1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2 * Copyright (c) 2016 Facebook
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
23 /* bpf_check() is a static code analyzer that walks eBPF program
24 * instruction by instruction and updates register/stack state.
25 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
27 * The first pass is depth-first-search to check that the program is a DAG.
28 * It rejects the following programs:
29 * - larger than BPF_MAXINSNS insns
30 * - if loop is present (detected via back-edge)
31 * - unreachable insns exist (shouldn't be a forest. program = one function)
32 * - out of bounds or malformed jumps
33 * The second pass is all possible path descent from the 1st insn.
34 * Since it's analyzing all pathes through the program, the length of the
35 * analysis is limited to 32k insn, which may be hit even if total number of
36 * insn is less then 4K, but there are too many branches that change stack/regs.
37 * Number of 'branches to be analyzed' is limited to 1k
39 * On entry to each instruction, each register has a type, and the instruction
40 * changes the types of the registers depending on instruction semantics.
41 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
44 * All registers are 64-bit.
45 * R0 - return register
46 * R1-R5 argument passing registers
47 * R6-R9 callee saved registers
48 * R10 - frame pointer read-only
50 * At the start of BPF program the register R1 contains a pointer to bpf_context
51 * and has type PTR_TO_CTX.
53 * Verifier tracks arithmetic operations on pointers in case:
54 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
55 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
56 * 1st insn copies R10 (which has FRAME_PTR) type into R1
57 * and 2nd arithmetic instruction is pattern matched to recognize
58 * that it wants to construct a pointer to some element within stack.
59 * So after 2nd insn, the register R1 has type PTR_TO_STACK
60 * (and -20 constant is saved for further stack bounds checking).
61 * Meaning that this reg is a pointer to stack plus known immediate constant.
63 * Most of the time the registers have UNKNOWN_VALUE type, which
64 * means the register has some value, but it's not a valid pointer.
65 * (like pointer plus pointer becomes UNKNOWN_VALUE type)
67 * When verifier sees load or store instructions the type of base register
68 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
69 * types recognized by check_mem_access() function.
71 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
72 * and the range of [ptr, ptr + map's value_size) is accessible.
74 * registers used to pass values to function calls are checked against
75 * function argument constraints.
77 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
78 * It means that the register type passed to this function must be
79 * PTR_TO_STACK and it will be used inside the function as
80 * 'pointer to map element key'
82 * For example the argument constraints for bpf_map_lookup_elem():
83 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
84 * .arg1_type = ARG_CONST_MAP_PTR,
85 * .arg2_type = ARG_PTR_TO_MAP_KEY,
87 * ret_type says that this function returns 'pointer to map elem value or null'
88 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
89 * 2nd argument should be a pointer to stack, which will be used inside
90 * the helper function as a pointer to map element key.
92 * On the kernel side the helper function looks like:
93 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
95 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
96 * void *key = (void *) (unsigned long) r2;
99 * here kernel can access 'key' and 'map' pointers safely, knowing that
100 * [key, key + map->key_size) bytes are valid and were initialized on
101 * the stack of eBPF program.
104 * Corresponding eBPF program may look like:
105 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
106 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
107 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
108 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
109 * here verifier looks at prototype of map_lookup_elem() and sees:
110 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
111 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
113 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
114 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
115 * and were initialized prior to this call.
116 * If it's ok, then verifier allows this BPF_CALL insn and looks at
117 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
118 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
119 * returns ether pointer to map value or NULL.
121 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
122 * insn, the register holding that pointer in the true branch changes state to
123 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
124 * branch. See check_cond_jmp_op().
126 * After the call R0 is set to return type of the function and registers R1-R5
127 * are set to NOT_INIT to indicate that they are no longer readable.
130 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
131 struct bpf_verifier_stack_elem
{
132 /* verifer state is 'st'
133 * before processing instruction 'insn_idx'
134 * and after processing instruction 'prev_insn_idx'
136 struct bpf_verifier_state st
;
139 struct bpf_verifier_stack_elem
*next
;
142 #define BPF_COMPLEXITY_LIMIT_INSNS 98304
143 #define BPF_COMPLEXITY_LIMIT_STACK 1024
145 struct bpf_call_arg_meta
{
146 struct bpf_map
*map_ptr
;
153 /* verbose verifier prints what it's seeing
154 * bpf_check() is called under lock, so no race to access these global vars
156 static u32 log_level
, log_size
, log_len
;
157 static char *log_buf
;
159 static DEFINE_MUTEX(bpf_verifier_lock
);
161 /* log_level controls verbosity level of eBPF verifier.
162 * verbose() is used to dump the verification trace to the log, so the user
163 * can figure out what's wrong with the program
165 static __printf(1, 2) void verbose(const char *fmt
, ...)
169 if (log_level
== 0 || log_len
>= log_size
- 1)
173 log_len
+= vscnprintf(log_buf
+ log_len
, log_size
- log_len
, fmt
, args
);
177 /* string representation of 'enum bpf_reg_type' */
178 static const char * const reg_type_str
[] = {
180 [UNKNOWN_VALUE
] = "inv",
181 [PTR_TO_CTX
] = "ctx",
182 [CONST_PTR_TO_MAP
] = "map_ptr",
183 [PTR_TO_MAP_VALUE
] = "map_value",
184 [PTR_TO_MAP_VALUE_OR_NULL
] = "map_value_or_null",
185 [PTR_TO_MAP_VALUE_ADJ
] = "map_value_adj",
187 [PTR_TO_STACK
] = "fp",
189 [PTR_TO_PACKET
] = "pkt",
190 [PTR_TO_PACKET_END
] = "pkt_end",
193 static void print_verifier_state(struct bpf_verifier_state
*state
)
195 struct bpf_reg_state
*reg
;
199 for (i
= 0; i
< MAX_BPF_REG
; i
++) {
200 reg
= &state
->regs
[i
];
204 verbose(" R%d=%s", i
, reg_type_str
[t
]);
205 if (t
== CONST_IMM
|| t
== PTR_TO_STACK
)
206 verbose("%lld", reg
->imm
);
207 else if (t
== PTR_TO_PACKET
)
208 verbose("(id=%d,off=%d,r=%d)",
209 reg
->id
, reg
->off
, reg
->range
);
210 else if (t
== UNKNOWN_VALUE
&& reg
->imm
)
211 verbose("%lld", reg
->imm
);
212 else if (t
== CONST_PTR_TO_MAP
|| t
== PTR_TO_MAP_VALUE
||
213 t
== PTR_TO_MAP_VALUE_OR_NULL
||
214 t
== PTR_TO_MAP_VALUE_ADJ
)
215 verbose("(ks=%d,vs=%d,id=%u)",
216 reg
->map_ptr
->key_size
,
217 reg
->map_ptr
->value_size
,
219 if (reg
->min_value
!= BPF_REGISTER_MIN_RANGE
)
220 verbose(",min_value=%lld",
221 (long long)reg
->min_value
);
222 if (reg
->max_value
!= BPF_REGISTER_MAX_RANGE
)
223 verbose(",max_value=%llu",
224 (unsigned long long)reg
->max_value
);
226 for (i
= 0; i
< MAX_BPF_STACK
; i
+= BPF_REG_SIZE
) {
227 if (state
->stack_slot_type
[i
] == STACK_SPILL
)
228 verbose(" fp%d=%s", -MAX_BPF_STACK
+ i
,
229 reg_type_str
[state
->spilled_regs
[i
/ BPF_REG_SIZE
].type
]);
234 static const char *const bpf_class_string
[] = {
242 [BPF_ALU64
] = "alu64",
245 static const char *const bpf_alu_string
[16] = {
246 [BPF_ADD
>> 4] = "+=",
247 [BPF_SUB
>> 4] = "-=",
248 [BPF_MUL
>> 4] = "*=",
249 [BPF_DIV
>> 4] = "/=",
250 [BPF_OR
>> 4] = "|=",
251 [BPF_AND
>> 4] = "&=",
252 [BPF_LSH
>> 4] = "<<=",
253 [BPF_RSH
>> 4] = ">>=",
254 [BPF_NEG
>> 4] = "neg",
255 [BPF_MOD
>> 4] = "%=",
256 [BPF_XOR
>> 4] = "^=",
257 [BPF_MOV
>> 4] = "=",
258 [BPF_ARSH
>> 4] = "s>>=",
259 [BPF_END
>> 4] = "endian",
262 static const char *const bpf_ldst_string
[] = {
263 [BPF_W
>> 3] = "u32",
264 [BPF_H
>> 3] = "u16",
266 [BPF_DW
>> 3] = "u64",
269 static const char *const bpf_jmp_string
[16] = {
270 [BPF_JA
>> 4] = "jmp",
271 [BPF_JEQ
>> 4] = "==",
272 [BPF_JGT
>> 4] = ">",
273 [BPF_JGE
>> 4] = ">=",
274 [BPF_JSET
>> 4] = "&",
275 [BPF_JNE
>> 4] = "!=",
276 [BPF_JSGT
>> 4] = "s>",
277 [BPF_JSGE
>> 4] = "s>=",
278 [BPF_CALL
>> 4] = "call",
279 [BPF_EXIT
>> 4] = "exit",
282 static void print_bpf_insn(const struct bpf_verifier_env
*env
,
283 const struct bpf_insn
*insn
)
285 u8
class = BPF_CLASS(insn
->code
);
287 if (class == BPF_ALU
|| class == BPF_ALU64
) {
288 if (BPF_SRC(insn
->code
) == BPF_X
)
289 verbose("(%02x) %sr%d %s %sr%d\n",
290 insn
->code
, class == BPF_ALU
? "(u32) " : "",
292 bpf_alu_string
[BPF_OP(insn
->code
) >> 4],
293 class == BPF_ALU
? "(u32) " : "",
296 verbose("(%02x) %sr%d %s %s%d\n",
297 insn
->code
, class == BPF_ALU
? "(u32) " : "",
299 bpf_alu_string
[BPF_OP(insn
->code
) >> 4],
300 class == BPF_ALU
? "(u32) " : "",
302 } else if (class == BPF_STX
) {
303 if (BPF_MODE(insn
->code
) == BPF_MEM
)
304 verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
306 bpf_ldst_string
[BPF_SIZE(insn
->code
) >> 3],
308 insn
->off
, insn
->src_reg
);
309 else if (BPF_MODE(insn
->code
) == BPF_XADD
)
310 verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
312 bpf_ldst_string
[BPF_SIZE(insn
->code
) >> 3],
313 insn
->dst_reg
, insn
->off
,
316 verbose("BUG_%02x\n", insn
->code
);
317 } else if (class == BPF_ST
) {
318 if (BPF_MODE(insn
->code
) != BPF_MEM
) {
319 verbose("BUG_st_%02x\n", insn
->code
);
322 verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
324 bpf_ldst_string
[BPF_SIZE(insn
->code
) >> 3],
326 insn
->off
, insn
->imm
);
327 } else if (class == BPF_LDX
) {
328 if (BPF_MODE(insn
->code
) != BPF_MEM
) {
329 verbose("BUG_ldx_%02x\n", insn
->code
);
332 verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
333 insn
->code
, insn
->dst_reg
,
334 bpf_ldst_string
[BPF_SIZE(insn
->code
) >> 3],
335 insn
->src_reg
, insn
->off
);
336 } else if (class == BPF_LD
) {
337 if (BPF_MODE(insn
->code
) == BPF_ABS
) {
338 verbose("(%02x) r0 = *(%s *)skb[%d]\n",
340 bpf_ldst_string
[BPF_SIZE(insn
->code
) >> 3],
342 } else if (BPF_MODE(insn
->code
) == BPF_IND
) {
343 verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
345 bpf_ldst_string
[BPF_SIZE(insn
->code
) >> 3],
346 insn
->src_reg
, insn
->imm
);
347 } else if (BPF_MODE(insn
->code
) == BPF_IMM
&&
348 BPF_SIZE(insn
->code
) == BPF_DW
) {
349 /* At this point, we already made sure that the second
350 * part of the ldimm64 insn is accessible.
352 u64 imm
= ((u64
)(insn
+ 1)->imm
<< 32) | (u32
)insn
->imm
;
353 bool map_ptr
= insn
->src_reg
== BPF_PSEUDO_MAP_FD
;
355 if (map_ptr
&& !env
->allow_ptr_leaks
)
358 verbose("(%02x) r%d = 0x%llx\n", insn
->code
,
359 insn
->dst_reg
, (unsigned long long)imm
);
361 verbose("BUG_ld_%02x\n", insn
->code
);
364 } else if (class == BPF_JMP
) {
365 u8 opcode
= BPF_OP(insn
->code
);
367 if (opcode
== BPF_CALL
) {
368 verbose("(%02x) call %d\n", insn
->code
, insn
->imm
);
369 } else if (insn
->code
== (BPF_JMP
| BPF_JA
)) {
370 verbose("(%02x) goto pc%+d\n",
371 insn
->code
, insn
->off
);
372 } else if (insn
->code
== (BPF_JMP
| BPF_EXIT
)) {
373 verbose("(%02x) exit\n", insn
->code
);
374 } else if (BPF_SRC(insn
->code
) == BPF_X
) {
375 verbose("(%02x) if r%d %s r%d goto pc%+d\n",
376 insn
->code
, insn
->dst_reg
,
377 bpf_jmp_string
[BPF_OP(insn
->code
) >> 4],
378 insn
->src_reg
, insn
->off
);
380 verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
381 insn
->code
, insn
->dst_reg
,
382 bpf_jmp_string
[BPF_OP(insn
->code
) >> 4],
383 insn
->imm
, insn
->off
);
386 verbose("(%02x) %s\n", insn
->code
, bpf_class_string
[class]);
390 static int pop_stack(struct bpf_verifier_env
*env
, int *prev_insn_idx
)
392 struct bpf_verifier_stack_elem
*elem
;
395 if (env
->head
== NULL
)
398 memcpy(&env
->cur_state
, &env
->head
->st
, sizeof(env
->cur_state
));
399 insn_idx
= env
->head
->insn_idx
;
401 *prev_insn_idx
= env
->head
->prev_insn_idx
;
402 elem
= env
->head
->next
;
409 static struct bpf_verifier_state
*push_stack(struct bpf_verifier_env
*env
,
410 int insn_idx
, int prev_insn_idx
)
412 struct bpf_verifier_stack_elem
*elem
;
414 elem
= kmalloc(sizeof(struct bpf_verifier_stack_elem
), GFP_KERNEL
);
418 memcpy(&elem
->st
, &env
->cur_state
, sizeof(env
->cur_state
));
419 elem
->insn_idx
= insn_idx
;
420 elem
->prev_insn_idx
= prev_insn_idx
;
421 elem
->next
= env
->head
;
424 if (env
->stack_size
> BPF_COMPLEXITY_LIMIT_STACK
) {
425 verbose("BPF program is too complex\n");
430 /* pop all elements and return */
431 while (pop_stack(env
, NULL
) >= 0);
435 #define CALLER_SAVED_REGS 6
436 static const int caller_saved
[CALLER_SAVED_REGS
] = {
437 BPF_REG_0
, BPF_REG_1
, BPF_REG_2
, BPF_REG_3
, BPF_REG_4
, BPF_REG_5
440 static void init_reg_state(struct bpf_reg_state
*regs
)
444 for (i
= 0; i
< MAX_BPF_REG
; i
++) {
445 regs
[i
].type
= NOT_INIT
;
447 regs
[i
].min_value
= BPF_REGISTER_MIN_RANGE
;
448 regs
[i
].max_value
= BPF_REGISTER_MAX_RANGE
;
452 regs
[BPF_REG_FP
].type
= FRAME_PTR
;
454 /* 1st arg to a function */
455 regs
[BPF_REG_1
].type
= PTR_TO_CTX
;
458 static void __mark_reg_unknown_value(struct bpf_reg_state
*regs
, u32 regno
)
460 regs
[regno
].type
= UNKNOWN_VALUE
;
465 static void mark_reg_unknown_value(struct bpf_reg_state
*regs
, u32 regno
)
467 BUG_ON(regno
>= MAX_BPF_REG
);
468 __mark_reg_unknown_value(regs
, regno
);
471 static void reset_reg_range_values(struct bpf_reg_state
*regs
, u32 regno
)
473 regs
[regno
].min_value
= BPF_REGISTER_MIN_RANGE
;
474 regs
[regno
].max_value
= BPF_REGISTER_MAX_RANGE
;
478 SRC_OP
, /* register is used as source operand */
479 DST_OP
, /* register is used as destination operand */
480 DST_OP_NO_MARK
/* same as above, check only, don't mark */
483 static int check_reg_arg(struct bpf_reg_state
*regs
, u32 regno
,
486 if (regno
>= MAX_BPF_REG
) {
487 verbose("R%d is invalid\n", regno
);
492 /* check whether register used as source operand can be read */
493 if (regs
[regno
].type
== NOT_INIT
) {
494 verbose("R%d !read_ok\n", regno
);
498 /* check whether register used as dest operand can be written to */
499 if (regno
== BPF_REG_FP
) {
500 verbose("frame pointer is read only\n");
504 mark_reg_unknown_value(regs
, regno
);
509 static int bpf_size_to_bytes(int bpf_size
)
511 if (bpf_size
== BPF_W
)
513 else if (bpf_size
== BPF_H
)
515 else if (bpf_size
== BPF_B
)
517 else if (bpf_size
== BPF_DW
)
523 static bool is_spillable_regtype(enum bpf_reg_type type
)
526 case PTR_TO_MAP_VALUE
:
527 case PTR_TO_MAP_VALUE_OR_NULL
:
531 case PTR_TO_PACKET_END
:
533 case CONST_PTR_TO_MAP
:
540 /* check_stack_read/write functions track spill/fill of registers,
541 * stack boundary and alignment are checked in check_mem_access()
543 static int check_stack_write(struct bpf_verifier_env
*env
,
544 struct bpf_verifier_state
*state
, int off
,
545 int size
, int value_regno
, int insn_idx
)
547 int i
, spi
= (MAX_BPF_STACK
+ off
) / BPF_REG_SIZE
;
548 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
549 * so it's aligned access and [off, off + size) are within stack limits
552 if (value_regno
>= 0 &&
553 is_spillable_regtype(state
->regs
[value_regno
].type
)) {
555 /* register containing pointer is being spilled into stack */
556 if (size
!= BPF_REG_SIZE
) {
557 verbose("invalid size of register spill\n");
561 /* save register state */
562 state
->spilled_regs
[spi
] = state
->regs
[value_regno
];
564 for (i
= 0; i
< BPF_REG_SIZE
; i
++) {
565 if (state
->stack_slot_type
[MAX_BPF_STACK
+ off
+ i
] == STACK_MISC
&&
566 !env
->allow_ptr_leaks
) {
567 int *poff
= &env
->insn_aux_data
[insn_idx
].sanitize_stack_off
;
568 int soff
= (-spi
- 1) * BPF_REG_SIZE
;
570 /* detected reuse of integer stack slot with a pointer
571 * which means either llvm is reusing stack slot or
572 * an attacker is trying to exploit CVE-2018-3639
573 * (speculative store bypass)
574 * Have to sanitize that slot with preemptive
577 if (*poff
&& *poff
!= soff
) {
578 /* disallow programs where single insn stores
579 * into two different stack slots, since verifier
580 * cannot sanitize them
582 verbose("insn %d cannot access two stack slots fp%d and fp%d",
583 insn_idx
, *poff
, soff
);
588 state
->stack_slot_type
[MAX_BPF_STACK
+ off
+ i
] = STACK_SPILL
;
591 /* regular write of data into stack */
592 state
->spilled_regs
[spi
] = (struct bpf_reg_state
) {};
594 for (i
= 0; i
< size
; i
++)
595 state
->stack_slot_type
[MAX_BPF_STACK
+ off
+ i
] = STACK_MISC
;
600 static int check_stack_read(struct bpf_verifier_state
*state
, int off
, int size
,
606 slot_type
= &state
->stack_slot_type
[MAX_BPF_STACK
+ off
];
608 if (slot_type
[0] == STACK_SPILL
) {
609 if (size
!= BPF_REG_SIZE
) {
610 verbose("invalid size of register spill\n");
613 for (i
= 1; i
< BPF_REG_SIZE
; i
++) {
614 if (slot_type
[i
] != STACK_SPILL
) {
615 verbose("corrupted spill memory\n");
620 if (value_regno
>= 0)
621 /* restore register state from stack */
622 state
->regs
[value_regno
] =
623 state
->spilled_regs
[(MAX_BPF_STACK
+ off
) / BPF_REG_SIZE
];
626 for (i
= 0; i
< size
; i
++) {
627 if (slot_type
[i
] != STACK_MISC
) {
628 verbose("invalid read from stack off %d+%d size %d\n",
633 if (value_regno
>= 0)
634 /* have read misc data from the stack */
635 mark_reg_unknown_value(state
->regs
, value_regno
);
640 /* check read/write into map element returned by bpf_map_lookup_elem() */
641 static int check_map_access(struct bpf_verifier_env
*env
, u32 regno
, int off
,
644 struct bpf_map
*map
= env
->cur_state
.regs
[regno
].map_ptr
;
646 if (off
< 0 || off
+ size
> map
->value_size
) {
647 verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
648 map
->value_size
, off
, size
);
654 #define MAX_PACKET_OFF 0xffff
656 static bool may_access_direct_pkt_data(struct bpf_verifier_env
*env
,
657 const struct bpf_call_arg_meta
*meta
)
659 switch (env
->prog
->type
) {
660 case BPF_PROG_TYPE_SCHED_CLS
:
661 case BPF_PROG_TYPE_SCHED_ACT
:
662 case BPF_PROG_TYPE_XDP
:
664 return meta
->pkt_access
;
666 env
->seen_direct_write
= true;
673 static int check_packet_access(struct bpf_verifier_env
*env
, u32 regno
, int off
,
676 struct bpf_reg_state
*regs
= env
->cur_state
.regs
;
677 struct bpf_reg_state
*reg
= ®s
[regno
];
680 if (off
< 0 || size
<= 0 || off
+ size
> reg
->range
) {
681 verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
682 off
, size
, regno
, reg
->id
, reg
->off
, reg
->range
);
688 /* check access to 'struct bpf_context' fields */
689 static int check_ctx_access(struct bpf_verifier_env
*env
, int off
, int size
,
690 enum bpf_access_type t
, enum bpf_reg_type
*reg_type
)
692 /* for analyzer ctx accesses are already validated and converted */
693 if (env
->analyzer_ops
)
696 if (env
->prog
->aux
->ops
->is_valid_access
&&
697 env
->prog
->aux
->ops
->is_valid_access(off
, size
, t
, reg_type
)) {
698 /* remember the offset of last byte accessed in ctx */
699 if (env
->prog
->aux
->max_ctx_offset
< off
+ size
)
700 env
->prog
->aux
->max_ctx_offset
= off
+ size
;
704 verbose("invalid bpf_context access off=%d size=%d\n", off
, size
);
708 static bool __is_pointer_value(bool allow_ptr_leaks
,
709 const struct bpf_reg_state
*reg
)
723 static bool is_pointer_value(struct bpf_verifier_env
*env
, int regno
)
725 return __is_pointer_value(env
->allow_ptr_leaks
, &env
->cur_state
.regs
[regno
]);
728 static bool is_ctx_reg(struct bpf_verifier_env
*env
, int regno
)
730 const struct bpf_reg_state
*reg
= &env
->cur_state
.regs
[regno
];
732 return reg
->type
== PTR_TO_CTX
;
735 static int check_ptr_alignment(struct bpf_verifier_env
*env
,
736 struct bpf_reg_state
*reg
, int off
, int size
)
738 if (reg
->type
!= PTR_TO_PACKET
&& reg
->type
!= PTR_TO_MAP_VALUE_ADJ
) {
739 if (off
% size
!= 0) {
740 verbose("misaligned access off %d size %d\n",
748 if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
))
749 /* misaligned access to packet is ok on x86,arm,arm64 */
752 if (reg
->id
&& size
!= 1) {
753 verbose("Unknown packet alignment. Only byte-sized access allowed\n");
757 /* skb->data is NET_IP_ALIGN-ed */
758 if (reg
->type
== PTR_TO_PACKET
&&
759 (NET_IP_ALIGN
+ reg
->off
+ off
) % size
!= 0) {
760 verbose("misaligned packet access off %d+%d+%d size %d\n",
761 NET_IP_ALIGN
, reg
->off
, off
, size
);
767 /* check whether memory at (regno + off) is accessible for t = (read | write)
768 * if t==write, value_regno is a register which value is stored into memory
769 * if t==read, value_regno is a register which will receive the value from memory
770 * if t==write && value_regno==-1, some unknown value is stored into memory
771 * if t==read && value_regno==-1, don't care what we read from memory
773 static int check_mem_access(struct bpf_verifier_env
*env
, int insn_idx
, u32 regno
, int off
,
774 int bpf_size
, enum bpf_access_type t
,
777 struct bpf_verifier_state
*state
= &env
->cur_state
;
778 struct bpf_reg_state
*reg
= &state
->regs
[regno
];
781 if (reg
->type
== PTR_TO_STACK
)
784 size
= bpf_size_to_bytes(bpf_size
);
788 err
= check_ptr_alignment(env
, reg
, off
, size
);
792 if (reg
->type
== PTR_TO_MAP_VALUE
||
793 reg
->type
== PTR_TO_MAP_VALUE_ADJ
) {
794 if (t
== BPF_WRITE
&& value_regno
>= 0 &&
795 is_pointer_value(env
, value_regno
)) {
796 verbose("R%d leaks addr into map\n", value_regno
);
800 /* If we adjusted the register to this map value at all then we
801 * need to change off and size to min_value and max_value
802 * respectively to make sure our theoretical access will be
805 if (reg
->type
== PTR_TO_MAP_VALUE_ADJ
) {
807 print_verifier_state(state
);
808 env
->varlen_map_value_access
= true;
809 /* The minimum value is only important with signed
810 * comparisons where we can't assume the floor of a
811 * value is 0. If we are using signed variables for our
812 * index'es we need to make sure that whatever we use
813 * will have a set floor within our range.
815 if (reg
->min_value
< 0) {
816 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
820 err
= check_map_access(env
, regno
, reg
->min_value
+ off
,
823 verbose("R%d min value is outside of the array range\n",
828 /* If we haven't set a max value then we need to bail
829 * since we can't be sure we won't do bad things.
831 if (reg
->max_value
== BPF_REGISTER_MAX_RANGE
) {
832 verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
836 off
+= reg
->max_value
;
838 err
= check_map_access(env
, regno
, off
, size
);
839 if (!err
&& t
== BPF_READ
&& value_regno
>= 0)
840 mark_reg_unknown_value(state
->regs
, value_regno
);
842 } else if (reg
->type
== PTR_TO_CTX
) {
843 enum bpf_reg_type reg_type
= UNKNOWN_VALUE
;
845 if (t
== BPF_WRITE
&& value_regno
>= 0 &&
846 is_pointer_value(env
, value_regno
)) {
847 verbose("R%d leaks addr into ctx\n", value_regno
);
850 err
= check_ctx_access(env
, off
, size
, t
, ®_type
);
851 if (!err
&& t
== BPF_READ
&& value_regno
>= 0) {
852 mark_reg_unknown_value(state
->regs
, value_regno
);
853 /* note that reg.[id|off|range] == 0 */
854 state
->regs
[value_regno
].type
= reg_type
;
857 } else if (reg
->type
== FRAME_PTR
|| reg
->type
== PTR_TO_STACK
) {
858 if (off
>= 0 || off
< -MAX_BPF_STACK
) {
859 verbose("invalid stack off=%d size=%d\n", off
, size
);
862 if (t
== BPF_WRITE
) {
863 if (!env
->allow_ptr_leaks
&&
864 state
->stack_slot_type
[MAX_BPF_STACK
+ off
] == STACK_SPILL
&&
865 size
!= BPF_REG_SIZE
) {
866 verbose("attempt to corrupt spilled pointer on stack\n");
869 err
= check_stack_write(env
, state
, off
, size
,
870 value_regno
, insn_idx
);
872 err
= check_stack_read(state
, off
, size
, value_regno
);
874 } else if (state
->regs
[regno
].type
== PTR_TO_PACKET
) {
875 if (t
== BPF_WRITE
&& !may_access_direct_pkt_data(env
, NULL
)) {
876 verbose("cannot write into packet\n");
879 if (t
== BPF_WRITE
&& value_regno
>= 0 &&
880 is_pointer_value(env
, value_regno
)) {
881 verbose("R%d leaks addr into packet\n", value_regno
);
884 err
= check_packet_access(env
, regno
, off
, size
);
885 if (!err
&& t
== BPF_READ
&& value_regno
>= 0)
886 mark_reg_unknown_value(state
->regs
, value_regno
);
888 verbose("R%d invalid mem access '%s'\n",
889 regno
, reg_type_str
[reg
->type
]);
893 if (!err
&& size
<= 2 && value_regno
>= 0 && env
->allow_ptr_leaks
&&
894 state
->regs
[value_regno
].type
== UNKNOWN_VALUE
) {
895 /* 1 or 2 byte load zero-extends, determine the number of
896 * zero upper bits. Not doing it fo 4 byte load, since
897 * such values cannot be added to ptr_to_packet anyway.
899 state
->regs
[value_regno
].imm
= 64 - size
* 8;
904 static int check_xadd(struct bpf_verifier_env
*env
, int insn_idx
, struct bpf_insn
*insn
)
906 struct bpf_reg_state
*regs
= env
->cur_state
.regs
;
909 if ((BPF_SIZE(insn
->code
) != BPF_W
&& BPF_SIZE(insn
->code
) != BPF_DW
) ||
911 verbose("BPF_XADD uses reserved fields\n");
915 /* check src1 operand */
916 err
= check_reg_arg(regs
, insn
->src_reg
, SRC_OP
);
920 /* check src2 operand */
921 err
= check_reg_arg(regs
, insn
->dst_reg
, SRC_OP
);
925 if (is_pointer_value(env
, insn
->src_reg
)) {
926 verbose("R%d leaks addr into mem\n", insn
->src_reg
);
930 if (is_ctx_reg(env
, insn
->dst_reg
)) {
931 verbose("BPF_XADD stores into R%d context is not allowed\n",
936 /* check whether atomic_add can read the memory */
937 err
= check_mem_access(env
, insn_idx
, insn
->dst_reg
, insn
->off
,
938 BPF_SIZE(insn
->code
), BPF_READ
, -1);
942 /* check whether atomic_add can write into the same memory */
943 return check_mem_access(env
, insn_idx
, insn
->dst_reg
, insn
->off
,
944 BPF_SIZE(insn
->code
), BPF_WRITE
, -1);
947 /* when register 'regno' is passed into function that will read 'access_size'
948 * bytes from that pointer, make sure that it's within stack boundary
949 * and all elements of stack are initialized
951 static int check_stack_boundary(struct bpf_verifier_env
*env
, int regno
,
952 int access_size
, bool zero_size_allowed
,
953 struct bpf_call_arg_meta
*meta
)
955 struct bpf_verifier_state
*state
= &env
->cur_state
;
956 struct bpf_reg_state
*regs
= state
->regs
;
959 if (regs
[regno
].type
!= PTR_TO_STACK
) {
960 if (zero_size_allowed
&& access_size
== 0 &&
961 regs
[regno
].type
== CONST_IMM
&&
962 regs
[regno
].imm
== 0)
965 verbose("R%d type=%s expected=%s\n", regno
,
966 reg_type_str
[regs
[regno
].type
],
967 reg_type_str
[PTR_TO_STACK
]);
971 off
= regs
[regno
].imm
;
972 if (off
>= 0 || off
< -MAX_BPF_STACK
|| off
+ access_size
> 0 ||
974 verbose("invalid stack type R%d off=%d access_size=%d\n",
975 regno
, off
, access_size
);
979 if (meta
&& meta
->raw_mode
) {
980 meta
->access_size
= access_size
;
985 for (i
= 0; i
< access_size
; i
++) {
986 if (state
->stack_slot_type
[MAX_BPF_STACK
+ off
+ i
] != STACK_MISC
) {
987 verbose("invalid indirect read from stack off %d+%d size %d\n",
988 off
, i
, access_size
);
995 static int check_func_arg(struct bpf_verifier_env
*env
, u32 regno
,
996 enum bpf_arg_type arg_type
,
997 struct bpf_call_arg_meta
*meta
)
999 struct bpf_reg_state
*regs
= env
->cur_state
.regs
, *reg
= ®s
[regno
];
1000 enum bpf_reg_type expected_type
, type
= reg
->type
;
1003 if (arg_type
== ARG_DONTCARE
)
1006 if (type
== NOT_INIT
) {
1007 verbose("R%d !read_ok\n", regno
);
1011 if (arg_type
== ARG_ANYTHING
) {
1012 if (is_pointer_value(env
, regno
)) {
1013 verbose("R%d leaks addr into helper function\n", regno
);
1019 if (type
== PTR_TO_PACKET
&& !may_access_direct_pkt_data(env
, meta
)) {
1020 verbose("helper access to the packet is not allowed\n");
1024 if (arg_type
== ARG_PTR_TO_MAP_KEY
||
1025 arg_type
== ARG_PTR_TO_MAP_VALUE
) {
1026 expected_type
= PTR_TO_STACK
;
1027 if (type
!= PTR_TO_PACKET
&& type
!= expected_type
)
1029 } else if (arg_type
== ARG_CONST_STACK_SIZE
||
1030 arg_type
== ARG_CONST_STACK_SIZE_OR_ZERO
) {
1031 expected_type
= CONST_IMM
;
1032 if (type
!= expected_type
)
1034 } else if (arg_type
== ARG_CONST_MAP_PTR
) {
1035 expected_type
= CONST_PTR_TO_MAP
;
1036 if (type
!= expected_type
)
1038 } else if (arg_type
== ARG_PTR_TO_CTX
) {
1039 expected_type
= PTR_TO_CTX
;
1040 if (type
!= expected_type
)
1042 } else if (arg_type
== ARG_PTR_TO_STACK
||
1043 arg_type
== ARG_PTR_TO_RAW_STACK
) {
1044 expected_type
= PTR_TO_STACK
;
1045 /* One exception here. In case function allows for NULL to be
1046 * passed in as argument, it's a CONST_IMM type. Final test
1047 * happens during stack boundary checking.
1049 if (type
== CONST_IMM
&& reg
->imm
== 0)
1050 /* final test in check_stack_boundary() */;
1051 else if (type
!= PTR_TO_PACKET
&& type
!= expected_type
)
1053 meta
->raw_mode
= arg_type
== ARG_PTR_TO_RAW_STACK
;
1055 verbose("unsupported arg_type %d\n", arg_type
);
1059 if (arg_type
== ARG_CONST_MAP_PTR
) {
1060 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1061 meta
->map_ptr
= reg
->map_ptr
;
1062 } else if (arg_type
== ARG_PTR_TO_MAP_KEY
) {
1063 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1064 * check that [key, key + map->key_size) are within
1065 * stack limits and initialized
1067 if (!meta
->map_ptr
) {
1068 /* in function declaration map_ptr must come before
1069 * map_key, so that it's verified and known before
1070 * we have to check map_key here. Otherwise it means
1071 * that kernel subsystem misconfigured verifier
1073 verbose("invalid map_ptr to access map->key\n");
1076 if (type
== PTR_TO_PACKET
)
1077 err
= check_packet_access(env
, regno
, 0,
1078 meta
->map_ptr
->key_size
);
1080 err
= check_stack_boundary(env
, regno
,
1081 meta
->map_ptr
->key_size
,
1083 } else if (arg_type
== ARG_PTR_TO_MAP_VALUE
) {
1084 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1085 * check [value, value + map->value_size) validity
1087 if (!meta
->map_ptr
) {
1088 /* kernel subsystem misconfigured verifier */
1089 verbose("invalid map_ptr to access map->value\n");
1092 if (type
== PTR_TO_PACKET
)
1093 err
= check_packet_access(env
, regno
, 0,
1094 meta
->map_ptr
->value_size
);
1096 err
= check_stack_boundary(env
, regno
,
1097 meta
->map_ptr
->value_size
,
1099 } else if (arg_type
== ARG_CONST_STACK_SIZE
||
1100 arg_type
== ARG_CONST_STACK_SIZE_OR_ZERO
) {
1101 bool zero_size_allowed
= (arg_type
== ARG_CONST_STACK_SIZE_OR_ZERO
);
1103 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1104 * from stack pointer 'buf'. Check it
1105 * note: regno == len, regno - 1 == buf
1108 /* kernel subsystem misconfigured verifier */
1109 verbose("ARG_CONST_STACK_SIZE cannot be first argument\n");
1112 if (regs
[regno
- 1].type
== PTR_TO_PACKET
)
1113 err
= check_packet_access(env
, regno
- 1, 0, reg
->imm
);
1115 err
= check_stack_boundary(env
, regno
- 1, reg
->imm
,
1116 zero_size_allowed
, meta
);
1121 verbose("R%d type=%s expected=%s\n", regno
,
1122 reg_type_str
[type
], reg_type_str
[expected_type
]);
1126 static int check_map_func_compatibility(struct bpf_map
*map
, int func_id
)
1131 /* We need a two way check, first is from map perspective ... */
1132 switch (map
->map_type
) {
1133 case BPF_MAP_TYPE_PROG_ARRAY
:
1134 if (func_id
!= BPF_FUNC_tail_call
)
1137 case BPF_MAP_TYPE_PERF_EVENT_ARRAY
:
1138 if (func_id
!= BPF_FUNC_perf_event_read
&&
1139 func_id
!= BPF_FUNC_perf_event_output
)
1142 case BPF_MAP_TYPE_STACK_TRACE
:
1143 if (func_id
!= BPF_FUNC_get_stackid
)
1146 case BPF_MAP_TYPE_CGROUP_ARRAY
:
1147 if (func_id
!= BPF_FUNC_skb_under_cgroup
&&
1148 func_id
!= BPF_FUNC_current_task_under_cgroup
)
1155 /* ... and second from the function itself. */
1157 case BPF_FUNC_tail_call
:
1158 if (map
->map_type
!= BPF_MAP_TYPE_PROG_ARRAY
)
1161 case BPF_FUNC_perf_event_read
:
1162 case BPF_FUNC_perf_event_output
:
1163 if (map
->map_type
!= BPF_MAP_TYPE_PERF_EVENT_ARRAY
)
1166 case BPF_FUNC_get_stackid
:
1167 if (map
->map_type
!= BPF_MAP_TYPE_STACK_TRACE
)
1170 case BPF_FUNC_current_task_under_cgroup
:
1171 case BPF_FUNC_skb_under_cgroup
:
1172 if (map
->map_type
!= BPF_MAP_TYPE_CGROUP_ARRAY
)
1181 verbose("cannot pass map_type %d into func %d\n",
1182 map
->map_type
, func_id
);
1186 static int check_raw_mode(const struct bpf_func_proto
*fn
)
1190 if (fn
->arg1_type
== ARG_PTR_TO_RAW_STACK
)
1192 if (fn
->arg2_type
== ARG_PTR_TO_RAW_STACK
)
1194 if (fn
->arg3_type
== ARG_PTR_TO_RAW_STACK
)
1196 if (fn
->arg4_type
== ARG_PTR_TO_RAW_STACK
)
1198 if (fn
->arg5_type
== ARG_PTR_TO_RAW_STACK
)
1201 return count
> 1 ? -EINVAL
: 0;
1204 static void clear_all_pkt_pointers(struct bpf_verifier_env
*env
)
1206 struct bpf_verifier_state
*state
= &env
->cur_state
;
1207 struct bpf_reg_state
*regs
= state
->regs
, *reg
;
1210 for (i
= 0; i
< MAX_BPF_REG
; i
++)
1211 if (regs
[i
].type
== PTR_TO_PACKET
||
1212 regs
[i
].type
== PTR_TO_PACKET_END
)
1213 mark_reg_unknown_value(regs
, i
);
1215 for (i
= 0; i
< MAX_BPF_STACK
; i
+= BPF_REG_SIZE
) {
1216 if (state
->stack_slot_type
[i
] != STACK_SPILL
)
1218 reg
= &state
->spilled_regs
[i
/ BPF_REG_SIZE
];
1219 if (reg
->type
!= PTR_TO_PACKET
&&
1220 reg
->type
!= PTR_TO_PACKET_END
)
1222 reg
->type
= UNKNOWN_VALUE
;
1227 static int check_call(struct bpf_verifier_env
*env
, int func_id
, int insn_idx
)
1229 struct bpf_verifier_state
*state
= &env
->cur_state
;
1230 const struct bpf_func_proto
*fn
= NULL
;
1231 struct bpf_reg_state
*regs
= state
->regs
;
1232 struct bpf_reg_state
*reg
;
1233 struct bpf_call_arg_meta meta
;
1237 /* find function prototype */
1238 if (func_id
< 0 || func_id
>= __BPF_FUNC_MAX_ID
) {
1239 verbose("invalid func %d\n", func_id
);
1243 if (env
->prog
->aux
->ops
->get_func_proto
)
1244 fn
= env
->prog
->aux
->ops
->get_func_proto(func_id
);
1247 verbose("unknown func %d\n", func_id
);
1251 /* eBPF programs must be GPL compatible to use GPL-ed functions */
1252 if (!env
->prog
->gpl_compatible
&& fn
->gpl_only
) {
1253 verbose("cannot call GPL only function from proprietary program\n");
1257 changes_data
= bpf_helper_changes_skb_data(fn
->func
);
1259 memset(&meta
, 0, sizeof(meta
));
1260 meta
.pkt_access
= fn
->pkt_access
;
1262 /* We only support one arg being in raw mode at the moment, which
1263 * is sufficient for the helper functions we have right now.
1265 err
= check_raw_mode(fn
);
1267 verbose("kernel subsystem misconfigured func %d\n", func_id
);
1272 err
= check_func_arg(env
, BPF_REG_1
, fn
->arg1_type
, &meta
);
1275 err
= check_func_arg(env
, BPF_REG_2
, fn
->arg2_type
, &meta
);
1278 if (func_id
== BPF_FUNC_tail_call
) {
1279 if (meta
.map_ptr
== NULL
) {
1280 verbose("verifier bug\n");
1283 env
->insn_aux_data
[insn_idx
].map_ptr
= meta
.map_ptr
;
1285 err
= check_func_arg(env
, BPF_REG_3
, fn
->arg3_type
, &meta
);
1288 err
= check_func_arg(env
, BPF_REG_4
, fn
->arg4_type
, &meta
);
1291 err
= check_func_arg(env
, BPF_REG_5
, fn
->arg5_type
, &meta
);
1295 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1296 * is inferred from register state.
1298 for (i
= 0; i
< meta
.access_size
; i
++) {
1299 err
= check_mem_access(env
, insn_idx
, meta
.regno
, i
, BPF_B
, BPF_WRITE
, -1);
1304 /* reset caller saved regs */
1305 for (i
= 0; i
< CALLER_SAVED_REGS
; i
++) {
1306 reg
= regs
+ caller_saved
[i
];
1307 reg
->type
= NOT_INIT
;
1311 /* update return register */
1312 if (fn
->ret_type
== RET_INTEGER
) {
1313 regs
[BPF_REG_0
].type
= UNKNOWN_VALUE
;
1314 } else if (fn
->ret_type
== RET_VOID
) {
1315 regs
[BPF_REG_0
].type
= NOT_INIT
;
1316 } else if (fn
->ret_type
== RET_PTR_TO_MAP_VALUE_OR_NULL
) {
1317 regs
[BPF_REG_0
].type
= PTR_TO_MAP_VALUE_OR_NULL
;
1318 regs
[BPF_REG_0
].max_value
= regs
[BPF_REG_0
].min_value
= 0;
1319 /* remember map_ptr, so that check_map_access()
1320 * can check 'value_size' boundary of memory access
1321 * to map element returned from bpf_map_lookup_elem()
1323 if (meta
.map_ptr
== NULL
) {
1324 verbose("kernel subsystem misconfigured verifier\n");
1327 regs
[BPF_REG_0
].map_ptr
= meta
.map_ptr
;
1328 regs
[BPF_REG_0
].id
= ++env
->id_gen
;
1330 verbose("unknown return type %d of func %d\n",
1331 fn
->ret_type
, func_id
);
1335 err
= check_map_func_compatibility(meta
.map_ptr
, func_id
);
1340 clear_all_pkt_pointers(env
);
1344 static int check_packet_ptr_add(struct bpf_verifier_env
*env
,
1345 struct bpf_insn
*insn
)
1347 struct bpf_reg_state
*regs
= env
->cur_state
.regs
;
1348 struct bpf_reg_state
*dst_reg
= ®s
[insn
->dst_reg
];
1349 struct bpf_reg_state
*src_reg
= ®s
[insn
->src_reg
];
1350 struct bpf_reg_state tmp_reg
;
1353 if (BPF_SRC(insn
->code
) == BPF_K
) {
1354 /* pkt_ptr += imm */
1359 verbose("addition of negative constant to packet pointer is not allowed\n");
1362 if (imm
>= MAX_PACKET_OFF
||
1363 imm
+ dst_reg
->off
>= MAX_PACKET_OFF
) {
1364 verbose("constant %d is too large to add to packet pointer\n",
1368 /* a constant was added to pkt_ptr.
1369 * Remember it while keeping the same 'id'
1371 dst_reg
->off
+= imm
;
1373 if (src_reg
->type
== PTR_TO_PACKET
) {
1374 /* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
1375 tmp_reg
= *dst_reg
; /* save r7 state */
1376 *dst_reg
= *src_reg
; /* copy pkt_ptr state r6 into r7 */
1377 src_reg
= &tmp_reg
; /* pretend it's src_reg state */
1378 /* if the checks below reject it, the copy won't matter,
1379 * since we're rejecting the whole program. If all ok,
1380 * then imm22 state will be added to r7
1381 * and r7 will be pkt(id=0,off=22,r=62) while
1382 * r6 will stay as pkt(id=0,off=0,r=62)
1386 if (src_reg
->type
== CONST_IMM
) {
1387 /* pkt_ptr += reg where reg is known constant */
1391 /* disallow pkt_ptr += reg
1392 * if reg is not uknown_value with guaranteed zero upper bits
1393 * otherwise pkt_ptr may overflow and addition will become
1394 * subtraction which is not allowed
1396 if (src_reg
->type
!= UNKNOWN_VALUE
) {
1397 verbose("cannot add '%s' to ptr_to_packet\n",
1398 reg_type_str
[src_reg
->type
]);
1401 if (src_reg
->imm
< 48) {
1402 verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
1406 /* dst_reg stays as pkt_ptr type and since some positive
1407 * integer value was added to the pointer, increment its 'id'
1409 dst_reg
->id
= ++env
->id_gen
;
1411 /* something was added to pkt_ptr, set range and off to zero */
1418 static int evaluate_reg_alu(struct bpf_verifier_env
*env
, struct bpf_insn
*insn
)
1420 struct bpf_reg_state
*regs
= env
->cur_state
.regs
;
1421 struct bpf_reg_state
*dst_reg
= ®s
[insn
->dst_reg
];
1422 u8 opcode
= BPF_OP(insn
->code
);
1425 /* for type == UNKNOWN_VALUE:
1426 * imm > 0 -> number of zero upper bits
1427 * imm == 0 -> don't track which is the same as all bits can be non-zero
1430 if (BPF_SRC(insn
->code
) == BPF_X
) {
1431 struct bpf_reg_state
*src_reg
= ®s
[insn
->src_reg
];
1433 if (src_reg
->type
== UNKNOWN_VALUE
&& src_reg
->imm
> 0 &&
1434 dst_reg
->imm
&& opcode
== BPF_ADD
) {
1436 * where both have zero upper bits. Adding them
1437 * can only result making one more bit non-zero
1438 * in the larger value.
1439 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
1440 * 0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
1442 dst_reg
->imm
= min(dst_reg
->imm
, src_reg
->imm
);
1446 if (src_reg
->type
== CONST_IMM
&& src_reg
->imm
> 0 &&
1447 dst_reg
->imm
&& opcode
== BPF_ADD
) {
1449 * where dreg has zero upper bits and sreg is const.
1450 * Adding them can only result making one more bit
1451 * non-zero in the larger value.
1453 imm_log2
= __ilog2_u64((long long)src_reg
->imm
);
1454 dst_reg
->imm
= min(dst_reg
->imm
, 63 - imm_log2
);
1458 /* all other cases non supported yet, just mark dst_reg */
1463 /* sign extend 32-bit imm into 64-bit to make sure that
1464 * negative values occupy bit 63. Note ilog2() would have
1465 * been incorrect, since sizeof(insn->imm) == 4
1467 imm_log2
= __ilog2_u64((long long)insn
->imm
);
1469 if (dst_reg
->imm
&& opcode
== BPF_LSH
) {
1471 * if reg was a result of 2 byte load, then its imm == 48
1472 * which means that upper 48 bits are zero and shifting this reg
1473 * left by 4 would mean that upper 44 bits are still zero
1475 dst_reg
->imm
-= insn
->imm
;
1476 } else if (dst_reg
->imm
&& opcode
== BPF_MUL
) {
1478 * if multiplying by 14 subtract 4
1479 * This is conservative calculation of upper zero bits.
1480 * It's not trying to special case insn->imm == 1 or 0 cases
1482 dst_reg
->imm
-= imm_log2
+ 1;
1483 } else if (opcode
== BPF_AND
) {
1485 dst_reg
->imm
= 63 - imm_log2
;
1486 } else if (dst_reg
->imm
&& opcode
== BPF_ADD
) {
1488 dst_reg
->imm
= min(dst_reg
->imm
, 63 - imm_log2
);
1490 } else if (opcode
== BPF_RSH
) {
1492 * which means that after right shift, upper bits will be zero
1493 * note that verifier already checked that
1494 * 0 <= imm < 64 for shift insn
1496 dst_reg
->imm
+= insn
->imm
;
1497 if (unlikely(dst_reg
->imm
> 64))
1498 /* some dumb code did:
1501 * and all bits are zero now */
1504 /* all other alu ops, means that we don't know what will
1505 * happen to the value, mark it with unknown number of zero bits
1510 if (dst_reg
->imm
< 0) {
1511 /* all 64 bits of the register can contain non-zero bits
1512 * and such value cannot be added to ptr_to_packet, since it
1513 * may overflow, mark it as unknown to avoid further eval
1520 static int evaluate_reg_imm_alu_unknown(struct bpf_verifier_env
*env
,
1521 struct bpf_insn
*insn
)
1523 struct bpf_reg_state
*regs
= env
->cur_state
.regs
;
1524 struct bpf_reg_state
*dst_reg
= ®s
[insn
->dst_reg
];
1525 struct bpf_reg_state
*src_reg
= ®s
[insn
->src_reg
];
1526 u8 opcode
= BPF_OP(insn
->code
);
1527 s64 imm_log2
= __ilog2_u64((long long)dst_reg
->imm
);
1529 /* BPF_X code with src_reg->type UNKNOWN_VALUE here. */
1530 if (src_reg
->imm
> 0 && dst_reg
->imm
) {
1534 * where both have zero upper bits. Adding them
1535 * can only result making one more bit non-zero
1536 * in the larger value.
1537 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
1538 * 0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
1540 dst_reg
->imm
= min(src_reg
->imm
, 63 - imm_log2
);
1545 * AND can not extend zero bits only shrink
1546 * Ex. 0x00..00ffffff
1551 dst_reg
->imm
= max(src_reg
->imm
, 63 - imm_log2
);
1555 * OR can only extend zero bits
1556 * Ex. 0x00..00ffffff
1561 dst_reg
->imm
= min(src_reg
->imm
, 63 - imm_log2
);
1567 /* These may be flushed out later */
1569 mark_reg_unknown_value(regs
, insn
->dst_reg
);
1572 mark_reg_unknown_value(regs
, insn
->dst_reg
);
1575 dst_reg
->type
= UNKNOWN_VALUE
;
1579 static int evaluate_reg_imm_alu(struct bpf_verifier_env
*env
,
1580 struct bpf_insn
*insn
)
1582 struct bpf_reg_state
*regs
= env
->cur_state
.regs
;
1583 struct bpf_reg_state
*dst_reg
= ®s
[insn
->dst_reg
];
1584 struct bpf_reg_state
*src_reg
= ®s
[insn
->src_reg
];
1585 u8 opcode
= BPF_OP(insn
->code
);
1587 if (BPF_SRC(insn
->code
) == BPF_X
&& src_reg
->type
== UNKNOWN_VALUE
)
1588 return evaluate_reg_imm_alu_unknown(env
, insn
);
1590 /* dst_reg->type == CONST_IMM here, simulate execution of 'add' insn.
1591 * Don't care about overflow or negative values, just add them
1593 if (opcode
== BPF_ADD
&& BPF_SRC(insn
->code
) == BPF_K
)
1594 dst_reg
->imm
+= insn
->imm
;
1595 else if (opcode
== BPF_ADD
&& BPF_SRC(insn
->code
) == BPF_X
&&
1596 src_reg
->type
== CONST_IMM
)
1597 dst_reg
->imm
+= src_reg
->imm
;
1599 mark_reg_unknown_value(regs
, insn
->dst_reg
);
1603 static void check_reg_overflow(struct bpf_reg_state
*reg
)
1605 if (reg
->max_value
> BPF_REGISTER_MAX_RANGE
)
1606 reg
->max_value
= BPF_REGISTER_MAX_RANGE
;
1607 if (reg
->min_value
< BPF_REGISTER_MIN_RANGE
||
1608 reg
->min_value
> BPF_REGISTER_MAX_RANGE
)
1609 reg
->min_value
= BPF_REGISTER_MIN_RANGE
;
1612 static void adjust_reg_min_max_vals(struct bpf_verifier_env
*env
,
1613 struct bpf_insn
*insn
)
1615 struct bpf_reg_state
*regs
= env
->cur_state
.regs
, *dst_reg
;
1616 s64 min_val
= BPF_REGISTER_MIN_RANGE
;
1617 u64 max_val
= BPF_REGISTER_MAX_RANGE
;
1618 bool min_set
= false, max_set
= false;
1619 u8 opcode
= BPF_OP(insn
->code
);
1621 dst_reg
= ®s
[insn
->dst_reg
];
1622 if (BPF_SRC(insn
->code
) == BPF_X
) {
1623 check_reg_overflow(®s
[insn
->src_reg
]);
1624 min_val
= regs
[insn
->src_reg
].min_value
;
1625 max_val
= regs
[insn
->src_reg
].max_value
;
1627 /* If the source register is a random pointer then the
1628 * min_value/max_value values represent the range of the known
1629 * accesses into that value, not the actual min/max value of the
1630 * register itself. In this case we have to reset the reg range
1631 * values so we know it is not safe to look at.
1633 if (regs
[insn
->src_reg
].type
!= CONST_IMM
&&
1634 regs
[insn
->src_reg
].type
!= UNKNOWN_VALUE
) {
1635 min_val
= BPF_REGISTER_MIN_RANGE
;
1636 max_val
= BPF_REGISTER_MAX_RANGE
;
1638 } else if (insn
->imm
< BPF_REGISTER_MAX_RANGE
&&
1639 (s64
)insn
->imm
> BPF_REGISTER_MIN_RANGE
) {
1640 min_val
= max_val
= insn
->imm
;
1641 min_set
= max_set
= true;
1644 /* We don't know anything about what was done to this register, mark it
1645 * as unknown. Also, if both derived bounds came from signed/unsigned
1646 * mixed compares and one side is unbounded, we cannot really do anything
1647 * with them as boundaries cannot be trusted. Thus, arithmetic of two
1648 * regs of such kind will get invalidated bounds on the dst side.
1650 if ((min_val
== BPF_REGISTER_MIN_RANGE
&&
1651 max_val
== BPF_REGISTER_MAX_RANGE
) ||
1652 (BPF_SRC(insn
->code
) == BPF_X
&&
1653 ((min_val
!= BPF_REGISTER_MIN_RANGE
&&
1654 max_val
== BPF_REGISTER_MAX_RANGE
) ||
1655 (min_val
== BPF_REGISTER_MIN_RANGE
&&
1656 max_val
!= BPF_REGISTER_MAX_RANGE
) ||
1657 (dst_reg
->min_value
!= BPF_REGISTER_MIN_RANGE
&&
1658 dst_reg
->max_value
== BPF_REGISTER_MAX_RANGE
) ||
1659 (dst_reg
->min_value
== BPF_REGISTER_MIN_RANGE
&&
1660 dst_reg
->max_value
!= BPF_REGISTER_MAX_RANGE
)) &&
1661 regs
[insn
->dst_reg
].value_from_signed
!=
1662 regs
[insn
->src_reg
].value_from_signed
)) {
1663 reset_reg_range_values(regs
, insn
->dst_reg
);
1667 /* If one of our values was at the end of our ranges then we can't just
1668 * do our normal operations to the register, we need to set the values
1669 * to the min/max since they are undefined.
1671 if (opcode
!= BPF_SUB
) {
1672 if (min_val
== BPF_REGISTER_MIN_RANGE
)
1673 dst_reg
->min_value
= BPF_REGISTER_MIN_RANGE
;
1674 if (max_val
== BPF_REGISTER_MAX_RANGE
)
1675 dst_reg
->max_value
= BPF_REGISTER_MAX_RANGE
;
1680 if (dst_reg
->min_value
!= BPF_REGISTER_MIN_RANGE
)
1681 dst_reg
->min_value
+= min_val
;
1682 if (dst_reg
->max_value
!= BPF_REGISTER_MAX_RANGE
)
1683 dst_reg
->max_value
+= max_val
;
1686 /* If one of our values was at the end of our ranges, then the
1687 * _opposite_ value in the dst_reg goes to the end of our range.
1689 if (min_val
== BPF_REGISTER_MIN_RANGE
)
1690 dst_reg
->max_value
= BPF_REGISTER_MAX_RANGE
;
1691 if (max_val
== BPF_REGISTER_MAX_RANGE
)
1692 dst_reg
->min_value
= BPF_REGISTER_MIN_RANGE
;
1693 if (dst_reg
->min_value
!= BPF_REGISTER_MIN_RANGE
)
1694 dst_reg
->min_value
-= max_val
;
1695 if (dst_reg
->max_value
!= BPF_REGISTER_MAX_RANGE
)
1696 dst_reg
->max_value
-= min_val
;
1699 if (dst_reg
->min_value
!= BPF_REGISTER_MIN_RANGE
)
1700 dst_reg
->min_value
*= min_val
;
1701 if (dst_reg
->max_value
!= BPF_REGISTER_MAX_RANGE
)
1702 dst_reg
->max_value
*= max_val
;
1705 /* Disallow AND'ing of negative numbers, ain't nobody got time
1706 * for that. Otherwise the minimum is 0 and the max is the max
1707 * value we could AND against.
1710 dst_reg
->min_value
= BPF_REGISTER_MIN_RANGE
;
1712 dst_reg
->min_value
= 0;
1713 dst_reg
->max_value
= max_val
;
1716 /* Gotta have special overflow logic here, if we're shifting
1717 * more than MAX_RANGE then just assume we have an invalid
1720 if (min_val
> ilog2(BPF_REGISTER_MAX_RANGE
))
1721 dst_reg
->min_value
= BPF_REGISTER_MIN_RANGE
;
1722 else if (dst_reg
->min_value
!= BPF_REGISTER_MIN_RANGE
)
1723 dst_reg
->min_value
<<= min_val
;
1725 if (max_val
> ilog2(BPF_REGISTER_MAX_RANGE
))
1726 dst_reg
->max_value
= BPF_REGISTER_MAX_RANGE
;
1727 else if (dst_reg
->max_value
!= BPF_REGISTER_MAX_RANGE
)
1728 dst_reg
->max_value
<<= max_val
;
1731 /* RSH by a negative number is undefined, and the BPF_RSH is an
1732 * unsigned shift, so make the appropriate casts.
1734 if (min_val
< 0 || dst_reg
->min_value
< 0)
1735 dst_reg
->min_value
= BPF_REGISTER_MIN_RANGE
;
1737 dst_reg
->min_value
=
1738 (u64
)(dst_reg
->min_value
) >> min_val
;
1739 if (dst_reg
->max_value
!= BPF_REGISTER_MAX_RANGE
)
1740 dst_reg
->max_value
>>= max_val
;
1743 reset_reg_range_values(regs
, insn
->dst_reg
);
1747 check_reg_overflow(dst_reg
);
1750 /* check validity of 32-bit and 64-bit arithmetic operations */
1751 static int check_alu_op(struct bpf_verifier_env
*env
, struct bpf_insn
*insn
)
1753 struct bpf_reg_state
*regs
= env
->cur_state
.regs
, *dst_reg
;
1754 u8 opcode
= BPF_OP(insn
->code
);
1757 if (opcode
== BPF_END
|| opcode
== BPF_NEG
) {
1758 if (opcode
== BPF_NEG
) {
1759 if (BPF_SRC(insn
->code
) != 0 ||
1760 insn
->src_reg
!= BPF_REG_0
||
1761 insn
->off
!= 0 || insn
->imm
!= 0) {
1762 verbose("BPF_NEG uses reserved fields\n");
1766 if (insn
->src_reg
!= BPF_REG_0
|| insn
->off
!= 0 ||
1767 (insn
->imm
!= 16 && insn
->imm
!= 32 && insn
->imm
!= 64) ||
1768 BPF_CLASS(insn
->code
) == BPF_ALU64
) {
1769 verbose("BPF_END uses reserved fields\n");
1774 /* check src operand */
1775 err
= check_reg_arg(regs
, insn
->dst_reg
, SRC_OP
);
1779 if (is_pointer_value(env
, insn
->dst_reg
)) {
1780 verbose("R%d pointer arithmetic prohibited\n",
1785 /* check dest operand */
1786 err
= check_reg_arg(regs
, insn
->dst_reg
, DST_OP
);
1790 } else if (opcode
== BPF_MOV
) {
1792 if (BPF_SRC(insn
->code
) == BPF_X
) {
1793 if (insn
->imm
!= 0 || insn
->off
!= 0) {
1794 verbose("BPF_MOV uses reserved fields\n");
1798 /* check src operand */
1799 err
= check_reg_arg(regs
, insn
->src_reg
, SRC_OP
);
1803 if (insn
->src_reg
!= BPF_REG_0
|| insn
->off
!= 0) {
1804 verbose("BPF_MOV uses reserved fields\n");
1809 /* check dest operand */
1810 err
= check_reg_arg(regs
, insn
->dst_reg
, DST_OP
);
1814 /* we are setting our register to something new, we need to
1815 * reset its range values.
1817 reset_reg_range_values(regs
, insn
->dst_reg
);
1819 if (BPF_SRC(insn
->code
) == BPF_X
) {
1820 if (BPF_CLASS(insn
->code
) == BPF_ALU64
) {
1822 * copy register state to dest reg
1824 regs
[insn
->dst_reg
] = regs
[insn
->src_reg
];
1826 if (is_pointer_value(env
, insn
->src_reg
)) {
1827 verbose("R%d partial copy of pointer\n",
1831 mark_reg_unknown_value(regs
, insn
->dst_reg
);
1835 * remember the value we stored into this reg
1839 if (BPF_CLASS(insn
->code
) == BPF_ALU64
)
1842 imm
= (u32
)insn
->imm
;
1844 regs
[insn
->dst_reg
].type
= CONST_IMM
;
1845 regs
[insn
->dst_reg
].imm
= imm
;
1846 regs
[insn
->dst_reg
].max_value
= imm
;
1847 regs
[insn
->dst_reg
].min_value
= imm
;
1850 } else if (opcode
> BPF_END
) {
1851 verbose("invalid BPF_ALU opcode %x\n", opcode
);
1854 } else { /* all other ALU ops: and, sub, xor, add, ... */
1856 if (BPF_SRC(insn
->code
) == BPF_X
) {
1857 if (insn
->imm
!= 0 || insn
->off
!= 0) {
1858 verbose("BPF_ALU uses reserved fields\n");
1861 /* check src1 operand */
1862 err
= check_reg_arg(regs
, insn
->src_reg
, SRC_OP
);
1866 if (insn
->src_reg
!= BPF_REG_0
|| insn
->off
!= 0) {
1867 verbose("BPF_ALU uses reserved fields\n");
1872 /* check src2 operand */
1873 err
= check_reg_arg(regs
, insn
->dst_reg
, SRC_OP
);
1877 if ((opcode
== BPF_MOD
|| opcode
== BPF_DIV
) &&
1878 BPF_SRC(insn
->code
) == BPF_K
&& insn
->imm
== 0) {
1879 verbose("div by zero\n");
1883 if (opcode
== BPF_ARSH
&& BPF_CLASS(insn
->code
) != BPF_ALU64
) {
1884 verbose("BPF_ARSH not supported for 32 bit ALU\n");
1888 if ((opcode
== BPF_LSH
|| opcode
== BPF_RSH
||
1889 opcode
== BPF_ARSH
) && BPF_SRC(insn
->code
) == BPF_K
) {
1890 int size
= BPF_CLASS(insn
->code
) == BPF_ALU64
? 64 : 32;
1892 if (insn
->imm
< 0 || insn
->imm
>= size
) {
1893 verbose("invalid shift %d\n", insn
->imm
);
1898 /* check dest operand */
1899 err
= check_reg_arg(regs
, insn
->dst_reg
, DST_OP_NO_MARK
);
1903 dst_reg
= ®s
[insn
->dst_reg
];
1905 /* first we want to adjust our ranges. */
1906 adjust_reg_min_max_vals(env
, insn
);
1908 /* pattern match 'bpf_add Rx, imm' instruction */
1909 if (opcode
== BPF_ADD
&& BPF_CLASS(insn
->code
) == BPF_ALU64
&&
1910 dst_reg
->type
== FRAME_PTR
&& BPF_SRC(insn
->code
) == BPF_K
) {
1911 dst_reg
->type
= PTR_TO_STACK
;
1912 dst_reg
->imm
= insn
->imm
;
1914 } else if (opcode
== BPF_ADD
&&
1915 BPF_CLASS(insn
->code
) == BPF_ALU64
&&
1916 dst_reg
->type
== PTR_TO_STACK
&&
1917 ((BPF_SRC(insn
->code
) == BPF_X
&&
1918 regs
[insn
->src_reg
].type
== CONST_IMM
) ||
1919 BPF_SRC(insn
->code
) == BPF_K
)) {
1920 if (BPF_SRC(insn
->code
) == BPF_X
) {
1921 /* check in case the register contains a big
1924 if (regs
[insn
->src_reg
].imm
< -MAX_BPF_STACK
||
1925 regs
[insn
->src_reg
].imm
> MAX_BPF_STACK
) {
1926 verbose("R%d value too big in R%d pointer arithmetic\n",
1927 insn
->src_reg
, insn
->dst_reg
);
1930 dst_reg
->imm
+= regs
[insn
->src_reg
].imm
;
1932 /* safe against overflow: addition of 32-bit
1933 * numbers in 64-bit representation
1935 dst_reg
->imm
+= insn
->imm
;
1937 if (dst_reg
->imm
> 0 || dst_reg
->imm
< -MAX_BPF_STACK
) {
1938 verbose("R%d out-of-bounds pointer arithmetic\n",
1943 } else if (opcode
== BPF_ADD
&&
1944 BPF_CLASS(insn
->code
) == BPF_ALU64
&&
1945 (dst_reg
->type
== PTR_TO_PACKET
||
1946 (BPF_SRC(insn
->code
) == BPF_X
&&
1947 regs
[insn
->src_reg
].type
== PTR_TO_PACKET
))) {
1948 /* ptr_to_packet += K|X */
1949 return check_packet_ptr_add(env
, insn
);
1950 } else if (BPF_CLASS(insn
->code
) == BPF_ALU64
&&
1951 dst_reg
->type
== UNKNOWN_VALUE
&&
1952 env
->allow_ptr_leaks
) {
1953 /* unknown += K|X */
1954 return evaluate_reg_alu(env
, insn
);
1955 } else if (BPF_CLASS(insn
->code
) == BPF_ALU64
&&
1956 dst_reg
->type
== CONST_IMM
&&
1957 env
->allow_ptr_leaks
) {
1958 /* reg_imm += K|X */
1959 return evaluate_reg_imm_alu(env
, insn
);
1960 } else if (is_pointer_value(env
, insn
->dst_reg
)) {
1961 verbose("R%d pointer arithmetic prohibited\n",
1964 } else if (BPF_SRC(insn
->code
) == BPF_X
&&
1965 is_pointer_value(env
, insn
->src_reg
)) {
1966 verbose("R%d pointer arithmetic prohibited\n",
1971 /* If we did pointer math on a map value then just set it to our
1972 * PTR_TO_MAP_VALUE_ADJ type so we can deal with any stores or
1973 * loads to this register appropriately, otherwise just mark the
1974 * register as unknown.
1976 if (env
->allow_ptr_leaks
&&
1977 BPF_CLASS(insn
->code
) == BPF_ALU64
&& opcode
== BPF_ADD
&&
1978 (dst_reg
->type
== PTR_TO_MAP_VALUE
||
1979 dst_reg
->type
== PTR_TO_MAP_VALUE_ADJ
))
1980 dst_reg
->type
= PTR_TO_MAP_VALUE_ADJ
;
1982 mark_reg_unknown_value(regs
, insn
->dst_reg
);
1988 static void find_good_pkt_pointers(struct bpf_verifier_state
*state
,
1989 struct bpf_reg_state
*dst_reg
)
1991 struct bpf_reg_state
*regs
= state
->regs
, *reg
;
1994 /* LLVM can generate two kind of checks:
2000 * if (r2 > pkt_end) goto <handle exception>
2004 * r2 == dst_reg, pkt_end == src_reg
2005 * r2=pkt(id=n,off=8,r=0)
2006 * r3=pkt(id=n,off=0,r=0)
2012 * if (pkt_end >= r2) goto <access okay>
2013 * <handle exception>
2016 * pkt_end == dst_reg, r2 == src_reg
2017 * r2=pkt(id=n,off=8,r=0)
2018 * r3=pkt(id=n,off=0,r=0)
2020 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2021 * so that range of bytes [r3, r3 + 8) is safe to access.
2024 for (i
= 0; i
< MAX_BPF_REG
; i
++)
2025 if (regs
[i
].type
== PTR_TO_PACKET
&& regs
[i
].id
== dst_reg
->id
)
2026 /* keep the maximum range already checked */
2027 regs
[i
].range
= max(regs
[i
].range
, dst_reg
->off
);
2029 for (i
= 0; i
< MAX_BPF_STACK
; i
+= BPF_REG_SIZE
) {
2030 if (state
->stack_slot_type
[i
] != STACK_SPILL
)
2032 reg
= &state
->spilled_regs
[i
/ BPF_REG_SIZE
];
2033 if (reg
->type
== PTR_TO_PACKET
&& reg
->id
== dst_reg
->id
)
2034 reg
->range
= max(reg
->range
, dst_reg
->off
);
2038 /* Adjusts the register min/max values in the case that the dst_reg is the
2039 * variable register that we are working on, and src_reg is a constant or we're
2040 * simply doing a BPF_K check.
2042 static void reg_set_min_max(struct bpf_reg_state
*true_reg
,
2043 struct bpf_reg_state
*false_reg
, u64 val
,
2046 bool value_from_signed
= true;
2047 bool is_range
= true;
2051 /* If this is false then we know nothing Jon Snow, but if it is
2052 * true then we know for sure.
2054 true_reg
->max_value
= true_reg
->min_value
= val
;
2058 /* If this is true we know nothing Jon Snow, but if it is false
2059 * we know the value for sure;
2061 false_reg
->max_value
= false_reg
->min_value
= val
;
2065 value_from_signed
= false;
2068 if (true_reg
->value_from_signed
!= value_from_signed
)
2069 reset_reg_range_values(true_reg
, 0);
2070 if (false_reg
->value_from_signed
!= value_from_signed
)
2071 reset_reg_range_values(false_reg
, 0);
2072 if (opcode
== BPF_JGT
) {
2073 /* Unsigned comparison, the minimum value is 0. */
2074 false_reg
->min_value
= 0;
2076 /* If this is false then we know the maximum val is val,
2077 * otherwise we know the min val is val+1.
2079 false_reg
->max_value
= val
;
2080 false_reg
->value_from_signed
= value_from_signed
;
2081 true_reg
->min_value
= val
+ 1;
2082 true_reg
->value_from_signed
= value_from_signed
;
2085 value_from_signed
= false;
2088 if (true_reg
->value_from_signed
!= value_from_signed
)
2089 reset_reg_range_values(true_reg
, 0);
2090 if (false_reg
->value_from_signed
!= value_from_signed
)
2091 reset_reg_range_values(false_reg
, 0);
2092 if (opcode
== BPF_JGE
) {
2093 /* Unsigned comparison, the minimum value is 0. */
2094 false_reg
->min_value
= 0;
2096 /* If this is false then we know the maximum value is val - 1,
2097 * otherwise we know the mimimum value is val.
2099 false_reg
->max_value
= val
- 1;
2100 false_reg
->value_from_signed
= value_from_signed
;
2101 true_reg
->min_value
= val
;
2102 true_reg
->value_from_signed
= value_from_signed
;
2108 check_reg_overflow(false_reg
);
2109 check_reg_overflow(true_reg
);
2111 if (__is_pointer_value(false, false_reg
))
2112 reset_reg_range_values(false_reg
, 0);
2113 if (__is_pointer_value(false, true_reg
))
2114 reset_reg_range_values(true_reg
, 0);
2118 /* Same as above, but for the case that dst_reg is a CONST_IMM reg and src_reg
2119 * is the variable reg.
2121 static void reg_set_min_max_inv(struct bpf_reg_state
*true_reg
,
2122 struct bpf_reg_state
*false_reg
, u64 val
,
2125 bool value_from_signed
= true;
2126 bool is_range
= true;
2130 /* If this is false then we know nothing Jon Snow, but if it is
2131 * true then we know for sure.
2133 true_reg
->max_value
= true_reg
->min_value
= val
;
2137 /* If this is true we know nothing Jon Snow, but if it is false
2138 * we know the value for sure;
2140 false_reg
->max_value
= false_reg
->min_value
= val
;
2144 value_from_signed
= false;
2147 if (true_reg
->value_from_signed
!= value_from_signed
)
2148 reset_reg_range_values(true_reg
, 0);
2149 if (false_reg
->value_from_signed
!= value_from_signed
)
2150 reset_reg_range_values(false_reg
, 0);
2151 if (opcode
== BPF_JGT
) {
2152 /* Unsigned comparison, the minimum value is 0. */
2153 true_reg
->min_value
= 0;
2156 * If this is false, then the val is <= the register, if it is
2157 * true the register <= to the val.
2159 false_reg
->min_value
= val
;
2160 false_reg
->value_from_signed
= value_from_signed
;
2161 true_reg
->max_value
= val
- 1;
2162 true_reg
->value_from_signed
= value_from_signed
;
2165 value_from_signed
= false;
2168 if (true_reg
->value_from_signed
!= value_from_signed
)
2169 reset_reg_range_values(true_reg
, 0);
2170 if (false_reg
->value_from_signed
!= value_from_signed
)
2171 reset_reg_range_values(false_reg
, 0);
2172 if (opcode
== BPF_JGE
) {
2173 /* Unsigned comparison, the minimum value is 0. */
2174 true_reg
->min_value
= 0;
2176 /* If this is false then constant < register, if it is true then
2177 * the register < constant.
2179 false_reg
->min_value
= val
+ 1;
2180 false_reg
->value_from_signed
= value_from_signed
;
2181 true_reg
->max_value
= val
;
2182 true_reg
->value_from_signed
= value_from_signed
;
2188 check_reg_overflow(false_reg
);
2189 check_reg_overflow(true_reg
);
2191 if (__is_pointer_value(false, false_reg
))
2192 reset_reg_range_values(false_reg
, 0);
2193 if (__is_pointer_value(false, true_reg
))
2194 reset_reg_range_values(true_reg
, 0);
2198 static void mark_map_reg(struct bpf_reg_state
*regs
, u32 regno
, u32 id
,
2199 enum bpf_reg_type type
)
2201 struct bpf_reg_state
*reg
= ®s
[regno
];
2203 if (reg
->type
== PTR_TO_MAP_VALUE_OR_NULL
&& reg
->id
== id
) {
2205 /* We don't need id from this point onwards anymore, thus we
2206 * should better reset it, so that state pruning has chances
2210 if (type
== UNKNOWN_VALUE
)
2211 __mark_reg_unknown_value(regs
, regno
);
2215 /* The logic is similar to find_good_pkt_pointers(), both could eventually
2216 * be folded together at some point.
2218 static void mark_map_regs(struct bpf_verifier_state
*state
, u32 regno
,
2219 enum bpf_reg_type type
)
2221 struct bpf_reg_state
*regs
= state
->regs
;
2222 u32 id
= regs
[regno
].id
;
2225 for (i
= 0; i
< MAX_BPF_REG
; i
++)
2226 mark_map_reg(regs
, i
, id
, type
);
2228 for (i
= 0; i
< MAX_BPF_STACK
; i
+= BPF_REG_SIZE
) {
2229 if (state
->stack_slot_type
[i
] != STACK_SPILL
)
2231 mark_map_reg(state
->spilled_regs
, i
/ BPF_REG_SIZE
, id
, type
);
2235 static int check_cond_jmp_op(struct bpf_verifier_env
*env
,
2236 struct bpf_insn
*insn
, int *insn_idx
)
2238 struct bpf_verifier_state
*other_branch
, *this_branch
= &env
->cur_state
;
2239 struct bpf_reg_state
*regs
= this_branch
->regs
, *dst_reg
;
2240 u8 opcode
= BPF_OP(insn
->code
);
2243 if (opcode
> BPF_EXIT
) {
2244 verbose("invalid BPF_JMP opcode %x\n", opcode
);
2248 if (BPF_SRC(insn
->code
) == BPF_X
) {
2249 if (insn
->imm
!= 0) {
2250 verbose("BPF_JMP uses reserved fields\n");
2254 /* check src1 operand */
2255 err
= check_reg_arg(regs
, insn
->src_reg
, SRC_OP
);
2259 if (is_pointer_value(env
, insn
->src_reg
)) {
2260 verbose("R%d pointer comparison prohibited\n",
2265 if (insn
->src_reg
!= BPF_REG_0
) {
2266 verbose("BPF_JMP uses reserved fields\n");
2271 /* check src2 operand */
2272 err
= check_reg_arg(regs
, insn
->dst_reg
, SRC_OP
);
2276 dst_reg
= ®s
[insn
->dst_reg
];
2278 /* detect if R == 0 where R was initialized to zero earlier */
2279 if (BPF_SRC(insn
->code
) == BPF_K
&&
2280 (opcode
== BPF_JEQ
|| opcode
== BPF_JNE
) &&
2281 dst_reg
->type
== CONST_IMM
&& dst_reg
->imm
== insn
->imm
) {
2282 if (opcode
== BPF_JEQ
) {
2283 /* if (imm == imm) goto pc+off;
2284 * only follow the goto, ignore fall-through
2286 *insn_idx
+= insn
->off
;
2289 /* if (imm != imm) goto pc+off;
2290 * only follow fall-through branch, since
2291 * that's where the program will go
2297 other_branch
= push_stack(env
, *insn_idx
+ insn
->off
+ 1, *insn_idx
);
2301 /* detect if we are comparing against a constant value so we can adjust
2302 * our min/max values for our dst register.
2304 if (BPF_SRC(insn
->code
) == BPF_X
) {
2305 if (regs
[insn
->src_reg
].type
== CONST_IMM
)
2306 reg_set_min_max(&other_branch
->regs
[insn
->dst_reg
],
2307 dst_reg
, regs
[insn
->src_reg
].imm
,
2309 else if (dst_reg
->type
== CONST_IMM
)
2310 reg_set_min_max_inv(&other_branch
->regs
[insn
->src_reg
],
2311 ®s
[insn
->src_reg
], dst_reg
->imm
,
2314 reg_set_min_max(&other_branch
->regs
[insn
->dst_reg
],
2315 dst_reg
, insn
->imm
, opcode
);
2318 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
2319 if (BPF_SRC(insn
->code
) == BPF_K
&&
2320 insn
->imm
== 0 && (opcode
== BPF_JEQ
|| opcode
== BPF_JNE
) &&
2321 dst_reg
->type
== PTR_TO_MAP_VALUE_OR_NULL
) {
2322 /* Mark all identical map registers in each branch as either
2323 * safe or unknown depending R == 0 or R != 0 conditional.
2325 mark_map_regs(this_branch
, insn
->dst_reg
,
2326 opcode
== BPF_JEQ
? PTR_TO_MAP_VALUE
: UNKNOWN_VALUE
);
2327 mark_map_regs(other_branch
, insn
->dst_reg
,
2328 opcode
== BPF_JEQ
? UNKNOWN_VALUE
: PTR_TO_MAP_VALUE
);
2329 } else if (BPF_SRC(insn
->code
) == BPF_X
&& opcode
== BPF_JGT
&&
2330 dst_reg
->type
== PTR_TO_PACKET
&&
2331 regs
[insn
->src_reg
].type
== PTR_TO_PACKET_END
) {
2332 find_good_pkt_pointers(this_branch
, dst_reg
);
2333 } else if (BPF_SRC(insn
->code
) == BPF_X
&& opcode
== BPF_JGE
&&
2334 dst_reg
->type
== PTR_TO_PACKET_END
&&
2335 regs
[insn
->src_reg
].type
== PTR_TO_PACKET
) {
2336 find_good_pkt_pointers(other_branch
, ®s
[insn
->src_reg
]);
2337 } else if (is_pointer_value(env
, insn
->dst_reg
)) {
2338 verbose("R%d pointer comparison prohibited\n", insn
->dst_reg
);
2342 print_verifier_state(this_branch
);
2346 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
2347 static struct bpf_map
*ld_imm64_to_map_ptr(struct bpf_insn
*insn
)
2349 u64 imm64
= ((u64
) (u32
) insn
[0].imm
) | ((u64
) (u32
) insn
[1].imm
) << 32;
2351 return (struct bpf_map
*) (unsigned long) imm64
;
2354 /* verify BPF_LD_IMM64 instruction */
2355 static int check_ld_imm(struct bpf_verifier_env
*env
, struct bpf_insn
*insn
)
2357 struct bpf_reg_state
*regs
= env
->cur_state
.regs
;
2360 if (BPF_SIZE(insn
->code
) != BPF_DW
) {
2361 verbose("invalid BPF_LD_IMM insn\n");
2364 if (insn
->off
!= 0) {
2365 verbose("BPF_LD_IMM64 uses reserved fields\n");
2369 err
= check_reg_arg(regs
, insn
->dst_reg
, DST_OP
);
2373 if (insn
->src_reg
== 0) {
2374 /* generic move 64-bit immediate into a register,
2375 * only analyzer needs to collect the ld_imm value.
2377 u64 imm
= ((u64
)(insn
+ 1)->imm
<< 32) | (u32
)insn
->imm
;
2379 if (!env
->analyzer_ops
)
2382 regs
[insn
->dst_reg
].type
= CONST_IMM
;
2383 regs
[insn
->dst_reg
].imm
= imm
;
2387 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2388 BUG_ON(insn
->src_reg
!= BPF_PSEUDO_MAP_FD
);
2390 regs
[insn
->dst_reg
].type
= CONST_PTR_TO_MAP
;
2391 regs
[insn
->dst_reg
].map_ptr
= ld_imm64_to_map_ptr(insn
);
2395 static bool may_access_skb(enum bpf_prog_type type
)
2398 case BPF_PROG_TYPE_SOCKET_FILTER
:
2399 case BPF_PROG_TYPE_SCHED_CLS
:
2400 case BPF_PROG_TYPE_SCHED_ACT
:
2407 /* verify safety of LD_ABS|LD_IND instructions:
2408 * - they can only appear in the programs where ctx == skb
2409 * - since they are wrappers of function calls, they scratch R1-R5 registers,
2410 * preserve R6-R9, and store return value into R0
2413 * ctx == skb == R6 == CTX
2416 * SRC == any register
2417 * IMM == 32-bit immediate
2420 * R0 - 8/16/32-bit skb data converted to cpu endianness
2422 static int check_ld_abs(struct bpf_verifier_env
*env
, struct bpf_insn
*insn
)
2424 struct bpf_reg_state
*regs
= env
->cur_state
.regs
;
2425 u8 mode
= BPF_MODE(insn
->code
);
2426 struct bpf_reg_state
*reg
;
2429 if (!may_access_skb(env
->prog
->type
)) {
2430 verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
2434 if (insn
->dst_reg
!= BPF_REG_0
|| insn
->off
!= 0 ||
2435 BPF_SIZE(insn
->code
) == BPF_DW
||
2436 (mode
== BPF_ABS
&& insn
->src_reg
!= BPF_REG_0
)) {
2437 verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
2441 /* check whether implicit source operand (register R6) is readable */
2442 err
= check_reg_arg(regs
, BPF_REG_6
, SRC_OP
);
2446 if (regs
[BPF_REG_6
].type
!= PTR_TO_CTX
) {
2447 verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2451 if (mode
== BPF_IND
) {
2452 /* check explicit source operand */
2453 err
= check_reg_arg(regs
, insn
->src_reg
, SRC_OP
);
2458 /* reset caller saved regs to unreadable */
2459 for (i
= 0; i
< CALLER_SAVED_REGS
; i
++) {
2460 reg
= regs
+ caller_saved
[i
];
2461 reg
->type
= NOT_INIT
;
2465 /* mark destination R0 register as readable, since it contains
2466 * the value fetched from the packet
2468 regs
[BPF_REG_0
].type
= UNKNOWN_VALUE
;
2472 /* non-recursive DFS pseudo code
2473 * 1 procedure DFS-iterative(G,v):
2474 * 2 label v as discovered
2475 * 3 let S be a stack
2477 * 5 while S is not empty
2479 * 7 if t is what we're looking for:
2481 * 9 for all edges e in G.adjacentEdges(t) do
2482 * 10 if edge e is already labelled
2483 * 11 continue with the next edge
2484 * 12 w <- G.adjacentVertex(t,e)
2485 * 13 if vertex w is not discovered and not explored
2486 * 14 label e as tree-edge
2487 * 15 label w as discovered
2490 * 18 else if vertex w is discovered
2491 * 19 label e as back-edge
2493 * 21 // vertex w is explored
2494 * 22 label e as forward- or cross-edge
2495 * 23 label t as explored
2500 * 0x11 - discovered and fall-through edge labelled
2501 * 0x12 - discovered and fall-through and branch edges labelled
2512 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
2514 static int *insn_stack
; /* stack of insns to process */
2515 static int cur_stack
; /* current stack index */
2516 static int *insn_state
;
2518 /* t, w, e - match pseudo-code above:
2519 * t - index of current instruction
2520 * w - next instruction
2523 static int push_insn(int t
, int w
, int e
, struct bpf_verifier_env
*env
)
2525 if (e
== FALLTHROUGH
&& insn_state
[t
] >= (DISCOVERED
| FALLTHROUGH
))
2528 if (e
== BRANCH
&& insn_state
[t
] >= (DISCOVERED
| BRANCH
))
2531 if (w
< 0 || w
>= env
->prog
->len
) {
2532 verbose("jump out of range from insn %d to %d\n", t
, w
);
2537 /* mark branch target for state pruning */
2538 env
->explored_states
[w
] = STATE_LIST_MARK
;
2540 if (insn_state
[w
] == 0) {
2542 insn_state
[t
] = DISCOVERED
| e
;
2543 insn_state
[w
] = DISCOVERED
;
2544 if (cur_stack
>= env
->prog
->len
)
2546 insn_stack
[cur_stack
++] = w
;
2548 } else if ((insn_state
[w
] & 0xF0) == DISCOVERED
) {
2549 verbose("back-edge from insn %d to %d\n", t
, w
);
2551 } else if (insn_state
[w
] == EXPLORED
) {
2552 /* forward- or cross-edge */
2553 insn_state
[t
] = DISCOVERED
| e
;
2555 verbose("insn state internal bug\n");
2561 /* non-recursive depth-first-search to detect loops in BPF program
2562 * loop == back-edge in directed graph
2564 static int check_cfg(struct bpf_verifier_env
*env
)
2566 struct bpf_insn
*insns
= env
->prog
->insnsi
;
2567 int insn_cnt
= env
->prog
->len
;
2571 insn_state
= kcalloc(insn_cnt
, sizeof(int), GFP_KERNEL
);
2575 insn_stack
= kcalloc(insn_cnt
, sizeof(int), GFP_KERNEL
);
2581 insn_state
[0] = DISCOVERED
; /* mark 1st insn as discovered */
2582 insn_stack
[0] = 0; /* 0 is the first instruction */
2588 t
= insn_stack
[cur_stack
- 1];
2590 if (BPF_CLASS(insns
[t
].code
) == BPF_JMP
) {
2591 u8 opcode
= BPF_OP(insns
[t
].code
);
2593 if (opcode
== BPF_EXIT
) {
2595 } else if (opcode
== BPF_CALL
) {
2596 ret
= push_insn(t
, t
+ 1, FALLTHROUGH
, env
);
2601 if (t
+ 1 < insn_cnt
)
2602 env
->explored_states
[t
+ 1] = STATE_LIST_MARK
;
2603 } else if (opcode
== BPF_JA
) {
2604 if (BPF_SRC(insns
[t
].code
) != BPF_K
) {
2608 /* unconditional jump with single edge */
2609 ret
= push_insn(t
, t
+ insns
[t
].off
+ 1,
2615 /* tell verifier to check for equivalent states
2616 * after every call and jump
2618 if (t
+ 1 < insn_cnt
)
2619 env
->explored_states
[t
+ 1] = STATE_LIST_MARK
;
2621 /* conditional jump with two edges */
2622 env
->explored_states
[t
] = STATE_LIST_MARK
;
2623 ret
= push_insn(t
, t
+ 1, FALLTHROUGH
, env
);
2629 ret
= push_insn(t
, t
+ insns
[t
].off
+ 1, BRANCH
, env
);
2636 /* all other non-branch instructions with single
2639 ret
= push_insn(t
, t
+ 1, FALLTHROUGH
, env
);
2647 insn_state
[t
] = EXPLORED
;
2648 if (cur_stack
-- <= 0) {
2649 verbose("pop stack internal bug\n");
2656 for (i
= 0; i
< insn_cnt
; i
++) {
2657 if (insn_state
[i
] != EXPLORED
) {
2658 verbose("unreachable insn %d\n", i
);
2663 ret
= 0; /* cfg looks good */
2671 /* the following conditions reduce the number of explored insns
2672 * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
2674 static bool compare_ptrs_to_packet(struct bpf_reg_state
*old
,
2675 struct bpf_reg_state
*cur
)
2677 if (old
->id
!= cur
->id
)
2680 /* old ptr_to_packet is more conservative, since it allows smaller
2682 * old(off=0,r=10) is equal to cur(off=0,r=20), because
2683 * old(off=0,r=10) means that with range=10 the verifier proceeded
2684 * further and found no issues with the program. Now we're in the same
2685 * spot with cur(off=0,r=20), so we're safe too, since anything further
2686 * will only be looking at most 10 bytes after this pointer.
2688 if (old
->off
== cur
->off
&& old
->range
< cur
->range
)
2691 /* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
2692 * since both cannot be used for packet access and safe(old)
2693 * pointer has smaller off that could be used for further
2694 * 'if (ptr > data_end)' check
2696 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
2697 * that we cannot access the packet.
2698 * The safe range is:
2699 * [ptr, ptr + range - off)
2700 * so whenever off >=range, it means no safe bytes from this pointer.
2701 * When comparing old->off <= cur->off, it means that older code
2702 * went with smaller offset and that offset was later
2703 * used to figure out the safe range after 'if (ptr > data_end)' check
2704 * Say, 'old' state was explored like:
2705 * ... R3(off=0, r=0)
2707 * ... now R4(off=20,r=0) <-- here
2708 * if (R4 > data_end)
2709 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
2710 * ... the code further went all the way to bpf_exit.
2711 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
2712 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
2713 * goes further, such cur_R4 will give larger safe packet range after
2714 * 'if (R4 > data_end)' and all further insn were already good with r=20,
2715 * so they will be good with r=30 and we can prune the search.
2717 if (old
->off
<= cur
->off
&&
2718 old
->off
>= old
->range
&& cur
->off
>= cur
->range
)
2724 /* compare two verifier states
2726 * all states stored in state_list are known to be valid, since
2727 * verifier reached 'bpf_exit' instruction through them
2729 * this function is called when verifier exploring different branches of
2730 * execution popped from the state stack. If it sees an old state that has
2731 * more strict register state and more strict stack state then this execution
2732 * branch doesn't need to be explored further, since verifier already
2733 * concluded that more strict state leads to valid finish.
2735 * Therefore two states are equivalent if register state is more conservative
2736 * and explored stack state is more conservative than the current one.
2739 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
2740 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
2742 * In other words if current stack state (one being explored) has more
2743 * valid slots than old one that already passed validation, it means
2744 * the verifier can stop exploring and conclude that current state is valid too
2746 * Similarly with registers. If explored state has register type as invalid
2747 * whereas register type in current state is meaningful, it means that
2748 * the current state will reach 'bpf_exit' instruction safely
2750 static bool states_equal(struct bpf_verifier_env
*env
,
2751 struct bpf_verifier_state
*old
,
2752 struct bpf_verifier_state
*cur
)
2754 bool varlen_map_access
= env
->varlen_map_value_access
;
2755 struct bpf_reg_state
*rold
, *rcur
;
2758 for (i
= 0; i
< MAX_BPF_REG
; i
++) {
2759 rold
= &old
->regs
[i
];
2760 rcur
= &cur
->regs
[i
];
2762 if (memcmp(rold
, rcur
, sizeof(*rold
)) == 0)
2765 /* If the ranges were not the same, but everything else was and
2766 * we didn't do a variable access into a map then we are a-ok.
2768 if (!varlen_map_access
&&
2769 memcmp(rold
, rcur
, offsetofend(struct bpf_reg_state
, id
)) == 0)
2772 /* If we didn't map access then again we don't care about the
2773 * mismatched range values and it's ok if our old type was
2774 * UNKNOWN and we didn't go to a NOT_INIT'ed or pointer reg.
2776 if (rold
->type
== NOT_INIT
||
2777 (!varlen_map_access
&& rold
->type
== UNKNOWN_VALUE
&&
2778 rcur
->type
!= NOT_INIT
&&
2779 !__is_pointer_value(env
->allow_ptr_leaks
, rcur
)))
2782 /* Don't care about the reg->id in this case. */
2783 if (rold
->type
== PTR_TO_MAP_VALUE_OR_NULL
&&
2784 rcur
->type
== PTR_TO_MAP_VALUE_OR_NULL
&&
2785 rold
->map_ptr
== rcur
->map_ptr
)
2788 if (rold
->type
== PTR_TO_PACKET
&& rcur
->type
== PTR_TO_PACKET
&&
2789 compare_ptrs_to_packet(rold
, rcur
))
2795 for (i
= 0; i
< MAX_BPF_STACK
; i
++) {
2796 if (old
->stack_slot_type
[i
] == STACK_INVALID
)
2798 if (old
->stack_slot_type
[i
] != cur
->stack_slot_type
[i
])
2799 /* Ex: old explored (safe) state has STACK_SPILL in
2800 * this stack slot, but current has has STACK_MISC ->
2801 * this verifier states are not equivalent,
2802 * return false to continue verification of this path
2805 if (i
% BPF_REG_SIZE
)
2807 if (memcmp(&old
->spilled_regs
[i
/ BPF_REG_SIZE
],
2808 &cur
->spilled_regs
[i
/ BPF_REG_SIZE
],
2809 sizeof(old
->spilled_regs
[0])))
2810 /* when explored and current stack slot types are
2811 * the same, check that stored pointers types
2812 * are the same as well.
2813 * Ex: explored safe path could have stored
2814 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -8}
2815 * but current path has stored:
2816 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -16}
2817 * such verifier states are not equivalent.
2818 * return false to continue verification of this path
2827 static int is_state_visited(struct bpf_verifier_env
*env
, int insn_idx
)
2829 struct bpf_verifier_state_list
*new_sl
;
2830 struct bpf_verifier_state_list
*sl
;
2832 sl
= env
->explored_states
[insn_idx
];
2834 /* this 'insn_idx' instruction wasn't marked, so we will not
2835 * be doing state search here
2839 while (sl
!= STATE_LIST_MARK
) {
2840 if (states_equal(env
, &sl
->state
, &env
->cur_state
))
2841 /* reached equivalent register/stack state,
2848 /* there were no equivalent states, remember current one.
2849 * technically the current state is not proven to be safe yet,
2850 * but it will either reach bpf_exit (which means it's safe) or
2851 * it will be rejected. Since there are no loops, we won't be
2852 * seeing this 'insn_idx' instruction again on the way to bpf_exit
2854 new_sl
= kmalloc(sizeof(struct bpf_verifier_state_list
), GFP_USER
);
2858 /* add new state to the head of linked list */
2859 memcpy(&new_sl
->state
, &env
->cur_state
, sizeof(env
->cur_state
));
2860 new_sl
->next
= env
->explored_states
[insn_idx
];
2861 env
->explored_states
[insn_idx
] = new_sl
;
2865 static int ext_analyzer_insn_hook(struct bpf_verifier_env
*env
,
2866 int insn_idx
, int prev_insn_idx
)
2868 if (!env
->analyzer_ops
|| !env
->analyzer_ops
->insn_hook
)
2871 return env
->analyzer_ops
->insn_hook(env
, insn_idx
, prev_insn_idx
);
2874 static int do_check(struct bpf_verifier_env
*env
)
2876 struct bpf_verifier_state
*state
= &env
->cur_state
;
2877 struct bpf_insn
*insns
= env
->prog
->insnsi
;
2878 struct bpf_reg_state
*regs
= state
->regs
;
2879 int insn_cnt
= env
->prog
->len
;
2880 int insn_idx
, prev_insn_idx
= 0;
2881 int insn_processed
= 0;
2882 bool do_print_state
= false;
2884 init_reg_state(regs
);
2886 env
->varlen_map_value_access
= false;
2888 struct bpf_insn
*insn
;
2892 if (insn_idx
>= insn_cnt
) {
2893 verbose("invalid insn idx %d insn_cnt %d\n",
2894 insn_idx
, insn_cnt
);
2898 insn
= &insns
[insn_idx
];
2899 class = BPF_CLASS(insn
->code
);
2901 if (++insn_processed
> BPF_COMPLEXITY_LIMIT_INSNS
) {
2902 verbose("BPF program is too large. Proccessed %d insn\n",
2907 err
= is_state_visited(env
, insn_idx
);
2911 /* found equivalent state, can prune the search */
2914 verbose("\nfrom %d to %d: safe\n",
2915 prev_insn_idx
, insn_idx
);
2917 verbose("%d: safe\n", insn_idx
);
2919 goto process_bpf_exit
;
2922 if (signal_pending(current
))
2928 if (log_level
&& do_print_state
) {
2929 verbose("\nfrom %d to %d:", prev_insn_idx
, insn_idx
);
2930 print_verifier_state(&env
->cur_state
);
2931 do_print_state
= false;
2935 verbose("%d: ", insn_idx
);
2936 print_bpf_insn(env
, insn
);
2939 err
= ext_analyzer_insn_hook(env
, insn_idx
, prev_insn_idx
);
2943 env
->insn_aux_data
[insn_idx
].seen
= true;
2944 if (class == BPF_ALU
|| class == BPF_ALU64
) {
2945 err
= check_alu_op(env
, insn
);
2949 } else if (class == BPF_LDX
) {
2950 enum bpf_reg_type
*prev_src_type
, src_reg_type
;
2952 /* check for reserved fields is already done */
2954 /* check src operand */
2955 err
= check_reg_arg(regs
, insn
->src_reg
, SRC_OP
);
2959 err
= check_reg_arg(regs
, insn
->dst_reg
, DST_OP_NO_MARK
);
2963 src_reg_type
= regs
[insn
->src_reg
].type
;
2965 /* check that memory (src_reg + off) is readable,
2966 * the state of dst_reg will be updated by this func
2968 err
= check_mem_access(env
, insn_idx
, insn
->src_reg
, insn
->off
,
2969 BPF_SIZE(insn
->code
), BPF_READ
,
2974 reset_reg_range_values(regs
, insn
->dst_reg
);
2975 if (BPF_SIZE(insn
->code
) != BPF_W
&&
2976 BPF_SIZE(insn
->code
) != BPF_DW
) {
2981 prev_src_type
= &env
->insn_aux_data
[insn_idx
].ptr_type
;
2983 if (*prev_src_type
== NOT_INIT
) {
2985 * dst_reg = *(u32 *)(src_reg + off)
2986 * save type to validate intersecting paths
2988 *prev_src_type
= src_reg_type
;
2990 } else if (src_reg_type
!= *prev_src_type
&&
2991 (src_reg_type
== PTR_TO_CTX
||
2992 *prev_src_type
== PTR_TO_CTX
)) {
2993 /* ABuser program is trying to use the same insn
2994 * dst_reg = *(u32*) (src_reg + off)
2995 * with different pointer types:
2996 * src_reg == ctx in one branch and
2997 * src_reg == stack|map in some other branch.
3000 verbose("same insn cannot be used with different pointers\n");
3004 } else if (class == BPF_STX
) {
3005 enum bpf_reg_type
*prev_dst_type
, dst_reg_type
;
3007 if (BPF_MODE(insn
->code
) == BPF_XADD
) {
3008 err
= check_xadd(env
, insn_idx
, insn
);
3015 /* check src1 operand */
3016 err
= check_reg_arg(regs
, insn
->src_reg
, SRC_OP
);
3019 /* check src2 operand */
3020 err
= check_reg_arg(regs
, insn
->dst_reg
, SRC_OP
);
3024 dst_reg_type
= regs
[insn
->dst_reg
].type
;
3026 /* check that memory (dst_reg + off) is writeable */
3027 err
= check_mem_access(env
, insn_idx
, insn
->dst_reg
, insn
->off
,
3028 BPF_SIZE(insn
->code
), BPF_WRITE
,
3033 prev_dst_type
= &env
->insn_aux_data
[insn_idx
].ptr_type
;
3035 if (*prev_dst_type
== NOT_INIT
) {
3036 *prev_dst_type
= dst_reg_type
;
3037 } else if (dst_reg_type
!= *prev_dst_type
&&
3038 (dst_reg_type
== PTR_TO_CTX
||
3039 *prev_dst_type
== PTR_TO_CTX
)) {
3040 verbose("same insn cannot be used with different pointers\n");
3044 } else if (class == BPF_ST
) {
3045 if (BPF_MODE(insn
->code
) != BPF_MEM
||
3046 insn
->src_reg
!= BPF_REG_0
) {
3047 verbose("BPF_ST uses reserved fields\n");
3050 /* check src operand */
3051 err
= check_reg_arg(regs
, insn
->dst_reg
, SRC_OP
);
3055 if (is_ctx_reg(env
, insn
->dst_reg
)) {
3056 verbose("BPF_ST stores into R%d context is not allowed\n",
3061 /* check that memory (dst_reg + off) is writeable */
3062 err
= check_mem_access(env
, insn_idx
, insn
->dst_reg
, insn
->off
,
3063 BPF_SIZE(insn
->code
), BPF_WRITE
,
3068 } else if (class == BPF_JMP
) {
3069 u8 opcode
= BPF_OP(insn
->code
);
3071 if (opcode
== BPF_CALL
) {
3072 if (BPF_SRC(insn
->code
) != BPF_K
||
3074 insn
->src_reg
!= BPF_REG_0
||
3075 insn
->dst_reg
!= BPF_REG_0
) {
3076 verbose("BPF_CALL uses reserved fields\n");
3080 err
= check_call(env
, insn
->imm
, insn_idx
);
3084 } else if (opcode
== BPF_JA
) {
3085 if (BPF_SRC(insn
->code
) != BPF_K
||
3087 insn
->src_reg
!= BPF_REG_0
||
3088 insn
->dst_reg
!= BPF_REG_0
) {
3089 verbose("BPF_JA uses reserved fields\n");
3093 insn_idx
+= insn
->off
+ 1;
3096 } else if (opcode
== BPF_EXIT
) {
3097 if (BPF_SRC(insn
->code
) != BPF_K
||
3099 insn
->src_reg
!= BPF_REG_0
||
3100 insn
->dst_reg
!= BPF_REG_0
) {
3101 verbose("BPF_EXIT uses reserved fields\n");
3105 /* eBPF calling convetion is such that R0 is used
3106 * to return the value from eBPF program.
3107 * Make sure that it's readable at this time
3108 * of bpf_exit, which means that program wrote
3109 * something into it earlier
3111 err
= check_reg_arg(regs
, BPF_REG_0
, SRC_OP
);
3115 if (is_pointer_value(env
, BPF_REG_0
)) {
3116 verbose("R0 leaks addr as return value\n");
3121 insn_idx
= pop_stack(env
, &prev_insn_idx
);
3125 do_print_state
= true;
3129 err
= check_cond_jmp_op(env
, insn
, &insn_idx
);
3133 } else if (class == BPF_LD
) {
3134 u8 mode
= BPF_MODE(insn
->code
);
3136 if (mode
== BPF_ABS
|| mode
== BPF_IND
) {
3137 err
= check_ld_abs(env
, insn
);
3141 } else if (mode
== BPF_IMM
) {
3142 err
= check_ld_imm(env
, insn
);
3147 env
->insn_aux_data
[insn_idx
].seen
= true;
3149 verbose("invalid BPF_LD mode\n");
3152 reset_reg_range_values(regs
, insn
->dst_reg
);
3154 verbose("unknown insn class %d\n", class);
3161 verbose("processed %d insns\n", insn_processed
);
3165 static int check_map_prog_compatibility(struct bpf_map
*map
,
3166 struct bpf_prog
*prog
)
3169 if (prog
->type
== BPF_PROG_TYPE_PERF_EVENT
&&
3170 (map
->map_type
== BPF_MAP_TYPE_HASH
||
3171 map
->map_type
== BPF_MAP_TYPE_PERCPU_HASH
) &&
3172 (map
->map_flags
& BPF_F_NO_PREALLOC
)) {
3173 verbose("perf_event programs can only use preallocated hash map\n");
3179 /* look for pseudo eBPF instructions that access map FDs and
3180 * replace them with actual map pointers
3182 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env
*env
)
3184 struct bpf_insn
*insn
= env
->prog
->insnsi
;
3185 int insn_cnt
= env
->prog
->len
;
3188 for (i
= 0; i
< insn_cnt
; i
++, insn
++) {
3189 if (BPF_CLASS(insn
->code
) == BPF_LDX
&&
3190 (BPF_MODE(insn
->code
) != BPF_MEM
|| insn
->imm
!= 0)) {
3191 verbose("BPF_LDX uses reserved fields\n");
3195 if (BPF_CLASS(insn
->code
) == BPF_STX
&&
3196 ((BPF_MODE(insn
->code
) != BPF_MEM
&&
3197 BPF_MODE(insn
->code
) != BPF_XADD
) || insn
->imm
!= 0)) {
3198 verbose("BPF_STX uses reserved fields\n");
3202 if (insn
[0].code
== (BPF_LD
| BPF_IMM
| BPF_DW
)) {
3203 struct bpf_map
*map
;
3206 if (i
== insn_cnt
- 1 || insn
[1].code
!= 0 ||
3207 insn
[1].dst_reg
!= 0 || insn
[1].src_reg
!= 0 ||
3209 verbose("invalid bpf_ld_imm64 insn\n");
3213 if (insn
->src_reg
== 0)
3214 /* valid generic load 64-bit imm */
3217 if (insn
->src_reg
!= BPF_PSEUDO_MAP_FD
) {
3218 verbose("unrecognized bpf_ld_imm64 insn\n");
3222 f
= fdget(insn
->imm
);
3223 map
= __bpf_map_get(f
);
3225 verbose("fd %d is not pointing to valid bpf_map\n",
3227 return PTR_ERR(map
);
3230 err
= check_map_prog_compatibility(map
, env
->prog
);
3236 /* store map pointer inside BPF_LD_IMM64 instruction */
3237 insn
[0].imm
= (u32
) (unsigned long) map
;
3238 insn
[1].imm
= ((u64
) (unsigned long) map
) >> 32;
3240 /* check whether we recorded this map already */
3241 for (j
= 0; j
< env
->used_map_cnt
; j
++)
3242 if (env
->used_maps
[j
] == map
) {
3247 if (env
->used_map_cnt
>= MAX_USED_MAPS
) {
3252 /* hold the map. If the program is rejected by verifier,
3253 * the map will be released by release_maps() or it
3254 * will be used by the valid program until it's unloaded
3255 * and all maps are released in free_used_maps()
3257 map
= bpf_map_inc(map
, false);
3260 return PTR_ERR(map
);
3262 env
->used_maps
[env
->used_map_cnt
++] = map
;
3271 /* now all pseudo BPF_LD_IMM64 instructions load valid
3272 * 'struct bpf_map *' into a register instead of user map_fd.
3273 * These pointers will be used later by verifier to validate map access.
3278 /* drop refcnt of maps used by the rejected program */
3279 static void release_maps(struct bpf_verifier_env
*env
)
3283 for (i
= 0; i
< env
->used_map_cnt
; i
++)
3284 bpf_map_put(env
->used_maps
[i
]);
3287 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
3288 static void convert_pseudo_ld_imm64(struct bpf_verifier_env
*env
)
3290 struct bpf_insn
*insn
= env
->prog
->insnsi
;
3291 int insn_cnt
= env
->prog
->len
;
3294 for (i
= 0; i
< insn_cnt
; i
++, insn
++)
3295 if (insn
->code
== (BPF_LD
| BPF_IMM
| BPF_DW
))
3299 /* single env->prog->insni[off] instruction was replaced with the range
3300 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
3301 * [0, off) and [off, end) to new locations, so the patched range stays zero
3303 static int adjust_insn_aux_data(struct bpf_verifier_env
*env
, u32 prog_len
,
3306 struct bpf_insn_aux_data
*new_data
, *old_data
= env
->insn_aux_data
;
3311 new_data
= vzalloc(sizeof(struct bpf_insn_aux_data
) * prog_len
);
3314 memcpy(new_data
, old_data
, sizeof(struct bpf_insn_aux_data
) * off
);
3315 memcpy(new_data
+ off
+ cnt
- 1, old_data
+ off
,
3316 sizeof(struct bpf_insn_aux_data
) * (prog_len
- off
- cnt
+ 1));
3317 for (i
= off
; i
< off
+ cnt
- 1; i
++)
3318 new_data
[i
].seen
= true;
3319 env
->insn_aux_data
= new_data
;
3324 static struct bpf_prog
*bpf_patch_insn_data(struct bpf_verifier_env
*env
, u32 off
,
3325 const struct bpf_insn
*patch
, u32 len
)
3327 struct bpf_prog
*new_prog
;
3329 new_prog
= bpf_patch_insn_single(env
->prog
, off
, patch
, len
);
3332 if (adjust_insn_aux_data(env
, new_prog
->len
, off
, len
))
3337 /* The verifier does more data flow analysis than llvm and will not explore
3338 * branches that are dead at run time. Malicious programs can have dead code
3339 * too. Therefore replace all dead at-run-time code with nops.
3341 static void sanitize_dead_code(struct bpf_verifier_env
*env
)
3343 struct bpf_insn_aux_data
*aux_data
= env
->insn_aux_data
;
3344 struct bpf_insn nop
= BPF_MOV64_REG(BPF_REG_0
, BPF_REG_0
);
3345 struct bpf_insn
*insn
= env
->prog
->insnsi
;
3346 const int insn_cnt
= env
->prog
->len
;
3349 for (i
= 0; i
< insn_cnt
; i
++) {
3350 if (aux_data
[i
].seen
)
3352 memcpy(insn
+ i
, &nop
, sizeof(nop
));
3356 /* convert load instructions that access fields of 'struct __sk_buff'
3357 * into sequence of instructions that access fields of 'struct sk_buff'
3359 static int convert_ctx_accesses(struct bpf_verifier_env
*env
)
3361 const struct bpf_verifier_ops
*ops
= env
->prog
->aux
->ops
;
3362 const int insn_cnt
= env
->prog
->len
;
3363 struct bpf_insn insn_buf
[16], *insn
;
3364 struct bpf_prog
*new_prog
;
3365 enum bpf_access_type type
;
3366 int i
, cnt
, delta
= 0;
3368 if (ops
->gen_prologue
) {
3369 cnt
= ops
->gen_prologue(insn_buf
, env
->seen_direct_write
,
3371 if (cnt
>= ARRAY_SIZE(insn_buf
)) {
3372 verbose("bpf verifier is misconfigured\n");
3375 new_prog
= bpf_patch_insn_data(env
, 0, insn_buf
, cnt
);
3379 env
->prog
= new_prog
;
3384 if (!ops
->convert_ctx_access
)
3387 insn
= env
->prog
->insnsi
+ delta
;
3389 for (i
= 0; i
< insn_cnt
; i
++, insn
++) {
3390 if (insn
->code
== (BPF_LDX
| BPF_MEM
| BPF_W
) ||
3391 insn
->code
== (BPF_LDX
| BPF_MEM
| BPF_DW
))
3393 else if (insn
->code
== (BPF_STX
| BPF_MEM
| BPF_W
) ||
3394 insn
->code
== (BPF_STX
| BPF_MEM
| BPF_DW
))
3399 if (type
== BPF_WRITE
&&
3400 env
->insn_aux_data
[i
+ delta
].sanitize_stack_off
) {
3401 struct bpf_insn patch
[] = {
3402 /* Sanitize suspicious stack slot with zero.
3403 * There are no memory dependencies for this store,
3404 * since it's only using frame pointer and immediate
3407 BPF_ST_MEM(BPF_DW
, BPF_REG_FP
,
3408 env
->insn_aux_data
[i
+ delta
].sanitize_stack_off
,
3410 /* the original STX instruction will immediately
3411 * overwrite the same stack slot with appropriate value
3416 cnt
= ARRAY_SIZE(patch
);
3417 new_prog
= bpf_patch_insn_data(env
, i
+ delta
, patch
, cnt
);
3422 env
->prog
= new_prog
;
3423 insn
= new_prog
->insnsi
+ i
+ delta
;
3427 if (env
->insn_aux_data
[i
+ delta
].ptr_type
!= PTR_TO_CTX
)
3430 cnt
= ops
->convert_ctx_access(type
, insn
->dst_reg
, insn
->src_reg
,
3431 insn
->off
, insn_buf
, env
->prog
);
3432 if (cnt
== 0 || cnt
>= ARRAY_SIZE(insn_buf
)) {
3433 verbose("bpf verifier is misconfigured\n");
3437 new_prog
= bpf_patch_insn_data(env
, i
+ delta
, insn_buf
, cnt
);
3443 /* keep walking new program and skip insns we just inserted */
3444 env
->prog
= new_prog
;
3445 insn
= new_prog
->insnsi
+ i
+ delta
;
3451 /* fixup insn->imm field of bpf_call instructions
3453 * this function is called after eBPF program passed verification
3455 static int fixup_bpf_calls(struct bpf_verifier_env
*env
)
3457 struct bpf_prog
*prog
= env
->prog
;
3458 struct bpf_insn
*insn
= prog
->insnsi
;
3459 const struct bpf_func_proto
*fn
;
3460 const int insn_cnt
= prog
->len
;
3461 struct bpf_insn insn_buf
[16];
3462 struct bpf_prog
*new_prog
;
3463 struct bpf_map
*map_ptr
;
3464 int i
, cnt
, delta
= 0;
3467 for (i
= 0; i
< insn_cnt
; i
++, insn
++) {
3468 if (insn
->code
== (BPF_ALU
| BPF_MOD
| BPF_X
) ||
3469 insn
->code
== (BPF_ALU
| BPF_DIV
| BPF_X
)) {
3470 /* due to JIT bugs clear upper 32-bits of src register
3471 * before div/mod operation
3473 insn_buf
[0] = BPF_MOV32_REG(insn
->src_reg
, insn
->src_reg
);
3474 insn_buf
[1] = *insn
;
3476 new_prog
= bpf_patch_insn_data(env
, i
+ delta
, insn_buf
, cnt
);
3481 env
->prog
= prog
= new_prog
;
3482 insn
= new_prog
->insnsi
+ i
+ delta
;
3486 if (insn
->code
!= (BPF_JMP
| BPF_CALL
))
3489 if (insn
->imm
== BPF_FUNC_get_route_realm
)
3490 prog
->dst_needed
= 1;
3491 if (insn
->imm
== BPF_FUNC_get_prandom_u32
)
3492 bpf_user_rnd_init_once();
3493 if (insn
->imm
== BPF_FUNC_tail_call
) {
3494 /* mark bpf_tail_call as different opcode to avoid
3495 * conditional branch in the interpeter for every normal
3496 * call and to prevent accidental JITing by JIT compiler
3497 * that doesn't support bpf_tail_call yet
3500 insn
->code
|= BPF_X
;
3502 /* instead of changing every JIT dealing with tail_call
3503 * emit two extra insns:
3504 * if (index >= max_entries) goto out;
3505 * index &= array->index_mask;
3506 * to avoid out-of-bounds cpu speculation
3508 map_ptr
= env
->insn_aux_data
[i
+ delta
].map_ptr
;
3509 if (!map_ptr
->unpriv_array
)
3511 insn_buf
[0] = BPF_JMP_IMM(BPF_JGE
, BPF_REG_3
,
3512 map_ptr
->max_entries
, 2);
3513 insn_buf
[1] = BPF_ALU32_IMM(BPF_AND
, BPF_REG_3
,
3514 container_of(map_ptr
,
3517 insn_buf
[2] = *insn
;
3519 new_prog
= bpf_patch_insn_data(env
, i
+ delta
, insn_buf
, cnt
);
3524 env
->prog
= prog
= new_prog
;
3525 insn
= new_prog
->insnsi
+ i
+ delta
;
3529 fn
= prog
->aux
->ops
->get_func_proto(insn
->imm
);
3530 /* all functions that have prototype and verifier allowed
3531 * programs to call them, must be real in-kernel functions
3534 verbose("kernel subsystem misconfigured func %d\n",
3538 insn
->imm
= fn
->func
- __bpf_call_base
;
3544 static void free_states(struct bpf_verifier_env
*env
)
3546 struct bpf_verifier_state_list
*sl
, *sln
;
3549 if (!env
->explored_states
)
3552 for (i
= 0; i
< env
->prog
->len
; i
++) {
3553 sl
= env
->explored_states
[i
];
3556 while (sl
!= STATE_LIST_MARK
) {
3563 kfree(env
->explored_states
);
3566 int bpf_check(struct bpf_prog
**prog
, union bpf_attr
*attr
)
3568 char __user
*log_ubuf
= NULL
;
3569 struct bpf_verifier_env
*env
;
3572 if ((*prog
)->len
<= 0 || (*prog
)->len
> BPF_MAXINSNS
)
3575 /* 'struct bpf_verifier_env' can be global, but since it's not small,
3576 * allocate/free it every time bpf_check() is called
3578 env
= kzalloc(sizeof(struct bpf_verifier_env
), GFP_KERNEL
);
3582 env
->insn_aux_data
= vzalloc(sizeof(struct bpf_insn_aux_data
) *
3585 if (!env
->insn_aux_data
)
3589 /* grab the mutex to protect few globals used by verifier */
3590 mutex_lock(&bpf_verifier_lock
);
3592 if (attr
->log_level
|| attr
->log_buf
|| attr
->log_size
) {
3593 /* user requested verbose verifier output
3594 * and supplied buffer to store the verification trace
3596 log_level
= attr
->log_level
;
3597 log_ubuf
= (char __user
*) (unsigned long) attr
->log_buf
;
3598 log_size
= attr
->log_size
;
3602 /* log_* values have to be sane */
3603 if (log_size
< 128 || log_size
> UINT_MAX
>> 8 ||
3604 log_level
== 0 || log_ubuf
== NULL
)
3608 log_buf
= vmalloc(log_size
);
3615 ret
= replace_map_fd_with_map_ptr(env
);
3617 goto skip_full_check
;
3619 env
->explored_states
= kcalloc(env
->prog
->len
,
3620 sizeof(struct bpf_verifier_state_list
*),
3623 if (!env
->explored_states
)
3624 goto skip_full_check
;
3626 ret
= check_cfg(env
);
3628 goto skip_full_check
;
3630 env
->allow_ptr_leaks
= capable(CAP_SYS_ADMIN
);
3632 ret
= do_check(env
);
3635 while (pop_stack(env
, NULL
) >= 0);
3639 sanitize_dead_code(env
);
3642 /* program is valid, convert *(u32*)(ctx + off) accesses */
3643 ret
= convert_ctx_accesses(env
);
3646 ret
= fixup_bpf_calls(env
);
3648 if (log_level
&& log_len
>= log_size
- 1) {
3649 BUG_ON(log_len
>= log_size
);
3650 /* verifier log exceeded user supplied buffer */
3652 /* fall through to return what was recorded */
3655 /* copy verifier log back to user space including trailing zero */
3656 if (log_level
&& copy_to_user(log_ubuf
, log_buf
, log_len
+ 1) != 0) {
3661 if (ret
== 0 && env
->used_map_cnt
) {
3662 /* if program passed verifier, update used_maps in bpf_prog_info */
3663 env
->prog
->aux
->used_maps
= kmalloc_array(env
->used_map_cnt
,
3664 sizeof(env
->used_maps
[0]),
3667 if (!env
->prog
->aux
->used_maps
) {
3672 memcpy(env
->prog
->aux
->used_maps
, env
->used_maps
,
3673 sizeof(env
->used_maps
[0]) * env
->used_map_cnt
);
3674 env
->prog
->aux
->used_map_cnt
= env
->used_map_cnt
;
3676 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
3677 * bpf_ld_imm64 instructions
3679 convert_pseudo_ld_imm64(env
);
3685 if (!env
->prog
->aux
->used_maps
)
3686 /* if we didn't copy map pointers into bpf_prog_info, release
3687 * them now. Otherwise free_used_maps() will release them.
3692 mutex_unlock(&bpf_verifier_lock
);
3693 vfree(env
->insn_aux_data
);
3699 int bpf_analyzer(struct bpf_prog
*prog
, const struct bpf_ext_analyzer_ops
*ops
,
3702 struct bpf_verifier_env
*env
;
3705 env
= kzalloc(sizeof(struct bpf_verifier_env
), GFP_KERNEL
);
3709 env
->insn_aux_data
= vzalloc(sizeof(struct bpf_insn_aux_data
) *
3712 if (!env
->insn_aux_data
)
3715 env
->analyzer_ops
= ops
;
3716 env
->analyzer_priv
= priv
;
3718 /* grab the mutex to protect few globals used by verifier */
3719 mutex_lock(&bpf_verifier_lock
);
3723 env
->explored_states
= kcalloc(env
->prog
->len
,
3724 sizeof(struct bpf_verifier_state_list
*),
3727 if (!env
->explored_states
)
3728 goto skip_full_check
;
3730 ret
= check_cfg(env
);
3732 goto skip_full_check
;
3734 env
->allow_ptr_leaks
= capable(CAP_SYS_ADMIN
);
3736 ret
= do_check(env
);
3739 while (pop_stack(env
, NULL
) >= 0);
3742 mutex_unlock(&bpf_verifier_lock
);
3743 vfree(env
->insn_aux_data
);
3748 EXPORT_SYMBOL_GPL(bpf_analyzer
);