
3345 total += nr[order] << order;
3347 types[order] = 0;
3348 for (type = 0; type < MIGRATE_TYPES; type++) {
3349 if (!list_empty(&area->free_list[type]))
3350 types[order] |= 1 << type;
3353 spin_unlock_irqrestore(&zone->lock, flags);
3354 for (order = 0; order < MAX_ORDER; order++) {
3355 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3356 if (nr[order])
3357 show_migration_types(types[order]);
3359 printk("= %lukB\n", K(total));
3362 hugetlb_show_meminfo();
3364 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3366 show_swap_cache_info();
3369 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3371 zoneref->zone = zone;
3372 zoneref->zone_idx = zone_idx(zone);
3376 * Builds allocation fallback zone lists.
3378 * Add all populated zones of a node to the zonelist.
3380 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3381 int nr_zones)
3383 struct zone *zone;
3384 enum zone_type zone_type = MAX_NR_ZONES;
3386 do {
3387 zone_type--;
3388 zone = pgdat->node_zones + zone_type;
3389 if (populated_zone(zone)) {
3390 zoneref_set_zone(zone,
3391 &zonelist->_zonerefs[nr_zones++]);
3392 check_highest_zone(zone_type);
3394 } while (zone_type);
3396 return nr_zones;
3401 * zonelist_order:
3402 * 0 = automatic detection of better ordering.
3403 * 1 = order by ([node] distance, -zonetype)
3404 * 2 = order by (-zonetype, [node] distance)
3406 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3407 * the same zonelist. So only NUMA can configure this param.
3409 #define ZONELIST_ORDER_DEFAULT 0
3410 #define ZONELIST_ORDER_NODE 1
3411 #define ZONELIST_ORDER_ZONE 2
3413 /* zonelist order in the kernel.
3414 * set_zonelist_order() will set this to NODE or ZONE.
3416 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3417 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3420 #ifdef CONFIG_NUMA
3421 /* The value user specified ....changed by config */
3422 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3423 /* string for sysctl */
3424 #define NUMA_ZONELIST_ORDER_LEN 16
3425 char numa_zonelist_order[16] = "default";
3428 * interface for configure zonelist ordering.
3429 * command line option "numa_zonelist_order"
3430 * = "[dD]efault - default, automatic configuration.
3431 * = "[nN]ode - order by node locality, then by zone within node
3432 * = "[zZ]one - order by zone, then by locality within zone
3435 static int __parse_numa_zonelist_order(char *s)
3437 if (*s == 'd' || *s == 'D') {
3438 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3439 } else if (*s == 'n' || *s == 'N') {
3440 user_zonelist_order = ZONELIST_ORDER_NODE;
3441 } else if (*s == 'z' || *s == 'Z') {
3442 user_zonelist_order = ZONELIST_ORDER_ZONE;
3443 } else {
3444 printk(KERN_WARNING
3445 "Ignoring invalid numa_zonelist_order value: "
3446 "%s\n", s);
3447 return -EINVAL;
3449 return 0;
3452 static __init int setup_numa_zonelist_order(char *s)
3454 int ret;
3456 if (!s)
3457 return 0;
3459 ret = __parse_numa_zonelist_order(s);
3460 if (ret == 0)
3461 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3463 return ret;
3465 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3468 * sysctl handler for numa_zonelist_order
3470 int numa_zonelist_order_handler(ctl_table *table, int write,
3471 void __user *buffer, size_t *length,
3472 loff_t *ppos)
3474 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3475 int ret;
3476 static DEFINE_MUTEX(zl_order_mutex);
3478 mutex_lock(&zl_order_mutex);
3479 if (write) {
3480 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3481 ret = -EINVAL;
3482 goto out;
3484 strcpy(saved_string, (char *)table->data);
3486 ret = proc_dostring(table, write, buffer, length, ppos);
3487 if (ret)
3488 goto out;
3489 if (write) {
3490 int oldval = user_zonelist_order;
3492 ret = __parse_numa_zonelist_order((char *)table->data);
3493 if (ret) {
3495 * bogus value. restore saved string
3497 strncpy((char *)table->data, saved_string,
3498 NUMA_ZONELIST_ORDER_LEN);
3499 user_zonelist_order = oldval;
3500 } else if (oldval != user_zonelist_order) {
3501 mutex_lock(&zonelists_mutex);
3502 build_all_zonelists(NULL, NULL);
3503 mutex_unlock(&zonelists_mutex);
3506 out:
3507 mutex_unlock(&zl_order_mutex);
3508 return ret;
3512 #define MAX_NODE_LOAD (nr_online_nodes)
3513 static int node_load[MAX_NUMNODES];
3516 * find_next_best_node - find the next node that should appear in a given node's fallback list
3517 * @node: node whose fallback list we're appending
3518 * @used_node_mask: nodemask_t of already used nodes
3520 * We use a number of factors to determine which is the next node that should
3521 * appear on a given node's fallback list. The node should not have appeared
3522 * already in @node's fallback list, and it should be the next closest node
3523 * according to the distance array (which contains arbitrary distance values
3524 * from each node to each node in the system), and should also prefer nodes
3525 * with no CPUs, since presumably they'll have very little allocation pressure
3526 * on them otherwise.
3527 * It returns -1 if no node is found.
3529 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3531 int n, val;
3532 int min_val = INT_MAX;
3533 int best_node = NUMA_NO_NODE;
3534 const struct cpumask *tmp = cpumask_of_node(0);
3536 /* Use the local node if we haven't already */
3537 if (!node_isset(node, *used_node_mask)) {
3538 node_set(node, *used_node_mask);
3539 return node;
3542 for_each_node_state(n, N_MEMORY) {
3544 /* Don't want a node to appear more than once */
3545 if (node_isset(n, *used_node_mask))
3546 continue;
3548 /* Use the distance array to find the distance */
3549 val = node_distance(node, n);
3551 /* Penalize nodes under us ("prefer the next node") */
3552 val += (n < node);
3554 /* Give preference to headless and unused nodes */
3555 tmp = cpumask_of_node(n);
3556 if (!cpumask_empty(tmp))
3557 val += PENALTY_FOR_NODE_WITH_CPUS;
3559 /* Slight preference for less loaded node */
3560 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3561 val += node_load[n];
3563 if (val < min_val) {
3564 min_val = val;
3565 best_node = n;
3569 if (best_node >= 0)
3570 node_set(best_node, *used_node_mask);
3572 return best_node;
3577 * Build zonelists ordered by node and zones within node.
3578 * This results in maximum locality--normal zone overflows into local
3579 * DMA zone, if any--but risks exhausting DMA zone.
3581 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3583 int j;
3584 struct zonelist *zonelist;
3586 zonelist = &pgdat->node_zonelists[0];
3587 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3589 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3590 zonelist->_zonerefs[j].zone = NULL;
3591 zonelist->_zonerefs[j].zone_idx = 0;
3595 * Build gfp_thisnode zonelists
3597 static void build_thisnode_zonelists(pg_data_t *pgdat)
3599 int j;
3600 struct zonelist *zonelist;
3602 zonelist = &pgdat->node_zonelists[1];
3603 j = build_zonelists_node(pgdat, zonelist, 0);
3604 zonelist->_zonerefs[j].zone = NULL;
3605 zonelist->_zonerefs[j].zone_idx = 0;
3609 * Build zonelists ordered by zone and nodes within zones.
3610 * This results in conserving DMA zone[s] until all Normal memory is
3611 * exhausted, but results in overflowing to remote node while memory
3612 * may still exist in local DMA zone.
3614 static int node_order[MAX_NUMNODES];
3616 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3618 int pos, j, node;
3619 int zone_type; /* needs to be signed */
3620 struct zone *z;
3621 struct zonelist *zonelist;
3623 zonelist = &pgdat->node_zonelists[0];
3624 pos = 0;
3625 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3626 for (j = 0; j < nr_nodes; j++) {
3627 node = node_order[j];
3628 z = &NODE_DATA(node)->node_zones[zone_type];
3629 if (populated_zone(z)) {
3630 zoneref_set_zone(z,
3631 &zonelist->_zonerefs[pos++]);
3632 check_highest_zone(zone_type);
3636 zonelist->_zonerefs[pos].zone = NULL;
3637 zonelist->_zonerefs[pos].zone_idx = 0;
3640 static int default_zonelist_order(void)
3642 int nid, zone_type;
3643 unsigned long low_kmem_size, total_size;
3644 struct zone *z;
3645 int average_size;
3647 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3648 * If they are really small and used heavily, the system can fall
3649 * into OOM very easily.
3650 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3652 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3653 low_kmem_size = 0;
3654 total_size = 0;
3655 for_each_online_node(nid) {
3656 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3657 z = &NODE_DATA(nid)->node_zones[zone_type];
3658 if (populated_zone(z)) {
3659 if (zone_type < ZONE_NORMAL)
3660 low_kmem_size += z->managed_pages;
3661 total_size += z->managed_pages;
3662 } else if (zone_type == ZONE_NORMAL) {
3664 * If any node has only lowmem, then node order
3665 * is preferred to allow kernel allocations
3666 * locally; otherwise, they can easily infringe
3667 * on other nodes when there is an abundance of
3668 * lowmem available to allocate from.
3670 return ZONELIST_ORDER_NODE;
3674 if (!low_kmem_size || /* there are no DMA area. */
3675 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3676 return ZONELIST_ORDER_NODE;
3678 * look into each node's config.
3679 * If there is a node whose DMA/DMA32 memory is very big area on
3680 * local memory, NODE_ORDER may be suitable.
3682 average_size = total_size /
3683 (nodes_weight(node_states[N_MEMORY]) + 1);
3684 for_each_online_node(nid) {
3685 low_kmem_size = 0;
3686 total_size = 0;
3687 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3688 z = &NODE_DATA(nid)->node_zones[zone_type];
3689 if (populated_zone(z)) {
3690 if (zone_type < ZONE_NORMAL)
3691 low_kmem_size += z->present_pages;
3692 total_size += z->present_pages;
3695 if (low_kmem_size &&
3696 total_size > average_size && /* ignore small node */
3697 low_kmem_size > total_size * 70/100)
3698 return ZONELIST_ORDER_NODE;
3700 return ZONELIST_ORDER_ZONE;
3703 static void set_zonelist_order(void)
3705 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3706 current_zonelist_order = default_zonelist_order();
3707 else
3708 current_zonelist_order = user_zonelist_order;
3711 static void build_zonelists(pg_data_t *pgdat)
3713 int j, node, load;
3714 enum zone_type i;
3715 nodemask_t used_mask;
3716 int local_node, prev_node;
3717 struct zonelist *zonelist;
3718 int order = current_zonelist_order;
3720 /* initialize zonelists */
3721 for (i = 0; i < MAX_ZONELISTS; i++) {
3722 zonelist = pgdat->node_zonelists + i;
3723 zonelist->_zonerefs[0].zone = NULL;
3724 zonelist->_zonerefs[0].zone_idx = 0;
3727 /* NUMA-aware ordering of nodes */
3728 local_node = pgdat->node_id;
3729 load = nr_online_nodes;
3730 prev_node = local_node;
3731 nodes_clear(used_mask);
3733 memset(node_order, 0, sizeof(node_order));
3734 j = 0;
3736 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3738 * We don't want to pressure a particular node.
3739 * So adding penalty to the first node in same
3740 * distance group to make it round-robin.
3742 if (node_distance(local_node, node) !=
3743 node_distance(local_node, prev_node))
3744 node_load[node] = load;
3746 prev_node = node;
3747 load--;
3748 if (order == ZONELIST_ORDER_NODE)
3749 build_zonelists_in_node_order(pgdat, node);
3750 else
3751 node_order[j++] = node; /* remember order */
3754 if (order == ZONELIST_ORDER_ZONE) {
3755 /* calculate node order -- i.e., DMA last! */
3756 build_zonelists_in_zone_order(pgdat, j);
3759 build_thisnode_zonelists(pgdat);
3762 /* Construct the zonelist performance cache - see further mmzone.h */
3763 static void build_zonelist_cache(pg_data_t *pgdat)
3765 struct zonelist *zonelist;
3766 struct zonelist_cache *zlc;
3767 struct zoneref *z;
3769 zonelist = &pgdat->node_zonelists[0];
3770 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3771 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3772 for (z = zonelist->_zonerefs; z->zone; z++)
3773 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3776 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3778 * Return node id of node used for "local" allocations.
3779 * I.e., first node id of first zone in arg node's generic zonelist.
3780 * Used for initializing percpu 'numa_mem', which is used primarily
3781 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3783 int local_memory_node(int node)
3785 struct zone *zone;
3787 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3788 gfp_zone(GFP_KERNEL),
3789 NULL,
3790 &zone);
3791 return zone->node;
3793 #endif
3795 #else /* CONFIG_NUMA */
3797 static void set_zonelist_order(void)
3799 current_zonelist_order = ZONELIST_ORDER_ZONE;
3802 static void build_zonelists(pg_data_t *pgdat)
3804 int node, local_node;
3805 enum zone_type j;
3806 struct zonelist *zonelist;
3808 local_node = pgdat->node_id;
3810 zonelist = &pgdat->node_zonelists[0];
3811 j = build_zonelists_node(pgdat, zonelist, 0);
3814 * Now we build the zonelist so that it contains the zones
3815 * of all the other nodes.
3816 * We don't want to pressure a particular node, so when
3817 * building the zones for node N, we make sure that the
3818 * zones coming right after the local ones are those from
3819 * node N+1 (modulo N)
3821 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3822 if (!node_online(node))
3823 continue;
3824 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3826 for (node = 0; node < local_node; node++) {
3827 if (!node_online(node))
3828 continue;
3829 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3832 zonelist->_zonerefs[j].zone = NULL;
3833 zonelist->_zonerefs[j].zone_idx = 0;
3836 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3837 static void build_zonelist_cache(pg_data_t *pgdat)
3839 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3842 #endif /* CONFIG_NUMA */
3845 * Boot pageset table. One per cpu which is going to be used for all
3846 * zones and all nodes. The parameters will be set in such a way
3847 * that an item put on a list will immediately be handed over to
3848 * the buddy list. This is safe since pageset manipulation is done
3849 * with interrupts disabled.
3851 * The boot_pagesets must be kept even after bootup is complete for
3852 * unused processors and/or zones. They do play a role for bootstrapping
3853 * hotplugged processors.
3855 * zoneinfo_show() and maybe other functions do
3856 * not check if the processor is online before following the pageset pointer.
3857 * Other parts of the kernel may not check if the zone is available.
3859 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3860 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3861 static void setup_zone_pageset(struct zone *zone);
3864 * Global mutex to protect against size modification of zonelists
3865 * as well as to serialize pageset setup for the new populated zone.
3867 DEFINE_MUTEX(zonelists_mutex);
3869 /* return values int ....just for stop_machine() */
3870 static int __build_all_zonelists(void *data)
3872 int nid;
3873 int cpu;
3874 pg_data_t *self = data;
3876 #ifdef CONFIG_NUMA
3877 memset(node_load, 0, sizeof(node_load));
3878 #endif
3880 if (self && !node_online(self->node_id)) {
3881 build_zonelists(self);
3882 build_zonelist_cache(self);
3885 for_each_online_node(nid) {
3886 pg_data_t *pgdat = NODE_DATA(nid);
3888 build_zonelists(pgdat);
3889 build_zonelist_cache(pgdat);
3893 * Initialize the boot_pagesets that are going to be used
3894 * for bootstrapping processors. The real pagesets for
3895 * each zone will be allocated later when the per cpu
3896 * allocator is available.
3898 * boot_pagesets are used also for bootstrapping offline
3899 * cpus if the system is already booted because the pagesets
3900 * are needed to initialize allocators on a specific cpu too.
3901 * F.e. the percpu allocator needs the page allocator which
3902 * needs the percpu allocator in order to allocate its pagesets
3903 * (a chicken-egg dilemma).
3905 for_each_possible_cpu(cpu) {
3906 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3908 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3910 * We now know the "local memory node" for each node--
3911 * i.e., the node of the first zone in the generic zonelist.
3912 * Set up numa_mem percpu variable for on-line cpus. During
3913 * boot, only the boot cpu should be on-line; we'll init the
3914 * secondary cpus' numa_mem as they come on-line. During
3915 * node/memory hotplug, we'll fixup all on-line cpus.
3917 if (cpu_online(cpu))
3918 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3919 #endif
3922 return 0;
3926 * Called with zonelists_mutex held always
3927 * unless system_state == SYSTEM_BOOTING.
3929 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3931 set_zonelist_order();
3933 if (system_state == SYSTEM_BOOTING) {
3934 __build_all_zonelists(NULL);
3935 mminit_verify_zonelist();
3936 cpuset_init_current_mems_allowed();
3937 } else {
3938 #ifdef CONFIG_MEMORY_HOTPLUG
3939 if (zone)
3940 setup_zone_pageset(zone);
3941 #endif
3942 /* we have to stop all cpus to guarantee there is no user
3943 of zonelist */
3944 stop_machine(__build_all_zonelists, pgdat, NULL);
3945 /* cpuset refresh routine should be here */
3947 vm_total_pages = nr_free_pagecache_pages();
3949 * Disable grouping by mobility if the number of pages in the
3950 * system is too low to allow the mechanism to work. It would be
3951 * more accurate, but expensive to check per-zone. This check is
3952 * made on memory-hotadd so a system can start with mobility
3953 * disabled and enable it later
3955 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3956 page_group_by_mobility_disabled = 1;
3957 else
3958 page_group_by_mobility_disabled = 0;
3960 printk("Built %i zonelists in %s order, mobility grouping %s. "
3961 "Total pages: %ld\n",
3962 nr_online_nodes,
3963 zonelist_order_name[current_zonelist_order],
3964 page_group_by_mobility_disabled ? "off" : "on",
3965 vm_total_pages);
3966 #ifdef CONFIG_NUMA
3967 printk("Policy zone: %s\n", zone_names[policy_zone]);
3968 #endif
3972 * Helper functions to size the waitqueue hash table.
3973 * Essentially these want to choose hash table sizes sufficiently
3974 * large so that collisions trying to wait on pages are rare.
3975 * But in fact, the number of active page waitqueues on typical
3976 * systems is ridiculously low, less than 200. So this is even
3977 * conservative, even though it seems large.
3979 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3980 * waitqueues, i.e. the size of the waitq table given the number of pages.
3982 #define PAGES_PER_WAITQUEUE 256
3984 #ifndef CONFIG_MEMORY_HOTPLUG
3985 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3987 unsigned long size = 1;
3989 pages /= PAGES_PER_WAITQUEUE;
3991 while (size < pages)
3992 size <<= 1;
3995 * Once we have dozens or even hundreds of threads sleeping
3996 * on IO we've got bigger problems than wait queue collision.
3997 * Limit the size of the wait table to a reasonable size.
3999 size = min(size, 4096UL);
4001 return max(size, 4UL);
4003 #else
4005 * A zone's size might be changed by hot-add, so it is not possible to determine
4006 * a suitable size for its wait_table. So we use the maximum size now.
4008 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4010 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4011 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4012 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4014 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4015 * or more by the traditional way. (See above). It equals:
4017 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4018 * ia64(16K page size) : = ( 8G + 4M)byte.
4019 * powerpc (64K page size) : = (32G +16M)byte.
4021 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4023 return 4096UL;
4025 #endif
4028 * This is an integer logarithm so that shifts can be used later
4029 * to extract the more random high bits from the multiplicative
4030 * hash function before the remainder is taken.
4032 static inline unsigned long wait_table_bits(unsigned long size)
4034 return ffz(~size);
4038 * Check if a pageblock contains reserved pages
4040 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4042 unsigned long pfn;
4044 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4045 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4046 return 1;
4048 return 0;
4052 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4053 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4054 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4055 * higher will lead to a bigger reserve which will get freed as contiguous
4056 * blocks as reclaim kicks in
4058 static void setup_zone_migrate_reserve(struct zone *zone)
4060 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4061 struct page *page;
4062 unsigned long block_migratetype;
4063 int reserve;
4064 int old_reserve;
4067 * Get the start pfn, end pfn and the number of blocks to reserve
4068 * We have to be careful to be aligned to pageblock_nr_pages to
4069 * make sure that we always check pfn_valid for the first page in
4070 * the block.
4072 start_pfn = zone->zone_start_pfn;
4073 end_pfn = zone_end_pfn(zone);
4074 start_pfn = roundup(start_pfn, pageblock_nr_pages);
4075 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4076 pageblock_order;
4079 * Reserve blocks are generally in place to help high-order atomic
4080 * allocations that are short-lived. A min_free_kbytes value that
4081 * would result in more than 2 reserve blocks for atomic allocations
4082 * is assumed to be in place to help anti-fragmentation for the
4083 * future allocation of hugepages at runtime.
4085 reserve = min(2, reserve);
4086 old_reserve = zone->nr_migrate_reserve_block;
4088 /* When memory hot-add, we almost always need to do nothing */
4089 if (reserve == old_reserve)
4090 return;
4091 zone->nr_migrate_reserve_block = reserve;
4093 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4094 if (!pfn_valid(pfn))
4095 continue;
4096 page = pfn_to_page(pfn);
4098 /* Watch out for overlapping nodes */
4099 if (page_to_nid(page) != zone_to_nid(zone))
4100 continue;
4102 block_migratetype = get_pageblock_migratetype(page);
4104 /* Only test what is necessary when the reserves are not met */
4105 if (reserve > 0) {
4107 * Blocks with reserved pages will never free, skip
4108 * them.
4110 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4111 if (pageblock_is_reserved(pfn, block_end_pfn))
4112 continue;
4114 /* If this block is reserved, account for it */
4115 if (block_migratetype == MIGRATE_RESERVE) {
4116 reserve--;
4117 continue;
4120 /* Suitable for reserving if this block is movable */
4121 if (block_migratetype == MIGRATE_MOVABLE) {
4122 set_pageblock_migratetype(page,
4123 MIGRATE_RESERVE);
4124 move_freepages_block(zone, page,
4125 MIGRATE_RESERVE);
4126 reserve--;
4127 continue;
4129 } else if (!old_reserve) {
4131 * At boot time we don't need to scan the whole zone
4132 * for turning off MIGRATE_RESERVE.
4134 break;
4138 * If the reserve is met and this is a previous reserved block,
4139 * take it back
4141 if (block_migratetype == MIGRATE_RESERVE) {
4142 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4143 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4149 * Initially all pages are reserved - free ones are freed
4150 * up by free_all_bootmem() once the early boot process is
4151 * done. Non-atomic initialization, single-pass.
4153 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4154 unsigned long start_pfn, enum memmap_context context)
4156 struct page *page;
4157 unsigned long end_pfn = start_pfn + size;
4158 unsigned long pfn;
4159 struct zone *z;
4161 if (highest_memmap_pfn < end_pfn - 1)
4162 highest_memmap_pfn = end_pfn - 1;
4164 z = &NODE_DATA(nid)->node_zones[zone];
4165 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4167 * There can be holes in boot-time mem_map[]s
4168 * handed to this function. They do not
4169 * exist on hotplugged memory.
4171 if (context == MEMMAP_EARLY) {
4172 if (!early_pfn_valid(pfn))
4173 continue;
4174 if (!early_pfn_in_nid(pfn, nid))
4175 continue;
4177 page = pfn_to_page(pfn);
4178 set_page_links(page, zone, nid, pfn);
4179 mminit_verify_page_links(page, zone, nid, pfn);
4180 init_page_count(page);
4181 page_mapcount_reset(page);
4182 page_cpupid_reset_last(page);
4183 SetPageReserved(page);
4185 * Mark the block movable so that blocks are reserved for
4186 * movable at startup. This will force kernel allocations
4187 * to reserve their blocks rather than leaking throughout
4188 * the address space during boot when many long-lived
4189 * kernel allocations are made. Later some blocks near
4190 * the start are marked MIGRATE_RESERVE by
4191 * setup_zone_migrate_reserve()
4193 * bitmap is created for zone's valid pfn range. but memmap
4194 * can be created for invalid pages (for alignment)
4195 * check here not to call set_pageblock_migratetype() against
4196 * pfn out of zone.
4198 if ((z->zone_start_pfn <= pfn)
4199 && (pfn < zone_end_pfn(z))
4200 && !(pfn & (pageblock_nr_pages - 1)))
4201 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4203 INIT_LIST_HEAD(&page->lru);
4204 #ifdef WANT_PAGE_VIRTUAL
4205 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4206 if (!is_highmem_idx(zone))
4207 set_page_address(page, __va(pfn << PAGE_SHIFT));
4208 #endif
4212 static void __meminit zone_init_free_lists(struct zone *zone)
4214 unsigned int order, t;
4215 for_each_migratetype_order(order, t) {
4216 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4217 zone->free_area[order].nr_free = 0;
4221 #ifndef __HAVE_ARCH_MEMMAP_INIT
4222 #define memmap_init(size, nid, zone, start_pfn) \
4223 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4224 #endif
4226 static int zone_batchsize(struct zone *zone)
4228 #ifdef CONFIG_MMU
4229 int batch;
4232 * The per-cpu-pages pools are set to around 1000th of the
4233 * size of the zone. But no more than 1/2 of a meg.
4235 * OK, so we don't know how big the cache is. So guess.
4237 batch = zone->managed_pages / 1024;
4238 if (batch * PAGE_SIZE > 512 * 1024)
4239 batch = (512 * 1024) / PAGE_SIZE;
4240 batch /= 4; /* We effectively *= 4 below */
4241 if (batch < 1)
4242 batch = 1;
4245 * Clamp the batch to a 2^n - 1 value. Having a power
4246 * of 2 value was found to be more likely to have
4247 * suboptimal cache aliasing properties in some cases.
4249 * For example if 2 tasks are alternately allocating
4250 * batches of pages, one task can end up with a lot
4251 * of pages of one half of the possible page colors
4252 * and the other with pages of the other colors.
4254 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4256 return batch;
4258 #else
4259 /* The deferral and batching of frees should be suppressed under NOMMU
4260 * conditions.
4262 * The problem is that NOMMU needs to be able to allocate large chunks
4263 * of contiguous memory as there's no hardware page translation to
4264 * assemble apparent contiguous memory from discontiguous pages.
4266 * Queueing large contiguous runs of pages for batching, however,
4267 * causes the pages to actually be freed in smaller chunks. As there
4268 * can be a significant delay between the individual batches being
4269 * recycled, this leads to the once large chunks of space being
4270 * fragmented and becoming unavailable for high-order allocations.
4272 return 0;
4273 #endif
4277 * pcp->high and pcp->batch values are related and dependent on one another:
4278 * ->batch must never be higher then ->high.
4279 * The following function updates them in a safe manner without read side
4280 * locking.
4282 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4283 * those fields changing asynchronously (acording the the above rule).
4285 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4286 * outside of boot time (or some other assurance that no concurrent updaters
4287 * exist).
4289 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4290 unsigned long batch)
4292 /* start with a fail safe value for batch */
4293 pcp->batch = 1;
4294 smp_wmb();
4296 /* Update high, then batch, in order */
4297 pcp->high = high;
4298 smp_wmb();
4300 pcp->batch = batch;
4303 /* a companion to pageset_set_high() */
4304 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4306 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4309 static void pageset_init(struct per_cpu_pageset *p)
4311 struct per_cpu_pages *pcp;
4312 int migratetype;
4314 memset(p, 0, sizeof(*p));
4316 pcp = &p->pcp;
4317 pcp->count = 0;
4318 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4319 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4322 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4324 pageset_init(p);
4325 pageset_set_batch(p, batch);
4329 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4330 * to the value high for the pageset p.
4332 static void pageset_set_high(struct per_cpu_pageset *p,
4333 unsigned long high)
4335 unsigned long batch = max(1UL, high / 4);
4336 if ((high / 4) > (PAGE_SHIFT * 8))
4337 batch = PAGE_SHIFT * 8;
4339 pageset_update(&p->pcp, high, batch);
4342 static void pageset_set_high_and_batch(struct zone *zone,
4343 struct per_cpu_pageset *pcp)
4345 if (percpu_pagelist_fraction)
4346 pageset_set_high(pcp,
4347 (zone->managed_pages /
4348 percpu_pagelist_fraction));
4349 else
4350 pageset_set_batch(pcp, zone_batchsize(zone));
4353 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4355 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4357 pageset_init(pcp);
4358 pageset_set_high_and_batch(zone, pcp);
4361 static void __meminit setup_zone_pageset(struct zone *zone)
4363 int cpu;
4364 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4365 for_each_possible_cpu(cpu)
4366 zone_pageset_init(zone, cpu);
4370 * Allocate per cpu pagesets and initialize them.
4371 * Before this call only boot pagesets were available.
4373 void __init setup_per_cpu_pageset(void)
4375 struct zone *zone;
4377 for_each_populated_zone(zone)
4378 setup_zone_pageset(zone);
4381 static noinline __init_refok
4382 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4384 int i;
4385 size_t alloc_size;
4388 * The per-page waitqueue mechanism uses hashed waitqueues
4389 * per zone.
4391 zone->wait_table_hash_nr_entries =
4392 wait_table_hash_nr_entries(zone_size_pages);
4393 zone->wait_table_bits =
4394 wait_table_bits(zone->wait_table_hash_nr_entries);
4395 alloc_size = zone->wait_table_hash_nr_entries
4396 * sizeof(wait_queue_head_t);
4398 if (!slab_is_available()) {
4399 zone->wait_table = (wait_queue_head_t *)
4400 memblock_virt_alloc_node_nopanic(
4401 alloc_size, zone->zone_pgdat->node_id);
4402 } else {
4404 * This case means that a zone whose size was 0 gets new memory
4405 * via memory hot-add.
4406 * But it may be the case that a new node was hot-added. In
4407 * this case vmalloc() will not be able to use this new node's
4408 * memory - this wait_table must be initialized to use this new
4409 * node itself as well.
4410 * To use this new node's memory, further consideration will be
4411 * necessary.
4413 zone->wait_table = vmalloc(alloc_size);
4415 if (!zone->wait_table)
4416 return -ENOMEM;
4418 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4419 init_waitqueue_head(zone->wait_table + i);
4421 return 0;
4424 static __meminit void zone_pcp_init(struct zone *zone)
4427 * per cpu subsystem is not up at this point. The following code
4428 * relies on the ability of the linker to provide the
4429 * offset of a (static) per cpu variable into the per cpu area.
4431 zone->pageset = &boot_pageset;
4433 if (populated_zone(zone))
4434 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4435 zone->name, zone->present_pages,
4436 zone_batchsize(zone));
4439 int __meminit init_currently_empty_zone(struct zone *zone,
4440 unsigned long zone_start_pfn,
4441 unsigned long size,
4442 enum memmap_context context)
4444 struct pglist_data *pgdat = zone->zone_pgdat;
4445 int ret;
4446 ret = zone_wait_table_init(zone, size);
4447 if (ret)
4448 return ret;
4449 pgdat->nr_zones = zone_idx(zone) + 1;
4451 zone->zone_start_pfn = zone_start_pfn;
4453 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4454 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4455 pgdat->node_id,
4456 (unsigned long)zone_idx(zone),
4457 zone_start_pfn, (zone_start_pfn + size));
4459 zone_init_free_lists(zone);
4461 return 0;
4464 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4465 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4467 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4468 * Architectures may implement their own version but if add_active_range()
4469 * was used and there are no special requirements, this is a convenient
4470 * alternative
4472 int __meminit __early_pfn_to_nid(unsigned long pfn)
4474 unsigned long start_pfn, end_pfn;
4475 int nid;
4477 * NOTE: The following SMP-unsafe globals are only used early in boot
4478 * when the kernel is running single-threaded.
4480 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4481 static int __meminitdata last_nid;
4483 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4484 return last_nid;
4486 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4487 if (nid != -1) {
4488 last_start_pfn = start_pfn;
4489 last_end_pfn = end_pfn;
4490 last_nid = nid;
4493 return nid;
4495 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4497 int __meminit early_pfn_to_nid(unsigned long pfn)
4499 int nid;
4501 nid = __early_pfn_to_nid(pfn);
4502 if (nid >= 0)
4503 return nid;
4504 /* just returns 0 */
4505 return 0;
4508 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4509 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4511 int nid;
4513 nid = __early_pfn_to_nid(pfn);
4514 if (nid >= 0 && nid != node)
4515 return false;
4516 return true;
4518 #endif
4521 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4522 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4523 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4525 * If an architecture guarantees that all ranges registered with
4526 * add_active_ranges() contain no holes and may be freed, this
4527 * this function may be used instead of calling memblock_free_early_nid()
4528 * manually.
4530 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4532 unsigned long start_pfn, end_pfn;
4533 int i, this_nid;
4535 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4536 start_pfn = min(start_pfn, max_low_pfn);
4537 end_pfn = min(end_pfn, max_low_pfn);
4539 if (start_pfn < end_pfn)
4540 memblock_free_early_nid(PFN_PHYS(start_pfn),
4541 (end_pfn - start_pfn) << PAGE_SHIFT,
4542 this_nid);
4547 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4548 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4550 * If an architecture guarantees that all ranges registered with
4551 * add_active_ranges() contain no holes and may be freed, this
4552 * function may be used instead of calling memory_present() manually.
4554 void __init sparse_memory_present_with_active_regions(int nid)
4556 unsigned long start_pfn, end_pfn;
4557 int i, this_nid;
4559 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4560 memory_present(this_nid, start_pfn, end_pfn);
4564 * get_pfn_range_for_nid - Return the start and end page frames for a node
4565 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4566 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4567 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4569 * It returns the start and end page frame of a node based on information
4570 * provided by an arch calling add_active_range(). If called for a node
4571 * with no available memory, a warning is printed and the start and end
4572 * PFNs will be 0.
4574 void __meminit get_pfn_range_for_nid(unsigned int nid,
4575 unsigned long *start_pfn, unsigned long *end_pfn)
4577 unsigned long this_start_pfn, this_end_pfn;
4578 int i;
4580 *start_pfn = -1UL;
4581 *end_pfn = 0;
4583 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4584 *start_pfn = min(*start_pfn, this_start_pfn);
4585 *end_pfn = max(*end_pfn, this_end_pfn);
4588 if (*start_pfn == -1UL)
4589 *start_pfn = 0;
4593 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4594 * assumption is made that zones within a node are ordered in monotonic
4595 * increasing memory addresses so that the "highest" populated zone is used
4597 static void __init find_usable_zone_for_movable(void)
4599 int zone_index;
4600 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4601 if (zone_index == ZONE_MOVABLE)
4602 continue;
4604 if (arch_zone_highest_possible_pfn[zone_index] >
4605 arch_zone_lowest_possible_pfn[zone_index])
4606 break;
4609 VM_BUG_ON(zone_index == -1);
4610 movable_zone = zone_index;
4614 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4615 * because it is sized independent of architecture. Unlike the other zones,
4616 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4617 * in each node depending on the size of each node and how evenly kernelcore
4618 * is distributed. This helper function adjusts the zone ranges
4619 * provided by the architecture for a given node by using the end of the
4620 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4621 * zones within a node are in order of monotonic increases memory addresses
4623 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4624 unsigned long zone_type,
4625 unsigned long node_start_pfn,
4626 unsigned long node_end_pfn,
4627 unsigned long *zone_start_pfn,
4628 unsigned long *zone_end_pfn)
4630 /* Only adjust if ZONE_MOVABLE is on this node */
4631 if (zone_movable_pfn[nid]) {
4632 /* Size ZONE_MOVABLE */
4633 if (zone_type == ZONE_MOVABLE) {
4634 *zone_start_pfn = zone_movable_pfn[nid];
4635 *zone_end_pfn = min(node_end_pfn,
4636 arch_zone_highest_possible_pfn[movable_zone]);
4638 /* Adjust for ZONE_MOVABLE starting within this range */
4639 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4640 *zone_end_pfn > zone_movable_pfn[nid]) {
4641 *zone_end_pfn = zone_movable_pfn[nid];
4643 /* Check if this whole range is within ZONE_MOVABLE */
4644 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4645 *zone_start_pfn = *zone_end_pfn;
4650 * Return the number of pages a zone spans in a node, including holes
4651 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4653 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4654 unsigned long zone_type,
4655 unsigned long node_start_pfn,
4656 unsigned long node_end_pfn,
4657 unsigned long *ignored)
4659 unsigned long zone_start_pfn, zone_end_pfn;
4661 /* Get the start and end of the zone */
4662 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4663 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4664 adjust_zone_range_for_zone_movable(nid, zone_type,
4665 node_start_pfn, node_end_pfn,
4666 &zone_start_pfn, &zone_end_pfn);
4668 /* Check that this node has pages within the zone's required range */
4669 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4670 return 0;
4672 /* Move the zone boundaries inside the node if necessary */
4673 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4674 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4676 /* Return the spanned pages */
4677 return zone_end_pfn - zone_start_pfn;
4681 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4682 * then all holes in the requested range will be accounted for.
4684 unsigned long __meminit __absent_pages_in_range(int nid,
4685 unsigned long range_start_pfn,
4686 unsigned long range_end_pfn)
4688 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4689 unsigned long start_pfn, end_pfn;
4690 int i;
4692 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4693 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4694 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4695 nr_absent -= end_pfn - start_pfn;
4697 return nr_absent;
4701 * absent_pages_in_range - Return number of page frames in holes within a range
4702 * @start_pfn: The start PFN to start searching for holes
4703 * @end_pfn: The end PFN to stop searching for holes
4705 * It returns the number of pages frames in memory holes within a range.
4707 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4708 unsigned long end_pfn)
4710 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4713 /* Return the number of page frames in holes in a zone on a node */
4714 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4715 unsigned long zone_type,
4716 unsigned long node_start_pfn,
4717 unsigned long node_end_pfn,
4718 unsigned long *ignored)
4720 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4721 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4722 unsigned long zone_start_pfn, zone_end_pfn;
4724 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4725 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4727 adjust_zone_range_for_zone_movable(nid, zone_type,
4728 node_start_pfn, node_end_pfn,
4729 &zone_start_pfn, &zone_end_pfn);
4730 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4733 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4734 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4735 unsigned long zone_type,
4736 unsigned long node_start_pfn,
4737 unsigned long node_end_pfn,
4738 unsigned long *zones_size)
4740 return zones_size[zone_type];
4743 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4744 unsigned long zone_type,
4745 unsigned long node_start_pfn,
4746 unsigned long node_end_pfn,
4747 unsigned long *zholes_size)
4749 if (!zholes_size)
4750 return 0;
4752 return zholes_size[zone_type];
4755 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4757 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4758 unsigned long node_start_pfn,
4759 unsigned long node_end_pfn,
4760 unsigned long *zones_size,
4761 unsigned long *zholes_size)
4763 unsigned long realtotalpages, totalpages = 0;
4764 enum zone_type i;
4766 for (i = 0; i < MAX_NR_ZONES; i++)
4767 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4768 node_start_pfn,
4769 node_end_pfn,
4770 zones_size);
4771 pgdat->node_spanned_pages = totalpages;
4773 realtotalpages = totalpages;
4774 for (i = 0; i < MAX_NR_ZONES; i++)
4775 realtotalpages -=
4776 zone_absent_pages_in_node(pgdat->node_id, i,
4777 node_start_pfn, node_end_pfn,
4778 zholes_size);
4779 pgdat->node_present_pages = realtotalpages;
4780 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4781 realtotalpages);
4784 #ifndef CONFIG_SPARSEMEM
4786 * Calculate the size of the zone->blockflags rounded to an unsigned long
4787 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4788 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4789 * round what is now in bits to nearest long in bits, then return it in
4790 * bytes.
4792 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4794 unsigned long usemapsize;
4796 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4797 usemapsize = roundup(zonesize, pageblock_nr_pages);
4798 usemapsize = usemapsize >> pageblock_order;
4799 usemapsize *= NR_PAGEBLOCK_BITS;
4800 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4802 return usemapsize / 8;
4805 static void __init setup_usemap(struct pglist_data *pgdat,
4806 struct zone *zone,
4807 unsigned long zone_start_pfn,
4808 unsigned long zonesize)
4810 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4811 zone->pageblock_flags = NULL;
4812 if (usemapsize)
4813 zone->pageblock_flags =
4814 memblock_virt_alloc_node_nopanic(usemapsize,
4815 pgdat->node_id);
4817 #else
4818 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4819 unsigned long zone_start_pfn, unsigned long zonesize) {}
4820 #endif /* CONFIG_SPARSEMEM */
4822 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4824 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4825 void __paginginit set_pageblock_order(void)
4827 unsigned int order;
4829 /* Check that pageblock_nr_pages has not already been setup */
4830 if (pageblock_order)
4831 return;
4833 if (HPAGE_SHIFT > PAGE_SHIFT)
4834 order = HUGETLB_PAGE_ORDER;
4835 else
4836 order = MAX_ORDER - 1;
4839 * Assume the largest contiguous order of interest is a huge page.
4840 * This value may be variable depending on boot parameters on IA64 and
4841 * powerpc.
4843 pageblock_order = order;
4845 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4848 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4849 * is unused as pageblock_order is set at compile-time. See
4850 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4851 * the kernel config
4853 void __paginginit set_pageblock_order(void)
4857 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4859 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4860 unsigned long present_pages)
4862 unsigned long pages = spanned_pages;
4865 * Provide a more accurate estimation if there are holes within
4866 * the zone and SPARSEMEM is in use. If there are holes within the
4867 * zone, each populated memory region may cost us one or two extra
4868 * memmap pages due to alignment because memmap pages for each
4869 * populated regions may not naturally algined on page boundary.
4870 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4872 if (spanned_pages > present_pages + (present_pages >> 4) &&
4873 IS_ENABLED(CONFIG_SPARSEMEM))
4874 pages = present_pages;
4876 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4880 * Set up the zone data structures:
4881 * - mark all pages reserved
4882 * - mark all memory queues empty
4883 * - clear the memory bitmaps
4885 * NOTE: pgdat should get zeroed by caller.
4887 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4888 unsigned long node_start_pfn, unsigned long node_end_pfn,
4889 unsigned long *zones_size, unsigned long *zholes_size)
4891 enum zone_type j;
4892 int nid = pgdat->node_id;
4893 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4894 int ret;
4896 pgdat_resize_init(pgdat);
4897 #ifdef CONFIG_NUMA_BALANCING
4898 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4899 pgdat->numabalancing_migrate_nr_pages = 0;
4900 pgdat->numabalancing_migrate_next_window = jiffies;
4901 #endif
4902 init_waitqueue_head(&pgdat->kswapd_wait);
4903 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4904 pgdat_page_cgroup_init(pgdat);
4906 for (j = 0; j < MAX_NR_ZONES; j++) {
4907 struct zone *zone = pgdat->node_zones + j;
4908 unsigned long size, realsize, freesize, memmap_pages;
4910 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4911 node_end_pfn, zones_size);
4912 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4913 node_start_pfn,
4914 node_end_pfn,
4915 zholes_size);
4918 * Adjust freesize so that it accounts for how much memory
4919 * is used by this zone for memmap. This affects the watermark
4920 * and per-cpu initialisations
4922 memmap_pages = calc_memmap_size(size, realsize);
4923 if (freesize >= memmap_pages) {
4924 freesize -= memmap_pages;
4925 if (memmap_pages)
4926 printk(KERN_DEBUG
4927 " %s zone: %lu pages used for memmap\n",
4928 zone_names[j], memmap_pages);
4929 } else
4930 printk(KERN_WARNING
4931 " %s zone: %lu pages exceeds freesize %lu\n",
4932 zone_names[j], memmap_pages, freesize);
4934 /* Account for reserved pages */
4935 if (j == 0 && freesize > dma_reserve) {
4936 freesize -= dma_reserve;
4937 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4938 zone_names[0], dma_reserve);
4941 if (!is_highmem_idx(j))
4942 nr_kernel_pages += freesize;
4943 /* Charge for highmem memmap if there are enough kernel pages */
4944 else if (nr_kernel_pages > memmap_pages * 2)
4945 nr_kernel_pages -= memmap_pages;
4946 nr_all_pages += freesize;
4948 zone->spanned_pages = size;
4949 zone->present_pages = realsize;
4951 * Set an approximate value for lowmem here, it will be adjusted
4952 * when the bootmem allocator frees pages into the buddy system.
4953 * And all highmem pages will be managed by the buddy system.
4955 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4956 #ifdef CONFIG_NUMA
4957 zone->node = nid;
4958 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4959 / 100;
4960 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4961 #endif
4962 zone->name = zone_names[j];
4963 spin_lock_init(&zone->lock);
4964 spin_lock_init(&zone->lru_lock);
4965 zone_seqlock_init(zone);
4966 zone->zone_pgdat = pgdat;
4967 zone_pcp_init(zone);
4969 /* For bootup, initialized properly in watermark setup */
4970 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4972 lruvec_init(&zone->lruvec);
4973 if (!size)
4974 continue;
4976 set_pageblock_order();
4977 setup_usemap(pgdat, zone, zone_start_pfn, size);
4978 ret = init_currently_empty_zone(zone, zone_start_pfn,
4979 size, MEMMAP_EARLY);
4980 BUG_ON(ret);
4981 memmap_init(size, nid, j, zone_start_pfn);
4982 zone_start_pfn += size;
4986 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4988 /* Skip empty nodes */
4989 if (!pgdat->node_spanned_pages)
4990 return;
4992 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4993 /* ia64 gets its own node_mem_map, before this, without bootmem */
4994 if (!pgdat->node_mem_map) {
4995 unsigned long size, start, end;
4996 struct page *map;
4999 * The zone's endpoints aren't required to be MAX_ORDER
5000 * aligned but the node_mem_map endpoints must be in order
5001 * for the buddy allocator to function correctly.
5003 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5004 end = pgdat_end_pfn(pgdat);
5005 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5006 size = (end - start) * sizeof(struct page);
5007 map = alloc_remap(pgdat->node_id, size);
5008 if (!map)
5009 map = memblock_virt_alloc_node_nopanic(size,
5010 pgdat->node_id);
5011 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
5013 #ifndef CONFIG_NEED_MULTIPLE_NODES
5015 * With no DISCONTIG, the global mem_map is just set as node 0's
5017 if (pgdat == NODE_DATA(0)) {
5018 mem_map = NODE_DATA(0)->node_mem_map;
5019 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5020 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5021 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
5022 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5024 #endif
5025 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5028 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5029 unsigned long node_start_pfn, unsigned long *zholes_size)
5031 pg_data_t *pgdat = NODE_DATA(nid);
5032 unsigned long start_pfn = 0;
5033 unsigned long end_pfn = 0;
5035 /* pg_data_t should be reset to zero when it's allocated */
5036 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5038 pgdat->node_id = nid;
5039 pgdat->node_start_pfn = node_start_pfn;
5040 if (node_state(nid, N_MEMORY))
5041 init_zone_allows_reclaim(nid);
5042 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5043 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5044 #endif
5045 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5046 zones_size, zholes_size);
5048 alloc_node_mem_map(pgdat);
5049 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5050 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5051 nid, (unsigned long)pgdat,
5052 (unsigned long)pgdat->node_mem_map);
5053 #endif
5055 free_area_init_core(pgdat, start_pfn, end_pfn,
5056 zones_size, zholes_size);
5059 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5061 #if MAX_NUMNODES > 1
5063 * Figure out the number of possible node ids.
5065 void __init setup_nr_node_ids(void)
5067 unsigned int node;
5068 unsigned int highest = 0;
5070 for_each_node_mask(node, node_possible_map)
5071 highest = node;
5072 nr_node_ids = highest + 1;
5074 #endif
5077 * node_map_pfn_alignment - determine the maximum internode alignment
5079 * This function should be called after node map is populated and sorted.
5080 * It calculates the maximum power of two alignment which can distinguish
5081 * all the nodes.
5083 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5084 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5085 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5086 * shifted, 1GiB is enough and this function will indicate so.
5088 * This is used to test whether pfn -> nid mapping of the chosen memory
5089 * model has fine enough granularity to avoid incorrect mapping for the
5090 * populated node map.
5092 * Returns the determined alignment in pfn's. 0 if there is no alignment
5093 * requirement (single node).
5095 unsigned long __init node_map_pfn_alignment(void)
5097 unsigned long accl_mask = 0, last_end = 0;
5098 unsigned long start, end, mask;
5099 int last_nid = -1;
5100 int i, nid;
5102 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5103 if (!start || last_nid < 0 || last_nid == nid) {
5104 last_nid = nid;
5105 last_end = end;
5106 continue;
5110 * Start with a mask granular enough to pin-point to the
5111 * start pfn and tick off bits one-by-one until it becomes
5112 * too coarse to separate the current node from the last.
5114 mask = ~((1 << __ffs(start)) - 1);
5115 while (mask && last_end <= (start & (mask << 1)))
5116 mask <<= 1;
5118 /* accumulate all internode masks */
5119 accl_mask |= mask;
5122 /* convert mask to number of pages */
5123 return ~accl_mask + 1;
5126 /* Find the lowest pfn for a node */
5127 static unsigned long __init find_min_pfn_for_node(int nid)
5129 unsigned long min_pfn = ULONG_MAX;
5130 unsigned long start_pfn;
5131 int i;
5133 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5134 min_pfn = min(min_pfn, start_pfn);
5136 if (min_pfn == ULONG_MAX) {
5137 printk(KERN_WARNING
5138 "Could not find start_pfn for node %d\n", nid);
5139 return 0;
5142 return min_pfn;
5146 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5148 * It returns the minimum PFN based on information provided via
5149 * add_active_range().
5151 unsigned long __init find_min_pfn_with_active_regions(void)
5153 return find_min_pfn_for_node(MAX_NUMNODES);
5157 * early_calculate_totalpages()
5158 * Sum pages in active regions for movable zone.
5159 * Populate N_MEMORY for calculating usable_nodes.
5161 static unsigned long __init early_calculate_totalpages(void)
5163 unsigned long totalpages = 0;
5164 unsigned long start_pfn, end_pfn;
5165 int i, nid;
5167 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5168 unsigned long pages = end_pfn - start_pfn;
5170 totalpages += pages;
5171 if (pages)
5172 node_set_state(nid, N_MEMORY);
5174 return totalpages;
5178 * Find the PFN the Movable zone begins in each node. Kernel memory
5179 * is spread evenly between nodes as long as the nodes have enough
5180 * memory. When they don't, some nodes will have more kernelcore than
5181 * others
5183 static void __init find_zone_movable_pfns_for_nodes(void)
5185 int i, nid;
5186 unsigned long usable_startpfn;
5187 unsigned long kernelcore_node, kernelcore_remaining;
5188 /* save the state before borrow the nodemask */
5189 nodemask_t saved_node_state = node_states[N_MEMORY];
5190 unsigned long totalpages = early_calculate_totalpages();
5191 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5192 struct memblock_type *type = &memblock.memory;
5194 /* Need to find movable_zone earlier when movable_node is specified. */
5195 find_usable_zone_for_movable();
5198 * If movable_node is specified, ignore kernelcore and movablecore
5199 * options.
5201 if (movable_node_is_enabled()) {
5202 for (i = 0; i < type->cnt; i++) {
5203 if (!memblock_is_hotpluggable(&type->regions[i]))
5204 continue;
5206 nid = type->regions[i].nid;
5208 usable_startpfn = PFN_DOWN(type->regions[i].base);
5209 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5210 min(usable_startpfn, zone_movable_pfn[nid]) :
5211 usable_startpfn;
5214 goto out2;
5218 * If movablecore=nn[KMG] was specified, calculate what size of
5219 * kernelcore that corresponds so that memory usable for
5220 * any allocation type is evenly spread. If both kernelcore
5221 * and movablecore are specified, then the value of kernelcore
5222 * will be used for required_kernelcore if it's greater than
5223 * what movablecore would have allowed.
5225 if (required_movablecore) {
5226 unsigned long corepages;
5229 * Round-up so that ZONE_MOVABLE is at least as large as what
5230 * was requested by the user
5232 required_movablecore =
5233 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5234 corepages = totalpages - required_movablecore;
5236 required_kernelcore = max(required_kernelcore, corepages);
5239 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5240 if (!required_kernelcore)
5241 goto out;
5243 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5244 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5246 restart:
5247 /* Spread kernelcore memory as evenly as possible throughout nodes */
5248 kernelcore_node = required_kernelcore / usable_nodes;
5249 for_each_node_state(nid, N_MEMORY) {
5250 unsigned long start_pfn, end_pfn;
5253 * Recalculate kernelcore_node if the division per node
5254 * now exceeds what is necessary to satisfy the requested
5255 * amount of memory for the kernel
5257 if (required_kernelcore < kernelcore_node)
5258 kernelcore_node = required_kernelcore / usable_nodes;
5261 * As the map is walked, we track how much memory is usable
5262 * by the kernel using kernelcore_remaining. When it is
5263 * 0, the rest of the node is usable by ZONE_MOVABLE
5265 kernelcore_remaining = kernelcore_node;
5267 /* Go through each range of PFNs within this node */
5268 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5269 unsigned long size_pages;
5271 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5272 if (start_pfn >= end_pfn)
5273 continue;
5275 /* Account for what is only usable for kernelcore */
5276 if (start_pfn < usable_startpfn) {
5277 unsigned long kernel_pages;
5278 kernel_pages = min(end_pfn, usable_startpfn)
5279 - start_pfn;
5281 kernelcore_remaining -= min(kernel_pages,
5282 kernelcore_remaining);
5283 required_kernelcore -= min(kernel_pages,
5284 required_kernelcore);
5286 /* Continue if range is now fully accounted */
5287 if (end_pfn <= usable_startpfn) {
5290 * Push zone_movable_pfn to the end so
5291 * that if we have to rebalance
5292 * kernelcore across nodes, we will
5293 * not double account here
5295 zone_movable_pfn[nid] = end_pfn;
5296 continue;
5298 start_pfn = usable_startpfn;
5302 * The usable PFN range for ZONE_MOVABLE is from
5303 * start_pfn->end_pfn. Calculate size_pages as the
5304 * number of pages used as kernelcore
5306 size_pages = end_pfn - start_pfn;
5307 if (size_pages > kernelcore_remaining)
5308 size_pages = kernelcore_remaining;
5309 zone_movable_pfn[nid] = start_pfn + size_pages;
5312 * Some kernelcore has been met, update counts and
5313 * break if the kernelcore for this node has been
5314 * satisfied
5316 required_kernelcore -= min(required_kernelcore,
5317 size_pages);
5318 kernelcore_remaining -= size_pages;
5319 if (!kernelcore_remaining)
5320 break;
5325 * If there is still required_kernelcore, we do another pass with one
5326 * less node in the count. This will push zone_movable_pfn[nid] further
5327 * along on the nodes that still have memory until kernelcore is
5328 * satisfied
5330 usable_nodes--;
5331 if (usable_nodes && required_kernelcore > usable_nodes)
5332 goto restart;
5334 out2:
5335 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5336 for (nid = 0; nid < MAX_NUMNODES; nid++)
5337 zone_movable_pfn[nid] =
5338 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5340 out:
5341 /* restore the node_state */
5342 node_states[N_MEMORY] = saved_node_state;
5345 /* Any regular or high memory on that node ? */
5346 static void check_for_memory(pg_data_t *pgdat, int nid)
5348 enum zone_type zone_type;
5350 if (N_MEMORY == N_NORMAL_MEMORY)
5351 return;
5353 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5354 struct zone *zone = &pgdat->node_zones[zone_type];
5355 if (populated_zone(zone)) {
5356 node_set_state(nid, N_HIGH_MEMORY);
5357 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5358 zone_type <= ZONE_NORMAL)
5359 node_set_state(nid, N_NORMAL_MEMORY);
5360 break;
5366 * free_area_init_nodes - Initialise all pg_data_t and zone data
5367 * @max_zone_pfn: an array of max PFNs for each zone
5369 * This will call free_area_init_node() for each active node in the system.
5370 * Using the page ranges provided by add_active_range(), the size of each
5371 * zone in each node and their holes is calculated. If the maximum PFN
5372 * between two adjacent zones match, it is assumed that the zone is empty.
5373 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5374 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5375 * starts where the previous one ended. For example, ZONE_DMA32 starts
5376 * at arch_max_dma_pfn.
5378 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5380 unsigned long start_pfn, end_pfn;
5381 int i, nid;
5383 /* Record where the zone boundaries are */
5384 memset(arch_zone_lowest_possible_pfn, 0,
5385 sizeof(arch_zone_lowest_possible_pfn));
5386 memset(arch_zone_highest_possible_pfn, 0,
5387 sizeof(arch_zone_highest_possible_pfn));
5388 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5389 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5390 for (i = 1; i < MAX_NR_ZONES; i++) {
5391 if (i == ZONE_MOVABLE)
5392 continue;
5393 arch_zone_lowest_possible_pfn[i] =
5394 arch_zone_highest_possible_pfn[i-1];
5395 arch_zone_highest_possible_pfn[i] =
5396 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5398 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5399 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5401 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5402 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5403 find_zone_movable_pfns_for_nodes();
5405 /* Print out the zone ranges */
5406 printk("Zone ranges:\n");
5407 for (i = 0; i < MAX_NR_ZONES; i++) {
5408 if (i == ZONE_MOVABLE)
5409 continue;
5410 printk(KERN_CONT " %-8s ", zone_names[i]);
5411 if (arch_zone_lowest_possible_pfn[i] ==
5412 arch_zone_highest_possible_pfn[i])
5413 printk(KERN_CONT "empty\n");
5414 else
5415 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5416 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5417 (arch_zone_highest_possible_pfn[i]
5418 << PAGE_SHIFT) - 1);
5421 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5422 printk("Movable zone start for each node\n");
5423 for (i = 0; i < MAX_NUMNODES; i++) {
5424 if (zone_movable_pfn[i])
5425 printk(" Node %d: %#010lx\n", i,
5426 zone_movable_pfn[i] << PAGE_SHIFT);
5429 /* Print out the early node map */
5430 printk("Early memory node ranges\n");
5431 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5432 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5433 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5435 /* Initialise every node */
5436 mminit_verify_pageflags_layout();
5437 setup_nr_node_ids();
5438 for_each_online_node(nid) {
5439 pg_data_t *pgdat = NODE_DATA(nid);
5440 free_area_init_node(nid, NULL,
5441 find_min_pfn_for_node(nid), NULL);
5443 /* Any memory on that node */
5444 if (pgdat->node_present_pages)
5445 node_set_state(nid, N_MEMORY);
5446 check_for_memory(pgdat, nid);
5450 static int __init cmdline_parse_core(char *p, unsigned long *core)
5452 unsigned long long coremem;
5453 if (!p)
5454 return -EINVAL;
5456 coremem = memparse(p, &p);
5457 *core = coremem >> PAGE_SHIFT;
5459 /* Paranoid check that UL is enough for the coremem value */
5460 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5462 return 0;
5466 * kernelcore=size sets the amount of memory for use for allocations that
5467 * cannot be reclaimed or migrated.
5469 static int __init cmdline_parse_kernelcore(char *p)
5471 return cmdline_parse_core(p, &required_kernelcore);
5475 * movablecore=size sets the amount of memory for use for allocations that
5476 * can be reclaimed or migrated.
5478 static int __init cmdline_parse_movablecore(char *p)
5480 return cmdline_parse_core(p, &required_movablecore);
5483 early_param("kernelcore", cmdline_parse_kernelcore);
5484 early_param("movablecore", cmdline_parse_movablecore);
5486 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5488 void adjust_managed_page_count(struct page *page, long count)
5490 spin_lock(&managed_page_count_lock);
5491 page_zone(page)->managed_pages += count;
5492 totalram_pages += count;
5493 #ifdef CONFIG_HIGHMEM
5494 if (PageHighMem(page))
5495 totalhigh_pages += count;
5496 #endif
5497 spin_unlock(&managed_page_count_lock);
5499 EXPORT_SYMBOL(adjust_managed_page_count);
5501 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5503 void *pos;
5504 unsigned long pages = 0;
5506 start = (void *)PAGE_ALIGN((unsigned long)start);
5507 end = (void *)((unsigned long)end & PAGE_MASK);
5508 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5509 if ((unsigned int)poison <= 0xFF)
5510 memset(pos, poison, PAGE_SIZE);
5511 free_reserved_page(virt_to_page(pos));
5514 if (pages && s)
5515 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5516 s, pages << (PAGE_SHIFT - 10), start, end);
5518 return pages;
5520 EXPORT_SYMBOL(free_reserved_area);
5522 #ifdef CONFIG_HIGHMEM
5523 void free_highmem_page(struct page *page)
5525 __free_reserved_page(page);
5526 totalram_pages++;
5527 page_zone(page)->managed_pages++;
5528 totalhigh_pages++;
5530 #endif
5533 void __init mem_init_print_info(const char *str)
5535 unsigned long physpages, codesize, datasize, rosize, bss_size;
5536 unsigned long init_code_size, init_data_size;
5538 physpages = get_num_physpages();
5539 codesize = _etext - _stext;
5540 datasize = _edata - _sdata;
5541 rosize = __end_rodata - __start_rodata;
5542 bss_size = __bss_stop - __bss_start;
5543 init_data_size = __init_end - __init_begin;
5544 init_code_size = _einittext - _sinittext;
5547 * Detect special cases and adjust section sizes accordingly:
5548 * 1) .init.* may be embedded into .data sections
5549 * 2) .init.text.* may be out of [__init_begin, __init_end],
5550 * please refer to arch/tile/kernel/vmlinux.lds.S.
5551 * 3) .rodata.* may be embedded into .text or .data sections.
5553 #define adj_init_size(start, end, size, pos, adj) \
5554 do { \
5555 if (start <= pos && pos < end && size > adj) \
5556 size -= adj; \
5557 } while (0)
5559 adj_init_size(__init_begin, __init_end, init_data_size,
5560 _sinittext, init_code_size);
5561 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5562 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5563 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5564 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5566 #undef adj_init_size
5568 printk("Memory: %luK/%luK available "
5569 "(%luK kernel code, %luK rwdata, %luK rodata, "
5570 "%luK init, %luK bss, %luK reserved"
5571 #ifdef CONFIG_HIGHMEM
5572 ", %luK highmem"
5573 #endif
5574 "%s%s)\n",
5575 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5576 codesize >> 10, datasize >> 10, rosize >> 10,
5577 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5578 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5579 #ifdef CONFIG_HIGHMEM
5580 totalhigh_pages << (PAGE_SHIFT-10),
5581 #endif
5582 str ? ", " : "", str ? str : "");
5586 * set_dma_reserve - set the specified number of pages reserved in the first zone
5587 * @new_dma_reserve: The number of pages to mark reserved
5589 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5590 * In the DMA zone, a significant percentage may be consumed by kernel image
5591 * and other unfreeable allocations which can skew the watermarks badly. This
5592 * function may optionally be used to account for unfreeable pages in the
5593 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5594 * smaller per-cpu batchsize.
5596 void __init set_dma_reserve(unsigned long new_dma_reserve)
5598 dma_reserve = new_dma_reserve;
5601 void __init free_area_init(unsigned long *zones_size)
5603 free_area_init_node(0, zones_size,
5604 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5607 static int page_alloc_cpu_notify(struct notifier_block *self,
5608 unsigned long action, void *hcpu)
5610 int cpu = (unsigned long)hcpu;
5612 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5613 lru_add_drain_cpu(cpu);
5614 drain_pages(cpu);
5617 * Spill the event counters of the dead processor
5618 * into the current processors event counters.
5619 * This artificially elevates the count of the current
5620 * processor.
5622 vm_events_fold_cpu(cpu);
5625 * Zero the differential counters of the dead processor
5626 * so that the vm statistics are consistent.
5628 * This is only okay since the processor is dead and cannot
5629 * race with what we are doing.
5631 cpu_vm_stats_fold(cpu);
5633 return NOTIFY_OK;
5636 void __init page_alloc_init(void)
5638 hotcpu_notifier(page_alloc_cpu_notify, 0);
5639 local_irq_lock_init(pa_lock);
5643 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5644 * or min_free_kbytes changes.
5646 static void calculate_totalreserve_pages(void)
5648 struct pglist_data *pgdat;
5649 unsigned long reserve_pages = 0;
5650 enum zone_type i, j;
5652 for_each_online_pgdat(pgdat) {
5653 for (i = 0; i < MAX_NR_ZONES; i++) {
5654 struct zone *zone = pgdat->node_zones + i;
5655 long max = 0;
5657 /* Find valid and maximum lowmem_reserve in the zone */
5658 for (j = i; j < MAX_NR_ZONES; j++) {
5659 if (zone->lowmem_reserve[j] > max)
5660 max = zone->lowmem_reserve[j];
5663 /* we treat the high watermark as reserved pages. */
5664 max += high_wmark_pages(zone);
5666 if (max > zone->managed_pages)
5667 max = zone->managed_pages;
5668 reserve_pages += max;
5670 * Lowmem reserves are not available to
5671 * GFP_HIGHUSER page cache allocations and
5672 * kswapd tries to balance zones to their high
5673 * watermark. As a result, neither should be
5674 * regarded as dirtyable memory, to prevent a
5675 * situation where reclaim has to clean pages
5676 * in order to balance the zones.
5678 zone->dirty_balance_reserve = max;
5681 dirty_balance_reserve = reserve_pages;
5682 totalreserve_pages = reserve_pages;
5686 * setup_per_zone_lowmem_reserve - called whenever
5687 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5688 * has a correct pages reserved value, so an adequate number of
5689 * pages are left in the zone after a successful __alloc_pages().
5691 static void setup_per_zone_lowmem_reserve(void)
5693 struct pglist_data *pgdat;
5694 enum zone_type j, idx;
5696 for_each_online_pgdat(pgdat) {
5697 for (j = 0; j < MAX_NR_ZONES; j++) {
5698 struct zone *zone = pgdat->node_zones + j;
5699 unsigned long managed_pages = zone->managed_pages;
5701 zone->lowmem_reserve[j] = 0;
5703 idx = j;
5704 while (idx) {
5705 struct zone *lower_zone;
5707 idx--;
5709 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5710 sysctl_lowmem_reserve_ratio[idx] = 1;
5712 lower_zone = pgdat->node_zones + idx;
5713 lower_zone->lowmem_reserve[j] = managed_pages /
5714 sysctl_lowmem_reserve_ratio[idx];
5715 managed_pages += lower_zone->managed_pages;
5720 /* update totalreserve_pages */
5721 calculate_totalreserve_pages();
5724 static void __setup_per_zone_wmarks(void)
5726 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5727 unsigned long lowmem_pages = 0;
5728 struct zone *zone;
5729 unsigned long flags;
5731 /* Calculate total number of !ZONE_HIGHMEM pages */
5732 for_each_zone(zone) {
5733 if (!is_highmem(zone))
5734 lowmem_pages += zone->managed_pages;
5737 for_each_zone(zone) {
5738 u64 tmp;
5740 spin_lock_irqsave(&zone->lock, flags);
5741 tmp = (u64)pages_min * zone->managed_pages;
5742 do_div(tmp, lowmem_pages);
5743 if (is_highmem(zone)) {
5745 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5746 * need highmem pages, so cap pages_min to a small
5747 * value here.
5749 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5750 * deltas controls asynch page reclaim, and so should
5751 * not be capped for highmem.
5753 unsigned long min_pages;
5755 min_pages = zone->managed_pages / 1024;
5756 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5757 zone->watermark[WMARK_MIN] = min_pages;
5758 } else {
5760 * If it's a lowmem zone, reserve a number of pages
5761 * proportionate to the zone's size.
5763 zone->watermark[WMARK_MIN] = tmp;
5766 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5767 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5769 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5770 high_wmark_pages(zone) - low_wmark_pages(zone) -
5771 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5773 setup_zone_migrate_reserve(zone);
5774 spin_unlock_irqrestore(&zone->lock, flags);
5777 /* update totalreserve_pages */
5778 calculate_totalreserve_pages();
5782 * setup_per_zone_wmarks - called when min_free_kbytes changes
5783 * or when memory is hot-{added|removed}
5785 * Ensures that the watermark[min,low,high] values for each zone are set
5786 * correctly with respect to min_free_kbytes.
5788 void setup_per_zone_wmarks(void)
5790 mutex_lock(&zonelists_mutex);
5791 __setup_per_zone_wmarks();
5792 mutex_unlock(&zonelists_mutex);
5796 * The inactive anon list should be small enough that the VM never has to
5797 * do too much work, but large enough that each inactive page has a chance
5798 * to be referenced again before it is swapped out.
5800 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5801 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5802 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5803 * the anonymous pages are kept on the inactive list.
5805 * total target max
5806 * memory ratio inactive anon
5807 * -------------------------------------
5808 * 10MB 1 5MB
5809 * 100MB 1 50MB
5810 * 1GB 3 250MB
5811 * 10GB 10 0.9GB
5812 * 100GB 31 3GB
5813 * 1TB 101 10GB
5814 * 10TB 320 32GB
5816 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5818 unsigned int gb, ratio;
5820 /* Zone size in gigabytes */
5821 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5822 if (gb)
5823 ratio = int_sqrt(10 * gb);
5824 else
5825 ratio = 1;
5827 zone->inactive_ratio = ratio;
5830 static void __meminit setup_per_zone_inactive_ratio(void)
5832 struct zone *zone;
5834 for_each_zone(zone)
5835 calculate_zone_inactive_ratio(zone);
5839 * Initialise min_free_kbytes.
5841 * For small machines we want it small (128k min). For large machines
5842 * we want it large (64MB max). But it is not linear, because network
5843 * bandwidth does not increase linearly with machine size. We use
5845 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5846 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5848 * which yields
5850 * 16MB: 512k
5851 * 32MB: 724k
5852 * 64MB: 1024k
5853 * 128MB: 1448k
5854 * 256MB: 2048k
5855 * 512MB: 2896k
5856 * 1024MB: 4096k
5857 * 2048MB: 5792k
5858 * 4096MB: 8192k
5859 * 8192MB: 11584k
5860 * 16384MB: 16384k
5862 int __meminit init_per_zone_wmark_min(void)
5864 unsigned long lowmem_kbytes;
5865 int new_min_free_kbytes;
5867 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5868 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5870 if (new_min_free_kbytes > user_min_free_kbytes) {
5871 min_free_kbytes = new_min_free_kbytes;
5872 if (min_free_kbytes < 128)
5873 min_free_kbytes = 128;
5874 if (min_free_kbytes > 65536)
5875 min_free_kbytes = 65536;
5876 } else {
5877 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5878 new_min_free_kbytes, user_min_free_kbytes);
5880 setup_per_zone_wmarks();
5881 refresh_zone_stat_thresholds();
5882 setup_per_zone_lowmem_reserve();
5883 setup_per_zone_inactive_ratio();
5884 return 0;
5886 module_init(init_per_zone_wmark_min)
5889 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5890 * that we can call two helper functions whenever min_free_kbytes
5891 * changes.
5893 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5894 void __user *buffer, size_t *length, loff_t *ppos)
5896 int rc;
5898 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5899 if (rc)
5900 return rc;
5902 if (write) {
5903 user_min_free_kbytes = min_free_kbytes;
5904 setup_per_zone_wmarks();
5906 return 0;
5909 #ifdef CONFIG_NUMA
5910 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5911 void __user *buffer, size_t *length, loff_t *ppos)
5913 struct zone *zone;
5914 int rc;
5916 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5917 if (rc)
5918 return rc;
5920 for_each_zone(zone)
5921 zone->min_unmapped_pages = (zone->managed_pages *
5922 sysctl_min_unmapped_ratio) / 100;
5923 return 0;
5926 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5927 void __user *buffer, size_t *length, loff_t *ppos)
5929 struct zone *zone;
5930 int rc;
5932 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5933 if (rc)
5934 return rc;
5936 for_each_zone(zone)
5937 zone->min_slab_pages = (zone->managed_pages *
5938 sysctl_min_slab_ratio) / 100;
5939 return 0;
5941 #endif
5944 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5945 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5946 * whenever sysctl_lowmem_reserve_ratio changes.
5948 * The reserve ratio obviously has absolutely no relation with the
5949 * minimum watermarks. The lowmem reserve ratio can only make sense
5950 * if in function of the boot time zone sizes.
5952 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5953 void __user *buffer, size_t *length, loff_t *ppos)
5955 proc_dointvec_minmax(table, write, buffer, length, ppos);
5956 setup_per_zone_lowmem_reserve();
5957 return 0;
5961 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5962 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5963 * pagelist can have before it gets flushed back to buddy allocator.
5965 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5966 void __user *buffer, size_t *length, loff_t *ppos)
5968 struct zone *zone;
5969 int old_percpu_pagelist_fraction;
5970 int ret;
5972 mutex_lock(&pcp_batch_high_lock);
5973 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5975 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5976 if (!write || ret < 0)
5977 goto out;
5979 /* Sanity checking to avoid pcp imbalance */
5980 if (percpu_pagelist_fraction &&
5981 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5982 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5983 ret = -EINVAL;
5984 goto out;
5987 /* No change? */
5988 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5989 goto out;
5991 for_each_populated_zone(zone) {
5992 unsigned int cpu;
5994 for_each_possible_cpu(cpu)
5995 pageset_set_high_and_batch(zone,
5996 per_cpu_ptr(zone->pageset, cpu));
5998 out:
5999 mutex_unlock(&pcp_batch_high_lock);
6000 return ret;
6003 int hashdist = HASHDIST_DEFAULT;
6005 #ifdef CONFIG_NUMA
6006 static int __init set_hashdist(char *str)
6008 if (!str)
6009 return 0;
6010 hashdist = simple_strtoul(str, &str, 0);
6011 return 1;
6013 __setup("hashdist=", set_hashdist);
6014 #endif
6017 * allocate a large system hash table from bootmem
6018 * - it is assumed that the hash table must contain an exact power-of-2
6019 * quantity of entries
6020 * - limit is the number of hash buckets, not the total allocation size
6022 void *__init alloc_large_system_hash(const char *tablename,
6023 unsigned long bucketsize,
6024 unsigned long numentries,
6025 int scale,
6026 int flags,
6027 unsigned int *_hash_shift,
6028 unsigned int *_hash_mask,
6029 unsigned long low_limit,
6030 unsigned long high_limit)
6032 unsigned long long max = high_limit;
6033 unsigned long log2qty, size;
6034 void *table = NULL;
6036 /* allow the kernel cmdline to have a say */
6037 if (!numentries) {
6038 /* round applicable memory size up to nearest megabyte */
6039 numentries = nr_kernel_pages;
6041 /* It isn't necessary when PAGE_SIZE >= 1MB */
6042 if (PAGE_SHIFT < 20)
6043 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6045 /* limit to 1 bucket per 2^scale bytes of low memory */
6046 if (scale > PAGE_SHIFT)
6047 numentries >>= (scale - PAGE_SHIFT);
6048 else
6049 numentries <<= (PAGE_SHIFT - scale);
6051 /* Make sure we've got at least a 0-order allocation.. */
6052 if (unlikely(flags & HASH_SMALL)) {
6053 /* Makes no sense without HASH_EARLY */
6054 WARN_ON(!(flags & HASH_EARLY));
6055 if (!(numentries >> *_hash_shift)) {
6056 numentries = 1UL << *_hash_shift;
6057 BUG_ON(!numentries);
6059 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6060 numentries = PAGE_SIZE / bucketsize;
6062 numentries = roundup_pow_of_two(numentries);
6064 /* limit allocation size to 1/16 total memory by default */
6065 if (max == 0) {
6066 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6067 do_div(max, bucketsize);
6069 max = min(max, 0x80000000ULL);
6071 if (numentries < low_limit)
6072 numentries = low_limit;
6073 if (numentries > max)
6074 numentries = max;
6076 log2qty = ilog2(numentries);
6078 do {
6079 size = bucketsize << log2qty;
6080 if (flags & HASH_EARLY)
6081 table = memblock_virt_alloc_nopanic(size, 0);
6082 else if (hashdist)
6083 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6084 else {
6086 * If bucketsize is not a power-of-two, we may free
6087 * some pages at the end of hash table which
6088 * alloc_pages_exact() automatically does
6090 if (get_order(size) < MAX_ORDER) {
6091 table = alloc_pages_exact(size, GFP_ATOMIC);
6092 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6095 } while (!table && size > PAGE_SIZE && --log2qty);
6097 if (!table)
6098 panic("Failed to allocate %s hash table\n", tablename);
6100 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6101 tablename,
6102 (1UL << log2qty),
6103 ilog2(size) - PAGE_SHIFT,
6104 size);
6106 if (_hash_shift)
6107 *_hash_shift = log2qty;
6108 if (_hash_mask)
6109 *_hash_mask = (1 << log2qty) - 1;
6111 return table;
6114 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6115 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6116 unsigned long pfn)
6118 #ifdef CONFIG_SPARSEMEM
6119 return __pfn_to_section(pfn)->pageblock_flags;
6120 #else
6121 return zone->pageblock_flags;
6122 #endif /* CONFIG_SPARSEMEM */
6125 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6127 #ifdef CONFIG_SPARSEMEM
6128 pfn &= (PAGES_PER_SECTION-1);
6129 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6130 #else
6131 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6132 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6133 #endif /* CONFIG_SPARSEMEM */
6137 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
6138 * @page: The page within the block of interest
6139 * @start_bitidx: The first bit of interest to retrieve
6140 * @end_bitidx: The last bit of interest
6141 * returns pageblock_bits flags
6143 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6144 unsigned long end_bitidx,
6145 unsigned long mask)
6147 struct zone *zone;
6148 unsigned long *bitmap;
6149 unsigned long bitidx, word_bitidx;
6150 unsigned long word;
6152 zone = page_zone(page);
6153 bitmap = get_pageblock_bitmap(zone, pfn);
6154 bitidx = pfn_to_bitidx(zone, pfn);
6155 word_bitidx = bitidx / BITS_PER_LONG;
6156 bitidx &= (BITS_PER_LONG-1);
6158 word = bitmap[word_bitidx];
6159 bitidx += end_bitidx;
6160 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6164 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6165 * @page: The page within the block of interest
6166 * @start_bitidx: The first bit of interest
6167 * @end_bitidx: The last bit of interest
6168 * @flags: The flags to set
6170 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6171 unsigned long pfn,
6172 unsigned long end_bitidx,
6173 unsigned long mask)
6175 struct zone *zone;
6176 unsigned long *bitmap;
6177 unsigned long bitidx, word_bitidx;
6178 unsigned long old_word, word;
6180 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6182 zone = page_zone(page);
6183 bitmap = get_pageblock_bitmap(zone, pfn);
6184 bitidx = pfn_to_bitidx(zone, pfn);
6185 word_bitidx = bitidx / BITS_PER_LONG;
6186 bitidx &= (BITS_PER_LONG-1);
6188 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6190 bitidx += end_bitidx;
6191 mask <<= (BITS_PER_LONG - bitidx - 1);
6192 flags <<= (BITS_PER_LONG - bitidx - 1);
6194 word = ACCESS_ONCE(bitmap[word_bitidx]);
6195 for (;;) {
6196 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6197 if (word == old_word)
6198 break;
6199 word = old_word;
6204 * This function checks whether pageblock includes unmovable pages or not.
6205 * If @count is not zero, it is okay to include less @count unmovable pages
6207 * PageLRU check without isolation or lru_lock could race so that
6208 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6209 * expect this function should be exact.
6211 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6212 bool skip_hwpoisoned_pages)
6214 unsigned long pfn, iter, found;
6215 int mt;
6218 * For avoiding noise data, lru_add_drain_all() should be called
6219 * If ZONE_MOVABLE, the zone never contains unmovable pages
6221 if (zone_idx(zone) == ZONE_MOVABLE)
6222 return false;
6223 mt = get_pageblock_migratetype(page);
6224 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6225 return false;
6227 pfn = page_to_pfn(page);
6228 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6229 unsigned long check = pfn + iter;
6231 if (!pfn_valid_within(check))
6232 continue;
6234 page = pfn_to_page(check);
6237 * Hugepages are not in LRU lists, but they're movable.
6238 * We need not scan over tail pages bacause we don't
6239 * handle each tail page individually in migration.
6241 if (PageHuge(page)) {
6242 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6243 continue;
6247 * We can't use page_count without pin a page
6248 * because another CPU can free compound page.
6249 * This check already skips compound tails of THP
6250 * because their page->_count is zero at all time.
6252 if (!atomic_read(&page->_count)) {
6253 if (PageBuddy(page))
6254 iter += (1 << page_order(page)) - 1;
6255 continue;
6259 * The HWPoisoned page may be not in buddy system, and
6260 * page_count() is not 0.
6262 if (skip_hwpoisoned_pages && PageHWPoison(page))
6263 continue;
6265 if (!PageLRU(page))
6266 found++;
6268 * If there are RECLAIMABLE pages, we need to check it.
6269 * But now, memory offline itself doesn't call shrink_slab()
6270 * and it still to be fixed.
6273 * If the page is not RAM, page_count()should be 0.
6274 * we don't need more check. This is an _used_ not-movable page.
6276 * The problematic thing here is PG_reserved pages. PG_reserved
6277 * is set to both of a memory hole page and a _used_ kernel
6278 * page at boot.
6280 if (found > count)
6281 return true;
6283 return false;
6286 bool is_pageblock_removable_nolock(struct page *page)
6288 struct zone *zone;
6289 unsigned long pfn;
6292 * We have to be careful here because we are iterating over memory
6293 * sections which are not zone aware so we might end up outside of
6294 * the zone but still within the section.
6295 * We have to take care about the node as well. If the node is offline
6296 * its NODE_DATA will be NULL - see page_zone.
6298 if (!node_online(page_to_nid(page)))
6299 return false;
6301 zone = page_zone(page);
6302 pfn = page_to_pfn(page);
6303 if (!zone_spans_pfn(zone, pfn))
6304 return false;
6306 return !has_unmovable_pages(zone, page, 0, true);
6309 #ifdef CONFIG_CMA
6311 static unsigned long pfn_max_align_down(unsigned long pfn)
6313 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6314 pageblock_nr_pages) - 1);
6317 static unsigned long pfn_max_align_up(unsigned long pfn)
6319 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6320 pageblock_nr_pages));
6323 /* [start, end) must belong to a single zone. */
6324 static int __alloc_contig_migrate_range(struct compact_control *cc,
6325 unsigned long start, unsigned long end)
6327 /* This function is based on compact_zone() from compaction.c. */
6328 unsigned long nr_reclaimed;
6329 unsigned long pfn = start;
6330 unsigned int tries = 0;
6331 int ret = 0;
6333 migrate_prep();
6335 while (pfn < end || !list_empty(&cc->migratepages)) {
6336 if (fatal_signal_pending(current)) {
6337 ret = -EINTR;
6338 break;
6341 if (list_empty(&cc->migratepages)) {
6342 cc->nr_migratepages = 0;
6343 pfn = isolate_migratepages_range(cc->zone, cc,
6344 pfn, end, true);
6345 if (!pfn) {
6346 ret = -EINTR;
6347 break;
6349 tries = 0;
6350 } else if (++tries == 5) {
6351 ret = ret < 0 ? ret : -EBUSY;
6352 break;
6355 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6356 &cc->migratepages);
6357 cc->nr_migratepages -= nr_reclaimed;
6359 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6360 NULL, 0, cc->mode, MR_CMA);
6362 if (ret < 0) {
6363 putback_movable_pages(&cc->migratepages);
6364 return ret;
6366 return 0;
6370 * alloc_contig_range() -- tries to allocate given range of pages
6371 * @start: start PFN to allocate
6372 * @end: one-past-the-last PFN to allocate
6373 * @migratetype: migratetype of the underlaying pageblocks (either
6374 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6375 * in range must have the same migratetype and it must
6376 * be either of the two.
6378 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6379 * aligned, however it's the caller's responsibility to guarantee that
6380 * we are the only thread that changes migrate type of pageblocks the
6381 * pages fall in.
6383 * The PFN range must belong to a single zone.
6385 * Returns zero on success or negative error code. On success all
6386 * pages which PFN is in [start, end) are allocated for the caller and
6387 * need to be freed with free_contig_range().
6389 int alloc_contig_range(unsigned long start, unsigned long end,
6390 unsigned migratetype)
6392 unsigned long outer_start, outer_end;
6393 int ret = 0, order;
6395 struct compact_control cc = {
6396 .nr_migratepages = 0,
6397 .order = -1,
6398 .zone = page_zone(pfn_to_page(start)),
6399 .mode = MIGRATE_SYNC,
6400 .ignore_skip_hint = true,
6402 INIT_LIST_HEAD(&cc.migratepages);
6405 * What we do here is we mark all pageblocks in range as
6406 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6407 * have different sizes, and due to the way page allocator
6408 * work, we align the range to biggest of the two pages so
6409 * that page allocator won't try to merge buddies from
6410 * different pageblocks and change MIGRATE_ISOLATE to some
6411 * other migration type.
6413 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6414 * migrate the pages from an unaligned range (ie. pages that
6415 * we are interested in). This will put all the pages in
6416 * range back to page allocator as MIGRATE_ISOLATE.
6418 * When this is done, we take the pages in range from page
6419 * allocator removing them from the buddy system. This way
6420 * page allocator will never consider using them.
6422 * This lets us mark the pageblocks back as
6423 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6424 * aligned range but not in the unaligned, original range are
6425 * put back to page allocator so that buddy can use them.
6428 ret = start_isolate_page_range(pfn_max_align_down(start),
6429 pfn_max_align_up(end), migratetype,
6430 false);
6431 if (ret)
6432 return ret;
6434 ret = __alloc_contig_migrate_range(&cc, start, end);
6435 if (ret)
6436 goto done;
6439 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6440 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6441 * more, all pages in [start, end) are free in page allocator.
6442 * What we are going to do is to allocate all pages from
6443 * [start, end) (that is remove them from page allocator).
6445 * The only problem is that pages at the beginning and at the
6446 * end of interesting range may be not aligned with pages that
6447 * page allocator holds, ie. they can be part of higher order
6448 * pages. Because of this, we reserve the bigger range and
6449 * once this is done free the pages we are not interested in.
6451 * We don't have to hold zone->lock here because the pages are
6452 * isolated thus they won't get removed from buddy.
6455 lru_add_drain_all();
6456 drain_all_pages();
6458 order = 0;
6459 outer_start = start;
6460 while (!PageBuddy(pfn_to_page(outer_start))) {
6461 if (++order >= MAX_ORDER) {
6462 ret = -EBUSY;
6463 goto done;
6465 outer_start &= ~0UL << order;
6468 /* Make sure the range is really isolated. */
6469 if (test_pages_isolated(outer_start, end, false)) {
6470 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6471 outer_start, end);
6472 ret = -EBUSY;
6473 goto done;
6477 /* Grab isolated pages from freelists. */
6478 outer_end = isolate_freepages_range(&cc, outer_start, end);
6479 if (!outer_end) {
6480 ret = -EBUSY;
6481 goto done;
6484 /* Free head and tail (if any) */
6485 if (start != outer_start)
6486 free_contig_range(outer_start, start - outer_start);
6487 if (end != outer_end)
6488 free_contig_range(end, outer_end - end);
6490 done:
6491 undo_isolate_page_range(pfn_max_align_down(start),
6492 pfn_max_align_up(end), migratetype);
6493 return ret;
6496 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6498 unsigned int count = 0;
6500 for (; nr_pages--; pfn++) {
6501 struct page *page = pfn_to_page(pfn);
6503 count += page_count(page) != 1;
6504 __free_page(page);
6506 WARN(count != 0, "%d pages are still in use!\n", count);
6508 #endif
6510 #ifdef CONFIG_MEMORY_HOTPLUG
6512 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6513 * page high values need to be recalulated.
6515 void __meminit zone_pcp_update(struct zone *zone)
6517 unsigned cpu;
6518 mutex_lock(&pcp_batch_high_lock);
6519 for_each_possible_cpu(cpu)
6520 pageset_set_high_and_batch(zone,
6521 per_cpu_ptr(zone->pageset, cpu));
6522 mutex_unlock(&pcp_batch_high_lock);
6524 #endif
6526 void zone_pcp_reset(struct zone *zone)
6528 unsigned long flags;
6529 int cpu;
6530 struct per_cpu_pageset *pset;
6532 /* avoid races with drain_pages() */
6533 local_lock_irqsave(pa_lock, flags);
6534 if (zone->pageset != &boot_pageset) {
6535 for_each_online_cpu(cpu) {
6536 pset = per_cpu_ptr(zone->pageset, cpu);
6537 drain_zonestat(zone, pset);
6539 free_percpu(zone->pageset);
6540 zone->pageset = &boot_pageset;
6542 local_unlock_irqrestore(pa_lock, flags);
6545 #ifdef CONFIG_MEMORY_HOTREMOVE
6547 * All pages in the range must be isolated before calling this.
6549 void
6550 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6552 struct page *page;
6553 struct zone *zone;
6554 unsigned int order, i;
6555 unsigned long pfn;
6556 unsigned long flags;
6557 /* find the first valid pfn */
6558 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6559 if (pfn_valid(pfn))
6560 break;
6561 if (pfn == end_pfn)
6562 return;
6563 zone = page_zone(pfn_to_page(pfn));
6564 spin_lock_irqsave(&zone->lock, flags);
6565 pfn = start_pfn;
6566 while (pfn < end_pfn) {
6567 if (!pfn_valid(pfn)) {
6568 pfn++;
6569 continue;
6571 page = pfn_to_page(pfn);
6573 * The HWPoisoned page may be not in buddy system, and
6574 * page_count() is not 0.
6576 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6577 pfn++;
6578 SetPageReserved(page);
6579 continue;
6582 BUG_ON(page_count(page));
6583 BUG_ON(!PageBuddy(page));
6584 order = page_order(page);
6585 #ifdef CONFIG_DEBUG_VM
6586 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6587 pfn, 1 << order, end_pfn);
6588 #endif
6589 list_del(&page->lru);
6590 rmv_page_order(page);
6591 zone->free_area[order].nr_free--;
6592 for (i = 0; i < (1 << order); i++)
6593 SetPageReserved((page+i));
6594 pfn += (1 << order);
6596 spin_unlock_irqrestore(&zone->lock, flags);
6598 #endif
6600 #ifdef CONFIG_MEMORY_FAILURE
6601 bool is_free_buddy_page(struct page *page)
6603 struct zone *zone = page_zone(page);
6604 unsigned long pfn = page_to_pfn(page);
6605 unsigned long flags;
6606 unsigned int order;
6608 spin_lock_irqsave(&zone->lock, flags);
6609 for (order = 0; order < MAX_ORDER; order++) {
6610 struct page *page_head = page - (pfn & ((1 << order) - 1));
6612 if (PageBuddy(page_head) && page_order(page_head) >= order)
6613 break;
6615 spin_unlock_irqrestore(&zone->lock, flags);
6617 return order < MAX_ORDER;
6619 #endif
6621 static const struct trace_print_flags pageflag_names[] = {
6622 {1UL << PG_locked, "locked" },
6623 {1UL << PG_error, "error" },
6624 {1UL << PG_referenced, "referenced" },
6625 {1UL << PG_uptodate, "uptodate" },
6626 {1UL << PG_dirty, "dirty" },
6627 {1UL << PG_lru, "lru" },
6628 {1UL << PG_active, "active" },
6629 {1UL << PG_slab, "slab" },
6630 {1UL << PG_owner_priv_1, "owner_priv_1" },
6631 {1UL << PG_arch_1, "arch_1" },
6632 {1UL << PG_reserved, "reserved" },
6633 {1UL << PG_private, "private" },
6634 {1UL << PG_private_2, "private_2" },
6635 {1UL << PG_writeback, "writeback" },
6636 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6637 {1UL << PG_head, "head" },
6638 {1UL << PG_tail, "tail" },
6639 #else
6640 {1UL << PG_compound, "compound" },
6641 #endif
6642 {1UL << PG_swapcache, "swapcache" },
6643 {1UL << PG_mappedtodisk, "mappedtodisk" },
6644 {1UL << PG_reclaim, "reclaim" },
6645 {1UL << PG_swapbacked, "swapbacked" },
6646 {1UL << PG_unevictable, "unevictable" },
6647 #ifdef CONFIG_MMU
6648 {1UL << PG_mlocked, "mlocked" },
6649 #endif
6650 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6651 {1UL << PG_uncached, "uncached" },
6652 #endif
6653 #ifdef CONFIG_MEMORY_FAILURE
6654 {1UL << PG_hwpoison, "hwpoison" },
6655 #endif
6656 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6657 {1UL << PG_compound_lock, "compound_lock" },
6658 #endif
6661 static void dump_page_flags(unsigned long flags)
6663 const char *delim = "";
6664 unsigned long mask;
6665 int i;
6667 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6669 printk(KERN_ALERT "page flags: %#lx(", flags);
6671 /* remove zone id */
6672 flags &= (1UL << NR_PAGEFLAGS) - 1;
6674 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6676 mask = pageflag_names[i].mask;
6677 if ((flags & mask) != mask)
6678 continue;
6680 flags &= ~mask;
6681 printk("%s%s", delim, pageflag_names[i].name);
6682 delim = "|";
6685 /* check for left over flags */
6686 if (flags)
6687 printk("%s%#lx", delim, flags);
6689 printk(")\n");
6692 void dump_page_badflags(struct page *page, char *reason, unsigned long badflags)
6694 printk(KERN_ALERT
6695 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6696 page, atomic_read(&page->_count), page_mapcount(page),
6697 page->mapping, page->index);
6698 dump_page_flags(page->flags);
6699 if (reason)
6700 pr_alert("page dumped because: %s\n", reason);
6701 if (page->flags & badflags) {
6702 pr_alert("bad because of flags:\n");
6703 dump_page_flags(page->flags & badflags);
6705 mem_cgroup_print_bad_page(page);
6708 void dump_page(struct page *page, char *reason)
6710 dump_page_badflags(page, reason, 0);
6712 EXPORT_SYMBOL_GPL(dump_page);