2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page-debug-flags.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/locallock.h>
66 #include <asm/sections.h>
67 #include <asm/tlbflush.h>
68 #include <asm/div64.h>
71 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
72 static DEFINE_MUTEX(pcp_batch_high_lock
);
73 #define MIN_PERCPU_PAGELIST_FRACTION (8)
75 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
76 DEFINE_PER_CPU(int, numa_node
);
77 EXPORT_PER_CPU_SYMBOL(numa_node
);
80 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
82 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
83 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
84 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
85 * defined in <linux/topology.h>.
87 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
88 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
92 * Array of node states.
94 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
95 [N_POSSIBLE
] = NODE_MASK_ALL
,
96 [N_ONLINE
] = { { [0] = 1UL } },
98 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
100 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
102 #ifdef CONFIG_MOVABLE_NODE
103 [N_MEMORY
] = { { [0] = 1UL } },
105 [N_CPU
] = { { [0] = 1UL } },
108 EXPORT_SYMBOL(node_states
);
110 /* Protect totalram_pages and zone->managed_pages */
111 static DEFINE_SPINLOCK(managed_page_count_lock
);
113 unsigned long totalram_pages __read_mostly
;
114 unsigned long totalreal_mem __read_mostly
= 0;
115 unsigned long totalreserve_pages __read_mostly
;
117 * When calculating the number of globally allowed dirty pages, there
118 * is a certain number of per-zone reserves that should not be
119 * considered dirtyable memory. This is the sum of those reserves
120 * over all existing zones that contribute dirtyable memory.
122 unsigned long dirty_balance_reserve __read_mostly
;
124 int percpu_pagelist_fraction
;
125 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
127 #ifdef CONFIG_PM_SLEEP
129 * The following functions are used by the suspend/hibernate code to temporarily
130 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
131 * while devices are suspended. To avoid races with the suspend/hibernate code,
132 * they should always be called with pm_mutex held (gfp_allowed_mask also should
133 * only be modified with pm_mutex held, unless the suspend/hibernate code is
134 * guaranteed not to run in parallel with that modification).
137 static gfp_t saved_gfp_mask
;
139 void pm_restore_gfp_mask(void)
141 WARN_ON(!mutex_is_locked(&pm_mutex
));
142 if (saved_gfp_mask
) {
143 gfp_allowed_mask
= saved_gfp_mask
;
148 void pm_restrict_gfp_mask(void)
150 WARN_ON(!mutex_is_locked(&pm_mutex
));
151 WARN_ON(saved_gfp_mask
);
152 saved_gfp_mask
= gfp_allowed_mask
;
153 gfp_allowed_mask
&= ~GFP_IOFS
;
156 bool pm_suspended_storage(void)
158 if ((gfp_allowed_mask
& GFP_IOFS
) == GFP_IOFS
)
162 #endif /* CONFIG_PM_SLEEP */
164 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
165 int pageblock_order __read_mostly
;
168 static void __free_pages_ok(struct page
*page
, unsigned int order
);
171 * results with 256, 32 in the lowmem_reserve sysctl:
172 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
173 * 1G machine -> (16M dma, 784M normal, 224M high)
174 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
175 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
176 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
178 * TBD: should special case ZONE_DMA32 machines here - in those we normally
179 * don't need any ZONE_NORMAL reservation
181 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
182 #ifdef CONFIG_ZONE_DMA
185 #ifdef CONFIG_ZONE_DMA32
188 #ifdef CONFIG_HIGHMEM
194 EXPORT_SYMBOL(totalram_pages
);
195 EXPORT_SYMBOL(totalreal_mem
);
197 static char * const zone_names
[MAX_NR_ZONES
] = {
198 #ifdef CONFIG_ZONE_DMA
201 #ifdef CONFIG_ZONE_DMA32
205 #ifdef CONFIG_HIGHMEM
211 int min_free_kbytes
= 1024;
212 int user_min_free_kbytes
= -1;
214 static unsigned long __meminitdata nr_kernel_pages
;
215 static unsigned long __meminitdata nr_all_pages
;
216 static unsigned long __meminitdata dma_reserve
;
218 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
219 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
220 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
221 static unsigned long __initdata required_kernelcore
;
222 static unsigned long __initdata required_movablecore
;
223 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
225 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
227 EXPORT_SYMBOL(movable_zone
);
228 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
231 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
232 int nr_online_nodes __read_mostly
= 1;
233 EXPORT_SYMBOL(nr_node_ids
);
234 EXPORT_SYMBOL(nr_online_nodes
);
237 static DEFINE_LOCAL_IRQ_LOCK(pa_lock
);
239 #ifdef CONFIG_PREEMPT_RT_BASE
240 # define cpu_lock_irqsave(cpu, flags) \
241 local_lock_irqsave_on(pa_lock, flags, cpu)
242 # define cpu_unlock_irqrestore(cpu, flags) \
243 local_unlock_irqrestore_on(pa_lock, flags, cpu)
245 # define cpu_lock_irqsave(cpu, flags) local_irq_save(flags)
246 # define cpu_unlock_irqrestore(cpu, flags) local_irq_restore(flags)
249 int page_group_by_mobility_disabled __read_mostly
;
251 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
253 if (unlikely(page_group_by_mobility_disabled
&&
254 migratetype
< MIGRATE_PCPTYPES
))
255 migratetype
= MIGRATE_UNMOVABLE
;
257 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
258 PB_migrate
, PB_migrate_end
);
261 bool oom_killer_disabled __read_mostly
;
263 #ifdef CONFIG_DEBUG_VM
264 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
268 unsigned long pfn
= page_to_pfn(page
);
269 unsigned long sp
, start_pfn
;
272 seq
= zone_span_seqbegin(zone
);
273 start_pfn
= zone
->zone_start_pfn
;
274 sp
= zone
->spanned_pages
;
275 if (!zone_spans_pfn(zone
, pfn
))
277 } while (zone_span_seqretry(zone
, seq
));
280 pr_err("page %lu outside zone [ %lu - %lu ]\n",
281 pfn
, start_pfn
, start_pfn
+ sp
);
286 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
288 if (!pfn_valid_within(page_to_pfn(page
)))
290 if (zone
!= page_zone(page
))
296 * Temporary debugging check for pages not lying within a given zone.
298 static int bad_range(struct zone
*zone
, struct page
*page
)
300 if (page_outside_zone_boundaries(zone
, page
))
302 if (!page_is_consistent(zone
, page
))
308 static inline int bad_range(struct zone
*zone
, struct page
*page
)
314 static void bad_page(struct page
*page
, char *reason
, unsigned long bad_flags
)
316 static unsigned long resume
;
317 static unsigned long nr_shown
;
318 static unsigned long nr_unshown
;
320 /* Don't complain about poisoned pages */
321 if (PageHWPoison(page
)) {
322 page_mapcount_reset(page
); /* remove PageBuddy */
327 * Allow a burst of 60 reports, then keep quiet for that minute;
328 * or allow a steady drip of one report per second.
330 if (nr_shown
== 60) {
331 if (time_before(jiffies
, resume
)) {
337 "BUG: Bad page state: %lu messages suppressed\n",
344 resume
= jiffies
+ 60 * HZ
;
346 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
347 current
->comm
, page_to_pfn(page
));
348 dump_page_badflags(page
, reason
, bad_flags
);
353 /* Leave bad fields for debug, except PageBuddy could make trouble */
354 page_mapcount_reset(page
); /* remove PageBuddy */
355 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
359 * Higher-order pages are called "compound pages". They are structured thusly:
361 * The first PAGE_SIZE page is called the "head page".
363 * The remaining PAGE_SIZE pages are called "tail pages".
365 * All pages have PG_compound set. All tail pages have their ->first_page
366 * pointing at the head page.
368 * The first tail page's ->lru.next holds the address of the compound page's
369 * put_page() function. Its ->lru.prev holds the order of allocation.
370 * This usage means that zero-order pages may not be compound.
373 static void free_compound_page(struct page
*page
)
375 __free_pages_ok(page
, compound_order(page
));
378 void prep_compound_page(struct page
*page
, unsigned long order
)
381 int nr_pages
= 1 << order
;
383 set_compound_page_dtor(page
, free_compound_page
);
384 set_compound_order(page
, order
);
386 for (i
= 1; i
< nr_pages
; i
++) {
387 struct page
*p
= page
+ i
;
388 set_page_count(p
, 0);
389 p
->first_page
= page
;
390 /* Make sure p->first_page is always valid for PageTail() */
396 /* update __split_huge_page_refcount if you change this function */
397 static int destroy_compound_page(struct page
*page
, unsigned long order
)
400 int nr_pages
= 1 << order
;
403 if (unlikely(compound_order(page
) != order
)) {
404 bad_page(page
, "wrong compound order", 0);
408 __ClearPageHead(page
);
410 for (i
= 1; i
< nr_pages
; i
++) {
411 struct page
*p
= page
+ i
;
413 if (unlikely(!PageTail(p
))) {
414 bad_page(page
, "PageTail not set", 0);
416 } else if (unlikely(p
->first_page
!= page
)) {
417 bad_page(page
, "first_page not consistent", 0);
426 static inline void prep_zero_page(struct page
*page
, unsigned int order
,
432 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
433 * and __GFP_HIGHMEM from hard or soft interrupt context.
435 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
436 for (i
= 0; i
< (1 << order
); i
++)
437 clear_highpage(page
+ i
);
440 #ifdef CONFIG_DEBUG_PAGEALLOC
441 unsigned int _debug_guardpage_minorder
;
443 static int __init
debug_guardpage_minorder_setup(char *buf
)
447 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
448 printk(KERN_ERR
"Bad debug_guardpage_minorder value\n");
451 _debug_guardpage_minorder
= res
;
452 printk(KERN_INFO
"Setting debug_guardpage_minorder to %lu\n", res
);
455 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup
);
457 static inline void set_page_guard_flag(struct page
*page
)
459 __set_bit(PAGE_DEBUG_FLAG_GUARD
, &page
->debug_flags
);
462 static inline void clear_page_guard_flag(struct page
*page
)
464 __clear_bit(PAGE_DEBUG_FLAG_GUARD
, &page
->debug_flags
);
467 static inline void set_page_guard_flag(struct page
*page
) { }
468 static inline void clear_page_guard_flag(struct page
*page
) { }
471 static inline void set_page_order(struct page
*page
, unsigned int order
)
473 set_page_private(page
, order
);
474 __SetPageBuddy(page
);
477 static inline void rmv_page_order(struct page
*page
)
479 __ClearPageBuddy(page
);
480 set_page_private(page
, 0);
484 * Locate the struct page for both the matching buddy in our
485 * pair (buddy1) and the combined O(n+1) page they form (page).
487 * 1) Any buddy B1 will have an order O twin B2 which satisfies
488 * the following equation:
490 * For example, if the starting buddy (buddy2) is #8 its order
492 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
494 * 2) Any buddy B will have an order O+1 parent P which
495 * satisfies the following equation:
498 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
500 static inline unsigned long
501 __find_buddy_index(unsigned long page_idx
, unsigned int order
)
503 return page_idx
^ (1 << order
);
507 * This function checks whether a page is free && is the buddy
508 * we can do coalesce a page and its buddy if
509 * (a) the buddy is not in a hole &&
510 * (b) the buddy is in the buddy system &&
511 * (c) a page and its buddy have the same order &&
512 * (d) a page and its buddy are in the same zone.
514 * For recording whether a page is in the buddy system, we set ->_mapcount
515 * PAGE_BUDDY_MAPCOUNT_VALUE.
516 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
517 * serialized by zone->lock.
519 * For recording page's order, we use page_private(page).
521 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
524 if (!pfn_valid_within(page_to_pfn(buddy
)))
527 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
528 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
530 if (page_zone_id(page
) != page_zone_id(buddy
))
536 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
537 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
540 * zone check is done late to avoid uselessly
541 * calculating zone/node ids for pages that could
544 if (page_zone_id(page
) != page_zone_id(buddy
))
553 * Freeing function for a buddy system allocator.
555 * The concept of a buddy system is to maintain direct-mapped table
556 * (containing bit values) for memory blocks of various "orders".
557 * The bottom level table contains the map for the smallest allocatable
558 * units of memory (here, pages), and each level above it describes
559 * pairs of units from the levels below, hence, "buddies".
560 * At a high level, all that happens here is marking the table entry
561 * at the bottom level available, and propagating the changes upward
562 * as necessary, plus some accounting needed to play nicely with other
563 * parts of the VM system.
564 * At each level, we keep a list of pages, which are heads of continuous
565 * free pages of length of (1 << order) and marked with _mapcount
566 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
568 * So when we are allocating or freeing one, we can derive the state of the
569 * other. That is, if we allocate a small block, and both were
570 * free, the remainder of the region must be split into blocks.
571 * If a block is freed, and its buddy is also free, then this
572 * triggers coalescing into a block of larger size.
577 static inline void __free_one_page(struct page
*page
,
579 struct zone
*zone
, unsigned int order
,
582 unsigned long page_idx
;
583 unsigned long combined_idx
;
584 unsigned long uninitialized_var(buddy_idx
);
587 VM_BUG_ON(!zone_is_initialized(zone
));
589 if (unlikely(PageCompound(page
)))
590 if (unlikely(destroy_compound_page(page
, order
)))
593 VM_BUG_ON(migratetype
== -1);
595 page_idx
= pfn
& ((1 << MAX_ORDER
) - 1);
597 VM_BUG_ON_PAGE(page_idx
& ((1 << order
) - 1), page
);
598 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
600 while (order
< MAX_ORDER
-1) {
601 buddy_idx
= __find_buddy_index(page_idx
, order
);
602 buddy
= page
+ (buddy_idx
- page_idx
);
603 if (!page_is_buddy(page
, buddy
, order
))
606 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
607 * merge with it and move up one order.
609 if (page_is_guard(buddy
)) {
610 clear_page_guard_flag(buddy
);
611 set_page_private(page
, 0);
612 __mod_zone_freepage_state(zone
, 1 << order
,
615 list_del(&buddy
->lru
);
616 zone
->free_area
[order
].nr_free
--;
617 rmv_page_order(buddy
);
619 combined_idx
= buddy_idx
& page_idx
;
620 page
= page
+ (combined_idx
- page_idx
);
621 page_idx
= combined_idx
;
624 set_page_order(page
, order
);
627 * If this is not the largest possible page, check if the buddy
628 * of the next-highest order is free. If it is, it's possible
629 * that pages are being freed that will coalesce soon. In case,
630 * that is happening, add the free page to the tail of the list
631 * so it's less likely to be used soon and more likely to be merged
632 * as a higher order page
634 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
635 struct page
*higher_page
, *higher_buddy
;
636 combined_idx
= buddy_idx
& page_idx
;
637 higher_page
= page
+ (combined_idx
- page_idx
);
638 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
639 higher_buddy
= higher_page
+ (buddy_idx
- combined_idx
);
640 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
641 list_add_tail(&page
->lru
,
642 &zone
->free_area
[order
].free_list
[migratetype
]);
647 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
649 zone
->free_area
[order
].nr_free
++;
652 static inline int free_pages_check(struct page
*page
)
654 char *bad_reason
= NULL
;
655 unsigned long bad_flags
= 0;
657 if (unlikely(page_mapcount(page
)))
658 bad_reason
= "nonzero mapcount";
659 if (unlikely(page
->mapping
!= NULL
))
660 bad_reason
= "non-NULL mapping";
661 if (unlikely(atomic_read(&page
->_count
) != 0))
662 bad_reason
= "nonzero _count";
663 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)) {
664 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
665 bad_flags
= PAGE_FLAGS_CHECK_AT_FREE
;
667 if (unlikely(mem_cgroup_bad_page_check(page
)))
668 bad_reason
= "cgroup check failed";
669 if (unlikely(bad_reason
)) {
670 bad_page(page
, bad_reason
, bad_flags
);
673 page_cpupid_reset_last(page
);
674 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
675 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
680 * Frees a number of pages which have been collected from the pcp lists.
681 * Assumes all pages on list are in same zone, and of same order.
682 * count is the number of pages to free.
684 * If the zone was previously in an "all pages pinned" state then look to
685 * see if this freeing clears that state.
687 * And clear the zone's pages_scanned counter, to hold off the "all pages are
688 * pinned" detection logic.
690 static void free_pcppages_bulk(struct zone
*zone
, int count
,
691 struct list_head
*list
)
694 unsigned long nr_scanned
;
697 spin_lock_irqsave(&zone
->lock
, flags
);
698 nr_scanned
= zone_page_state(zone
, NR_PAGES_SCANNED
);
700 __mod_zone_page_state(zone
, NR_PAGES_SCANNED
, -nr_scanned
);
702 while (!list_empty(list
)) {
703 struct page
*page
= list_first_entry(list
, struct page
, lru
);
704 int mt
; /* migratetype of the to-be-freed page */
706 /* must delete as __free_one_page list manipulates */
707 list_del(&page
->lru
);
709 mt
= get_freepage_migratetype(page
);
710 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
711 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
);
712 trace_mm_page_pcpu_drain(page
, 0, mt
);
713 if (likely(!is_migrate_isolate_page(page
))) {
714 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1);
715 if (is_migrate_cma(mt
))
716 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
, 1);
721 WARN_ON(to_free
!= 0);
722 spin_unlock_irqrestore(&zone
->lock
, flags
);
726 * Moves a number of pages from the PCP lists to free list which
727 * is freed outside of the locked region.
729 * Assumes all pages on list are in same zone, and of same order.
730 * count is the number of pages to free.
732 static void isolate_pcp_pages(int to_free
, struct per_cpu_pages
*src
,
733 struct list_head
*dst
)
735 int migratetype
= 0, batch_free
= 0;
739 struct list_head
*list
;
742 * Remove pages from lists in a round-robin fashion. A
743 * batch_free count is maintained that is incremented when an
744 * empty list is encountered. This is so more pages are freed
745 * off fuller lists instead of spinning excessively around empty
750 if (++migratetype
== MIGRATE_PCPTYPES
)
752 list
= &src
->lists
[migratetype
];
753 } while (list_empty(list
));
755 /* This is the only non-empty list. Free them all. */
756 if (batch_free
== MIGRATE_PCPTYPES
)
757 batch_free
= to_free
;
760 page
= list_last_entry(list
, struct page
, lru
);
761 list_del(&page
->lru
);
762 list_add(&page
->lru
, dst
);
763 } while (--to_free
&& --batch_free
&& !list_empty(list
));
767 static void free_one_page(struct zone
*zone
,
768 struct page
*page
, unsigned long pfn
,
772 unsigned long nr_scanned
;
775 spin_lock_irqsave(&zone
->lock
, flags
);
776 nr_scanned
= zone_page_state(zone
, NR_PAGES_SCANNED
);
778 __mod_zone_page_state(zone
, NR_PAGES_SCANNED
, -nr_scanned
);
780 __free_one_page(page
, pfn
, zone
, order
, migratetype
);
781 if (unlikely(!is_migrate_isolate(migratetype
)))
782 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
783 spin_unlock_irqrestore(&zone
->lock
, flags
);
786 static bool free_pages_prepare(struct page
*page
, unsigned int order
)
791 trace_mm_page_free(page
, order
);
792 kmemcheck_free_shadow(page
, order
);
795 page
->mapping
= NULL
;
796 for (i
= 0; i
< (1 << order
); i
++)
797 bad
+= free_pages_check(page
+ i
);
801 if (!PageHighMem(page
)) {
802 debug_check_no_locks_freed(page_address(page
),
804 debug_check_no_obj_freed(page_address(page
),
807 arch_free_page(page
, order
);
808 kernel_map_pages(page
, 1 << order
, 0);
813 static void __free_pages_ok(struct page
*page
, unsigned int order
)
817 unsigned long pfn
= page_to_pfn(page
);
819 if (!free_pages_prepare(page
, order
))
822 migratetype
= get_pfnblock_migratetype(page
, pfn
);
823 local_lock_irqsave(pa_lock
, flags
);
824 __count_vm_events(PGFREE
, 1 << order
);
825 set_freepage_migratetype(page
, migratetype
);
826 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
);
827 local_unlock_irqrestore(pa_lock
, flags
);
830 void __init
__free_pages_bootmem(struct page
*page
, unsigned int order
)
832 unsigned int nr_pages
= 1 << order
;
833 struct page
*p
= page
;
837 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
839 __ClearPageReserved(p
);
840 set_page_count(p
, 0);
842 __ClearPageReserved(p
);
843 set_page_count(p
, 0);
845 page_zone(page
)->managed_pages
+= nr_pages
;
846 set_page_refcounted(page
);
847 __free_pages(page
, order
);
851 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
852 void __init
init_cma_reserved_pageblock(struct page
*page
)
854 unsigned i
= pageblock_nr_pages
;
855 struct page
*p
= page
;
858 __ClearPageReserved(p
);
859 set_page_count(p
, 0);
862 set_pageblock_migratetype(page
, MIGRATE_CMA
);
864 if (pageblock_order
>= MAX_ORDER
) {
865 i
= pageblock_nr_pages
;
868 set_page_refcounted(p
);
869 __free_pages(p
, MAX_ORDER
- 1);
870 p
+= MAX_ORDER_NR_PAGES
;
871 } while (i
-= MAX_ORDER_NR_PAGES
);
873 set_page_refcounted(page
);
874 __free_pages(page
, pageblock_order
);
877 adjust_managed_page_count(page
, pageblock_nr_pages
);
882 * The order of subdivision here is critical for the IO subsystem.
883 * Please do not alter this order without good reasons and regression
884 * testing. Specifically, as large blocks of memory are subdivided,
885 * the order in which smaller blocks are delivered depends on the order
886 * they're subdivided in this function. This is the primary factor
887 * influencing the order in which pages are delivered to the IO
888 * subsystem according to empirical testing, and this is also justified
889 * by considering the behavior of a buddy system containing a single
890 * large block of memory acted on by a series of small allocations.
891 * This behavior is a critical factor in sglist merging's success.
895 static inline void expand(struct zone
*zone
, struct page
*page
,
896 int low
, int high
, struct free_area
*area
,
899 unsigned long size
= 1 << high
;
905 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
907 #ifdef CONFIG_DEBUG_PAGEALLOC
908 if (high
< debug_guardpage_minorder()) {
910 * Mark as guard pages (or page), that will allow to
911 * merge back to allocator when buddy will be freed.
912 * Corresponding page table entries will not be touched,
913 * pages will stay not present in virtual address space
915 INIT_LIST_HEAD(&page
[size
].lru
);
916 set_page_guard_flag(&page
[size
]);
917 set_page_private(&page
[size
], high
);
918 /* Guard pages are not available for any usage */
919 __mod_zone_freepage_state(zone
, -(1 << high
),
924 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
926 set_page_order(&page
[size
], high
);
931 * This page is about to be returned from the page allocator
933 static inline int check_new_page(struct page
*page
)
935 char *bad_reason
= NULL
;
936 unsigned long bad_flags
= 0;
938 if (unlikely(page_mapcount(page
)))
939 bad_reason
= "nonzero mapcount";
940 if (unlikely(page
->mapping
!= NULL
))
941 bad_reason
= "non-NULL mapping";
942 if (unlikely(atomic_read(&page
->_count
) != 0))
943 bad_reason
= "nonzero _count";
944 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)) {
945 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag set";
946 bad_flags
= PAGE_FLAGS_CHECK_AT_PREP
;
948 if (unlikely(mem_cgroup_bad_page_check(page
)))
949 bad_reason
= "cgroup check failed";
950 if (unlikely(bad_reason
)) {
951 bad_page(page
, bad_reason
, bad_flags
);
957 static int prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
)
961 for (i
= 0; i
< (1 << order
); i
++) {
962 struct page
*p
= page
+ i
;
963 if (unlikely(check_new_page(p
)))
967 set_page_private(page
, 0);
968 set_page_refcounted(page
);
970 arch_alloc_page(page
, order
);
971 kernel_map_pages(page
, 1 << order
, 1);
973 if (gfp_flags
& __GFP_ZERO
)
974 prep_zero_page(page
, order
, gfp_flags
);
976 if (order
&& (gfp_flags
& __GFP_COMP
))
977 prep_compound_page(page
, order
);
983 * Go through the free lists for the given migratetype and remove
984 * the smallest available page from the freelists
987 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
990 unsigned int current_order
;
991 struct free_area
*area
;
994 /* Find a page of the appropriate size in the preferred list */
995 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
996 area
= &(zone
->free_area
[current_order
]);
997 if (list_empty(&area
->free_list
[migratetype
]))
1000 page
= list_entry(area
->free_list
[migratetype
].next
,
1002 list_del(&page
->lru
);
1003 rmv_page_order(page
);
1005 expand(zone
, page
, order
, current_order
, area
, migratetype
);
1006 set_freepage_migratetype(page
, migratetype
);
1015 * This array describes the order lists are fallen back to when
1016 * the free lists for the desirable migrate type are depleted
1018 static int fallbacks
[MIGRATE_TYPES
][4] = {
1019 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
1020 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
1022 [MIGRATE_MOVABLE
] = { MIGRATE_CMA
, MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
1023 [MIGRATE_CMA
] = { MIGRATE_RESERVE
}, /* Never used */
1025 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
1027 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
}, /* Never used */
1028 #ifdef CONFIG_MEMORY_ISOLATION
1029 [MIGRATE_ISOLATE
] = { MIGRATE_RESERVE
}, /* Never used */
1034 * Move the free pages in a range to the free lists of the requested type.
1035 * Note that start_page and end_pages are not aligned on a pageblock
1036 * boundary. If alignment is required, use move_freepages_block()
1038 int move_freepages(struct zone
*zone
,
1039 struct page
*start_page
, struct page
*end_page
,
1043 unsigned long order
;
1044 int pages_moved
= 0;
1046 #ifndef CONFIG_HOLES_IN_ZONE
1048 * page_zone is not safe to call in this context when
1049 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1050 * anyway as we check zone boundaries in move_freepages_block().
1051 * Remove at a later date when no bug reports exist related to
1052 * grouping pages by mobility
1054 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
1057 for (page
= start_page
; page
<= end_page
;) {
1058 /* Make sure we are not inadvertently changing nodes */
1059 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
1061 if (!pfn_valid_within(page_to_pfn(page
))) {
1066 if (!PageBuddy(page
)) {
1071 order
= page_order(page
);
1072 list_move(&page
->lru
,
1073 &zone
->free_area
[order
].free_list
[migratetype
]);
1074 set_freepage_migratetype(page
, migratetype
);
1076 pages_moved
+= 1 << order
;
1082 int move_freepages_block(struct zone
*zone
, struct page
*page
,
1085 unsigned long start_pfn
, end_pfn
;
1086 struct page
*start_page
, *end_page
;
1088 start_pfn
= page_to_pfn(page
);
1089 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
1090 start_page
= pfn_to_page(start_pfn
);
1091 end_page
= start_page
+ pageblock_nr_pages
- 1;
1092 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
1094 /* Do not cross zone boundaries */
1095 if (!zone_spans_pfn(zone
, start_pfn
))
1097 if (!zone_spans_pfn(zone
, end_pfn
))
1100 return move_freepages(zone
, start_page
, end_page
, migratetype
);
1103 static void change_pageblock_range(struct page
*pageblock_page
,
1104 int start_order
, int migratetype
)
1106 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
1108 while (nr_pageblocks
--) {
1109 set_pageblock_migratetype(pageblock_page
, migratetype
);
1110 pageblock_page
+= pageblock_nr_pages
;
1115 * If breaking a large block of pages, move all free pages to the preferred
1116 * allocation list. If falling back for a reclaimable kernel allocation, be
1117 * more aggressive about taking ownership of free pages.
1119 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1120 * nor move CMA pages to different free lists. We don't want unmovable pages
1121 * to be allocated from MIGRATE_CMA areas.
1123 * Returns the allocation migratetype if free pages were stolen, or the
1124 * fallback migratetype if it was decided not to steal.
1126 static int try_to_steal_freepages(struct zone
*zone
, struct page
*page
,
1127 int start_type
, int fallback_type
)
1129 int current_order
= page_order(page
);
1132 * When borrowing from MIGRATE_CMA, we need to release the excess
1133 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1134 * is set to CMA so it is returned to the correct freelist in case
1135 * the page ends up being not actually allocated from the pcp lists.
1137 if (is_migrate_cma(fallback_type
))
1138 return fallback_type
;
1140 /* Take ownership for orders >= pageblock_order */
1141 if (current_order
>= pageblock_order
) {
1142 change_pageblock_range(page
, current_order
, start_type
);
1146 if (current_order
>= pageblock_order
/ 2 ||
1147 start_type
== MIGRATE_RECLAIMABLE
||
1148 page_group_by_mobility_disabled
) {
1151 pages
= move_freepages_block(zone
, page
, start_type
);
1153 /* Claim the whole block if over half of it is free */
1154 if (pages
>= (1 << (pageblock_order
-1)) ||
1155 page_group_by_mobility_disabled
)
1156 set_pageblock_migratetype(page
, start_type
);
1161 return fallback_type
;
1164 /* Remove an element from the buddy allocator from the fallback list */
1165 static inline struct page
*
1166 __rmqueue_fallback(struct zone
*zone
, unsigned int order
, int start_migratetype
)
1168 struct free_area
*area
;
1169 unsigned int current_order
;
1171 int migratetype
, new_type
, i
;
1173 /* Find the largest possible block of pages in the other list */
1174 for (current_order
= MAX_ORDER
-1;
1175 current_order
>= order
&& current_order
<= MAX_ORDER
-1;
1178 migratetype
= fallbacks
[start_migratetype
][i
];
1180 /* MIGRATE_RESERVE handled later if necessary */
1181 if (migratetype
== MIGRATE_RESERVE
)
1184 area
= &(zone
->free_area
[current_order
]);
1185 if (list_empty(&area
->free_list
[migratetype
]))
1188 page
= list_entry(area
->free_list
[migratetype
].next
,
1192 new_type
= try_to_steal_freepages(zone
, page
,
1196 /* Remove the page from the freelists */
1197 list_del(&page
->lru
);
1198 rmv_page_order(page
);
1200 expand(zone
, page
, order
, current_order
, area
,
1202 /* The freepage_migratetype may differ from pageblock's
1203 * migratetype depending on the decisions in
1204 * try_to_steal_freepages. This is OK as long as it does
1205 * not differ for MIGRATE_CMA type.
1207 set_freepage_migratetype(page
, new_type
);
1209 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
1210 start_migratetype
, migratetype
);
1220 * Do the hard work of removing an element from the buddy allocator.
1221 * Call me with the zone->lock already held.
1223 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
1229 page
= __rmqueue_smallest(zone
, order
, migratetype
);
1231 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
1232 page
= __rmqueue_fallback(zone
, order
, migratetype
);
1235 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1236 * is used because __rmqueue_smallest is an inline function
1237 * and we want just one call site
1240 migratetype
= MIGRATE_RESERVE
;
1245 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
1250 * Obtain a specified number of elements from the buddy allocator, all under
1251 * a single hold of the lock, for efficiency. Add them to the supplied list.
1252 * Returns the number of new pages which were placed at *list.
1254 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
1255 unsigned long count
, struct list_head
*list
,
1256 int migratetype
, bool cold
)
1260 spin_lock(&zone
->lock
);
1261 for (i
= 0; i
< count
; ++i
) {
1262 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
1263 if (unlikely(page
== NULL
))
1267 * Split buddy pages returned by expand() are received here
1268 * in physical page order. The page is added to the callers and
1269 * list and the list head then moves forward. From the callers
1270 * perspective, the linked list is ordered by page number in
1271 * some conditions. This is useful for IO devices that can
1272 * merge IO requests if the physical pages are ordered
1276 list_add(&page
->lru
, list
);
1278 list_add_tail(&page
->lru
, list
);
1280 if (is_migrate_cma(get_freepage_migratetype(page
)))
1281 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
1284 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
1285 spin_unlock(&zone
->lock
);
1291 * Called from the vmstat counter updater to drain pagesets of this
1292 * currently executing processor on remote nodes after they have
1295 * Note that this function must be called with the thread pinned to
1296 * a single processor.
1298 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
1300 unsigned long flags
;
1303 unsigned long batch
;
1305 local_lock_irqsave(pa_lock
, flags
);
1306 batch
= ACCESS_ONCE(pcp
->batch
);
1307 if (pcp
->count
>= batch
)
1310 to_drain
= pcp
->count
;
1312 isolate_pcp_pages(to_drain
, pcp
, &dst
);
1313 pcp
->count
-= to_drain
;
1315 local_unlock_irqrestore(pa_lock
, flags
);
1316 free_pcppages_bulk(zone
, to_drain
, &dst
);
1321 * Drain pages of the indicated processor.
1323 * The processor must either be the current processor and the
1324 * thread pinned to the current processor or a processor that
1327 static void drain_pages(unsigned int cpu
)
1329 unsigned long flags
;
1332 for_each_populated_zone(zone
) {
1333 struct per_cpu_pageset
*pset
;
1334 struct per_cpu_pages
*pcp
;
1338 cpu_lock_irqsave(cpu
, flags
);
1339 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
1344 isolate_pcp_pages(count
, pcp
, &dst
);
1347 cpu_unlock_irqrestore(cpu
, flags
);
1349 free_pcppages_bulk(zone
, count
, &dst
);
1354 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1356 void drain_local_pages(void *arg
)
1358 drain_pages(smp_processor_id());
1362 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1364 * Note that this code is protected against sending an IPI to an offline
1365 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1366 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1367 * nothing keeps CPUs from showing up after we populated the cpumask and
1368 * before the call to on_each_cpu_mask().
1370 void drain_all_pages(void)
1373 struct per_cpu_pageset
*pcp
;
1377 * Allocate in the BSS so we wont require allocation in
1378 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1380 static cpumask_t cpus_with_pcps
;
1383 * We don't care about racing with CPU hotplug event
1384 * as offline notification will cause the notified
1385 * cpu to drain that CPU pcps and on_each_cpu_mask
1386 * disables preemption as part of its processing
1388 for_each_online_cpu(cpu
) {
1389 bool has_pcps
= false;
1390 for_each_populated_zone(zone
) {
1391 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
1392 if (pcp
->pcp
.count
) {
1398 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
1400 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
1402 #ifndef CONFIG_PREEMPT_RT_BASE
1403 on_each_cpu_mask(&cpus_with_pcps
, drain_local_pages
, NULL
, 1);
1405 for_each_cpu(cpu
, &cpus_with_pcps
)
1410 #ifdef CONFIG_HIBERNATION
1412 void mark_free_pages(struct zone
*zone
)
1414 unsigned long pfn
, max_zone_pfn
;
1415 unsigned long flags
;
1416 unsigned int order
, t
;
1417 struct list_head
*curr
;
1419 if (zone_is_empty(zone
))
1422 spin_lock_irqsave(&zone
->lock
, flags
);
1424 max_zone_pfn
= zone_end_pfn(zone
);
1425 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1426 if (pfn_valid(pfn
)) {
1427 struct page
*page
= pfn_to_page(pfn
);
1429 if (!swsusp_page_is_forbidden(page
))
1430 swsusp_unset_page_free(page
);
1433 for_each_migratetype_order(order
, t
) {
1434 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1437 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1438 for (i
= 0; i
< (1UL << order
); i
++)
1439 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1442 spin_unlock_irqrestore(&zone
->lock
, flags
);
1444 #endif /* CONFIG_PM */
1447 * Free a 0-order page
1448 * cold == true ? free a cold page : free a hot page
1450 void free_hot_cold_page(struct page
*page
, bool cold
)
1452 struct zone
*zone
= page_zone(page
);
1453 struct per_cpu_pages
*pcp
;
1454 unsigned long flags
;
1455 unsigned long pfn
= page_to_pfn(page
);
1458 if (!free_pages_prepare(page
, 0))
1461 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1462 set_freepage_migratetype(page
, migratetype
);
1463 local_lock_irqsave(pa_lock
, flags
);
1464 __count_vm_event(PGFREE
);
1467 * We only track unmovable, reclaimable and movable on pcp lists.
1468 * Free ISOLATE pages back to the allocator because they are being
1469 * offlined but treat RESERVE as movable pages so we can get those
1470 * areas back if necessary. Otherwise, we may have to free
1471 * excessively into the page allocator
1473 if (migratetype
>= MIGRATE_PCPTYPES
) {
1474 if (unlikely(is_migrate_isolate(migratetype
))) {
1475 free_one_page(zone
, page
, pfn
, 0, migratetype
);
1478 migratetype
= MIGRATE_MOVABLE
;
1481 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1483 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
1485 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
1487 if (pcp
->count
>= pcp
->high
) {
1488 unsigned long batch
= ACCESS_ONCE(pcp
->batch
);
1491 isolate_pcp_pages(batch
, pcp
, &dst
);
1492 pcp
->count
-= batch
;
1493 local_unlock_irqrestore(pa_lock
, flags
);
1494 free_pcppages_bulk(zone
, batch
, &dst
);
1499 local_unlock_irqrestore(pa_lock
, flags
);
1503 * Free a list of 0-order pages
1505 void free_hot_cold_page_list(struct list_head
*list
, bool cold
)
1507 struct page
*page
, *next
;
1509 list_for_each_entry_safe(page
, next
, list
, lru
) {
1510 trace_mm_page_free_batched(page
, cold
);
1511 free_hot_cold_page(page
, cold
);
1516 * split_page takes a non-compound higher-order page, and splits it into
1517 * n (1<<order) sub-pages: page[0..n]
1518 * Each sub-page must be freed individually.
1520 * Note: this is probably too low level an operation for use in drivers.
1521 * Please consult with lkml before using this in your driver.
1523 void split_page(struct page
*page
, unsigned int order
)
1527 VM_BUG_ON_PAGE(PageCompound(page
), page
);
1528 VM_BUG_ON_PAGE(!page_count(page
), page
);
1530 #ifdef CONFIG_KMEMCHECK
1532 * Split shadow pages too, because free(page[0]) would
1533 * otherwise free the whole shadow.
1535 if (kmemcheck_page_is_tracked(page
))
1536 split_page(virt_to_page(page
[0].shadow
), order
);
1539 for (i
= 1; i
< (1 << order
); i
++)
1540 set_page_refcounted(page
+ i
);
1542 EXPORT_SYMBOL_GPL(split_page
);
1544 static int __isolate_free_page(struct page
*page
, unsigned int order
)
1546 unsigned long watermark
;
1550 BUG_ON(!PageBuddy(page
));
1552 zone
= page_zone(page
);
1553 mt
= get_pageblock_migratetype(page
);
1555 if (!is_migrate_isolate(mt
)) {
1556 /* Obey watermarks as if the page was being allocated */
1557 watermark
= low_wmark_pages(zone
) + (1 << order
);
1558 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
1561 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
1564 /* Remove page from free list */
1565 list_del(&page
->lru
);
1566 zone
->free_area
[order
].nr_free
--;
1567 rmv_page_order(page
);
1569 /* Set the pageblock if the isolated page is at least a pageblock */
1570 if (order
>= pageblock_order
- 1) {
1571 struct page
*endpage
= page
+ (1 << order
) - 1;
1572 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
1573 int mt
= get_pageblock_migratetype(page
);
1574 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
))
1575 set_pageblock_migratetype(page
,
1580 return 1UL << order
;
1584 * Similar to split_page except the page is already free. As this is only
1585 * being used for migration, the migratetype of the block also changes.
1586 * As this is called with interrupts disabled, the caller is responsible
1587 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1590 * Note: this is probably too low level an operation for use in drivers.
1591 * Please consult with lkml before using this in your driver.
1593 int split_free_page(struct page
*page
)
1598 order
= page_order(page
);
1600 nr_pages
= __isolate_free_page(page
, order
);
1604 /* Split into individual pages */
1605 set_page_refcounted(page
);
1606 split_page(page
, order
);
1611 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1612 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1616 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1617 struct zone
*zone
, unsigned int order
,
1618 gfp_t gfp_flags
, int migratetype
)
1620 unsigned long flags
;
1622 bool cold
= ((gfp_flags
& __GFP_COLD
) != 0);
1625 if (likely(order
== 0)) {
1626 struct per_cpu_pages
*pcp
;
1627 struct list_head
*list
;
1629 local_lock_irqsave(pa_lock
, flags
);
1630 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1631 list
= &pcp
->lists
[migratetype
];
1632 if (list_empty(list
)) {
1633 pcp
->count
+= rmqueue_bulk(zone
, 0,
1636 if (unlikely(list_empty(list
)))
1641 page
= list_entry(list
->prev
, struct page
, lru
);
1643 page
= list_entry(list
->next
, struct page
, lru
);
1645 list_del(&page
->lru
);
1648 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1650 * __GFP_NOFAIL is not to be used in new code.
1652 * All __GFP_NOFAIL callers should be fixed so that they
1653 * properly detect and handle allocation failures.
1655 * We most definitely don't want callers attempting to
1656 * allocate greater than order-1 page units with
1659 WARN_ON_ONCE(order
> 1);
1661 local_spin_lock_irqsave(pa_lock
, &zone
->lock
, flags
);
1662 page
= __rmqueue(zone
, order
, migratetype
);
1664 spin_unlock(&zone
->lock
);
1667 __mod_zone_freepage_state(zone
, -(1 << order
),
1668 get_freepage_migratetype(page
));
1669 spin_unlock(&zone
->lock
);
1672 __mod_zone_page_state(zone
, NR_ALLOC_BATCH
, -(1 << order
));
1673 if (zone_page_state(zone
, NR_ALLOC_BATCH
) == 0 &&
1674 !zone_is_fair_depleted(zone
))
1675 zone_set_flag(zone
, ZONE_FAIR_DEPLETED
);
1677 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1678 zone_statistics(preferred_zone
, zone
, gfp_flags
);
1679 local_unlock_irqrestore(pa_lock
, flags
);
1681 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
1682 if (prep_new_page(page
, order
, gfp_flags
))
1687 local_unlock_irqrestore(pa_lock
, flags
);
1691 #ifdef CONFIG_FAIL_PAGE_ALLOC
1694 struct fault_attr attr
;
1696 u32 ignore_gfp_highmem
;
1697 u32 ignore_gfp_wait
;
1699 } fail_page_alloc
= {
1700 .attr
= FAULT_ATTR_INITIALIZER
,
1701 .ignore_gfp_wait
= 1,
1702 .ignore_gfp_highmem
= 1,
1706 static int __init
setup_fail_page_alloc(char *str
)
1708 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1710 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1712 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1714 if (order
< fail_page_alloc
.min_order
)
1716 if (gfp_mask
& __GFP_NOFAIL
)
1718 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1720 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1723 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1726 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1728 static int __init
fail_page_alloc_debugfs(void)
1730 umode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1733 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
1734 &fail_page_alloc
.attr
);
1736 return PTR_ERR(dir
);
1738 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1739 &fail_page_alloc
.ignore_gfp_wait
))
1741 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1742 &fail_page_alloc
.ignore_gfp_highmem
))
1744 if (!debugfs_create_u32("min-order", mode
, dir
,
1745 &fail_page_alloc
.min_order
))
1750 debugfs_remove_recursive(dir
);
1755 late_initcall(fail_page_alloc_debugfs
);
1757 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1759 #else /* CONFIG_FAIL_PAGE_ALLOC */
1761 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1766 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1769 * Return true if free pages are above 'mark'. This takes into account the order
1770 * of the allocation.
1772 static bool __zone_watermark_ok(struct zone
*z
, unsigned int order
,
1773 unsigned long mark
, int classzone_idx
, int alloc_flags
,
1776 /* free_pages my go negative - that's OK */
1781 free_pages
-= (1 << order
) - 1;
1782 if (alloc_flags
& ALLOC_HIGH
)
1784 if (alloc_flags
& ALLOC_HARDER
)
1787 /* If allocation can't use CMA areas don't use free CMA pages */
1788 if (!(alloc_flags
& ALLOC_CMA
))
1789 free_cma
= zone_page_state(z
, NR_FREE_CMA_PAGES
);
1792 if (free_pages
- free_cma
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1794 for (o
= 0; o
< order
; o
++) {
1795 /* At the next order, this order's pages become unavailable */
1796 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1798 /* Require fewer higher order pages to be free */
1801 if (free_pages
<= min
)
1807 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
1808 int classzone_idx
, int alloc_flags
)
1810 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1811 zone_page_state(z
, NR_FREE_PAGES
));
1814 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
1815 unsigned long mark
, int classzone_idx
, int alloc_flags
)
1817 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
1819 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
1820 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
1822 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1828 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1829 * skip over zones that are not allowed by the cpuset, or that have
1830 * been recently (in last second) found to be nearly full. See further
1831 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1832 * that have to skip over a lot of full or unallowed zones.
1834 * If the zonelist cache is present in the passed zonelist, then
1835 * returns a pointer to the allowed node mask (either the current
1836 * tasks mems_allowed, or node_states[N_MEMORY].)
1838 * If the zonelist cache is not available for this zonelist, does
1839 * nothing and returns NULL.
1841 * If the fullzones BITMAP in the zonelist cache is stale (more than
1842 * a second since last zap'd) then we zap it out (clear its bits.)
1844 * We hold off even calling zlc_setup, until after we've checked the
1845 * first zone in the zonelist, on the theory that most allocations will
1846 * be satisfied from that first zone, so best to examine that zone as
1847 * quickly as we can.
1849 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1851 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1852 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1854 zlc
= zonelist
->zlcache_ptr
;
1858 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1859 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1860 zlc
->last_full_zap
= jiffies
;
1863 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1864 &cpuset_current_mems_allowed
:
1865 &node_states
[N_MEMORY
];
1866 return allowednodes
;
1870 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1871 * if it is worth looking at further for free memory:
1872 * 1) Check that the zone isn't thought to be full (doesn't have its
1873 * bit set in the zonelist_cache fullzones BITMAP).
1874 * 2) Check that the zones node (obtained from the zonelist_cache
1875 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1876 * Return true (non-zero) if zone is worth looking at further, or
1877 * else return false (zero) if it is not.
1879 * This check -ignores- the distinction between various watermarks,
1880 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1881 * found to be full for any variation of these watermarks, it will
1882 * be considered full for up to one second by all requests, unless
1883 * we are so low on memory on all allowed nodes that we are forced
1884 * into the second scan of the zonelist.
1886 * In the second scan we ignore this zonelist cache and exactly
1887 * apply the watermarks to all zones, even it is slower to do so.
1888 * We are low on memory in the second scan, and should leave no stone
1889 * unturned looking for a free page.
1891 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1892 nodemask_t
*allowednodes
)
1894 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1895 int i
; /* index of *z in zonelist zones */
1896 int n
; /* node that zone *z is on */
1898 zlc
= zonelist
->zlcache_ptr
;
1902 i
= z
- zonelist
->_zonerefs
;
1905 /* This zone is worth trying if it is allowed but not full */
1906 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1910 * Given 'z' scanning a zonelist, set the corresponding bit in
1911 * zlc->fullzones, so that subsequent attempts to allocate a page
1912 * from that zone don't waste time re-examining it.
1914 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1916 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1917 int i
; /* index of *z in zonelist zones */
1919 zlc
= zonelist
->zlcache_ptr
;
1923 i
= z
- zonelist
->_zonerefs
;
1925 set_bit(i
, zlc
->fullzones
);
1929 * clear all zones full, called after direct reclaim makes progress so that
1930 * a zone that was recently full is not skipped over for up to a second
1932 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1934 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1936 zlc
= zonelist
->zlcache_ptr
;
1940 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1943 static bool zone_local(struct zone
*local_zone
, struct zone
*zone
)
1945 return local_zone
->node
== zone
->node
;
1948 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
1950 return node_isset(local_zone
->node
, zone
->zone_pgdat
->reclaim_nodes
);
1953 static void __paginginit
init_zone_allows_reclaim(int nid
)
1957 for_each_node_state(i
, N_MEMORY
)
1958 if (node_distance(nid
, i
) <= RECLAIM_DISTANCE
)
1959 node_set(i
, NODE_DATA(nid
)->reclaim_nodes
);
1961 zone_reclaim_mode
= 1;
1964 #else /* CONFIG_NUMA */
1966 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1971 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1972 nodemask_t
*allowednodes
)
1977 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1981 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1985 static bool zone_local(struct zone
*local_zone
, struct zone
*zone
)
1990 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
1995 static inline void init_zone_allows_reclaim(int nid
)
1998 #endif /* CONFIG_NUMA */
2000 static void reset_alloc_batches(struct zone
*preferred_zone
)
2002 struct zone
*zone
= preferred_zone
->zone_pgdat
->node_zones
;
2005 mod_zone_page_state(zone
, NR_ALLOC_BATCH
,
2006 high_wmark_pages(zone
) - low_wmark_pages(zone
) -
2007 atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]));
2008 zone_clear_flag(zone
, ZONE_FAIR_DEPLETED
);
2009 } while (zone
++ != preferred_zone
);
2013 * get_page_from_freelist goes through the zonelist trying to allocate
2016 static struct page
*
2017 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
2018 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
2019 struct zone
*preferred_zone
, int classzone_idx
, int migratetype
)
2022 struct page
*page
= NULL
;
2024 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
2025 int zlc_active
= 0; /* set if using zonelist_cache */
2026 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
2027 bool consider_zone_dirty
= (alloc_flags
& ALLOC_WMARK_LOW
) &&
2028 (gfp_mask
& __GFP_WRITE
);
2029 int nr_fair_skipped
= 0;
2030 bool zonelist_rescan
;
2033 zonelist_rescan
= false;
2036 * Scan zonelist, looking for a zone with enough free.
2037 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
2039 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2040 high_zoneidx
, nodemask
) {
2043 if (IS_ENABLED(CONFIG_NUMA
) && zlc_active
&&
2044 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
2046 if (cpusets_enabled() &&
2047 (alloc_flags
& ALLOC_CPUSET
) &&
2048 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
2051 * Distribute pages in proportion to the individual
2052 * zone size to ensure fair page aging. The zone a
2053 * page was allocated in should have no effect on the
2054 * time the page has in memory before being reclaimed.
2056 if (alloc_flags
& ALLOC_FAIR
) {
2057 if (!zone_local(preferred_zone
, zone
))
2059 if (zone_is_fair_depleted(zone
)) {
2065 * When allocating a page cache page for writing, we
2066 * want to get it from a zone that is within its dirty
2067 * limit, such that no single zone holds more than its
2068 * proportional share of globally allowed dirty pages.
2069 * The dirty limits take into account the zone's
2070 * lowmem reserves and high watermark so that kswapd
2071 * should be able to balance it without having to
2072 * write pages from its LRU list.
2074 * This may look like it could increase pressure on
2075 * lower zones by failing allocations in higher zones
2076 * before they are full. But the pages that do spill
2077 * over are limited as the lower zones are protected
2078 * by this very same mechanism. It should not become
2079 * a practical burden to them.
2081 * XXX: For now, allow allocations to potentially
2082 * exceed the per-zone dirty limit in the slowpath
2083 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2084 * which is important when on a NUMA setup the allowed
2085 * zones are together not big enough to reach the
2086 * global limit. The proper fix for these situations
2087 * will require awareness of zones in the
2088 * dirty-throttling and the flusher threads.
2090 if (consider_zone_dirty
&& !zone_dirty_ok(zone
))
2093 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
2094 if (!zone_watermark_ok(zone
, order
, mark
,
2095 classzone_idx
, alloc_flags
)) {
2098 /* Checked here to keep the fast path fast */
2099 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
2100 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
2103 if (IS_ENABLED(CONFIG_NUMA
) &&
2104 !did_zlc_setup
&& nr_online_nodes
> 1) {
2106 * we do zlc_setup if there are multiple nodes
2107 * and before considering the first zone allowed
2110 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
2115 if (zone_reclaim_mode
== 0 ||
2116 !zone_allows_reclaim(preferred_zone
, zone
))
2117 goto this_zone_full
;
2120 * As we may have just activated ZLC, check if the first
2121 * eligible zone has failed zone_reclaim recently.
2123 if (IS_ENABLED(CONFIG_NUMA
) && zlc_active
&&
2124 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
2127 ret
= zone_reclaim(zone
, gfp_mask
, order
);
2129 case ZONE_RECLAIM_NOSCAN
:
2132 case ZONE_RECLAIM_FULL
:
2133 /* scanned but unreclaimable */
2136 /* did we reclaim enough */
2137 if (zone_watermark_ok(zone
, order
, mark
,
2138 classzone_idx
, alloc_flags
))
2142 * Failed to reclaim enough to meet watermark.
2143 * Only mark the zone full if checking the min
2144 * watermark or if we failed to reclaim just
2145 * 1<<order pages or else the page allocator
2146 * fastpath will prematurely mark zones full
2147 * when the watermark is between the low and
2150 if (((alloc_flags
& ALLOC_WMARK_MASK
) == ALLOC_WMARK_MIN
) ||
2151 ret
== ZONE_RECLAIM_SOME
)
2152 goto this_zone_full
;
2159 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
2160 gfp_mask
, migratetype
);
2164 if (IS_ENABLED(CONFIG_NUMA
) && zlc_active
)
2165 zlc_mark_zone_full(zonelist
, z
);
2170 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2171 * necessary to allocate the page. The expectation is
2172 * that the caller is taking steps that will free more
2173 * memory. The caller should avoid the page being used
2174 * for !PFMEMALLOC purposes.
2176 page
->pfmemalloc
= !!(alloc_flags
& ALLOC_NO_WATERMARKS
);
2181 * The first pass makes sure allocations are spread fairly within the
2182 * local node. However, the local node might have free pages left
2183 * after the fairness batches are exhausted, and remote zones haven't
2184 * even been considered yet. Try once more without fairness, and
2185 * include remote zones now, before entering the slowpath and waking
2186 * kswapd: prefer spilling to a remote zone over swapping locally.
2188 if (alloc_flags
& ALLOC_FAIR
) {
2189 alloc_flags
&= ~ALLOC_FAIR
;
2190 if (nr_fair_skipped
) {
2191 zonelist_rescan
= true;
2192 reset_alloc_batches(preferred_zone
);
2194 if (nr_online_nodes
> 1)
2195 zonelist_rescan
= true;
2198 if (unlikely(IS_ENABLED(CONFIG_NUMA
) && zlc_active
)) {
2199 /* Disable zlc cache for second zonelist scan */
2201 zonelist_rescan
= true;
2204 if (zonelist_rescan
)
2211 * Large machines with many possible nodes should not always dump per-node
2212 * meminfo in irq context.
2214 static inline bool should_suppress_show_mem(void)
2219 ret
= in_interrupt();
2224 static DEFINE_RATELIMIT_STATE(nopage_rs
,
2225 DEFAULT_RATELIMIT_INTERVAL
,
2226 DEFAULT_RATELIMIT_BURST
);
2228 void warn_alloc_failed(gfp_t gfp_mask
, int order
, const char *fmt
, ...)
2230 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
2232 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
) ||
2233 debug_guardpage_minorder() > 0)
2237 * This documents exceptions given to allocations in certain
2238 * contexts that are allowed to allocate outside current's set
2241 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2242 if (test_thread_flag(TIF_MEMDIE
) ||
2243 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
2244 filter
&= ~SHOW_MEM_FILTER_NODES
;
2245 if (in_interrupt() || !(gfp_mask
& __GFP_WAIT
))
2246 filter
&= ~SHOW_MEM_FILTER_NODES
;
2249 struct va_format vaf
;
2252 va_start(args
, fmt
);
2257 pr_warn("%pV", &vaf
);
2262 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2263 current
->comm
, order
, gfp_mask
);
2266 if (!should_suppress_show_mem())
2271 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
2272 unsigned long did_some_progress
,
2273 unsigned long pages_reclaimed
)
2275 /* Do not loop if specifically requested */
2276 if (gfp_mask
& __GFP_NORETRY
)
2279 /* Always retry if specifically requested */
2280 if (gfp_mask
& __GFP_NOFAIL
)
2284 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2285 * making forward progress without invoking OOM. Suspend also disables
2286 * storage devices so kswapd will not help. Bail if we are suspending.
2288 if (!did_some_progress
&& pm_suspended_storage())
2292 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2293 * means __GFP_NOFAIL, but that may not be true in other
2296 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
2300 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2301 * specified, then we retry until we no longer reclaim any pages
2302 * (above), or we've reclaimed an order of pages at least as
2303 * large as the allocation's order. In both cases, if the
2304 * allocation still fails, we stop retrying.
2306 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
2312 static inline struct page
*
2313 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
2314 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2315 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2316 int classzone_idx
, int migratetype
)
2320 /* Acquire the OOM killer lock for the zones in zonelist */
2321 if (!try_set_zonelist_oom(zonelist
, gfp_mask
)) {
2322 schedule_timeout_uninterruptible(1);
2327 * PM-freezer should be notified that there might be an OOM killer on
2328 * its way to kill and wake somebody up. This is too early and we might
2329 * end up not killing anything but false positives are acceptable.
2330 * See freeze_processes.
2335 * Go through the zonelist yet one more time, keep very high watermark
2336 * here, this is only to catch a parallel oom killing, we must fail if
2337 * we're still under heavy pressure.
2339 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
2340 order
, zonelist
, high_zoneidx
,
2341 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
2342 preferred_zone
, classzone_idx
, migratetype
);
2346 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2347 /* The OOM killer will not help higher order allocs */
2348 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2350 /* The OOM killer does not needlessly kill tasks for lowmem */
2351 if (high_zoneidx
< ZONE_NORMAL
)
2354 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2355 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2356 * The caller should handle page allocation failure by itself if
2357 * it specifies __GFP_THISNODE.
2358 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2360 if (gfp_mask
& __GFP_THISNODE
)
2363 /* Exhausted what can be done so it's blamo time */
2364 out_of_memory(zonelist
, gfp_mask
, order
, nodemask
, false);
2367 clear_zonelist_oom(zonelist
, gfp_mask
);
2371 #ifdef CONFIG_COMPACTION
2372 /* Try memory compaction for high-order allocations before reclaim */
2373 static struct page
*
2374 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2375 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2376 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2377 int classzone_idx
, int migratetype
, enum migrate_mode mode
,
2378 bool *contended_compaction
, bool *deferred_compaction
,
2379 unsigned long *did_some_progress
)
2384 if (compaction_deferred(preferred_zone
, order
)) {
2385 *deferred_compaction
= true;
2389 current
->flags
|= PF_MEMALLOC
;
2390 *did_some_progress
= try_to_compact_pages(zonelist
, order
, gfp_mask
,
2392 contended_compaction
);
2393 current
->flags
&= ~PF_MEMALLOC
;
2395 if (*did_some_progress
!= COMPACT_SKIPPED
) {
2398 /* Page migration frees to the PCP lists but we want merging */
2399 drain_pages(get_cpu_light());
2402 page
= get_page_from_freelist(gfp_mask
, nodemask
,
2403 order
, zonelist
, high_zoneidx
,
2404 alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2405 preferred_zone
, classzone_idx
, migratetype
);
2407 preferred_zone
->compact_blockskip_flush
= false;
2408 compaction_defer_reset(preferred_zone
, order
, true);
2409 count_vm_event(COMPACTSUCCESS
);
2414 * It's bad if compaction run occurs and fails.
2415 * The most likely reason is that pages exist,
2416 * but not enough to satisfy watermarks.
2418 count_vm_event(COMPACTFAIL
);
2421 * As async compaction considers a subset of pageblocks, only
2422 * defer if the failure was a sync compaction failure.
2424 if (mode
!= MIGRATE_ASYNC
)
2425 defer_compaction(preferred_zone
, order
);
2433 static inline struct page
*
2434 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2435 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2436 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2437 int classzone_idx
, int migratetype
,
2438 enum migrate_mode mode
, bool *contended_compaction
,
2439 bool *deferred_compaction
, unsigned long *did_some_progress
)
2443 #endif /* CONFIG_COMPACTION */
2445 /* Perform direct synchronous page reclaim */
2447 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
, struct zonelist
*zonelist
,
2448 nodemask_t
*nodemask
)
2450 struct reclaim_state reclaim_state
;
2455 /* We now go into synchronous reclaim */
2456 cpuset_memory_pressure_bump();
2457 current
->flags
|= PF_MEMALLOC
;
2458 lockdep_set_current_reclaim_state(gfp_mask
);
2459 reclaim_state
.reclaimed_slab
= 0;
2460 current
->reclaim_state
= &reclaim_state
;
2462 progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
2464 current
->reclaim_state
= NULL
;
2465 lockdep_clear_current_reclaim_state();
2466 current
->flags
&= ~PF_MEMALLOC
;
2473 /* The really slow allocator path where we enter direct reclaim */
2474 static inline struct page
*
2475 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
2476 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2477 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2478 int classzone_idx
, int migratetype
, unsigned long *did_some_progress
)
2480 struct page
*page
= NULL
;
2481 bool drained
= false;
2483 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, zonelist
,
2485 if (unlikely(!(*did_some_progress
)))
2488 /* After successful reclaim, reconsider all zones for allocation */
2489 if (IS_ENABLED(CONFIG_NUMA
))
2490 zlc_clear_zones_full(zonelist
);
2493 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2494 zonelist
, high_zoneidx
,
2495 alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2496 preferred_zone
, classzone_idx
,
2500 * If an allocation failed after direct reclaim, it could be because
2501 * pages are pinned on the per-cpu lists. Drain them and try again
2503 if (!page
&& !drained
) {
2513 * This is called in the allocator slow-path if the allocation request is of
2514 * sufficient urgency to ignore watermarks and take other desperate measures
2516 static inline struct page
*
2517 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
2518 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2519 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2520 int classzone_idx
, int migratetype
)
2525 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2526 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
2527 preferred_zone
, classzone_idx
, migratetype
);
2529 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
2530 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2531 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
2536 static void wake_all_kswapds(unsigned int order
,
2537 struct zonelist
*zonelist
,
2538 enum zone_type high_zoneidx
,
2539 struct zone
*preferred_zone
)
2544 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
2545 wakeup_kswapd(zone
, order
, zone_idx(preferred_zone
));
2549 gfp_to_alloc_flags(gfp_t gfp_mask
)
2551 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
2552 const bool atomic
= !(gfp_mask
& (__GFP_WAIT
| __GFP_NO_KSWAPD
));
2554 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2555 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
2558 * The caller may dip into page reserves a bit more if the caller
2559 * cannot run direct reclaim, or if the caller has realtime scheduling
2560 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2561 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2563 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
2567 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2568 * if it can't schedule.
2570 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2571 alloc_flags
|= ALLOC_HARDER
;
2573 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2574 * comment for __cpuset_node_allowed_softwall().
2576 alloc_flags
&= ~ALLOC_CPUSET
;
2577 } else if (unlikely(rt_task(current
)) && !in_interrupt())
2578 alloc_flags
|= ALLOC_HARDER
;
2580 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
2581 if (gfp_mask
& __GFP_MEMALLOC
)
2582 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2583 else if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
2584 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2585 else if (!in_interrupt() &&
2586 ((current
->flags
& PF_MEMALLOC
) ||
2587 unlikely(test_thread_flag(TIF_MEMDIE
))))
2588 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2591 if (allocflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
2592 alloc_flags
|= ALLOC_CMA
;
2597 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
2599 return !!(gfp_to_alloc_flags(gfp_mask
) & ALLOC_NO_WATERMARKS
);
2602 static inline struct page
*
2603 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
2604 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2605 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2606 int classzone_idx
, int migratetype
)
2608 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2609 struct page
*page
= NULL
;
2611 unsigned long pages_reclaimed
= 0;
2612 unsigned long did_some_progress
;
2613 enum migrate_mode migration_mode
= MIGRATE_ASYNC
;
2614 bool deferred_compaction
= false;
2615 bool contended_compaction
= false;
2618 * In the slowpath, we sanity check order to avoid ever trying to
2619 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2620 * be using allocators in order of preference for an area that is
2623 if (order
>= MAX_ORDER
) {
2624 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
2629 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2630 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2631 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2632 * using a larger set of nodes after it has established that the
2633 * allowed per node queues are empty and that nodes are
2636 if (IS_ENABLED(CONFIG_NUMA
) &&
2637 (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
2641 if (!(gfp_mask
& __GFP_NO_KSWAPD
))
2642 wake_all_kswapds(order
, zonelist
, high_zoneidx
, preferred_zone
);
2645 * OK, we're below the kswapd watermark and have kicked background
2646 * reclaim. Now things get more complex, so set up alloc_flags according
2647 * to how we want to proceed.
2649 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
2652 * Find the true preferred zone if the allocation is unconstrained by
2655 if (!(alloc_flags
& ALLOC_CPUSET
) && !nodemask
) {
2656 struct zoneref
*preferred_zoneref
;
2657 preferred_zoneref
= first_zones_zonelist(zonelist
, high_zoneidx
,
2660 classzone_idx
= zonelist_zone_idx(preferred_zoneref
);
2664 /* This is the last chance, in general, before the goto nopage. */
2665 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
2666 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2667 preferred_zone
, classzone_idx
, migratetype
);
2671 /* Allocate without watermarks if the context allows */
2672 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
2674 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2675 * the allocation is high priority and these type of
2676 * allocations are system rather than user orientated
2678 zonelist
= node_zonelist(numa_node_id(), gfp_mask
);
2680 page
= __alloc_pages_high_priority(gfp_mask
, order
,
2681 zonelist
, high_zoneidx
, nodemask
,
2682 preferred_zone
, classzone_idx
, migratetype
);
2688 /* Atomic allocations - we can't balance anything */
2691 * All existing users of the deprecated __GFP_NOFAIL are
2692 * blockable, so warn of any new users that actually allow this
2693 * type of allocation to fail.
2695 WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
);
2699 /* Avoid recursion of direct reclaim */
2700 if (current
->flags
& PF_MEMALLOC
)
2703 /* Avoid allocations with no watermarks from looping endlessly */
2704 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
2708 * Try direct compaction. The first pass is asynchronous. Subsequent
2709 * attempts after direct reclaim are synchronous
2711 page
= __alloc_pages_direct_compact(gfp_mask
, order
, zonelist
,
2712 high_zoneidx
, nodemask
, alloc_flags
,
2714 classzone_idx
, migratetype
,
2715 migration_mode
, &contended_compaction
,
2716 &deferred_compaction
,
2717 &did_some_progress
);
2720 migration_mode
= MIGRATE_SYNC_LIGHT
;
2723 * If compaction is deferred for high-order allocations, it is because
2724 * sync compaction recently failed. In this is the case and the caller
2725 * requested a movable allocation that does not heavily disrupt the
2726 * system then fail the allocation instead of entering direct reclaim.
2728 if ((deferred_compaction
|| contended_compaction
) &&
2729 (gfp_mask
& __GFP_NO_KSWAPD
))
2732 /* Try direct reclaim and then allocating */
2733 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
2734 zonelist
, high_zoneidx
,
2736 alloc_flags
, preferred_zone
,
2737 classzone_idx
, migratetype
,
2738 &did_some_progress
);
2743 * If we failed to make any progress reclaiming, then we are
2744 * running out of options and have to consider going OOM
2746 if (!did_some_progress
) {
2747 if (oom_gfp_allowed(gfp_mask
)) {
2748 if (oom_killer_disabled
)
2750 /* Coredumps can quickly deplete all memory reserves */
2751 if ((current
->flags
& PF_DUMPCORE
) &&
2752 !(gfp_mask
& __GFP_NOFAIL
))
2754 page
= __alloc_pages_may_oom(gfp_mask
, order
,
2755 zonelist
, high_zoneidx
,
2756 nodemask
, preferred_zone
,
2757 classzone_idx
, migratetype
);
2761 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2763 * The oom killer is not called for high-order
2764 * allocations that may fail, so if no progress
2765 * is being made, there are no other options and
2766 * retrying is unlikely to help.
2768 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2771 * The oom killer is not called for lowmem
2772 * allocations to prevent needlessly killing
2775 if (high_zoneidx
< ZONE_NORMAL
)
2783 /* Check if we should retry the allocation */
2784 pages_reclaimed
+= did_some_progress
;
2785 if (should_alloc_retry(gfp_mask
, order
, did_some_progress
,
2787 /* Wait for some write requests to complete then retry */
2788 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2792 * High-order allocations do not necessarily loop after
2793 * direct reclaim and reclaim/compaction depends on compaction
2794 * being called after reclaim so call directly if necessary
2796 page
= __alloc_pages_direct_compact(gfp_mask
, order
, zonelist
,
2797 high_zoneidx
, nodemask
, alloc_flags
,
2799 classzone_idx
, migratetype
,
2800 migration_mode
, &contended_compaction
,
2801 &deferred_compaction
,
2802 &did_some_progress
);
2808 warn_alloc_failed(gfp_mask
, order
, NULL
);
2811 if (kmemcheck_enabled
)
2812 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
2818 * This is the 'heart' of the zoned buddy allocator.
2821 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
2822 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
2824 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
2825 struct zone
*preferred_zone
;
2826 struct zoneref
*preferred_zoneref
;
2827 struct page
*page
= NULL
;
2828 int migratetype
= allocflags_to_migratetype(gfp_mask
);
2829 unsigned int cpuset_mems_cookie
;
2830 int alloc_flags
= ALLOC_WMARK_LOW
|ALLOC_CPUSET
|ALLOC_FAIR
;
2831 struct mem_cgroup
*memcg
= NULL
;
2834 gfp_mask
&= gfp_allowed_mask
;
2836 lockdep_trace_alloc(gfp_mask
);
2838 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2840 if (should_fail_alloc_page(gfp_mask
, order
))
2844 * Check the zones suitable for the gfp_mask contain at least one
2845 * valid zone. It's possible to have an empty zonelist as a result
2846 * of GFP_THISNODE and a memoryless node
2848 if (unlikely(!zonelist
->_zonerefs
->zone
))
2852 * Will only have any effect when __GFP_KMEMCG is set. This is
2853 * verified in the (always inline) callee
2855 if (!memcg_kmem_newpage_charge(gfp_mask
, &memcg
, order
))
2859 cpuset_mems_cookie
= read_mems_allowed_begin();
2861 /* The preferred zone is used for statistics later */
2862 preferred_zoneref
= first_zones_zonelist(zonelist
, high_zoneidx
,
2863 nodemask
? : &cpuset_current_mems_allowed
,
2865 if (!preferred_zone
)
2867 classzone_idx
= zonelist_zone_idx(preferred_zoneref
);
2870 if (allocflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
2871 alloc_flags
|= ALLOC_CMA
;
2873 /* First allocation attempt */
2874 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
2875 zonelist
, high_zoneidx
, alloc_flags
,
2876 preferred_zone
, classzone_idx
, migratetype
);
2877 if (unlikely(!page
)) {
2879 * Runtime PM, block IO and its error handling path
2880 * can deadlock because I/O on the device might not
2883 gfp_mask
= memalloc_noio_flags(gfp_mask
);
2884 page
= __alloc_pages_slowpath(gfp_mask
, order
,
2885 zonelist
, high_zoneidx
, nodemask
,
2886 preferred_zone
, classzone_idx
, migratetype
);
2889 trace_mm_page_alloc(page
, order
, gfp_mask
, migratetype
);
2893 * When updating a task's mems_allowed, it is possible to race with
2894 * parallel threads in such a way that an allocation can fail while
2895 * the mask is being updated. If a page allocation is about to fail,
2896 * check if the cpuset changed during allocation and if so, retry.
2898 if (unlikely(!page
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
2901 memcg_kmem_commit_charge(page
, memcg
, order
);
2905 EXPORT_SYMBOL(__alloc_pages_nodemask
);
2908 * Common helper functions.
2910 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
2915 * __get_free_pages() returns a 32-bit address, which cannot represent
2918 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
2920 page
= alloc_pages(gfp_mask
, order
);
2923 return (unsigned long) page_address(page
);
2925 EXPORT_SYMBOL(__get_free_pages
);
2927 unsigned long get_zeroed_page(gfp_t gfp_mask
)
2929 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
2931 EXPORT_SYMBOL(get_zeroed_page
);
2933 void __free_pages(struct page
*page
, unsigned int order
)
2935 if (put_page_testzero(page
)) {
2937 free_hot_cold_page(page
, false);
2939 __free_pages_ok(page
, order
);
2943 EXPORT_SYMBOL(__free_pages
);
2945 void free_pages(unsigned long addr
, unsigned int order
)
2948 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2949 __free_pages(virt_to_page((void *)addr
), order
);
2953 EXPORT_SYMBOL(free_pages
);
2956 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2957 * pages allocated with __GFP_KMEMCG.
2959 * Those pages are accounted to a particular memcg, embedded in the
2960 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2961 * for that information only to find out that it is NULL for users who have no
2962 * interest in that whatsoever, we provide these functions.
2964 * The caller knows better which flags it relies on.
2966 void __free_memcg_kmem_pages(struct page
*page
, unsigned int order
)
2968 memcg_kmem_uncharge_pages(page
, order
);
2969 __free_pages(page
, order
);
2972 void free_memcg_kmem_pages(unsigned long addr
, unsigned int order
)
2975 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2976 __free_memcg_kmem_pages(virt_to_page((void *)addr
), order
);
2980 static void *make_alloc_exact(unsigned long addr
, unsigned order
, size_t size
)
2983 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
2984 unsigned long used
= addr
+ PAGE_ALIGN(size
);
2986 split_page(virt_to_page((void *)addr
), order
);
2987 while (used
< alloc_end
) {
2992 return (void *)addr
;
2996 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2997 * @size: the number of bytes to allocate
2998 * @gfp_mask: GFP flags for the allocation
3000 * This function is similar to alloc_pages(), except that it allocates the
3001 * minimum number of pages to satisfy the request. alloc_pages() can only
3002 * allocate memory in power-of-two pages.
3004 * This function is also limited by MAX_ORDER.
3006 * Memory allocated by this function must be released by free_pages_exact().
3008 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
3010 unsigned int order
= get_order(size
);
3013 addr
= __get_free_pages(gfp_mask
, order
);
3014 return make_alloc_exact(addr
, order
, size
);
3016 EXPORT_SYMBOL(alloc_pages_exact
);
3019 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3021 * @nid: the preferred node ID where memory should be allocated
3022 * @size: the number of bytes to allocate
3023 * @gfp_mask: GFP flags for the allocation
3025 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3027 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3030 void *alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
3032 unsigned order
= get_order(size
);
3033 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
3036 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
3038 EXPORT_SYMBOL(alloc_pages_exact_nid
);
3041 * free_pages_exact - release memory allocated via alloc_pages_exact()
3042 * @virt: the value returned by alloc_pages_exact.
3043 * @size: size of allocation, same value as passed to alloc_pages_exact().
3045 * Release the memory allocated by a previous call to alloc_pages_exact.
3047 void free_pages_exact(void *virt
, size_t size
)
3049 unsigned long addr
= (unsigned long)virt
;
3050 unsigned long end
= addr
+ PAGE_ALIGN(size
);
3052 while (addr
< end
) {
3057 EXPORT_SYMBOL(free_pages_exact
);
3060 * nr_free_zone_pages - count number of pages beyond high watermark
3061 * @offset: The zone index of the highest zone
3063 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3064 * high watermark within all zones at or below a given zone index. For each
3065 * zone, the number of pages is calculated as:
3066 * managed_pages - high_pages
3068 static unsigned long nr_free_zone_pages(int offset
)
3073 /* Just pick one node, since fallback list is circular */
3074 unsigned long sum
= 0;
3076 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
3078 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
3079 unsigned long size
= zone
->managed_pages
;
3080 unsigned long high
= high_wmark_pages(zone
);
3089 * nr_free_buffer_pages - count number of pages beyond high watermark
3091 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3092 * watermark within ZONE_DMA and ZONE_NORMAL.
3094 unsigned long nr_free_buffer_pages(void)
3096 return nr_free_zone_pages(gfp_zone(GFP_USER
));
3098 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
3101 * nr_free_pagecache_pages - count number of pages beyond high watermark
3103 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3104 * high watermark within all zones.
3106 unsigned long nr_free_pagecache_pages(void)
3108 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
3111 static inline void show_node(struct zone
*zone
)
3113 if (IS_ENABLED(CONFIG_NUMA
))
3114 printk("Node %d ", zone_to_nid(zone
));
3117 void si_meminfo(struct sysinfo
*val
)
3119 val
->totalram
= totalram_pages
;
3121 val
->freeram
= global_page_state(NR_FREE_PAGES
);
3122 val
->bufferram
= nr_blockdev_pages();
3123 val
->totalhigh
= totalhigh_pages
;
3124 val
->freehigh
= nr_free_highpages();
3125 val
->mem_unit
= PAGE_SIZE
;
3128 EXPORT_SYMBOL(si_meminfo
);
3131 void si_meminfo_node(struct sysinfo
*val
, int nid
)
3133 int zone_type
; /* needs to be signed */
3134 unsigned long managed_pages
= 0;
3135 pg_data_t
*pgdat
= NODE_DATA(nid
);
3137 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
3138 managed_pages
+= pgdat
->node_zones
[zone_type
].managed_pages
;
3139 val
->totalram
= managed_pages
;
3140 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
3141 #ifdef CONFIG_HIGHMEM
3142 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].managed_pages
;
3143 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
3149 val
->mem_unit
= PAGE_SIZE
;
3154 * Determine whether the node should be displayed or not, depending on whether
3155 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3157 bool skip_free_areas_node(unsigned int flags
, int nid
)
3160 unsigned int cpuset_mems_cookie
;
3162 if (!(flags
& SHOW_MEM_FILTER_NODES
))
3166 cpuset_mems_cookie
= read_mems_allowed_begin();
3167 ret
= !node_isset(nid
, cpuset_current_mems_allowed
);
3168 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
3173 #define K(x) ((x) << (PAGE_SHIFT-10))
3175 static void show_migration_types(unsigned char type
)
3177 static const char types
[MIGRATE_TYPES
] = {
3178 [MIGRATE_UNMOVABLE
] = 'U',
3179 [MIGRATE_RECLAIMABLE
] = 'E',
3180 [MIGRATE_MOVABLE
] = 'M',
3181 [MIGRATE_RESERVE
] = 'R',
3183 [MIGRATE_CMA
] = 'C',
3185 #ifdef CONFIG_MEMORY_ISOLATION
3186 [MIGRATE_ISOLATE
] = 'I',
3189 char tmp
[MIGRATE_TYPES
+ 1];
3193 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
3194 if (type
& (1 << i
))
3199 printk("(%s) ", tmp
);
3203 * Show free area list (used inside shift_scroll-lock stuff)
3204 * We also calculate the percentage fragmentation. We do this by counting the
3205 * memory on each free list with the exception of the first item on the list.
3206 * Suppresses nodes that are not allowed by current's cpuset if
3207 * SHOW_MEM_FILTER_NODES is passed.
3209 void show_free_areas(unsigned int filter
)
3214 for_each_populated_zone(zone
) {
3215 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3218 printk("%s per-cpu:\n", zone
->name
);
3220 for_each_online_cpu(cpu
) {
3221 struct per_cpu_pageset
*pageset
;
3223 pageset
= per_cpu_ptr(zone
->pageset
, cpu
);
3225 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3226 cpu
, pageset
->pcp
.high
,
3227 pageset
->pcp
.batch
, pageset
->pcp
.count
);
3231 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3232 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3234 " dirty:%lu writeback:%lu unstable:%lu\n"
3235 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3236 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3238 global_page_state(NR_ACTIVE_ANON
),
3239 global_page_state(NR_INACTIVE_ANON
),
3240 global_page_state(NR_ISOLATED_ANON
),
3241 global_page_state(NR_ACTIVE_FILE
),
3242 global_page_state(NR_INACTIVE_FILE
),
3243 global_page_state(NR_ISOLATED_FILE
),
3244 global_page_state(NR_UNEVICTABLE
),
3245 global_page_state(NR_FILE_DIRTY
),
3246 global_page_state(NR_WRITEBACK
),
3247 global_page_state(NR_UNSTABLE_NFS
),
3248 global_page_state(NR_FREE_PAGES
),
3249 global_page_state(NR_SLAB_RECLAIMABLE
),
3250 global_page_state(NR_SLAB_UNRECLAIMABLE
),
3251 global_page_state(NR_FILE_MAPPED
),
3252 global_page_state(NR_SHMEM
),
3253 global_page_state(NR_PAGETABLE
),
3254 global_page_state(NR_BOUNCE
),
3255 global_page_state(NR_FREE_CMA_PAGES
));
3257 for_each_populated_zone(zone
) {
3260 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3268 " active_anon:%lukB"
3269 " inactive_anon:%lukB"
3270 " active_file:%lukB"
3271 " inactive_file:%lukB"
3272 " unevictable:%lukB"
3273 " isolated(anon):%lukB"
3274 " isolated(file):%lukB"
3282 " slab_reclaimable:%lukB"
3283 " slab_unreclaimable:%lukB"
3284 " kernel_stack:%lukB"
3289 " writeback_tmp:%lukB"
3290 " pages_scanned:%lu"
3291 " all_unreclaimable? %s"
3294 K(zone_page_state(zone
, NR_FREE_PAGES
)),
3295 K(min_wmark_pages(zone
)),
3296 K(low_wmark_pages(zone
)),
3297 K(high_wmark_pages(zone
)),
3298 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
3299 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
3300 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
3301 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
3302 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
3303 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
3304 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
3305 K(zone
->present_pages
),
3306 K(zone
->managed_pages
),
3307 K(zone_page_state(zone
, NR_MLOCK
)),
3308 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
3309 K(zone_page_state(zone
, NR_WRITEBACK
)),
3310 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
3311 K(zone_page_state(zone
, NR_SHMEM
)),
3312 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
3313 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
3314 zone_page_state(zone
, NR_KERNEL_STACK
) *
3316 K(zone_page_state(zone
, NR_PAGETABLE
)),
3317 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
3318 K(zone_page_state(zone
, NR_BOUNCE
)),
3319 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)),
3320 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
3321 K(zone_page_state(zone
, NR_PAGES_SCANNED
)),
3322 (!zone_reclaimable(zone
) ? "yes" : "no")
3324 printk("lowmem_reserve[]:");
3325 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3326 printk(" %ld", zone
->lowmem_reserve
[i
]);
3330 for_each_populated_zone(zone
) {
3331 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
3332 unsigned char types
[MAX_ORDER
];
3334 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3337 printk("%s: ", zone
->name
);
3339 spin_lock_irqsave(&zone
->lock
, flags
);
3340 for (order
= 0; order
< MAX_ORDER
; order
++) {
3341 struct free_area
*area
= &zone
->free_area
[order
];
3344 nr
[order
] = area
->nr_free
;
3345 total
+= nr
[order
] << order
;
3348 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
3349 if (!list_empty(&area
->free_list
[type
]))
3350 types
[order
] |= 1 << type
;
3353 spin_unlock_irqrestore(&zone
->lock
, flags
);
3354 for (order
= 0; order
< MAX_ORDER
; order
++) {
3355 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
3357 show_migration_types(types
[order
]);
3359 printk("= %lukB\n", K(total
));
3362 hugetlb_show_meminfo();
3364 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
3366 show_swap_cache_info();
3369 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
3371 zoneref
->zone
= zone
;
3372 zoneref
->zone_idx
= zone_idx(zone
);
3376 * Builds allocation fallback zone lists.
3378 * Add all populated zones of a node to the zonelist.
3380 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
3384 enum zone_type zone_type
= MAX_NR_ZONES
;
3388 zone
= pgdat
->node_zones
+ zone_type
;
3389 if (populated_zone(zone
)) {
3390 zoneref_set_zone(zone
,
3391 &zonelist
->_zonerefs
[nr_zones
++]);
3392 check_highest_zone(zone_type
);
3394 } while (zone_type
);
3402 * 0 = automatic detection of better ordering.
3403 * 1 = order by ([node] distance, -zonetype)
3404 * 2 = order by (-zonetype, [node] distance)
3406 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3407 * the same zonelist. So only NUMA can configure this param.
3409 #define ZONELIST_ORDER_DEFAULT 0
3410 #define ZONELIST_ORDER_NODE 1
3411 #define ZONELIST_ORDER_ZONE 2
3413 /* zonelist order in the kernel.
3414 * set_zonelist_order() will set this to NODE or ZONE.
3416 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3417 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
3421 /* The value user specified ....changed by config */
3422 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3423 /* string for sysctl */
3424 #define NUMA_ZONELIST_ORDER_LEN 16
3425 char numa_zonelist_order
[16] = "default";
3428 * interface for configure zonelist ordering.
3429 * command line option "numa_zonelist_order"
3430 * = "[dD]efault - default, automatic configuration.
3431 * = "[nN]ode - order by node locality, then by zone within node
3432 * = "[zZ]one - order by zone, then by locality within zone
3435 static int __parse_numa_zonelist_order(char *s
)
3437 if (*s
== 'd' || *s
== 'D') {
3438 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3439 } else if (*s
== 'n' || *s
== 'N') {
3440 user_zonelist_order
= ZONELIST_ORDER_NODE
;
3441 } else if (*s
== 'z' || *s
== 'Z') {
3442 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
3445 "Ignoring invalid numa_zonelist_order value: "
3452 static __init
int setup_numa_zonelist_order(char *s
)
3459 ret
= __parse_numa_zonelist_order(s
);
3461 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
3465 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
3468 * sysctl handler for numa_zonelist_order
3470 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
3471 void __user
*buffer
, size_t *length
,
3474 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
3476 static DEFINE_MUTEX(zl_order_mutex
);
3478 mutex_lock(&zl_order_mutex
);
3480 if (strlen((char *)table
->data
) >= NUMA_ZONELIST_ORDER_LEN
) {
3484 strcpy(saved_string
, (char *)table
->data
);
3486 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
3490 int oldval
= user_zonelist_order
;
3492 ret
= __parse_numa_zonelist_order((char *)table
->data
);
3495 * bogus value. restore saved string
3497 strncpy((char *)table
->data
, saved_string
,
3498 NUMA_ZONELIST_ORDER_LEN
);
3499 user_zonelist_order
= oldval
;
3500 } else if (oldval
!= user_zonelist_order
) {
3501 mutex_lock(&zonelists_mutex
);
3502 build_all_zonelists(NULL
, NULL
);
3503 mutex_unlock(&zonelists_mutex
);
3507 mutex_unlock(&zl_order_mutex
);
3512 #define MAX_NODE_LOAD (nr_online_nodes)
3513 static int node_load
[MAX_NUMNODES
];
3516 * find_next_best_node - find the next node that should appear in a given node's fallback list
3517 * @node: node whose fallback list we're appending
3518 * @used_node_mask: nodemask_t of already used nodes
3520 * We use a number of factors to determine which is the next node that should
3521 * appear on a given node's fallback list. The node should not have appeared
3522 * already in @node's fallback list, and it should be the next closest node
3523 * according to the distance array (which contains arbitrary distance values
3524 * from each node to each node in the system), and should also prefer nodes
3525 * with no CPUs, since presumably they'll have very little allocation pressure
3526 * on them otherwise.
3527 * It returns -1 if no node is found.
3529 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
3532 int min_val
= INT_MAX
;
3533 int best_node
= NUMA_NO_NODE
;
3534 const struct cpumask
*tmp
= cpumask_of_node(0);
3536 /* Use the local node if we haven't already */
3537 if (!node_isset(node
, *used_node_mask
)) {
3538 node_set(node
, *used_node_mask
);
3542 for_each_node_state(n
, N_MEMORY
) {
3544 /* Don't want a node to appear more than once */
3545 if (node_isset(n
, *used_node_mask
))
3548 /* Use the distance array to find the distance */
3549 val
= node_distance(node
, n
);
3551 /* Penalize nodes under us ("prefer the next node") */
3554 /* Give preference to headless and unused nodes */
3555 tmp
= cpumask_of_node(n
);
3556 if (!cpumask_empty(tmp
))
3557 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
3559 /* Slight preference for less loaded node */
3560 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
3561 val
+= node_load
[n
];
3563 if (val
< min_val
) {
3570 node_set(best_node
, *used_node_mask
);
3577 * Build zonelists ordered by node and zones within node.
3578 * This results in maximum locality--normal zone overflows into local
3579 * DMA zone, if any--but risks exhausting DMA zone.
3581 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
3584 struct zonelist
*zonelist
;
3586 zonelist
= &pgdat
->node_zonelists
[0];
3587 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
3589 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
3590 zonelist
->_zonerefs
[j
].zone
= NULL
;
3591 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3595 * Build gfp_thisnode zonelists
3597 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
3600 struct zonelist
*zonelist
;
3602 zonelist
= &pgdat
->node_zonelists
[1];
3603 j
= build_zonelists_node(pgdat
, zonelist
, 0);
3604 zonelist
->_zonerefs
[j
].zone
= NULL
;
3605 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3609 * Build zonelists ordered by zone and nodes within zones.
3610 * This results in conserving DMA zone[s] until all Normal memory is
3611 * exhausted, but results in overflowing to remote node while memory
3612 * may still exist in local DMA zone.
3614 static int node_order
[MAX_NUMNODES
];
3616 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
3619 int zone_type
; /* needs to be signed */
3621 struct zonelist
*zonelist
;
3623 zonelist
= &pgdat
->node_zonelists
[0];
3625 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
3626 for (j
= 0; j
< nr_nodes
; j
++) {
3627 node
= node_order
[j
];
3628 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
3629 if (populated_zone(z
)) {
3631 &zonelist
->_zonerefs
[pos
++]);
3632 check_highest_zone(zone_type
);
3636 zonelist
->_zonerefs
[pos
].zone
= NULL
;
3637 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
3640 static int default_zonelist_order(void)
3643 unsigned long low_kmem_size
, total_size
;
3647 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3648 * If they are really small and used heavily, the system can fall
3649 * into OOM very easily.
3650 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3652 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3655 for_each_online_node(nid
) {
3656 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
3657 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
3658 if (populated_zone(z
)) {
3659 if (zone_type
< ZONE_NORMAL
)
3660 low_kmem_size
+= z
->managed_pages
;
3661 total_size
+= z
->managed_pages
;
3662 } else if (zone_type
== ZONE_NORMAL
) {
3664 * If any node has only lowmem, then node order
3665 * is preferred to allow kernel allocations
3666 * locally; otherwise, they can easily infringe
3667 * on other nodes when there is an abundance of
3668 * lowmem available to allocate from.
3670 return ZONELIST_ORDER_NODE
;
3674 if (!low_kmem_size
|| /* there are no DMA area. */
3675 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
3676 return ZONELIST_ORDER_NODE
;
3678 * look into each node's config.
3679 * If there is a node whose DMA/DMA32 memory is very big area on
3680 * local memory, NODE_ORDER may be suitable.
3682 average_size
= total_size
/
3683 (nodes_weight(node_states
[N_MEMORY
]) + 1);
3684 for_each_online_node(nid
) {
3687 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
3688 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
3689 if (populated_zone(z
)) {
3690 if (zone_type
< ZONE_NORMAL
)
3691 low_kmem_size
+= z
->present_pages
;
3692 total_size
+= z
->present_pages
;
3695 if (low_kmem_size
&&
3696 total_size
> average_size
&& /* ignore small node */
3697 low_kmem_size
> total_size
* 70/100)
3698 return ZONELIST_ORDER_NODE
;
3700 return ZONELIST_ORDER_ZONE
;
3703 static void set_zonelist_order(void)
3705 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
3706 current_zonelist_order
= default_zonelist_order();
3708 current_zonelist_order
= user_zonelist_order
;
3711 static void build_zonelists(pg_data_t
*pgdat
)
3715 nodemask_t used_mask
;
3716 int local_node
, prev_node
;
3717 struct zonelist
*zonelist
;
3718 int order
= current_zonelist_order
;
3720 /* initialize zonelists */
3721 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
3722 zonelist
= pgdat
->node_zonelists
+ i
;
3723 zonelist
->_zonerefs
[0].zone
= NULL
;
3724 zonelist
->_zonerefs
[0].zone_idx
= 0;
3727 /* NUMA-aware ordering of nodes */
3728 local_node
= pgdat
->node_id
;
3729 load
= nr_online_nodes
;
3730 prev_node
= local_node
;
3731 nodes_clear(used_mask
);
3733 memset(node_order
, 0, sizeof(node_order
));
3736 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
3738 * We don't want to pressure a particular node.
3739 * So adding penalty to the first node in same
3740 * distance group to make it round-robin.
3742 if (node_distance(local_node
, node
) !=
3743 node_distance(local_node
, prev_node
))
3744 node_load
[node
] = load
;
3748 if (order
== ZONELIST_ORDER_NODE
)
3749 build_zonelists_in_node_order(pgdat
, node
);
3751 node_order
[j
++] = node
; /* remember order */
3754 if (order
== ZONELIST_ORDER_ZONE
) {
3755 /* calculate node order -- i.e., DMA last! */
3756 build_zonelists_in_zone_order(pgdat
, j
);
3759 build_thisnode_zonelists(pgdat
);
3762 /* Construct the zonelist performance cache - see further mmzone.h */
3763 static void build_zonelist_cache(pg_data_t
*pgdat
)
3765 struct zonelist
*zonelist
;
3766 struct zonelist_cache
*zlc
;
3769 zonelist
= &pgdat
->node_zonelists
[0];
3770 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
3771 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
3772 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
3773 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
3776 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3778 * Return node id of node used for "local" allocations.
3779 * I.e., first node id of first zone in arg node's generic zonelist.
3780 * Used for initializing percpu 'numa_mem', which is used primarily
3781 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3783 int local_memory_node(int node
)
3787 (void)first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
3788 gfp_zone(GFP_KERNEL
),
3795 #else /* CONFIG_NUMA */
3797 static void set_zonelist_order(void)
3799 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
3802 static void build_zonelists(pg_data_t
*pgdat
)
3804 int node
, local_node
;
3806 struct zonelist
*zonelist
;
3808 local_node
= pgdat
->node_id
;
3810 zonelist
= &pgdat
->node_zonelists
[0];
3811 j
= build_zonelists_node(pgdat
, zonelist
, 0);
3814 * Now we build the zonelist so that it contains the zones
3815 * of all the other nodes.
3816 * We don't want to pressure a particular node, so when
3817 * building the zones for node N, we make sure that the
3818 * zones coming right after the local ones are those from
3819 * node N+1 (modulo N)
3821 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
3822 if (!node_online(node
))
3824 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
3826 for (node
= 0; node
< local_node
; node
++) {
3827 if (!node_online(node
))
3829 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
3832 zonelist
->_zonerefs
[j
].zone
= NULL
;
3833 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3836 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3837 static void build_zonelist_cache(pg_data_t
*pgdat
)
3839 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
3842 #endif /* CONFIG_NUMA */
3845 * Boot pageset table. One per cpu which is going to be used for all
3846 * zones and all nodes. The parameters will be set in such a way
3847 * that an item put on a list will immediately be handed over to
3848 * the buddy list. This is safe since pageset manipulation is done
3849 * with interrupts disabled.
3851 * The boot_pagesets must be kept even after bootup is complete for
3852 * unused processors and/or zones. They do play a role for bootstrapping
3853 * hotplugged processors.
3855 * zoneinfo_show() and maybe other functions do
3856 * not check if the processor is online before following the pageset pointer.
3857 * Other parts of the kernel may not check if the zone is available.
3859 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
3860 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
3861 static void setup_zone_pageset(struct zone
*zone
);
3864 * Global mutex to protect against size modification of zonelists
3865 * as well as to serialize pageset setup for the new populated zone.
3867 DEFINE_MUTEX(zonelists_mutex
);
3869 /* return values int ....just for stop_machine() */
3870 static int __build_all_zonelists(void *data
)
3874 pg_data_t
*self
= data
;
3877 memset(node_load
, 0, sizeof(node_load
));
3880 if (self
&& !node_online(self
->node_id
)) {
3881 build_zonelists(self
);
3882 build_zonelist_cache(self
);
3885 for_each_online_node(nid
) {
3886 pg_data_t
*pgdat
= NODE_DATA(nid
);
3888 build_zonelists(pgdat
);
3889 build_zonelist_cache(pgdat
);
3893 * Initialize the boot_pagesets that are going to be used
3894 * for bootstrapping processors. The real pagesets for
3895 * each zone will be allocated later when the per cpu
3896 * allocator is available.
3898 * boot_pagesets are used also for bootstrapping offline
3899 * cpus if the system is already booted because the pagesets
3900 * are needed to initialize allocators on a specific cpu too.
3901 * F.e. the percpu allocator needs the page allocator which
3902 * needs the percpu allocator in order to allocate its pagesets
3903 * (a chicken-egg dilemma).
3905 for_each_possible_cpu(cpu
) {
3906 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
3908 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3910 * We now know the "local memory node" for each node--
3911 * i.e., the node of the first zone in the generic zonelist.
3912 * Set up numa_mem percpu variable for on-line cpus. During
3913 * boot, only the boot cpu should be on-line; we'll init the
3914 * secondary cpus' numa_mem as they come on-line. During
3915 * node/memory hotplug, we'll fixup all on-line cpus.
3917 if (cpu_online(cpu
))
3918 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
3926 * Called with zonelists_mutex held always
3927 * unless system_state == SYSTEM_BOOTING.
3929 void __ref
build_all_zonelists(pg_data_t
*pgdat
, struct zone
*zone
)
3931 set_zonelist_order();
3933 if (system_state
== SYSTEM_BOOTING
) {
3934 __build_all_zonelists(NULL
);
3935 mminit_verify_zonelist();
3936 cpuset_init_current_mems_allowed();
3938 #ifdef CONFIG_MEMORY_HOTPLUG
3940 setup_zone_pageset(zone
);
3942 /* we have to stop all cpus to guarantee there is no user
3944 stop_machine(__build_all_zonelists
, pgdat
, NULL
);
3945 /* cpuset refresh routine should be here */
3947 vm_total_pages
= nr_free_pagecache_pages();
3949 * Disable grouping by mobility if the number of pages in the
3950 * system is too low to allow the mechanism to work. It would be
3951 * more accurate, but expensive to check per-zone. This check is
3952 * made on memory-hotadd so a system can start with mobility
3953 * disabled and enable it later
3955 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
3956 page_group_by_mobility_disabled
= 1;
3958 page_group_by_mobility_disabled
= 0;
3960 printk("Built %i zonelists in %s order, mobility grouping %s. "
3961 "Total pages: %ld\n",
3963 zonelist_order_name
[current_zonelist_order
],
3964 page_group_by_mobility_disabled
? "off" : "on",
3967 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
3972 * Helper functions to size the waitqueue hash table.
3973 * Essentially these want to choose hash table sizes sufficiently
3974 * large so that collisions trying to wait on pages are rare.
3975 * But in fact, the number of active page waitqueues on typical
3976 * systems is ridiculously low, less than 200. So this is even
3977 * conservative, even though it seems large.
3979 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3980 * waitqueues, i.e. the size of the waitq table given the number of pages.
3982 #define PAGES_PER_WAITQUEUE 256
3984 #ifndef CONFIG_MEMORY_HOTPLUG
3985 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3987 unsigned long size
= 1;
3989 pages
/= PAGES_PER_WAITQUEUE
;
3991 while (size
< pages
)
3995 * Once we have dozens or even hundreds of threads sleeping
3996 * on IO we've got bigger problems than wait queue collision.
3997 * Limit the size of the wait table to a reasonable size.
3999 size
= min(size
, 4096UL);
4001 return max(size
, 4UL);
4005 * A zone's size might be changed by hot-add, so it is not possible to determine
4006 * a suitable size for its wait_table. So we use the maximum size now.
4008 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4010 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4011 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4012 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4014 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4015 * or more by the traditional way. (See above). It equals:
4017 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4018 * ia64(16K page size) : = ( 8G + 4M)byte.
4019 * powerpc (64K page size) : = (32G +16M)byte.
4021 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
4028 * This is an integer logarithm so that shifts can be used later
4029 * to extract the more random high bits from the multiplicative
4030 * hash function before the remainder is taken.
4032 static inline unsigned long wait_table_bits(unsigned long size
)
4038 * Check if a pageblock contains reserved pages
4040 static int pageblock_is_reserved(unsigned long start_pfn
, unsigned long end_pfn
)
4044 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
4045 if (!pfn_valid_within(pfn
) || PageReserved(pfn_to_page(pfn
)))
4052 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4053 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4054 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4055 * higher will lead to a bigger reserve which will get freed as contiguous
4056 * blocks as reclaim kicks in
4058 static void setup_zone_migrate_reserve(struct zone
*zone
)
4060 unsigned long start_pfn
, pfn
, end_pfn
, block_end_pfn
;
4062 unsigned long block_migratetype
;
4067 * Get the start pfn, end pfn and the number of blocks to reserve
4068 * We have to be careful to be aligned to pageblock_nr_pages to
4069 * make sure that we always check pfn_valid for the first page in
4072 start_pfn
= zone
->zone_start_pfn
;
4073 end_pfn
= zone_end_pfn(zone
);
4074 start_pfn
= roundup(start_pfn
, pageblock_nr_pages
);
4075 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
4079 * Reserve blocks are generally in place to help high-order atomic
4080 * allocations that are short-lived. A min_free_kbytes value that
4081 * would result in more than 2 reserve blocks for atomic allocations
4082 * is assumed to be in place to help anti-fragmentation for the
4083 * future allocation of hugepages at runtime.
4085 reserve
= min(2, reserve
);
4086 old_reserve
= zone
->nr_migrate_reserve_block
;
4088 /* When memory hot-add, we almost always need to do nothing */
4089 if (reserve
== old_reserve
)
4091 zone
->nr_migrate_reserve_block
= reserve
;
4093 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
4094 if (!pfn_valid(pfn
))
4096 page
= pfn_to_page(pfn
);
4098 /* Watch out for overlapping nodes */
4099 if (page_to_nid(page
) != zone_to_nid(zone
))
4102 block_migratetype
= get_pageblock_migratetype(page
);
4104 /* Only test what is necessary when the reserves are not met */
4107 * Blocks with reserved pages will never free, skip
4110 block_end_pfn
= min(pfn
+ pageblock_nr_pages
, end_pfn
);
4111 if (pageblock_is_reserved(pfn
, block_end_pfn
))
4114 /* If this block is reserved, account for it */
4115 if (block_migratetype
== MIGRATE_RESERVE
) {
4120 /* Suitable for reserving if this block is movable */
4121 if (block_migratetype
== MIGRATE_MOVABLE
) {
4122 set_pageblock_migratetype(page
,
4124 move_freepages_block(zone
, page
,
4129 } else if (!old_reserve
) {
4131 * At boot time we don't need to scan the whole zone
4132 * for turning off MIGRATE_RESERVE.
4138 * If the reserve is met and this is a previous reserved block,
4141 if (block_migratetype
== MIGRATE_RESERVE
) {
4142 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4143 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
4149 * Initially all pages are reserved - free ones are freed
4150 * up by free_all_bootmem() once the early boot process is
4151 * done. Non-atomic initialization, single-pass.
4153 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
4154 unsigned long start_pfn
, enum memmap_context context
)
4157 unsigned long end_pfn
= start_pfn
+ size
;
4161 if (highest_memmap_pfn
< end_pfn
- 1)
4162 highest_memmap_pfn
= end_pfn
- 1;
4164 z
= &NODE_DATA(nid
)->node_zones
[zone
];
4165 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
4167 * There can be holes in boot-time mem_map[]s
4168 * handed to this function. They do not
4169 * exist on hotplugged memory.
4171 if (context
== MEMMAP_EARLY
) {
4172 if (!early_pfn_valid(pfn
))
4174 if (!early_pfn_in_nid(pfn
, nid
))
4177 page
= pfn_to_page(pfn
);
4178 set_page_links(page
, zone
, nid
, pfn
);
4179 mminit_verify_page_links(page
, zone
, nid
, pfn
);
4180 init_page_count(page
);
4181 page_mapcount_reset(page
);
4182 page_cpupid_reset_last(page
);
4183 SetPageReserved(page
);
4185 * Mark the block movable so that blocks are reserved for
4186 * movable at startup. This will force kernel allocations
4187 * to reserve their blocks rather than leaking throughout
4188 * the address space during boot when many long-lived
4189 * kernel allocations are made. Later some blocks near
4190 * the start are marked MIGRATE_RESERVE by
4191 * setup_zone_migrate_reserve()
4193 * bitmap is created for zone's valid pfn range. but memmap
4194 * can be created for invalid pages (for alignment)
4195 * check here not to call set_pageblock_migratetype() against
4198 if ((z
->zone_start_pfn
<= pfn
)
4199 && (pfn
< zone_end_pfn(z
))
4200 && !(pfn
& (pageblock_nr_pages
- 1)))
4201 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4203 INIT_LIST_HEAD(&page
->lru
);
4204 #ifdef WANT_PAGE_VIRTUAL
4205 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4206 if (!is_highmem_idx(zone
))
4207 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
4212 static void __meminit
zone_init_free_lists(struct zone
*zone
)
4214 unsigned int order
, t
;
4215 for_each_migratetype_order(order
, t
) {
4216 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
4217 zone
->free_area
[order
].nr_free
= 0;
4221 #ifndef __HAVE_ARCH_MEMMAP_INIT
4222 #define memmap_init(size, nid, zone, start_pfn) \
4223 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4226 static int zone_batchsize(struct zone
*zone
)
4232 * The per-cpu-pages pools are set to around 1000th of the
4233 * size of the zone. But no more than 1/2 of a meg.
4235 * OK, so we don't know how big the cache is. So guess.
4237 batch
= zone
->managed_pages
/ 1024;
4238 if (batch
* PAGE_SIZE
> 512 * 1024)
4239 batch
= (512 * 1024) / PAGE_SIZE
;
4240 batch
/= 4; /* We effectively *= 4 below */
4245 * Clamp the batch to a 2^n - 1 value. Having a power
4246 * of 2 value was found to be more likely to have
4247 * suboptimal cache aliasing properties in some cases.
4249 * For example if 2 tasks are alternately allocating
4250 * batches of pages, one task can end up with a lot
4251 * of pages of one half of the possible page colors
4252 * and the other with pages of the other colors.
4254 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
4259 /* The deferral and batching of frees should be suppressed under NOMMU
4262 * The problem is that NOMMU needs to be able to allocate large chunks
4263 * of contiguous memory as there's no hardware page translation to
4264 * assemble apparent contiguous memory from discontiguous pages.
4266 * Queueing large contiguous runs of pages for batching, however,
4267 * causes the pages to actually be freed in smaller chunks. As there
4268 * can be a significant delay between the individual batches being
4269 * recycled, this leads to the once large chunks of space being
4270 * fragmented and becoming unavailable for high-order allocations.
4277 * pcp->high and pcp->batch values are related and dependent on one another:
4278 * ->batch must never be higher then ->high.
4279 * The following function updates them in a safe manner without read side
4282 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4283 * those fields changing asynchronously (acording the the above rule).
4285 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4286 * outside of boot time (or some other assurance that no concurrent updaters
4289 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
4290 unsigned long batch
)
4292 /* start with a fail safe value for batch */
4296 /* Update high, then batch, in order */
4303 /* a companion to pageset_set_high() */
4304 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
4306 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
4309 static void pageset_init(struct per_cpu_pageset
*p
)
4311 struct per_cpu_pages
*pcp
;
4314 memset(p
, 0, sizeof(*p
));
4318 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
4319 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
4322 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
4325 pageset_set_batch(p
, batch
);
4329 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4330 * to the value high for the pageset p.
4332 static void pageset_set_high(struct per_cpu_pageset
*p
,
4335 unsigned long batch
= max(1UL, high
/ 4);
4336 if ((high
/ 4) > (PAGE_SHIFT
* 8))
4337 batch
= PAGE_SHIFT
* 8;
4339 pageset_update(&p
->pcp
, high
, batch
);
4342 static void pageset_set_high_and_batch(struct zone
*zone
,
4343 struct per_cpu_pageset
*pcp
)
4345 if (percpu_pagelist_fraction
)
4346 pageset_set_high(pcp
,
4347 (zone
->managed_pages
/
4348 percpu_pagelist_fraction
));
4350 pageset_set_batch(pcp
, zone_batchsize(zone
));
4353 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
4355 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
4358 pageset_set_high_and_batch(zone
, pcp
);
4361 static void __meminit
setup_zone_pageset(struct zone
*zone
)
4364 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
4365 for_each_possible_cpu(cpu
)
4366 zone_pageset_init(zone
, cpu
);
4370 * Allocate per cpu pagesets and initialize them.
4371 * Before this call only boot pagesets were available.
4373 void __init
setup_per_cpu_pageset(void)
4377 for_each_populated_zone(zone
)
4378 setup_zone_pageset(zone
);
4381 static noinline __init_refok
4382 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
4388 * The per-page waitqueue mechanism uses hashed waitqueues
4391 zone
->wait_table_hash_nr_entries
=
4392 wait_table_hash_nr_entries(zone_size_pages
);
4393 zone
->wait_table_bits
=
4394 wait_table_bits(zone
->wait_table_hash_nr_entries
);
4395 alloc_size
= zone
->wait_table_hash_nr_entries
4396 * sizeof(wait_queue_head_t
);
4398 if (!slab_is_available()) {
4399 zone
->wait_table
= (wait_queue_head_t
*)
4400 memblock_virt_alloc_node_nopanic(
4401 alloc_size
, zone
->zone_pgdat
->node_id
);
4404 * This case means that a zone whose size was 0 gets new memory
4405 * via memory hot-add.
4406 * But it may be the case that a new node was hot-added. In
4407 * this case vmalloc() will not be able to use this new node's
4408 * memory - this wait_table must be initialized to use this new
4409 * node itself as well.
4410 * To use this new node's memory, further consideration will be
4413 zone
->wait_table
= vmalloc(alloc_size
);
4415 if (!zone
->wait_table
)
4418 for (i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
4419 init_waitqueue_head(zone
->wait_table
+ i
);
4424 static __meminit
void zone_pcp_init(struct zone
*zone
)
4427 * per cpu subsystem is not up at this point. The following code
4428 * relies on the ability of the linker to provide the
4429 * offset of a (static) per cpu variable into the per cpu area.
4431 zone
->pageset
= &boot_pageset
;
4433 if (populated_zone(zone
))
4434 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
4435 zone
->name
, zone
->present_pages
,
4436 zone_batchsize(zone
));
4439 int __meminit
init_currently_empty_zone(struct zone
*zone
,
4440 unsigned long zone_start_pfn
,
4442 enum memmap_context context
)
4444 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
4446 ret
= zone_wait_table_init(zone
, size
);
4449 pgdat
->nr_zones
= zone_idx(zone
) + 1;
4451 zone
->zone_start_pfn
= zone_start_pfn
;
4453 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
4454 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4456 (unsigned long)zone_idx(zone
),
4457 zone_start_pfn
, (zone_start_pfn
+ size
));
4459 zone_init_free_lists(zone
);
4464 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4465 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4467 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4468 * Architectures may implement their own version but if add_active_range()
4469 * was used and there are no special requirements, this is a convenient
4472 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
4474 unsigned long start_pfn
, end_pfn
;
4477 * NOTE: The following SMP-unsafe globals are only used early in boot
4478 * when the kernel is running single-threaded.
4480 static unsigned long __meminitdata last_start_pfn
, last_end_pfn
;
4481 static int __meminitdata last_nid
;
4483 if (last_start_pfn
<= pfn
&& pfn
< last_end_pfn
)
4486 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
4488 last_start_pfn
= start_pfn
;
4489 last_end_pfn
= end_pfn
;
4495 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4497 int __meminit
early_pfn_to_nid(unsigned long pfn
)
4501 nid
= __early_pfn_to_nid(pfn
);
4504 /* just returns 0 */
4508 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4509 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
4513 nid
= __early_pfn_to_nid(pfn
);
4514 if (nid
>= 0 && nid
!= node
)
4521 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4522 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4523 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4525 * If an architecture guarantees that all ranges registered with
4526 * add_active_ranges() contain no holes and may be freed, this
4527 * this function may be used instead of calling memblock_free_early_nid()
4530 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
4532 unsigned long start_pfn
, end_pfn
;
4535 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
4536 start_pfn
= min(start_pfn
, max_low_pfn
);
4537 end_pfn
= min(end_pfn
, max_low_pfn
);
4539 if (start_pfn
< end_pfn
)
4540 memblock_free_early_nid(PFN_PHYS(start_pfn
),
4541 (end_pfn
- start_pfn
) << PAGE_SHIFT
,
4547 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4548 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4550 * If an architecture guarantees that all ranges registered with
4551 * add_active_ranges() contain no holes and may be freed, this
4552 * function may be used instead of calling memory_present() manually.
4554 void __init
sparse_memory_present_with_active_regions(int nid
)
4556 unsigned long start_pfn
, end_pfn
;
4559 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
4560 memory_present(this_nid
, start_pfn
, end_pfn
);
4564 * get_pfn_range_for_nid - Return the start and end page frames for a node
4565 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4566 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4567 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4569 * It returns the start and end page frame of a node based on information
4570 * provided by an arch calling add_active_range(). If called for a node
4571 * with no available memory, a warning is printed and the start and end
4574 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
4575 unsigned long *start_pfn
, unsigned long *end_pfn
)
4577 unsigned long this_start_pfn
, this_end_pfn
;
4583 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
4584 *start_pfn
= min(*start_pfn
, this_start_pfn
);
4585 *end_pfn
= max(*end_pfn
, this_end_pfn
);
4588 if (*start_pfn
== -1UL)
4593 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4594 * assumption is made that zones within a node are ordered in monotonic
4595 * increasing memory addresses so that the "highest" populated zone is used
4597 static void __init
find_usable_zone_for_movable(void)
4600 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
4601 if (zone_index
== ZONE_MOVABLE
)
4604 if (arch_zone_highest_possible_pfn
[zone_index
] >
4605 arch_zone_lowest_possible_pfn
[zone_index
])
4609 VM_BUG_ON(zone_index
== -1);
4610 movable_zone
= zone_index
;
4614 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4615 * because it is sized independent of architecture. Unlike the other zones,
4616 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4617 * in each node depending on the size of each node and how evenly kernelcore
4618 * is distributed. This helper function adjusts the zone ranges
4619 * provided by the architecture for a given node by using the end of the
4620 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4621 * zones within a node are in order of monotonic increases memory addresses
4623 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
4624 unsigned long zone_type
,
4625 unsigned long node_start_pfn
,
4626 unsigned long node_end_pfn
,
4627 unsigned long *zone_start_pfn
,
4628 unsigned long *zone_end_pfn
)
4630 /* Only adjust if ZONE_MOVABLE is on this node */
4631 if (zone_movable_pfn
[nid
]) {
4632 /* Size ZONE_MOVABLE */
4633 if (zone_type
== ZONE_MOVABLE
) {
4634 *zone_start_pfn
= zone_movable_pfn
[nid
];
4635 *zone_end_pfn
= min(node_end_pfn
,
4636 arch_zone_highest_possible_pfn
[movable_zone
]);
4638 /* Adjust for ZONE_MOVABLE starting within this range */
4639 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
4640 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
4641 *zone_end_pfn
= zone_movable_pfn
[nid
];
4643 /* Check if this whole range is within ZONE_MOVABLE */
4644 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
4645 *zone_start_pfn
= *zone_end_pfn
;
4650 * Return the number of pages a zone spans in a node, including holes
4651 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4653 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4654 unsigned long zone_type
,
4655 unsigned long node_start_pfn
,
4656 unsigned long node_end_pfn
,
4657 unsigned long *ignored
)
4659 unsigned long zone_start_pfn
, zone_end_pfn
;
4661 /* Get the start and end of the zone */
4662 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
4663 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
4664 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4665 node_start_pfn
, node_end_pfn
,
4666 &zone_start_pfn
, &zone_end_pfn
);
4668 /* Check that this node has pages within the zone's required range */
4669 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
4672 /* Move the zone boundaries inside the node if necessary */
4673 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
4674 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
4676 /* Return the spanned pages */
4677 return zone_end_pfn
- zone_start_pfn
;
4681 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4682 * then all holes in the requested range will be accounted for.
4684 unsigned long __meminit
__absent_pages_in_range(int nid
,
4685 unsigned long range_start_pfn
,
4686 unsigned long range_end_pfn
)
4688 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
4689 unsigned long start_pfn
, end_pfn
;
4692 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
4693 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
4694 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
4695 nr_absent
-= end_pfn
- start_pfn
;
4701 * absent_pages_in_range - Return number of page frames in holes within a range
4702 * @start_pfn: The start PFN to start searching for holes
4703 * @end_pfn: The end PFN to stop searching for holes
4705 * It returns the number of pages frames in memory holes within a range.
4707 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
4708 unsigned long end_pfn
)
4710 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
4713 /* Return the number of page frames in holes in a zone on a node */
4714 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4715 unsigned long zone_type
,
4716 unsigned long node_start_pfn
,
4717 unsigned long node_end_pfn
,
4718 unsigned long *ignored
)
4720 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
4721 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
4722 unsigned long zone_start_pfn
, zone_end_pfn
;
4724 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
4725 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
4727 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4728 node_start_pfn
, node_end_pfn
,
4729 &zone_start_pfn
, &zone_end_pfn
);
4730 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
4733 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4734 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4735 unsigned long zone_type
,
4736 unsigned long node_start_pfn
,
4737 unsigned long node_end_pfn
,
4738 unsigned long *zones_size
)
4740 return zones_size
[zone_type
];
4743 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4744 unsigned long zone_type
,
4745 unsigned long node_start_pfn
,
4746 unsigned long node_end_pfn
,
4747 unsigned long *zholes_size
)
4752 return zholes_size
[zone_type
];
4755 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4757 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
4758 unsigned long node_start_pfn
,
4759 unsigned long node_end_pfn
,
4760 unsigned long *zones_size
,
4761 unsigned long *zholes_size
)
4763 unsigned long realtotalpages
, totalpages
= 0;
4766 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4767 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
4771 pgdat
->node_spanned_pages
= totalpages
;
4773 realtotalpages
= totalpages
;
4774 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4776 zone_absent_pages_in_node(pgdat
->node_id
, i
,
4777 node_start_pfn
, node_end_pfn
,
4779 pgdat
->node_present_pages
= realtotalpages
;
4780 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
4784 #ifndef CONFIG_SPARSEMEM
4786 * Calculate the size of the zone->blockflags rounded to an unsigned long
4787 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4788 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4789 * round what is now in bits to nearest long in bits, then return it in
4792 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
4794 unsigned long usemapsize
;
4796 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
4797 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
4798 usemapsize
= usemapsize
>> pageblock_order
;
4799 usemapsize
*= NR_PAGEBLOCK_BITS
;
4800 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
4802 return usemapsize
/ 8;
4805 static void __init
setup_usemap(struct pglist_data
*pgdat
,
4807 unsigned long zone_start_pfn
,
4808 unsigned long zonesize
)
4810 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
4811 zone
->pageblock_flags
= NULL
;
4813 zone
->pageblock_flags
=
4814 memblock_virt_alloc_node_nopanic(usemapsize
,
4818 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
4819 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
4820 #endif /* CONFIG_SPARSEMEM */
4822 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4824 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4825 void __paginginit
set_pageblock_order(void)
4829 /* Check that pageblock_nr_pages has not already been setup */
4830 if (pageblock_order
)
4833 if (HPAGE_SHIFT
> PAGE_SHIFT
)
4834 order
= HUGETLB_PAGE_ORDER
;
4836 order
= MAX_ORDER
- 1;
4839 * Assume the largest contiguous order of interest is a huge page.
4840 * This value may be variable depending on boot parameters on IA64 and
4843 pageblock_order
= order
;
4845 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4848 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4849 * is unused as pageblock_order is set at compile-time. See
4850 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4853 void __paginginit
set_pageblock_order(void)
4857 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4859 static unsigned long __paginginit
calc_memmap_size(unsigned long spanned_pages
,
4860 unsigned long present_pages
)
4862 unsigned long pages
= spanned_pages
;
4865 * Provide a more accurate estimation if there are holes within
4866 * the zone and SPARSEMEM is in use. If there are holes within the
4867 * zone, each populated memory region may cost us one or two extra
4868 * memmap pages due to alignment because memmap pages for each
4869 * populated regions may not naturally algined on page boundary.
4870 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4872 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
4873 IS_ENABLED(CONFIG_SPARSEMEM
))
4874 pages
= present_pages
;
4876 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
4880 * Set up the zone data structures:
4881 * - mark all pages reserved
4882 * - mark all memory queues empty
4883 * - clear the memory bitmaps
4885 * NOTE: pgdat should get zeroed by caller.
4887 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
4888 unsigned long node_start_pfn
, unsigned long node_end_pfn
,
4889 unsigned long *zones_size
, unsigned long *zholes_size
)
4892 int nid
= pgdat
->node_id
;
4893 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
4896 pgdat_resize_init(pgdat
);
4897 #ifdef CONFIG_NUMA_BALANCING
4898 spin_lock_init(&pgdat
->numabalancing_migrate_lock
);
4899 pgdat
->numabalancing_migrate_nr_pages
= 0;
4900 pgdat
->numabalancing_migrate_next_window
= jiffies
;
4902 init_waitqueue_head(&pgdat
->kswapd_wait
);
4903 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
4904 pgdat_page_cgroup_init(pgdat
);
4906 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4907 struct zone
*zone
= pgdat
->node_zones
+ j
;
4908 unsigned long size
, realsize
, freesize
, memmap_pages
;
4910 size
= zone_spanned_pages_in_node(nid
, j
, node_start_pfn
,
4911 node_end_pfn
, zones_size
);
4912 realsize
= freesize
= size
- zone_absent_pages_in_node(nid
, j
,
4918 * Adjust freesize so that it accounts for how much memory
4919 * is used by this zone for memmap. This affects the watermark
4920 * and per-cpu initialisations
4922 memmap_pages
= calc_memmap_size(size
, realsize
);
4923 if (freesize
>= memmap_pages
) {
4924 freesize
-= memmap_pages
;
4927 " %s zone: %lu pages used for memmap\n",
4928 zone_names
[j
], memmap_pages
);
4931 " %s zone: %lu pages exceeds freesize %lu\n",
4932 zone_names
[j
], memmap_pages
, freesize
);
4934 /* Account for reserved pages */
4935 if (j
== 0 && freesize
> dma_reserve
) {
4936 freesize
-= dma_reserve
;
4937 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
4938 zone_names
[0], dma_reserve
);
4941 if (!is_highmem_idx(j
))
4942 nr_kernel_pages
+= freesize
;
4943 /* Charge for highmem memmap if there are enough kernel pages */
4944 else if (nr_kernel_pages
> memmap_pages
* 2)
4945 nr_kernel_pages
-= memmap_pages
;
4946 nr_all_pages
+= freesize
;
4948 zone
->spanned_pages
= size
;
4949 zone
->present_pages
= realsize
;
4951 * Set an approximate value for lowmem here, it will be adjusted
4952 * when the bootmem allocator frees pages into the buddy system.
4953 * And all highmem pages will be managed by the buddy system.
4955 zone
->managed_pages
= is_highmem_idx(j
) ? realsize
: freesize
;
4958 zone
->min_unmapped_pages
= (freesize
*sysctl_min_unmapped_ratio
)
4960 zone
->min_slab_pages
= (freesize
* sysctl_min_slab_ratio
) / 100;
4962 zone
->name
= zone_names
[j
];
4963 spin_lock_init(&zone
->lock
);
4964 spin_lock_init(&zone
->lru_lock
);
4965 zone_seqlock_init(zone
);
4966 zone
->zone_pgdat
= pgdat
;
4967 zone_pcp_init(zone
);
4969 /* For bootup, initialized properly in watermark setup */
4970 mod_zone_page_state(zone
, NR_ALLOC_BATCH
, zone
->managed_pages
);
4972 lruvec_init(&zone
->lruvec
);
4976 set_pageblock_order();
4977 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
4978 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
4979 size
, MEMMAP_EARLY
);
4981 memmap_init(size
, nid
, j
, zone_start_pfn
);
4982 zone_start_pfn
+= size
;
4986 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
4988 /* Skip empty nodes */
4989 if (!pgdat
->node_spanned_pages
)
4992 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4993 /* ia64 gets its own node_mem_map, before this, without bootmem */
4994 if (!pgdat
->node_mem_map
) {
4995 unsigned long size
, start
, end
;
4999 * The zone's endpoints aren't required to be MAX_ORDER
5000 * aligned but the node_mem_map endpoints must be in order
5001 * for the buddy allocator to function correctly.
5003 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
5004 end
= pgdat_end_pfn(pgdat
);
5005 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
5006 size
= (end
- start
) * sizeof(struct page
);
5007 map
= alloc_remap(pgdat
->node_id
, size
);
5009 map
= memblock_virt_alloc_node_nopanic(size
,
5011 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
5013 #ifndef CONFIG_NEED_MULTIPLE_NODES
5015 * With no DISCONTIG, the global mem_map is just set as node 0's
5017 if (pgdat
== NODE_DATA(0)) {
5018 mem_map
= NODE_DATA(0)->node_mem_map
;
5019 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5020 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
5021 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
5022 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5025 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5028 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
5029 unsigned long node_start_pfn
, unsigned long *zholes_size
)
5031 pg_data_t
*pgdat
= NODE_DATA(nid
);
5032 unsigned long start_pfn
= 0;
5033 unsigned long end_pfn
= 0;
5035 /* pg_data_t should be reset to zero when it's allocated */
5036 WARN_ON(pgdat
->nr_zones
|| pgdat
->classzone_idx
);
5038 pgdat
->node_id
= nid
;
5039 pgdat
->node_start_pfn
= node_start_pfn
;
5040 if (node_state(nid
, N_MEMORY
))
5041 init_zone_allows_reclaim(nid
);
5042 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5043 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
5045 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
5046 zones_size
, zholes_size
);
5048 alloc_node_mem_map(pgdat
);
5049 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5050 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5051 nid
, (unsigned long)pgdat
,
5052 (unsigned long)pgdat
->node_mem_map
);
5055 free_area_init_core(pgdat
, start_pfn
, end_pfn
,
5056 zones_size
, zholes_size
);
5059 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5061 #if MAX_NUMNODES > 1
5063 * Figure out the number of possible node ids.
5065 void __init
setup_nr_node_ids(void)
5068 unsigned int highest
= 0;
5070 for_each_node_mask(node
, node_possible_map
)
5072 nr_node_ids
= highest
+ 1;
5077 * node_map_pfn_alignment - determine the maximum internode alignment
5079 * This function should be called after node map is populated and sorted.
5080 * It calculates the maximum power of two alignment which can distinguish
5083 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5084 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5085 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5086 * shifted, 1GiB is enough and this function will indicate so.
5088 * This is used to test whether pfn -> nid mapping of the chosen memory
5089 * model has fine enough granularity to avoid incorrect mapping for the
5090 * populated node map.
5092 * Returns the determined alignment in pfn's. 0 if there is no alignment
5093 * requirement (single node).
5095 unsigned long __init
node_map_pfn_alignment(void)
5097 unsigned long accl_mask
= 0, last_end
= 0;
5098 unsigned long start
, end
, mask
;
5102 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
5103 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
5110 * Start with a mask granular enough to pin-point to the
5111 * start pfn and tick off bits one-by-one until it becomes
5112 * too coarse to separate the current node from the last.
5114 mask
= ~((1 << __ffs(start
)) - 1);
5115 while (mask
&& last_end
<= (start
& (mask
<< 1)))
5118 /* accumulate all internode masks */
5122 /* convert mask to number of pages */
5123 return ~accl_mask
+ 1;
5126 /* Find the lowest pfn for a node */
5127 static unsigned long __init
find_min_pfn_for_node(int nid
)
5129 unsigned long min_pfn
= ULONG_MAX
;
5130 unsigned long start_pfn
;
5133 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
5134 min_pfn
= min(min_pfn
, start_pfn
);
5136 if (min_pfn
== ULONG_MAX
) {
5138 "Could not find start_pfn for node %d\n", nid
);
5146 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5148 * It returns the minimum PFN based on information provided via
5149 * add_active_range().
5151 unsigned long __init
find_min_pfn_with_active_regions(void)
5153 return find_min_pfn_for_node(MAX_NUMNODES
);
5157 * early_calculate_totalpages()
5158 * Sum pages in active regions for movable zone.
5159 * Populate N_MEMORY for calculating usable_nodes.
5161 static unsigned long __init
early_calculate_totalpages(void)
5163 unsigned long totalpages
= 0;
5164 unsigned long start_pfn
, end_pfn
;
5167 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
5168 unsigned long pages
= end_pfn
- start_pfn
;
5170 totalpages
+= pages
;
5172 node_set_state(nid
, N_MEMORY
);
5178 * Find the PFN the Movable zone begins in each node. Kernel memory
5179 * is spread evenly between nodes as long as the nodes have enough
5180 * memory. When they don't, some nodes will have more kernelcore than
5183 static void __init
find_zone_movable_pfns_for_nodes(void)
5186 unsigned long usable_startpfn
;
5187 unsigned long kernelcore_node
, kernelcore_remaining
;
5188 /* save the state before borrow the nodemask */
5189 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
5190 unsigned long totalpages
= early_calculate_totalpages();
5191 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
5192 struct memblock_type
*type
= &memblock
.memory
;
5194 /* Need to find movable_zone earlier when movable_node is specified. */
5195 find_usable_zone_for_movable();
5198 * If movable_node is specified, ignore kernelcore and movablecore
5201 if (movable_node_is_enabled()) {
5202 for (i
= 0; i
< type
->cnt
; i
++) {
5203 if (!memblock_is_hotpluggable(&type
->regions
[i
]))
5206 nid
= type
->regions
[i
].nid
;
5208 usable_startpfn
= PFN_DOWN(type
->regions
[i
].base
);
5209 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
5210 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
5218 * If movablecore=nn[KMG] was specified, calculate what size of
5219 * kernelcore that corresponds so that memory usable for
5220 * any allocation type is evenly spread. If both kernelcore
5221 * and movablecore are specified, then the value of kernelcore
5222 * will be used for required_kernelcore if it's greater than
5223 * what movablecore would have allowed.
5225 if (required_movablecore
) {
5226 unsigned long corepages
;
5229 * Round-up so that ZONE_MOVABLE is at least as large as what
5230 * was requested by the user
5232 required_movablecore
=
5233 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
5234 corepages
= totalpages
- required_movablecore
;
5236 required_kernelcore
= max(required_kernelcore
, corepages
);
5239 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5240 if (!required_kernelcore
)
5243 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5244 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
5247 /* Spread kernelcore memory as evenly as possible throughout nodes */
5248 kernelcore_node
= required_kernelcore
/ usable_nodes
;
5249 for_each_node_state(nid
, N_MEMORY
) {
5250 unsigned long start_pfn
, end_pfn
;
5253 * Recalculate kernelcore_node if the division per node
5254 * now exceeds what is necessary to satisfy the requested
5255 * amount of memory for the kernel
5257 if (required_kernelcore
< kernelcore_node
)
5258 kernelcore_node
= required_kernelcore
/ usable_nodes
;
5261 * As the map is walked, we track how much memory is usable
5262 * by the kernel using kernelcore_remaining. When it is
5263 * 0, the rest of the node is usable by ZONE_MOVABLE
5265 kernelcore_remaining
= kernelcore_node
;
5267 /* Go through each range of PFNs within this node */
5268 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
5269 unsigned long size_pages
;
5271 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
5272 if (start_pfn
>= end_pfn
)
5275 /* Account for what is only usable for kernelcore */
5276 if (start_pfn
< usable_startpfn
) {
5277 unsigned long kernel_pages
;
5278 kernel_pages
= min(end_pfn
, usable_startpfn
)
5281 kernelcore_remaining
-= min(kernel_pages
,
5282 kernelcore_remaining
);
5283 required_kernelcore
-= min(kernel_pages
,
5284 required_kernelcore
);
5286 /* Continue if range is now fully accounted */
5287 if (end_pfn
<= usable_startpfn
) {
5290 * Push zone_movable_pfn to the end so
5291 * that if we have to rebalance
5292 * kernelcore across nodes, we will
5293 * not double account here
5295 zone_movable_pfn
[nid
] = end_pfn
;
5298 start_pfn
= usable_startpfn
;
5302 * The usable PFN range for ZONE_MOVABLE is from
5303 * start_pfn->end_pfn. Calculate size_pages as the
5304 * number of pages used as kernelcore
5306 size_pages
= end_pfn
- start_pfn
;
5307 if (size_pages
> kernelcore_remaining
)
5308 size_pages
= kernelcore_remaining
;
5309 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
5312 * Some kernelcore has been met, update counts and
5313 * break if the kernelcore for this node has been
5316 required_kernelcore
-= min(required_kernelcore
,
5318 kernelcore_remaining
-= size_pages
;
5319 if (!kernelcore_remaining
)
5325 * If there is still required_kernelcore, we do another pass with one
5326 * less node in the count. This will push zone_movable_pfn[nid] further
5327 * along on the nodes that still have memory until kernelcore is
5331 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
5335 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5336 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
5337 zone_movable_pfn
[nid
] =
5338 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
5341 /* restore the node_state */
5342 node_states
[N_MEMORY
] = saved_node_state
;
5345 /* Any regular or high memory on that node ? */
5346 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
5348 enum zone_type zone_type
;
5350 if (N_MEMORY
== N_NORMAL_MEMORY
)
5353 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
5354 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
5355 if (populated_zone(zone
)) {
5356 node_set_state(nid
, N_HIGH_MEMORY
);
5357 if (N_NORMAL_MEMORY
!= N_HIGH_MEMORY
&&
5358 zone_type
<= ZONE_NORMAL
)
5359 node_set_state(nid
, N_NORMAL_MEMORY
);
5366 * free_area_init_nodes - Initialise all pg_data_t and zone data
5367 * @max_zone_pfn: an array of max PFNs for each zone
5369 * This will call free_area_init_node() for each active node in the system.
5370 * Using the page ranges provided by add_active_range(), the size of each
5371 * zone in each node and their holes is calculated. If the maximum PFN
5372 * between two adjacent zones match, it is assumed that the zone is empty.
5373 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5374 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5375 * starts where the previous one ended. For example, ZONE_DMA32 starts
5376 * at arch_max_dma_pfn.
5378 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
5380 unsigned long start_pfn
, end_pfn
;
5383 /* Record where the zone boundaries are */
5384 memset(arch_zone_lowest_possible_pfn
, 0,
5385 sizeof(arch_zone_lowest_possible_pfn
));
5386 memset(arch_zone_highest_possible_pfn
, 0,
5387 sizeof(arch_zone_highest_possible_pfn
));
5388 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
5389 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
5390 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
5391 if (i
== ZONE_MOVABLE
)
5393 arch_zone_lowest_possible_pfn
[i
] =
5394 arch_zone_highest_possible_pfn
[i
-1];
5395 arch_zone_highest_possible_pfn
[i
] =
5396 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
5398 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
5399 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
5401 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5402 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
5403 find_zone_movable_pfns_for_nodes();
5405 /* Print out the zone ranges */
5406 printk("Zone ranges:\n");
5407 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5408 if (i
== ZONE_MOVABLE
)
5410 printk(KERN_CONT
" %-8s ", zone_names
[i
]);
5411 if (arch_zone_lowest_possible_pfn
[i
] ==
5412 arch_zone_highest_possible_pfn
[i
])
5413 printk(KERN_CONT
"empty\n");
5415 printk(KERN_CONT
"[mem %0#10lx-%0#10lx]\n",
5416 arch_zone_lowest_possible_pfn
[i
] << PAGE_SHIFT
,
5417 (arch_zone_highest_possible_pfn
[i
]
5418 << PAGE_SHIFT
) - 1);
5421 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5422 printk("Movable zone start for each node\n");
5423 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5424 if (zone_movable_pfn
[i
])
5425 printk(" Node %d: %#010lx\n", i
,
5426 zone_movable_pfn
[i
] << PAGE_SHIFT
);
5429 /* Print out the early node map */
5430 printk("Early memory node ranges\n");
5431 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
5432 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid
,
5433 start_pfn
<< PAGE_SHIFT
, (end_pfn
<< PAGE_SHIFT
) - 1);
5435 /* Initialise every node */
5436 mminit_verify_pageflags_layout();
5437 setup_nr_node_ids();
5438 for_each_online_node(nid
) {
5439 pg_data_t
*pgdat
= NODE_DATA(nid
);
5440 free_area_init_node(nid
, NULL
,
5441 find_min_pfn_for_node(nid
), NULL
);
5443 /* Any memory on that node */
5444 if (pgdat
->node_present_pages
)
5445 node_set_state(nid
, N_MEMORY
);
5446 check_for_memory(pgdat
, nid
);
5450 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
5452 unsigned long long coremem
;
5456 coremem
= memparse(p
, &p
);
5457 *core
= coremem
>> PAGE_SHIFT
;
5459 /* Paranoid check that UL is enough for the coremem value */
5460 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
5466 * kernelcore=size sets the amount of memory for use for allocations that
5467 * cannot be reclaimed or migrated.
5469 static int __init
cmdline_parse_kernelcore(char *p
)
5471 return cmdline_parse_core(p
, &required_kernelcore
);
5475 * movablecore=size sets the amount of memory for use for allocations that
5476 * can be reclaimed or migrated.
5478 static int __init
cmdline_parse_movablecore(char *p
)
5480 return cmdline_parse_core(p
, &required_movablecore
);
5483 early_param("kernelcore", cmdline_parse_kernelcore
);
5484 early_param("movablecore", cmdline_parse_movablecore
);
5486 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5488 void adjust_managed_page_count(struct page
*page
, long count
)
5490 spin_lock(&managed_page_count_lock
);
5491 page_zone(page
)->managed_pages
+= count
;
5492 totalram_pages
+= count
;
5493 #ifdef CONFIG_HIGHMEM
5494 if (PageHighMem(page
))
5495 totalhigh_pages
+= count
;
5497 spin_unlock(&managed_page_count_lock
);
5499 EXPORT_SYMBOL(adjust_managed_page_count
);
5501 unsigned long free_reserved_area(void *start
, void *end
, int poison
, char *s
)
5504 unsigned long pages
= 0;
5506 start
= (void *)PAGE_ALIGN((unsigned long)start
);
5507 end
= (void *)((unsigned long)end
& PAGE_MASK
);
5508 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
5509 if ((unsigned int)poison
<= 0xFF)
5510 memset(pos
, poison
, PAGE_SIZE
);
5511 free_reserved_page(virt_to_page(pos
));
5515 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5516 s
, pages
<< (PAGE_SHIFT
- 10), start
, end
);
5520 EXPORT_SYMBOL(free_reserved_area
);
5522 #ifdef CONFIG_HIGHMEM
5523 void free_highmem_page(struct page
*page
)
5525 __free_reserved_page(page
);
5527 page_zone(page
)->managed_pages
++;
5533 void __init
mem_init_print_info(const char *str
)
5535 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
5536 unsigned long init_code_size
, init_data_size
;
5538 physpages
= get_num_physpages();
5539 codesize
= _etext
- _stext
;
5540 datasize
= _edata
- _sdata
;
5541 rosize
= __end_rodata
- __start_rodata
;
5542 bss_size
= __bss_stop
- __bss_start
;
5543 init_data_size
= __init_end
- __init_begin
;
5544 init_code_size
= _einittext
- _sinittext
;
5547 * Detect special cases and adjust section sizes accordingly:
5548 * 1) .init.* may be embedded into .data sections
5549 * 2) .init.text.* may be out of [__init_begin, __init_end],
5550 * please refer to arch/tile/kernel/vmlinux.lds.S.
5551 * 3) .rodata.* may be embedded into .text or .data sections.
5553 #define adj_init_size(start, end, size, pos, adj) \
5555 if (start <= pos && pos < end && size > adj) \
5559 adj_init_size(__init_begin
, __init_end
, init_data_size
,
5560 _sinittext
, init_code_size
);
5561 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
5562 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
5563 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
5564 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
5566 #undef adj_init_size
5568 printk("Memory: %luK/%luK available "
5569 "(%luK kernel code, %luK rwdata, %luK rodata, "
5570 "%luK init, %luK bss, %luK reserved"
5571 #ifdef CONFIG_HIGHMEM
5575 nr_free_pages() << (PAGE_SHIFT
-10), physpages
<< (PAGE_SHIFT
-10),
5576 codesize
>> 10, datasize
>> 10, rosize
>> 10,
5577 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
5578 (physpages
- totalram_pages
) << (PAGE_SHIFT
-10),
5579 #ifdef CONFIG_HIGHMEM
5580 totalhigh_pages
<< (PAGE_SHIFT
-10),
5582 str
? ", " : "", str
? str
: "");
5586 * set_dma_reserve - set the specified number of pages reserved in the first zone
5587 * @new_dma_reserve: The number of pages to mark reserved
5589 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5590 * In the DMA zone, a significant percentage may be consumed by kernel image
5591 * and other unfreeable allocations which can skew the watermarks badly. This
5592 * function may optionally be used to account for unfreeable pages in the
5593 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5594 * smaller per-cpu batchsize.
5596 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
5598 dma_reserve
= new_dma_reserve
;
5601 void __init
free_area_init(unsigned long *zones_size
)
5603 free_area_init_node(0, zones_size
,
5604 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
5607 static int page_alloc_cpu_notify(struct notifier_block
*self
,
5608 unsigned long action
, void *hcpu
)
5610 int cpu
= (unsigned long)hcpu
;
5612 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
5613 lru_add_drain_cpu(cpu
);
5617 * Spill the event counters of the dead processor
5618 * into the current processors event counters.
5619 * This artificially elevates the count of the current
5622 vm_events_fold_cpu(cpu
);
5625 * Zero the differential counters of the dead processor
5626 * so that the vm statistics are consistent.
5628 * This is only okay since the processor is dead and cannot
5629 * race with what we are doing.
5631 cpu_vm_stats_fold(cpu
);
5636 void __init
page_alloc_init(void)
5638 hotcpu_notifier(page_alloc_cpu_notify
, 0);
5639 local_irq_lock_init(pa_lock
);
5643 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5644 * or min_free_kbytes changes.
5646 static void calculate_totalreserve_pages(void)
5648 struct pglist_data
*pgdat
;
5649 unsigned long reserve_pages
= 0;
5650 enum zone_type i
, j
;
5652 for_each_online_pgdat(pgdat
) {
5653 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5654 struct zone
*zone
= pgdat
->node_zones
+ i
;
5657 /* Find valid and maximum lowmem_reserve in the zone */
5658 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
5659 if (zone
->lowmem_reserve
[j
] > max
)
5660 max
= zone
->lowmem_reserve
[j
];
5663 /* we treat the high watermark as reserved pages. */
5664 max
+= high_wmark_pages(zone
);
5666 if (max
> zone
->managed_pages
)
5667 max
= zone
->managed_pages
;
5668 reserve_pages
+= max
;
5670 * Lowmem reserves are not available to
5671 * GFP_HIGHUSER page cache allocations and
5672 * kswapd tries to balance zones to their high
5673 * watermark. As a result, neither should be
5674 * regarded as dirtyable memory, to prevent a
5675 * situation where reclaim has to clean pages
5676 * in order to balance the zones.
5678 zone
->dirty_balance_reserve
= max
;
5681 dirty_balance_reserve
= reserve_pages
;
5682 totalreserve_pages
= reserve_pages
;
5686 * setup_per_zone_lowmem_reserve - called whenever
5687 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5688 * has a correct pages reserved value, so an adequate number of
5689 * pages are left in the zone after a successful __alloc_pages().
5691 static void setup_per_zone_lowmem_reserve(void)
5693 struct pglist_data
*pgdat
;
5694 enum zone_type j
, idx
;
5696 for_each_online_pgdat(pgdat
) {
5697 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
5698 struct zone
*zone
= pgdat
->node_zones
+ j
;
5699 unsigned long managed_pages
= zone
->managed_pages
;
5701 zone
->lowmem_reserve
[j
] = 0;
5705 struct zone
*lower_zone
;
5709 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
5710 sysctl_lowmem_reserve_ratio
[idx
] = 1;
5712 lower_zone
= pgdat
->node_zones
+ idx
;
5713 lower_zone
->lowmem_reserve
[j
] = managed_pages
/
5714 sysctl_lowmem_reserve_ratio
[idx
];
5715 managed_pages
+= lower_zone
->managed_pages
;
5720 /* update totalreserve_pages */
5721 calculate_totalreserve_pages();
5724 static void __setup_per_zone_wmarks(void)
5726 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
5727 unsigned long lowmem_pages
= 0;
5729 unsigned long flags
;
5731 /* Calculate total number of !ZONE_HIGHMEM pages */
5732 for_each_zone(zone
) {
5733 if (!is_highmem(zone
))
5734 lowmem_pages
+= zone
->managed_pages
;
5737 for_each_zone(zone
) {
5740 spin_lock_irqsave(&zone
->lock
, flags
);
5741 tmp
= (u64
)pages_min
* zone
->managed_pages
;
5742 do_div(tmp
, lowmem_pages
);
5743 if (is_highmem(zone
)) {
5745 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5746 * need highmem pages, so cap pages_min to a small
5749 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5750 * deltas controls asynch page reclaim, and so should
5751 * not be capped for highmem.
5753 unsigned long min_pages
;
5755 min_pages
= zone
->managed_pages
/ 1024;
5756 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
5757 zone
->watermark
[WMARK_MIN
] = min_pages
;
5760 * If it's a lowmem zone, reserve a number of pages
5761 * proportionate to the zone's size.
5763 zone
->watermark
[WMARK_MIN
] = tmp
;
5766 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
5767 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
5769 __mod_zone_page_state(zone
, NR_ALLOC_BATCH
,
5770 high_wmark_pages(zone
) - low_wmark_pages(zone
) -
5771 atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]));
5773 setup_zone_migrate_reserve(zone
);
5774 spin_unlock_irqrestore(&zone
->lock
, flags
);
5777 /* update totalreserve_pages */
5778 calculate_totalreserve_pages();
5782 * setup_per_zone_wmarks - called when min_free_kbytes changes
5783 * or when memory is hot-{added|removed}
5785 * Ensures that the watermark[min,low,high] values for each zone are set
5786 * correctly with respect to min_free_kbytes.
5788 void setup_per_zone_wmarks(void)
5790 mutex_lock(&zonelists_mutex
);
5791 __setup_per_zone_wmarks();
5792 mutex_unlock(&zonelists_mutex
);
5796 * The inactive anon list should be small enough that the VM never has to
5797 * do too much work, but large enough that each inactive page has a chance
5798 * to be referenced again before it is swapped out.
5800 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5801 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5802 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5803 * the anonymous pages are kept on the inactive list.
5806 * memory ratio inactive anon
5807 * -------------------------------------
5816 static void __meminit
calculate_zone_inactive_ratio(struct zone
*zone
)
5818 unsigned int gb
, ratio
;
5820 /* Zone size in gigabytes */
5821 gb
= zone
->managed_pages
>> (30 - PAGE_SHIFT
);
5823 ratio
= int_sqrt(10 * gb
);
5827 zone
->inactive_ratio
= ratio
;
5830 static void __meminit
setup_per_zone_inactive_ratio(void)
5835 calculate_zone_inactive_ratio(zone
);
5839 * Initialise min_free_kbytes.
5841 * For small machines we want it small (128k min). For large machines
5842 * we want it large (64MB max). But it is not linear, because network
5843 * bandwidth does not increase linearly with machine size. We use
5845 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5846 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5862 int __meminit
init_per_zone_wmark_min(void)
5864 unsigned long lowmem_kbytes
;
5865 int new_min_free_kbytes
;
5867 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
5868 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
5870 if (new_min_free_kbytes
> user_min_free_kbytes
) {
5871 min_free_kbytes
= new_min_free_kbytes
;
5872 if (min_free_kbytes
< 128)
5873 min_free_kbytes
= 128;
5874 if (min_free_kbytes
> 65536)
5875 min_free_kbytes
= 65536;
5877 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5878 new_min_free_kbytes
, user_min_free_kbytes
);
5880 setup_per_zone_wmarks();
5881 refresh_zone_stat_thresholds();
5882 setup_per_zone_lowmem_reserve();
5883 setup_per_zone_inactive_ratio();
5886 module_init(init_per_zone_wmark_min
)
5889 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5890 * that we can call two helper functions whenever min_free_kbytes
5893 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
5894 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5898 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5903 user_min_free_kbytes
= min_free_kbytes
;
5904 setup_per_zone_wmarks();
5910 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
5911 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5916 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5921 zone
->min_unmapped_pages
= (zone
->managed_pages
*
5922 sysctl_min_unmapped_ratio
) / 100;
5926 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
5927 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5932 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5937 zone
->min_slab_pages
= (zone
->managed_pages
*
5938 sysctl_min_slab_ratio
) / 100;
5944 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5945 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5946 * whenever sysctl_lowmem_reserve_ratio changes.
5948 * The reserve ratio obviously has absolutely no relation with the
5949 * minimum watermarks. The lowmem reserve ratio can only make sense
5950 * if in function of the boot time zone sizes.
5952 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
5953 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5955 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5956 setup_per_zone_lowmem_reserve();
5961 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5962 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5963 * pagelist can have before it gets flushed back to buddy allocator.
5965 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
5966 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5969 int old_percpu_pagelist_fraction
;
5972 mutex_lock(&pcp_batch_high_lock
);
5973 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
5975 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5976 if (!write
|| ret
< 0)
5979 /* Sanity checking to avoid pcp imbalance */
5980 if (percpu_pagelist_fraction
&&
5981 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
5982 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
5988 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
5991 for_each_populated_zone(zone
) {
5994 for_each_possible_cpu(cpu
)
5995 pageset_set_high_and_batch(zone
,
5996 per_cpu_ptr(zone
->pageset
, cpu
));
5999 mutex_unlock(&pcp_batch_high_lock
);
6003 int hashdist
= HASHDIST_DEFAULT
;
6006 static int __init
set_hashdist(char *str
)
6010 hashdist
= simple_strtoul(str
, &str
, 0);
6013 __setup("hashdist=", set_hashdist
);
6017 * allocate a large system hash table from bootmem
6018 * - it is assumed that the hash table must contain an exact power-of-2
6019 * quantity of entries
6020 * - limit is the number of hash buckets, not the total allocation size
6022 void *__init
alloc_large_system_hash(const char *tablename
,
6023 unsigned long bucketsize
,
6024 unsigned long numentries
,
6027 unsigned int *_hash_shift
,
6028 unsigned int *_hash_mask
,
6029 unsigned long low_limit
,
6030 unsigned long high_limit
)
6032 unsigned long long max
= high_limit
;
6033 unsigned long log2qty
, size
;
6036 /* allow the kernel cmdline to have a say */
6038 /* round applicable memory size up to nearest megabyte */
6039 numentries
= nr_kernel_pages
;
6041 /* It isn't necessary when PAGE_SIZE >= 1MB */
6042 if (PAGE_SHIFT
< 20)
6043 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
6045 /* limit to 1 bucket per 2^scale bytes of low memory */
6046 if (scale
> PAGE_SHIFT
)
6047 numentries
>>= (scale
- PAGE_SHIFT
);
6049 numentries
<<= (PAGE_SHIFT
- scale
);
6051 /* Make sure we've got at least a 0-order allocation.. */
6052 if (unlikely(flags
& HASH_SMALL
)) {
6053 /* Makes no sense without HASH_EARLY */
6054 WARN_ON(!(flags
& HASH_EARLY
));
6055 if (!(numentries
>> *_hash_shift
)) {
6056 numentries
= 1UL << *_hash_shift
;
6057 BUG_ON(!numentries
);
6059 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
6060 numentries
= PAGE_SIZE
/ bucketsize
;
6062 numentries
= roundup_pow_of_two(numentries
);
6064 /* limit allocation size to 1/16 total memory by default */
6066 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
6067 do_div(max
, bucketsize
);
6069 max
= min(max
, 0x80000000ULL
);
6071 if (numentries
< low_limit
)
6072 numentries
= low_limit
;
6073 if (numentries
> max
)
6076 log2qty
= ilog2(numentries
);
6079 size
= bucketsize
<< log2qty
;
6080 if (flags
& HASH_EARLY
)
6081 table
= memblock_virt_alloc_nopanic(size
, 0);
6083 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
6086 * If bucketsize is not a power-of-two, we may free
6087 * some pages at the end of hash table which
6088 * alloc_pages_exact() automatically does
6090 if (get_order(size
) < MAX_ORDER
) {
6091 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
6092 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
6095 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
6098 panic("Failed to allocate %s hash table\n", tablename
);
6100 printk(KERN_INFO
"%s hash table entries: %ld (order: %d, %lu bytes)\n",
6103 ilog2(size
) - PAGE_SHIFT
,
6107 *_hash_shift
= log2qty
;
6109 *_hash_mask
= (1 << log2qty
) - 1;
6114 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6115 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
6118 #ifdef CONFIG_SPARSEMEM
6119 return __pfn_to_section(pfn
)->pageblock_flags
;
6121 return zone
->pageblock_flags
;
6122 #endif /* CONFIG_SPARSEMEM */
6125 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
6127 #ifdef CONFIG_SPARSEMEM
6128 pfn
&= (PAGES_PER_SECTION
-1);
6129 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
6131 pfn
= pfn
- round_down(zone
->zone_start_pfn
, pageblock_nr_pages
);
6132 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
6133 #endif /* CONFIG_SPARSEMEM */
6137 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
6138 * @page: The page within the block of interest
6139 * @start_bitidx: The first bit of interest to retrieve
6140 * @end_bitidx: The last bit of interest
6141 * returns pageblock_bits flags
6143 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
6144 unsigned long end_bitidx
,
6148 unsigned long *bitmap
;
6149 unsigned long bitidx
, word_bitidx
;
6152 zone
= page_zone(page
);
6153 bitmap
= get_pageblock_bitmap(zone
, pfn
);
6154 bitidx
= pfn_to_bitidx(zone
, pfn
);
6155 word_bitidx
= bitidx
/ BITS_PER_LONG
;
6156 bitidx
&= (BITS_PER_LONG
-1);
6158 word
= bitmap
[word_bitidx
];
6159 bitidx
+= end_bitidx
;
6160 return (word
>> (BITS_PER_LONG
- bitidx
- 1)) & mask
;
6164 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6165 * @page: The page within the block of interest
6166 * @start_bitidx: The first bit of interest
6167 * @end_bitidx: The last bit of interest
6168 * @flags: The flags to set
6170 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
6172 unsigned long end_bitidx
,
6176 unsigned long *bitmap
;
6177 unsigned long bitidx
, word_bitidx
;
6178 unsigned long old_word
, word
;
6180 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
6182 zone
= page_zone(page
);
6183 bitmap
= get_pageblock_bitmap(zone
, pfn
);
6184 bitidx
= pfn_to_bitidx(zone
, pfn
);
6185 word_bitidx
= bitidx
/ BITS_PER_LONG
;
6186 bitidx
&= (BITS_PER_LONG
-1);
6188 VM_BUG_ON_PAGE(!zone_spans_pfn(zone
, pfn
), page
);
6190 bitidx
+= end_bitidx
;
6191 mask
<<= (BITS_PER_LONG
- bitidx
- 1);
6192 flags
<<= (BITS_PER_LONG
- bitidx
- 1);
6194 word
= ACCESS_ONCE(bitmap
[word_bitidx
]);
6196 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
6197 if (word
== old_word
)
6204 * This function checks whether pageblock includes unmovable pages or not.
6205 * If @count is not zero, it is okay to include less @count unmovable pages
6207 * PageLRU check without isolation or lru_lock could race so that
6208 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6209 * expect this function should be exact.
6211 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
6212 bool skip_hwpoisoned_pages
)
6214 unsigned long pfn
, iter
, found
;
6218 * For avoiding noise data, lru_add_drain_all() should be called
6219 * If ZONE_MOVABLE, the zone never contains unmovable pages
6221 if (zone_idx(zone
) == ZONE_MOVABLE
)
6223 mt
= get_pageblock_migratetype(page
);
6224 if (mt
== MIGRATE_MOVABLE
|| is_migrate_cma(mt
))
6227 pfn
= page_to_pfn(page
);
6228 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
6229 unsigned long check
= pfn
+ iter
;
6231 if (!pfn_valid_within(check
))
6234 page
= pfn_to_page(check
);
6237 * Hugepages are not in LRU lists, but they're movable.
6238 * We need not scan over tail pages bacause we don't
6239 * handle each tail page individually in migration.
6241 if (PageHuge(page
)) {
6242 iter
= round_up(iter
+ 1, 1<<compound_order(page
)) - 1;
6247 * We can't use page_count without pin a page
6248 * because another CPU can free compound page.
6249 * This check already skips compound tails of THP
6250 * because their page->_count is zero at all time.
6252 if (!atomic_read(&page
->_count
)) {
6253 if (PageBuddy(page
))
6254 iter
+= (1 << page_order(page
)) - 1;
6259 * The HWPoisoned page may be not in buddy system, and
6260 * page_count() is not 0.
6262 if (skip_hwpoisoned_pages
&& PageHWPoison(page
))
6268 * If there are RECLAIMABLE pages, we need to check it.
6269 * But now, memory offline itself doesn't call shrink_slab()
6270 * and it still to be fixed.
6273 * If the page is not RAM, page_count()should be 0.
6274 * we don't need more check. This is an _used_ not-movable page.
6276 * The problematic thing here is PG_reserved pages. PG_reserved
6277 * is set to both of a memory hole page and a _used_ kernel
6286 bool is_pageblock_removable_nolock(struct page
*page
)
6292 * We have to be careful here because we are iterating over memory
6293 * sections which are not zone aware so we might end up outside of
6294 * the zone but still within the section.
6295 * We have to take care about the node as well. If the node is offline
6296 * its NODE_DATA will be NULL - see page_zone.
6298 if (!node_online(page_to_nid(page
)))
6301 zone
= page_zone(page
);
6302 pfn
= page_to_pfn(page
);
6303 if (!zone_spans_pfn(zone
, pfn
))
6306 return !has_unmovable_pages(zone
, page
, 0, true);
6311 static unsigned long pfn_max_align_down(unsigned long pfn
)
6313 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
6314 pageblock_nr_pages
) - 1);
6317 static unsigned long pfn_max_align_up(unsigned long pfn
)
6319 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
6320 pageblock_nr_pages
));
6323 /* [start, end) must belong to a single zone. */
6324 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
6325 unsigned long start
, unsigned long end
)
6327 /* This function is based on compact_zone() from compaction.c. */
6328 unsigned long nr_reclaimed
;
6329 unsigned long pfn
= start
;
6330 unsigned int tries
= 0;
6335 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
6336 if (fatal_signal_pending(current
)) {
6341 if (list_empty(&cc
->migratepages
)) {
6342 cc
->nr_migratepages
= 0;
6343 pfn
= isolate_migratepages_range(cc
->zone
, cc
,
6350 } else if (++tries
== 5) {
6351 ret
= ret
< 0 ? ret
: -EBUSY
;
6355 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
6357 cc
->nr_migratepages
-= nr_reclaimed
;
6359 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
6360 NULL
, 0, cc
->mode
, MR_CMA
);
6363 putback_movable_pages(&cc
->migratepages
);
6370 * alloc_contig_range() -- tries to allocate given range of pages
6371 * @start: start PFN to allocate
6372 * @end: one-past-the-last PFN to allocate
6373 * @migratetype: migratetype of the underlaying pageblocks (either
6374 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6375 * in range must have the same migratetype and it must
6376 * be either of the two.
6378 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6379 * aligned, however it's the caller's responsibility to guarantee that
6380 * we are the only thread that changes migrate type of pageblocks the
6383 * The PFN range must belong to a single zone.
6385 * Returns zero on success or negative error code. On success all
6386 * pages which PFN is in [start, end) are allocated for the caller and
6387 * need to be freed with free_contig_range().
6389 int alloc_contig_range(unsigned long start
, unsigned long end
,
6390 unsigned migratetype
)
6392 unsigned long outer_start
, outer_end
;
6395 struct compact_control cc
= {
6396 .nr_migratepages
= 0,
6398 .zone
= page_zone(pfn_to_page(start
)),
6399 .mode
= MIGRATE_SYNC
,
6400 .ignore_skip_hint
= true,
6402 INIT_LIST_HEAD(&cc
.migratepages
);
6405 * What we do here is we mark all pageblocks in range as
6406 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6407 * have different sizes, and due to the way page allocator
6408 * work, we align the range to biggest of the two pages so
6409 * that page allocator won't try to merge buddies from
6410 * different pageblocks and change MIGRATE_ISOLATE to some
6411 * other migration type.
6413 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6414 * migrate the pages from an unaligned range (ie. pages that
6415 * we are interested in). This will put all the pages in
6416 * range back to page allocator as MIGRATE_ISOLATE.
6418 * When this is done, we take the pages in range from page
6419 * allocator removing them from the buddy system. This way
6420 * page allocator will never consider using them.
6422 * This lets us mark the pageblocks back as
6423 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6424 * aligned range but not in the unaligned, original range are
6425 * put back to page allocator so that buddy can use them.
6428 ret
= start_isolate_page_range(pfn_max_align_down(start
),
6429 pfn_max_align_up(end
), migratetype
,
6434 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
6439 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6440 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6441 * more, all pages in [start, end) are free in page allocator.
6442 * What we are going to do is to allocate all pages from
6443 * [start, end) (that is remove them from page allocator).
6445 * The only problem is that pages at the beginning and at the
6446 * end of interesting range may be not aligned with pages that
6447 * page allocator holds, ie. they can be part of higher order
6448 * pages. Because of this, we reserve the bigger range and
6449 * once this is done free the pages we are not interested in.
6451 * We don't have to hold zone->lock here because the pages are
6452 * isolated thus they won't get removed from buddy.
6455 lru_add_drain_all();
6459 outer_start
= start
;
6460 while (!PageBuddy(pfn_to_page(outer_start
))) {
6461 if (++order
>= MAX_ORDER
) {
6465 outer_start
&= ~0UL << order
;
6468 /* Make sure the range is really isolated. */
6469 if (test_pages_isolated(outer_start
, end
, false)) {
6470 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6477 /* Grab isolated pages from freelists. */
6478 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
6484 /* Free head and tail (if any) */
6485 if (start
!= outer_start
)
6486 free_contig_range(outer_start
, start
- outer_start
);
6487 if (end
!= outer_end
)
6488 free_contig_range(end
, outer_end
- end
);
6491 undo_isolate_page_range(pfn_max_align_down(start
),
6492 pfn_max_align_up(end
), migratetype
);
6496 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
6498 unsigned int count
= 0;
6500 for (; nr_pages
--; pfn
++) {
6501 struct page
*page
= pfn_to_page(pfn
);
6503 count
+= page_count(page
) != 1;
6506 WARN(count
!= 0, "%d pages are still in use!\n", count
);
6510 #ifdef CONFIG_MEMORY_HOTPLUG
6512 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6513 * page high values need to be recalulated.
6515 void __meminit
zone_pcp_update(struct zone
*zone
)
6518 mutex_lock(&pcp_batch_high_lock
);
6519 for_each_possible_cpu(cpu
)
6520 pageset_set_high_and_batch(zone
,
6521 per_cpu_ptr(zone
->pageset
, cpu
));
6522 mutex_unlock(&pcp_batch_high_lock
);
6526 void zone_pcp_reset(struct zone
*zone
)
6528 unsigned long flags
;
6530 struct per_cpu_pageset
*pset
;
6532 /* avoid races with drain_pages() */
6533 local_lock_irqsave(pa_lock
, flags
);
6534 if (zone
->pageset
!= &boot_pageset
) {
6535 for_each_online_cpu(cpu
) {
6536 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
6537 drain_zonestat(zone
, pset
);
6539 free_percpu(zone
->pageset
);
6540 zone
->pageset
= &boot_pageset
;
6542 local_unlock_irqrestore(pa_lock
, flags
);
6545 #ifdef CONFIG_MEMORY_HOTREMOVE
6547 * All pages in the range must be isolated before calling this.
6550 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
6554 unsigned int order
, i
;
6556 unsigned long flags
;
6557 /* find the first valid pfn */
6558 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
6563 zone
= page_zone(pfn_to_page(pfn
));
6564 spin_lock_irqsave(&zone
->lock
, flags
);
6566 while (pfn
< end_pfn
) {
6567 if (!pfn_valid(pfn
)) {
6571 page
= pfn_to_page(pfn
);
6573 * The HWPoisoned page may be not in buddy system, and
6574 * page_count() is not 0.
6576 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
6578 SetPageReserved(page
);
6582 BUG_ON(page_count(page
));
6583 BUG_ON(!PageBuddy(page
));
6584 order
= page_order(page
);
6585 #ifdef CONFIG_DEBUG_VM
6586 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
6587 pfn
, 1 << order
, end_pfn
);
6589 list_del(&page
->lru
);
6590 rmv_page_order(page
);
6591 zone
->free_area
[order
].nr_free
--;
6592 for (i
= 0; i
< (1 << order
); i
++)
6593 SetPageReserved((page
+i
));
6594 pfn
+= (1 << order
);
6596 spin_unlock_irqrestore(&zone
->lock
, flags
);
6600 #ifdef CONFIG_MEMORY_FAILURE
6601 bool is_free_buddy_page(struct page
*page
)
6603 struct zone
*zone
= page_zone(page
);
6604 unsigned long pfn
= page_to_pfn(page
);
6605 unsigned long flags
;
6608 spin_lock_irqsave(&zone
->lock
, flags
);
6609 for (order
= 0; order
< MAX_ORDER
; order
++) {
6610 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
6612 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
6615 spin_unlock_irqrestore(&zone
->lock
, flags
);
6617 return order
< MAX_ORDER
;
6621 static const struct trace_print_flags pageflag_names
[] = {
6622 {1UL << PG_locked
, "locked" },
6623 {1UL << PG_error
, "error" },
6624 {1UL << PG_referenced
, "referenced" },
6625 {1UL << PG_uptodate
, "uptodate" },
6626 {1UL << PG_dirty
, "dirty" },
6627 {1UL << PG_lru
, "lru" },
6628 {1UL << PG_active
, "active" },
6629 {1UL << PG_slab
, "slab" },
6630 {1UL << PG_owner_priv_1
, "owner_priv_1" },
6631 {1UL << PG_arch_1
, "arch_1" },
6632 {1UL << PG_reserved
, "reserved" },
6633 {1UL << PG_private
, "private" },
6634 {1UL << PG_private_2
, "private_2" },
6635 {1UL << PG_writeback
, "writeback" },
6636 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6637 {1UL << PG_head
, "head" },
6638 {1UL << PG_tail
, "tail" },
6640 {1UL << PG_compound
, "compound" },
6642 {1UL << PG_swapcache
, "swapcache" },
6643 {1UL << PG_mappedtodisk
, "mappedtodisk" },
6644 {1UL << PG_reclaim
, "reclaim" },
6645 {1UL << PG_swapbacked
, "swapbacked" },
6646 {1UL << PG_unevictable
, "unevictable" },
6648 {1UL << PG_mlocked
, "mlocked" },
6650 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6651 {1UL << PG_uncached
, "uncached" },
6653 #ifdef CONFIG_MEMORY_FAILURE
6654 {1UL << PG_hwpoison
, "hwpoison" },
6656 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6657 {1UL << PG_compound_lock
, "compound_lock" },
6661 static void dump_page_flags(unsigned long flags
)
6663 const char *delim
= "";
6667 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names
) != __NR_PAGEFLAGS
);
6669 printk(KERN_ALERT
"page flags: %#lx(", flags
);
6671 /* remove zone id */
6672 flags
&= (1UL << NR_PAGEFLAGS
) - 1;
6674 for (i
= 0; i
< ARRAY_SIZE(pageflag_names
) && flags
; i
++) {
6676 mask
= pageflag_names
[i
].mask
;
6677 if ((flags
& mask
) != mask
)
6681 printk("%s%s", delim
, pageflag_names
[i
].name
);
6685 /* check for left over flags */
6687 printk("%s%#lx", delim
, flags
);
6692 void dump_page_badflags(struct page
*page
, char *reason
, unsigned long badflags
)
6695 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6696 page
, atomic_read(&page
->_count
), page_mapcount(page
),
6697 page
->mapping
, page
->index
);
6698 dump_page_flags(page
->flags
);
6700 pr_alert("page dumped because: %s\n", reason
);
6701 if (page
->flags
& badflags
) {
6702 pr_alert("bad because of flags:\n");
6703 dump_page_flags(page
->flags
& badflags
);
6705 mem_cgroup_print_bad_page(page
);
6708 void dump_page(struct page
*page
, char *reason
)
6710 dump_page_badflags(page
, reason
, 0);
6712 EXPORT_SYMBOL_GPL(dump_page
);