Lynx framebuffers multidomain implementation.
[linux/elbrus.git] / mm / swapfile.c
blob39088acd01d3997072073b3153eac059ed207e39
1 /*
2 * linux/mm/swapfile.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/page_cgroup.h>
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
48 DEFINE_SPINLOCK(swap_lock);
49 #if !defined(__e2k__) || !defined(CONFIG_RECOVERY)
50 static
51 #endif
52 unsigned int nr_swapfiles;
53 atomic_long_t nr_swap_pages;
54 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
55 long total_swap_pages;
56 static int least_priority;
58 static const char Bad_file[] = "Bad swap file entry ";
59 static const char Unused_file[] = "Unused swap file entry ";
60 static const char Bad_offset[] = "Bad swap offset entry ";
61 static const char Unused_offset[] = "Unused swap offset entry ";
64 * all active swap_info_structs
65 * protected with swap_lock, and ordered by priority.
67 PLIST_HEAD(swap_active_head);
70 * all available (active, not full) swap_info_structs
71 * protected with swap_avail_lock, ordered by priority.
72 * This is used by get_swap_page() instead of swap_active_head
73 * because swap_active_head includes all swap_info_structs,
74 * but get_swap_page() doesn't need to look at full ones.
75 * This uses its own lock instead of swap_lock because when a
76 * swap_info_struct changes between not-full/full, it needs to
77 * add/remove itself to/from this list, but the swap_info_struct->lock
78 * is held and the locking order requires swap_lock to be taken
79 * before any swap_info_struct->lock.
81 static PLIST_HEAD(swap_avail_head);
82 static DEFINE_SPINLOCK(swap_avail_lock);
84 struct swap_info_struct *swap_info[MAX_SWAPFILES];
86 static DEFINE_MUTEX(swapon_mutex);
88 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
89 /* Activity counter to indicate that a swapon or swapoff has occurred */
90 static atomic_t proc_poll_event = ATOMIC_INIT(0);
92 static inline unsigned char swap_count(unsigned char ent)
94 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
97 /* returns 1 if swap entry is freed */
98 static int
99 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
101 swp_entry_t entry = swp_entry(si->type, offset);
102 struct page *page;
103 int ret = 0;
105 page = find_get_page(swap_address_space(entry), entry.val);
106 if (!page)
107 return 0;
109 * This function is called from scan_swap_map() and it's called
110 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
111 * We have to use trylock for avoiding deadlock. This is a special
112 * case and you should use try_to_free_swap() with explicit lock_page()
113 * in usual operations.
115 if (trylock_page(page)) {
116 ret = try_to_free_swap(page);
117 unlock_page(page);
119 page_cache_release(page);
120 return ret;
124 * swapon tell device that all the old swap contents can be discarded,
125 * to allow the swap device to optimize its wear-levelling.
127 static int discard_swap(struct swap_info_struct *si)
129 struct swap_extent *se;
130 sector_t start_block;
131 sector_t nr_blocks;
132 int err = 0;
134 /* Do not discard the swap header page! */
135 se = &si->first_swap_extent;
136 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
137 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
138 if (nr_blocks) {
139 err = blkdev_issue_discard(si->bdev, start_block,
140 nr_blocks, GFP_KERNEL, 0);
141 if (err)
142 return err;
143 cond_resched();
146 list_for_each_entry(se, &si->first_swap_extent.list, list) {
147 start_block = se->start_block << (PAGE_SHIFT - 9);
148 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
150 err = blkdev_issue_discard(si->bdev, start_block,
151 nr_blocks, GFP_KERNEL, 0);
152 if (err)
153 break;
155 cond_resched();
157 return err; /* That will often be -EOPNOTSUPP */
161 * swap allocation tell device that a cluster of swap can now be discarded,
162 * to allow the swap device to optimize its wear-levelling.
164 static void discard_swap_cluster(struct swap_info_struct *si,
165 pgoff_t start_page, pgoff_t nr_pages)
167 struct swap_extent *se = si->curr_swap_extent;
168 int found_extent = 0;
170 while (nr_pages) {
171 struct list_head *lh;
173 if (se->start_page <= start_page &&
174 start_page < se->start_page + se->nr_pages) {
175 pgoff_t offset = start_page - se->start_page;
176 sector_t start_block = se->start_block + offset;
177 sector_t nr_blocks = se->nr_pages - offset;
179 if (nr_blocks > nr_pages)
180 nr_blocks = nr_pages;
181 start_page += nr_blocks;
182 nr_pages -= nr_blocks;
184 if (!found_extent++)
185 si->curr_swap_extent = se;
187 start_block <<= PAGE_SHIFT - 9;
188 nr_blocks <<= PAGE_SHIFT - 9;
189 if (blkdev_issue_discard(si->bdev, start_block,
190 nr_blocks, GFP_NOIO, 0))
191 break;
194 lh = se->list.next;
195 se = list_entry(lh, struct swap_extent, list);
199 #define SWAPFILE_CLUSTER 256
200 #define LATENCY_LIMIT 256
202 static inline void cluster_set_flag(struct swap_cluster_info *info,
203 unsigned int flag)
205 info->flags = flag;
208 static inline unsigned int cluster_count(struct swap_cluster_info *info)
210 return info->data;
213 static inline void cluster_set_count(struct swap_cluster_info *info,
214 unsigned int c)
216 info->data = c;
219 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
220 unsigned int c, unsigned int f)
222 info->flags = f;
223 info->data = c;
226 static inline unsigned int cluster_next(struct swap_cluster_info *info)
228 return info->data;
231 static inline void cluster_set_next(struct swap_cluster_info *info,
232 unsigned int n)
234 info->data = n;
237 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
238 unsigned int n, unsigned int f)
240 info->flags = f;
241 info->data = n;
244 static inline bool cluster_is_free(struct swap_cluster_info *info)
246 return info->flags & CLUSTER_FLAG_FREE;
249 static inline bool cluster_is_null(struct swap_cluster_info *info)
251 return info->flags & CLUSTER_FLAG_NEXT_NULL;
254 static inline void cluster_set_null(struct swap_cluster_info *info)
256 info->flags = CLUSTER_FLAG_NEXT_NULL;
257 info->data = 0;
260 /* Add a cluster to discard list and schedule it to do discard */
261 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
262 unsigned int idx)
265 * If scan_swap_map() can't find a free cluster, it will check
266 * si->swap_map directly. To make sure the discarding cluster isn't
267 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
268 * will be cleared after discard
270 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
271 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
273 if (cluster_is_null(&si->discard_cluster_head)) {
274 cluster_set_next_flag(&si->discard_cluster_head,
275 idx, 0);
276 cluster_set_next_flag(&si->discard_cluster_tail,
277 idx, 0);
278 } else {
279 unsigned int tail = cluster_next(&si->discard_cluster_tail);
280 cluster_set_next(&si->cluster_info[tail], idx);
281 cluster_set_next_flag(&si->discard_cluster_tail,
282 idx, 0);
285 schedule_work(&si->discard_work);
289 * Doing discard actually. After a cluster discard is finished, the cluster
290 * will be added to free cluster list. caller should hold si->lock.
292 static void swap_do_scheduled_discard(struct swap_info_struct *si)
294 struct swap_cluster_info *info;
295 unsigned int idx;
297 info = si->cluster_info;
299 while (!cluster_is_null(&si->discard_cluster_head)) {
300 idx = cluster_next(&si->discard_cluster_head);
302 cluster_set_next_flag(&si->discard_cluster_head,
303 cluster_next(&info[idx]), 0);
304 if (cluster_next(&si->discard_cluster_tail) == idx) {
305 cluster_set_null(&si->discard_cluster_head);
306 cluster_set_null(&si->discard_cluster_tail);
308 spin_unlock(&si->lock);
310 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
311 SWAPFILE_CLUSTER);
313 spin_lock(&si->lock);
314 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
315 if (cluster_is_null(&si->free_cluster_head)) {
316 cluster_set_next_flag(&si->free_cluster_head,
317 idx, 0);
318 cluster_set_next_flag(&si->free_cluster_tail,
319 idx, 0);
320 } else {
321 unsigned int tail;
323 tail = cluster_next(&si->free_cluster_tail);
324 cluster_set_next(&info[tail], idx);
325 cluster_set_next_flag(&si->free_cluster_tail,
326 idx, 0);
328 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
329 0, SWAPFILE_CLUSTER);
333 static void swap_discard_work(struct work_struct *work)
335 struct swap_info_struct *si;
337 si = container_of(work, struct swap_info_struct, discard_work);
339 spin_lock(&si->lock);
340 swap_do_scheduled_discard(si);
341 spin_unlock(&si->lock);
345 * The cluster corresponding to page_nr will be used. The cluster will be
346 * removed from free cluster list and its usage counter will be increased.
348 static void inc_cluster_info_page(struct swap_info_struct *p,
349 struct swap_cluster_info *cluster_info, unsigned long page_nr)
351 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
353 if (!cluster_info)
354 return;
355 if (cluster_is_free(&cluster_info[idx])) {
356 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
357 cluster_set_next_flag(&p->free_cluster_head,
358 cluster_next(&cluster_info[idx]), 0);
359 if (cluster_next(&p->free_cluster_tail) == idx) {
360 cluster_set_null(&p->free_cluster_tail);
361 cluster_set_null(&p->free_cluster_head);
363 cluster_set_count_flag(&cluster_info[idx], 0, 0);
366 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
367 cluster_set_count(&cluster_info[idx],
368 cluster_count(&cluster_info[idx]) + 1);
372 * The cluster corresponding to page_nr decreases one usage. If the usage
373 * counter becomes 0, which means no page in the cluster is in using, we can
374 * optionally discard the cluster and add it to free cluster list.
376 static void dec_cluster_info_page(struct swap_info_struct *p,
377 struct swap_cluster_info *cluster_info, unsigned long page_nr)
379 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
381 if (!cluster_info)
382 return;
384 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
385 cluster_set_count(&cluster_info[idx],
386 cluster_count(&cluster_info[idx]) - 1);
388 if (cluster_count(&cluster_info[idx]) == 0) {
390 * If the swap is discardable, prepare discard the cluster
391 * instead of free it immediately. The cluster will be freed
392 * after discard.
394 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
395 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
396 swap_cluster_schedule_discard(p, idx);
397 return;
400 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
401 if (cluster_is_null(&p->free_cluster_head)) {
402 cluster_set_next_flag(&p->free_cluster_head, idx, 0);
403 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
404 } else {
405 unsigned int tail = cluster_next(&p->free_cluster_tail);
406 cluster_set_next(&cluster_info[tail], idx);
407 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
413 * It's possible scan_swap_map() uses a free cluster in the middle of free
414 * cluster list. Avoiding such abuse to avoid list corruption.
416 static bool
417 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
418 unsigned long offset)
420 struct percpu_cluster *percpu_cluster;
421 bool conflict;
423 offset /= SWAPFILE_CLUSTER;
424 conflict = !cluster_is_null(&si->free_cluster_head) &&
425 offset != cluster_next(&si->free_cluster_head) &&
426 cluster_is_free(&si->cluster_info[offset]);
428 if (!conflict)
429 return false;
431 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
432 cluster_set_null(&percpu_cluster->index);
433 return true;
437 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
438 * might involve allocating a new cluster for current CPU too.
440 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
441 unsigned long *offset, unsigned long *scan_base)
443 struct percpu_cluster *cluster;
444 bool found_free;
445 unsigned long tmp;
447 new_cluster:
448 cluster = this_cpu_ptr(si->percpu_cluster);
449 if (cluster_is_null(&cluster->index)) {
450 if (!cluster_is_null(&si->free_cluster_head)) {
451 cluster->index = si->free_cluster_head;
452 cluster->next = cluster_next(&cluster->index) *
453 SWAPFILE_CLUSTER;
454 } else if (!cluster_is_null(&si->discard_cluster_head)) {
456 * we don't have free cluster but have some clusters in
457 * discarding, do discard now and reclaim them
459 swap_do_scheduled_discard(si);
460 *scan_base = *offset = si->cluster_next;
461 goto new_cluster;
462 } else
463 return;
466 found_free = false;
469 * Other CPUs can use our cluster if they can't find a free cluster,
470 * check if there is still free entry in the cluster
472 tmp = cluster->next;
473 while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
474 SWAPFILE_CLUSTER) {
475 if (!si->swap_map[tmp]) {
476 found_free = true;
477 break;
479 tmp++;
481 if (!found_free) {
482 cluster_set_null(&cluster->index);
483 goto new_cluster;
485 cluster->next = tmp + 1;
486 *offset = tmp;
487 *scan_base = tmp;
490 static unsigned long scan_swap_map(struct swap_info_struct *si,
491 unsigned char usage)
493 unsigned long offset;
494 unsigned long scan_base;
495 unsigned long last_in_cluster = 0;
496 int latency_ration = LATENCY_LIMIT;
499 * We try to cluster swap pages by allocating them sequentially
500 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
501 * way, however, we resort to first-free allocation, starting
502 * a new cluster. This prevents us from scattering swap pages
503 * all over the entire swap partition, so that we reduce
504 * overall disk seek times between swap pages. -- sct
505 * But we do now try to find an empty cluster. -Andrea
506 * And we let swap pages go all over an SSD partition. Hugh
509 si->flags += SWP_SCANNING;
510 scan_base = offset = si->cluster_next;
512 /* SSD algorithm */
513 if (si->cluster_info) {
514 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
515 goto checks;
518 if (unlikely(!si->cluster_nr--)) {
519 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
520 si->cluster_nr = SWAPFILE_CLUSTER - 1;
521 goto checks;
524 spin_unlock(&si->lock);
527 * If seek is expensive, start searching for new cluster from
528 * start of partition, to minimize the span of allocated swap.
529 * But if seek is cheap, search from our current position, so
530 * that swap is allocated from all over the partition: if the
531 * Flash Translation Layer only remaps within limited zones,
532 * we don't want to wear out the first zone too quickly.
534 if (!(si->flags & SWP_SOLIDSTATE))
535 scan_base = offset = si->lowest_bit;
536 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
538 /* Locate the first empty (unaligned) cluster */
539 for (; last_in_cluster <= si->highest_bit; offset++) {
540 if (si->swap_map[offset])
541 last_in_cluster = offset + SWAPFILE_CLUSTER;
542 else if (offset == last_in_cluster) {
543 spin_lock(&si->lock);
544 offset -= SWAPFILE_CLUSTER - 1;
545 si->cluster_next = offset;
546 si->cluster_nr = SWAPFILE_CLUSTER - 1;
547 goto checks;
549 if (unlikely(--latency_ration < 0)) {
550 cond_resched();
551 latency_ration = LATENCY_LIMIT;
555 offset = si->lowest_bit;
556 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
558 /* Locate the first empty (unaligned) cluster */
559 for (; last_in_cluster < scan_base; offset++) {
560 if (si->swap_map[offset])
561 last_in_cluster = offset + SWAPFILE_CLUSTER;
562 else if (offset == last_in_cluster) {
563 spin_lock(&si->lock);
564 offset -= SWAPFILE_CLUSTER - 1;
565 si->cluster_next = offset;
566 si->cluster_nr = SWAPFILE_CLUSTER - 1;
567 goto checks;
569 if (unlikely(--latency_ration < 0)) {
570 cond_resched();
571 latency_ration = LATENCY_LIMIT;
575 offset = scan_base;
576 spin_lock(&si->lock);
577 si->cluster_nr = SWAPFILE_CLUSTER - 1;
580 checks:
581 if (si->cluster_info) {
582 while (scan_swap_map_ssd_cluster_conflict(si, offset))
583 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
585 if (!(si->flags & SWP_WRITEOK))
586 goto no_page;
587 if (!si->highest_bit)
588 goto no_page;
589 if (offset > si->highest_bit)
590 scan_base = offset = si->lowest_bit;
592 /* reuse swap entry of cache-only swap if not busy. */
593 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
594 int swap_was_freed;
595 spin_unlock(&si->lock);
596 swap_was_freed = __try_to_reclaim_swap(si, offset);
597 spin_lock(&si->lock);
598 /* entry was freed successfully, try to use this again */
599 if (swap_was_freed)
600 goto checks;
601 goto scan; /* check next one */
604 if (si->swap_map[offset])
605 goto scan;
607 if (offset == si->lowest_bit)
608 si->lowest_bit++;
609 if (offset == si->highest_bit)
610 si->highest_bit--;
611 si->inuse_pages++;
612 if (si->inuse_pages == si->pages) {
613 si->lowest_bit = si->max;
614 si->highest_bit = 0;
615 spin_lock(&swap_avail_lock);
616 plist_del(&si->avail_list, &swap_avail_head);
617 spin_unlock(&swap_avail_lock);
619 si->swap_map[offset] = usage;
620 inc_cluster_info_page(si, si->cluster_info, offset);
621 si->cluster_next = offset + 1;
622 si->flags -= SWP_SCANNING;
624 return offset;
626 scan:
627 spin_unlock(&si->lock);
628 while (++offset <= si->highest_bit) {
629 if (!si->swap_map[offset]) {
630 spin_lock(&si->lock);
631 goto checks;
633 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
634 spin_lock(&si->lock);
635 goto checks;
637 if (unlikely(--latency_ration < 0)) {
638 cond_resched();
639 latency_ration = LATENCY_LIMIT;
642 offset = si->lowest_bit;
643 while (offset < scan_base) {
644 if (!si->swap_map[offset]) {
645 spin_lock(&si->lock);
646 goto checks;
648 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
649 spin_lock(&si->lock);
650 goto checks;
652 if (unlikely(--latency_ration < 0)) {
653 cond_resched();
654 latency_ration = LATENCY_LIMIT;
656 offset++;
658 spin_lock(&si->lock);
660 no_page:
661 si->flags -= SWP_SCANNING;
662 return 0;
665 swp_entry_t get_swap_page(void)
667 struct swap_info_struct *si, *next;
668 pgoff_t offset;
670 if (atomic_long_read(&nr_swap_pages) <= 0)
671 goto noswap;
672 atomic_long_dec(&nr_swap_pages);
674 spin_lock(&swap_avail_lock);
676 start_over:
677 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
678 /* requeue si to after same-priority siblings */
679 plist_requeue(&si->avail_list, &swap_avail_head);
680 spin_unlock(&swap_avail_lock);
681 spin_lock(&si->lock);
682 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
683 spin_lock(&swap_avail_lock);
684 if (plist_node_empty(&si->avail_list)) {
685 spin_unlock(&si->lock);
686 goto nextsi;
688 WARN(!si->highest_bit,
689 "swap_info %d in list but !highest_bit\n",
690 si->type);
691 WARN(!(si->flags & SWP_WRITEOK),
692 "swap_info %d in list but !SWP_WRITEOK\n",
693 si->type);
694 plist_del(&si->avail_list, &swap_avail_head);
695 spin_unlock(&si->lock);
696 goto nextsi;
699 /* This is called for allocating swap entry for cache */
700 offset = scan_swap_map(si, SWAP_HAS_CACHE);
701 spin_unlock(&si->lock);
702 if (offset)
703 return swp_entry(si->type, offset);
704 pr_debug("scan_swap_map of si %d failed to find offset\n",
705 si->type);
706 spin_lock(&swap_avail_lock);
707 nextsi:
709 * if we got here, it's likely that si was almost full before,
710 * and since scan_swap_map() can drop the si->lock, multiple
711 * callers probably all tried to get a page from the same si
712 * and it filled up before we could get one; or, the si filled
713 * up between us dropping swap_avail_lock and taking si->lock.
714 * Since we dropped the swap_avail_lock, the swap_avail_head
715 * list may have been modified; so if next is still in the
716 * swap_avail_head list then try it, otherwise start over.
718 if (plist_node_empty(&next->avail_list))
719 goto start_over;
722 spin_unlock(&swap_avail_lock);
724 atomic_long_inc(&nr_swap_pages);
725 noswap:
726 return (swp_entry_t) {0};
729 /* The only caller of this function is now suspend routine */
730 swp_entry_t get_swap_page_of_type(int type)
732 struct swap_info_struct *si;
733 pgoff_t offset;
735 si = swap_info[type];
736 spin_lock(&si->lock);
737 if (si && (si->flags & SWP_WRITEOK)) {
738 atomic_long_dec(&nr_swap_pages);
739 /* This is called for allocating swap entry, not cache */
740 offset = scan_swap_map(si, 1);
741 if (offset) {
742 spin_unlock(&si->lock);
743 return swp_entry(type, offset);
745 atomic_long_inc(&nr_swap_pages);
747 spin_unlock(&si->lock);
748 return (swp_entry_t) {0};
751 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
753 struct swap_info_struct *p;
754 unsigned long offset, type;
756 if (!entry.val)
757 goto out;
758 type = swp_type(entry);
759 if (type >= nr_swapfiles)
760 goto bad_nofile;
761 p = swap_info[type];
762 if (!(p->flags & SWP_USED))
763 goto bad_device;
764 offset = swp_offset(entry);
765 if (offset >= p->max)
766 goto bad_offset;
767 if (!p->swap_map[offset])
768 goto bad_free;
769 spin_lock(&p->lock);
770 return p;
772 bad_free:
773 pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
774 goto out;
775 bad_offset:
776 pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
777 goto out;
778 bad_device:
779 pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
780 goto out;
781 bad_nofile:
782 pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
783 out:
784 return NULL;
787 static unsigned char swap_entry_free(struct swap_info_struct *p,
788 swp_entry_t entry, unsigned char usage)
790 unsigned long offset = swp_offset(entry);
791 unsigned char count;
792 unsigned char has_cache;
794 count = p->swap_map[offset];
795 has_cache = count & SWAP_HAS_CACHE;
796 count &= ~SWAP_HAS_CACHE;
798 if (usage == SWAP_HAS_CACHE) {
799 VM_BUG_ON(!has_cache);
800 has_cache = 0;
801 } else if (count == SWAP_MAP_SHMEM) {
803 * Or we could insist on shmem.c using a special
804 * swap_shmem_free() and free_shmem_swap_and_cache()...
806 count = 0;
807 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
808 if (count == COUNT_CONTINUED) {
809 if (swap_count_continued(p, offset, count))
810 count = SWAP_MAP_MAX | COUNT_CONTINUED;
811 else
812 count = SWAP_MAP_MAX;
813 } else
814 count--;
817 if (!count)
818 mem_cgroup_uncharge_swap(entry);
820 usage = count | has_cache;
821 p->swap_map[offset] = usage;
823 /* free if no reference */
824 if (!usage) {
825 dec_cluster_info_page(p, p->cluster_info, offset);
826 if (offset < p->lowest_bit)
827 p->lowest_bit = offset;
828 if (offset > p->highest_bit) {
829 bool was_full = !p->highest_bit;
830 p->highest_bit = offset;
831 if (was_full && (p->flags & SWP_WRITEOK)) {
832 spin_lock(&swap_avail_lock);
833 WARN_ON(!plist_node_empty(&p->avail_list));
834 if (plist_node_empty(&p->avail_list))
835 plist_add(&p->avail_list,
836 &swap_avail_head);
837 spin_unlock(&swap_avail_lock);
840 atomic_long_inc(&nr_swap_pages);
841 p->inuse_pages--;
842 frontswap_invalidate_page(p->type, offset);
843 if (p->flags & SWP_BLKDEV) {
844 struct gendisk *disk = p->bdev->bd_disk;
845 if (disk->fops->swap_slot_free_notify)
846 disk->fops->swap_slot_free_notify(p->bdev,
847 offset);
851 return usage;
855 * Caller has made sure that the swap device corresponding to entry
856 * is still around or has not been recycled.
858 void swap_free(swp_entry_t entry)
860 struct swap_info_struct *p;
862 p = swap_info_get(entry);
863 if (p) {
864 swap_entry_free(p, entry, 1);
865 spin_unlock(&p->lock);
870 * Called after dropping swapcache to decrease refcnt to swap entries.
872 void swapcache_free(swp_entry_t entry, struct page *page)
874 struct swap_info_struct *p;
875 unsigned char count;
877 p = swap_info_get(entry);
878 if (p) {
879 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
880 if (page)
881 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
882 spin_unlock(&p->lock);
887 * How many references to page are currently swapped out?
888 * This does not give an exact answer when swap count is continued,
889 * but does include the high COUNT_CONTINUED flag to allow for that.
891 int page_swapcount(struct page *page)
893 int count = 0;
894 struct swap_info_struct *p;
895 swp_entry_t entry;
897 entry.val = page_private(page);
898 p = swap_info_get(entry);
899 if (p) {
900 count = swap_count(p->swap_map[swp_offset(entry)]);
901 spin_unlock(&p->lock);
903 return count;
907 * We can write to an anon page without COW if there are no other references
908 * to it. And as a side-effect, free up its swap: because the old content
909 * on disk will never be read, and seeking back there to write new content
910 * later would only waste time away from clustering.
912 int reuse_swap_page(struct page *page)
914 int count;
916 VM_BUG_ON_PAGE(!PageLocked(page), page);
917 if (unlikely(PageKsm(page)))
918 return 0;
919 count = page_mapcount(page);
920 if (count <= 1 && PageSwapCache(page)) {
921 count += page_swapcount(page);
922 if (count == 1 && !PageWriteback(page)) {
923 delete_from_swap_cache(page);
924 SetPageDirty(page);
927 return count <= 1;
931 * If swap is getting full, or if there are no more mappings of this page,
932 * then try_to_free_swap is called to free its swap space.
934 int try_to_free_swap(struct page *page)
936 VM_BUG_ON_PAGE(!PageLocked(page), page);
938 if (!PageSwapCache(page))
939 return 0;
940 if (PageWriteback(page))
941 return 0;
942 if (page_swapcount(page))
943 return 0;
946 * Once hibernation has begun to create its image of memory,
947 * there's a danger that one of the calls to try_to_free_swap()
948 * - most probably a call from __try_to_reclaim_swap() while
949 * hibernation is allocating its own swap pages for the image,
950 * but conceivably even a call from memory reclaim - will free
951 * the swap from a page which has already been recorded in the
952 * image as a clean swapcache page, and then reuse its swap for
953 * another page of the image. On waking from hibernation, the
954 * original page might be freed under memory pressure, then
955 * later read back in from swap, now with the wrong data.
957 * Hibernation suspends storage while it is writing the image
958 * to disk so check that here.
960 if (pm_suspended_storage())
961 return 0;
963 delete_from_swap_cache(page);
964 SetPageDirty(page);
965 return 1;
969 * Free the swap entry like above, but also try to
970 * free the page cache entry if it is the last user.
972 int free_swap_and_cache(swp_entry_t entry)
974 struct swap_info_struct *p;
975 struct page *page = NULL;
977 if (non_swap_entry(entry))
978 return 1;
980 p = swap_info_get(entry);
981 if (p) {
982 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
983 page = find_get_page(swap_address_space(entry),
984 entry.val);
985 if (page && !trylock_page(page)) {
986 page_cache_release(page);
987 page = NULL;
990 spin_unlock(&p->lock);
992 if (page) {
994 * Not mapped elsewhere, or swap space full? Free it!
995 * Also recheck PageSwapCache now page is locked (above).
997 if (PageSwapCache(page) && !PageWriteback(page) &&
998 (!page_mapped(page) || vm_swap_full())) {
999 delete_from_swap_cache(page);
1000 SetPageDirty(page);
1002 unlock_page(page);
1003 page_cache_release(page);
1005 return p != NULL;
1008 #ifdef CONFIG_HIBERNATION
1010 * Find the swap type that corresponds to given device (if any).
1012 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1013 * from 0, in which the swap header is expected to be located.
1015 * This is needed for the suspend to disk (aka swsusp).
1017 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1019 struct block_device *bdev = NULL;
1020 int type;
1022 if (device)
1023 bdev = bdget(device);
1025 spin_lock(&swap_lock);
1026 for (type = 0; type < nr_swapfiles; type++) {
1027 struct swap_info_struct *sis = swap_info[type];
1029 if (!(sis->flags & SWP_WRITEOK))
1030 continue;
1032 if (!bdev) {
1033 if (bdev_p)
1034 *bdev_p = bdgrab(sis->bdev);
1036 spin_unlock(&swap_lock);
1037 return type;
1039 if (bdev == sis->bdev) {
1040 struct swap_extent *se = &sis->first_swap_extent;
1042 if (se->start_block == offset) {
1043 if (bdev_p)
1044 *bdev_p = bdgrab(sis->bdev);
1046 spin_unlock(&swap_lock);
1047 bdput(bdev);
1048 return type;
1052 spin_unlock(&swap_lock);
1053 if (bdev)
1054 bdput(bdev);
1056 return -ENODEV;
1060 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1061 * corresponding to given index in swap_info (swap type).
1063 sector_t swapdev_block(int type, pgoff_t offset)
1065 struct block_device *bdev;
1067 if ((unsigned int)type >= nr_swapfiles)
1068 return 0;
1069 if (!(swap_info[type]->flags & SWP_WRITEOK))
1070 return 0;
1071 return map_swap_entry(swp_entry(type, offset), &bdev);
1075 * Return either the total number of swap pages of given type, or the number
1076 * of free pages of that type (depending on @free)
1078 * This is needed for software suspend
1080 unsigned int count_swap_pages(int type, int free)
1082 unsigned int n = 0;
1084 spin_lock(&swap_lock);
1085 if ((unsigned int)type < nr_swapfiles) {
1086 struct swap_info_struct *sis = swap_info[type];
1088 spin_lock(&sis->lock);
1089 if (sis->flags & SWP_WRITEOK) {
1090 n = sis->pages;
1091 if (free)
1092 n -= sis->inuse_pages;
1094 spin_unlock(&sis->lock);
1096 spin_unlock(&swap_lock);
1097 return n;
1099 #endif /* CONFIG_HIBERNATION */
1101 static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
1103 #ifdef CONFIG_MEM_SOFT_DIRTY
1105 * When pte keeps soft dirty bit the pte generated
1106 * from swap entry does not has it, still it's same
1107 * pte from logical point of view.
1109 pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
1110 return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
1111 #else
1112 return pte_same(pte, swp_pte);
1113 #endif
1117 * No need to decide whether this PTE shares the swap entry with others,
1118 * just let do_wp_page work it out if a write is requested later - to
1119 * force COW, vm_page_prot omits write permission from any private vma.
1121 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1122 unsigned long addr, swp_entry_t entry, struct page *page)
1124 struct page *swapcache;
1125 struct mem_cgroup *memcg;
1126 spinlock_t *ptl;
1127 pte_t *pte;
1128 int ret = 1;
1130 swapcache = page;
1131 page = ksm_might_need_to_copy(page, vma, addr);
1132 if (unlikely(!page))
1133 return -ENOMEM;
1135 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
1136 GFP_KERNEL, &memcg)) {
1137 ret = -ENOMEM;
1138 goto out_nolock;
1141 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1142 if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
1143 mem_cgroup_cancel_charge_swapin(memcg);
1144 ret = 0;
1145 goto out;
1148 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1149 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1150 get_page(page);
1151 set_pte_at(vma->vm_mm, addr, pte,
1152 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1153 if (page == swapcache)
1154 page_add_anon_rmap(page, vma, addr);
1155 else /* ksm created a completely new copy */
1156 page_add_new_anon_rmap(page, vma, addr);
1157 mem_cgroup_commit_charge_swapin(page, memcg);
1158 swap_free(entry);
1160 * Move the page to the active list so it is not
1161 * immediately swapped out again after swapon.
1163 activate_page(page);
1164 out:
1165 pte_unmap_unlock(pte, ptl);
1166 out_nolock:
1167 if (page != swapcache) {
1168 unlock_page(page);
1169 put_page(page);
1171 return ret;
1174 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1175 unsigned long addr, unsigned long end,
1176 swp_entry_t entry, struct page *page)
1178 pte_t swp_pte = swp_entry_to_pte(entry);
1179 pte_t *pte;
1180 int ret = 0;
1183 * We don't actually need pte lock while scanning for swp_pte: since
1184 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1185 * page table while we're scanning; though it could get zapped, and on
1186 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1187 * of unmatched parts which look like swp_pte, so unuse_pte must
1188 * recheck under pte lock. Scanning without pte lock lets it be
1189 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1191 pte = pte_offset_map(pmd, addr);
1192 do {
1194 * swapoff spends a _lot_ of time in this loop!
1195 * Test inline before going to call unuse_pte.
1197 if (unlikely(maybe_same_pte(*pte, swp_pte))) {
1198 pte_unmap(pte);
1199 ret = unuse_pte(vma, pmd, addr, entry, page);
1200 if (ret)
1201 goto out;
1202 pte = pte_offset_map(pmd, addr);
1204 } while (pte++, addr += PAGE_SIZE, addr != end);
1205 pte_unmap(pte - 1);
1206 out:
1207 return ret;
1210 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1211 unsigned long addr, unsigned long end,
1212 swp_entry_t entry, struct page *page)
1214 pmd_t *pmd;
1215 unsigned long next;
1216 int ret;
1218 pmd = pmd_offset(pud, addr);
1219 do {
1220 next = pmd_addr_end(addr, end);
1221 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1222 continue;
1223 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1224 if (ret)
1225 return ret;
1226 } while (pmd++, addr = next, addr != end);
1227 return 0;
1230 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1231 unsigned long addr, unsigned long end,
1232 swp_entry_t entry, struct page *page)
1234 pud_t *pud;
1235 unsigned long next;
1236 int ret;
1238 pud = pud_offset(pgd, addr);
1239 do {
1240 next = pud_addr_end(addr, end);
1241 if (pud_none_or_clear_bad(pud))
1242 continue;
1243 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1244 if (ret)
1245 return ret;
1246 } while (pud++, addr = next, addr != end);
1247 return 0;
1250 static int unuse_vma(struct vm_area_struct *vma,
1251 swp_entry_t entry, struct page *page)
1253 pgd_t *pgd;
1254 unsigned long addr, end, next;
1255 int ret;
1257 if (page_anon_vma(page)) {
1258 addr = page_address_in_vma(page, vma);
1259 if (addr == -EFAULT)
1260 return 0;
1261 else
1262 end = addr + PAGE_SIZE;
1263 } else {
1264 addr = vma->vm_start;
1265 end = vma->vm_end;
1268 pgd = pgd_offset(vma->vm_mm, addr);
1269 do {
1270 next = pgd_addr_end(addr, end);
1271 if (pgd_none_or_clear_bad(pgd))
1272 continue;
1273 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1274 if (ret)
1275 return ret;
1276 } while (pgd++, addr = next, addr != end);
1277 return 0;
1280 static int unuse_mm(struct mm_struct *mm,
1281 swp_entry_t entry, struct page *page)
1283 struct vm_area_struct *vma;
1284 int ret = 0;
1286 if (!down_read_trylock(&mm->mmap_sem)) {
1288 * Activate page so shrink_inactive_list is unlikely to unmap
1289 * its ptes while lock is dropped, so swapoff can make progress.
1291 activate_page(page);
1292 unlock_page(page);
1293 down_read(&mm->mmap_sem);
1294 lock_page(page);
1296 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1297 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1298 break;
1300 up_read(&mm->mmap_sem);
1301 return (ret < 0)? ret: 0;
1305 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1306 * from current position to next entry still in use.
1307 * Recycle to start on reaching the end, returning 0 when empty.
1309 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1310 unsigned int prev, bool frontswap)
1312 unsigned int max = si->max;
1313 unsigned int i = prev;
1314 unsigned char count;
1317 * No need for swap_lock here: we're just looking
1318 * for whether an entry is in use, not modifying it; false
1319 * hits are okay, and sys_swapoff() has already prevented new
1320 * allocations from this area (while holding swap_lock).
1322 for (;;) {
1323 if (++i >= max) {
1324 if (!prev) {
1325 i = 0;
1326 break;
1329 * No entries in use at top of swap_map,
1330 * loop back to start and recheck there.
1332 max = prev + 1;
1333 prev = 0;
1334 i = 1;
1336 if (frontswap) {
1337 if (frontswap_test(si, i))
1338 break;
1339 else
1340 continue;
1342 count = ACCESS_ONCE(si->swap_map[i]);
1343 if (count && swap_count(count) != SWAP_MAP_BAD)
1344 break;
1346 return i;
1350 * We completely avoid races by reading each swap page in advance,
1351 * and then search for the process using it. All the necessary
1352 * page table adjustments can then be made atomically.
1354 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1355 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1357 int try_to_unuse(unsigned int type, bool frontswap,
1358 unsigned long pages_to_unuse)
1360 struct swap_info_struct *si = swap_info[type];
1361 struct mm_struct *start_mm;
1362 volatile unsigned char *swap_map; /* swap_map is accessed without
1363 * locking. Mark it as volatile
1364 * to prevent compiler doing
1365 * something odd.
1367 unsigned char swcount;
1368 struct page *page;
1369 swp_entry_t entry;
1370 unsigned int i = 0;
1371 int retval = 0;
1374 * When searching mms for an entry, a good strategy is to
1375 * start at the first mm we freed the previous entry from
1376 * (though actually we don't notice whether we or coincidence
1377 * freed the entry). Initialize this start_mm with a hold.
1379 * A simpler strategy would be to start at the last mm we
1380 * freed the previous entry from; but that would take less
1381 * advantage of mmlist ordering, which clusters forked mms
1382 * together, child after parent. If we race with dup_mmap(), we
1383 * prefer to resolve parent before child, lest we miss entries
1384 * duplicated after we scanned child: using last mm would invert
1385 * that.
1387 start_mm = &init_mm;
1388 atomic_inc(&init_mm.mm_users);
1391 * Keep on scanning until all entries have gone. Usually,
1392 * one pass through swap_map is enough, but not necessarily:
1393 * there are races when an instance of an entry might be missed.
1395 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1396 if (signal_pending(current)) {
1397 retval = -EINTR;
1398 break;
1402 * Get a page for the entry, using the existing swap
1403 * cache page if there is one. Otherwise, get a clean
1404 * page and read the swap into it.
1406 swap_map = &si->swap_map[i];
1407 entry = swp_entry(type, i);
1408 page = read_swap_cache_async(entry,
1409 GFP_HIGHUSER_MOVABLE, NULL, 0);
1410 if (!page) {
1412 * Either swap_duplicate() failed because entry
1413 * has been freed independently, and will not be
1414 * reused since sys_swapoff() already disabled
1415 * allocation from here, or alloc_page() failed.
1417 swcount = *swap_map;
1419 * We don't hold lock here, so the swap entry could be
1420 * SWAP_MAP_BAD (when the cluster is discarding).
1421 * Instead of fail out, We can just skip the swap
1422 * entry because swapoff will wait for discarding
1423 * finish anyway.
1425 if (!swcount || swcount == SWAP_MAP_BAD)
1426 continue;
1427 retval = -ENOMEM;
1428 break;
1432 * Don't hold on to start_mm if it looks like exiting.
1434 if (atomic_read(&start_mm->mm_users) == 1) {
1435 mmput(start_mm);
1436 start_mm = &init_mm;
1437 atomic_inc(&init_mm.mm_users);
1441 * Wait for and lock page. When do_swap_page races with
1442 * try_to_unuse, do_swap_page can handle the fault much
1443 * faster than try_to_unuse can locate the entry. This
1444 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1445 * defer to do_swap_page in such a case - in some tests,
1446 * do_swap_page and try_to_unuse repeatedly compete.
1448 wait_on_page_locked(page);
1449 wait_on_page_writeback(page);
1450 lock_page(page);
1451 wait_on_page_writeback(page);
1454 * Remove all references to entry.
1456 swcount = *swap_map;
1457 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1458 retval = shmem_unuse(entry, page);
1459 /* page has already been unlocked and released */
1460 if (retval < 0)
1461 break;
1462 continue;
1464 if (swap_count(swcount) && start_mm != &init_mm)
1465 retval = unuse_mm(start_mm, entry, page);
1467 if (swap_count(*swap_map)) {
1468 int set_start_mm = (*swap_map >= swcount);
1469 struct list_head *p = &start_mm->mmlist;
1470 struct mm_struct *new_start_mm = start_mm;
1471 struct mm_struct *prev_mm = start_mm;
1472 struct mm_struct *mm;
1474 atomic_inc(&new_start_mm->mm_users);
1475 atomic_inc(&prev_mm->mm_users);
1476 spin_lock(&mmlist_lock);
1477 while (swap_count(*swap_map) && !retval &&
1478 (p = p->next) != &start_mm->mmlist) {
1479 mm = list_entry(p, struct mm_struct, mmlist);
1480 if (!atomic_inc_not_zero(&mm->mm_users))
1481 continue;
1482 spin_unlock(&mmlist_lock);
1483 mmput(prev_mm);
1484 prev_mm = mm;
1486 cond_resched();
1488 swcount = *swap_map;
1489 if (!swap_count(swcount)) /* any usage ? */
1491 else if (mm == &init_mm)
1492 set_start_mm = 1;
1493 else
1494 retval = unuse_mm(mm, entry, page);
1496 if (set_start_mm && *swap_map < swcount) {
1497 mmput(new_start_mm);
1498 atomic_inc(&mm->mm_users);
1499 new_start_mm = mm;
1500 set_start_mm = 0;
1502 spin_lock(&mmlist_lock);
1504 spin_unlock(&mmlist_lock);
1505 mmput(prev_mm);
1506 mmput(start_mm);
1507 start_mm = new_start_mm;
1509 if (retval) {
1510 unlock_page(page);
1511 page_cache_release(page);
1512 break;
1516 * If a reference remains (rare), we would like to leave
1517 * the page in the swap cache; but try_to_unmap could
1518 * then re-duplicate the entry once we drop page lock,
1519 * so we might loop indefinitely; also, that page could
1520 * not be swapped out to other storage meanwhile. So:
1521 * delete from cache even if there's another reference,
1522 * after ensuring that the data has been saved to disk -
1523 * since if the reference remains (rarer), it will be
1524 * read from disk into another page. Splitting into two
1525 * pages would be incorrect if swap supported "shared
1526 * private" pages, but they are handled by tmpfs files.
1528 * Given how unuse_vma() targets one particular offset
1529 * in an anon_vma, once the anon_vma has been determined,
1530 * this splitting happens to be just what is needed to
1531 * handle where KSM pages have been swapped out: re-reading
1532 * is unnecessarily slow, but we can fix that later on.
1534 if (swap_count(*swap_map) &&
1535 PageDirty(page) && PageSwapCache(page)) {
1536 struct writeback_control wbc = {
1537 .sync_mode = WB_SYNC_NONE,
1540 swap_writepage(page, &wbc);
1541 lock_page(page);
1542 wait_on_page_writeback(page);
1546 * It is conceivable that a racing task removed this page from
1547 * swap cache just before we acquired the page lock at the top,
1548 * or while we dropped it in unuse_mm(). The page might even
1549 * be back in swap cache on another swap area: that we must not
1550 * delete, since it may not have been written out to swap yet.
1552 if (PageSwapCache(page) &&
1553 likely(page_private(page) == entry.val))
1554 delete_from_swap_cache(page);
1557 * So we could skip searching mms once swap count went
1558 * to 1, we did not mark any present ptes as dirty: must
1559 * mark page dirty so shrink_page_list will preserve it.
1561 SetPageDirty(page);
1562 unlock_page(page);
1563 page_cache_release(page);
1566 * Make sure that we aren't completely killing
1567 * interactive performance.
1569 cond_resched();
1570 if (frontswap && pages_to_unuse > 0) {
1571 if (!--pages_to_unuse)
1572 break;
1576 mmput(start_mm);
1577 return retval;
1581 * After a successful try_to_unuse, if no swap is now in use, we know
1582 * we can empty the mmlist. swap_lock must be held on entry and exit.
1583 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1584 * added to the mmlist just after page_duplicate - before would be racy.
1586 static void drain_mmlist(void)
1588 struct list_head *p, *next;
1589 unsigned int type;
1591 for (type = 0; type < nr_swapfiles; type++)
1592 if (swap_info[type]->inuse_pages)
1593 return;
1594 spin_lock(&mmlist_lock);
1595 list_for_each_safe(p, next, &init_mm.mmlist)
1596 list_del_init(p);
1597 spin_unlock(&mmlist_lock);
1601 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1602 * corresponds to page offset for the specified swap entry.
1603 * Note that the type of this function is sector_t, but it returns page offset
1604 * into the bdev, not sector offset.
1606 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1608 struct swap_info_struct *sis;
1609 struct swap_extent *start_se;
1610 struct swap_extent *se;
1611 pgoff_t offset;
1613 sis = swap_info[swp_type(entry)];
1614 *bdev = sis->bdev;
1616 offset = swp_offset(entry);
1617 start_se = sis->curr_swap_extent;
1618 se = start_se;
1620 for ( ; ; ) {
1621 struct list_head *lh;
1623 if (se->start_page <= offset &&
1624 offset < (se->start_page + se->nr_pages)) {
1625 return se->start_block + (offset - se->start_page);
1627 lh = se->list.next;
1628 se = list_entry(lh, struct swap_extent, list);
1629 sis->curr_swap_extent = se;
1630 BUG_ON(se == start_se); /* It *must* be present */
1635 * Returns the page offset into bdev for the specified page's swap entry.
1637 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1639 swp_entry_t entry;
1640 entry.val = page_private(page);
1641 return map_swap_entry(entry, bdev);
1645 * Free all of a swapdev's extent information
1647 static void destroy_swap_extents(struct swap_info_struct *sis)
1649 while (!list_empty(&sis->first_swap_extent.list)) {
1650 struct swap_extent *se;
1652 se = list_entry(sis->first_swap_extent.list.next,
1653 struct swap_extent, list);
1654 list_del(&se->list);
1655 kfree(se);
1658 if (sis->flags & SWP_FILE) {
1659 struct file *swap_file = sis->swap_file;
1660 struct address_space *mapping = swap_file->f_mapping;
1662 sis->flags &= ~SWP_FILE;
1663 mapping->a_ops->swap_deactivate(swap_file);
1668 * Add a block range (and the corresponding page range) into this swapdev's
1669 * extent list. The extent list is kept sorted in page order.
1671 * This function rather assumes that it is called in ascending page order.
1674 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1675 unsigned long nr_pages, sector_t start_block)
1677 struct swap_extent *se;
1678 struct swap_extent *new_se;
1679 struct list_head *lh;
1681 if (start_page == 0) {
1682 se = &sis->first_swap_extent;
1683 sis->curr_swap_extent = se;
1684 se->start_page = 0;
1685 se->nr_pages = nr_pages;
1686 se->start_block = start_block;
1687 return 1;
1688 } else {
1689 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1690 se = list_entry(lh, struct swap_extent, list);
1691 BUG_ON(se->start_page + se->nr_pages != start_page);
1692 if (se->start_block + se->nr_pages == start_block) {
1693 /* Merge it */
1694 se->nr_pages += nr_pages;
1695 return 0;
1700 * No merge. Insert a new extent, preserving ordering.
1702 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1703 if (new_se == NULL)
1704 return -ENOMEM;
1705 new_se->start_page = start_page;
1706 new_se->nr_pages = nr_pages;
1707 new_se->start_block = start_block;
1709 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1710 return 1;
1714 * A `swap extent' is a simple thing which maps a contiguous range of pages
1715 * onto a contiguous range of disk blocks. An ordered list of swap extents
1716 * is built at swapon time and is then used at swap_writepage/swap_readpage
1717 * time for locating where on disk a page belongs.
1719 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1720 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1721 * swap files identically.
1723 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1724 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1725 * swapfiles are handled *identically* after swapon time.
1727 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1728 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1729 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1730 * requirements, they are simply tossed out - we will never use those blocks
1731 * for swapping.
1733 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1734 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1735 * which will scribble on the fs.
1737 * The amount of disk space which a single swap extent represents varies.
1738 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1739 * extents in the list. To avoid much list walking, we cache the previous
1740 * search location in `curr_swap_extent', and start new searches from there.
1741 * This is extremely effective. The average number of iterations in
1742 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1744 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1746 struct file *swap_file = sis->swap_file;
1747 struct address_space *mapping = swap_file->f_mapping;
1748 struct inode *inode = mapping->host;
1749 int ret;
1751 if (S_ISBLK(inode->i_mode)) {
1752 ret = add_swap_extent(sis, 0, sis->max, 0);
1753 *span = sis->pages;
1754 return ret;
1757 if (mapping->a_ops->swap_activate) {
1758 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1759 if (!ret) {
1760 sis->flags |= SWP_FILE;
1761 ret = add_swap_extent(sis, 0, sis->max, 0);
1762 *span = sis->pages;
1764 return ret;
1767 return generic_swapfile_activate(sis, swap_file, span);
1770 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1771 unsigned char *swap_map,
1772 struct swap_cluster_info *cluster_info)
1774 if (prio >= 0)
1775 p->prio = prio;
1776 else
1777 p->prio = --least_priority;
1779 * the plist prio is negated because plist ordering is
1780 * low-to-high, while swap ordering is high-to-low
1782 p->list.prio = -p->prio;
1783 p->avail_list.prio = -p->prio;
1784 p->swap_map = swap_map;
1785 p->cluster_info = cluster_info;
1786 p->flags |= SWP_WRITEOK;
1787 atomic_long_add(p->pages, &nr_swap_pages);
1788 total_swap_pages += p->pages;
1790 assert_spin_locked(&swap_lock);
1792 * both lists are plists, and thus priority ordered.
1793 * swap_active_head needs to be priority ordered for swapoff(),
1794 * which on removal of any swap_info_struct with an auto-assigned
1795 * (i.e. negative) priority increments the auto-assigned priority
1796 * of any lower-priority swap_info_structs.
1797 * swap_avail_head needs to be priority ordered for get_swap_page(),
1798 * which allocates swap pages from the highest available priority
1799 * swap_info_struct.
1801 plist_add(&p->list, &swap_active_head);
1802 spin_lock(&swap_avail_lock);
1803 plist_add(&p->avail_list, &swap_avail_head);
1804 spin_unlock(&swap_avail_lock);
1807 static void enable_swap_info(struct swap_info_struct *p, int prio,
1808 unsigned char *swap_map,
1809 struct swap_cluster_info *cluster_info,
1810 unsigned long *frontswap_map)
1812 frontswap_init(p->type, frontswap_map);
1813 spin_lock(&swap_lock);
1814 spin_lock(&p->lock);
1815 _enable_swap_info(p, prio, swap_map, cluster_info);
1816 spin_unlock(&p->lock);
1817 spin_unlock(&swap_lock);
1820 static void reinsert_swap_info(struct swap_info_struct *p)
1822 spin_lock(&swap_lock);
1823 spin_lock(&p->lock);
1824 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1825 spin_unlock(&p->lock);
1826 spin_unlock(&swap_lock);
1829 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1831 struct swap_info_struct *p = NULL;
1832 unsigned char *swap_map;
1833 struct swap_cluster_info *cluster_info;
1834 unsigned long *frontswap_map;
1835 struct file *swap_file, *victim;
1836 struct address_space *mapping;
1837 struct inode *inode;
1838 struct filename *pathname;
1839 int err, found = 0;
1840 unsigned int old_block_size;
1842 if (!capable(CAP_SYS_ADMIN))
1843 return -EPERM;
1845 BUG_ON(!current->mm);
1847 pathname = getname(specialfile);
1848 if (IS_ERR(pathname))
1849 return PTR_ERR(pathname);
1851 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1852 err = PTR_ERR(victim);
1853 if (IS_ERR(victim))
1854 goto out;
1856 mapping = victim->f_mapping;
1857 spin_lock(&swap_lock);
1858 plist_for_each_entry(p, &swap_active_head, list) {
1859 if (p->flags & SWP_WRITEOK) {
1860 if (p->swap_file->f_mapping == mapping) {
1861 found = 1;
1862 break;
1866 if (!found) {
1867 err = -EINVAL;
1868 spin_unlock(&swap_lock);
1869 goto out_dput;
1871 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1872 vm_unacct_memory(p->pages);
1873 else {
1874 err = -ENOMEM;
1875 spin_unlock(&swap_lock);
1876 goto out_dput;
1878 spin_lock(&swap_avail_lock);
1879 plist_del(&p->avail_list, &swap_avail_head);
1880 spin_unlock(&swap_avail_lock);
1881 spin_lock(&p->lock);
1882 if (p->prio < 0) {
1883 struct swap_info_struct *si = p;
1885 plist_for_each_entry_continue(si, &swap_active_head, list) {
1886 si->prio++;
1887 si->list.prio--;
1888 si->avail_list.prio--;
1890 least_priority++;
1892 plist_del(&p->list, &swap_active_head);
1893 atomic_long_sub(p->pages, &nr_swap_pages);
1894 total_swap_pages -= p->pages;
1895 p->flags &= ~SWP_WRITEOK;
1896 spin_unlock(&p->lock);
1897 spin_unlock(&swap_lock);
1899 set_current_oom_origin();
1900 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
1901 clear_current_oom_origin();
1903 if (err) {
1904 /* re-insert swap space back into swap_list */
1905 reinsert_swap_info(p);
1906 goto out_dput;
1909 flush_work(&p->discard_work);
1911 destroy_swap_extents(p);
1912 if (p->flags & SWP_CONTINUED)
1913 free_swap_count_continuations(p);
1915 mutex_lock(&swapon_mutex);
1916 spin_lock(&swap_lock);
1917 spin_lock(&p->lock);
1918 drain_mmlist();
1920 /* wait for anyone still in scan_swap_map */
1921 p->highest_bit = 0; /* cuts scans short */
1922 while (p->flags >= SWP_SCANNING) {
1923 spin_unlock(&p->lock);
1924 spin_unlock(&swap_lock);
1925 schedule_timeout_uninterruptible(1);
1926 spin_lock(&swap_lock);
1927 spin_lock(&p->lock);
1930 swap_file = p->swap_file;
1931 old_block_size = p->old_block_size;
1932 p->swap_file = NULL;
1933 p->max = 0;
1934 swap_map = p->swap_map;
1935 p->swap_map = NULL;
1936 cluster_info = p->cluster_info;
1937 p->cluster_info = NULL;
1938 frontswap_map = frontswap_map_get(p);
1939 spin_unlock(&p->lock);
1940 spin_unlock(&swap_lock);
1941 frontswap_invalidate_area(p->type);
1942 frontswap_map_set(p, NULL);
1943 mutex_unlock(&swapon_mutex);
1944 free_percpu(p->percpu_cluster);
1945 p->percpu_cluster = NULL;
1946 vfree(swap_map);
1947 vfree(cluster_info);
1948 vfree(frontswap_map);
1949 /* Destroy swap account information */
1950 swap_cgroup_swapoff(p->type);
1952 inode = mapping->host;
1953 if (S_ISBLK(inode->i_mode)) {
1954 struct block_device *bdev = I_BDEV(inode);
1955 set_blocksize(bdev, old_block_size);
1956 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1957 } else {
1958 mutex_lock(&inode->i_mutex);
1959 inode->i_flags &= ~S_SWAPFILE;
1960 mutex_unlock(&inode->i_mutex);
1962 filp_close(swap_file, NULL);
1965 * Clear the SWP_USED flag after all resources are freed so that swapon
1966 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
1967 * not hold p->lock after we cleared its SWP_WRITEOK.
1969 spin_lock(&swap_lock);
1970 p->flags = 0;
1971 spin_unlock(&swap_lock);
1973 err = 0;
1974 atomic_inc(&proc_poll_event);
1975 wake_up_interruptible(&proc_poll_wait);
1977 out_dput:
1978 filp_close(victim, NULL);
1979 out:
1980 putname(pathname);
1981 return err;
1984 #ifdef CONFIG_PROC_FS
1985 static unsigned swaps_poll(struct file *file, poll_table *wait)
1987 struct seq_file *seq = file->private_data;
1989 poll_wait(file, &proc_poll_wait, wait);
1991 if (seq->poll_event != atomic_read(&proc_poll_event)) {
1992 seq->poll_event = atomic_read(&proc_poll_event);
1993 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1996 return POLLIN | POLLRDNORM;
1999 /* iterator */
2000 static void *swap_start(struct seq_file *swap, loff_t *pos)
2002 struct swap_info_struct *si;
2003 int type;
2004 loff_t l = *pos;
2006 mutex_lock(&swapon_mutex);
2008 if (!l)
2009 return SEQ_START_TOKEN;
2011 for (type = 0; type < nr_swapfiles; type++) {
2012 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2013 si = swap_info[type];
2014 if (!(si->flags & SWP_USED) || !si->swap_map)
2015 continue;
2016 if (!--l)
2017 return si;
2020 return NULL;
2023 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2025 struct swap_info_struct *si = v;
2026 int type;
2028 if (v == SEQ_START_TOKEN)
2029 type = 0;
2030 else
2031 type = si->type + 1;
2033 for (; type < nr_swapfiles; type++) {
2034 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2035 si = swap_info[type];
2036 if (!(si->flags & SWP_USED) || !si->swap_map)
2037 continue;
2038 ++*pos;
2039 return si;
2042 return NULL;
2045 static void swap_stop(struct seq_file *swap, void *v)
2047 mutex_unlock(&swapon_mutex);
2050 static int swap_show(struct seq_file *swap, void *v)
2052 struct swap_info_struct *si = v;
2053 struct file *file;
2054 int len;
2056 if (si == SEQ_START_TOKEN) {
2057 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2058 return 0;
2061 file = si->swap_file;
2062 len = seq_path(swap, &file->f_path, " \t\n\\");
2063 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2064 len < 40 ? 40 - len : 1, " ",
2065 S_ISBLK(file_inode(file)->i_mode) ?
2066 "partition" : "file\t",
2067 si->pages << (PAGE_SHIFT - 10),
2068 si->inuse_pages << (PAGE_SHIFT - 10),
2069 si->prio);
2070 return 0;
2073 static const struct seq_operations swaps_op = {
2074 .start = swap_start,
2075 .next = swap_next,
2076 .stop = swap_stop,
2077 .show = swap_show
2080 static int swaps_open(struct inode *inode, struct file *file)
2082 struct seq_file *seq;
2083 int ret;
2085 ret = seq_open(file, &swaps_op);
2086 if (ret)
2087 return ret;
2089 seq = file->private_data;
2090 seq->poll_event = atomic_read(&proc_poll_event);
2091 return 0;
2094 static const struct file_operations proc_swaps_operations = {
2095 .open = swaps_open,
2096 .read = seq_read,
2097 .llseek = seq_lseek,
2098 .release = seq_release,
2099 .poll = swaps_poll,
2102 static int __init procswaps_init(void)
2104 proc_create("swaps", 0, NULL, &proc_swaps_operations);
2105 return 0;
2107 __initcall(procswaps_init);
2108 #endif /* CONFIG_PROC_FS */
2110 #ifdef MAX_SWAPFILES_CHECK
2111 static int __init max_swapfiles_check(void)
2113 MAX_SWAPFILES_CHECK();
2114 return 0;
2116 late_initcall(max_swapfiles_check);
2117 #endif
2119 static struct swap_info_struct *alloc_swap_info(void)
2121 struct swap_info_struct *p;
2122 unsigned int type;
2124 p = kzalloc(sizeof(*p), GFP_KERNEL);
2125 if (!p)
2126 return ERR_PTR(-ENOMEM);
2128 spin_lock(&swap_lock);
2129 for (type = 0; type < nr_swapfiles; type++) {
2130 if (!(swap_info[type]->flags & SWP_USED))
2131 break;
2133 if (type >= MAX_SWAPFILES) {
2134 spin_unlock(&swap_lock);
2135 kfree(p);
2136 return ERR_PTR(-EPERM);
2138 if (type >= nr_swapfiles) {
2139 p->type = type;
2140 swap_info[type] = p;
2142 * Write swap_info[type] before nr_swapfiles, in case a
2143 * racing procfs swap_start() or swap_next() is reading them.
2144 * (We never shrink nr_swapfiles, we never free this entry.)
2146 smp_wmb();
2147 nr_swapfiles++;
2148 } else {
2149 kfree(p);
2150 p = swap_info[type];
2152 * Do not memset this entry: a racing procfs swap_next()
2153 * would be relying on p->type to remain valid.
2156 INIT_LIST_HEAD(&p->first_swap_extent.list);
2157 plist_node_init(&p->list, 0);
2158 plist_node_init(&p->avail_list, 0);
2159 p->flags = SWP_USED;
2160 spin_unlock(&swap_lock);
2161 spin_lock_init(&p->lock);
2163 return p;
2166 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2168 int error;
2170 if (S_ISBLK(inode->i_mode)) {
2171 p->bdev = bdgrab(I_BDEV(inode));
2172 error = blkdev_get(p->bdev,
2173 FMODE_READ | FMODE_WRITE | FMODE_EXCL,
2174 sys_swapon);
2175 if (error < 0) {
2176 p->bdev = NULL;
2177 return -EINVAL;
2179 p->old_block_size = block_size(p->bdev);
2180 error = set_blocksize(p->bdev, PAGE_SIZE);
2181 if (error < 0)
2182 return error;
2183 p->flags |= SWP_BLKDEV;
2184 } else if (S_ISREG(inode->i_mode)) {
2185 p->bdev = inode->i_sb->s_bdev;
2186 mutex_lock(&inode->i_mutex);
2187 if (IS_SWAPFILE(inode))
2188 return -EBUSY;
2189 } else
2190 return -EINVAL;
2192 return 0;
2195 static unsigned long read_swap_header(struct swap_info_struct *p,
2196 union swap_header *swap_header,
2197 struct inode *inode)
2199 int i;
2200 unsigned long maxpages;
2201 unsigned long swapfilepages;
2202 unsigned long last_page;
2204 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2205 pr_err("Unable to find swap-space signature\n");
2206 return 0;
2209 /* swap partition endianess hack... */
2210 if (swab32(swap_header->info.version) == 1) {
2211 swab32s(&swap_header->info.version);
2212 swab32s(&swap_header->info.last_page);
2213 swab32s(&swap_header->info.nr_badpages);
2214 for (i = 0; i < swap_header->info.nr_badpages; i++)
2215 swab32s(&swap_header->info.badpages[i]);
2217 /* Check the swap header's sub-version */
2218 if (swap_header->info.version != 1) {
2219 pr_warn("Unable to handle swap header version %d\n",
2220 swap_header->info.version);
2221 return 0;
2224 p->lowest_bit = 1;
2225 p->cluster_next = 1;
2226 p->cluster_nr = 0;
2229 * Find out how many pages are allowed for a single swap
2230 * device. There are two limiting factors: 1) the number
2231 * of bits for the swap offset in the swp_entry_t type, and
2232 * 2) the number of bits in the swap pte as defined by the
2233 * different architectures. In order to find the
2234 * largest possible bit mask, a swap entry with swap type 0
2235 * and swap offset ~0UL is created, encoded to a swap pte,
2236 * decoded to a swp_entry_t again, and finally the swap
2237 * offset is extracted. This will mask all the bits from
2238 * the initial ~0UL mask that can't be encoded in either
2239 * the swp_entry_t or the architecture definition of a
2240 * swap pte.
2242 maxpages = swp_offset(pte_to_swp_entry(
2243 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2244 last_page = swap_header->info.last_page;
2245 if (last_page > maxpages) {
2246 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2247 maxpages << (PAGE_SHIFT - 10),
2248 last_page << (PAGE_SHIFT - 10));
2250 if (maxpages > last_page) {
2251 maxpages = last_page + 1;
2252 /* p->max is an unsigned int: don't overflow it */
2253 if ((unsigned int)maxpages == 0)
2254 maxpages = UINT_MAX;
2256 p->highest_bit = maxpages - 1;
2258 if (!maxpages)
2259 return 0;
2260 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2261 if (swapfilepages && maxpages > swapfilepages) {
2262 pr_warn("Swap area shorter than signature indicates\n");
2263 return 0;
2265 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2266 return 0;
2267 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2268 return 0;
2270 return maxpages;
2273 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2274 union swap_header *swap_header,
2275 unsigned char *swap_map,
2276 struct swap_cluster_info *cluster_info,
2277 unsigned long maxpages,
2278 sector_t *span)
2280 int i;
2281 unsigned int nr_good_pages;
2282 int nr_extents;
2283 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2284 unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
2286 nr_good_pages = maxpages - 1; /* omit header page */
2288 cluster_set_null(&p->free_cluster_head);
2289 cluster_set_null(&p->free_cluster_tail);
2290 cluster_set_null(&p->discard_cluster_head);
2291 cluster_set_null(&p->discard_cluster_tail);
2293 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2294 unsigned int page_nr = swap_header->info.badpages[i];
2295 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2296 return -EINVAL;
2297 if (page_nr < maxpages) {
2298 swap_map[page_nr] = SWAP_MAP_BAD;
2299 nr_good_pages--;
2301 * Haven't marked the cluster free yet, no list
2302 * operation involved
2304 inc_cluster_info_page(p, cluster_info, page_nr);
2308 /* Haven't marked the cluster free yet, no list operation involved */
2309 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2310 inc_cluster_info_page(p, cluster_info, i);
2312 if (nr_good_pages) {
2313 swap_map[0] = SWAP_MAP_BAD;
2315 * Not mark the cluster free yet, no list
2316 * operation involved
2318 inc_cluster_info_page(p, cluster_info, 0);
2319 p->max = maxpages;
2320 p->pages = nr_good_pages;
2321 nr_extents = setup_swap_extents(p, span);
2322 if (nr_extents < 0)
2323 return nr_extents;
2324 nr_good_pages = p->pages;
2326 if (!nr_good_pages) {
2327 pr_warn("Empty swap-file\n");
2328 return -EINVAL;
2331 if (!cluster_info)
2332 return nr_extents;
2334 for (i = 0; i < nr_clusters; i++) {
2335 if (!cluster_count(&cluster_info[idx])) {
2336 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2337 if (cluster_is_null(&p->free_cluster_head)) {
2338 cluster_set_next_flag(&p->free_cluster_head,
2339 idx, 0);
2340 cluster_set_next_flag(&p->free_cluster_tail,
2341 idx, 0);
2342 } else {
2343 unsigned int tail;
2345 tail = cluster_next(&p->free_cluster_tail);
2346 cluster_set_next(&cluster_info[tail], idx);
2347 cluster_set_next_flag(&p->free_cluster_tail,
2348 idx, 0);
2351 idx++;
2352 if (idx == nr_clusters)
2353 idx = 0;
2355 return nr_extents;
2359 * Helper to sys_swapon determining if a given swap
2360 * backing device queue supports DISCARD operations.
2362 static bool swap_discardable(struct swap_info_struct *si)
2364 struct request_queue *q = bdev_get_queue(si->bdev);
2366 if (!q || !blk_queue_discard(q))
2367 return false;
2369 return true;
2372 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2374 struct swap_info_struct *p;
2375 struct filename *name;
2376 struct file *swap_file = NULL;
2377 struct address_space *mapping;
2378 int i;
2379 int prio;
2380 int error;
2381 union swap_header *swap_header;
2382 int nr_extents;
2383 sector_t span;
2384 unsigned long maxpages;
2385 unsigned char *swap_map = NULL;
2386 struct swap_cluster_info *cluster_info = NULL;
2387 unsigned long *frontswap_map = NULL;
2388 struct page *page = NULL;
2389 struct inode *inode = NULL;
2391 if (swap_flags & ~SWAP_FLAGS_VALID)
2392 return -EINVAL;
2394 if (!capable(CAP_SYS_ADMIN))
2395 return -EPERM;
2397 p = alloc_swap_info();
2398 if (IS_ERR(p))
2399 return PTR_ERR(p);
2401 INIT_WORK(&p->discard_work, swap_discard_work);
2403 name = getname(specialfile);
2404 if (IS_ERR(name)) {
2405 error = PTR_ERR(name);
2406 name = NULL;
2407 goto bad_swap;
2409 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2410 if (IS_ERR(swap_file)) {
2411 error = PTR_ERR(swap_file);
2412 swap_file = NULL;
2413 goto bad_swap;
2416 p->swap_file = swap_file;
2417 mapping = swap_file->f_mapping;
2419 for (i = 0; i < nr_swapfiles; i++) {
2420 struct swap_info_struct *q = swap_info[i];
2422 if (q == p || !q->swap_file)
2423 continue;
2424 if (mapping == q->swap_file->f_mapping) {
2425 error = -EBUSY;
2426 goto bad_swap;
2430 inode = mapping->host;
2431 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2432 error = claim_swapfile(p, inode);
2433 if (unlikely(error))
2434 goto bad_swap;
2437 * Read the swap header.
2439 if (!mapping->a_ops->readpage) {
2440 error = -EINVAL;
2441 goto bad_swap;
2443 page = read_mapping_page(mapping, 0, swap_file);
2444 if (IS_ERR(page)) {
2445 error = PTR_ERR(page);
2446 goto bad_swap;
2448 swap_header = kmap(page);
2450 maxpages = read_swap_header(p, swap_header, inode);
2451 if (unlikely(!maxpages)) {
2452 error = -EINVAL;
2453 goto bad_swap;
2456 /* OK, set up the swap map and apply the bad block list */
2457 swap_map = vzalloc(maxpages);
2458 if (!swap_map) {
2459 error = -ENOMEM;
2460 goto bad_swap;
2462 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2463 p->flags |= SWP_SOLIDSTATE;
2465 * select a random position to start with to help wear leveling
2466 * SSD
2468 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2470 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2471 SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2472 if (!cluster_info) {
2473 error = -ENOMEM;
2474 goto bad_swap;
2476 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2477 if (!p->percpu_cluster) {
2478 error = -ENOMEM;
2479 goto bad_swap;
2481 for_each_possible_cpu(i) {
2482 struct percpu_cluster *cluster;
2483 cluster = per_cpu_ptr(p->percpu_cluster, i);
2484 cluster_set_null(&cluster->index);
2488 error = swap_cgroup_swapon(p->type, maxpages);
2489 if (error)
2490 goto bad_swap;
2492 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2493 cluster_info, maxpages, &span);
2494 if (unlikely(nr_extents < 0)) {
2495 error = nr_extents;
2496 goto bad_swap;
2498 /* frontswap enabled? set up bit-per-page map for frontswap */
2499 if (frontswap_enabled)
2500 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2502 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2504 * When discard is enabled for swap with no particular
2505 * policy flagged, we set all swap discard flags here in
2506 * order to sustain backward compatibility with older
2507 * swapon(8) releases.
2509 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2510 SWP_PAGE_DISCARD);
2513 * By flagging sys_swapon, a sysadmin can tell us to
2514 * either do single-time area discards only, or to just
2515 * perform discards for released swap page-clusters.
2516 * Now it's time to adjust the p->flags accordingly.
2518 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2519 p->flags &= ~SWP_PAGE_DISCARD;
2520 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2521 p->flags &= ~SWP_AREA_DISCARD;
2523 /* issue a swapon-time discard if it's still required */
2524 if (p->flags & SWP_AREA_DISCARD) {
2525 int err = discard_swap(p);
2526 if (unlikely(err))
2527 pr_err("swapon: discard_swap(%p): %d\n",
2528 p, err);
2532 mutex_lock(&swapon_mutex);
2533 prio = -1;
2534 if (swap_flags & SWAP_FLAG_PREFER)
2535 prio =
2536 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2537 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2539 pr_info("Adding %uk swap on %s. "
2540 "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2541 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2542 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2543 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2544 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2545 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2546 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2547 (frontswap_map) ? "FS" : "");
2549 mutex_unlock(&swapon_mutex);
2550 atomic_inc(&proc_poll_event);
2551 wake_up_interruptible(&proc_poll_wait);
2553 if (S_ISREG(inode->i_mode))
2554 inode->i_flags |= S_SWAPFILE;
2555 error = 0;
2556 goto out;
2557 bad_swap:
2558 free_percpu(p->percpu_cluster);
2559 p->percpu_cluster = NULL;
2560 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2561 set_blocksize(p->bdev, p->old_block_size);
2562 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2564 destroy_swap_extents(p);
2565 swap_cgroup_swapoff(p->type);
2566 spin_lock(&swap_lock);
2567 p->swap_file = NULL;
2568 p->flags = 0;
2569 spin_unlock(&swap_lock);
2570 vfree(swap_map);
2571 vfree(cluster_info);
2572 if (swap_file) {
2573 if (inode && S_ISREG(inode->i_mode)) {
2574 mutex_unlock(&inode->i_mutex);
2575 inode = NULL;
2577 filp_close(swap_file, NULL);
2579 out:
2580 if (page && !IS_ERR(page)) {
2581 kunmap(page);
2582 page_cache_release(page);
2584 if (name)
2585 putname(name);
2586 if (inode && S_ISREG(inode->i_mode))
2587 mutex_unlock(&inode->i_mutex);
2588 return error;
2591 void si_swapinfo(struct sysinfo *val)
2593 unsigned int type;
2594 unsigned long nr_to_be_unused = 0;
2596 spin_lock(&swap_lock);
2597 for (type = 0; type < nr_swapfiles; type++) {
2598 struct swap_info_struct *si = swap_info[type];
2600 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2601 nr_to_be_unused += si->inuse_pages;
2603 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2604 val->totalswap = total_swap_pages + nr_to_be_unused;
2605 spin_unlock(&swap_lock);
2609 * Verify that a swap entry is valid and increment its swap map count.
2611 * Returns error code in following case.
2612 * - success -> 0
2613 * - swp_entry is invalid -> EINVAL
2614 * - swp_entry is migration entry -> EINVAL
2615 * - swap-cache reference is requested but there is already one. -> EEXIST
2616 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2617 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2619 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2621 struct swap_info_struct *p;
2622 unsigned long offset, type;
2623 unsigned char count;
2624 unsigned char has_cache;
2625 int err = -EINVAL;
2627 if (non_swap_entry(entry))
2628 goto out;
2630 type = swp_type(entry);
2631 if (type >= nr_swapfiles)
2632 goto bad_file;
2633 p = swap_info[type];
2634 offset = swp_offset(entry);
2636 spin_lock(&p->lock);
2637 if (unlikely(offset >= p->max))
2638 goto unlock_out;
2640 count = p->swap_map[offset];
2643 * swapin_readahead() doesn't check if a swap entry is valid, so the
2644 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2646 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2647 err = -ENOENT;
2648 goto unlock_out;
2651 has_cache = count & SWAP_HAS_CACHE;
2652 count &= ~SWAP_HAS_CACHE;
2653 err = 0;
2655 if (usage == SWAP_HAS_CACHE) {
2657 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2658 if (!has_cache && count)
2659 has_cache = SWAP_HAS_CACHE;
2660 else if (has_cache) /* someone else added cache */
2661 err = -EEXIST;
2662 else /* no users remaining */
2663 err = -ENOENT;
2665 } else if (count || has_cache) {
2667 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2668 count += usage;
2669 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2670 err = -EINVAL;
2671 else if (swap_count_continued(p, offset, count))
2672 count = COUNT_CONTINUED;
2673 else
2674 err = -ENOMEM;
2675 } else
2676 err = -ENOENT; /* unused swap entry */
2678 p->swap_map[offset] = count | has_cache;
2680 unlock_out:
2681 spin_unlock(&p->lock);
2682 out:
2683 return err;
2685 bad_file:
2686 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2687 goto out;
2691 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2692 * (in which case its reference count is never incremented).
2694 void swap_shmem_alloc(swp_entry_t entry)
2696 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2700 * Increase reference count of swap entry by 1.
2701 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2702 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2703 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2704 * might occur if a page table entry has got corrupted.
2706 int swap_duplicate(swp_entry_t entry)
2708 int err = 0;
2710 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2711 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2712 return err;
2716 * @entry: swap entry for which we allocate swap cache.
2718 * Called when allocating swap cache for existing swap entry,
2719 * This can return error codes. Returns 0 at success.
2720 * -EBUSY means there is a swap cache.
2721 * Note: return code is different from swap_duplicate().
2723 int swapcache_prepare(swp_entry_t entry)
2725 return __swap_duplicate(entry, SWAP_HAS_CACHE);
2728 struct swap_info_struct *page_swap_info(struct page *page)
2730 swp_entry_t swap = { .val = page_private(page) };
2731 BUG_ON(!PageSwapCache(page));
2732 return swap_info[swp_type(swap)];
2736 * out-of-line __page_file_ methods to avoid include hell.
2738 struct address_space *__page_file_mapping(struct page *page)
2740 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2741 return page_swap_info(page)->swap_file->f_mapping;
2743 EXPORT_SYMBOL_GPL(__page_file_mapping);
2745 pgoff_t __page_file_index(struct page *page)
2747 swp_entry_t swap = { .val = page_private(page) };
2748 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2749 return swp_offset(swap);
2751 EXPORT_SYMBOL_GPL(__page_file_index);
2754 * add_swap_count_continuation - called when a swap count is duplicated
2755 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2756 * page of the original vmalloc'ed swap_map, to hold the continuation count
2757 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2758 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2760 * These continuation pages are seldom referenced: the common paths all work
2761 * on the original swap_map, only referring to a continuation page when the
2762 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2764 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2765 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2766 * can be called after dropping locks.
2768 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2770 struct swap_info_struct *si;
2771 struct page *head;
2772 struct page *page;
2773 struct page *list_page;
2774 pgoff_t offset;
2775 unsigned char count;
2778 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2779 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2781 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2783 si = swap_info_get(entry);
2784 if (!si) {
2786 * An acceptable race has occurred since the failing
2787 * __swap_duplicate(): the swap entry has been freed,
2788 * perhaps even the whole swap_map cleared for swapoff.
2790 goto outer;
2793 offset = swp_offset(entry);
2794 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2796 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2798 * The higher the swap count, the more likely it is that tasks
2799 * will race to add swap count continuation: we need to avoid
2800 * over-provisioning.
2802 goto out;
2805 if (!page) {
2806 spin_unlock(&si->lock);
2807 return -ENOMEM;
2811 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2812 * no architecture is using highmem pages for kernel page tables: so it
2813 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2815 head = vmalloc_to_page(si->swap_map + offset);
2816 offset &= ~PAGE_MASK;
2819 * Page allocation does not initialize the page's lru field,
2820 * but it does always reset its private field.
2822 if (!page_private(head)) {
2823 BUG_ON(count & COUNT_CONTINUED);
2824 INIT_LIST_HEAD(&head->lru);
2825 set_page_private(head, SWP_CONTINUED);
2826 si->flags |= SWP_CONTINUED;
2829 list_for_each_entry(list_page, &head->lru, lru) {
2830 unsigned char *map;
2833 * If the previous map said no continuation, but we've found
2834 * a continuation page, free our allocation and use this one.
2836 if (!(count & COUNT_CONTINUED))
2837 goto out;
2839 map = kmap_atomic(list_page) + offset;
2840 count = *map;
2841 kunmap_atomic(map);
2844 * If this continuation count now has some space in it,
2845 * free our allocation and use this one.
2847 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2848 goto out;
2851 list_add_tail(&page->lru, &head->lru);
2852 page = NULL; /* now it's attached, don't free it */
2853 out:
2854 spin_unlock(&si->lock);
2855 outer:
2856 if (page)
2857 __free_page(page);
2858 return 0;
2862 * swap_count_continued - when the original swap_map count is incremented
2863 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2864 * into, carry if so, or else fail until a new continuation page is allocated;
2865 * when the original swap_map count is decremented from 0 with continuation,
2866 * borrow from the continuation and report whether it still holds more.
2867 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2869 static bool swap_count_continued(struct swap_info_struct *si,
2870 pgoff_t offset, unsigned char count)
2872 struct page *head;
2873 struct page *page;
2874 unsigned char *map;
2876 head = vmalloc_to_page(si->swap_map + offset);
2877 if (page_private(head) != SWP_CONTINUED) {
2878 BUG_ON(count & COUNT_CONTINUED);
2879 return false; /* need to add count continuation */
2882 offset &= ~PAGE_MASK;
2883 page = list_entry(head->lru.next, struct page, lru);
2884 map = kmap_atomic(page) + offset;
2886 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2887 goto init_map; /* jump over SWAP_CONT_MAX checks */
2889 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2891 * Think of how you add 1 to 999
2893 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2894 kunmap_atomic(map);
2895 page = list_entry(page->lru.next, struct page, lru);
2896 BUG_ON(page == head);
2897 map = kmap_atomic(page) + offset;
2899 if (*map == SWAP_CONT_MAX) {
2900 kunmap_atomic(map);
2901 page = list_entry(page->lru.next, struct page, lru);
2902 if (page == head)
2903 return false; /* add count continuation */
2904 map = kmap_atomic(page) + offset;
2905 init_map: *map = 0; /* we didn't zero the page */
2907 *map += 1;
2908 kunmap_atomic(map);
2909 page = list_entry(page->lru.prev, struct page, lru);
2910 while (page != head) {
2911 map = kmap_atomic(page) + offset;
2912 *map = COUNT_CONTINUED;
2913 kunmap_atomic(map);
2914 page = list_entry(page->lru.prev, struct page, lru);
2916 return true; /* incremented */
2918 } else { /* decrementing */
2920 * Think of how you subtract 1 from 1000
2922 BUG_ON(count != COUNT_CONTINUED);
2923 while (*map == COUNT_CONTINUED) {
2924 kunmap_atomic(map);
2925 page = list_entry(page->lru.next, struct page, lru);
2926 BUG_ON(page == head);
2927 map = kmap_atomic(page) + offset;
2929 BUG_ON(*map == 0);
2930 *map -= 1;
2931 if (*map == 0)
2932 count = 0;
2933 kunmap_atomic(map);
2934 page = list_entry(page->lru.prev, struct page, lru);
2935 while (page != head) {
2936 map = kmap_atomic(page) + offset;
2937 *map = SWAP_CONT_MAX | count;
2938 count = COUNT_CONTINUED;
2939 kunmap_atomic(map);
2940 page = list_entry(page->lru.prev, struct page, lru);
2942 return count == COUNT_CONTINUED;
2947 * free_swap_count_continuations - swapoff free all the continuation pages
2948 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2950 static void free_swap_count_continuations(struct swap_info_struct *si)
2952 pgoff_t offset;
2954 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2955 struct page *head;
2956 head = vmalloc_to_page(si->swap_map + offset);
2957 if (page_private(head)) {
2958 struct list_head *this, *next;
2959 list_for_each_safe(this, next, &head->lru) {
2960 struct page *page;
2961 page = list_entry(this, struct page, lru);
2962 list_del(this);
2963 __free_page(page);