2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
41 /* We choose 4096 entries - same as per-zone page wait tables */
42 #define DAX_WAIT_TABLE_BITS 12
43 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
45 /* The 'colour' (ie low bits) within a PMD of a page offset. */
46 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
47 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
49 static wait_queue_head_t wait_table
[DAX_WAIT_TABLE_ENTRIES
];
51 static int __init
init_dax_wait_table(void)
55 for (i
= 0; i
< DAX_WAIT_TABLE_ENTRIES
; i
++)
56 init_waitqueue_head(wait_table
+ i
);
59 fs_initcall(init_dax_wait_table
);
62 * We use lowest available bit in exceptional entry for locking, one bit for
63 * the entry size (PMD) and two more to tell us if the entry is a zero page or
64 * an empty entry that is just used for locking. In total four special bits.
66 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
67 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
70 #define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
71 #define RADIX_DAX_ENTRY_LOCK (1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
72 #define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
73 #define RADIX_DAX_ZERO_PAGE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
74 #define RADIX_DAX_EMPTY (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
76 static unsigned long dax_radix_pfn(void *entry
)
78 return (unsigned long)entry
>> RADIX_DAX_SHIFT
;
81 static void *dax_radix_locked_entry(unsigned long pfn
, unsigned long flags
)
83 return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY
| flags
|
84 (pfn
<< RADIX_DAX_SHIFT
) | RADIX_DAX_ENTRY_LOCK
);
87 static unsigned int dax_radix_order(void *entry
)
89 if ((unsigned long)entry
& RADIX_DAX_PMD
)
90 return PMD_SHIFT
- PAGE_SHIFT
;
94 static int dax_is_pmd_entry(void *entry
)
96 return (unsigned long)entry
& RADIX_DAX_PMD
;
99 static int dax_is_pte_entry(void *entry
)
101 return !((unsigned long)entry
& RADIX_DAX_PMD
);
104 static int dax_is_zero_entry(void *entry
)
106 return (unsigned long)entry
& RADIX_DAX_ZERO_PAGE
;
109 static int dax_is_empty_entry(void *entry
)
111 return (unsigned long)entry
& RADIX_DAX_EMPTY
;
115 * DAX radix tree locking
117 struct exceptional_entry_key
{
118 struct address_space
*mapping
;
122 struct wait_exceptional_entry_queue
{
123 wait_queue_entry_t wait
;
124 struct exceptional_entry_key key
;
127 static wait_queue_head_t
*dax_entry_waitqueue(struct address_space
*mapping
,
128 pgoff_t index
, void *entry
, struct exceptional_entry_key
*key
)
133 * If 'entry' is a PMD, align the 'index' that we use for the wait
134 * queue to the start of that PMD. This ensures that all offsets in
135 * the range covered by the PMD map to the same bit lock.
137 if (dax_is_pmd_entry(entry
))
138 index
&= ~PG_PMD_COLOUR
;
140 key
->mapping
= mapping
;
141 key
->entry_start
= index
;
143 hash
= hash_long((unsigned long)mapping
^ index
, DAX_WAIT_TABLE_BITS
);
144 return wait_table
+ hash
;
147 static int wake_exceptional_entry_func(wait_queue_entry_t
*wait
, unsigned int mode
,
148 int sync
, void *keyp
)
150 struct exceptional_entry_key
*key
= keyp
;
151 struct wait_exceptional_entry_queue
*ewait
=
152 container_of(wait
, struct wait_exceptional_entry_queue
, wait
);
154 if (key
->mapping
!= ewait
->key
.mapping
||
155 key
->entry_start
!= ewait
->key
.entry_start
)
157 return autoremove_wake_function(wait
, mode
, sync
, NULL
);
161 * @entry may no longer be the entry at the index in the mapping.
162 * The important information it's conveying is whether the entry at
163 * this index used to be a PMD entry.
165 static void dax_wake_mapping_entry_waiter(struct address_space
*mapping
,
166 pgoff_t index
, void *entry
, bool wake_all
)
168 struct exceptional_entry_key key
;
169 wait_queue_head_t
*wq
;
171 wq
= dax_entry_waitqueue(mapping
, index
, entry
, &key
);
174 * Checking for locked entry and prepare_to_wait_exclusive() happens
175 * under the i_pages lock, ditto for entry handling in our callers.
176 * So at this point all tasks that could have seen our entry locked
177 * must be in the waitqueue and the following check will see them.
179 if (waitqueue_active(wq
))
180 __wake_up(wq
, TASK_NORMAL
, wake_all
? 0 : 1, &key
);
184 * Check whether the given slot is locked. Must be called with the i_pages
187 static inline int slot_locked(struct address_space
*mapping
, void **slot
)
189 unsigned long entry
= (unsigned long)
190 radix_tree_deref_slot_protected(slot
, &mapping
->i_pages
.xa_lock
);
191 return entry
& RADIX_DAX_ENTRY_LOCK
;
195 * Mark the given slot as locked. Must be called with the i_pages lock held.
197 static inline void *lock_slot(struct address_space
*mapping
, void **slot
)
199 unsigned long entry
= (unsigned long)
200 radix_tree_deref_slot_protected(slot
, &mapping
->i_pages
.xa_lock
);
202 entry
|= RADIX_DAX_ENTRY_LOCK
;
203 radix_tree_replace_slot(&mapping
->i_pages
, slot
, (void *)entry
);
204 return (void *)entry
;
208 * Mark the given slot as unlocked. Must be called with the i_pages lock held.
210 static inline void *unlock_slot(struct address_space
*mapping
, void **slot
)
212 unsigned long entry
= (unsigned long)
213 radix_tree_deref_slot_protected(slot
, &mapping
->i_pages
.xa_lock
);
215 entry
&= ~(unsigned long)RADIX_DAX_ENTRY_LOCK
;
216 radix_tree_replace_slot(&mapping
->i_pages
, slot
, (void *)entry
);
217 return (void *)entry
;
221 * Lookup entry in radix tree, wait for it to become unlocked if it is
222 * exceptional entry and return it. The caller must call
223 * put_unlocked_mapping_entry() when he decided not to lock the entry or
224 * put_locked_mapping_entry() when he locked the entry and now wants to
227 * Must be called with the i_pages lock held.
229 static void *get_unlocked_mapping_entry(struct address_space
*mapping
,
230 pgoff_t index
, void ***slotp
)
233 struct wait_exceptional_entry_queue ewait
;
234 wait_queue_head_t
*wq
;
236 init_wait(&ewait
.wait
);
237 ewait
.wait
.func
= wake_exceptional_entry_func
;
240 entry
= __radix_tree_lookup(&mapping
->i_pages
, index
, NULL
,
243 WARN_ON_ONCE(!radix_tree_exceptional_entry(entry
)) ||
244 !slot_locked(mapping
, slot
)) {
250 wq
= dax_entry_waitqueue(mapping
, index
, entry
, &ewait
.key
);
251 prepare_to_wait_exclusive(wq
, &ewait
.wait
,
252 TASK_UNINTERRUPTIBLE
);
253 xa_unlock_irq(&mapping
->i_pages
);
255 finish_wait(wq
, &ewait
.wait
);
256 xa_lock_irq(&mapping
->i_pages
);
260 static void dax_unlock_mapping_entry(struct address_space
*mapping
,
265 xa_lock_irq(&mapping
->i_pages
);
266 entry
= __radix_tree_lookup(&mapping
->i_pages
, index
, NULL
, &slot
);
267 if (WARN_ON_ONCE(!entry
|| !radix_tree_exceptional_entry(entry
) ||
268 !slot_locked(mapping
, slot
))) {
269 xa_unlock_irq(&mapping
->i_pages
);
272 unlock_slot(mapping
, slot
);
273 xa_unlock_irq(&mapping
->i_pages
);
274 dax_wake_mapping_entry_waiter(mapping
, index
, entry
, false);
277 static void put_locked_mapping_entry(struct address_space
*mapping
,
280 dax_unlock_mapping_entry(mapping
, index
);
284 * Called when we are done with radix tree entry we looked up via
285 * get_unlocked_mapping_entry() and which we didn't lock in the end.
287 static void put_unlocked_mapping_entry(struct address_space
*mapping
,
288 pgoff_t index
, void *entry
)
293 /* We have to wake up next waiter for the radix tree entry lock */
294 dax_wake_mapping_entry_waiter(mapping
, index
, entry
, false);
297 static unsigned long dax_entry_size(void *entry
)
299 if (dax_is_zero_entry(entry
))
301 else if (dax_is_empty_entry(entry
))
303 else if (dax_is_pmd_entry(entry
))
309 static unsigned long dax_radix_end_pfn(void *entry
)
311 return dax_radix_pfn(entry
) + dax_entry_size(entry
) / PAGE_SIZE
;
315 * Iterate through all mapped pfns represented by an entry, i.e. skip
316 * 'empty' and 'zero' entries.
318 #define for_each_mapped_pfn(entry, pfn) \
319 for (pfn = dax_radix_pfn(entry); \
320 pfn < dax_radix_end_pfn(entry); pfn++)
322 static void dax_associate_entry(void *entry
, struct address_space
*mapping
)
326 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED
))
329 for_each_mapped_pfn(entry
, pfn
) {
330 struct page
*page
= pfn_to_page(pfn
);
332 WARN_ON_ONCE(page
->mapping
);
333 page
->mapping
= mapping
;
337 static void dax_disassociate_entry(void *entry
, struct address_space
*mapping
,
342 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED
))
345 for_each_mapped_pfn(entry
, pfn
) {
346 struct page
*page
= pfn_to_page(pfn
);
348 WARN_ON_ONCE(trunc
&& page_ref_count(page
) > 1);
349 WARN_ON_ONCE(page
->mapping
&& page
->mapping
!= mapping
);
350 page
->mapping
= NULL
;
355 * Find radix tree entry at given index. If it points to an exceptional entry,
356 * return it with the radix tree entry locked. If the radix tree doesn't
357 * contain given index, create an empty exceptional entry for the index and
358 * return with it locked.
360 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
361 * either return that locked entry or will return an error. This error will
362 * happen if there are any 4k entries within the 2MiB range that we are
365 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
366 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB
367 * insertion will fail if it finds any 4k entries already in the tree, and a
368 * 4k insertion will cause an existing 2MiB entry to be unmapped and
369 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as
370 * well as 2MiB empty entries.
372 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
373 * real storage backing them. We will leave these real 2MiB DAX entries in
374 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
376 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
377 * persistent memory the benefit is doubtful. We can add that later if we can
380 static void *grab_mapping_entry(struct address_space
*mapping
, pgoff_t index
,
381 unsigned long size_flag
)
383 bool pmd_downgrade
= false; /* splitting 2MiB entry into 4k entries? */
387 xa_lock_irq(&mapping
->i_pages
);
388 entry
= get_unlocked_mapping_entry(mapping
, index
, &slot
);
390 if (WARN_ON_ONCE(entry
&& !radix_tree_exceptional_entry(entry
))) {
391 entry
= ERR_PTR(-EIO
);
396 if (size_flag
& RADIX_DAX_PMD
) {
397 if (dax_is_pte_entry(entry
)) {
398 put_unlocked_mapping_entry(mapping
, index
,
400 entry
= ERR_PTR(-EEXIST
);
403 } else { /* trying to grab a PTE entry */
404 if (dax_is_pmd_entry(entry
) &&
405 (dax_is_zero_entry(entry
) ||
406 dax_is_empty_entry(entry
))) {
407 pmd_downgrade
= true;
412 /* No entry for given index? Make sure radix tree is big enough. */
413 if (!entry
|| pmd_downgrade
) {
418 * Make sure 'entry' remains valid while we drop
421 entry
= lock_slot(mapping
, slot
);
424 xa_unlock_irq(&mapping
->i_pages
);
426 * Besides huge zero pages the only other thing that gets
427 * downgraded are empty entries which don't need to be
430 if (pmd_downgrade
&& dax_is_zero_entry(entry
))
431 unmap_mapping_pages(mapping
, index
& ~PG_PMD_COLOUR
,
434 err
= radix_tree_preload(
435 mapping_gfp_mask(mapping
) & ~__GFP_HIGHMEM
);
438 put_locked_mapping_entry(mapping
, index
);
441 xa_lock_irq(&mapping
->i_pages
);
445 * We needed to drop the i_pages lock while calling
446 * radix_tree_preload() and we didn't have an entry to
447 * lock. See if another thread inserted an entry at
448 * our index during this time.
450 entry
= __radix_tree_lookup(&mapping
->i_pages
, index
,
453 radix_tree_preload_end();
454 xa_unlock_irq(&mapping
->i_pages
);
460 dax_disassociate_entry(entry
, mapping
, false);
461 radix_tree_delete(&mapping
->i_pages
, index
);
462 mapping
->nrexceptional
--;
463 dax_wake_mapping_entry_waiter(mapping
, index
, entry
,
467 entry
= dax_radix_locked_entry(0, size_flag
| RADIX_DAX_EMPTY
);
469 err
= __radix_tree_insert(&mapping
->i_pages
, index
,
470 dax_radix_order(entry
), entry
);
471 radix_tree_preload_end();
473 xa_unlock_irq(&mapping
->i_pages
);
475 * Our insertion of a DAX entry failed, most likely
476 * because we were inserting a PMD entry and it
477 * collided with a PTE sized entry at a different
478 * index in the PMD range. We haven't inserted
479 * anything into the radix tree and have no waiters to
484 /* Good, we have inserted empty locked entry into the tree. */
485 mapping
->nrexceptional
++;
486 xa_unlock_irq(&mapping
->i_pages
);
489 entry
= lock_slot(mapping
, slot
);
491 xa_unlock_irq(&mapping
->i_pages
);
495 static int __dax_invalidate_mapping_entry(struct address_space
*mapping
,
496 pgoff_t index
, bool trunc
)
500 struct radix_tree_root
*pages
= &mapping
->i_pages
;
503 entry
= get_unlocked_mapping_entry(mapping
, index
, NULL
);
504 if (!entry
|| WARN_ON_ONCE(!radix_tree_exceptional_entry(entry
)))
507 (radix_tree_tag_get(pages
, index
, PAGECACHE_TAG_DIRTY
) ||
508 radix_tree_tag_get(pages
, index
, PAGECACHE_TAG_TOWRITE
)))
510 dax_disassociate_entry(entry
, mapping
, trunc
);
511 radix_tree_delete(pages
, index
);
512 mapping
->nrexceptional
--;
515 put_unlocked_mapping_entry(mapping
, index
, entry
);
516 xa_unlock_irq(pages
);
520 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
521 * entry to get unlocked before deleting it.
523 int dax_delete_mapping_entry(struct address_space
*mapping
, pgoff_t index
)
525 int ret
= __dax_invalidate_mapping_entry(mapping
, index
, true);
528 * This gets called from truncate / punch_hole path. As such, the caller
529 * must hold locks protecting against concurrent modifications of the
530 * radix tree (usually fs-private i_mmap_sem for writing). Since the
531 * caller has seen exceptional entry for this index, we better find it
532 * at that index as well...
539 * Invalidate exceptional DAX entry if it is clean.
541 int dax_invalidate_mapping_entry_sync(struct address_space
*mapping
,
544 return __dax_invalidate_mapping_entry(mapping
, index
, false);
547 static int copy_user_dax(struct block_device
*bdev
, struct dax_device
*dax_dev
,
548 sector_t sector
, size_t size
, struct page
*to
,
557 rc
= bdev_dax_pgoff(bdev
, sector
, size
, &pgoff
);
561 id
= dax_read_lock();
562 rc
= dax_direct_access(dax_dev
, pgoff
, PHYS_PFN(size
), &kaddr
, &pfn
);
567 vto
= kmap_atomic(to
);
568 copy_user_page(vto
, (void __force
*)kaddr
, vaddr
, to
);
575 * By this point grab_mapping_entry() has ensured that we have a locked entry
576 * of the appropriate size so we don't have to worry about downgrading PMDs to
577 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
578 * already in the tree, we will skip the insertion and just dirty the PMD as
581 static void *dax_insert_mapping_entry(struct address_space
*mapping
,
582 struct vm_fault
*vmf
,
583 void *entry
, pfn_t pfn_t
,
584 unsigned long flags
, bool dirty
)
586 struct radix_tree_root
*pages
= &mapping
->i_pages
;
587 unsigned long pfn
= pfn_t_to_pfn(pfn_t
);
588 pgoff_t index
= vmf
->pgoff
;
592 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
594 if (dax_is_zero_entry(entry
) && !(flags
& RADIX_DAX_ZERO_PAGE
)) {
595 /* we are replacing a zero page with block mapping */
596 if (dax_is_pmd_entry(entry
))
597 unmap_mapping_pages(mapping
, index
& ~PG_PMD_COLOUR
,
600 unmap_mapping_pages(mapping
, vmf
->pgoff
, 1, false);
604 new_entry
= dax_radix_locked_entry(pfn
, flags
);
605 if (dax_entry_size(entry
) != dax_entry_size(new_entry
)) {
606 dax_disassociate_entry(entry
, mapping
, false);
607 dax_associate_entry(new_entry
, mapping
);
610 if (dax_is_zero_entry(entry
) || dax_is_empty_entry(entry
)) {
612 * Only swap our new entry into the radix tree if the current
613 * entry is a zero page or an empty entry. If a normal PTE or
614 * PMD entry is already in the tree, we leave it alone. This
615 * means that if we are trying to insert a PTE and the
616 * existing entry is a PMD, we will just leave the PMD in the
617 * tree and dirty it if necessary.
619 struct radix_tree_node
*node
;
623 ret
= __radix_tree_lookup(pages
, index
, &node
, &slot
);
624 WARN_ON_ONCE(ret
!= entry
);
625 __radix_tree_replace(pages
, node
, slot
,
631 radix_tree_tag_set(pages
, index
, PAGECACHE_TAG_DIRTY
);
633 xa_unlock_irq(pages
);
637 static inline unsigned long
638 pgoff_address(pgoff_t pgoff
, struct vm_area_struct
*vma
)
640 unsigned long address
;
642 address
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
643 VM_BUG_ON_VMA(address
< vma
->vm_start
|| address
>= vma
->vm_end
, vma
);
647 /* Walk all mappings of a given index of a file and writeprotect them */
648 static void dax_mapping_entry_mkclean(struct address_space
*mapping
,
649 pgoff_t index
, unsigned long pfn
)
651 struct vm_area_struct
*vma
;
652 pte_t pte
, *ptep
= NULL
;
656 i_mmap_lock_read(mapping
);
657 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, index
, index
) {
658 unsigned long address
, start
, end
;
662 if (!(vma
->vm_flags
& VM_SHARED
))
665 address
= pgoff_address(index
, vma
);
668 * Note because we provide start/end to follow_pte_pmd it will
669 * call mmu_notifier_invalidate_range_start() on our behalf
670 * before taking any lock.
672 if (follow_pte_pmd(vma
->vm_mm
, address
, &start
, &end
, &ptep
, &pmdp
, &ptl
))
676 * No need to call mmu_notifier_invalidate_range() as we are
677 * downgrading page table protection not changing it to point
680 * See Documentation/vm/mmu_notifier.txt
683 #ifdef CONFIG_FS_DAX_PMD
686 if (pfn
!= pmd_pfn(*pmdp
))
688 if (!pmd_dirty(*pmdp
) && !pmd_write(*pmdp
))
691 flush_cache_page(vma
, address
, pfn
);
692 pmd
= pmdp_huge_clear_flush(vma
, address
, pmdp
);
693 pmd
= pmd_wrprotect(pmd
);
694 pmd
= pmd_mkclean(pmd
);
695 set_pmd_at(vma
->vm_mm
, address
, pmdp
, pmd
);
700 if (pfn
!= pte_pfn(*ptep
))
702 if (!pte_dirty(*ptep
) && !pte_write(*ptep
))
705 flush_cache_page(vma
, address
, pfn
);
706 pte
= ptep_clear_flush(vma
, address
, ptep
);
707 pte
= pte_wrprotect(pte
);
708 pte
= pte_mkclean(pte
);
709 set_pte_at(vma
->vm_mm
, address
, ptep
, pte
);
711 pte_unmap_unlock(ptep
, ptl
);
714 mmu_notifier_invalidate_range_end(vma
->vm_mm
, start
, end
);
716 i_mmap_unlock_read(mapping
);
719 static int dax_writeback_one(struct dax_device
*dax_dev
,
720 struct address_space
*mapping
, pgoff_t index
, void *entry
)
722 struct radix_tree_root
*pages
= &mapping
->i_pages
;
723 void *entry2
, **slot
;
729 * A page got tagged dirty in DAX mapping? Something is seriously
732 if (WARN_ON(!radix_tree_exceptional_entry(entry
)))
736 entry2
= get_unlocked_mapping_entry(mapping
, index
, &slot
);
737 /* Entry got punched out / reallocated? */
738 if (!entry2
|| WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2
)))
741 * Entry got reallocated elsewhere? No need to writeback. We have to
742 * compare pfns as we must not bail out due to difference in lockbit
745 if (dax_radix_pfn(entry2
) != dax_radix_pfn(entry
))
747 if (WARN_ON_ONCE(dax_is_empty_entry(entry
) ||
748 dax_is_zero_entry(entry
))) {
753 /* Another fsync thread may have already written back this entry */
754 if (!radix_tree_tag_get(pages
, index
, PAGECACHE_TAG_TOWRITE
))
756 /* Lock the entry to serialize with page faults */
757 entry
= lock_slot(mapping
, slot
);
759 * We can clear the tag now but we have to be careful so that concurrent
760 * dax_writeback_one() calls for the same index cannot finish before we
761 * actually flush the caches. This is achieved as the calls will look
762 * at the entry only under the i_pages lock and once they do that
763 * they will see the entry locked and wait for it to unlock.
765 radix_tree_tag_clear(pages
, index
, PAGECACHE_TAG_TOWRITE
);
766 xa_unlock_irq(pages
);
769 * Even if dax_writeback_mapping_range() was given a wbc->range_start
770 * in the middle of a PMD, the 'index' we are given will be aligned to
771 * the start index of the PMD, as will the pfn we pull from 'entry'.
772 * This allows us to flush for PMD_SIZE and not have to worry about
773 * partial PMD writebacks.
775 pfn
= dax_radix_pfn(entry
);
776 size
= PAGE_SIZE
<< dax_radix_order(entry
);
778 dax_mapping_entry_mkclean(mapping
, index
, pfn
);
779 dax_flush(dax_dev
, page_address(pfn_to_page(pfn
)), size
);
781 * After we have flushed the cache, we can clear the dirty tag. There
782 * cannot be new dirty data in the pfn after the flush has completed as
783 * the pfn mappings are writeprotected and fault waits for mapping
787 radix_tree_tag_clear(pages
, index
, PAGECACHE_TAG_DIRTY
);
788 xa_unlock_irq(pages
);
789 trace_dax_writeback_one(mapping
->host
, index
, size
>> PAGE_SHIFT
);
790 put_locked_mapping_entry(mapping
, index
);
794 put_unlocked_mapping_entry(mapping
, index
, entry2
);
795 xa_unlock_irq(pages
);
800 * Flush the mapping to the persistent domain within the byte range of [start,
801 * end]. This is required by data integrity operations to ensure file data is
802 * on persistent storage prior to completion of the operation.
804 int dax_writeback_mapping_range(struct address_space
*mapping
,
805 struct block_device
*bdev
, struct writeback_control
*wbc
)
807 struct inode
*inode
= mapping
->host
;
808 pgoff_t start_index
, end_index
;
809 pgoff_t indices
[PAGEVEC_SIZE
];
810 struct dax_device
*dax_dev
;
815 if (WARN_ON_ONCE(inode
->i_blkbits
!= PAGE_SHIFT
))
818 if (!mapping
->nrexceptional
|| wbc
->sync_mode
!= WB_SYNC_ALL
)
821 dax_dev
= dax_get_by_host(bdev
->bd_disk
->disk_name
);
825 start_index
= wbc
->range_start
>> PAGE_SHIFT
;
826 end_index
= wbc
->range_end
>> PAGE_SHIFT
;
828 trace_dax_writeback_range(inode
, start_index
, end_index
);
830 tag_pages_for_writeback(mapping
, start_index
, end_index
);
834 pvec
.nr
= find_get_entries_tag(mapping
, start_index
,
835 PAGECACHE_TAG_TOWRITE
, PAGEVEC_SIZE
,
836 pvec
.pages
, indices
);
841 for (i
= 0; i
< pvec
.nr
; i
++) {
842 if (indices
[i
] > end_index
) {
847 ret
= dax_writeback_one(dax_dev
, mapping
, indices
[i
],
850 mapping_set_error(mapping
, ret
);
854 start_index
= indices
[pvec
.nr
- 1] + 1;
858 trace_dax_writeback_range_done(inode
, start_index
, end_index
);
859 return (ret
< 0 ? ret
: 0);
861 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range
);
863 static sector_t
dax_iomap_sector(struct iomap
*iomap
, loff_t pos
)
865 return (iomap
->addr
+ (pos
& PAGE_MASK
) - iomap
->offset
) >> 9;
868 static int dax_iomap_pfn(struct iomap
*iomap
, loff_t pos
, size_t size
,
871 const sector_t sector
= dax_iomap_sector(iomap
, pos
);
877 rc
= bdev_dax_pgoff(iomap
->bdev
, sector
, size
, &pgoff
);
880 id
= dax_read_lock();
881 length
= dax_direct_access(iomap
->dax_dev
, pgoff
, PHYS_PFN(size
),
888 if (PFN_PHYS(length
) < size
)
890 if (pfn_t_to_pfn(*pfnp
) & (PHYS_PFN(size
)-1))
892 /* For larger pages we need devmap */
893 if (length
> 1 && !pfn_t_devmap(*pfnp
))
902 * The user has performed a load from a hole in the file. Allocating a new
903 * page in the file would cause excessive storage usage for workloads with
904 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
905 * If this page is ever written to we will re-fault and change the mapping to
906 * point to real DAX storage instead.
908 static int dax_load_hole(struct address_space
*mapping
, void *entry
,
909 struct vm_fault
*vmf
)
911 struct inode
*inode
= mapping
->host
;
912 unsigned long vaddr
= vmf
->address
;
913 int ret
= VM_FAULT_NOPAGE
;
914 struct page
*zero_page
;
918 zero_page
= ZERO_PAGE(0);
919 if (unlikely(!zero_page
)) {
924 pfn
= page_to_pfn_t(zero_page
);
925 entry2
= dax_insert_mapping_entry(mapping
, vmf
, entry
, pfn
,
926 RADIX_DAX_ZERO_PAGE
, false);
927 if (IS_ERR(entry2
)) {
928 ret
= VM_FAULT_SIGBUS
;
932 vm_insert_mixed(vmf
->vma
, vaddr
, pfn
);
934 trace_dax_load_hole(inode
, vmf
, ret
);
938 static bool dax_range_is_aligned(struct block_device
*bdev
,
939 unsigned int offset
, unsigned int length
)
941 unsigned short sector_size
= bdev_logical_block_size(bdev
);
943 if (!IS_ALIGNED(offset
, sector_size
))
945 if (!IS_ALIGNED(length
, sector_size
))
951 int __dax_zero_page_range(struct block_device
*bdev
,
952 struct dax_device
*dax_dev
, sector_t sector
,
953 unsigned int offset
, unsigned int size
)
955 if (dax_range_is_aligned(bdev
, offset
, size
)) {
956 sector_t start_sector
= sector
+ (offset
>> 9);
958 return blkdev_issue_zeroout(bdev
, start_sector
,
959 size
>> 9, GFP_NOFS
, 0);
966 rc
= bdev_dax_pgoff(bdev
, sector
, PAGE_SIZE
, &pgoff
);
970 id
= dax_read_lock();
971 rc
= dax_direct_access(dax_dev
, pgoff
, 1, &kaddr
,
977 memset(kaddr
+ offset
, 0, size
);
978 dax_flush(dax_dev
, kaddr
+ offset
, size
);
983 EXPORT_SYMBOL_GPL(__dax_zero_page_range
);
986 dax_iomap_actor(struct inode
*inode
, loff_t pos
, loff_t length
, void *data
,
989 struct block_device
*bdev
= iomap
->bdev
;
990 struct dax_device
*dax_dev
= iomap
->dax_dev
;
991 struct iov_iter
*iter
= data
;
992 loff_t end
= pos
+ length
, done
= 0;
996 if (iov_iter_rw(iter
) == READ
) {
997 end
= min(end
, i_size_read(inode
));
1001 if (iomap
->type
== IOMAP_HOLE
|| iomap
->type
== IOMAP_UNWRITTEN
)
1002 return iov_iter_zero(min(length
, end
- pos
), iter
);
1005 if (WARN_ON_ONCE(iomap
->type
!= IOMAP_MAPPED
))
1009 * Write can allocate block for an area which has a hole page mapped
1010 * into page tables. We have to tear down these mappings so that data
1011 * written by write(2) is visible in mmap.
1013 if (iomap
->flags
& IOMAP_F_NEW
) {
1014 invalidate_inode_pages2_range(inode
->i_mapping
,
1016 (end
- 1) >> PAGE_SHIFT
);
1019 id
= dax_read_lock();
1021 unsigned offset
= pos
& (PAGE_SIZE
- 1);
1022 const size_t size
= ALIGN(length
+ offset
, PAGE_SIZE
);
1023 const sector_t sector
= dax_iomap_sector(iomap
, pos
);
1029 if (fatal_signal_pending(current
)) {
1034 ret
= bdev_dax_pgoff(bdev
, sector
, size
, &pgoff
);
1038 map_len
= dax_direct_access(dax_dev
, pgoff
, PHYS_PFN(size
),
1045 map_len
= PFN_PHYS(map_len
);
1048 if (map_len
> end
- pos
)
1049 map_len
= end
- pos
;
1052 * The userspace address for the memory copy has already been
1053 * validated via access_ok() in either vfs_read() or
1054 * vfs_write(), depending on which operation we are doing.
1056 if (iov_iter_rw(iter
) == WRITE
)
1057 map_len
= dax_copy_from_iter(dax_dev
, pgoff
, kaddr
,
1060 map_len
= copy_to_iter(kaddr
, map_len
, iter
);
1062 ret
= map_len
? map_len
: -EFAULT
;
1070 dax_read_unlock(id
);
1072 return done
? done
: ret
;
1076 * dax_iomap_rw - Perform I/O to a DAX file
1077 * @iocb: The control block for this I/O
1078 * @iter: The addresses to do I/O from or to
1079 * @ops: iomap ops passed from the file system
1081 * This function performs read and write operations to directly mapped
1082 * persistent memory. The callers needs to take care of read/write exclusion
1083 * and evicting any page cache pages in the region under I/O.
1086 dax_iomap_rw(struct kiocb
*iocb
, struct iov_iter
*iter
,
1087 const struct iomap_ops
*ops
)
1089 struct address_space
*mapping
= iocb
->ki_filp
->f_mapping
;
1090 struct inode
*inode
= mapping
->host
;
1091 loff_t pos
= iocb
->ki_pos
, ret
= 0, done
= 0;
1094 if (iov_iter_rw(iter
) == WRITE
) {
1095 lockdep_assert_held_exclusive(&inode
->i_rwsem
);
1096 flags
|= IOMAP_WRITE
;
1098 lockdep_assert_held(&inode
->i_rwsem
);
1101 while (iov_iter_count(iter
)) {
1102 ret
= iomap_apply(inode
, pos
, iov_iter_count(iter
), flags
, ops
,
1103 iter
, dax_iomap_actor
);
1110 iocb
->ki_pos
+= done
;
1111 return done
? done
: ret
;
1113 EXPORT_SYMBOL_GPL(dax_iomap_rw
);
1115 static int dax_fault_return(int error
)
1118 return VM_FAULT_NOPAGE
;
1119 if (error
== -ENOMEM
)
1120 return VM_FAULT_OOM
;
1121 return VM_FAULT_SIGBUS
;
1125 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1126 * flushed on write-faults (non-cow), but not read-faults.
1128 static bool dax_fault_is_synchronous(unsigned long flags
,
1129 struct vm_area_struct
*vma
, struct iomap
*iomap
)
1131 return (flags
& IOMAP_WRITE
) && (vma
->vm_flags
& VM_SYNC
)
1132 && (iomap
->flags
& IOMAP_F_DIRTY
);
1135 static int dax_iomap_pte_fault(struct vm_fault
*vmf
, pfn_t
*pfnp
,
1136 int *iomap_errp
, const struct iomap_ops
*ops
)
1138 struct vm_area_struct
*vma
= vmf
->vma
;
1139 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1140 struct inode
*inode
= mapping
->host
;
1141 unsigned long vaddr
= vmf
->address
;
1142 loff_t pos
= (loff_t
)vmf
->pgoff
<< PAGE_SHIFT
;
1143 struct iomap iomap
= { 0 };
1144 unsigned flags
= IOMAP_FAULT
;
1145 int error
, major
= 0;
1146 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1152 trace_dax_pte_fault(inode
, vmf
, vmf_ret
);
1154 * Check whether offset isn't beyond end of file now. Caller is supposed
1155 * to hold locks serializing us with truncate / punch hole so this is
1158 if (pos
>= i_size_read(inode
)) {
1159 vmf_ret
= VM_FAULT_SIGBUS
;
1163 if (write
&& !vmf
->cow_page
)
1164 flags
|= IOMAP_WRITE
;
1166 entry
= grab_mapping_entry(mapping
, vmf
->pgoff
, 0);
1167 if (IS_ERR(entry
)) {
1168 vmf_ret
= dax_fault_return(PTR_ERR(entry
));
1173 * It is possible, particularly with mixed reads & writes to private
1174 * mappings, that we have raced with a PMD fault that overlaps with
1175 * the PTE we need to set up. If so just return and the fault will be
1178 if (pmd_trans_huge(*vmf
->pmd
) || pmd_devmap(*vmf
->pmd
)) {
1179 vmf_ret
= VM_FAULT_NOPAGE
;
1184 * Note that we don't bother to use iomap_apply here: DAX required
1185 * the file system block size to be equal the page size, which means
1186 * that we never have to deal with more than a single extent here.
1188 error
= ops
->iomap_begin(inode
, pos
, PAGE_SIZE
, flags
, &iomap
);
1190 *iomap_errp
= error
;
1192 vmf_ret
= dax_fault_return(error
);
1195 if (WARN_ON_ONCE(iomap
.offset
+ iomap
.length
< pos
+ PAGE_SIZE
)) {
1196 error
= -EIO
; /* fs corruption? */
1197 goto error_finish_iomap
;
1200 if (vmf
->cow_page
) {
1201 sector_t sector
= dax_iomap_sector(&iomap
, pos
);
1203 switch (iomap
.type
) {
1205 case IOMAP_UNWRITTEN
:
1206 clear_user_highpage(vmf
->cow_page
, vaddr
);
1209 error
= copy_user_dax(iomap
.bdev
, iomap
.dax_dev
,
1210 sector
, PAGE_SIZE
, vmf
->cow_page
, vaddr
);
1219 goto error_finish_iomap
;
1221 __SetPageUptodate(vmf
->cow_page
);
1222 vmf_ret
= finish_fault(vmf
);
1224 vmf_ret
= VM_FAULT_DONE_COW
;
1228 sync
= dax_fault_is_synchronous(flags
, vma
, &iomap
);
1230 switch (iomap
.type
) {
1232 if (iomap
.flags
& IOMAP_F_NEW
) {
1233 count_vm_event(PGMAJFAULT
);
1234 count_memcg_event_mm(vma
->vm_mm
, PGMAJFAULT
);
1235 major
= VM_FAULT_MAJOR
;
1237 error
= dax_iomap_pfn(&iomap
, pos
, PAGE_SIZE
, &pfn
);
1239 goto error_finish_iomap
;
1241 entry
= dax_insert_mapping_entry(mapping
, vmf
, entry
, pfn
,
1243 if (IS_ERR(entry
)) {
1244 error
= PTR_ERR(entry
);
1245 goto error_finish_iomap
;
1249 * If we are doing synchronous page fault and inode needs fsync,
1250 * we can insert PTE into page tables only after that happens.
1251 * Skip insertion for now and return the pfn so that caller can
1252 * insert it after fsync is done.
1255 if (WARN_ON_ONCE(!pfnp
)) {
1257 goto error_finish_iomap
;
1260 vmf_ret
= VM_FAULT_NEEDDSYNC
| major
;
1263 trace_dax_insert_mapping(inode
, vmf
, entry
);
1265 error
= vm_insert_mixed_mkwrite(vma
, vaddr
, pfn
);
1267 error
= vm_insert_mixed(vma
, vaddr
, pfn
);
1269 /* -EBUSY is fine, somebody else faulted on the same PTE */
1270 if (error
== -EBUSY
)
1273 case IOMAP_UNWRITTEN
:
1276 vmf_ret
= dax_load_hole(mapping
, entry
, vmf
);
1287 vmf_ret
= dax_fault_return(error
) | major
;
1289 if (ops
->iomap_end
) {
1290 int copied
= PAGE_SIZE
;
1292 if (vmf_ret
& VM_FAULT_ERROR
)
1295 * The fault is done by now and there's no way back (other
1296 * thread may be already happily using PTE we have installed).
1297 * Just ignore error from ->iomap_end since we cannot do much
1300 ops
->iomap_end(inode
, pos
, PAGE_SIZE
, copied
, flags
, &iomap
);
1303 put_locked_mapping_entry(mapping
, vmf
->pgoff
);
1305 trace_dax_pte_fault_done(inode
, vmf
, vmf_ret
);
1309 #ifdef CONFIG_FS_DAX_PMD
1310 static int dax_pmd_load_hole(struct vm_fault
*vmf
, struct iomap
*iomap
,
1313 struct address_space
*mapping
= vmf
->vma
->vm_file
->f_mapping
;
1314 unsigned long pmd_addr
= vmf
->address
& PMD_MASK
;
1315 struct inode
*inode
= mapping
->host
;
1316 struct page
*zero_page
;
1322 zero_page
= mm_get_huge_zero_page(vmf
->vma
->vm_mm
);
1324 if (unlikely(!zero_page
))
1327 pfn
= page_to_pfn_t(zero_page
);
1328 ret
= dax_insert_mapping_entry(mapping
, vmf
, entry
, pfn
,
1329 RADIX_DAX_PMD
| RADIX_DAX_ZERO_PAGE
, false);
1333 ptl
= pmd_lock(vmf
->vma
->vm_mm
, vmf
->pmd
);
1334 if (!pmd_none(*(vmf
->pmd
))) {
1339 pmd_entry
= mk_pmd(zero_page
, vmf
->vma
->vm_page_prot
);
1340 pmd_entry
= pmd_mkhuge(pmd_entry
);
1341 set_pmd_at(vmf
->vma
->vm_mm
, pmd_addr
, vmf
->pmd
, pmd_entry
);
1343 trace_dax_pmd_load_hole(inode
, vmf
, zero_page
, ret
);
1344 return VM_FAULT_NOPAGE
;
1347 trace_dax_pmd_load_hole_fallback(inode
, vmf
, zero_page
, ret
);
1348 return VM_FAULT_FALLBACK
;
1351 static int dax_iomap_pmd_fault(struct vm_fault
*vmf
, pfn_t
*pfnp
,
1352 const struct iomap_ops
*ops
)
1354 struct vm_area_struct
*vma
= vmf
->vma
;
1355 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1356 unsigned long pmd_addr
= vmf
->address
& PMD_MASK
;
1357 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1359 unsigned int iomap_flags
= (write
? IOMAP_WRITE
: 0) | IOMAP_FAULT
;
1360 struct inode
*inode
= mapping
->host
;
1361 int result
= VM_FAULT_FALLBACK
;
1362 struct iomap iomap
= { 0 };
1363 pgoff_t max_pgoff
, pgoff
;
1370 * Check whether offset isn't beyond end of file now. Caller is
1371 * supposed to hold locks serializing us with truncate / punch hole so
1372 * this is a reliable test.
1374 pgoff
= linear_page_index(vma
, pmd_addr
);
1375 max_pgoff
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
1377 trace_dax_pmd_fault(inode
, vmf
, max_pgoff
, 0);
1380 * Make sure that the faulting address's PMD offset (color) matches
1381 * the PMD offset from the start of the file. This is necessary so
1382 * that a PMD range in the page table overlaps exactly with a PMD
1383 * range in the radix tree.
1385 if ((vmf
->pgoff
& PG_PMD_COLOUR
) !=
1386 ((vmf
->address
>> PAGE_SHIFT
) & PG_PMD_COLOUR
))
1389 /* Fall back to PTEs if we're going to COW */
1390 if (write
&& !(vma
->vm_flags
& VM_SHARED
))
1393 /* If the PMD would extend outside the VMA */
1394 if (pmd_addr
< vma
->vm_start
)
1396 if ((pmd_addr
+ PMD_SIZE
) > vma
->vm_end
)
1399 if (pgoff
>= max_pgoff
) {
1400 result
= VM_FAULT_SIGBUS
;
1404 /* If the PMD would extend beyond the file size */
1405 if ((pgoff
| PG_PMD_COLOUR
) >= max_pgoff
)
1409 * grab_mapping_entry() will make sure we get a 2MiB empty entry, a
1410 * 2MiB zero page entry or a DAX PMD. If it can't (because a 4k page
1411 * is already in the tree, for instance), it will return -EEXIST and
1412 * we just fall back to 4k entries.
1414 entry
= grab_mapping_entry(mapping
, pgoff
, RADIX_DAX_PMD
);
1419 * It is possible, particularly with mixed reads & writes to private
1420 * mappings, that we have raced with a PTE fault that overlaps with
1421 * the PMD we need to set up. If so just return and the fault will be
1424 if (!pmd_none(*vmf
->pmd
) && !pmd_trans_huge(*vmf
->pmd
) &&
1425 !pmd_devmap(*vmf
->pmd
)) {
1431 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1432 * setting up a mapping, so really we're using iomap_begin() as a way
1433 * to look up our filesystem block.
1435 pos
= (loff_t
)pgoff
<< PAGE_SHIFT
;
1436 error
= ops
->iomap_begin(inode
, pos
, PMD_SIZE
, iomap_flags
, &iomap
);
1440 if (iomap
.offset
+ iomap
.length
< pos
+ PMD_SIZE
)
1443 sync
= dax_fault_is_synchronous(iomap_flags
, vma
, &iomap
);
1445 switch (iomap
.type
) {
1447 error
= dax_iomap_pfn(&iomap
, pos
, PMD_SIZE
, &pfn
);
1451 entry
= dax_insert_mapping_entry(mapping
, vmf
, entry
, pfn
,
1452 RADIX_DAX_PMD
, write
&& !sync
);
1457 * If we are doing synchronous page fault and inode needs fsync,
1458 * we can insert PMD into page tables only after that happens.
1459 * Skip insertion for now and return the pfn so that caller can
1460 * insert it after fsync is done.
1463 if (WARN_ON_ONCE(!pfnp
))
1466 result
= VM_FAULT_NEEDDSYNC
;
1470 trace_dax_pmd_insert_mapping(inode
, vmf
, PMD_SIZE
, pfn
, entry
);
1471 result
= vmf_insert_pfn_pmd(vma
, vmf
->address
, vmf
->pmd
, pfn
,
1474 case IOMAP_UNWRITTEN
:
1476 if (WARN_ON_ONCE(write
))
1478 result
= dax_pmd_load_hole(vmf
, &iomap
, entry
);
1486 if (ops
->iomap_end
) {
1487 int copied
= PMD_SIZE
;
1489 if (result
== VM_FAULT_FALLBACK
)
1492 * The fault is done by now and there's no way back (other
1493 * thread may be already happily using PMD we have installed).
1494 * Just ignore error from ->iomap_end since we cannot do much
1497 ops
->iomap_end(inode
, pos
, PMD_SIZE
, copied
, iomap_flags
,
1501 put_locked_mapping_entry(mapping
, pgoff
);
1503 if (result
== VM_FAULT_FALLBACK
) {
1504 split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
);
1505 count_vm_event(THP_FAULT_FALLBACK
);
1508 trace_dax_pmd_fault_done(inode
, vmf
, max_pgoff
, result
);
1512 static int dax_iomap_pmd_fault(struct vm_fault
*vmf
, pfn_t
*pfnp
,
1513 const struct iomap_ops
*ops
)
1515 return VM_FAULT_FALLBACK
;
1517 #endif /* CONFIG_FS_DAX_PMD */
1520 * dax_iomap_fault - handle a page fault on a DAX file
1521 * @vmf: The description of the fault
1522 * @pe_size: Size of the page to fault in
1523 * @pfnp: PFN to insert for synchronous faults if fsync is required
1524 * @iomap_errp: Storage for detailed error code in case of error
1525 * @ops: Iomap ops passed from the file system
1527 * When a page fault occurs, filesystems may call this helper in
1528 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1529 * has done all the necessary locking for page fault to proceed
1532 int dax_iomap_fault(struct vm_fault
*vmf
, enum page_entry_size pe_size
,
1533 pfn_t
*pfnp
, int *iomap_errp
, const struct iomap_ops
*ops
)
1537 return dax_iomap_pte_fault(vmf
, pfnp
, iomap_errp
, ops
);
1539 return dax_iomap_pmd_fault(vmf
, pfnp
, ops
);
1541 return VM_FAULT_FALLBACK
;
1544 EXPORT_SYMBOL_GPL(dax_iomap_fault
);
1547 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1548 * @vmf: The description of the fault
1549 * @pe_size: Size of entry to be inserted
1550 * @pfn: PFN to insert
1552 * This function inserts writeable PTE or PMD entry into page tables for mmaped
1553 * DAX file. It takes care of marking corresponding radix tree entry as dirty
1556 static int dax_insert_pfn_mkwrite(struct vm_fault
*vmf
,
1557 enum page_entry_size pe_size
,
1560 struct address_space
*mapping
= vmf
->vma
->vm_file
->f_mapping
;
1561 void *entry
, **slot
;
1562 pgoff_t index
= vmf
->pgoff
;
1565 xa_lock_irq(&mapping
->i_pages
);
1566 entry
= get_unlocked_mapping_entry(mapping
, index
, &slot
);
1567 /* Did we race with someone splitting entry or so? */
1569 (pe_size
== PE_SIZE_PTE
&& !dax_is_pte_entry(entry
)) ||
1570 (pe_size
== PE_SIZE_PMD
&& !dax_is_pmd_entry(entry
))) {
1571 put_unlocked_mapping_entry(mapping
, index
, entry
);
1572 xa_unlock_irq(&mapping
->i_pages
);
1573 trace_dax_insert_pfn_mkwrite_no_entry(mapping
->host
, vmf
,
1575 return VM_FAULT_NOPAGE
;
1577 radix_tree_tag_set(&mapping
->i_pages
, index
, PAGECACHE_TAG_DIRTY
);
1578 entry
= lock_slot(mapping
, slot
);
1579 xa_unlock_irq(&mapping
->i_pages
);
1582 error
= vm_insert_mixed_mkwrite(vmf
->vma
, vmf
->address
, pfn
);
1583 vmf_ret
= dax_fault_return(error
);
1585 #ifdef CONFIG_FS_DAX_PMD
1587 vmf_ret
= vmf_insert_pfn_pmd(vmf
->vma
, vmf
->address
, vmf
->pmd
,
1592 vmf_ret
= VM_FAULT_FALLBACK
;
1594 put_locked_mapping_entry(mapping
, index
);
1595 trace_dax_insert_pfn_mkwrite(mapping
->host
, vmf
, vmf_ret
);
1600 * dax_finish_sync_fault - finish synchronous page fault
1601 * @vmf: The description of the fault
1602 * @pe_size: Size of entry to be inserted
1603 * @pfn: PFN to insert
1605 * This function ensures that the file range touched by the page fault is
1606 * stored persistently on the media and handles inserting of appropriate page
1609 int dax_finish_sync_fault(struct vm_fault
*vmf
, enum page_entry_size pe_size
,
1613 loff_t start
= ((loff_t
)vmf
->pgoff
) << PAGE_SHIFT
;
1616 if (pe_size
== PE_SIZE_PTE
)
1618 else if (pe_size
== PE_SIZE_PMD
)
1622 err
= vfs_fsync_range(vmf
->vma
->vm_file
, start
, start
+ len
- 1, 1);
1624 return VM_FAULT_SIGBUS
;
1625 return dax_insert_pfn_mkwrite(vmf
, pe_size
, pfn
);
1627 EXPORT_SYMBOL_GPL(dax_finish_sync_fault
);