2 * mm/percpu-vm.c - vmalloc area based chunk allocation
4 * Copyright (C) 2010 SUSE Linux Products GmbH
5 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
7 * This file is released under the GPLv2.
9 * Chunks are mapped into vmalloc areas and populated page by page.
10 * This is the default chunk allocator.
13 static struct page
*pcpu_chunk_page(struct pcpu_chunk
*chunk
,
14 unsigned int cpu
, int page_idx
)
16 /* must not be used on pre-mapped chunk */
17 WARN_ON(chunk
->immutable
);
19 return vmalloc_to_page((void *)pcpu_chunk_addr(chunk
, cpu
, page_idx
));
23 * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
24 * @chunk: chunk of interest
25 * @bitmapp: output parameter for bitmap
26 * @may_alloc: may allocate the array
28 * Returns pointer to array of pointers to struct page and bitmap,
29 * both of which can be indexed with pcpu_page_idx(). The returned
30 * array is cleared to zero and *@bitmapp is copied from
31 * @chunk->populated. Note that there is only one array and bitmap
32 * and access exclusion is the caller's responsibility.
35 * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
36 * Otherwise, don't care.
39 * Pointer to temp pages array on success, NULL on failure.
41 static struct page
**pcpu_get_pages_and_bitmap(struct pcpu_chunk
*chunk
,
42 unsigned long **bitmapp
,
45 static struct page
**pages
;
46 static unsigned long *bitmap
;
47 size_t pages_size
= pcpu_nr_units
* pcpu_unit_pages
* sizeof(pages
[0]);
48 size_t bitmap_size
= BITS_TO_LONGS(pcpu_unit_pages
) *
49 sizeof(unsigned long);
51 if (!pages
|| !bitmap
) {
52 if (may_alloc
&& !pages
)
53 pages
= pcpu_mem_zalloc(pages_size
);
54 if (may_alloc
&& !bitmap
)
55 bitmap
= pcpu_mem_zalloc(bitmap_size
);
56 if (!pages
|| !bitmap
)
60 bitmap_copy(bitmap
, chunk
->populated
, pcpu_unit_pages
);
67 * pcpu_free_pages - free pages which were allocated for @chunk
68 * @chunk: chunk pages were allocated for
69 * @pages: array of pages to be freed, indexed by pcpu_page_idx()
70 * @populated: populated bitmap
71 * @page_start: page index of the first page to be freed
72 * @page_end: page index of the last page to be freed + 1
74 * Free pages [@page_start and @page_end) in @pages for all units.
75 * The pages were allocated for @chunk.
77 static void pcpu_free_pages(struct pcpu_chunk
*chunk
,
78 struct page
**pages
, unsigned long *populated
,
79 int page_start
, int page_end
)
84 for_each_possible_cpu(cpu
) {
85 for (i
= page_start
; i
< page_end
; i
++) {
86 struct page
*page
= pages
[pcpu_page_idx(cpu
, i
)];
95 * pcpu_alloc_pages - allocates pages for @chunk
96 * @chunk: target chunk
97 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
98 * @populated: populated bitmap
99 * @page_start: page index of the first page to be allocated
100 * @page_end: page index of the last page to be allocated + 1
102 * Allocate pages [@page_start,@page_end) into @pages for all units.
103 * The allocation is for @chunk. Percpu core doesn't care about the
104 * content of @pages and will pass it verbatim to pcpu_map_pages().
106 static int pcpu_alloc_pages(struct pcpu_chunk
*chunk
,
107 struct page
**pages
, unsigned long *populated
,
108 int page_start
, int page_end
)
110 const gfp_t gfp
= GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_COLD
;
111 unsigned int cpu
, tcpu
;
114 for_each_possible_cpu(cpu
) {
115 for (i
= page_start
; i
< page_end
; i
++) {
116 struct page
**pagep
= &pages
[pcpu_page_idx(cpu
, i
)];
118 *pagep
= alloc_pages_node(cpu_to_node(cpu
), gfp
, 0);
126 while (--i
>= page_start
)
127 __free_page(pages
[pcpu_page_idx(cpu
, i
)]);
129 for_each_possible_cpu(tcpu
) {
132 for (i
= page_start
; i
< page_end
; i
++)
133 __free_page(pages
[pcpu_page_idx(tcpu
, i
)]);
139 * pcpu_pre_unmap_flush - flush cache prior to unmapping
140 * @chunk: chunk the regions to be flushed belongs to
141 * @page_start: page index of the first page to be flushed
142 * @page_end: page index of the last page to be flushed + 1
144 * Pages in [@page_start,@page_end) of @chunk are about to be
145 * unmapped. Flush cache. As each flushing trial can be very
146 * expensive, issue flush on the whole region at once rather than
147 * doing it for each cpu. This could be an overkill but is more
150 static void pcpu_pre_unmap_flush(struct pcpu_chunk
*chunk
,
151 int page_start
, int page_end
)
154 pcpu_chunk_addr(chunk
, pcpu_low_unit_cpu
, page_start
),
155 pcpu_chunk_addr(chunk
, pcpu_high_unit_cpu
, page_end
));
158 static void __pcpu_unmap_pages(unsigned long addr
, int nr_pages
)
160 unmap_kernel_range_noflush(addr
, nr_pages
<< PAGE_SHIFT
);
164 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
165 * @chunk: chunk of interest
166 * @pages: pages array which can be used to pass information to free
167 * @populated: populated bitmap
168 * @page_start: page index of the first page to unmap
169 * @page_end: page index of the last page to unmap + 1
171 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
172 * Corresponding elements in @pages were cleared by the caller and can
173 * be used to carry information to pcpu_free_pages() which will be
174 * called after all unmaps are finished. The caller should call
175 * proper pre/post flush functions.
177 static void pcpu_unmap_pages(struct pcpu_chunk
*chunk
,
178 struct page
**pages
, unsigned long *populated
,
179 int page_start
, int page_end
)
184 for_each_possible_cpu(cpu
) {
185 for (i
= page_start
; i
< page_end
; i
++) {
188 page
= pcpu_chunk_page(chunk
, cpu
, i
);
190 pages
[pcpu_page_idx(cpu
, i
)] = page
;
192 __pcpu_unmap_pages(pcpu_chunk_addr(chunk
, cpu
, page_start
),
193 page_end
- page_start
);
196 bitmap_clear(populated
, page_start
, page_end
- page_start
);
200 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
201 * @chunk: pcpu_chunk the regions to be flushed belong to
202 * @page_start: page index of the first page to be flushed
203 * @page_end: page index of the last page to be flushed + 1
205 * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush
206 * TLB for the regions. This can be skipped if the area is to be
207 * returned to vmalloc as vmalloc will handle TLB flushing lazily.
209 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
210 * for the whole region.
212 static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk
*chunk
,
213 int page_start
, int page_end
)
215 flush_tlb_kernel_range(
216 pcpu_chunk_addr(chunk
, pcpu_low_unit_cpu
, page_start
),
217 pcpu_chunk_addr(chunk
, pcpu_high_unit_cpu
, page_end
));
220 static int __pcpu_map_pages(unsigned long addr
, struct page
**pages
,
223 return map_kernel_range_noflush(addr
, nr_pages
<< PAGE_SHIFT
,
228 * pcpu_map_pages - map pages into a pcpu_chunk
229 * @chunk: chunk of interest
230 * @pages: pages array containing pages to be mapped
231 * @populated: populated bitmap
232 * @page_start: page index of the first page to map
233 * @page_end: page index of the last page to map + 1
235 * For each cpu, map pages [@page_start,@page_end) into @chunk. The
236 * caller is responsible for calling pcpu_post_map_flush() after all
237 * mappings are complete.
239 * This function is responsible for setting corresponding bits in
240 * @chunk->populated bitmap and whatever is necessary for reverse
241 * lookup (addr -> chunk).
243 static int pcpu_map_pages(struct pcpu_chunk
*chunk
,
244 struct page
**pages
, unsigned long *populated
,
245 int page_start
, int page_end
)
247 unsigned int cpu
, tcpu
;
250 for_each_possible_cpu(cpu
) {
251 err
= __pcpu_map_pages(pcpu_chunk_addr(chunk
, cpu
, page_start
),
252 &pages
[pcpu_page_idx(cpu
, page_start
)],
253 page_end
- page_start
);
258 /* mapping successful, link chunk and mark populated */
259 for (i
= page_start
; i
< page_end
; i
++) {
260 for_each_possible_cpu(cpu
)
261 pcpu_set_page_chunk(pages
[pcpu_page_idx(cpu
, i
)],
263 __set_bit(i
, populated
);
269 for_each_possible_cpu(tcpu
) {
272 __pcpu_unmap_pages(pcpu_chunk_addr(chunk
, tcpu
, page_start
),
273 page_end
- page_start
);
275 pcpu_post_unmap_tlb_flush(chunk
, page_start
, page_end
);
280 * pcpu_post_map_flush - flush cache after mapping
281 * @chunk: pcpu_chunk the regions to be flushed belong to
282 * @page_start: page index of the first page to be flushed
283 * @page_end: page index of the last page to be flushed + 1
285 * Pages [@page_start,@page_end) of @chunk have been mapped. Flush
288 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
289 * for the whole region.
291 static void pcpu_post_map_flush(struct pcpu_chunk
*chunk
,
292 int page_start
, int page_end
)
295 pcpu_chunk_addr(chunk
, pcpu_low_unit_cpu
, page_start
),
296 pcpu_chunk_addr(chunk
, pcpu_high_unit_cpu
, page_end
));
300 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
301 * @chunk: chunk of interest
302 * @off: offset to the area to populate
303 * @size: size of the area to populate in bytes
305 * For each cpu, populate and map pages [@page_start,@page_end) into
306 * @chunk. The area is cleared on return.
309 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
311 static int pcpu_populate_chunk(struct pcpu_chunk
*chunk
, int off
, int size
)
313 int page_start
= PFN_DOWN(off
);
314 int page_end
= PFN_UP(off
+ size
);
315 int free_end
= page_start
, unmap_end
= page_start
;
317 unsigned long *populated
;
321 /* quick path, check whether all pages are already there */
323 pcpu_next_pop(chunk
, &rs
, &re
, page_end
);
324 if (rs
== page_start
&& re
== page_end
)
327 /* need to allocate and map pages, this chunk can't be immutable */
328 WARN_ON(chunk
->immutable
);
330 pages
= pcpu_get_pages_and_bitmap(chunk
, &populated
, true);
335 pcpu_for_each_unpop_region(chunk
, rs
, re
, page_start
, page_end
) {
336 rc
= pcpu_alloc_pages(chunk
, pages
, populated
, rs
, re
);
342 pcpu_for_each_unpop_region(chunk
, rs
, re
, page_start
, page_end
) {
343 rc
= pcpu_map_pages(chunk
, pages
, populated
, rs
, re
);
348 pcpu_post_map_flush(chunk
, page_start
, page_end
);
350 /* commit new bitmap */
351 bitmap_copy(chunk
->populated
, populated
, pcpu_unit_pages
);
353 for_each_possible_cpu(cpu
)
354 memset((void *)pcpu_chunk_addr(chunk
, cpu
, 0) + off
, 0, size
);
358 pcpu_pre_unmap_flush(chunk
, page_start
, unmap_end
);
359 pcpu_for_each_unpop_region(chunk
, rs
, re
, page_start
, unmap_end
)
360 pcpu_unmap_pages(chunk
, pages
, populated
, rs
, re
);
361 pcpu_post_unmap_tlb_flush(chunk
, page_start
, unmap_end
);
363 pcpu_for_each_unpop_region(chunk
, rs
, re
, page_start
, free_end
)
364 pcpu_free_pages(chunk
, pages
, populated
, rs
, re
);
369 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
370 * @chunk: chunk to depopulate
371 * @off: offset to the area to depopulate
372 * @size: size of the area to depopulate in bytes
374 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
375 * from @chunk. If @flush is true, vcache is flushed before unmapping
381 static void pcpu_depopulate_chunk(struct pcpu_chunk
*chunk
, int off
, int size
)
383 int page_start
= PFN_DOWN(off
);
384 int page_end
= PFN_UP(off
+ size
);
386 unsigned long *populated
;
389 /* quick path, check whether it's empty already */
391 pcpu_next_unpop(chunk
, &rs
, &re
, page_end
);
392 if (rs
== page_start
&& re
== page_end
)
395 /* immutable chunks can't be depopulated */
396 WARN_ON(chunk
->immutable
);
399 * If control reaches here, there must have been at least one
400 * successful population attempt so the temp pages array must
403 pages
= pcpu_get_pages_and_bitmap(chunk
, &populated
, false);
407 pcpu_pre_unmap_flush(chunk
, page_start
, page_end
);
409 pcpu_for_each_pop_region(chunk
, rs
, re
, page_start
, page_end
)
410 pcpu_unmap_pages(chunk
, pages
, populated
, rs
, re
);
412 /* no need to flush tlb, vmalloc will handle it lazily */
414 pcpu_for_each_pop_region(chunk
, rs
, re
, page_start
, page_end
)
415 pcpu_free_pages(chunk
, pages
, populated
, rs
, re
);
417 /* commit new bitmap */
418 bitmap_copy(chunk
->populated
, populated
, pcpu_unit_pages
);
421 static struct pcpu_chunk
*pcpu_create_chunk(void)
423 struct pcpu_chunk
*chunk
;
424 struct vm_struct
**vms
;
426 chunk
= pcpu_alloc_chunk();
430 vms
= pcpu_get_vm_areas(pcpu_group_offsets
, pcpu_group_sizes
,
431 pcpu_nr_groups
, pcpu_atom_size
);
433 pcpu_free_chunk(chunk
);
438 chunk
->base_addr
= vms
[0]->addr
- pcpu_group_offsets
[0];
442 static void pcpu_destroy_chunk(struct pcpu_chunk
*chunk
)
444 if (chunk
&& chunk
->data
)
445 pcpu_free_vm_areas(chunk
->data
, pcpu_nr_groups
);
446 pcpu_free_chunk(chunk
);
449 static struct page
*pcpu_addr_to_page(void *addr
)
451 return vmalloc_to_page(addr
);
454 static int __init
pcpu_verify_alloc_info(const struct pcpu_alloc_info
*ai
)
456 /* no extra restriction */