2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
5 #include <linux/time.h>
6 #include <linux/slab.h>
7 #include <linux/string.h>
9 #include <linux/buffer_head.h>
12 * To make any changes in the tree we find a node that contains item
13 * to be changed/deleted or position in the node we insert a new item
14 * to. We call this node S. To do balancing we need to decide what we
15 * will shift to left/right neighbor, or to a new node, where new item
16 * will be etc. To make this analysis simpler we build virtual
17 * node. Virtual node is an array of items, that will replace items of
18 * node S. (For instance if we are going to delete an item, virtual
19 * node does not contain it). Virtual node keeps information about
20 * item sizes and types, mergeability of first and last items, sizes
21 * of all entries in directory item. We use this array of items when
22 * calculating what we can shift to neighbors and how many nodes we
23 * have to have if we do not any shiftings, if we shift to left/right
24 * neighbor or to both.
28 * Takes item number in virtual node, returns number of item
29 * that it has in source buffer
31 static inline int old_item_num(int new_num
, int affected_item_num
, int mode
)
33 if (mode
== M_PASTE
|| mode
== M_CUT
|| new_num
< affected_item_num
)
36 if (mode
== M_INSERT
) {
39 "vs-8005: for INSERT mode and item number of inserted item");
44 RFALSE(mode
!= M_DELETE
,
45 "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'",
51 static void create_virtual_node(struct tree_balance
*tb
, int h
)
54 struct virtual_node
*vn
= tb
->tb_vn
;
56 struct buffer_head
*Sh
; /* this comes from tb->S[h] */
58 Sh
= PATH_H_PBUFFER(tb
->tb_path
, h
);
60 /* size of changed node */
62 MAX_CHILD_SIZE(Sh
) - B_FREE_SPACE(Sh
) + tb
->insert_size
[h
];
64 /* for internal nodes array if virtual items is not created */
66 vn
->vn_nr_item
= (vn
->vn_size
- DC_SIZE
) / (DC_SIZE
+ KEY_SIZE
);
70 /* number of items in virtual node */
72 B_NR_ITEMS(Sh
) + ((vn
->vn_mode
== M_INSERT
) ? 1 : 0) -
73 ((vn
->vn_mode
== M_DELETE
) ? 1 : 0);
75 /* first virtual item */
76 vn
->vn_vi
= (struct virtual_item
*)(tb
->tb_vn
+ 1);
77 memset(vn
->vn_vi
, 0, vn
->vn_nr_item
* sizeof(struct virtual_item
));
78 vn
->vn_free_ptr
+= vn
->vn_nr_item
* sizeof(struct virtual_item
);
80 /* first item in the node */
81 ih
= item_head(Sh
, 0);
83 /* define the mergeability for 0-th item (if it is not being deleted) */
84 if (op_is_left_mergeable(&ih
->ih_key
, Sh
->b_size
)
85 && (vn
->vn_mode
!= M_DELETE
|| vn
->vn_affected_item_num
))
86 vn
->vn_vi
[0].vi_type
|= VI_TYPE_LEFT_MERGEABLE
;
89 * go through all items that remain in the virtual
90 * node (except for the new (inserted) one)
92 for (new_num
= 0; new_num
< vn
->vn_nr_item
; new_num
++) {
94 struct virtual_item
*vi
= vn
->vn_vi
+ new_num
;
96 ((new_num
!= vn
->vn_affected_item_num
) ? 0 : 1);
98 if (is_affected
&& vn
->vn_mode
== M_INSERT
)
101 /* get item number in source node */
102 j
= old_item_num(new_num
, vn
->vn_affected_item_num
,
105 vi
->vi_item_len
+= ih_item_len(ih
+ j
) + IH_SIZE
;
107 vi
->vi_item
= ih_item_body(Sh
, ih
+ j
);
108 vi
->vi_uarea
= vn
->vn_free_ptr
;
111 * FIXME: there is no check that item operation did not
112 * consume too much memory
115 op_create_vi(vn
, vi
, is_affected
, tb
->insert_size
[0]);
116 if (tb
->vn_buf
+ tb
->vn_buf_size
< vn
->vn_free_ptr
)
117 reiserfs_panic(tb
->tb_sb
, "vs-8030",
118 "virtual node space consumed");
121 /* this is not being changed */
124 if (vn
->vn_mode
== M_PASTE
|| vn
->vn_mode
== M_CUT
) {
125 vn
->vn_vi
[new_num
].vi_item_len
+= tb
->insert_size
[0];
126 /* pointer to data which is going to be pasted */
127 vi
->vi_new_data
= vn
->vn_data
;
131 /* virtual inserted item is not defined yet */
132 if (vn
->vn_mode
== M_INSERT
) {
133 struct virtual_item
*vi
= vn
->vn_vi
+ vn
->vn_affected_item_num
;
135 RFALSE(vn
->vn_ins_ih
== NULL
,
136 "vs-8040: item header of inserted item is not specified");
137 vi
->vi_item_len
= tb
->insert_size
[0];
138 vi
->vi_ih
= vn
->vn_ins_ih
;
139 vi
->vi_item
= vn
->vn_data
;
140 vi
->vi_uarea
= vn
->vn_free_ptr
;
142 op_create_vi(vn
, vi
, 0 /*not pasted or cut */ ,
147 * set right merge flag we take right delimiting key and
148 * check whether it is a mergeable item
151 struct reiserfs_key
*key
;
153 key
= internal_key(tb
->CFR
[0], tb
->rkey
[0]);
154 if (op_is_left_mergeable(key
, Sh
->b_size
)
155 && (vn
->vn_mode
!= M_DELETE
156 || vn
->vn_affected_item_num
!= B_NR_ITEMS(Sh
) - 1))
157 vn
->vn_vi
[vn
->vn_nr_item
- 1].vi_type
|=
158 VI_TYPE_RIGHT_MERGEABLE
;
160 #ifdef CONFIG_REISERFS_CHECK
161 if (op_is_left_mergeable(key
, Sh
->b_size
) &&
162 !(vn
->vn_mode
!= M_DELETE
163 || vn
->vn_affected_item_num
!= B_NR_ITEMS(Sh
) - 1)) {
165 * we delete last item and it could be merged
166 * with right neighbor's first item
170 && is_direntry_le_ih(item_head(Sh
, 0))
171 && ih_entry_count(item_head(Sh
, 0)) == 1)) {
173 * node contains more than 1 item, or item
174 * is not directory item, or this item
175 * contains more than 1 entry
177 print_block(Sh
, 0, -1, -1);
178 reiserfs_panic(tb
->tb_sb
, "vs-8045",
179 "rdkey %k, affected item==%d "
180 "(mode==%c) Must be %c",
181 key
, vn
->vn_affected_item_num
,
182 vn
->vn_mode
, M_DELETE
);
191 * Using virtual node check, how many items can be
192 * shifted to left neighbor
194 static void check_left(struct tree_balance
*tb
, int h
, int cur_free
)
197 struct virtual_node
*vn
= tb
->tb_vn
;
198 struct virtual_item
*vi
;
201 RFALSE(cur_free
< 0, "vs-8050: cur_free (%d) < 0", cur_free
);
205 tb
->lnum
[h
] = cur_free
/ (DC_SIZE
+ KEY_SIZE
);
211 if (!cur_free
|| !vn
->vn_nr_item
) {
212 /* no free space or nothing to move */
218 RFALSE(!PATH_H_PPARENT(tb
->tb_path
, 0),
219 "vs-8055: parent does not exist or invalid");
222 if ((unsigned int)cur_free
>=
224 ((vi
->vi_type
& VI_TYPE_LEFT_MERGEABLE
) ? IH_SIZE
: 0))) {
225 /* all contents of S[0] fits into L[0] */
227 RFALSE(vn
->vn_mode
== M_INSERT
|| vn
->vn_mode
== M_PASTE
,
228 "vs-8055: invalid mode or balance condition failed");
230 tb
->lnum
[0] = vn
->vn_nr_item
;
235 d_size
= 0, ih_size
= IH_SIZE
;
237 /* first item may be merge with last item in left neighbor */
238 if (vi
->vi_type
& VI_TYPE_LEFT_MERGEABLE
)
239 d_size
= -((int)IH_SIZE
), ih_size
= 0;
242 for (i
= 0; i
< vn
->vn_nr_item
;
243 i
++, ih_size
= IH_SIZE
, d_size
= 0, vi
++) {
244 d_size
+= vi
->vi_item_len
;
245 if (cur_free
>= d_size
) {
246 /* the item can be shifted entirely */
252 /* the item cannot be shifted entirely, try to split it */
254 * check whether L[0] can hold ih and at least one byte
258 /* cannot shift even a part of the current item */
259 if (cur_free
<= ih_size
) {
265 tb
->lbytes
= op_check_left(vi
, cur_free
, 0, 0);
266 if (tb
->lbytes
!= -1)
267 /* count partially shifted item */
277 * Using virtual node check, how many items can be
278 * shifted to right neighbor
280 static void check_right(struct tree_balance
*tb
, int h
, int cur_free
)
283 struct virtual_node
*vn
= tb
->tb_vn
;
284 struct virtual_item
*vi
;
287 RFALSE(cur_free
< 0, "vs-8070: cur_free < 0");
291 tb
->rnum
[h
] = cur_free
/ (DC_SIZE
+ KEY_SIZE
);
297 if (!cur_free
|| !vn
->vn_nr_item
) {
304 RFALSE(!PATH_H_PPARENT(tb
->tb_path
, 0),
305 "vs-8075: parent does not exist or invalid");
307 vi
= vn
->vn_vi
+ vn
->vn_nr_item
- 1;
308 if ((unsigned int)cur_free
>=
310 ((vi
->vi_type
& VI_TYPE_RIGHT_MERGEABLE
) ? IH_SIZE
: 0))) {
311 /* all contents of S[0] fits into R[0] */
313 RFALSE(vn
->vn_mode
== M_INSERT
|| vn
->vn_mode
== M_PASTE
,
314 "vs-8080: invalid mode or balance condition failed");
316 tb
->rnum
[h
] = vn
->vn_nr_item
;
321 d_size
= 0, ih_size
= IH_SIZE
;
323 /* last item may be merge with first item in right neighbor */
324 if (vi
->vi_type
& VI_TYPE_RIGHT_MERGEABLE
)
325 d_size
= -(int)IH_SIZE
, ih_size
= 0;
328 for (i
= vn
->vn_nr_item
- 1; i
>= 0;
329 i
--, d_size
= 0, ih_size
= IH_SIZE
, vi
--) {
330 d_size
+= vi
->vi_item_len
;
331 if (cur_free
>= d_size
) {
332 /* the item can be shifted entirely */
339 * check whether R[0] can hold ih and at least one
340 * byte of the item body
343 /* cannot shift even a part of the current item */
344 if (cur_free
<= ih_size
) {
350 * R[0] can hold the header of the item and at least
351 * one byte of its body
353 cur_free
-= ih_size
; /* cur_free is still > 0 */
355 tb
->rbytes
= op_check_right(vi
, cur_free
);
356 if (tb
->rbytes
!= -1)
357 /* count partially shifted item */
367 * from - number of items, which are shifted to left neighbor entirely
368 * to - number of item, which are shifted to right neighbor entirely
369 * from_bytes - number of bytes of boundary item (or directory entries)
370 * which are shifted to left neighbor
371 * to_bytes - number of bytes of boundary item (or directory entries)
372 * which are shifted to right neighbor
374 static int get_num_ver(int mode
, struct tree_balance
*tb
, int h
,
375 int from
, int from_bytes
,
376 int to
, int to_bytes
, short *snum012
, int flow
)
381 struct virtual_node
*vn
= tb
->tb_vn
;
382 int total_node_size
, max_node_size
, current_item_size
;
385 /* position of item we start filling node from */
388 /* position of item we finish filling node by */
392 * number of first bytes (entries for directory) of start_item-th item
393 * we do not include into node that is being filled
398 * number of last bytes (entries for directory) of end_item-th item
399 * we do node include into node that is being filled
404 * these are positions in virtual item of items, that are split
405 * between S[0] and S1new and S1new and S2new
407 int split_item_positions
[2];
409 split_item_positions
[0] = -1;
410 split_item_positions
[1] = -1;
413 * We only create additional nodes if we are in insert or paste mode
414 * or we are in replace mode at the internal level. If h is 0 and
415 * the mode is M_REPLACE then in fix_nodes we change the mode to
416 * paste or insert before we get here in the code.
418 RFALSE(tb
->insert_size
[h
] < 0 || (mode
!= M_INSERT
&& mode
!= M_PASTE
),
419 "vs-8100: insert_size < 0 in overflow");
421 max_node_size
= MAX_CHILD_SIZE(PATH_H_PBUFFER(tb
->tb_path
, h
));
424 * snum012 [0-2] - number of items, that lay
425 * to S[0], first new node and second new node
427 snum012
[3] = -1; /* s1bytes */
428 snum012
[4] = -1; /* s2bytes */
432 i
= ((to
- from
) * (KEY_SIZE
+ DC_SIZE
) + DC_SIZE
);
433 if (i
== max_node_size
)
435 return (i
/ max_node_size
+ 1);
441 cur_free
= max_node_size
;
443 /* start from 'from'-th item */
445 /* skip its first 'start_bytes' units */
446 start_bytes
= ((from_bytes
!= -1) ? from_bytes
: 0);
448 /* last included item is the 'end_item'-th one */
449 end_item
= vn
->vn_nr_item
- to
- 1;
450 /* do not count last 'end_bytes' units of 'end_item'-th item */
451 end_bytes
= (to_bytes
!= -1) ? to_bytes
: 0;
454 * go through all item beginning from the start_item-th item
455 * and ending by the end_item-th item. Do not count first
456 * 'start_bytes' units of 'start_item'-th item and last
457 * 'end_bytes' of 'end_item'-th item
459 for (i
= start_item
; i
<= end_item
; i
++) {
460 struct virtual_item
*vi
= vn
->vn_vi
+ i
;
461 int skip_from_end
= ((i
== end_item
) ? end_bytes
: 0);
463 RFALSE(needed_nodes
> 3, "vs-8105: too many nodes are needed");
465 /* get size of current item */
466 current_item_size
= vi
->vi_item_len
;
469 * do not take in calculation head part (from_bytes)
473 op_part_size(vi
, 0 /*from start */ , start_bytes
);
475 /* do not take in calculation tail part of last item */
477 op_part_size(vi
, 1 /*from end */ , skip_from_end
);
479 /* if item fits into current node entierly */
480 if (total_node_size
+ current_item_size
<= max_node_size
) {
481 snum012
[needed_nodes
- 1]++;
482 total_node_size
+= current_item_size
;
488 * virtual item length is longer, than max size of item in
489 * a node. It is impossible for direct item
491 if (current_item_size
> max_node_size
) {
492 RFALSE(is_direct_le_ih(vi
->vi_ih
),
494 "direct item length is %d. It can not be longer than %d",
495 current_item_size
, max_node_size
);
496 /* we will try to split it */
500 /* as we do not split items, take new node and continue */
509 * calculate number of item units which fit into node being
515 free_space
= max_node_size
- total_node_size
- IH_SIZE
;
517 op_check_left(vi
, free_space
, start_bytes
,
520 * nothing fits into current node, take new
524 needed_nodes
++, i
--, total_node_size
= 0;
529 /* something fits into the current node */
530 start_bytes
+= units
;
531 snum012
[needed_nodes
- 1 + 3] = units
;
533 if (needed_nodes
> 2)
534 reiserfs_warning(tb
->tb_sb
, "vs-8111",
535 "split_item_position is out of range");
536 snum012
[needed_nodes
- 1]++;
537 split_item_positions
[needed_nodes
- 1] = i
;
539 /* continue from the same item with start_bytes != -1 */
546 * sum012[4] (if it is not -1) contains number of units of which
547 * are to be in S1new, snum012[3] - to be in S0. They are supposed
548 * to be S1bytes and S2bytes correspondingly, so recalculate
550 if (snum012
[4] > 0) {
552 int bytes_to_r
, bytes_to_l
;
555 split_item_num
= split_item_positions
[1];
557 ((from
== split_item_num
558 && from_bytes
!= -1) ? from_bytes
: 0);
560 ((end_item
== split_item_num
561 && end_bytes
!= -1) ? end_bytes
: 0);
563 ((split_item_positions
[0] ==
564 split_item_positions
[1]) ? snum012
[3] : 0);
568 op_unit_num(&vn
->vn_vi
[split_item_num
]) - snum012
[4] -
569 bytes_to_r
- bytes_to_l
- bytes_to_S1new
;
571 if (vn
->vn_vi
[split_item_num
].vi_index
!= TYPE_DIRENTRY
&&
572 vn
->vn_vi
[split_item_num
].vi_index
!= TYPE_INDIRECT
)
573 reiserfs_warning(tb
->tb_sb
, "vs-8115",
574 "not directory or indirect item");
577 /* now we know S2bytes, calculate S1bytes */
578 if (snum012
[3] > 0) {
580 int bytes_to_r
, bytes_to_l
;
583 split_item_num
= split_item_positions
[0];
585 ((from
== split_item_num
586 && from_bytes
!= -1) ? from_bytes
: 0);
588 ((end_item
== split_item_num
589 && end_bytes
!= -1) ? end_bytes
: 0);
591 ((split_item_positions
[0] == split_item_positions
[1]
592 && snum012
[4] != -1) ? snum012
[4] : 0);
596 op_unit_num(&vn
->vn_vi
[split_item_num
]) - snum012
[3] -
597 bytes_to_r
- bytes_to_l
- bytes_to_S2new
;
605 * Set parameters for balancing.
606 * Performs write of results of analysis of balancing into structure tb,
607 * where it will later be used by the functions that actually do the balancing.
609 * tb tree_balance structure;
610 * h current level of the node;
611 * lnum number of items from S[h] that must be shifted to L[h];
612 * rnum number of items from S[h] that must be shifted to R[h];
613 * blk_num number of blocks that S[h] will be splitted into;
614 * s012 number of items that fall into splitted nodes.
615 * lbytes number of bytes which flow to the left neighbor from the
616 * item that is not not shifted entirely
617 * rbytes number of bytes which flow to the right neighbor from the
618 * item that is not not shifted entirely
619 * s1bytes number of bytes which flow to the first new node when
620 * S[0] splits (this number is contained in s012 array)
623 static void set_parameters(struct tree_balance
*tb
, int h
, int lnum
,
624 int rnum
, int blk_num
, short *s012
, int lb
, int rb
)
629 tb
->blknum
[h
] = blk_num
;
631 /* only for leaf level */
635 tb
->snum
[0] = *s012
++;
636 tb
->snum
[1] = *s012
++;
637 tb
->sbytes
[0] = *s012
++;
638 tb
->sbytes
[1] = *s012
;
643 PROC_INFO_ADD(tb
->tb_sb
, lnum
[h
], lnum
);
644 PROC_INFO_ADD(tb
->tb_sb
, rnum
[h
], rnum
);
646 PROC_INFO_ADD(tb
->tb_sb
, lbytes
[h
], lb
);
647 PROC_INFO_ADD(tb
->tb_sb
, rbytes
[h
], rb
);
651 * check if node disappears if we shift tb->lnum[0] items to left
652 * neighbor and tb->rnum[0] to the right one.
654 static int is_leaf_removable(struct tree_balance
*tb
)
656 struct virtual_node
*vn
= tb
->tb_vn
;
657 int to_left
, to_right
;
662 * number of items that will be shifted to left (right) neighbor
665 to_left
= tb
->lnum
[0] - ((tb
->lbytes
!= -1) ? 1 : 0);
666 to_right
= tb
->rnum
[0] - ((tb
->rbytes
!= -1) ? 1 : 0);
667 remain_items
= vn
->vn_nr_item
;
669 /* how many items remain in S[0] after shiftings to neighbors */
670 remain_items
-= (to_left
+ to_right
);
672 /* all content of node can be shifted to neighbors */
673 if (remain_items
< 1) {
674 set_parameters(tb
, 0, to_left
, vn
->vn_nr_item
- to_left
, 0,
679 /* S[0] is not removable */
680 if (remain_items
> 1 || tb
->lbytes
== -1 || tb
->rbytes
== -1)
683 /* check whether we can divide 1 remaining item between neighbors */
685 /* get size of remaining item (in item units) */
686 size
= op_unit_num(&vn
->vn_vi
[to_left
]);
688 if (tb
->lbytes
+ tb
->rbytes
>= size
) {
689 set_parameters(tb
, 0, to_left
+ 1, to_right
+ 1, 0, NULL
,
697 /* check whether L, S, R can be joined in one node */
698 static int are_leaves_removable(struct tree_balance
*tb
, int lfree
, int rfree
)
700 struct virtual_node
*vn
= tb
->tb_vn
;
702 struct buffer_head
*S0
;
704 S0
= PATH_H_PBUFFER(tb
->tb_path
, 0);
707 if (vn
->vn_nr_item
) {
708 if (vn
->vn_vi
[0].vi_type
& VI_TYPE_LEFT_MERGEABLE
)
711 if (vn
->vn_vi
[vn
->vn_nr_item
- 1].
712 vi_type
& VI_TYPE_RIGHT_MERGEABLE
)
715 /* there was only one item and it will be deleted */
716 struct item_head
*ih
;
718 RFALSE(B_NR_ITEMS(S0
) != 1,
719 "vs-8125: item number must be 1: it is %d",
722 ih
= item_head(S0
, 0);
724 && !comp_short_le_keys(&ih
->ih_key
,
725 internal_key(tb
->CFR
[0],
728 * Directory must be in correct state here: that is
729 * somewhere at the left side should exist first
730 * directory item. But the item being deleted can
731 * not be that first one because its right neighbor
732 * is item of the same directory. (But first item
733 * always gets deleted in last turn). So, neighbors
734 * of deleted item can be merged, so we can save
737 if (is_direntry_le_ih(ih
)) {
741 * we might check that left neighbor exists
742 * and is of the same directory
744 RFALSE(le_ih_k_offset(ih
) == DOT_OFFSET
,
745 "vs-8130: first directory item can not be removed until directory is not empty");
750 if (MAX_CHILD_SIZE(S0
) + vn
->vn_size
<= rfree
+ lfree
+ ih_size
) {
751 set_parameters(tb
, 0, -1, -1, -1, NULL
, -1, -1);
752 PROC_INFO_INC(tb
->tb_sb
, leaves_removable
);
759 /* when we do not split item, lnum and rnum are numbers of entire items */
760 #define SET_PAR_SHIFT_LEFT \
765 to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\
766 (MAX_NR_KEY(Sh) + 1 - lpar);\
768 set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\
772 if (lset==LEFT_SHIFT_FLOW)\
773 set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\
776 set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\
780 #define SET_PAR_SHIFT_RIGHT \
785 to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\
787 set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\
791 if (rset==RIGHT_SHIFT_FLOW)\
792 set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\
795 set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\
799 static void free_buffers_in_tb(struct tree_balance
*tb
)
803 pathrelse(tb
->tb_path
);
805 for (i
= 0; i
< MAX_HEIGHT
; i
++) {
823 * Get new buffers for storing new nodes that are created while balancing.
824 * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
825 * CARRY_ON - schedule didn't occur while the function worked;
826 * NO_DISK_SPACE - no disk space.
828 /* The function is NOT SCHEDULE-SAFE! */
829 static int get_empty_nodes(struct tree_balance
*tb
, int h
)
831 struct buffer_head
*new_bh
, *Sh
= PATH_H_PBUFFER(tb
->tb_path
, h
);
832 b_blocknr_t
*blocknr
, blocknrs
[MAX_AMOUNT_NEEDED
] = { 0, };
833 int counter
, number_of_freeblk
;
834 int amount_needed
; /* number of needed empty blocks */
835 int retval
= CARRY_ON
;
836 struct super_block
*sb
= tb
->tb_sb
;
839 * number_of_freeblk is the number of empty blocks which have been
840 * acquired for use by the balancing algorithm minus the number of
841 * empty blocks used in the previous levels of the analysis,
842 * number_of_freeblk = tb->cur_blknum can be non-zero if a schedule
843 * occurs after empty blocks are acquired, and the balancing analysis
844 * is then restarted, amount_needed is the number needed by this
845 * level (h) of the balancing analysis.
847 * Note that for systems with many processes writing, it would be
848 * more layout optimal to calculate the total number needed by all
849 * levels and then to run reiserfs_new_blocks to get all of them at
854 * Initiate number_of_freeblk to the amount acquired prior to the
855 * restart of the analysis or 0 if not restarted, then subtract the
856 * amount needed by all of the levels of the tree below h.
858 /* blknum includes S[h], so we subtract 1 in this calculation */
859 for (counter
= 0, number_of_freeblk
= tb
->cur_blknum
;
860 counter
< h
; counter
++)
862 (tb
->blknum
[counter
]) ? (tb
->blknum
[counter
] -
865 /* Allocate missing empty blocks. */
866 /* if Sh == 0 then we are getting a new root */
867 amount_needed
= (Sh
) ? (tb
->blknum
[h
] - 1) : 1;
869 * Amount_needed = the amount that we need more than the
870 * amount that we have.
872 if (amount_needed
> number_of_freeblk
)
873 amount_needed
-= number_of_freeblk
;
874 else /* If we have enough already then there is nothing to do. */
878 * No need to check quota - is not allocated for blocks used
879 * for formatted nodes
881 if (reiserfs_new_form_blocknrs(tb
, blocknrs
,
882 amount_needed
) == NO_DISK_SPACE
)
883 return NO_DISK_SPACE
;
885 /* for each blocknumber we just got, get a buffer and stick it on FEB */
886 for (blocknr
= blocknrs
, counter
= 0;
887 counter
< amount_needed
; blocknr
++, counter
++) {
890 "PAP-8135: reiserfs_new_blocknrs failed when got new blocks");
892 new_bh
= sb_getblk(sb
, *blocknr
);
893 RFALSE(buffer_dirty(new_bh
) ||
894 buffer_journaled(new_bh
) ||
895 buffer_journal_dirty(new_bh
),
896 "PAP-8140: journaled or dirty buffer %b for the new block",
899 /* Put empty buffers into the array. */
900 RFALSE(tb
->FEB
[tb
->cur_blknum
],
901 "PAP-8141: busy slot for new buffer");
903 set_buffer_journal_new(new_bh
);
904 tb
->FEB
[tb
->cur_blknum
++] = new_bh
;
907 if (retval
== CARRY_ON
&& FILESYSTEM_CHANGED_TB(tb
))
908 retval
= REPEAT_SEARCH
;
914 * Get free space of the left neighbor, which is stored in the parent
915 * node of the left neighbor.
917 static int get_lfree(struct tree_balance
*tb
, int h
)
919 struct buffer_head
*l
, *f
;
922 if ((f
= PATH_H_PPARENT(tb
->tb_path
, h
)) == NULL
||
923 (l
= tb
->FL
[h
]) == NULL
)
927 order
= PATH_H_B_ITEM_ORDER(tb
->tb_path
, h
) - 1;
929 order
= B_NR_ITEMS(l
);
933 return (MAX_CHILD_SIZE(f
) - dc_size(B_N_CHILD(f
, order
)));
937 * Get free space of the right neighbor,
938 * which is stored in the parent node of the right neighbor.
940 static int get_rfree(struct tree_balance
*tb
, int h
)
942 struct buffer_head
*r
, *f
;
945 if ((f
= PATH_H_PPARENT(tb
->tb_path
, h
)) == NULL
||
946 (r
= tb
->FR
[h
]) == NULL
)
950 order
= PATH_H_B_ITEM_ORDER(tb
->tb_path
, h
) + 1;
956 return (MAX_CHILD_SIZE(f
) - dc_size(B_N_CHILD(f
, order
)));
960 /* Check whether left neighbor is in memory. */
961 static int is_left_neighbor_in_cache(struct tree_balance
*tb
, int h
)
963 struct buffer_head
*father
, *left
;
964 struct super_block
*sb
= tb
->tb_sb
;
965 b_blocknr_t left_neighbor_blocknr
;
966 int left_neighbor_position
;
968 /* Father of the left neighbor does not exist. */
972 /* Calculate father of the node to be balanced. */
973 father
= PATH_H_PBUFFER(tb
->tb_path
, h
+ 1);
976 !B_IS_IN_TREE(father
) ||
977 !B_IS_IN_TREE(tb
->FL
[h
]) ||
978 !buffer_uptodate(father
) ||
979 !buffer_uptodate(tb
->FL
[h
]),
980 "vs-8165: F[h] (%b) or FL[h] (%b) is invalid",
984 * Get position of the pointer to the left neighbor
985 * into the left father.
987 left_neighbor_position
= (father
== tb
->FL
[h
]) ?
988 tb
->lkey
[h
] : B_NR_ITEMS(tb
->FL
[h
]);
989 /* Get left neighbor block number. */
990 left_neighbor_blocknr
=
991 B_N_CHILD_NUM(tb
->FL
[h
], left_neighbor_position
);
992 /* Look for the left neighbor in the cache. */
993 if ((left
= sb_find_get_block(sb
, left_neighbor_blocknr
))) {
995 RFALSE(buffer_uptodate(left
) && !B_IS_IN_TREE(left
),
996 "vs-8170: left neighbor (%b %z) is not in the tree",
1005 #define LEFT_PARENTS 'l'
1006 #define RIGHT_PARENTS 'r'
1008 static void decrement_key(struct cpu_key
*key
)
1010 /* call item specific function for this key */
1011 item_ops
[cpu_key_k_type(key
)]->decrement_key(key
);
1015 * Calculate far left/right parent of the left/right neighbor of the
1016 * current node, that is calculate the left/right (FL[h]/FR[h]) neighbor
1017 * of the parent F[h].
1018 * Calculate left/right common parent of the current node and L[h]/R[h].
1019 * Calculate left/right delimiting key position.
1020 * Returns: PATH_INCORRECT - path in the tree is not correct
1021 * SCHEDULE_OCCURRED - schedule occurred while the function worked
1022 * CARRY_ON - schedule didn't occur while the function
1025 static int get_far_parent(struct tree_balance
*tb
,
1027 struct buffer_head
**pfather
,
1028 struct buffer_head
**pcom_father
, char c_lr_par
)
1030 struct buffer_head
*parent
;
1031 INITIALIZE_PATH(s_path_to_neighbor_father
);
1032 struct treepath
*path
= tb
->tb_path
;
1033 struct cpu_key s_lr_father_key
;
1036 first_last_position
= 0,
1037 path_offset
= PATH_H_PATH_OFFSET(path
, h
);
1040 * Starting from F[h] go upwards in the tree, and look for the common
1041 * ancestor of F[h], and its neighbor l/r, that should be obtained.
1044 counter
= path_offset
;
1046 RFALSE(counter
< FIRST_PATH_ELEMENT_OFFSET
,
1047 "PAP-8180: invalid path length");
1049 for (; counter
> FIRST_PATH_ELEMENT_OFFSET
; counter
--) {
1051 * Check whether parent of the current buffer in the path
1052 * is really parent in the tree.
1055 (parent
= PATH_OFFSET_PBUFFER(path
, counter
- 1)))
1056 return REPEAT_SEARCH
;
1058 /* Check whether position in the parent is correct. */
1060 PATH_OFFSET_POSITION(path
,
1063 return REPEAT_SEARCH
;
1066 * Check whether parent at the path really points
1069 if (B_N_CHILD_NUM(parent
, position
) !=
1070 PATH_OFFSET_PBUFFER(path
, counter
)->b_blocknr
)
1071 return REPEAT_SEARCH
;
1074 * Return delimiting key if position in the parent is not
1075 * equal to first/last one.
1077 if (c_lr_par
== RIGHT_PARENTS
)
1078 first_last_position
= B_NR_ITEMS(parent
);
1079 if (position
!= first_last_position
) {
1080 *pcom_father
= parent
;
1081 get_bh(*pcom_father
);
1082 /*(*pcom_father = parent)->b_count++; */
1087 /* if we are in the root of the tree, then there is no common father */
1088 if (counter
== FIRST_PATH_ELEMENT_OFFSET
) {
1090 * Check whether first buffer in the path is the
1093 if (PATH_OFFSET_PBUFFER
1095 FIRST_PATH_ELEMENT_OFFSET
)->b_blocknr
==
1096 SB_ROOT_BLOCK(tb
->tb_sb
)) {
1097 *pfather
= *pcom_father
= NULL
;
1100 return REPEAT_SEARCH
;
1103 RFALSE(B_LEVEL(*pcom_father
) <= DISK_LEAF_NODE_LEVEL
,
1104 "PAP-8185: (%b %z) level too small",
1105 *pcom_father
, *pcom_father
);
1107 /* Check whether the common parent is locked. */
1109 if (buffer_locked(*pcom_father
)) {
1111 /* Release the write lock while the buffer is busy */
1112 int depth
= reiserfs_write_unlock_nested(tb
->tb_sb
);
1113 __wait_on_buffer(*pcom_father
);
1114 reiserfs_write_lock_nested(tb
->tb_sb
, depth
);
1115 if (FILESYSTEM_CHANGED_TB(tb
)) {
1116 brelse(*pcom_father
);
1117 return REPEAT_SEARCH
;
1122 * So, we got common parent of the current node and its
1123 * left/right neighbor. Now we are getting the parent of the
1124 * left/right neighbor.
1127 /* Form key to get parent of the left/right neighbor. */
1128 le_key2cpu_key(&s_lr_father_key
,
1129 internal_key(*pcom_father
,
1131 LEFT_PARENTS
) ? (tb
->lkey
[h
- 1] =
1137 if (c_lr_par
== LEFT_PARENTS
)
1138 decrement_key(&s_lr_father_key
);
1141 (tb
->tb_sb
, &s_lr_father_key
, &s_path_to_neighbor_father
,
1143 /* path is released */
1146 if (FILESYSTEM_CHANGED_TB(tb
)) {
1147 pathrelse(&s_path_to_neighbor_father
);
1148 brelse(*pcom_father
);
1149 return REPEAT_SEARCH
;
1152 *pfather
= PATH_PLAST_BUFFER(&s_path_to_neighbor_father
);
1154 RFALSE(B_LEVEL(*pfather
) != h
+ 1,
1155 "PAP-8190: (%b %z) level too small", *pfather
, *pfather
);
1156 RFALSE(s_path_to_neighbor_father
.path_length
<
1157 FIRST_PATH_ELEMENT_OFFSET
, "PAP-8192: path length is too small");
1159 s_path_to_neighbor_father
.path_length
--;
1160 pathrelse(&s_path_to_neighbor_father
);
1165 * Get parents of neighbors of node in the path(S[path_offset]) and
1166 * common parents of S[path_offset] and L[path_offset]/R[path_offset]:
1167 * F[path_offset], FL[path_offset], FR[path_offset], CFL[path_offset],
1169 * Calculate numbers of left and right delimiting keys position:
1170 * lkey[path_offset], rkey[path_offset].
1171 * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked
1172 * CARRY_ON - schedule didn't occur while the function worked
1174 static int get_parents(struct tree_balance
*tb
, int h
)
1176 struct treepath
*path
= tb
->tb_path
;
1179 path_offset
= PATH_H_PATH_OFFSET(tb
->tb_path
, h
);
1180 struct buffer_head
*curf
, *curcf
;
1182 /* Current node is the root of the tree or will be root of the tree */
1183 if (path_offset
<= FIRST_PATH_ELEMENT_OFFSET
) {
1185 * The root can not have parents.
1186 * Release nodes which previously were obtained as
1187 * parents of the current node neighbors.
1200 /* Get parent FL[path_offset] of L[path_offset]. */
1201 position
= PATH_OFFSET_POSITION(path
, path_offset
- 1);
1203 /* Current node is not the first child of its parent. */
1204 curf
= PATH_OFFSET_PBUFFER(path
, path_offset
- 1);
1205 curcf
= PATH_OFFSET_PBUFFER(path
, path_offset
- 1);
1208 tb
->lkey
[h
] = position
- 1;
1211 * Calculate current parent of L[path_offset], which is the
1212 * left neighbor of the current node. Calculate current
1213 * common parent of L[path_offset] and the current node.
1214 * Note that CFL[path_offset] not equal FL[path_offset] and
1215 * CFL[path_offset] not equal F[path_offset].
1216 * Calculate lkey[path_offset].
1218 if ((ret
= get_far_parent(tb
, h
+ 1, &curf
,
1220 LEFT_PARENTS
)) != CARRY_ON
)
1225 tb
->FL
[h
] = curf
; /* New initialization of FL[h]. */
1227 tb
->CFL
[h
] = curcf
; /* New initialization of CFL[h]. */
1229 RFALSE((curf
&& !B_IS_IN_TREE(curf
)) ||
1230 (curcf
&& !B_IS_IN_TREE(curcf
)),
1231 "PAP-8195: FL (%b) or CFL (%b) is invalid", curf
, curcf
);
1233 /* Get parent FR[h] of R[h]. */
1235 /* Current node is the last child of F[h]. FR[h] != F[h]. */
1236 if (position
== B_NR_ITEMS(PATH_H_PBUFFER(path
, h
+ 1))) {
1238 * Calculate current parent of R[h], which is the right
1239 * neighbor of F[h]. Calculate current common parent of
1240 * R[h] and current node. Note that CFR[h] not equal
1241 * FR[path_offset] and CFR[h] not equal F[h].
1244 get_far_parent(tb
, h
+ 1, &curf
, &curcf
,
1245 RIGHT_PARENTS
)) != CARRY_ON
)
1248 /* Current node is not the last child of its parent F[h]. */
1249 curf
= PATH_OFFSET_PBUFFER(path
, path_offset
- 1);
1250 curcf
= PATH_OFFSET_PBUFFER(path
, path_offset
- 1);
1253 tb
->rkey
[h
] = position
;
1257 /* New initialization of FR[path_offset]. */
1261 /* New initialization of CFR[path_offset]. */
1264 RFALSE((curf
&& !B_IS_IN_TREE(curf
)) ||
1265 (curcf
&& !B_IS_IN_TREE(curcf
)),
1266 "PAP-8205: FR (%b) or CFR (%b) is invalid", curf
, curcf
);
1272 * it is possible to remove node as result of shiftings to
1273 * neighbors even when we insert or paste item.
1275 static inline int can_node_be_removed(int mode
, int lfree
, int sfree
, int rfree
,
1276 struct tree_balance
*tb
, int h
)
1278 struct buffer_head
*Sh
= PATH_H_PBUFFER(tb
->tb_path
, h
);
1279 int levbytes
= tb
->insert_size
[h
];
1280 struct item_head
*ih
;
1281 struct reiserfs_key
*r_key
= NULL
;
1283 ih
= item_head(Sh
, 0);
1285 r_key
= internal_key(tb
->CFR
[h
], tb
->rkey
[h
]);
1287 if (lfree
+ rfree
+ sfree
< MAX_CHILD_SIZE(Sh
) + levbytes
1288 /* shifting may merge items which might save space */
1291 && op_is_left_mergeable(&ih
->ih_key
, Sh
->b_size
)) ? IH_SIZE
: 0)
1294 && op_is_left_mergeable(r_key
, Sh
->b_size
)) ? IH_SIZE
: 0)
1295 + ((h
) ? KEY_SIZE
: 0)) {
1296 /* node can not be removed */
1297 if (sfree
>= levbytes
) {
1298 /* new item fits into node S[h] without any shifting */
1302 ((mode
== M_INSERT
) ? 1 : 0);
1303 set_parameters(tb
, h
, 0, 0, 1, NULL
, -1, -1);
1304 return NO_BALANCING_NEEDED
;
1307 PROC_INFO_INC(tb
->tb_sb
, can_node_be_removed
[h
]);
1308 return !NO_BALANCING_NEEDED
;
1312 * Check whether current node S[h] is balanced when increasing its size by
1313 * Inserting or Pasting.
1314 * Calculate parameters for balancing for current level h.
1316 * tb tree_balance structure;
1317 * h current level of the node;
1318 * inum item number in S[h];
1319 * mode i - insert, p - paste;
1320 * Returns: 1 - schedule occurred;
1321 * 0 - balancing for higher levels needed;
1322 * -1 - no balancing for higher levels needed;
1323 * -2 - no disk space.
1325 /* ip means Inserting or Pasting */
1326 static int ip_check_balance(struct tree_balance
*tb
, int h
)
1328 struct virtual_node
*vn
= tb
->tb_vn
;
1330 * Number of bytes that must be inserted into (value is negative
1331 * if bytes are deleted) buffer which contains node being balanced.
1332 * The mnemonic is that the attempted change in node space used
1333 * level is levbytes bytes.
1338 int lfree
, sfree
, rfree
/* free space in L, S and R */ ;
1341 * nver is short for number of vertixes, and lnver is the number if
1342 * we shift to the left, rnver is the number if we shift to the
1343 * right, and lrnver is the number if we shift in both directions.
1344 * The goal is to minimize first the number of vertixes, and second,
1345 * the number of vertixes whose contents are changed by shifting,
1346 * and third the number of uncached vertixes whose contents are
1347 * changed by shifting and must be read from disk.
1349 int nver
, lnver
, rnver
, lrnver
;
1352 * used at leaf level only, S0 = S[0] is the node being balanced,
1353 * sInum [ I = 0,1,2 ] is the number of items that will
1354 * remain in node SI after balancing. S1 and S2 are new
1355 * nodes that might be created.
1359 * we perform 8 calls to get_num_ver(). For each call we
1360 * calculate five parameters. where 4th parameter is s1bytes
1363 * s0num, s1num, s2num for 8 cases
1364 * 0,1 - do not shift and do not shift but bottle
1365 * 2 - shift only whole item to left
1366 * 3 - shift to left and bottle as much as possible
1367 * 4,5 - shift to right (whole items and as much as possible
1368 * 6,7 - shift to both directions (whole items and as much as possible)
1370 short snum012
[40] = { 0, };
1372 /* Sh is the node whose balance is currently being checked */
1373 struct buffer_head
*Sh
;
1375 Sh
= PATH_H_PBUFFER(tb
->tb_path
, h
);
1376 levbytes
= tb
->insert_size
[h
];
1378 /* Calculate balance parameters for creating new root. */
1381 reiserfs_panic(tb
->tb_sb
, "vs-8210",
1382 "S[0] can not be 0");
1383 switch (ret
= get_empty_nodes(tb
, h
)) {
1384 /* no balancing for higher levels needed */
1386 set_parameters(tb
, h
, 0, 0, 1, NULL
, -1, -1);
1387 return NO_BALANCING_NEEDED
;
1393 reiserfs_panic(tb
->tb_sb
, "vs-8215", "incorrect "
1394 "return value of get_empty_nodes");
1398 /* get parents of S[h] neighbors. */
1399 ret
= get_parents(tb
, h
);
1400 if (ret
!= CARRY_ON
)
1403 sfree
= B_FREE_SPACE(Sh
);
1405 /* get free space of neighbors */
1406 rfree
= get_rfree(tb
, h
);
1407 lfree
= get_lfree(tb
, h
);
1409 /* and new item fits into node S[h] without any shifting */
1410 if (can_node_be_removed(vn
->vn_mode
, lfree
, sfree
, rfree
, tb
, h
) ==
1411 NO_BALANCING_NEEDED
)
1412 return NO_BALANCING_NEEDED
;
1414 create_virtual_node(tb
, h
);
1417 * determine maximal number of items we can shift to the left
1418 * neighbor (in tb structure) and the maximal number of bytes
1419 * that can flow to the left neighbor from the left most liquid
1420 * item that cannot be shifted from S[0] entirely (returned value)
1422 check_left(tb
, h
, lfree
);
1425 * determine maximal number of items we can shift to the right
1426 * neighbor (in tb structure) and the maximal number of bytes
1427 * that can flow to the right neighbor from the right most liquid
1428 * item that cannot be shifted from S[0] entirely (returned value)
1430 check_right(tb
, h
, rfree
);
1433 * all contents of internal node S[h] can be moved into its
1434 * neighbors, S[h] will be removed after balancing
1436 if (h
&& (tb
->rnum
[h
] + tb
->lnum
[h
] >= vn
->vn_nr_item
+ 1)) {
1440 * Since we are working on internal nodes, and our internal
1441 * nodes have fixed size entries, then we can balance by the
1442 * number of items rather than the space they consume. In this
1443 * routine we set the left node equal to the right node,
1444 * allowing a difference of less than or equal to 1 child
1448 ((MAX_NR_KEY(Sh
) << 1) + 2 - tb
->lnum
[h
] - tb
->rnum
[h
] +
1449 vn
->vn_nr_item
+ 1) / 2 - (MAX_NR_KEY(Sh
) + 1 -
1451 set_parameters(tb
, h
, vn
->vn_nr_item
+ 1 - to_r
, to_r
, 0, NULL
,
1457 * this checks balance condition, that any two neighboring nodes
1458 * can not fit in one node
1461 (tb
->lnum
[h
] >= vn
->vn_nr_item
+ 1 ||
1462 tb
->rnum
[h
] >= vn
->vn_nr_item
+ 1),
1463 "vs-8220: tree is not balanced on internal level");
1464 RFALSE(!h
&& ((tb
->lnum
[h
] >= vn
->vn_nr_item
&& (tb
->lbytes
== -1)) ||
1465 (tb
->rnum
[h
] >= vn
->vn_nr_item
&& (tb
->rbytes
== -1))),
1466 "vs-8225: tree is not balanced on leaf level");
1469 * all contents of S[0] can be moved into its neighbors
1470 * S[0] will be removed after balancing.
1472 if (!h
&& is_leaf_removable(tb
))
1476 * why do we perform this check here rather than earlier??
1477 * Answer: we can win 1 node in some cases above. Moreover we
1478 * checked it above, when we checked, that S[0] is not removable
1482 /* new item fits into node S[h] without any shifting */
1483 if (sfree
>= levbytes
) {
1485 tb
->s0num
= vn
->vn_nr_item
;
1486 set_parameters(tb
, h
, 0, 0, 1, NULL
, -1, -1);
1487 return NO_BALANCING_NEEDED
;
1491 int lpar
, rpar
, nset
, lset
, rset
, lrset
;
1492 /* regular overflowing of the node */
1495 * get_num_ver works in 2 modes (FLOW & NO_FLOW)
1496 * lpar, rpar - number of items we can shift to left/right
1497 * neighbor (including splitting item)
1498 * nset, lset, rset, lrset - shows, whether flowing items
1499 * give better packing
1502 #define NO_FLOW 0 /* do not any splitting */
1504 /* we choose one of the following */
1505 #define NOTHING_SHIFT_NO_FLOW 0
1506 #define NOTHING_SHIFT_FLOW 5
1507 #define LEFT_SHIFT_NO_FLOW 10
1508 #define LEFT_SHIFT_FLOW 15
1509 #define RIGHT_SHIFT_NO_FLOW 20
1510 #define RIGHT_SHIFT_FLOW 25
1511 #define LR_SHIFT_NO_FLOW 30
1512 #define LR_SHIFT_FLOW 35
1518 * calculate number of blocks S[h] must be split into when
1519 * nothing is shifted to the neighbors, as well as number of
1520 * items in each part of the split node (s012 numbers),
1521 * and number of bytes (s1bytes) of the shared drop which
1524 nset
= NOTHING_SHIFT_NO_FLOW
;
1525 nver
= get_num_ver(vn
->vn_mode
, tb
, h
,
1526 0, -1, h
? vn
->vn_nr_item
: 0, -1,
1533 * note, that in this case we try to bottle
1534 * between S[0] and S1 (S1 - the first new node)
1536 nver1
= get_num_ver(vn
->vn_mode
, tb
, h
,
1538 snum012
+ NOTHING_SHIFT_FLOW
, FLOW
);
1540 nset
= NOTHING_SHIFT_FLOW
, nver
= nver1
;
1544 * calculate number of blocks S[h] must be split into when
1545 * l_shift_num first items and l_shift_bytes of the right
1546 * most liquid item to be shifted are shifted to the left
1547 * neighbor, as well as number of items in each part of the
1548 * splitted node (s012 numbers), and number of bytes
1549 * (s1bytes) of the shared drop which flow to S1 if any
1551 lset
= LEFT_SHIFT_NO_FLOW
;
1552 lnver
= get_num_ver(vn
->vn_mode
, tb
, h
,
1553 lpar
- ((h
|| tb
->lbytes
== -1) ? 0 : 1),
1554 -1, h
? vn
->vn_nr_item
: 0, -1,
1555 snum012
+ LEFT_SHIFT_NO_FLOW
, NO_FLOW
);
1559 lnver1
= get_num_ver(vn
->vn_mode
, tb
, h
,
1561 ((tb
->lbytes
!= -1) ? 1 : 0),
1563 snum012
+ LEFT_SHIFT_FLOW
, FLOW
);
1565 lset
= LEFT_SHIFT_FLOW
, lnver
= lnver1
;
1569 * calculate number of blocks S[h] must be split into when
1570 * r_shift_num first items and r_shift_bytes of the left most
1571 * liquid item to be shifted are shifted to the right neighbor,
1572 * as well as number of items in each part of the splitted
1573 * node (s012 numbers), and number of bytes (s1bytes) of the
1574 * shared drop which flow to S1 if any
1576 rset
= RIGHT_SHIFT_NO_FLOW
;
1577 rnver
= get_num_ver(vn
->vn_mode
, tb
, h
,
1579 h
? (vn
->vn_nr_item
- rpar
) : (rpar
-
1584 snum012
+ RIGHT_SHIFT_NO_FLOW
, NO_FLOW
);
1588 rnver1
= get_num_ver(vn
->vn_mode
, tb
, h
,
1591 ((tb
->rbytes
!= -1) ? 1 : 0)),
1593 snum012
+ RIGHT_SHIFT_FLOW
, FLOW
);
1596 rset
= RIGHT_SHIFT_FLOW
, rnver
= rnver1
;
1600 * calculate number of blocks S[h] must be split into when
1601 * items are shifted in both directions, as well as number
1602 * of items in each part of the splitted node (s012 numbers),
1603 * and number of bytes (s1bytes) of the shared drop which
1606 lrset
= LR_SHIFT_NO_FLOW
;
1607 lrnver
= get_num_ver(vn
->vn_mode
, tb
, h
,
1608 lpar
- ((h
|| tb
->lbytes
== -1) ? 0 : 1),
1610 h
? (vn
->vn_nr_item
- rpar
) : (rpar
-
1615 snum012
+ LR_SHIFT_NO_FLOW
, NO_FLOW
);
1619 lrnver1
= get_num_ver(vn
->vn_mode
, tb
, h
,
1621 ((tb
->lbytes
!= -1) ? 1 : 0),
1624 ((tb
->rbytes
!= -1) ? 1 : 0)),
1626 snum012
+ LR_SHIFT_FLOW
, FLOW
);
1627 if (lrnver
> lrnver1
)
1628 lrset
= LR_SHIFT_FLOW
, lrnver
= lrnver1
;
1632 * Our general shifting strategy is:
1633 * 1) to minimized number of new nodes;
1634 * 2) to minimized number of neighbors involved in shifting;
1635 * 3) to minimized number of disk reads;
1638 /* we can win TWO or ONE nodes by shifting in both directions */
1639 if (lrnver
< lnver
&& lrnver
< rnver
) {
1641 (tb
->lnum
[h
] != 1 ||
1643 lrnver
!= 1 || rnver
!= 2 || lnver
!= 2
1644 || h
!= 1), "vs-8230: bad h");
1645 if (lrset
== LR_SHIFT_FLOW
)
1646 set_parameters(tb
, h
, tb
->lnum
[h
], tb
->rnum
[h
],
1647 lrnver
, snum012
+ lrset
,
1648 tb
->lbytes
, tb
->rbytes
);
1650 set_parameters(tb
, h
,
1652 ((tb
->lbytes
== -1) ? 0 : 1),
1654 ((tb
->rbytes
== -1) ? 0 : 1),
1655 lrnver
, snum012
+ lrset
, -1, -1);
1661 * if shifting doesn't lead to better packing
1664 if (nver
== lrnver
) {
1665 set_parameters(tb
, h
, 0, 0, nver
, snum012
+ nset
, -1,
1671 * now we know that for better packing shifting in only one
1672 * direction either to the left or to the right is required
1676 * if shifting to the left is better than
1677 * shifting to the right
1679 if (lnver
< rnver
) {
1685 * if shifting to the right is better than
1686 * shifting to the left
1688 if (lnver
> rnver
) {
1689 SET_PAR_SHIFT_RIGHT
;
1694 * now shifting in either direction gives the same number
1695 * of nodes and we can make use of the cached neighbors
1697 if (is_left_neighbor_in_cache(tb
, h
)) {
1703 * shift to the right independently on whether the
1704 * right neighbor in cache or not
1706 SET_PAR_SHIFT_RIGHT
;
1712 * Check whether current node S[h] is balanced when Decreasing its size by
1713 * Deleting or Cutting for INTERNAL node of S+tree.
1714 * Calculate parameters for balancing for current level h.
1716 * tb tree_balance structure;
1717 * h current level of the node;
1718 * inum item number in S[h];
1719 * mode i - insert, p - paste;
1720 * Returns: 1 - schedule occurred;
1721 * 0 - balancing for higher levels needed;
1722 * -1 - no balancing for higher levels needed;
1723 * -2 - no disk space.
1725 * Note: Items of internal nodes have fixed size, so the balance condition for
1726 * the internal part of S+tree is as for the B-trees.
1728 static int dc_check_balance_internal(struct tree_balance
*tb
, int h
)
1730 struct virtual_node
*vn
= tb
->tb_vn
;
1733 * Sh is the node whose balance is currently being checked,
1734 * and Fh is its father.
1736 struct buffer_head
*Sh
, *Fh
;
1738 int lfree
, rfree
/* free space in L and R */ ;
1740 Sh
= PATH_H_PBUFFER(tb
->tb_path
, h
);
1741 Fh
= PATH_H_PPARENT(tb
->tb_path
, h
);
1743 maxsize
= MAX_CHILD_SIZE(Sh
);
1746 * using tb->insert_size[h], which is negative in this case,
1747 * create_virtual_node calculates:
1748 * new_nr_item = number of items node would have if operation is
1749 * performed without balancing (new_nr_item);
1751 create_virtual_node(tb
, h
);
1753 if (!Fh
) { /* S[h] is the root. */
1754 /* no balancing for higher levels needed */
1755 if (vn
->vn_nr_item
> 0) {
1756 set_parameters(tb
, h
, 0, 0, 1, NULL
, -1, -1);
1757 return NO_BALANCING_NEEDED
;
1761 * Current root will be deleted resulting in
1762 * decrementing the tree height.
1764 set_parameters(tb
, h
, 0, 0, 0, NULL
, -1, -1);
1768 if ((ret
= get_parents(tb
, h
)) != CARRY_ON
)
1771 /* get free space of neighbors */
1772 rfree
= get_rfree(tb
, h
);
1773 lfree
= get_lfree(tb
, h
);
1775 /* determine maximal number of items we can fit into neighbors */
1776 check_left(tb
, h
, lfree
);
1777 check_right(tb
, h
, rfree
);
1780 * Balance condition for the internal node is valid.
1781 * In this case we balance only if it leads to better packing.
1783 if (vn
->vn_nr_item
>= MIN_NR_KEY(Sh
)) {
1785 * Here we join S[h] with one of its neighbors,
1786 * which is impossible with greater values of new_nr_item.
1788 if (vn
->vn_nr_item
== MIN_NR_KEY(Sh
)) {
1789 /* All contents of S[h] can be moved to L[h]. */
1790 if (tb
->lnum
[h
] >= vn
->vn_nr_item
+ 1) {
1796 PATH_H_B_ITEM_ORDER(tb
->tb_path
,
1798 0) ? B_NR_ITEMS(tb
->FL
[h
]) : n
- 1;
1799 n
= dc_size(B_N_CHILD(tb
->FL
[h
], order_L
)) /
1800 (DC_SIZE
+ KEY_SIZE
);
1801 set_parameters(tb
, h
, -n
- 1, 0, 0, NULL
, -1,
1806 /* All contents of S[h] can be moved to R[h]. */
1807 if (tb
->rnum
[h
] >= vn
->vn_nr_item
+ 1) {
1813 PATH_H_B_ITEM_ORDER(tb
->tb_path
,
1815 B_NR_ITEMS(Fh
)) ? 0 : n
+ 1;
1816 n
= dc_size(B_N_CHILD(tb
->FR
[h
], order_R
)) /
1817 (DC_SIZE
+ KEY_SIZE
);
1818 set_parameters(tb
, h
, 0, -n
- 1, 0, NULL
, -1,
1825 * All contents of S[h] can be moved to the neighbors
1828 if (tb
->rnum
[h
] + tb
->lnum
[h
] >= vn
->vn_nr_item
+ 1) {
1832 ((MAX_NR_KEY(Sh
) << 1) + 2 - tb
->lnum
[h
] -
1833 tb
->rnum
[h
] + vn
->vn_nr_item
+ 1) / 2 -
1834 (MAX_NR_KEY(Sh
) + 1 - tb
->rnum
[h
]);
1835 set_parameters(tb
, h
, vn
->vn_nr_item
+ 1 - to_r
, to_r
,
1840 /* Balancing does not lead to better packing. */
1841 set_parameters(tb
, h
, 0, 0, 1, NULL
, -1, -1);
1842 return NO_BALANCING_NEEDED
;
1846 * Current node contain insufficient number of items.
1847 * Balancing is required.
1849 /* Check whether we can merge S[h] with left neighbor. */
1850 if (tb
->lnum
[h
] >= vn
->vn_nr_item
+ 1)
1851 if (is_left_neighbor_in_cache(tb
, h
)
1852 || tb
->rnum
[h
] < vn
->vn_nr_item
+ 1 || !tb
->FR
[h
]) {
1858 PATH_H_B_ITEM_ORDER(tb
->tb_path
,
1860 0) ? B_NR_ITEMS(tb
->FL
[h
]) : n
- 1;
1861 n
= dc_size(B_N_CHILD(tb
->FL
[h
], order_L
)) / (DC_SIZE
+
1863 set_parameters(tb
, h
, -n
- 1, 0, 0, NULL
, -1, -1);
1867 /* Check whether we can merge S[h] with right neighbor. */
1868 if (tb
->rnum
[h
] >= vn
->vn_nr_item
+ 1) {
1874 PATH_H_B_ITEM_ORDER(tb
->tb_path
,
1875 h
)) == B_NR_ITEMS(Fh
)) ? 0 : (n
+ 1);
1876 n
= dc_size(B_N_CHILD(tb
->FR
[h
], order_R
)) / (DC_SIZE
+
1878 set_parameters(tb
, h
, 0, -n
- 1, 0, NULL
, -1, -1);
1882 /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1883 if (tb
->rnum
[h
] + tb
->lnum
[h
] >= vn
->vn_nr_item
+ 1) {
1887 ((MAX_NR_KEY(Sh
) << 1) + 2 - tb
->lnum
[h
] - tb
->rnum
[h
] +
1888 vn
->vn_nr_item
+ 1) / 2 - (MAX_NR_KEY(Sh
) + 1 -
1890 set_parameters(tb
, h
, vn
->vn_nr_item
+ 1 - to_r
, to_r
, 0, NULL
,
1895 /* For internal nodes try to borrow item from a neighbor */
1896 RFALSE(!tb
->FL
[h
] && !tb
->FR
[h
], "vs-8235: trying to borrow for root");
1898 /* Borrow one or two items from caching neighbor */
1899 if (is_left_neighbor_in_cache(tb
, h
) || !tb
->FR
[h
]) {
1903 (MAX_NR_KEY(Sh
) + 1 - tb
->lnum
[h
] + vn
->vn_nr_item
+
1904 1) / 2 - (vn
->vn_nr_item
+ 1);
1905 set_parameters(tb
, h
, -from_l
, 0, 1, NULL
, -1, -1);
1909 set_parameters(tb
, h
, 0,
1910 -((MAX_NR_KEY(Sh
) + 1 - tb
->rnum
[h
] + vn
->vn_nr_item
+
1911 1) / 2 - (vn
->vn_nr_item
+ 1)), 1, NULL
, -1, -1);
1916 * Check whether current node S[h] is balanced when Decreasing its size by
1917 * Deleting or Truncating for LEAF node of S+tree.
1918 * Calculate parameters for balancing for current level h.
1920 * tb tree_balance structure;
1921 * h current level of the node;
1922 * inum item number in S[h];
1923 * mode i - insert, p - paste;
1924 * Returns: 1 - schedule occurred;
1925 * 0 - balancing for higher levels needed;
1926 * -1 - no balancing for higher levels needed;
1927 * -2 - no disk space.
1929 static int dc_check_balance_leaf(struct tree_balance
*tb
, int h
)
1931 struct virtual_node
*vn
= tb
->tb_vn
;
1934 * Number of bytes that must be deleted from
1935 * (value is negative if bytes are deleted) buffer which
1936 * contains node being balanced. The mnemonic is that the
1937 * attempted change in node space used level is levbytes bytes.
1941 /* the maximal item size */
1945 * S0 is the node whose balance is currently being checked,
1946 * and F0 is its father.
1948 struct buffer_head
*S0
, *F0
;
1949 int lfree
, rfree
/* free space in L and R */ ;
1951 S0
= PATH_H_PBUFFER(tb
->tb_path
, 0);
1952 F0
= PATH_H_PPARENT(tb
->tb_path
, 0);
1954 levbytes
= tb
->insert_size
[h
];
1956 maxsize
= MAX_CHILD_SIZE(S0
); /* maximal possible size of an item */
1958 if (!F0
) { /* S[0] is the root now. */
1960 RFALSE(-levbytes
>= maxsize
- B_FREE_SPACE(S0
),
1961 "vs-8240: attempt to create empty buffer tree");
1963 set_parameters(tb
, h
, 0, 0, 1, NULL
, -1, -1);
1964 return NO_BALANCING_NEEDED
;
1967 if ((ret
= get_parents(tb
, h
)) != CARRY_ON
)
1970 /* get free space of neighbors */
1971 rfree
= get_rfree(tb
, h
);
1972 lfree
= get_lfree(tb
, h
);
1974 create_virtual_node(tb
, h
);
1976 /* if 3 leaves can be merge to one, set parameters and return */
1977 if (are_leaves_removable(tb
, lfree
, rfree
))
1981 * determine maximal number of items we can shift to the left/right
1982 * neighbor and the maximal number of bytes that can flow to the
1983 * left/right neighbor from the left/right most liquid item that
1984 * cannot be shifted from S[0] entirely
1986 check_left(tb
, h
, lfree
);
1987 check_right(tb
, h
, rfree
);
1989 /* check whether we can merge S with left neighbor. */
1990 if (tb
->lnum
[0] >= vn
->vn_nr_item
&& tb
->lbytes
== -1)
1991 if (is_left_neighbor_in_cache(tb
, h
) || ((tb
->rnum
[0] - ((tb
->rbytes
== -1) ? 0 : 1)) < vn
->vn_nr_item
) || /* S can not be merged with R */
1995 "vs-8245: dc_check_balance_leaf: FL[h] must exist");
1997 /* set parameter to merge S[0] with its left neighbor */
1998 set_parameters(tb
, h
, -1, 0, 0, NULL
, -1, -1);
2002 /* check whether we can merge S[0] with right neighbor. */
2003 if (tb
->rnum
[0] >= vn
->vn_nr_item
&& tb
->rbytes
== -1) {
2004 set_parameters(tb
, h
, 0, -1, 0, NULL
, -1, -1);
2009 * All contents of S[0] can be moved to the neighbors (L[0] & R[0]).
2010 * Set parameters and return
2012 if (is_leaf_removable(tb
))
2015 /* Balancing is not required. */
2016 tb
->s0num
= vn
->vn_nr_item
;
2017 set_parameters(tb
, h
, 0, 0, 1, NULL
, -1, -1);
2018 return NO_BALANCING_NEEDED
;
2022 * Check whether current node S[h] is balanced when Decreasing its size by
2023 * Deleting or Cutting.
2024 * Calculate parameters for balancing for current level h.
2026 * tb tree_balance structure;
2027 * h current level of the node;
2028 * inum item number in S[h];
2029 * mode d - delete, c - cut.
2030 * Returns: 1 - schedule occurred;
2031 * 0 - balancing for higher levels needed;
2032 * -1 - no balancing for higher levels needed;
2033 * -2 - no disk space.
2035 static int dc_check_balance(struct tree_balance
*tb
, int h
)
2037 RFALSE(!(PATH_H_PBUFFER(tb
->tb_path
, h
)),
2038 "vs-8250: S is not initialized");
2041 return dc_check_balance_internal(tb
, h
);
2043 return dc_check_balance_leaf(tb
, h
);
2047 * Check whether current node S[h] is balanced.
2048 * Calculate parameters for balancing for current level h.
2051 * tb tree_balance structure:
2053 * tb is a large structure that must be read about in the header
2054 * file at the same time as this procedure if the reader is
2055 * to successfully understand this procedure
2057 * h current level of the node;
2058 * inum item number in S[h];
2059 * mode i - insert, p - paste, d - delete, c - cut.
2060 * Returns: 1 - schedule occurred;
2061 * 0 - balancing for higher levels needed;
2062 * -1 - no balancing for higher levels needed;
2063 * -2 - no disk space.
2065 static int check_balance(int mode
,
2066 struct tree_balance
*tb
,
2070 struct item_head
*ins_ih
, const void *data
)
2072 struct virtual_node
*vn
;
2074 vn
= tb
->tb_vn
= (struct virtual_node
*)(tb
->vn_buf
);
2075 vn
->vn_free_ptr
= (char *)(tb
->tb_vn
+ 1);
2077 vn
->vn_affected_item_num
= inum
;
2078 vn
->vn_pos_in_item
= pos_in_item
;
2079 vn
->vn_ins_ih
= ins_ih
;
2082 RFALSE(mode
== M_INSERT
&& !vn
->vn_ins_ih
,
2083 "vs-8255: ins_ih can not be 0 in insert mode");
2085 /* Calculate balance parameters when size of node is increasing. */
2086 if (tb
->insert_size
[h
] > 0)
2087 return ip_check_balance(tb
, h
);
2089 /* Calculate balance parameters when size of node is decreasing. */
2090 return dc_check_balance(tb
, h
);
2093 /* Check whether parent at the path is the really parent of the current node.*/
2094 static int get_direct_parent(struct tree_balance
*tb
, int h
)
2096 struct buffer_head
*bh
;
2097 struct treepath
*path
= tb
->tb_path
;
2099 path_offset
= PATH_H_PATH_OFFSET(tb
->tb_path
, h
);
2101 /* We are in the root or in the new root. */
2102 if (path_offset
<= FIRST_PATH_ELEMENT_OFFSET
) {
2104 RFALSE(path_offset
< FIRST_PATH_ELEMENT_OFFSET
- 1,
2105 "PAP-8260: invalid offset in the path");
2107 if (PATH_OFFSET_PBUFFER(path
, FIRST_PATH_ELEMENT_OFFSET
)->
2108 b_blocknr
== SB_ROOT_BLOCK(tb
->tb_sb
)) {
2109 /* Root is not changed. */
2110 PATH_OFFSET_PBUFFER(path
, path_offset
- 1) = NULL
;
2111 PATH_OFFSET_POSITION(path
, path_offset
- 1) = 0;
2114 /* Root is changed and we must recalculate the path. */
2115 return REPEAT_SEARCH
;
2118 /* Parent in the path is not in the tree. */
2120 (bh
= PATH_OFFSET_PBUFFER(path
, path_offset
- 1)))
2121 return REPEAT_SEARCH
;
2124 PATH_OFFSET_POSITION(path
,
2125 path_offset
- 1)) > B_NR_ITEMS(bh
))
2126 return REPEAT_SEARCH
;
2128 /* Parent in the path is not parent of the current node in the tree. */
2129 if (B_N_CHILD_NUM(bh
, position
) !=
2130 PATH_OFFSET_PBUFFER(path
, path_offset
)->b_blocknr
)
2131 return REPEAT_SEARCH
;
2133 if (buffer_locked(bh
)) {
2134 int depth
= reiserfs_write_unlock_nested(tb
->tb_sb
);
2135 __wait_on_buffer(bh
);
2136 reiserfs_write_lock_nested(tb
->tb_sb
, depth
);
2137 if (FILESYSTEM_CHANGED_TB(tb
))
2138 return REPEAT_SEARCH
;
2142 * Parent in the path is unlocked and really parent
2143 * of the current node.
2149 * Using lnum[h] and rnum[h] we should determine what neighbors
2151 * need in order to balance S[h], and get them if necessary.
2152 * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
2153 * CARRY_ON - schedule didn't occur while the function worked;
2155 static int get_neighbors(struct tree_balance
*tb
, int h
)
2158 path_offset
= PATH_H_PATH_OFFSET(tb
->tb_path
, h
+ 1);
2159 unsigned long son_number
;
2160 struct super_block
*sb
= tb
->tb_sb
;
2161 struct buffer_head
*bh
;
2164 PROC_INFO_INC(sb
, get_neighbors
[h
]);
2167 /* We need left neighbor to balance S[h]. */
2168 PROC_INFO_INC(sb
, need_l_neighbor
[h
]);
2169 bh
= PATH_OFFSET_PBUFFER(tb
->tb_path
, path_offset
);
2171 RFALSE(bh
== tb
->FL
[h
] &&
2172 !PATH_OFFSET_POSITION(tb
->tb_path
, path_offset
),
2173 "PAP-8270: invalid position in the parent");
2177 tb
->FL
[h
]) ? tb
->lkey
[h
] : B_NR_ITEMS(tb
->
2179 son_number
= B_N_CHILD_NUM(tb
->FL
[h
], child_position
);
2180 depth
= reiserfs_write_unlock_nested(tb
->tb_sb
);
2181 bh
= sb_bread(sb
, son_number
);
2182 reiserfs_write_lock_nested(tb
->tb_sb
, depth
);
2185 if (FILESYSTEM_CHANGED_TB(tb
)) {
2187 PROC_INFO_INC(sb
, get_neighbors_restart
[h
]);
2188 return REPEAT_SEARCH
;
2191 RFALSE(!B_IS_IN_TREE(tb
->FL
[h
]) ||
2192 child_position
> B_NR_ITEMS(tb
->FL
[h
]) ||
2193 B_N_CHILD_NUM(tb
->FL
[h
], child_position
) !=
2194 bh
->b_blocknr
, "PAP-8275: invalid parent");
2195 RFALSE(!B_IS_IN_TREE(bh
), "PAP-8280: invalid child");
2198 MAX_CHILD_SIZE(bh
) -
2199 dc_size(B_N_CHILD(tb
->FL
[0], child_position
)),
2200 "PAP-8290: invalid child size of left neighbor");
2206 /* We need right neighbor to balance S[path_offset]. */
2208 PROC_INFO_INC(sb
, need_r_neighbor
[h
]);
2209 bh
= PATH_OFFSET_PBUFFER(tb
->tb_path
, path_offset
);
2211 RFALSE(bh
== tb
->FR
[h
] &&
2212 PATH_OFFSET_POSITION(tb
->tb_path
,
2215 "PAP-8295: invalid position in the parent");
2218 (bh
== tb
->FR
[h
]) ? tb
->rkey
[h
] + 1 : 0;
2219 son_number
= B_N_CHILD_NUM(tb
->FR
[h
], child_position
);
2220 depth
= reiserfs_write_unlock_nested(tb
->tb_sb
);
2221 bh
= sb_bread(sb
, son_number
);
2222 reiserfs_write_lock_nested(tb
->tb_sb
, depth
);
2225 if (FILESYSTEM_CHANGED_TB(tb
)) {
2227 PROC_INFO_INC(sb
, get_neighbors_restart
[h
]);
2228 return REPEAT_SEARCH
;
2234 && B_FREE_SPACE(bh
) !=
2235 MAX_CHILD_SIZE(bh
) -
2236 dc_size(B_N_CHILD(tb
->FR
[0], child_position
)),
2237 "PAP-8300: invalid child size of right neighbor (%d != %d - %d)",
2238 B_FREE_SPACE(bh
), MAX_CHILD_SIZE(bh
),
2239 dc_size(B_N_CHILD(tb
->FR
[0], child_position
)));
2245 static int get_virtual_node_size(struct super_block
*sb
, struct buffer_head
*bh
)
2247 int max_num_of_items
;
2248 int max_num_of_entries
;
2249 unsigned long blocksize
= sb
->s_blocksize
;
2251 #define MIN_NAME_LEN 1
2253 max_num_of_items
= (blocksize
- BLKH_SIZE
) / (IH_SIZE
+ MIN_ITEM_LEN
);
2254 max_num_of_entries
= (blocksize
- BLKH_SIZE
- IH_SIZE
) /
2255 (DEH_SIZE
+ MIN_NAME_LEN
);
2257 return sizeof(struct virtual_node
) +
2258 max(max_num_of_items
* sizeof(struct virtual_item
),
2259 sizeof(struct virtual_item
) + sizeof(struct direntry_uarea
) +
2260 (max_num_of_entries
- 1) * sizeof(__u16
));
2264 * maybe we should fail balancing we are going to perform when kmalloc
2265 * fails several times. But now it will loop until kmalloc gets
2268 static int get_mem_for_virtual_node(struct tree_balance
*tb
)
2274 size
= get_virtual_node_size(tb
->tb_sb
, PATH_PLAST_BUFFER(tb
->tb_path
));
2276 /* we have to allocate more memory for virtual node */
2277 if (size
> tb
->vn_buf_size
) {
2279 /* free memory allocated before */
2281 /* this is not needed if kfree is atomic */
2285 /* virtual node requires now more memory */
2286 tb
->vn_buf_size
= size
;
2288 /* get memory for virtual item */
2289 buf
= kmalloc(size
, GFP_ATOMIC
| __GFP_NOWARN
);
2292 * getting memory with GFP_KERNEL priority may involve
2293 * balancing now (due to indirect_to_direct conversion
2294 * on dcache shrinking). So, release path and collected
2297 free_buffers_in_tb(tb
);
2298 buf
= kmalloc(size
, GFP_NOFS
);
2300 tb
->vn_buf_size
= 0;
2304 return REPEAT_SEARCH
;
2310 if (check_fs
&& FILESYSTEM_CHANGED_TB(tb
))
2311 return REPEAT_SEARCH
;
2316 #ifdef CONFIG_REISERFS_CHECK
2317 static void tb_buffer_sanity_check(struct super_block
*sb
,
2318 struct buffer_head
*bh
,
2319 const char *descr
, int level
)
2322 if (atomic_read(&(bh
->b_count
)) <= 0)
2324 reiserfs_panic(sb
, "jmacd-1", "negative or zero "
2325 "reference counter for buffer %s[%d] "
2326 "(%b)", descr
, level
, bh
);
2328 if (!buffer_uptodate(bh
))
2329 reiserfs_panic(sb
, "jmacd-2", "buffer is not up "
2330 "to date %s[%d] (%b)",
2333 if (!B_IS_IN_TREE(bh
))
2334 reiserfs_panic(sb
, "jmacd-3", "buffer is not "
2335 "in tree %s[%d] (%b)",
2338 if (bh
->b_bdev
!= sb
->s_bdev
)
2339 reiserfs_panic(sb
, "jmacd-4", "buffer has wrong "
2340 "device %s[%d] (%b)",
2343 if (bh
->b_size
!= sb
->s_blocksize
)
2344 reiserfs_panic(sb
, "jmacd-5", "buffer has wrong "
2345 "blocksize %s[%d] (%b)",
2348 if (bh
->b_blocknr
> SB_BLOCK_COUNT(sb
))
2349 reiserfs_panic(sb
, "jmacd-6", "buffer block "
2350 "number too high %s[%d] (%b)",
2355 static void tb_buffer_sanity_check(struct super_block
*sb
,
2356 struct buffer_head
*bh
,
2357 const char *descr
, int level
)
2362 static int clear_all_dirty_bits(struct super_block
*s
, struct buffer_head
*bh
)
2364 return reiserfs_prepare_for_journal(s
, bh
, 0);
2367 static int wait_tb_buffers_until_unlocked(struct tree_balance
*tb
)
2369 struct buffer_head
*locked
;
2370 #ifdef CONFIG_REISERFS_CHECK
2371 int repeat_counter
= 0;
2379 for (i
= tb
->tb_path
->path_length
;
2380 !locked
&& i
> ILLEGAL_PATH_ELEMENT_OFFSET
; i
--) {
2381 if (PATH_OFFSET_PBUFFER(tb
->tb_path
, i
)) {
2383 * if I understand correctly, we can only
2384 * be sure the last buffer in the path is
2387 #ifdef CONFIG_REISERFS_CHECK
2388 if (PATH_PLAST_BUFFER(tb
->tb_path
) ==
2389 PATH_OFFSET_PBUFFER(tb
->tb_path
, i
))
2390 tb_buffer_sanity_check(tb
->tb_sb
,
2397 if (!clear_all_dirty_bits(tb
->tb_sb
,
2402 PATH_OFFSET_PBUFFER(tb
->tb_path
,
2408 for (i
= 0; !locked
&& i
< MAX_HEIGHT
&& tb
->insert_size
[i
];
2414 tb_buffer_sanity_check(tb
->tb_sb
,
2417 if (!clear_all_dirty_bits
2418 (tb
->tb_sb
, tb
->L
[i
]))
2422 if (!locked
&& tb
->FL
[i
]) {
2423 tb_buffer_sanity_check(tb
->tb_sb
,
2426 if (!clear_all_dirty_bits
2427 (tb
->tb_sb
, tb
->FL
[i
]))
2431 if (!locked
&& tb
->CFL
[i
]) {
2432 tb_buffer_sanity_check(tb
->tb_sb
,
2435 if (!clear_all_dirty_bits
2436 (tb
->tb_sb
, tb
->CFL
[i
]))
2437 locked
= tb
->CFL
[i
];
2442 if (!locked
&& (tb
->rnum
[i
])) {
2445 tb_buffer_sanity_check(tb
->tb_sb
,
2448 if (!clear_all_dirty_bits
2449 (tb
->tb_sb
, tb
->R
[i
]))
2453 if (!locked
&& tb
->FR
[i
]) {
2454 tb_buffer_sanity_check(tb
->tb_sb
,
2457 if (!clear_all_dirty_bits
2458 (tb
->tb_sb
, tb
->FR
[i
]))
2462 if (!locked
&& tb
->CFR
[i
]) {
2463 tb_buffer_sanity_check(tb
->tb_sb
,
2466 if (!clear_all_dirty_bits
2467 (tb
->tb_sb
, tb
->CFR
[i
]))
2468 locked
= tb
->CFR
[i
];
2474 * as far as I can tell, this is not required. The FEB list
2475 * seems to be full of newly allocated nodes, which will
2476 * never be locked, dirty, or anything else.
2477 * To be safe, I'm putting in the checks and waits in.
2478 * For the moment, they are needed to keep the code in
2479 * journal.c from complaining about the buffer.
2480 * That code is inside CONFIG_REISERFS_CHECK as well. --clm
2482 for (i
= 0; !locked
&& i
< MAX_FEB_SIZE
; i
++) {
2484 if (!clear_all_dirty_bits
2485 (tb
->tb_sb
, tb
->FEB
[i
]))
2486 locked
= tb
->FEB
[i
];
2492 #ifdef CONFIG_REISERFS_CHECK
2494 if ((repeat_counter
% 10000) == 0) {
2495 reiserfs_warning(tb
->tb_sb
, "reiserfs-8200",
2496 "too many iterations waiting "
2497 "for buffer to unlock "
2500 /* Don't loop forever. Try to recover from possible error. */
2502 return (FILESYSTEM_CHANGED_TB(tb
)) ?
2503 REPEAT_SEARCH
: CARRY_ON
;
2506 depth
= reiserfs_write_unlock_nested(tb
->tb_sb
);
2507 __wait_on_buffer(locked
);
2508 reiserfs_write_lock_nested(tb
->tb_sb
, depth
);
2509 if (FILESYSTEM_CHANGED_TB(tb
))
2510 return REPEAT_SEARCH
;
2519 * Prepare for balancing, that is
2520 * get all necessary parents, and neighbors;
2521 * analyze what and where should be moved;
2522 * get sufficient number of new nodes;
2523 * Balancing will start only after all resources will be collected at a time.
2525 * When ported to SMP kernels, only at the last moment after all needed nodes
2526 * are collected in cache, will the resources be locked using the usual
2527 * textbook ordered lock acquisition algorithms. Note that ensuring that
2528 * this code neither write locks what it does not need to write lock nor locks
2529 * out of order will be a pain in the butt that could have been avoided.
2530 * Grumble grumble. -Hans
2532 * fix is meant in the sense of render unchanging
2534 * Latency might be improved by first gathering a list of what buffers
2535 * are needed and then getting as many of them in parallel as possible? -Hans
2538 * op_mode i - insert, d - delete, c - cut (truncate), p - paste (append)
2539 * tb tree_balance structure;
2540 * inum item number in S[h];
2541 * pos_in_item - comment this if you can
2542 * ins_ih item head of item being inserted
2543 * data inserted item or data to be pasted
2544 * Returns: 1 - schedule occurred while the function worked;
2545 * 0 - schedule didn't occur while the function worked;
2546 * -1 - if no_disk_space
2549 int fix_nodes(int op_mode
, struct tree_balance
*tb
,
2550 struct item_head
*ins_ih
, const void *data
)
2552 int ret
, h
, item_num
= PATH_LAST_POSITION(tb
->tb_path
);
2556 * we set wait_tb_buffers_run when we have to restore any dirty
2557 * bits cleared during wait_tb_buffers_run
2559 int wait_tb_buffers_run
= 0;
2560 struct buffer_head
*tbS0
= PATH_PLAST_BUFFER(tb
->tb_path
);
2562 ++REISERFS_SB(tb
->tb_sb
)->s_fix_nodes
;
2564 pos_in_item
= tb
->tb_path
->pos_in_item
;
2566 tb
->fs_gen
= get_generation(tb
->tb_sb
);
2569 * we prepare and log the super here so it will already be in the
2570 * transaction when do_balance needs to change it.
2571 * This way do_balance won't have to schedule when trying to prepare
2572 * the super for logging
2574 reiserfs_prepare_for_journal(tb
->tb_sb
,
2575 SB_BUFFER_WITH_SB(tb
->tb_sb
), 1);
2576 journal_mark_dirty(tb
->transaction_handle
,
2577 SB_BUFFER_WITH_SB(tb
->tb_sb
));
2578 if (FILESYSTEM_CHANGED_TB(tb
))
2579 return REPEAT_SEARCH
;
2581 /* if it possible in indirect_to_direct conversion */
2582 if (buffer_locked(tbS0
)) {
2583 int depth
= reiserfs_write_unlock_nested(tb
->tb_sb
);
2584 __wait_on_buffer(tbS0
);
2585 reiserfs_write_lock_nested(tb
->tb_sb
, depth
);
2586 if (FILESYSTEM_CHANGED_TB(tb
))
2587 return REPEAT_SEARCH
;
2589 #ifdef CONFIG_REISERFS_CHECK
2590 if (REISERFS_SB(tb
->tb_sb
)->cur_tb
) {
2591 print_cur_tb("fix_nodes");
2592 reiserfs_panic(tb
->tb_sb
, "PAP-8305",
2593 "there is pending do_balance");
2596 if (!buffer_uptodate(tbS0
) || !B_IS_IN_TREE(tbS0
))
2597 reiserfs_panic(tb
->tb_sb
, "PAP-8320", "S[0] (%b %z) is "
2598 "not uptodate at the beginning of fix_nodes "
2599 "or not in tree (mode %c)",
2600 tbS0
, tbS0
, op_mode
);
2602 /* Check parameters. */
2605 if (item_num
<= 0 || item_num
> B_NR_ITEMS(tbS0
))
2606 reiserfs_panic(tb
->tb_sb
, "PAP-8330", "Incorrect "
2607 "item number %d (in S0 - %d) in case "
2608 "of insert", item_num
,
2614 if (item_num
< 0 || item_num
>= B_NR_ITEMS(tbS0
)) {
2615 print_block(tbS0
, 0, -1, -1);
2616 reiserfs_panic(tb
->tb_sb
, "PAP-8335", "Incorrect "
2617 "item number(%d); mode = %c "
2620 tb
->insert_size
[0]);
2624 reiserfs_panic(tb
->tb_sb
, "PAP-8340", "Incorrect mode "
2629 if (get_mem_for_virtual_node(tb
) == REPEAT_SEARCH
)
2630 /* FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat */
2631 return REPEAT_SEARCH
;
2633 /* Starting from the leaf level; for all levels h of the tree. */
2634 for (h
= 0; h
< MAX_HEIGHT
&& tb
->insert_size
[h
]; h
++) {
2635 ret
= get_direct_parent(tb
, h
);
2636 if (ret
!= CARRY_ON
)
2639 ret
= check_balance(op_mode
, tb
, h
, item_num
,
2640 pos_in_item
, ins_ih
, data
);
2641 if (ret
!= CARRY_ON
) {
2642 if (ret
== NO_BALANCING_NEEDED
) {
2643 /* No balancing for higher levels needed. */
2644 ret
= get_neighbors(tb
, h
);
2645 if (ret
!= CARRY_ON
)
2647 if (h
!= MAX_HEIGHT
- 1)
2648 tb
->insert_size
[h
+ 1] = 0;
2650 * ok, analysis and resource gathering
2658 ret
= get_neighbors(tb
, h
);
2659 if (ret
!= CARRY_ON
)
2663 * No disk space, or schedule occurred and analysis may be
2664 * invalid and needs to be redone.
2666 ret
= get_empty_nodes(tb
, h
);
2667 if (ret
!= CARRY_ON
)
2671 * We have a positive insert size but no nodes exist on this
2672 * level, this means that we are creating a new root.
2674 if (!PATH_H_PBUFFER(tb
->tb_path
, h
)) {
2676 RFALSE(tb
->blknum
[h
] != 1,
2677 "PAP-8350: creating new empty root");
2679 if (h
< MAX_HEIGHT
- 1)
2680 tb
->insert_size
[h
+ 1] = 0;
2681 } else if (!PATH_H_PBUFFER(tb
->tb_path
, h
+ 1)) {
2683 * The tree needs to be grown, so this node S[h]
2684 * which is the root node is split into two nodes,
2685 * and a new node (S[h+1]) will be created to
2686 * become the root node.
2688 if (tb
->blknum
[h
] > 1) {
2690 RFALSE(h
== MAX_HEIGHT
- 1,
2691 "PAP-8355: attempt to create too high of a tree");
2693 tb
->insert_size
[h
+ 1] =
2695 KEY_SIZE
) * (tb
->blknum
[h
] - 1) +
2697 } else if (h
< MAX_HEIGHT
- 1)
2698 tb
->insert_size
[h
+ 1] = 0;
2700 tb
->insert_size
[h
+ 1] =
2701 (DC_SIZE
+ KEY_SIZE
) * (tb
->blknum
[h
] - 1);
2704 ret
= wait_tb_buffers_until_unlocked(tb
);
2705 if (ret
== CARRY_ON
) {
2706 if (FILESYSTEM_CHANGED_TB(tb
)) {
2707 wait_tb_buffers_run
= 1;
2708 ret
= REPEAT_SEARCH
;
2714 wait_tb_buffers_run
= 1;
2720 * fix_nodes was unable to perform its calculation due to
2721 * filesystem got changed under us, lack of free disk space or i/o
2722 * failure. If the first is the case - the search will be
2723 * repeated. For now - free all resources acquired so far except
2724 * for the new allocated nodes
2729 /* Release path buffers. */
2730 if (wait_tb_buffers_run
) {
2731 pathrelse_and_restore(tb
->tb_sb
, tb
->tb_path
);
2733 pathrelse(tb
->tb_path
);
2735 /* brelse all resources collected for balancing */
2736 for (i
= 0; i
< MAX_HEIGHT
; i
++) {
2737 if (wait_tb_buffers_run
) {
2738 reiserfs_restore_prepared_buffer(tb
->tb_sb
,
2740 reiserfs_restore_prepared_buffer(tb
->tb_sb
,
2742 reiserfs_restore_prepared_buffer(tb
->tb_sb
,
2744 reiserfs_restore_prepared_buffer(tb
->tb_sb
,
2746 reiserfs_restore_prepared_buffer(tb
->tb_sb
,
2749 reiserfs_restore_prepared_buffer(tb
->tb_sb
,
2769 if (wait_tb_buffers_run
) {
2770 for (i
= 0; i
< MAX_FEB_SIZE
; i
++) {
2772 reiserfs_restore_prepared_buffer
2773 (tb
->tb_sb
, tb
->FEB
[i
]);
2781 void unfix_nodes(struct tree_balance
*tb
)
2785 /* Release path buffers. */
2786 pathrelse_and_restore(tb
->tb_sb
, tb
->tb_path
);
2788 /* brelse all resources collected for balancing */
2789 for (i
= 0; i
< MAX_HEIGHT
; i
++) {
2790 reiserfs_restore_prepared_buffer(tb
->tb_sb
, tb
->L
[i
]);
2791 reiserfs_restore_prepared_buffer(tb
->tb_sb
, tb
->R
[i
]);
2792 reiserfs_restore_prepared_buffer(tb
->tb_sb
, tb
->FL
[i
]);
2793 reiserfs_restore_prepared_buffer(tb
->tb_sb
, tb
->FR
[i
]);
2794 reiserfs_restore_prepared_buffer(tb
->tb_sb
, tb
->CFL
[i
]);
2795 reiserfs_restore_prepared_buffer(tb
->tb_sb
, tb
->CFR
[i
]);
2805 /* deal with list of allocated (used and unused) nodes */
2806 for (i
= 0; i
< MAX_FEB_SIZE
; i
++) {
2808 b_blocknr_t blocknr
= tb
->FEB
[i
]->b_blocknr
;
2810 * de-allocated block which was not used by
2811 * balancing and bforget about buffer for it
2814 reiserfs_free_block(tb
->transaction_handle
, NULL
,
2818 /* release used as new nodes including a new root */
2819 brelse(tb
->used
[i
]);