2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
52 #include <asm/irq_regs.h>
54 typedef int (*remote_function_f
)(void *);
56 struct remote_function_call
{
57 struct task_struct
*p
;
58 remote_function_f func
;
63 static void remote_function(void *data
)
65 struct remote_function_call
*tfc
= data
;
66 struct task_struct
*p
= tfc
->p
;
70 if (task_cpu(p
) != smp_processor_id())
74 * Now that we're on right CPU with IRQs disabled, we can test
75 * if we hit the right task without races.
78 tfc
->ret
= -ESRCH
; /* No such (running) process */
83 tfc
->ret
= tfc
->func(tfc
->info
);
87 * task_function_call - call a function on the cpu on which a task runs
88 * @p: the task to evaluate
89 * @func: the function to be called
90 * @info: the function call argument
92 * Calls the function @func when the task is currently running. This might
93 * be on the current CPU, which just calls the function directly
95 * returns: @func return value, or
96 * -ESRCH - when the process isn't running
97 * -EAGAIN - when the process moved away
100 task_function_call(struct task_struct
*p
, remote_function_f func
, void *info
)
102 struct remote_function_call data
= {
111 ret
= smp_call_function_single(task_cpu(p
), remote_function
, &data
, 1);
114 } while (ret
== -EAGAIN
);
120 * cpu_function_call - call a function on the cpu
121 * @func: the function to be called
122 * @info: the function call argument
124 * Calls the function @func on the remote cpu.
126 * returns: @func return value or -ENXIO when the cpu is offline
128 static int cpu_function_call(int cpu
, remote_function_f func
, void *info
)
130 struct remote_function_call data
= {
134 .ret
= -ENXIO
, /* No such CPU */
137 smp_call_function_single(cpu
, remote_function
, &data
, 1);
142 static inline struct perf_cpu_context
*
143 __get_cpu_context(struct perf_event_context
*ctx
)
145 return this_cpu_ptr(ctx
->pmu
->pmu_cpu_context
);
148 static void perf_ctx_lock(struct perf_cpu_context
*cpuctx
,
149 struct perf_event_context
*ctx
)
151 raw_spin_lock(&cpuctx
->ctx
.lock
);
153 raw_spin_lock(&ctx
->lock
);
156 static void perf_ctx_unlock(struct perf_cpu_context
*cpuctx
,
157 struct perf_event_context
*ctx
)
160 raw_spin_unlock(&ctx
->lock
);
161 raw_spin_unlock(&cpuctx
->ctx
.lock
);
164 #define TASK_TOMBSTONE ((void *)-1L)
166 static bool is_kernel_event(struct perf_event
*event
)
168 return READ_ONCE(event
->owner
) == TASK_TOMBSTONE
;
172 * On task ctx scheduling...
174 * When !ctx->nr_events a task context will not be scheduled. This means
175 * we can disable the scheduler hooks (for performance) without leaving
176 * pending task ctx state.
178 * This however results in two special cases:
180 * - removing the last event from a task ctx; this is relatively straight
181 * forward and is done in __perf_remove_from_context.
183 * - adding the first event to a task ctx; this is tricky because we cannot
184 * rely on ctx->is_active and therefore cannot use event_function_call().
185 * See perf_install_in_context().
187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
190 typedef void (*event_f
)(struct perf_event
*, struct perf_cpu_context
*,
191 struct perf_event_context
*, void *);
193 struct event_function_struct
{
194 struct perf_event
*event
;
199 static int event_function(void *info
)
201 struct event_function_struct
*efs
= info
;
202 struct perf_event
*event
= efs
->event
;
203 struct perf_event_context
*ctx
= event
->ctx
;
204 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
205 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
208 WARN_ON_ONCE(!irqs_disabled());
210 perf_ctx_lock(cpuctx
, task_ctx
);
212 * Since we do the IPI call without holding ctx->lock things can have
213 * changed, double check we hit the task we set out to hit.
216 if (ctx
->task
!= current
) {
222 * We only use event_function_call() on established contexts,
223 * and event_function() is only ever called when active (or
224 * rather, we'll have bailed in task_function_call() or the
225 * above ctx->task != current test), therefore we must have
226 * ctx->is_active here.
228 WARN_ON_ONCE(!ctx
->is_active
);
230 * And since we have ctx->is_active, cpuctx->task_ctx must
233 WARN_ON_ONCE(task_ctx
!= ctx
);
235 WARN_ON_ONCE(&cpuctx
->ctx
!= ctx
);
238 efs
->func(event
, cpuctx
, ctx
, efs
->data
);
240 perf_ctx_unlock(cpuctx
, task_ctx
);
245 static void event_function_call(struct perf_event
*event
, event_f func
, void *data
)
247 struct perf_event_context
*ctx
= event
->ctx
;
248 struct task_struct
*task
= READ_ONCE(ctx
->task
); /* verified in event_function */
249 struct event_function_struct efs
= {
255 if (!event
->parent
) {
257 * If this is a !child event, we must hold ctx::mutex to
258 * stabilize the the event->ctx relation. See
259 * perf_event_ctx_lock().
261 lockdep_assert_held(&ctx
->mutex
);
265 cpu_function_call(event
->cpu
, event_function
, &efs
);
269 if (task
== TASK_TOMBSTONE
)
273 if (!task_function_call(task
, event_function
, &efs
))
276 raw_spin_lock_irq(&ctx
->lock
);
278 * Reload the task pointer, it might have been changed by
279 * a concurrent perf_event_context_sched_out().
282 if (task
== TASK_TOMBSTONE
) {
283 raw_spin_unlock_irq(&ctx
->lock
);
286 if (ctx
->is_active
) {
287 raw_spin_unlock_irq(&ctx
->lock
);
290 func(event
, NULL
, ctx
, data
);
291 raw_spin_unlock_irq(&ctx
->lock
);
295 * Similar to event_function_call() + event_function(), but hard assumes IRQs
296 * are already disabled and we're on the right CPU.
298 static void event_function_local(struct perf_event
*event
, event_f func
, void *data
)
300 struct perf_event_context
*ctx
= event
->ctx
;
301 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
302 struct task_struct
*task
= READ_ONCE(ctx
->task
);
303 struct perf_event_context
*task_ctx
= NULL
;
305 WARN_ON_ONCE(!irqs_disabled());
308 if (task
== TASK_TOMBSTONE
)
314 perf_ctx_lock(cpuctx
, task_ctx
);
317 if (task
== TASK_TOMBSTONE
)
322 * We must be either inactive or active and the right task,
323 * otherwise we're screwed, since we cannot IPI to somewhere
326 if (ctx
->is_active
) {
327 if (WARN_ON_ONCE(task
!= current
))
330 if (WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
))
334 WARN_ON_ONCE(&cpuctx
->ctx
!= ctx
);
337 func(event
, cpuctx
, ctx
, data
);
339 perf_ctx_unlock(cpuctx
, task_ctx
);
342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343 PERF_FLAG_FD_OUTPUT |\
344 PERF_FLAG_PID_CGROUP |\
345 PERF_FLAG_FD_CLOEXEC)
348 * branch priv levels that need permission checks
350 #define PERF_SAMPLE_BRANCH_PERM_PLM \
351 (PERF_SAMPLE_BRANCH_KERNEL |\
352 PERF_SAMPLE_BRANCH_HV)
355 EVENT_FLEXIBLE
= 0x1,
358 EVENT_ALL
= EVENT_FLEXIBLE
| EVENT_PINNED
,
362 * perf_sched_events : >0 events exist
363 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
366 static void perf_sched_delayed(struct work_struct
*work
);
367 DEFINE_STATIC_KEY_FALSE(perf_sched_events
);
368 static DECLARE_DELAYED_WORK(perf_sched_work
, perf_sched_delayed
);
369 static DEFINE_MUTEX(perf_sched_mutex
);
370 static atomic_t perf_sched_count
;
372 static DEFINE_PER_CPU(atomic_t
, perf_cgroup_events
);
373 static DEFINE_PER_CPU(int, perf_sched_cb_usages
);
374 static DEFINE_PER_CPU(struct pmu_event_list
, pmu_sb_events
);
376 static atomic_t nr_mmap_events __read_mostly
;
377 static atomic_t nr_comm_events __read_mostly
;
378 static atomic_t nr_task_events __read_mostly
;
379 static atomic_t nr_freq_events __read_mostly
;
380 static atomic_t nr_switch_events __read_mostly
;
382 static LIST_HEAD(pmus
);
383 static DEFINE_MUTEX(pmus_lock
);
384 static struct srcu_struct pmus_srcu
;
387 * perf event paranoia level:
388 * -1 - not paranoid at all
389 * 0 - disallow raw tracepoint access for unpriv
390 * 1 - disallow cpu events for unpriv
391 * 2 - disallow kernel profiling for unpriv
393 int sysctl_perf_event_paranoid __read_mostly
= 2;
395 /* Minimum for 512 kiB + 1 user control page */
396 int sysctl_perf_event_mlock __read_mostly
= 512 + (PAGE_SIZE
/ 1024); /* 'free' kiB per user */
399 * max perf event sample rate
401 #define DEFAULT_MAX_SAMPLE_RATE 100000
402 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
403 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
405 int sysctl_perf_event_sample_rate __read_mostly
= DEFAULT_MAX_SAMPLE_RATE
;
407 static int max_samples_per_tick __read_mostly
= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE
, HZ
);
408 static int perf_sample_period_ns __read_mostly
= DEFAULT_SAMPLE_PERIOD_NS
;
410 static int perf_sample_allowed_ns __read_mostly
=
411 DEFAULT_SAMPLE_PERIOD_NS
* DEFAULT_CPU_TIME_MAX_PERCENT
/ 100;
413 static void update_perf_cpu_limits(void)
415 u64 tmp
= perf_sample_period_ns
;
417 tmp
*= sysctl_perf_cpu_time_max_percent
;
418 tmp
= div_u64(tmp
, 100);
422 WRITE_ONCE(perf_sample_allowed_ns
, tmp
);
425 static int perf_rotate_context(struct perf_cpu_context
*cpuctx
);
427 int perf_proc_update_handler(struct ctl_table
*table
, int write
,
428 void __user
*buffer
, size_t *lenp
,
431 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
437 * If throttling is disabled don't allow the write:
439 if (sysctl_perf_cpu_time_max_percent
== 100 ||
440 sysctl_perf_cpu_time_max_percent
== 0)
443 max_samples_per_tick
= DIV_ROUND_UP(sysctl_perf_event_sample_rate
, HZ
);
444 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
445 update_perf_cpu_limits();
450 int sysctl_perf_cpu_time_max_percent __read_mostly
= DEFAULT_CPU_TIME_MAX_PERCENT
;
452 int perf_cpu_time_max_percent_handler(struct ctl_table
*table
, int write
,
453 void __user
*buffer
, size_t *lenp
,
456 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
461 if (sysctl_perf_cpu_time_max_percent
== 100 ||
462 sysctl_perf_cpu_time_max_percent
== 0) {
464 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
465 WRITE_ONCE(perf_sample_allowed_ns
, 0);
467 update_perf_cpu_limits();
474 * perf samples are done in some very critical code paths (NMIs).
475 * If they take too much CPU time, the system can lock up and not
476 * get any real work done. This will drop the sample rate when
477 * we detect that events are taking too long.
479 #define NR_ACCUMULATED_SAMPLES 128
480 static DEFINE_PER_CPU(u64
, running_sample_length
);
482 static u64 __report_avg
;
483 static u64 __report_allowed
;
485 static void perf_duration_warn(struct irq_work
*w
)
487 printk_ratelimited(KERN_INFO
488 "perf: interrupt took too long (%lld > %lld), lowering "
489 "kernel.perf_event_max_sample_rate to %d\n",
490 __report_avg
, __report_allowed
,
491 sysctl_perf_event_sample_rate
);
494 static DEFINE_IRQ_WORK(perf_duration_work
, perf_duration_warn
);
496 void perf_sample_event_took(u64 sample_len_ns
)
498 u64 max_len
= READ_ONCE(perf_sample_allowed_ns
);
506 /* Decay the counter by 1 average sample. */
507 running_len
= __this_cpu_read(running_sample_length
);
508 running_len
-= running_len
/NR_ACCUMULATED_SAMPLES
;
509 running_len
+= sample_len_ns
;
510 __this_cpu_write(running_sample_length
, running_len
);
513 * Note: this will be biased artifically low until we have
514 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
515 * from having to maintain a count.
517 avg_len
= running_len
/NR_ACCUMULATED_SAMPLES
;
518 if (avg_len
<= max_len
)
521 __report_avg
= avg_len
;
522 __report_allowed
= max_len
;
525 * Compute a throttle threshold 25% below the current duration.
527 avg_len
+= avg_len
/ 4;
528 max
= (TICK_NSEC
/ 100) * sysctl_perf_cpu_time_max_percent
;
534 WRITE_ONCE(perf_sample_allowed_ns
, avg_len
);
535 WRITE_ONCE(max_samples_per_tick
, max
);
537 sysctl_perf_event_sample_rate
= max
* HZ
;
538 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
540 if (!irq_work_queue(&perf_duration_work
)) {
541 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
542 "kernel.perf_event_max_sample_rate to %d\n",
543 __report_avg
, __report_allowed
,
544 sysctl_perf_event_sample_rate
);
548 static atomic64_t perf_event_id
;
550 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
551 enum event_type_t event_type
);
553 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
554 enum event_type_t event_type
,
555 struct task_struct
*task
);
557 static void update_context_time(struct perf_event_context
*ctx
);
558 static u64
perf_event_time(struct perf_event
*event
);
560 void __weak
perf_event_print_debug(void) { }
562 extern __weak
const char *perf_pmu_name(void)
567 static inline u64
perf_clock(void)
569 return local_clock();
572 static inline u64
perf_event_clock(struct perf_event
*event
)
574 return event
->clock();
577 #ifdef CONFIG_CGROUP_PERF
580 perf_cgroup_match(struct perf_event
*event
)
582 struct perf_event_context
*ctx
= event
->ctx
;
583 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
585 /* @event doesn't care about cgroup */
589 /* wants specific cgroup scope but @cpuctx isn't associated with any */
594 * Cgroup scoping is recursive. An event enabled for a cgroup is
595 * also enabled for all its descendant cgroups. If @cpuctx's
596 * cgroup is a descendant of @event's (the test covers identity
597 * case), it's a match.
599 return cgroup_is_descendant(cpuctx
->cgrp
->css
.cgroup
,
600 event
->cgrp
->css
.cgroup
);
603 static inline void perf_detach_cgroup(struct perf_event
*event
)
605 css_put(&event
->cgrp
->css
);
609 static inline int is_cgroup_event(struct perf_event
*event
)
611 return event
->cgrp
!= NULL
;
614 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
616 struct perf_cgroup_info
*t
;
618 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
622 static inline void __update_cgrp_time(struct perf_cgroup
*cgrp
)
624 struct perf_cgroup_info
*info
;
629 info
= this_cpu_ptr(cgrp
->info
);
631 info
->time
+= now
- info
->timestamp
;
632 info
->timestamp
= now
;
635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
637 struct perf_cgroup
*cgrp
= cpuctx
->cgrp
;
638 struct cgroup_subsys_state
*css
;
641 for (css
= &cgrp
->css
; css
; css
= css
->parent
) {
642 cgrp
= container_of(css
, struct perf_cgroup
, css
);
643 __update_cgrp_time(cgrp
);
648 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
650 struct perf_cgroup
*cgrp
;
653 * ensure we access cgroup data only when needed and
654 * when we know the cgroup is pinned (css_get)
656 if (!is_cgroup_event(event
))
659 cgrp
= perf_cgroup_from_task(current
, event
->ctx
);
661 * Do not update time when cgroup is not active
663 if (cgrp
== event
->cgrp
)
664 __update_cgrp_time(event
->cgrp
);
668 perf_cgroup_set_timestamp(struct task_struct
*task
,
669 struct perf_event_context
*ctx
)
671 struct perf_cgroup
*cgrp
;
672 struct perf_cgroup_info
*info
;
673 struct cgroup_subsys_state
*css
;
676 * ctx->lock held by caller
677 * ensure we do not access cgroup data
678 * unless we have the cgroup pinned (css_get)
680 if (!task
|| !ctx
->nr_cgroups
)
683 cgrp
= perf_cgroup_from_task(task
, ctx
);
685 for (css
= &cgrp
->css
; css
; css
= css
->parent
) {
686 cgrp
= container_of(css
, struct perf_cgroup
, css
);
687 info
= this_cpu_ptr(cgrp
->info
);
688 info
->timestamp
= ctx
->timestamp
;
692 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
693 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
696 * reschedule events based on the cgroup constraint of task.
698 * mode SWOUT : schedule out everything
699 * mode SWIN : schedule in based on cgroup for next
701 static void perf_cgroup_switch(struct task_struct
*task
, int mode
)
703 struct perf_cpu_context
*cpuctx
;
708 * disable interrupts to avoid geting nr_cgroup
709 * changes via __perf_event_disable(). Also
712 local_irq_save(flags
);
715 * we reschedule only in the presence of cgroup
716 * constrained events.
719 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
720 cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
721 if (cpuctx
->unique_pmu
!= pmu
)
722 continue; /* ensure we process each cpuctx once */
725 * perf_cgroup_events says at least one
726 * context on this CPU has cgroup events.
728 * ctx->nr_cgroups reports the number of cgroup
729 * events for a context.
731 if (cpuctx
->ctx
.nr_cgroups
> 0) {
732 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
733 perf_pmu_disable(cpuctx
->ctx
.pmu
);
735 if (mode
& PERF_CGROUP_SWOUT
) {
736 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
738 * must not be done before ctxswout due
739 * to event_filter_match() in event_sched_out()
744 if (mode
& PERF_CGROUP_SWIN
) {
745 WARN_ON_ONCE(cpuctx
->cgrp
);
747 * set cgrp before ctxsw in to allow
748 * event_filter_match() to not have to pass
750 * we pass the cpuctx->ctx to perf_cgroup_from_task()
751 * because cgorup events are only per-cpu
753 cpuctx
->cgrp
= perf_cgroup_from_task(task
, &cpuctx
->ctx
);
754 cpu_ctx_sched_in(cpuctx
, EVENT_ALL
, task
);
756 perf_pmu_enable(cpuctx
->ctx
.pmu
);
757 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
761 local_irq_restore(flags
);
764 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
765 struct task_struct
*next
)
767 struct perf_cgroup
*cgrp1
;
768 struct perf_cgroup
*cgrp2
= NULL
;
772 * we come here when we know perf_cgroup_events > 0
773 * we do not need to pass the ctx here because we know
774 * we are holding the rcu lock
776 cgrp1
= perf_cgroup_from_task(task
, NULL
);
777 cgrp2
= perf_cgroup_from_task(next
, NULL
);
780 * only schedule out current cgroup events if we know
781 * that we are switching to a different cgroup. Otherwise,
782 * do no touch the cgroup events.
785 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
);
790 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
791 struct task_struct
*task
)
793 struct perf_cgroup
*cgrp1
;
794 struct perf_cgroup
*cgrp2
= NULL
;
798 * we come here when we know perf_cgroup_events > 0
799 * we do not need to pass the ctx here because we know
800 * we are holding the rcu lock
802 cgrp1
= perf_cgroup_from_task(task
, NULL
);
803 cgrp2
= perf_cgroup_from_task(prev
, NULL
);
806 * only need to schedule in cgroup events if we are changing
807 * cgroup during ctxsw. Cgroup events were not scheduled
808 * out of ctxsw out if that was not the case.
811 perf_cgroup_switch(task
, PERF_CGROUP_SWIN
);
816 static inline int perf_cgroup_connect(int fd
, struct perf_event
*event
,
817 struct perf_event_attr
*attr
,
818 struct perf_event
*group_leader
)
820 struct perf_cgroup
*cgrp
;
821 struct cgroup_subsys_state
*css
;
822 struct fd f
= fdget(fd
);
828 css
= css_tryget_online_from_dir(f
.file
->f_path
.dentry
,
829 &perf_event_cgrp_subsys
);
835 cgrp
= container_of(css
, struct perf_cgroup
, css
);
839 * all events in a group must monitor
840 * the same cgroup because a task belongs
841 * to only one perf cgroup at a time
843 if (group_leader
&& group_leader
->cgrp
!= cgrp
) {
844 perf_detach_cgroup(event
);
853 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
855 struct perf_cgroup_info
*t
;
856 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
857 event
->shadow_ctx_time
= now
- t
->timestamp
;
861 perf_cgroup_defer_enabled(struct perf_event
*event
)
864 * when the current task's perf cgroup does not match
865 * the event's, we need to remember to call the
866 * perf_mark_enable() function the first time a task with
867 * a matching perf cgroup is scheduled in.
869 if (is_cgroup_event(event
) && !perf_cgroup_match(event
))
870 event
->cgrp_defer_enabled
= 1;
874 perf_cgroup_mark_enabled(struct perf_event
*event
,
875 struct perf_event_context
*ctx
)
877 struct perf_event
*sub
;
878 u64 tstamp
= perf_event_time(event
);
880 if (!event
->cgrp_defer_enabled
)
883 event
->cgrp_defer_enabled
= 0;
885 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
886 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
887 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
) {
888 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
889 sub
->cgrp_defer_enabled
= 0;
895 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
896 * cleared when last cgroup event is removed.
899 list_update_cgroup_event(struct perf_event
*event
,
900 struct perf_event_context
*ctx
, bool add
)
902 struct perf_cpu_context
*cpuctx
;
904 if (!is_cgroup_event(event
))
907 if (add
&& ctx
->nr_cgroups
++)
909 else if (!add
&& --ctx
->nr_cgroups
)
912 * Because cgroup events are always per-cpu events,
913 * this will always be called from the right CPU.
915 cpuctx
= __get_cpu_context(ctx
);
918 * cpuctx->cgrp is NULL until a cgroup event is sched in or
919 * ctx->nr_cgroup == 0 .
921 if (add
&& perf_cgroup_from_task(current
, ctx
) == event
->cgrp
)
922 cpuctx
->cgrp
= event
->cgrp
;
927 #else /* !CONFIG_CGROUP_PERF */
930 perf_cgroup_match(struct perf_event
*event
)
935 static inline void perf_detach_cgroup(struct perf_event
*event
)
938 static inline int is_cgroup_event(struct perf_event
*event
)
943 static inline u64
perf_cgroup_event_cgrp_time(struct perf_event
*event
)
948 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
952 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
956 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
957 struct task_struct
*next
)
961 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
962 struct task_struct
*task
)
966 static inline int perf_cgroup_connect(pid_t pid
, struct perf_event
*event
,
967 struct perf_event_attr
*attr
,
968 struct perf_event
*group_leader
)
974 perf_cgroup_set_timestamp(struct task_struct
*task
,
975 struct perf_event_context
*ctx
)
980 perf_cgroup_switch(struct task_struct
*task
, struct task_struct
*next
)
985 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
989 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
995 perf_cgroup_defer_enabled(struct perf_event
*event
)
1000 perf_cgroup_mark_enabled(struct perf_event
*event
,
1001 struct perf_event_context
*ctx
)
1006 list_update_cgroup_event(struct perf_event
*event
,
1007 struct perf_event_context
*ctx
, bool add
)
1014 * set default to be dependent on timer tick just
1015 * like original code
1017 #define PERF_CPU_HRTIMER (1000 / HZ)
1019 * function must be called with interrupts disbled
1021 static enum hrtimer_restart
perf_mux_hrtimer_handler(struct hrtimer
*hr
)
1023 struct perf_cpu_context
*cpuctx
;
1026 WARN_ON(!irqs_disabled());
1028 cpuctx
= container_of(hr
, struct perf_cpu_context
, hrtimer
);
1029 rotations
= perf_rotate_context(cpuctx
);
1031 raw_spin_lock(&cpuctx
->hrtimer_lock
);
1033 hrtimer_forward_now(hr
, cpuctx
->hrtimer_interval
);
1035 cpuctx
->hrtimer_active
= 0;
1036 raw_spin_unlock(&cpuctx
->hrtimer_lock
);
1038 return rotations
? HRTIMER_RESTART
: HRTIMER_NORESTART
;
1041 static void __perf_mux_hrtimer_init(struct perf_cpu_context
*cpuctx
, int cpu
)
1043 struct hrtimer
*timer
= &cpuctx
->hrtimer
;
1044 struct pmu
*pmu
= cpuctx
->ctx
.pmu
;
1047 /* no multiplexing needed for SW PMU */
1048 if (pmu
->task_ctx_nr
== perf_sw_context
)
1052 * check default is sane, if not set then force to
1053 * default interval (1/tick)
1055 interval
= pmu
->hrtimer_interval_ms
;
1057 interval
= pmu
->hrtimer_interval_ms
= PERF_CPU_HRTIMER
;
1059 cpuctx
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* interval
);
1061 raw_spin_lock_init(&cpuctx
->hrtimer_lock
);
1062 hrtimer_init(timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS_PINNED
);
1063 timer
->function
= perf_mux_hrtimer_handler
;
1066 static int perf_mux_hrtimer_restart(struct perf_cpu_context
*cpuctx
)
1068 struct hrtimer
*timer
= &cpuctx
->hrtimer
;
1069 struct pmu
*pmu
= cpuctx
->ctx
.pmu
;
1070 unsigned long flags
;
1072 /* not for SW PMU */
1073 if (pmu
->task_ctx_nr
== perf_sw_context
)
1076 raw_spin_lock_irqsave(&cpuctx
->hrtimer_lock
, flags
);
1077 if (!cpuctx
->hrtimer_active
) {
1078 cpuctx
->hrtimer_active
= 1;
1079 hrtimer_forward_now(timer
, cpuctx
->hrtimer_interval
);
1080 hrtimer_start_expires(timer
, HRTIMER_MODE_ABS_PINNED
);
1082 raw_spin_unlock_irqrestore(&cpuctx
->hrtimer_lock
, flags
);
1087 void perf_pmu_disable(struct pmu
*pmu
)
1089 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
1091 pmu
->pmu_disable(pmu
);
1094 void perf_pmu_enable(struct pmu
*pmu
)
1096 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
1098 pmu
->pmu_enable(pmu
);
1101 static DEFINE_PER_CPU(struct list_head
, active_ctx_list
);
1104 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1105 * perf_event_task_tick() are fully serialized because they're strictly cpu
1106 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1107 * disabled, while perf_event_task_tick is called from IRQ context.
1109 static void perf_event_ctx_activate(struct perf_event_context
*ctx
)
1111 struct list_head
*head
= this_cpu_ptr(&active_ctx_list
);
1113 WARN_ON(!irqs_disabled());
1115 WARN_ON(!list_empty(&ctx
->active_ctx_list
));
1117 list_add(&ctx
->active_ctx_list
, head
);
1120 static void perf_event_ctx_deactivate(struct perf_event_context
*ctx
)
1122 WARN_ON(!irqs_disabled());
1124 WARN_ON(list_empty(&ctx
->active_ctx_list
));
1126 list_del_init(&ctx
->active_ctx_list
);
1129 static void get_ctx(struct perf_event_context
*ctx
)
1131 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
1134 static void free_ctx(struct rcu_head
*head
)
1136 struct perf_event_context
*ctx
;
1138 ctx
= container_of(head
, struct perf_event_context
, rcu_head
);
1139 kfree(ctx
->task_ctx_data
);
1143 static void put_ctx(struct perf_event_context
*ctx
)
1145 if (atomic_dec_and_test(&ctx
->refcount
)) {
1146 if (ctx
->parent_ctx
)
1147 put_ctx(ctx
->parent_ctx
);
1148 if (ctx
->task
&& ctx
->task
!= TASK_TOMBSTONE
)
1149 put_task_struct(ctx
->task
);
1150 call_rcu(&ctx
->rcu_head
, free_ctx
);
1155 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1156 * perf_pmu_migrate_context() we need some magic.
1158 * Those places that change perf_event::ctx will hold both
1159 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1161 * Lock ordering is by mutex address. There are two other sites where
1162 * perf_event_context::mutex nests and those are:
1164 * - perf_event_exit_task_context() [ child , 0 ]
1165 * perf_event_exit_event()
1166 * put_event() [ parent, 1 ]
1168 * - perf_event_init_context() [ parent, 0 ]
1169 * inherit_task_group()
1172 * perf_event_alloc()
1174 * perf_try_init_event() [ child , 1 ]
1176 * While it appears there is an obvious deadlock here -- the parent and child
1177 * nesting levels are inverted between the two. This is in fact safe because
1178 * life-time rules separate them. That is an exiting task cannot fork, and a
1179 * spawning task cannot (yet) exit.
1181 * But remember that that these are parent<->child context relations, and
1182 * migration does not affect children, therefore these two orderings should not
1185 * The change in perf_event::ctx does not affect children (as claimed above)
1186 * because the sys_perf_event_open() case will install a new event and break
1187 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1188 * concerned with cpuctx and that doesn't have children.
1190 * The places that change perf_event::ctx will issue:
1192 * perf_remove_from_context();
1193 * synchronize_rcu();
1194 * perf_install_in_context();
1196 * to affect the change. The remove_from_context() + synchronize_rcu() should
1197 * quiesce the event, after which we can install it in the new location. This
1198 * means that only external vectors (perf_fops, prctl) can perturb the event
1199 * while in transit. Therefore all such accessors should also acquire
1200 * perf_event_context::mutex to serialize against this.
1202 * However; because event->ctx can change while we're waiting to acquire
1203 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1208 * task_struct::perf_event_mutex
1209 * perf_event_context::mutex
1210 * perf_event::child_mutex;
1211 * perf_event_context::lock
1212 * perf_event::mmap_mutex
1215 static struct perf_event_context
*
1216 perf_event_ctx_lock_nested(struct perf_event
*event
, int nesting
)
1218 struct perf_event_context
*ctx
;
1222 ctx
= ACCESS_ONCE(event
->ctx
);
1223 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
1229 mutex_lock_nested(&ctx
->mutex
, nesting
);
1230 if (event
->ctx
!= ctx
) {
1231 mutex_unlock(&ctx
->mutex
);
1239 static inline struct perf_event_context
*
1240 perf_event_ctx_lock(struct perf_event
*event
)
1242 return perf_event_ctx_lock_nested(event
, 0);
1245 static void perf_event_ctx_unlock(struct perf_event
*event
,
1246 struct perf_event_context
*ctx
)
1248 mutex_unlock(&ctx
->mutex
);
1253 * This must be done under the ctx->lock, such as to serialize against
1254 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1255 * calling scheduler related locks and ctx->lock nests inside those.
1257 static __must_check
struct perf_event_context
*
1258 unclone_ctx(struct perf_event_context
*ctx
)
1260 struct perf_event_context
*parent_ctx
= ctx
->parent_ctx
;
1262 lockdep_assert_held(&ctx
->lock
);
1265 ctx
->parent_ctx
= NULL
;
1271 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
1274 * only top level events have the pid namespace they were created in
1277 event
= event
->parent
;
1279 return task_tgid_nr_ns(p
, event
->ns
);
1282 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
1285 * only top level events have the pid namespace they were created in
1288 event
= event
->parent
;
1290 return task_pid_nr_ns(p
, event
->ns
);
1294 * If we inherit events we want to return the parent event id
1297 static u64
primary_event_id(struct perf_event
*event
)
1302 id
= event
->parent
->id
;
1308 * Get the perf_event_context for a task and lock it.
1310 * This has to cope with with the fact that until it is locked,
1311 * the context could get moved to another task.
1313 static struct perf_event_context
*
1314 perf_lock_task_context(struct task_struct
*task
, int ctxn
, unsigned long *flags
)
1316 struct perf_event_context
*ctx
;
1320 * One of the few rules of preemptible RCU is that one cannot do
1321 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1322 * part of the read side critical section was irqs-enabled -- see
1323 * rcu_read_unlock_special().
1325 * Since ctx->lock nests under rq->lock we must ensure the entire read
1326 * side critical section has interrupts disabled.
1328 local_irq_save(*flags
);
1330 ctx
= rcu_dereference(task
->perf_event_ctxp
[ctxn
]);
1333 * If this context is a clone of another, it might
1334 * get swapped for another underneath us by
1335 * perf_event_task_sched_out, though the
1336 * rcu_read_lock() protects us from any context
1337 * getting freed. Lock the context and check if it
1338 * got swapped before we could get the lock, and retry
1339 * if so. If we locked the right context, then it
1340 * can't get swapped on us any more.
1342 raw_spin_lock(&ctx
->lock
);
1343 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
[ctxn
])) {
1344 raw_spin_unlock(&ctx
->lock
);
1346 local_irq_restore(*flags
);
1350 if (ctx
->task
== TASK_TOMBSTONE
||
1351 !atomic_inc_not_zero(&ctx
->refcount
)) {
1352 raw_spin_unlock(&ctx
->lock
);
1355 WARN_ON_ONCE(ctx
->task
!= task
);
1360 local_irq_restore(*flags
);
1365 * Get the context for a task and increment its pin_count so it
1366 * can't get swapped to another task. This also increments its
1367 * reference count so that the context can't get freed.
1369 static struct perf_event_context
*
1370 perf_pin_task_context(struct task_struct
*task
, int ctxn
)
1372 struct perf_event_context
*ctx
;
1373 unsigned long flags
;
1375 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
1378 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1383 static void perf_unpin_context(struct perf_event_context
*ctx
)
1385 unsigned long flags
;
1387 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
1389 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1393 * Update the record of the current time in a context.
1395 static void update_context_time(struct perf_event_context
*ctx
)
1397 u64 now
= perf_clock();
1399 ctx
->time
+= now
- ctx
->timestamp
;
1400 ctx
->timestamp
= now
;
1403 static u64
perf_event_time(struct perf_event
*event
)
1405 struct perf_event_context
*ctx
= event
->ctx
;
1407 if (is_cgroup_event(event
))
1408 return perf_cgroup_event_time(event
);
1410 return ctx
? ctx
->time
: 0;
1414 * Update the total_time_enabled and total_time_running fields for a event.
1416 static void update_event_times(struct perf_event
*event
)
1418 struct perf_event_context
*ctx
= event
->ctx
;
1421 lockdep_assert_held(&ctx
->lock
);
1423 if (event
->state
< PERF_EVENT_STATE_INACTIVE
||
1424 event
->group_leader
->state
< PERF_EVENT_STATE_INACTIVE
)
1428 * in cgroup mode, time_enabled represents
1429 * the time the event was enabled AND active
1430 * tasks were in the monitored cgroup. This is
1431 * independent of the activity of the context as
1432 * there may be a mix of cgroup and non-cgroup events.
1434 * That is why we treat cgroup events differently
1437 if (is_cgroup_event(event
))
1438 run_end
= perf_cgroup_event_time(event
);
1439 else if (ctx
->is_active
)
1440 run_end
= ctx
->time
;
1442 run_end
= event
->tstamp_stopped
;
1444 event
->total_time_enabled
= run_end
- event
->tstamp_enabled
;
1446 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
1447 run_end
= event
->tstamp_stopped
;
1449 run_end
= perf_event_time(event
);
1451 event
->total_time_running
= run_end
- event
->tstamp_running
;
1456 * Update total_time_enabled and total_time_running for all events in a group.
1458 static void update_group_times(struct perf_event
*leader
)
1460 struct perf_event
*event
;
1462 update_event_times(leader
);
1463 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
1464 update_event_times(event
);
1467 static struct list_head
*
1468 ctx_group_list(struct perf_event
*event
, struct perf_event_context
*ctx
)
1470 if (event
->attr
.pinned
)
1471 return &ctx
->pinned_groups
;
1473 return &ctx
->flexible_groups
;
1477 * Add a event from the lists for its context.
1478 * Must be called with ctx->mutex and ctx->lock held.
1481 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1483 lockdep_assert_held(&ctx
->lock
);
1485 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
1486 event
->attach_state
|= PERF_ATTACH_CONTEXT
;
1489 * If we're a stand alone event or group leader, we go to the context
1490 * list, group events are kept attached to the group so that
1491 * perf_group_detach can, at all times, locate all siblings.
1493 if (event
->group_leader
== event
) {
1494 struct list_head
*list
;
1496 event
->group_caps
= event
->event_caps
;
1498 list
= ctx_group_list(event
, ctx
);
1499 list_add_tail(&event
->group_entry
, list
);
1502 list_update_cgroup_event(event
, ctx
, true);
1504 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
1506 if (event
->attr
.inherit_stat
)
1513 * Initialize event state based on the perf_event_attr::disabled.
1515 static inline void perf_event__state_init(struct perf_event
*event
)
1517 event
->state
= event
->attr
.disabled
? PERF_EVENT_STATE_OFF
:
1518 PERF_EVENT_STATE_INACTIVE
;
1521 static void __perf_event_read_size(struct perf_event
*event
, int nr_siblings
)
1523 int entry
= sizeof(u64
); /* value */
1527 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1528 size
+= sizeof(u64
);
1530 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1531 size
+= sizeof(u64
);
1533 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
1534 entry
+= sizeof(u64
);
1536 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
1538 size
+= sizeof(u64
);
1542 event
->read_size
= size
;
1545 static void __perf_event_header_size(struct perf_event
*event
, u64 sample_type
)
1547 struct perf_sample_data
*data
;
1550 if (sample_type
& PERF_SAMPLE_IP
)
1551 size
+= sizeof(data
->ip
);
1553 if (sample_type
& PERF_SAMPLE_ADDR
)
1554 size
+= sizeof(data
->addr
);
1556 if (sample_type
& PERF_SAMPLE_PERIOD
)
1557 size
+= sizeof(data
->period
);
1559 if (sample_type
& PERF_SAMPLE_WEIGHT
)
1560 size
+= sizeof(data
->weight
);
1562 if (sample_type
& PERF_SAMPLE_READ
)
1563 size
+= event
->read_size
;
1565 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
1566 size
+= sizeof(data
->data_src
.val
);
1568 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
1569 size
+= sizeof(data
->txn
);
1571 event
->header_size
= size
;
1575 * Called at perf_event creation and when events are attached/detached from a
1578 static void perf_event__header_size(struct perf_event
*event
)
1580 __perf_event_read_size(event
,
1581 event
->group_leader
->nr_siblings
);
1582 __perf_event_header_size(event
, event
->attr
.sample_type
);
1585 static void perf_event__id_header_size(struct perf_event
*event
)
1587 struct perf_sample_data
*data
;
1588 u64 sample_type
= event
->attr
.sample_type
;
1591 if (sample_type
& PERF_SAMPLE_TID
)
1592 size
+= sizeof(data
->tid_entry
);
1594 if (sample_type
& PERF_SAMPLE_TIME
)
1595 size
+= sizeof(data
->time
);
1597 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
1598 size
+= sizeof(data
->id
);
1600 if (sample_type
& PERF_SAMPLE_ID
)
1601 size
+= sizeof(data
->id
);
1603 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
1604 size
+= sizeof(data
->stream_id
);
1606 if (sample_type
& PERF_SAMPLE_CPU
)
1607 size
+= sizeof(data
->cpu_entry
);
1609 event
->id_header_size
= size
;
1612 static bool perf_event_validate_size(struct perf_event
*event
)
1615 * The values computed here will be over-written when we actually
1618 __perf_event_read_size(event
, event
->group_leader
->nr_siblings
+ 1);
1619 __perf_event_header_size(event
, event
->attr
.sample_type
& ~PERF_SAMPLE_READ
);
1620 perf_event__id_header_size(event
);
1623 * Sum the lot; should not exceed the 64k limit we have on records.
1624 * Conservative limit to allow for callchains and other variable fields.
1626 if (event
->read_size
+ event
->header_size
+
1627 event
->id_header_size
+ sizeof(struct perf_event_header
) >= 16*1024)
1633 static void perf_group_attach(struct perf_event
*event
)
1635 struct perf_event
*group_leader
= event
->group_leader
, *pos
;
1637 lockdep_assert_held(&event
->ctx
->lock
);
1640 * We can have double attach due to group movement in perf_event_open.
1642 if (event
->attach_state
& PERF_ATTACH_GROUP
)
1645 event
->attach_state
|= PERF_ATTACH_GROUP
;
1647 if (group_leader
== event
)
1650 WARN_ON_ONCE(group_leader
->ctx
!= event
->ctx
);
1652 group_leader
->group_caps
&= event
->event_caps
;
1654 list_add_tail(&event
->group_entry
, &group_leader
->sibling_list
);
1655 group_leader
->nr_siblings
++;
1657 perf_event__header_size(group_leader
);
1659 list_for_each_entry(pos
, &group_leader
->sibling_list
, group_entry
)
1660 perf_event__header_size(pos
);
1664 * Remove a event from the lists for its context.
1665 * Must be called with ctx->mutex and ctx->lock held.
1668 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1670 WARN_ON_ONCE(event
->ctx
!= ctx
);
1671 lockdep_assert_held(&ctx
->lock
);
1674 * We can have double detach due to exit/hot-unplug + close.
1676 if (!(event
->attach_state
& PERF_ATTACH_CONTEXT
))
1679 event
->attach_state
&= ~PERF_ATTACH_CONTEXT
;
1681 list_update_cgroup_event(event
, ctx
, false);
1684 if (event
->attr
.inherit_stat
)
1687 list_del_rcu(&event
->event_entry
);
1689 if (event
->group_leader
== event
)
1690 list_del_init(&event
->group_entry
);
1692 update_group_times(event
);
1695 * If event was in error state, then keep it
1696 * that way, otherwise bogus counts will be
1697 * returned on read(). The only way to get out
1698 * of error state is by explicit re-enabling
1701 if (event
->state
> PERF_EVENT_STATE_OFF
)
1702 event
->state
= PERF_EVENT_STATE_OFF
;
1707 static void perf_group_detach(struct perf_event
*event
)
1709 struct perf_event
*sibling
, *tmp
;
1710 struct list_head
*list
= NULL
;
1712 lockdep_assert_held(&event
->ctx
->lock
);
1715 * We can have double detach due to exit/hot-unplug + close.
1717 if (!(event
->attach_state
& PERF_ATTACH_GROUP
))
1720 event
->attach_state
&= ~PERF_ATTACH_GROUP
;
1723 * If this is a sibling, remove it from its group.
1725 if (event
->group_leader
!= event
) {
1726 list_del_init(&event
->group_entry
);
1727 event
->group_leader
->nr_siblings
--;
1731 if (!list_empty(&event
->group_entry
))
1732 list
= &event
->group_entry
;
1735 * If this was a group event with sibling events then
1736 * upgrade the siblings to singleton events by adding them
1737 * to whatever list we are on.
1739 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, group_entry
) {
1741 list_move_tail(&sibling
->group_entry
, list
);
1742 sibling
->group_leader
= sibling
;
1744 /* Inherit group flags from the previous leader */
1745 sibling
->group_caps
= event
->group_caps
;
1747 WARN_ON_ONCE(sibling
->ctx
!= event
->ctx
);
1751 perf_event__header_size(event
->group_leader
);
1753 list_for_each_entry(tmp
, &event
->group_leader
->sibling_list
, group_entry
)
1754 perf_event__header_size(tmp
);
1757 static bool is_orphaned_event(struct perf_event
*event
)
1759 return event
->state
== PERF_EVENT_STATE_DEAD
;
1762 static inline int __pmu_filter_match(struct perf_event
*event
)
1764 struct pmu
*pmu
= event
->pmu
;
1765 return pmu
->filter_match
? pmu
->filter_match(event
) : 1;
1769 * Check whether we should attempt to schedule an event group based on
1770 * PMU-specific filtering. An event group can consist of HW and SW events,
1771 * potentially with a SW leader, so we must check all the filters, to
1772 * determine whether a group is schedulable:
1774 static inline int pmu_filter_match(struct perf_event
*event
)
1776 struct perf_event
*child
;
1778 if (!__pmu_filter_match(event
))
1781 list_for_each_entry(child
, &event
->sibling_list
, group_entry
) {
1782 if (!__pmu_filter_match(child
))
1790 event_filter_match(struct perf_event
*event
)
1792 return (event
->cpu
== -1 || event
->cpu
== smp_processor_id()) &&
1793 perf_cgroup_match(event
) && pmu_filter_match(event
);
1797 event_sched_out(struct perf_event
*event
,
1798 struct perf_cpu_context
*cpuctx
,
1799 struct perf_event_context
*ctx
)
1801 u64 tstamp
= perf_event_time(event
);
1804 WARN_ON_ONCE(event
->ctx
!= ctx
);
1805 lockdep_assert_held(&ctx
->lock
);
1808 * An event which could not be activated because of
1809 * filter mismatch still needs to have its timings
1810 * maintained, otherwise bogus information is return
1811 * via read() for time_enabled, time_running:
1813 if (event
->state
== PERF_EVENT_STATE_INACTIVE
&&
1814 !event_filter_match(event
)) {
1815 delta
= tstamp
- event
->tstamp_stopped
;
1816 event
->tstamp_running
+= delta
;
1817 event
->tstamp_stopped
= tstamp
;
1820 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
1823 perf_pmu_disable(event
->pmu
);
1825 event
->tstamp_stopped
= tstamp
;
1826 event
->pmu
->del(event
, 0);
1828 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1829 if (event
->pending_disable
) {
1830 event
->pending_disable
= 0;
1831 event
->state
= PERF_EVENT_STATE_OFF
;
1834 if (!is_software_event(event
))
1835 cpuctx
->active_oncpu
--;
1836 if (!--ctx
->nr_active
)
1837 perf_event_ctx_deactivate(ctx
);
1838 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
1840 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
1841 cpuctx
->exclusive
= 0;
1843 perf_pmu_enable(event
->pmu
);
1847 group_sched_out(struct perf_event
*group_event
,
1848 struct perf_cpu_context
*cpuctx
,
1849 struct perf_event_context
*ctx
)
1851 struct perf_event
*event
;
1852 int state
= group_event
->state
;
1854 perf_pmu_disable(ctx
->pmu
);
1856 event_sched_out(group_event
, cpuctx
, ctx
);
1859 * Schedule out siblings (if any):
1861 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
)
1862 event_sched_out(event
, cpuctx
, ctx
);
1864 perf_pmu_enable(ctx
->pmu
);
1866 if (state
== PERF_EVENT_STATE_ACTIVE
&& group_event
->attr
.exclusive
)
1867 cpuctx
->exclusive
= 0;
1870 #define DETACH_GROUP 0x01UL
1873 * Cross CPU call to remove a performance event
1875 * We disable the event on the hardware level first. After that we
1876 * remove it from the context list.
1879 __perf_remove_from_context(struct perf_event
*event
,
1880 struct perf_cpu_context
*cpuctx
,
1881 struct perf_event_context
*ctx
,
1884 unsigned long flags
= (unsigned long)info
;
1886 event_sched_out(event
, cpuctx
, ctx
);
1887 if (flags
& DETACH_GROUP
)
1888 perf_group_detach(event
);
1889 list_del_event(event
, ctx
);
1891 if (!ctx
->nr_events
&& ctx
->is_active
) {
1894 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
1895 cpuctx
->task_ctx
= NULL
;
1901 * Remove the event from a task's (or a CPU's) list of events.
1903 * If event->ctx is a cloned context, callers must make sure that
1904 * every task struct that event->ctx->task could possibly point to
1905 * remains valid. This is OK when called from perf_release since
1906 * that only calls us on the top-level context, which can't be a clone.
1907 * When called from perf_event_exit_task, it's OK because the
1908 * context has been detached from its task.
1910 static void perf_remove_from_context(struct perf_event
*event
, unsigned long flags
)
1912 struct perf_event_context
*ctx
= event
->ctx
;
1914 lockdep_assert_held(&ctx
->mutex
);
1916 event_function_call(event
, __perf_remove_from_context
, (void *)flags
);
1919 * The above event_function_call() can NO-OP when it hits
1920 * TASK_TOMBSTONE. In that case we must already have been detached
1921 * from the context (by perf_event_exit_event()) but the grouping
1922 * might still be in-tact.
1924 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
1925 if ((flags
& DETACH_GROUP
) &&
1926 (event
->attach_state
& PERF_ATTACH_GROUP
)) {
1928 * Since in that case we cannot possibly be scheduled, simply
1931 raw_spin_lock_irq(&ctx
->lock
);
1932 perf_group_detach(event
);
1933 raw_spin_unlock_irq(&ctx
->lock
);
1938 * Cross CPU call to disable a performance event
1940 static void __perf_event_disable(struct perf_event
*event
,
1941 struct perf_cpu_context
*cpuctx
,
1942 struct perf_event_context
*ctx
,
1945 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
1948 update_context_time(ctx
);
1949 update_cgrp_time_from_event(event
);
1950 update_group_times(event
);
1951 if (event
== event
->group_leader
)
1952 group_sched_out(event
, cpuctx
, ctx
);
1954 event_sched_out(event
, cpuctx
, ctx
);
1955 event
->state
= PERF_EVENT_STATE_OFF
;
1961 * If event->ctx is a cloned context, callers must make sure that
1962 * every task struct that event->ctx->task could possibly point to
1963 * remains valid. This condition is satisifed when called through
1964 * perf_event_for_each_child or perf_event_for_each because they
1965 * hold the top-level event's child_mutex, so any descendant that
1966 * goes to exit will block in perf_event_exit_event().
1968 * When called from perf_pending_event it's OK because event->ctx
1969 * is the current context on this CPU and preemption is disabled,
1970 * hence we can't get into perf_event_task_sched_out for this context.
1972 static void _perf_event_disable(struct perf_event
*event
)
1974 struct perf_event_context
*ctx
= event
->ctx
;
1976 raw_spin_lock_irq(&ctx
->lock
);
1977 if (event
->state
<= PERF_EVENT_STATE_OFF
) {
1978 raw_spin_unlock_irq(&ctx
->lock
);
1981 raw_spin_unlock_irq(&ctx
->lock
);
1983 event_function_call(event
, __perf_event_disable
, NULL
);
1986 void perf_event_disable_local(struct perf_event
*event
)
1988 event_function_local(event
, __perf_event_disable
, NULL
);
1992 * Strictly speaking kernel users cannot create groups and therefore this
1993 * interface does not need the perf_event_ctx_lock() magic.
1995 void perf_event_disable(struct perf_event
*event
)
1997 struct perf_event_context
*ctx
;
1999 ctx
= perf_event_ctx_lock(event
);
2000 _perf_event_disable(event
);
2001 perf_event_ctx_unlock(event
, ctx
);
2003 EXPORT_SYMBOL_GPL(perf_event_disable
);
2005 void perf_event_disable_inatomic(struct perf_event
*event
)
2007 event
->pending_disable
= 1;
2008 irq_work_queue(&event
->pending
);
2011 static void perf_set_shadow_time(struct perf_event
*event
,
2012 struct perf_event_context
*ctx
,
2016 * use the correct time source for the time snapshot
2018 * We could get by without this by leveraging the
2019 * fact that to get to this function, the caller
2020 * has most likely already called update_context_time()
2021 * and update_cgrp_time_xx() and thus both timestamp
2022 * are identical (or very close). Given that tstamp is,
2023 * already adjusted for cgroup, we could say that:
2024 * tstamp - ctx->timestamp
2026 * tstamp - cgrp->timestamp.
2028 * Then, in perf_output_read(), the calculation would
2029 * work with no changes because:
2030 * - event is guaranteed scheduled in
2031 * - no scheduled out in between
2032 * - thus the timestamp would be the same
2034 * But this is a bit hairy.
2036 * So instead, we have an explicit cgroup call to remain
2037 * within the time time source all along. We believe it
2038 * is cleaner and simpler to understand.
2040 if (is_cgroup_event(event
))
2041 perf_cgroup_set_shadow_time(event
, tstamp
);
2043 event
->shadow_ctx_time
= tstamp
- ctx
->timestamp
;
2046 #define MAX_INTERRUPTS (~0ULL)
2048 static void perf_log_throttle(struct perf_event
*event
, int enable
);
2049 static void perf_log_itrace_start(struct perf_event
*event
);
2052 event_sched_in(struct perf_event
*event
,
2053 struct perf_cpu_context
*cpuctx
,
2054 struct perf_event_context
*ctx
)
2056 u64 tstamp
= perf_event_time(event
);
2059 lockdep_assert_held(&ctx
->lock
);
2061 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2064 WRITE_ONCE(event
->oncpu
, smp_processor_id());
2066 * Order event::oncpu write to happen before the ACTIVE state
2070 WRITE_ONCE(event
->state
, PERF_EVENT_STATE_ACTIVE
);
2073 * Unthrottle events, since we scheduled we might have missed several
2074 * ticks already, also for a heavily scheduling task there is little
2075 * guarantee it'll get a tick in a timely manner.
2077 if (unlikely(event
->hw
.interrupts
== MAX_INTERRUPTS
)) {
2078 perf_log_throttle(event
, 1);
2079 event
->hw
.interrupts
= 0;
2083 * The new state must be visible before we turn it on in the hardware:
2087 perf_pmu_disable(event
->pmu
);
2089 perf_set_shadow_time(event
, ctx
, tstamp
);
2091 perf_log_itrace_start(event
);
2093 if (event
->pmu
->add(event
, PERF_EF_START
)) {
2094 event
->state
= PERF_EVENT_STATE_INACTIVE
;
2100 event
->tstamp_running
+= tstamp
- event
->tstamp_stopped
;
2102 if (!is_software_event(event
))
2103 cpuctx
->active_oncpu
++;
2104 if (!ctx
->nr_active
++)
2105 perf_event_ctx_activate(ctx
);
2106 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
2109 if (event
->attr
.exclusive
)
2110 cpuctx
->exclusive
= 1;
2113 perf_pmu_enable(event
->pmu
);
2119 group_sched_in(struct perf_event
*group_event
,
2120 struct perf_cpu_context
*cpuctx
,
2121 struct perf_event_context
*ctx
)
2123 struct perf_event
*event
, *partial_group
= NULL
;
2124 struct pmu
*pmu
= ctx
->pmu
;
2125 u64 now
= ctx
->time
;
2126 bool simulate
= false;
2128 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
2131 pmu
->start_txn(pmu
, PERF_PMU_TXN_ADD
);
2133 if (event_sched_in(group_event
, cpuctx
, ctx
)) {
2134 pmu
->cancel_txn(pmu
);
2135 perf_mux_hrtimer_restart(cpuctx
);
2140 * Schedule in siblings as one group (if any):
2142 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
2143 if (event_sched_in(event
, cpuctx
, ctx
)) {
2144 partial_group
= event
;
2149 if (!pmu
->commit_txn(pmu
))
2154 * Groups can be scheduled in as one unit only, so undo any
2155 * partial group before returning:
2156 * The events up to the failed event are scheduled out normally,
2157 * tstamp_stopped will be updated.
2159 * The failed events and the remaining siblings need to have
2160 * their timings updated as if they had gone thru event_sched_in()
2161 * and event_sched_out(). This is required to get consistent timings
2162 * across the group. This also takes care of the case where the group
2163 * could never be scheduled by ensuring tstamp_stopped is set to mark
2164 * the time the event was actually stopped, such that time delta
2165 * calculation in update_event_times() is correct.
2167 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
2168 if (event
== partial_group
)
2172 event
->tstamp_running
+= now
- event
->tstamp_stopped
;
2173 event
->tstamp_stopped
= now
;
2175 event_sched_out(event
, cpuctx
, ctx
);
2178 event_sched_out(group_event
, cpuctx
, ctx
);
2180 pmu
->cancel_txn(pmu
);
2182 perf_mux_hrtimer_restart(cpuctx
);
2188 * Work out whether we can put this event group on the CPU now.
2190 static int group_can_go_on(struct perf_event
*event
,
2191 struct perf_cpu_context
*cpuctx
,
2195 * Groups consisting entirely of software events can always go on.
2197 if (event
->group_caps
& PERF_EV_CAP_SOFTWARE
)
2200 * If an exclusive group is already on, no other hardware
2203 if (cpuctx
->exclusive
)
2206 * If this group is exclusive and there are already
2207 * events on the CPU, it can't go on.
2209 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
2212 * Otherwise, try to add it if all previous groups were able
2218 static void add_event_to_ctx(struct perf_event
*event
,
2219 struct perf_event_context
*ctx
)
2221 u64 tstamp
= perf_event_time(event
);
2223 list_add_event(event
, ctx
);
2224 perf_group_attach(event
);
2225 event
->tstamp_enabled
= tstamp
;
2226 event
->tstamp_running
= tstamp
;
2227 event
->tstamp_stopped
= tstamp
;
2230 static void ctx_sched_out(struct perf_event_context
*ctx
,
2231 struct perf_cpu_context
*cpuctx
,
2232 enum event_type_t event_type
);
2234 ctx_sched_in(struct perf_event_context
*ctx
,
2235 struct perf_cpu_context
*cpuctx
,
2236 enum event_type_t event_type
,
2237 struct task_struct
*task
);
2239 static void task_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
2240 struct perf_event_context
*ctx
)
2242 if (!cpuctx
->task_ctx
)
2245 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
2248 ctx_sched_out(ctx
, cpuctx
, EVENT_ALL
);
2251 static void perf_event_sched_in(struct perf_cpu_context
*cpuctx
,
2252 struct perf_event_context
*ctx
,
2253 struct task_struct
*task
)
2255 cpu_ctx_sched_in(cpuctx
, EVENT_PINNED
, task
);
2257 ctx_sched_in(ctx
, cpuctx
, EVENT_PINNED
, task
);
2258 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
, task
);
2260 ctx_sched_in(ctx
, cpuctx
, EVENT_FLEXIBLE
, task
);
2263 static void ctx_resched(struct perf_cpu_context
*cpuctx
,
2264 struct perf_event_context
*task_ctx
)
2266 perf_pmu_disable(cpuctx
->ctx
.pmu
);
2268 task_ctx_sched_out(cpuctx
, task_ctx
);
2269 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
2270 perf_event_sched_in(cpuctx
, task_ctx
, current
);
2271 perf_pmu_enable(cpuctx
->ctx
.pmu
);
2275 * Cross CPU call to install and enable a performance event
2277 * Very similar to remote_function() + event_function() but cannot assume that
2278 * things like ctx->is_active and cpuctx->task_ctx are set.
2280 static int __perf_install_in_context(void *info
)
2282 struct perf_event
*event
= info
;
2283 struct perf_event_context
*ctx
= event
->ctx
;
2284 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2285 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
2286 bool reprogram
= true;
2289 raw_spin_lock(&cpuctx
->ctx
.lock
);
2291 raw_spin_lock(&ctx
->lock
);
2294 reprogram
= (ctx
->task
== current
);
2297 * If the task is running, it must be running on this CPU,
2298 * otherwise we cannot reprogram things.
2300 * If its not running, we don't care, ctx->lock will
2301 * serialize against it becoming runnable.
2303 if (task_curr(ctx
->task
) && !reprogram
) {
2308 WARN_ON_ONCE(reprogram
&& cpuctx
->task_ctx
&& cpuctx
->task_ctx
!= ctx
);
2309 } else if (task_ctx
) {
2310 raw_spin_lock(&task_ctx
->lock
);
2314 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
2315 add_event_to_ctx(event
, ctx
);
2316 ctx_resched(cpuctx
, task_ctx
);
2318 add_event_to_ctx(event
, ctx
);
2322 perf_ctx_unlock(cpuctx
, task_ctx
);
2328 * Attach a performance event to a context.
2330 * Very similar to event_function_call, see comment there.
2333 perf_install_in_context(struct perf_event_context
*ctx
,
2334 struct perf_event
*event
,
2337 struct task_struct
*task
= READ_ONCE(ctx
->task
);
2339 lockdep_assert_held(&ctx
->mutex
);
2341 if (event
->cpu
!= -1)
2345 * Ensures that if we can observe event->ctx, both the event and ctx
2346 * will be 'complete'. See perf_iterate_sb_cpu().
2348 smp_store_release(&event
->ctx
, ctx
);
2351 cpu_function_call(cpu
, __perf_install_in_context
, event
);
2356 * Should not happen, we validate the ctx is still alive before calling.
2358 if (WARN_ON_ONCE(task
== TASK_TOMBSTONE
))
2362 * Installing events is tricky because we cannot rely on ctx->is_active
2363 * to be set in case this is the nr_events 0 -> 1 transition.
2365 * Instead we use task_curr(), which tells us if the task is running.
2366 * However, since we use task_curr() outside of rq::lock, we can race
2367 * against the actual state. This means the result can be wrong.
2369 * If we get a false positive, we retry, this is harmless.
2371 * If we get a false negative, things are complicated. If we are after
2372 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2373 * value must be correct. If we're before, it doesn't matter since
2374 * perf_event_context_sched_in() will program the counter.
2376 * However, this hinges on the remote context switch having observed
2377 * our task->perf_event_ctxp[] store, such that it will in fact take
2378 * ctx::lock in perf_event_context_sched_in().
2380 * We do this by task_function_call(), if the IPI fails to hit the task
2381 * we know any future context switch of task must see the
2382 * perf_event_ctpx[] store.
2386 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2387 * task_cpu() load, such that if the IPI then does not find the task
2388 * running, a future context switch of that task must observe the
2393 if (!task_function_call(task
, __perf_install_in_context
, event
))
2396 raw_spin_lock_irq(&ctx
->lock
);
2398 if (WARN_ON_ONCE(task
== TASK_TOMBSTONE
)) {
2400 * Cannot happen because we already checked above (which also
2401 * cannot happen), and we hold ctx->mutex, which serializes us
2402 * against perf_event_exit_task_context().
2404 raw_spin_unlock_irq(&ctx
->lock
);
2408 * If the task is not running, ctx->lock will avoid it becoming so,
2409 * thus we can safely install the event.
2411 if (task_curr(task
)) {
2412 raw_spin_unlock_irq(&ctx
->lock
);
2415 add_event_to_ctx(event
, ctx
);
2416 raw_spin_unlock_irq(&ctx
->lock
);
2420 * Put a event into inactive state and update time fields.
2421 * Enabling the leader of a group effectively enables all
2422 * the group members that aren't explicitly disabled, so we
2423 * have to update their ->tstamp_enabled also.
2424 * Note: this works for group members as well as group leaders
2425 * since the non-leader members' sibling_lists will be empty.
2427 static void __perf_event_mark_enabled(struct perf_event
*event
)
2429 struct perf_event
*sub
;
2430 u64 tstamp
= perf_event_time(event
);
2432 event
->state
= PERF_EVENT_STATE_INACTIVE
;
2433 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
2434 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
2435 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
)
2436 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
2441 * Cross CPU call to enable a performance event
2443 static void __perf_event_enable(struct perf_event
*event
,
2444 struct perf_cpu_context
*cpuctx
,
2445 struct perf_event_context
*ctx
,
2448 struct perf_event
*leader
= event
->group_leader
;
2449 struct perf_event_context
*task_ctx
;
2451 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
||
2452 event
->state
<= PERF_EVENT_STATE_ERROR
)
2456 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
2458 __perf_event_mark_enabled(event
);
2460 if (!ctx
->is_active
)
2463 if (!event_filter_match(event
)) {
2464 if (is_cgroup_event(event
))
2465 perf_cgroup_defer_enabled(event
);
2466 ctx_sched_in(ctx
, cpuctx
, EVENT_TIME
, current
);
2471 * If the event is in a group and isn't the group leader,
2472 * then don't put it on unless the group is on.
2474 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
) {
2475 ctx_sched_in(ctx
, cpuctx
, EVENT_TIME
, current
);
2479 task_ctx
= cpuctx
->task_ctx
;
2481 WARN_ON_ONCE(task_ctx
!= ctx
);
2483 ctx_resched(cpuctx
, task_ctx
);
2489 * If event->ctx is a cloned context, callers must make sure that
2490 * every task struct that event->ctx->task could possibly point to
2491 * remains valid. This condition is satisfied when called through
2492 * perf_event_for_each_child or perf_event_for_each as described
2493 * for perf_event_disable.
2495 static void _perf_event_enable(struct perf_event
*event
)
2497 struct perf_event_context
*ctx
= event
->ctx
;
2499 raw_spin_lock_irq(&ctx
->lock
);
2500 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
||
2501 event
->state
< PERF_EVENT_STATE_ERROR
) {
2502 raw_spin_unlock_irq(&ctx
->lock
);
2507 * If the event is in error state, clear that first.
2509 * That way, if we see the event in error state below, we know that it
2510 * has gone back into error state, as distinct from the task having
2511 * been scheduled away before the cross-call arrived.
2513 if (event
->state
== PERF_EVENT_STATE_ERROR
)
2514 event
->state
= PERF_EVENT_STATE_OFF
;
2515 raw_spin_unlock_irq(&ctx
->lock
);
2517 event_function_call(event
, __perf_event_enable
, NULL
);
2521 * See perf_event_disable();
2523 void perf_event_enable(struct perf_event
*event
)
2525 struct perf_event_context
*ctx
;
2527 ctx
= perf_event_ctx_lock(event
);
2528 _perf_event_enable(event
);
2529 perf_event_ctx_unlock(event
, ctx
);
2531 EXPORT_SYMBOL_GPL(perf_event_enable
);
2533 struct stop_event_data
{
2534 struct perf_event
*event
;
2535 unsigned int restart
;
2538 static int __perf_event_stop(void *info
)
2540 struct stop_event_data
*sd
= info
;
2541 struct perf_event
*event
= sd
->event
;
2543 /* if it's already INACTIVE, do nothing */
2544 if (READ_ONCE(event
->state
) != PERF_EVENT_STATE_ACTIVE
)
2547 /* matches smp_wmb() in event_sched_in() */
2551 * There is a window with interrupts enabled before we get here,
2552 * so we need to check again lest we try to stop another CPU's event.
2554 if (READ_ONCE(event
->oncpu
) != smp_processor_id())
2557 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
2560 * May race with the actual stop (through perf_pmu_output_stop()),
2561 * but it is only used for events with AUX ring buffer, and such
2562 * events will refuse to restart because of rb::aux_mmap_count==0,
2563 * see comments in perf_aux_output_begin().
2565 * Since this is happening on a event-local CPU, no trace is lost
2569 event
->pmu
->start(event
, 0);
2574 static int perf_event_stop(struct perf_event
*event
, int restart
)
2576 struct stop_event_data sd
= {
2583 if (READ_ONCE(event
->state
) != PERF_EVENT_STATE_ACTIVE
)
2586 /* matches smp_wmb() in event_sched_in() */
2590 * We only want to restart ACTIVE events, so if the event goes
2591 * inactive here (event->oncpu==-1), there's nothing more to do;
2592 * fall through with ret==-ENXIO.
2594 ret
= cpu_function_call(READ_ONCE(event
->oncpu
),
2595 __perf_event_stop
, &sd
);
2596 } while (ret
== -EAGAIN
);
2602 * In order to contain the amount of racy and tricky in the address filter
2603 * configuration management, it is a two part process:
2605 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2606 * we update the addresses of corresponding vmas in
2607 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2608 * (p2) when an event is scheduled in (pmu::add), it calls
2609 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2610 * if the generation has changed since the previous call.
2612 * If (p1) happens while the event is active, we restart it to force (p2).
2614 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2615 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2617 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2618 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2620 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2623 void perf_event_addr_filters_sync(struct perf_event
*event
)
2625 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
2627 if (!has_addr_filter(event
))
2630 raw_spin_lock(&ifh
->lock
);
2631 if (event
->addr_filters_gen
!= event
->hw
.addr_filters_gen
) {
2632 event
->pmu
->addr_filters_sync(event
);
2633 event
->hw
.addr_filters_gen
= event
->addr_filters_gen
;
2635 raw_spin_unlock(&ifh
->lock
);
2637 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync
);
2639 static int _perf_event_refresh(struct perf_event
*event
, int refresh
)
2642 * not supported on inherited events
2644 if (event
->attr
.inherit
|| !is_sampling_event(event
))
2647 atomic_add(refresh
, &event
->event_limit
);
2648 _perf_event_enable(event
);
2654 * See perf_event_disable()
2656 int perf_event_refresh(struct perf_event
*event
, int refresh
)
2658 struct perf_event_context
*ctx
;
2661 ctx
= perf_event_ctx_lock(event
);
2662 ret
= _perf_event_refresh(event
, refresh
);
2663 perf_event_ctx_unlock(event
, ctx
);
2667 EXPORT_SYMBOL_GPL(perf_event_refresh
);
2669 static void ctx_sched_out(struct perf_event_context
*ctx
,
2670 struct perf_cpu_context
*cpuctx
,
2671 enum event_type_t event_type
)
2673 int is_active
= ctx
->is_active
;
2674 struct perf_event
*event
;
2676 lockdep_assert_held(&ctx
->lock
);
2678 if (likely(!ctx
->nr_events
)) {
2680 * See __perf_remove_from_context().
2682 WARN_ON_ONCE(ctx
->is_active
);
2684 WARN_ON_ONCE(cpuctx
->task_ctx
);
2688 ctx
->is_active
&= ~event_type
;
2689 if (!(ctx
->is_active
& EVENT_ALL
))
2693 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
2694 if (!ctx
->is_active
)
2695 cpuctx
->task_ctx
= NULL
;
2699 * Always update time if it was set; not only when it changes.
2700 * Otherwise we can 'forget' to update time for any but the last
2701 * context we sched out. For example:
2703 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2704 * ctx_sched_out(.event_type = EVENT_PINNED)
2706 * would only update time for the pinned events.
2708 if (is_active
& EVENT_TIME
) {
2709 /* update (and stop) ctx time */
2710 update_context_time(ctx
);
2711 update_cgrp_time_from_cpuctx(cpuctx
);
2714 is_active
^= ctx
->is_active
; /* changed bits */
2716 if (!ctx
->nr_active
|| !(is_active
& EVENT_ALL
))
2719 perf_pmu_disable(ctx
->pmu
);
2720 if (is_active
& EVENT_PINNED
) {
2721 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
)
2722 group_sched_out(event
, cpuctx
, ctx
);
2725 if (is_active
& EVENT_FLEXIBLE
) {
2726 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
)
2727 group_sched_out(event
, cpuctx
, ctx
);
2729 perf_pmu_enable(ctx
->pmu
);
2733 * Test whether two contexts are equivalent, i.e. whether they have both been
2734 * cloned from the same version of the same context.
2736 * Equivalence is measured using a generation number in the context that is
2737 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2738 * and list_del_event().
2740 static int context_equiv(struct perf_event_context
*ctx1
,
2741 struct perf_event_context
*ctx2
)
2743 lockdep_assert_held(&ctx1
->lock
);
2744 lockdep_assert_held(&ctx2
->lock
);
2746 /* Pinning disables the swap optimization */
2747 if (ctx1
->pin_count
|| ctx2
->pin_count
)
2750 /* If ctx1 is the parent of ctx2 */
2751 if (ctx1
== ctx2
->parent_ctx
&& ctx1
->generation
== ctx2
->parent_gen
)
2754 /* If ctx2 is the parent of ctx1 */
2755 if (ctx1
->parent_ctx
== ctx2
&& ctx1
->parent_gen
== ctx2
->generation
)
2759 * If ctx1 and ctx2 have the same parent; we flatten the parent
2760 * hierarchy, see perf_event_init_context().
2762 if (ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
&&
2763 ctx1
->parent_gen
== ctx2
->parent_gen
)
2770 static void __perf_event_sync_stat(struct perf_event
*event
,
2771 struct perf_event
*next_event
)
2775 if (!event
->attr
.inherit_stat
)
2779 * Update the event value, we cannot use perf_event_read()
2780 * because we're in the middle of a context switch and have IRQs
2781 * disabled, which upsets smp_call_function_single(), however
2782 * we know the event must be on the current CPU, therefore we
2783 * don't need to use it.
2785 switch (event
->state
) {
2786 case PERF_EVENT_STATE_ACTIVE
:
2787 event
->pmu
->read(event
);
2790 case PERF_EVENT_STATE_INACTIVE
:
2791 update_event_times(event
);
2799 * In order to keep per-task stats reliable we need to flip the event
2800 * values when we flip the contexts.
2802 value
= local64_read(&next_event
->count
);
2803 value
= local64_xchg(&event
->count
, value
);
2804 local64_set(&next_event
->count
, value
);
2806 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
2807 swap(event
->total_time_running
, next_event
->total_time_running
);
2810 * Since we swizzled the values, update the user visible data too.
2812 perf_event_update_userpage(event
);
2813 perf_event_update_userpage(next_event
);
2816 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
2817 struct perf_event_context
*next_ctx
)
2819 struct perf_event
*event
, *next_event
;
2824 update_context_time(ctx
);
2826 event
= list_first_entry(&ctx
->event_list
,
2827 struct perf_event
, event_entry
);
2829 next_event
= list_first_entry(&next_ctx
->event_list
,
2830 struct perf_event
, event_entry
);
2832 while (&event
->event_entry
!= &ctx
->event_list
&&
2833 &next_event
->event_entry
!= &next_ctx
->event_list
) {
2835 __perf_event_sync_stat(event
, next_event
);
2837 event
= list_next_entry(event
, event_entry
);
2838 next_event
= list_next_entry(next_event
, event_entry
);
2842 static void perf_event_context_sched_out(struct task_struct
*task
, int ctxn
,
2843 struct task_struct
*next
)
2845 struct perf_event_context
*ctx
= task
->perf_event_ctxp
[ctxn
];
2846 struct perf_event_context
*next_ctx
;
2847 struct perf_event_context
*parent
, *next_parent
;
2848 struct perf_cpu_context
*cpuctx
;
2854 cpuctx
= __get_cpu_context(ctx
);
2855 if (!cpuctx
->task_ctx
)
2859 next_ctx
= next
->perf_event_ctxp
[ctxn
];
2863 parent
= rcu_dereference(ctx
->parent_ctx
);
2864 next_parent
= rcu_dereference(next_ctx
->parent_ctx
);
2866 /* If neither context have a parent context; they cannot be clones. */
2867 if (!parent
&& !next_parent
)
2870 if (next_parent
== ctx
|| next_ctx
== parent
|| next_parent
== parent
) {
2872 * Looks like the two contexts are clones, so we might be
2873 * able to optimize the context switch. We lock both
2874 * contexts and check that they are clones under the
2875 * lock (including re-checking that neither has been
2876 * uncloned in the meantime). It doesn't matter which
2877 * order we take the locks because no other cpu could
2878 * be trying to lock both of these tasks.
2880 raw_spin_lock(&ctx
->lock
);
2881 raw_spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
2882 if (context_equiv(ctx
, next_ctx
)) {
2883 WRITE_ONCE(ctx
->task
, next
);
2884 WRITE_ONCE(next_ctx
->task
, task
);
2886 swap(ctx
->task_ctx_data
, next_ctx
->task_ctx_data
);
2889 * RCU_INIT_POINTER here is safe because we've not
2890 * modified the ctx and the above modification of
2891 * ctx->task and ctx->task_ctx_data are immaterial
2892 * since those values are always verified under
2893 * ctx->lock which we're now holding.
2895 RCU_INIT_POINTER(task
->perf_event_ctxp
[ctxn
], next_ctx
);
2896 RCU_INIT_POINTER(next
->perf_event_ctxp
[ctxn
], ctx
);
2900 perf_event_sync_stat(ctx
, next_ctx
);
2902 raw_spin_unlock(&next_ctx
->lock
);
2903 raw_spin_unlock(&ctx
->lock
);
2909 raw_spin_lock(&ctx
->lock
);
2910 task_ctx_sched_out(cpuctx
, ctx
);
2911 raw_spin_unlock(&ctx
->lock
);
2915 static DEFINE_PER_CPU(struct list_head
, sched_cb_list
);
2917 void perf_sched_cb_dec(struct pmu
*pmu
)
2919 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
2921 this_cpu_dec(perf_sched_cb_usages
);
2923 if (!--cpuctx
->sched_cb_usage
)
2924 list_del(&cpuctx
->sched_cb_entry
);
2928 void perf_sched_cb_inc(struct pmu
*pmu
)
2930 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
2932 if (!cpuctx
->sched_cb_usage
++)
2933 list_add(&cpuctx
->sched_cb_entry
, this_cpu_ptr(&sched_cb_list
));
2935 this_cpu_inc(perf_sched_cb_usages
);
2939 * This function provides the context switch callback to the lower code
2940 * layer. It is invoked ONLY when the context switch callback is enabled.
2942 * This callback is relevant even to per-cpu events; for example multi event
2943 * PEBS requires this to provide PID/TID information. This requires we flush
2944 * all queued PEBS records before we context switch to a new task.
2946 static void perf_pmu_sched_task(struct task_struct
*prev
,
2947 struct task_struct
*next
,
2950 struct perf_cpu_context
*cpuctx
;
2956 list_for_each_entry(cpuctx
, this_cpu_ptr(&sched_cb_list
), sched_cb_entry
) {
2957 pmu
= cpuctx
->unique_pmu
; /* software PMUs will not have sched_task */
2959 if (WARN_ON_ONCE(!pmu
->sched_task
))
2962 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
2963 perf_pmu_disable(pmu
);
2965 pmu
->sched_task(cpuctx
->task_ctx
, sched_in
);
2967 perf_pmu_enable(pmu
);
2968 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
2972 static void perf_event_switch(struct task_struct
*task
,
2973 struct task_struct
*next_prev
, bool sched_in
);
2975 #define for_each_task_context_nr(ctxn) \
2976 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2979 * Called from scheduler to remove the events of the current task,
2980 * with interrupts disabled.
2982 * We stop each event and update the event value in event->count.
2984 * This does not protect us against NMI, but disable()
2985 * sets the disabled bit in the control field of event _before_
2986 * accessing the event control register. If a NMI hits, then it will
2987 * not restart the event.
2989 void __perf_event_task_sched_out(struct task_struct
*task
,
2990 struct task_struct
*next
)
2994 if (__this_cpu_read(perf_sched_cb_usages
))
2995 perf_pmu_sched_task(task
, next
, false);
2997 if (atomic_read(&nr_switch_events
))
2998 perf_event_switch(task
, next
, false);
3000 for_each_task_context_nr(ctxn
)
3001 perf_event_context_sched_out(task
, ctxn
, next
);
3004 * if cgroup events exist on this CPU, then we need
3005 * to check if we have to switch out PMU state.
3006 * cgroup event are system-wide mode only
3008 if (atomic_read(this_cpu_ptr(&perf_cgroup_events
)))
3009 perf_cgroup_sched_out(task
, next
);
3013 * Called with IRQs disabled
3015 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
3016 enum event_type_t event_type
)
3018 ctx_sched_out(&cpuctx
->ctx
, cpuctx
, event_type
);
3022 ctx_pinned_sched_in(struct perf_event_context
*ctx
,
3023 struct perf_cpu_context
*cpuctx
)
3025 struct perf_event
*event
;
3027 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
3028 if (event
->state
<= PERF_EVENT_STATE_OFF
)
3030 if (!event_filter_match(event
))
3033 /* may need to reset tstamp_enabled */
3034 if (is_cgroup_event(event
))
3035 perf_cgroup_mark_enabled(event
, ctx
);
3037 if (group_can_go_on(event
, cpuctx
, 1))
3038 group_sched_in(event
, cpuctx
, ctx
);
3041 * If this pinned group hasn't been scheduled,
3042 * put it in error state.
3044 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
3045 update_group_times(event
);
3046 event
->state
= PERF_EVENT_STATE_ERROR
;
3052 ctx_flexible_sched_in(struct perf_event_context
*ctx
,
3053 struct perf_cpu_context
*cpuctx
)
3055 struct perf_event
*event
;
3058 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
3059 /* Ignore events in OFF or ERROR state */
3060 if (event
->state
<= PERF_EVENT_STATE_OFF
)
3063 * Listen to the 'cpu' scheduling filter constraint
3066 if (!event_filter_match(event
))
3069 /* may need to reset tstamp_enabled */
3070 if (is_cgroup_event(event
))
3071 perf_cgroup_mark_enabled(event
, ctx
);
3073 if (group_can_go_on(event
, cpuctx
, can_add_hw
)) {
3074 if (group_sched_in(event
, cpuctx
, ctx
))
3081 ctx_sched_in(struct perf_event_context
*ctx
,
3082 struct perf_cpu_context
*cpuctx
,
3083 enum event_type_t event_type
,
3084 struct task_struct
*task
)
3086 int is_active
= ctx
->is_active
;
3089 lockdep_assert_held(&ctx
->lock
);
3091 if (likely(!ctx
->nr_events
))
3094 ctx
->is_active
|= (event_type
| EVENT_TIME
);
3097 cpuctx
->task_ctx
= ctx
;
3099 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
3102 is_active
^= ctx
->is_active
; /* changed bits */
3104 if (is_active
& EVENT_TIME
) {
3105 /* start ctx time */
3107 ctx
->timestamp
= now
;
3108 perf_cgroup_set_timestamp(task
, ctx
);
3112 * First go through the list and put on any pinned groups
3113 * in order to give them the best chance of going on.
3115 if (is_active
& EVENT_PINNED
)
3116 ctx_pinned_sched_in(ctx
, cpuctx
);
3118 /* Then walk through the lower prio flexible groups */
3119 if (is_active
& EVENT_FLEXIBLE
)
3120 ctx_flexible_sched_in(ctx
, cpuctx
);
3123 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
3124 enum event_type_t event_type
,
3125 struct task_struct
*task
)
3127 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
3129 ctx_sched_in(ctx
, cpuctx
, event_type
, task
);
3132 static void perf_event_context_sched_in(struct perf_event_context
*ctx
,
3133 struct task_struct
*task
)
3135 struct perf_cpu_context
*cpuctx
;
3137 cpuctx
= __get_cpu_context(ctx
);
3138 if (cpuctx
->task_ctx
== ctx
)
3141 perf_ctx_lock(cpuctx
, ctx
);
3142 perf_pmu_disable(ctx
->pmu
);
3144 * We want to keep the following priority order:
3145 * cpu pinned (that don't need to move), task pinned,
3146 * cpu flexible, task flexible.
3148 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
3149 perf_event_sched_in(cpuctx
, ctx
, task
);
3150 perf_pmu_enable(ctx
->pmu
);
3151 perf_ctx_unlock(cpuctx
, ctx
);
3155 * Called from scheduler to add the events of the current task
3156 * with interrupts disabled.
3158 * We restore the event value and then enable it.
3160 * This does not protect us against NMI, but enable()
3161 * sets the enabled bit in the control field of event _before_
3162 * accessing the event control register. If a NMI hits, then it will
3163 * keep the event running.
3165 void __perf_event_task_sched_in(struct task_struct
*prev
,
3166 struct task_struct
*task
)
3168 struct perf_event_context
*ctx
;
3172 * If cgroup events exist on this CPU, then we need to check if we have
3173 * to switch in PMU state; cgroup event are system-wide mode only.
3175 * Since cgroup events are CPU events, we must schedule these in before
3176 * we schedule in the task events.
3178 if (atomic_read(this_cpu_ptr(&perf_cgroup_events
)))
3179 perf_cgroup_sched_in(prev
, task
);
3181 for_each_task_context_nr(ctxn
) {
3182 ctx
= task
->perf_event_ctxp
[ctxn
];
3186 perf_event_context_sched_in(ctx
, task
);
3189 if (atomic_read(&nr_switch_events
))
3190 perf_event_switch(task
, prev
, true);
3192 if (__this_cpu_read(perf_sched_cb_usages
))
3193 perf_pmu_sched_task(prev
, task
, true);
3196 static u64
perf_calculate_period(struct perf_event
*event
, u64 nsec
, u64 count
)
3198 u64 frequency
= event
->attr
.sample_freq
;
3199 u64 sec
= NSEC_PER_SEC
;
3200 u64 divisor
, dividend
;
3202 int count_fls
, nsec_fls
, frequency_fls
, sec_fls
;
3204 count_fls
= fls64(count
);
3205 nsec_fls
= fls64(nsec
);
3206 frequency_fls
= fls64(frequency
);
3210 * We got @count in @nsec, with a target of sample_freq HZ
3211 * the target period becomes:
3214 * period = -------------------
3215 * @nsec * sample_freq
3220 * Reduce accuracy by one bit such that @a and @b converge
3221 * to a similar magnitude.
3223 #define REDUCE_FLS(a, b) \
3225 if (a##_fls > b##_fls) { \
3235 * Reduce accuracy until either term fits in a u64, then proceed with
3236 * the other, so that finally we can do a u64/u64 division.
3238 while (count_fls
+ sec_fls
> 64 && nsec_fls
+ frequency_fls
> 64) {
3239 REDUCE_FLS(nsec
, frequency
);
3240 REDUCE_FLS(sec
, count
);
3243 if (count_fls
+ sec_fls
> 64) {
3244 divisor
= nsec
* frequency
;
3246 while (count_fls
+ sec_fls
> 64) {
3247 REDUCE_FLS(count
, sec
);
3251 dividend
= count
* sec
;
3253 dividend
= count
* sec
;
3255 while (nsec_fls
+ frequency_fls
> 64) {
3256 REDUCE_FLS(nsec
, frequency
);
3260 divisor
= nsec
* frequency
;
3266 return div64_u64(dividend
, divisor
);
3269 static DEFINE_PER_CPU(int, perf_throttled_count
);
3270 static DEFINE_PER_CPU(u64
, perf_throttled_seq
);
3272 static void perf_adjust_period(struct perf_event
*event
, u64 nsec
, u64 count
, bool disable
)
3274 struct hw_perf_event
*hwc
= &event
->hw
;
3275 s64 period
, sample_period
;
3278 period
= perf_calculate_period(event
, nsec
, count
);
3280 delta
= (s64
)(period
- hwc
->sample_period
);
3281 delta
= (delta
+ 7) / 8; /* low pass filter */
3283 sample_period
= hwc
->sample_period
+ delta
;
3288 hwc
->sample_period
= sample_period
;
3290 if (local64_read(&hwc
->period_left
) > 8*sample_period
) {
3292 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
3294 local64_set(&hwc
->period_left
, 0);
3297 event
->pmu
->start(event
, PERF_EF_RELOAD
);
3302 * combine freq adjustment with unthrottling to avoid two passes over the
3303 * events. At the same time, make sure, having freq events does not change
3304 * the rate of unthrottling as that would introduce bias.
3306 static void perf_adjust_freq_unthr_context(struct perf_event_context
*ctx
,
3309 struct perf_event
*event
;
3310 struct hw_perf_event
*hwc
;
3311 u64 now
, period
= TICK_NSEC
;
3315 * only need to iterate over all events iff:
3316 * - context have events in frequency mode (needs freq adjust)
3317 * - there are events to unthrottle on this cpu
3319 if (!(ctx
->nr_freq
|| needs_unthr
))
3322 raw_spin_lock(&ctx
->lock
);
3323 perf_pmu_disable(ctx
->pmu
);
3325 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3326 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3329 if (!event_filter_match(event
))
3332 perf_pmu_disable(event
->pmu
);
3336 if (hwc
->interrupts
== MAX_INTERRUPTS
) {
3337 hwc
->interrupts
= 0;
3338 perf_log_throttle(event
, 1);
3339 event
->pmu
->start(event
, 0);
3342 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
3346 * stop the event and update event->count
3348 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
3350 now
= local64_read(&event
->count
);
3351 delta
= now
- hwc
->freq_count_stamp
;
3352 hwc
->freq_count_stamp
= now
;
3356 * reload only if value has changed
3357 * we have stopped the event so tell that
3358 * to perf_adjust_period() to avoid stopping it
3362 perf_adjust_period(event
, period
, delta
, false);
3364 event
->pmu
->start(event
, delta
> 0 ? PERF_EF_RELOAD
: 0);
3366 perf_pmu_enable(event
->pmu
);
3369 perf_pmu_enable(ctx
->pmu
);
3370 raw_spin_unlock(&ctx
->lock
);
3374 * Round-robin a context's events:
3376 static void rotate_ctx(struct perf_event_context
*ctx
)
3379 * Rotate the first entry last of non-pinned groups. Rotation might be
3380 * disabled by the inheritance code.
3382 if (!ctx
->rotate_disable
)
3383 list_rotate_left(&ctx
->flexible_groups
);
3386 static int perf_rotate_context(struct perf_cpu_context
*cpuctx
)
3388 struct perf_event_context
*ctx
= NULL
;
3391 if (cpuctx
->ctx
.nr_events
) {
3392 if (cpuctx
->ctx
.nr_events
!= cpuctx
->ctx
.nr_active
)
3396 ctx
= cpuctx
->task_ctx
;
3397 if (ctx
&& ctx
->nr_events
) {
3398 if (ctx
->nr_events
!= ctx
->nr_active
)
3405 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
3406 perf_pmu_disable(cpuctx
->ctx
.pmu
);
3408 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
3410 ctx_sched_out(ctx
, cpuctx
, EVENT_FLEXIBLE
);
3412 rotate_ctx(&cpuctx
->ctx
);
3416 perf_event_sched_in(cpuctx
, ctx
, current
);
3418 perf_pmu_enable(cpuctx
->ctx
.pmu
);
3419 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
3425 void perf_event_task_tick(void)
3427 struct list_head
*head
= this_cpu_ptr(&active_ctx_list
);
3428 struct perf_event_context
*ctx
, *tmp
;
3431 WARN_ON(!irqs_disabled());
3433 __this_cpu_inc(perf_throttled_seq
);
3434 throttled
= __this_cpu_xchg(perf_throttled_count
, 0);
3435 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS
);
3437 list_for_each_entry_safe(ctx
, tmp
, head
, active_ctx_list
)
3438 perf_adjust_freq_unthr_context(ctx
, throttled
);
3441 static int event_enable_on_exec(struct perf_event
*event
,
3442 struct perf_event_context
*ctx
)
3444 if (!event
->attr
.enable_on_exec
)
3447 event
->attr
.enable_on_exec
= 0;
3448 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
3451 __perf_event_mark_enabled(event
);
3457 * Enable all of a task's events that have been marked enable-on-exec.
3458 * This expects task == current.
3460 static void perf_event_enable_on_exec(int ctxn
)
3462 struct perf_event_context
*ctx
, *clone_ctx
= NULL
;
3463 struct perf_cpu_context
*cpuctx
;
3464 struct perf_event
*event
;
3465 unsigned long flags
;
3468 local_irq_save(flags
);
3469 ctx
= current
->perf_event_ctxp
[ctxn
];
3470 if (!ctx
|| !ctx
->nr_events
)
3473 cpuctx
= __get_cpu_context(ctx
);
3474 perf_ctx_lock(cpuctx
, ctx
);
3475 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
3476 list_for_each_entry(event
, &ctx
->event_list
, event_entry
)
3477 enabled
|= event_enable_on_exec(event
, ctx
);
3480 * Unclone and reschedule this context if we enabled any event.
3483 clone_ctx
= unclone_ctx(ctx
);
3484 ctx_resched(cpuctx
, ctx
);
3486 perf_ctx_unlock(cpuctx
, ctx
);
3489 local_irq_restore(flags
);
3495 struct perf_read_data
{
3496 struct perf_event
*event
;
3501 static int __perf_event_read_cpu(struct perf_event
*event
, int event_cpu
)
3503 u16 local_pkg
, event_pkg
;
3505 if (event
->group_caps
& PERF_EV_CAP_READ_ACTIVE_PKG
) {
3506 int local_cpu
= smp_processor_id();
3508 event_pkg
= topology_physical_package_id(event_cpu
);
3509 local_pkg
= topology_physical_package_id(local_cpu
);
3511 if (event_pkg
== local_pkg
)
3519 * Cross CPU call to read the hardware event
3521 static void __perf_event_read(void *info
)
3523 struct perf_read_data
*data
= info
;
3524 struct perf_event
*sub
, *event
= data
->event
;
3525 struct perf_event_context
*ctx
= event
->ctx
;
3526 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
3527 struct pmu
*pmu
= event
->pmu
;
3530 * If this is a task context, we need to check whether it is
3531 * the current task context of this cpu. If not it has been
3532 * scheduled out before the smp call arrived. In that case
3533 * event->count would have been updated to a recent sample
3534 * when the event was scheduled out.
3536 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
3539 raw_spin_lock(&ctx
->lock
);
3540 if (ctx
->is_active
) {
3541 update_context_time(ctx
);
3542 update_cgrp_time_from_event(event
);
3545 update_event_times(event
);
3546 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3555 pmu
->start_txn(pmu
, PERF_PMU_TXN_READ
);
3559 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
3560 update_event_times(sub
);
3561 if (sub
->state
== PERF_EVENT_STATE_ACTIVE
) {
3563 * Use sibling's PMU rather than @event's since
3564 * sibling could be on different (eg: software) PMU.
3566 sub
->pmu
->read(sub
);
3570 data
->ret
= pmu
->commit_txn(pmu
);
3573 raw_spin_unlock(&ctx
->lock
);
3576 static inline u64
perf_event_count(struct perf_event
*event
)
3578 if (event
->pmu
->count
)
3579 return event
->pmu
->count(event
);
3581 return __perf_event_count(event
);
3585 * NMI-safe method to read a local event, that is an event that
3587 * - either for the current task, or for this CPU
3588 * - does not have inherit set, for inherited task events
3589 * will not be local and we cannot read them atomically
3590 * - must not have a pmu::count method
3592 u64
perf_event_read_local(struct perf_event
*event
)
3594 unsigned long flags
;
3598 * Disabling interrupts avoids all counter scheduling (context
3599 * switches, timer based rotation and IPIs).
3601 local_irq_save(flags
);
3603 /* If this is a per-task event, it must be for current */
3604 WARN_ON_ONCE((event
->attach_state
& PERF_ATTACH_TASK
) &&
3605 event
->hw
.target
!= current
);
3607 /* If this is a per-CPU event, it must be for this CPU */
3608 WARN_ON_ONCE(!(event
->attach_state
& PERF_ATTACH_TASK
) &&
3609 event
->cpu
!= smp_processor_id());
3612 * It must not be an event with inherit set, we cannot read
3613 * all child counters from atomic context.
3615 WARN_ON_ONCE(event
->attr
.inherit
);
3618 * It must not have a pmu::count method, those are not
3621 WARN_ON_ONCE(event
->pmu
->count
);
3624 * If the event is currently on this CPU, its either a per-task event,
3625 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3628 if (event
->oncpu
== smp_processor_id())
3629 event
->pmu
->read(event
);
3631 val
= local64_read(&event
->count
);
3632 local_irq_restore(flags
);
3637 static int perf_event_read(struct perf_event
*event
, bool group
)
3639 int event_cpu
, ret
= 0;
3642 * If event is enabled and currently active on a CPU, update the
3643 * value in the event structure:
3645 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
3646 struct perf_read_data data
= {
3652 event_cpu
= READ_ONCE(event
->oncpu
);
3653 if ((unsigned)event_cpu
>= nr_cpu_ids
)
3657 event_cpu
= __perf_event_read_cpu(event
, event_cpu
);
3660 * Purposely ignore the smp_call_function_single() return
3663 * If event_cpu isn't a valid CPU it means the event got
3664 * scheduled out and that will have updated the event count.
3666 * Therefore, either way, we'll have an up-to-date event count
3669 (void)smp_call_function_single(event_cpu
, __perf_event_read
, &data
, 1);
3672 } else if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
3673 struct perf_event_context
*ctx
= event
->ctx
;
3674 unsigned long flags
;
3676 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
3678 * may read while context is not active
3679 * (e.g., thread is blocked), in that case
3680 * we cannot update context time
3682 if (ctx
->is_active
) {
3683 update_context_time(ctx
);
3684 update_cgrp_time_from_event(event
);
3687 update_group_times(event
);
3689 update_event_times(event
);
3690 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
3697 * Initialize the perf_event context in a task_struct:
3699 static void __perf_event_init_context(struct perf_event_context
*ctx
)
3701 raw_spin_lock_init(&ctx
->lock
);
3702 mutex_init(&ctx
->mutex
);
3703 INIT_LIST_HEAD(&ctx
->active_ctx_list
);
3704 INIT_LIST_HEAD(&ctx
->pinned_groups
);
3705 INIT_LIST_HEAD(&ctx
->flexible_groups
);
3706 INIT_LIST_HEAD(&ctx
->event_list
);
3707 atomic_set(&ctx
->refcount
, 1);
3710 static struct perf_event_context
*
3711 alloc_perf_context(struct pmu
*pmu
, struct task_struct
*task
)
3713 struct perf_event_context
*ctx
;
3715 ctx
= kzalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
3719 __perf_event_init_context(ctx
);
3722 get_task_struct(task
);
3729 static struct task_struct
*
3730 find_lively_task_by_vpid(pid_t vpid
)
3732 struct task_struct
*task
;
3738 task
= find_task_by_vpid(vpid
);
3740 get_task_struct(task
);
3744 return ERR_PTR(-ESRCH
);
3750 * Returns a matching context with refcount and pincount.
3752 static struct perf_event_context
*
3753 find_get_context(struct pmu
*pmu
, struct task_struct
*task
,
3754 struct perf_event
*event
)
3756 struct perf_event_context
*ctx
, *clone_ctx
= NULL
;
3757 struct perf_cpu_context
*cpuctx
;
3758 void *task_ctx_data
= NULL
;
3759 unsigned long flags
;
3761 int cpu
= event
->cpu
;
3764 /* Must be root to operate on a CPU event: */
3765 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
3766 return ERR_PTR(-EACCES
);
3769 * We could be clever and allow to attach a event to an
3770 * offline CPU and activate it when the CPU comes up, but
3773 if (!cpu_online(cpu
))
3774 return ERR_PTR(-ENODEV
);
3776 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
3785 ctxn
= pmu
->task_ctx_nr
;
3789 if (event
->attach_state
& PERF_ATTACH_TASK_DATA
) {
3790 task_ctx_data
= kzalloc(pmu
->task_ctx_size
, GFP_KERNEL
);
3791 if (!task_ctx_data
) {
3798 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
3800 clone_ctx
= unclone_ctx(ctx
);
3803 if (task_ctx_data
&& !ctx
->task_ctx_data
) {
3804 ctx
->task_ctx_data
= task_ctx_data
;
3805 task_ctx_data
= NULL
;
3807 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
3812 ctx
= alloc_perf_context(pmu
, task
);
3817 if (task_ctx_data
) {
3818 ctx
->task_ctx_data
= task_ctx_data
;
3819 task_ctx_data
= NULL
;
3823 mutex_lock(&task
->perf_event_mutex
);
3825 * If it has already passed perf_event_exit_task().
3826 * we must see PF_EXITING, it takes this mutex too.
3828 if (task
->flags
& PF_EXITING
)
3830 else if (task
->perf_event_ctxp
[ctxn
])
3835 rcu_assign_pointer(task
->perf_event_ctxp
[ctxn
], ctx
);
3837 mutex_unlock(&task
->perf_event_mutex
);
3839 if (unlikely(err
)) {
3848 kfree(task_ctx_data
);
3852 kfree(task_ctx_data
);
3853 return ERR_PTR(err
);
3856 static void perf_event_free_filter(struct perf_event
*event
);
3857 static void perf_event_free_bpf_prog(struct perf_event
*event
);
3859 static void free_event_rcu(struct rcu_head
*head
)
3861 struct perf_event
*event
;
3863 event
= container_of(head
, struct perf_event
, rcu_head
);
3865 put_pid_ns(event
->ns
);
3866 perf_event_free_filter(event
);
3870 static void ring_buffer_attach(struct perf_event
*event
,
3871 struct ring_buffer
*rb
);
3873 static void detach_sb_event(struct perf_event
*event
)
3875 struct pmu_event_list
*pel
= per_cpu_ptr(&pmu_sb_events
, event
->cpu
);
3877 raw_spin_lock(&pel
->lock
);
3878 list_del_rcu(&event
->sb_list
);
3879 raw_spin_unlock(&pel
->lock
);
3882 static bool is_sb_event(struct perf_event
*event
)
3884 struct perf_event_attr
*attr
= &event
->attr
;
3889 if (event
->attach_state
& PERF_ATTACH_TASK
)
3892 if (attr
->mmap
|| attr
->mmap_data
|| attr
->mmap2
||
3893 attr
->comm
|| attr
->comm_exec
||
3895 attr
->context_switch
)
3900 static void unaccount_pmu_sb_event(struct perf_event
*event
)
3902 if (is_sb_event(event
))
3903 detach_sb_event(event
);
3906 static void unaccount_event_cpu(struct perf_event
*event
, int cpu
)
3911 if (is_cgroup_event(event
))
3912 atomic_dec(&per_cpu(perf_cgroup_events
, cpu
));
3915 #ifdef CONFIG_NO_HZ_FULL
3916 static DEFINE_SPINLOCK(nr_freq_lock
);
3919 static void unaccount_freq_event_nohz(void)
3921 #ifdef CONFIG_NO_HZ_FULL
3922 spin_lock(&nr_freq_lock
);
3923 if (atomic_dec_and_test(&nr_freq_events
))
3924 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS
);
3925 spin_unlock(&nr_freq_lock
);
3929 static void unaccount_freq_event(void)
3931 if (tick_nohz_full_enabled())
3932 unaccount_freq_event_nohz();
3934 atomic_dec(&nr_freq_events
);
3937 static void unaccount_event(struct perf_event
*event
)
3944 if (event
->attach_state
& PERF_ATTACH_TASK
)
3946 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
3947 atomic_dec(&nr_mmap_events
);
3948 if (event
->attr
.comm
)
3949 atomic_dec(&nr_comm_events
);
3950 if (event
->attr
.task
)
3951 atomic_dec(&nr_task_events
);
3952 if (event
->attr
.freq
)
3953 unaccount_freq_event();
3954 if (event
->attr
.context_switch
) {
3956 atomic_dec(&nr_switch_events
);
3958 if (is_cgroup_event(event
))
3960 if (has_branch_stack(event
))
3964 if (!atomic_add_unless(&perf_sched_count
, -1, 1))
3965 schedule_delayed_work(&perf_sched_work
, HZ
);
3968 unaccount_event_cpu(event
, event
->cpu
);
3970 unaccount_pmu_sb_event(event
);
3973 static void perf_sched_delayed(struct work_struct
*work
)
3975 mutex_lock(&perf_sched_mutex
);
3976 if (atomic_dec_and_test(&perf_sched_count
))
3977 static_branch_disable(&perf_sched_events
);
3978 mutex_unlock(&perf_sched_mutex
);
3982 * The following implement mutual exclusion of events on "exclusive" pmus
3983 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3984 * at a time, so we disallow creating events that might conflict, namely:
3986 * 1) cpu-wide events in the presence of per-task events,
3987 * 2) per-task events in the presence of cpu-wide events,
3988 * 3) two matching events on the same context.
3990 * The former two cases are handled in the allocation path (perf_event_alloc(),
3991 * _free_event()), the latter -- before the first perf_install_in_context().
3993 static int exclusive_event_init(struct perf_event
*event
)
3995 struct pmu
*pmu
= event
->pmu
;
3997 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
))
4001 * Prevent co-existence of per-task and cpu-wide events on the
4002 * same exclusive pmu.
4004 * Negative pmu::exclusive_cnt means there are cpu-wide
4005 * events on this "exclusive" pmu, positive means there are
4008 * Since this is called in perf_event_alloc() path, event::ctx
4009 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4010 * to mean "per-task event", because unlike other attach states it
4011 * never gets cleared.
4013 if (event
->attach_state
& PERF_ATTACH_TASK
) {
4014 if (!atomic_inc_unless_negative(&pmu
->exclusive_cnt
))
4017 if (!atomic_dec_unless_positive(&pmu
->exclusive_cnt
))
4024 static void exclusive_event_destroy(struct perf_event
*event
)
4026 struct pmu
*pmu
= event
->pmu
;
4028 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
))
4031 /* see comment in exclusive_event_init() */
4032 if (event
->attach_state
& PERF_ATTACH_TASK
)
4033 atomic_dec(&pmu
->exclusive_cnt
);
4035 atomic_inc(&pmu
->exclusive_cnt
);
4038 static bool exclusive_event_match(struct perf_event
*e1
, struct perf_event
*e2
)
4040 if ((e1
->pmu
== e2
->pmu
) &&
4041 (e1
->cpu
== e2
->cpu
||
4048 /* Called under the same ctx::mutex as perf_install_in_context() */
4049 static bool exclusive_event_installable(struct perf_event
*event
,
4050 struct perf_event_context
*ctx
)
4052 struct perf_event
*iter_event
;
4053 struct pmu
*pmu
= event
->pmu
;
4055 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
))
4058 list_for_each_entry(iter_event
, &ctx
->event_list
, event_entry
) {
4059 if (exclusive_event_match(iter_event
, event
))
4066 static void perf_addr_filters_splice(struct perf_event
*event
,
4067 struct list_head
*head
);
4069 static void _free_event(struct perf_event
*event
)
4071 irq_work_sync(&event
->pending
);
4073 unaccount_event(event
);
4077 * Can happen when we close an event with re-directed output.
4079 * Since we have a 0 refcount, perf_mmap_close() will skip
4080 * over us; possibly making our ring_buffer_put() the last.
4082 mutex_lock(&event
->mmap_mutex
);
4083 ring_buffer_attach(event
, NULL
);
4084 mutex_unlock(&event
->mmap_mutex
);
4087 if (is_cgroup_event(event
))
4088 perf_detach_cgroup(event
);
4090 if (!event
->parent
) {
4091 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
4092 put_callchain_buffers();
4095 perf_event_free_bpf_prog(event
);
4096 perf_addr_filters_splice(event
, NULL
);
4097 kfree(event
->addr_filters_offs
);
4100 event
->destroy(event
);
4103 put_ctx(event
->ctx
);
4105 if (event
->hw
.target
)
4106 put_task_struct(event
->hw
.target
);
4108 exclusive_event_destroy(event
);
4109 module_put(event
->pmu
->module
);
4111 call_rcu(&event
->rcu_head
, free_event_rcu
);
4115 * Used to free events which have a known refcount of 1, such as in error paths
4116 * where the event isn't exposed yet and inherited events.
4118 static void free_event(struct perf_event
*event
)
4120 if (WARN(atomic_long_cmpxchg(&event
->refcount
, 1, 0) != 1,
4121 "unexpected event refcount: %ld; ptr=%p\n",
4122 atomic_long_read(&event
->refcount
), event
)) {
4123 /* leak to avoid use-after-free */
4131 * Remove user event from the owner task.
4133 static void perf_remove_from_owner(struct perf_event
*event
)
4135 struct task_struct
*owner
;
4139 * Matches the smp_store_release() in perf_event_exit_task(). If we
4140 * observe !owner it means the list deletion is complete and we can
4141 * indeed free this event, otherwise we need to serialize on
4142 * owner->perf_event_mutex.
4144 owner
= lockless_dereference(event
->owner
);
4147 * Since delayed_put_task_struct() also drops the last
4148 * task reference we can safely take a new reference
4149 * while holding the rcu_read_lock().
4151 get_task_struct(owner
);
4157 * If we're here through perf_event_exit_task() we're already
4158 * holding ctx->mutex which would be an inversion wrt. the
4159 * normal lock order.
4161 * However we can safely take this lock because its the child
4164 mutex_lock_nested(&owner
->perf_event_mutex
, SINGLE_DEPTH_NESTING
);
4167 * We have to re-check the event->owner field, if it is cleared
4168 * we raced with perf_event_exit_task(), acquiring the mutex
4169 * ensured they're done, and we can proceed with freeing the
4173 list_del_init(&event
->owner_entry
);
4174 smp_store_release(&event
->owner
, NULL
);
4176 mutex_unlock(&owner
->perf_event_mutex
);
4177 put_task_struct(owner
);
4181 static void put_event(struct perf_event
*event
)
4183 if (!atomic_long_dec_and_test(&event
->refcount
))
4190 * Kill an event dead; while event:refcount will preserve the event
4191 * object, it will not preserve its functionality. Once the last 'user'
4192 * gives up the object, we'll destroy the thing.
4194 int perf_event_release_kernel(struct perf_event
*event
)
4196 struct perf_event_context
*ctx
= event
->ctx
;
4197 struct perf_event
*child
, *tmp
;
4200 * If we got here through err_file: fput(event_file); we will not have
4201 * attached to a context yet.
4204 WARN_ON_ONCE(event
->attach_state
&
4205 (PERF_ATTACH_CONTEXT
|PERF_ATTACH_GROUP
));
4209 if (!is_kernel_event(event
))
4210 perf_remove_from_owner(event
);
4212 ctx
= perf_event_ctx_lock(event
);
4213 WARN_ON_ONCE(ctx
->parent_ctx
);
4214 perf_remove_from_context(event
, DETACH_GROUP
);
4216 raw_spin_lock_irq(&ctx
->lock
);
4218 * Mark this even as STATE_DEAD, there is no external reference to it
4221 * Anybody acquiring event->child_mutex after the below loop _must_
4222 * also see this, most importantly inherit_event() which will avoid
4223 * placing more children on the list.
4225 * Thus this guarantees that we will in fact observe and kill _ALL_
4228 event
->state
= PERF_EVENT_STATE_DEAD
;
4229 raw_spin_unlock_irq(&ctx
->lock
);
4231 perf_event_ctx_unlock(event
, ctx
);
4234 mutex_lock(&event
->child_mutex
);
4235 list_for_each_entry(child
, &event
->child_list
, child_list
) {
4238 * Cannot change, child events are not migrated, see the
4239 * comment with perf_event_ctx_lock_nested().
4241 ctx
= lockless_dereference(child
->ctx
);
4243 * Since child_mutex nests inside ctx::mutex, we must jump
4244 * through hoops. We start by grabbing a reference on the ctx.
4246 * Since the event cannot get freed while we hold the
4247 * child_mutex, the context must also exist and have a !0
4253 * Now that we have a ctx ref, we can drop child_mutex, and
4254 * acquire ctx::mutex without fear of it going away. Then we
4255 * can re-acquire child_mutex.
4257 mutex_unlock(&event
->child_mutex
);
4258 mutex_lock(&ctx
->mutex
);
4259 mutex_lock(&event
->child_mutex
);
4262 * Now that we hold ctx::mutex and child_mutex, revalidate our
4263 * state, if child is still the first entry, it didn't get freed
4264 * and we can continue doing so.
4266 tmp
= list_first_entry_or_null(&event
->child_list
,
4267 struct perf_event
, child_list
);
4269 perf_remove_from_context(child
, DETACH_GROUP
);
4270 list_del(&child
->child_list
);
4273 * This matches the refcount bump in inherit_event();
4274 * this can't be the last reference.
4279 mutex_unlock(&event
->child_mutex
);
4280 mutex_unlock(&ctx
->mutex
);
4284 mutex_unlock(&event
->child_mutex
);
4287 put_event(event
); /* Must be the 'last' reference */
4290 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
4293 * Called when the last reference to the file is gone.
4295 static int perf_release(struct inode
*inode
, struct file
*file
)
4297 perf_event_release_kernel(file
->private_data
);
4301 u64
perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
4303 struct perf_event
*child
;
4309 mutex_lock(&event
->child_mutex
);
4311 (void)perf_event_read(event
, false);
4312 total
+= perf_event_count(event
);
4314 *enabled
+= event
->total_time_enabled
+
4315 atomic64_read(&event
->child_total_time_enabled
);
4316 *running
+= event
->total_time_running
+
4317 atomic64_read(&event
->child_total_time_running
);
4319 list_for_each_entry(child
, &event
->child_list
, child_list
) {
4320 (void)perf_event_read(child
, false);
4321 total
+= perf_event_count(child
);
4322 *enabled
+= child
->total_time_enabled
;
4323 *running
+= child
->total_time_running
;
4325 mutex_unlock(&event
->child_mutex
);
4329 EXPORT_SYMBOL_GPL(perf_event_read_value
);
4331 static int __perf_read_group_add(struct perf_event
*leader
,
4332 u64 read_format
, u64
*values
)
4334 struct perf_event_context
*ctx
= leader
->ctx
;
4335 struct perf_event
*sub
;
4336 unsigned long flags
;
4337 int n
= 1; /* skip @nr */
4340 ret
= perf_event_read(leader
, true);
4345 * Since we co-schedule groups, {enabled,running} times of siblings
4346 * will be identical to those of the leader, so we only publish one
4349 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
4350 values
[n
++] += leader
->total_time_enabled
+
4351 atomic64_read(&leader
->child_total_time_enabled
);
4354 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
4355 values
[n
++] += leader
->total_time_running
+
4356 atomic64_read(&leader
->child_total_time_running
);
4360 * Write {count,id} tuples for every sibling.
4362 values
[n
++] += perf_event_count(leader
);
4363 if (read_format
& PERF_FORMAT_ID
)
4364 values
[n
++] = primary_event_id(leader
);
4366 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
4368 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
4369 values
[n
++] += perf_event_count(sub
);
4370 if (read_format
& PERF_FORMAT_ID
)
4371 values
[n
++] = primary_event_id(sub
);
4374 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
4378 static int perf_read_group(struct perf_event
*event
,
4379 u64 read_format
, char __user
*buf
)
4381 struct perf_event
*leader
= event
->group_leader
, *child
;
4382 struct perf_event_context
*ctx
= leader
->ctx
;
4386 lockdep_assert_held(&ctx
->mutex
);
4388 values
= kzalloc(event
->read_size
, GFP_KERNEL
);
4392 values
[0] = 1 + leader
->nr_siblings
;
4395 * By locking the child_mutex of the leader we effectively
4396 * lock the child list of all siblings.. XXX explain how.
4398 mutex_lock(&leader
->child_mutex
);
4400 ret
= __perf_read_group_add(leader
, read_format
, values
);
4404 list_for_each_entry(child
, &leader
->child_list
, child_list
) {
4405 ret
= __perf_read_group_add(child
, read_format
, values
);
4410 mutex_unlock(&leader
->child_mutex
);
4412 ret
= event
->read_size
;
4413 if (copy_to_user(buf
, values
, event
->read_size
))
4418 mutex_unlock(&leader
->child_mutex
);
4424 static int perf_read_one(struct perf_event
*event
,
4425 u64 read_format
, char __user
*buf
)
4427 u64 enabled
, running
;
4431 values
[n
++] = perf_event_read_value(event
, &enabled
, &running
);
4432 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
4433 values
[n
++] = enabled
;
4434 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
4435 values
[n
++] = running
;
4436 if (read_format
& PERF_FORMAT_ID
)
4437 values
[n
++] = primary_event_id(event
);
4439 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
4442 return n
* sizeof(u64
);
4445 static bool is_event_hup(struct perf_event
*event
)
4449 if (event
->state
> PERF_EVENT_STATE_EXIT
)
4452 mutex_lock(&event
->child_mutex
);
4453 no_children
= list_empty(&event
->child_list
);
4454 mutex_unlock(&event
->child_mutex
);
4459 * Read the performance event - simple non blocking version for now
4462 __perf_read(struct perf_event
*event
, char __user
*buf
, size_t count
)
4464 u64 read_format
= event
->attr
.read_format
;
4468 * Return end-of-file for a read on a event that is in
4469 * error state (i.e. because it was pinned but it couldn't be
4470 * scheduled on to the CPU at some point).
4472 if (event
->state
== PERF_EVENT_STATE_ERROR
)
4475 if (count
< event
->read_size
)
4478 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
4479 if (read_format
& PERF_FORMAT_GROUP
)
4480 ret
= perf_read_group(event
, read_format
, buf
);
4482 ret
= perf_read_one(event
, read_format
, buf
);
4488 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
4490 struct perf_event
*event
= file
->private_data
;
4491 struct perf_event_context
*ctx
;
4494 ctx
= perf_event_ctx_lock(event
);
4495 ret
= __perf_read(event
, buf
, count
);
4496 perf_event_ctx_unlock(event
, ctx
);
4501 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
4503 struct perf_event
*event
= file
->private_data
;
4504 struct ring_buffer
*rb
;
4505 unsigned int events
= POLLHUP
;
4507 poll_wait(file
, &event
->waitq
, wait
);
4509 if (is_event_hup(event
))
4513 * Pin the event->rb by taking event->mmap_mutex; otherwise
4514 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4516 mutex_lock(&event
->mmap_mutex
);
4519 events
= atomic_xchg(&rb
->poll
, 0);
4520 mutex_unlock(&event
->mmap_mutex
);
4524 static void _perf_event_reset(struct perf_event
*event
)
4526 (void)perf_event_read(event
, false);
4527 local64_set(&event
->count
, 0);
4528 perf_event_update_userpage(event
);
4532 * Holding the top-level event's child_mutex means that any
4533 * descendant process that has inherited this event will block
4534 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4535 * task existence requirements of perf_event_enable/disable.
4537 static void perf_event_for_each_child(struct perf_event
*event
,
4538 void (*func
)(struct perf_event
*))
4540 struct perf_event
*child
;
4542 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
4544 mutex_lock(&event
->child_mutex
);
4546 list_for_each_entry(child
, &event
->child_list
, child_list
)
4548 mutex_unlock(&event
->child_mutex
);
4551 static void perf_event_for_each(struct perf_event
*event
,
4552 void (*func
)(struct perf_event
*))
4554 struct perf_event_context
*ctx
= event
->ctx
;
4555 struct perf_event
*sibling
;
4557 lockdep_assert_held(&ctx
->mutex
);
4559 event
= event
->group_leader
;
4561 perf_event_for_each_child(event
, func
);
4562 list_for_each_entry(sibling
, &event
->sibling_list
, group_entry
)
4563 perf_event_for_each_child(sibling
, func
);
4566 static void __perf_event_period(struct perf_event
*event
,
4567 struct perf_cpu_context
*cpuctx
,
4568 struct perf_event_context
*ctx
,
4571 u64 value
= *((u64
*)info
);
4574 if (event
->attr
.freq
) {
4575 event
->attr
.sample_freq
= value
;
4577 event
->attr
.sample_period
= value
;
4578 event
->hw
.sample_period
= value
;
4581 active
= (event
->state
== PERF_EVENT_STATE_ACTIVE
);
4583 perf_pmu_disable(ctx
->pmu
);
4585 * We could be throttled; unthrottle now to avoid the tick
4586 * trying to unthrottle while we already re-started the event.
4588 if (event
->hw
.interrupts
== MAX_INTERRUPTS
) {
4589 event
->hw
.interrupts
= 0;
4590 perf_log_throttle(event
, 1);
4592 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
4595 local64_set(&event
->hw
.period_left
, 0);
4598 event
->pmu
->start(event
, PERF_EF_RELOAD
);
4599 perf_pmu_enable(ctx
->pmu
);
4603 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
4607 if (!is_sampling_event(event
))
4610 if (copy_from_user(&value
, arg
, sizeof(value
)))
4616 if (event
->attr
.freq
&& value
> sysctl_perf_event_sample_rate
)
4619 event_function_call(event
, __perf_event_period
, &value
);
4624 static const struct file_operations perf_fops
;
4626 static inline int perf_fget_light(int fd
, struct fd
*p
)
4628 struct fd f
= fdget(fd
);
4632 if (f
.file
->f_op
!= &perf_fops
) {
4640 static int perf_event_set_output(struct perf_event
*event
,
4641 struct perf_event
*output_event
);
4642 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
4643 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
);
4645 static long _perf_ioctl(struct perf_event
*event
, unsigned int cmd
, unsigned long arg
)
4647 void (*func
)(struct perf_event
*);
4651 case PERF_EVENT_IOC_ENABLE
:
4652 func
= _perf_event_enable
;
4654 case PERF_EVENT_IOC_DISABLE
:
4655 func
= _perf_event_disable
;
4657 case PERF_EVENT_IOC_RESET
:
4658 func
= _perf_event_reset
;
4661 case PERF_EVENT_IOC_REFRESH
:
4662 return _perf_event_refresh(event
, arg
);
4664 case PERF_EVENT_IOC_PERIOD
:
4665 return perf_event_period(event
, (u64 __user
*)arg
);
4667 case PERF_EVENT_IOC_ID
:
4669 u64 id
= primary_event_id(event
);
4671 if (copy_to_user((void __user
*)arg
, &id
, sizeof(id
)))
4676 case PERF_EVENT_IOC_SET_OUTPUT
:
4680 struct perf_event
*output_event
;
4682 ret
= perf_fget_light(arg
, &output
);
4685 output_event
= output
.file
->private_data
;
4686 ret
= perf_event_set_output(event
, output_event
);
4689 ret
= perf_event_set_output(event
, NULL
);
4694 case PERF_EVENT_IOC_SET_FILTER
:
4695 return perf_event_set_filter(event
, (void __user
*)arg
);
4697 case PERF_EVENT_IOC_SET_BPF
:
4698 return perf_event_set_bpf_prog(event
, arg
);
4700 case PERF_EVENT_IOC_PAUSE_OUTPUT
: {
4701 struct ring_buffer
*rb
;
4704 rb
= rcu_dereference(event
->rb
);
4705 if (!rb
|| !rb
->nr_pages
) {
4709 rb_toggle_paused(rb
, !!arg
);
4717 if (flags
& PERF_IOC_FLAG_GROUP
)
4718 perf_event_for_each(event
, func
);
4720 perf_event_for_each_child(event
, func
);
4725 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
4727 struct perf_event
*event
= file
->private_data
;
4728 struct perf_event_context
*ctx
;
4731 ctx
= perf_event_ctx_lock(event
);
4732 ret
= _perf_ioctl(event
, cmd
, arg
);
4733 perf_event_ctx_unlock(event
, ctx
);
4738 #ifdef CONFIG_COMPAT
4739 static long perf_compat_ioctl(struct file
*file
, unsigned int cmd
,
4742 switch (_IOC_NR(cmd
)) {
4743 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER
):
4744 case _IOC_NR(PERF_EVENT_IOC_ID
):
4745 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4746 if (_IOC_SIZE(cmd
) == sizeof(compat_uptr_t
)) {
4747 cmd
&= ~IOCSIZE_MASK
;
4748 cmd
|= sizeof(void *) << IOCSIZE_SHIFT
;
4752 return perf_ioctl(file
, cmd
, arg
);
4755 # define perf_compat_ioctl NULL
4758 int perf_event_task_enable(void)
4760 struct perf_event_context
*ctx
;
4761 struct perf_event
*event
;
4763 mutex_lock(¤t
->perf_event_mutex
);
4764 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
) {
4765 ctx
= perf_event_ctx_lock(event
);
4766 perf_event_for_each_child(event
, _perf_event_enable
);
4767 perf_event_ctx_unlock(event
, ctx
);
4769 mutex_unlock(¤t
->perf_event_mutex
);
4774 int perf_event_task_disable(void)
4776 struct perf_event_context
*ctx
;
4777 struct perf_event
*event
;
4779 mutex_lock(¤t
->perf_event_mutex
);
4780 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
) {
4781 ctx
= perf_event_ctx_lock(event
);
4782 perf_event_for_each_child(event
, _perf_event_disable
);
4783 perf_event_ctx_unlock(event
, ctx
);
4785 mutex_unlock(¤t
->perf_event_mutex
);
4790 static int perf_event_index(struct perf_event
*event
)
4792 if (event
->hw
.state
& PERF_HES_STOPPED
)
4795 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
4798 return event
->pmu
->event_idx(event
);
4801 static void calc_timer_values(struct perf_event
*event
,
4808 *now
= perf_clock();
4809 ctx_time
= event
->shadow_ctx_time
+ *now
;
4810 *enabled
= ctx_time
- event
->tstamp_enabled
;
4811 *running
= ctx_time
- event
->tstamp_running
;
4814 static void perf_event_init_userpage(struct perf_event
*event
)
4816 struct perf_event_mmap_page
*userpg
;
4817 struct ring_buffer
*rb
;
4820 rb
= rcu_dereference(event
->rb
);
4824 userpg
= rb
->user_page
;
4826 /* Allow new userspace to detect that bit 0 is deprecated */
4827 userpg
->cap_bit0_is_deprecated
= 1;
4828 userpg
->size
= offsetof(struct perf_event_mmap_page
, __reserved
);
4829 userpg
->data_offset
= PAGE_SIZE
;
4830 userpg
->data_size
= perf_data_size(rb
);
4836 void __weak
arch_perf_update_userpage(
4837 struct perf_event
*event
, struct perf_event_mmap_page
*userpg
, u64 now
)
4842 * Callers need to ensure there can be no nesting of this function, otherwise
4843 * the seqlock logic goes bad. We can not serialize this because the arch
4844 * code calls this from NMI context.
4846 void perf_event_update_userpage(struct perf_event
*event
)
4848 struct perf_event_mmap_page
*userpg
;
4849 struct ring_buffer
*rb
;
4850 u64 enabled
, running
, now
;
4853 rb
= rcu_dereference(event
->rb
);
4858 * compute total_time_enabled, total_time_running
4859 * based on snapshot values taken when the event
4860 * was last scheduled in.
4862 * we cannot simply called update_context_time()
4863 * because of locking issue as we can be called in
4866 calc_timer_values(event
, &now
, &enabled
, &running
);
4868 userpg
= rb
->user_page
;
4870 * Disable preemption so as to not let the corresponding user-space
4871 * spin too long if we get preempted.
4876 userpg
->index
= perf_event_index(event
);
4877 userpg
->offset
= perf_event_count(event
);
4879 userpg
->offset
-= local64_read(&event
->hw
.prev_count
);
4881 userpg
->time_enabled
= enabled
+
4882 atomic64_read(&event
->child_total_time_enabled
);
4884 userpg
->time_running
= running
+
4885 atomic64_read(&event
->child_total_time_running
);
4887 arch_perf_update_userpage(event
, userpg
, now
);
4896 static int perf_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
4898 struct perf_event
*event
= vma
->vm_file
->private_data
;
4899 struct ring_buffer
*rb
;
4900 int ret
= VM_FAULT_SIGBUS
;
4902 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
4903 if (vmf
->pgoff
== 0)
4909 rb
= rcu_dereference(event
->rb
);
4913 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
4916 vmf
->page
= perf_mmap_to_page(rb
, vmf
->pgoff
);
4920 get_page(vmf
->page
);
4921 vmf
->page
->mapping
= vma
->vm_file
->f_mapping
;
4922 vmf
->page
->index
= vmf
->pgoff
;
4931 static void ring_buffer_attach(struct perf_event
*event
,
4932 struct ring_buffer
*rb
)
4934 struct ring_buffer
*old_rb
= NULL
;
4935 unsigned long flags
;
4939 * Should be impossible, we set this when removing
4940 * event->rb_entry and wait/clear when adding event->rb_entry.
4942 WARN_ON_ONCE(event
->rcu_pending
);
4945 spin_lock_irqsave(&old_rb
->event_lock
, flags
);
4946 list_del_rcu(&event
->rb_entry
);
4947 spin_unlock_irqrestore(&old_rb
->event_lock
, flags
);
4949 event
->rcu_batches
= get_state_synchronize_rcu();
4950 event
->rcu_pending
= 1;
4954 if (event
->rcu_pending
) {
4955 cond_synchronize_rcu(event
->rcu_batches
);
4956 event
->rcu_pending
= 0;
4959 spin_lock_irqsave(&rb
->event_lock
, flags
);
4960 list_add_rcu(&event
->rb_entry
, &rb
->event_list
);
4961 spin_unlock_irqrestore(&rb
->event_lock
, flags
);
4965 * Avoid racing with perf_mmap_close(AUX): stop the event
4966 * before swizzling the event::rb pointer; if it's getting
4967 * unmapped, its aux_mmap_count will be 0 and it won't
4968 * restart. See the comment in __perf_pmu_output_stop().
4970 * Data will inevitably be lost when set_output is done in
4971 * mid-air, but then again, whoever does it like this is
4972 * not in for the data anyway.
4975 perf_event_stop(event
, 0);
4977 rcu_assign_pointer(event
->rb
, rb
);
4980 ring_buffer_put(old_rb
);
4982 * Since we detached before setting the new rb, so that we
4983 * could attach the new rb, we could have missed a wakeup.
4986 wake_up_all(&event
->waitq
);
4990 static void ring_buffer_wakeup(struct perf_event
*event
)
4992 struct ring_buffer
*rb
;
4995 rb
= rcu_dereference(event
->rb
);
4997 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
)
4998 wake_up_all(&event
->waitq
);
5003 struct ring_buffer
*ring_buffer_get(struct perf_event
*event
)
5005 struct ring_buffer
*rb
;
5008 rb
= rcu_dereference(event
->rb
);
5010 if (!atomic_inc_not_zero(&rb
->refcount
))
5018 void ring_buffer_put(struct ring_buffer
*rb
)
5020 if (!atomic_dec_and_test(&rb
->refcount
))
5023 WARN_ON_ONCE(!list_empty(&rb
->event_list
));
5025 call_rcu(&rb
->rcu_head
, rb_free_rcu
);
5028 static void perf_mmap_open(struct vm_area_struct
*vma
)
5030 struct perf_event
*event
= vma
->vm_file
->private_data
;
5032 atomic_inc(&event
->mmap_count
);
5033 atomic_inc(&event
->rb
->mmap_count
);
5036 atomic_inc(&event
->rb
->aux_mmap_count
);
5038 if (event
->pmu
->event_mapped
)
5039 event
->pmu
->event_mapped(event
);
5042 static void perf_pmu_output_stop(struct perf_event
*event
);
5045 * A buffer can be mmap()ed multiple times; either directly through the same
5046 * event, or through other events by use of perf_event_set_output().
5048 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5049 * the buffer here, where we still have a VM context. This means we need
5050 * to detach all events redirecting to us.
5052 static void perf_mmap_close(struct vm_area_struct
*vma
)
5054 struct perf_event
*event
= vma
->vm_file
->private_data
;
5056 struct ring_buffer
*rb
= ring_buffer_get(event
);
5057 struct user_struct
*mmap_user
= rb
->mmap_user
;
5058 int mmap_locked
= rb
->mmap_locked
;
5059 unsigned long size
= perf_data_size(rb
);
5061 if (event
->pmu
->event_unmapped
)
5062 event
->pmu
->event_unmapped(event
);
5065 * rb->aux_mmap_count will always drop before rb->mmap_count and
5066 * event->mmap_count, so it is ok to use event->mmap_mutex to
5067 * serialize with perf_mmap here.
5069 if (rb_has_aux(rb
) && vma
->vm_pgoff
== rb
->aux_pgoff
&&
5070 atomic_dec_and_mutex_lock(&rb
->aux_mmap_count
, &event
->mmap_mutex
)) {
5072 * Stop all AUX events that are writing to this buffer,
5073 * so that we can free its AUX pages and corresponding PMU
5074 * data. Note that after rb::aux_mmap_count dropped to zero,
5075 * they won't start any more (see perf_aux_output_begin()).
5077 perf_pmu_output_stop(event
);
5079 /* now it's safe to free the pages */
5080 atomic_long_sub(rb
->aux_nr_pages
, &mmap_user
->locked_vm
);
5081 vma
->vm_mm
->pinned_vm
-= rb
->aux_mmap_locked
;
5083 /* this has to be the last one */
5085 WARN_ON_ONCE(atomic_read(&rb
->aux_refcount
));
5087 mutex_unlock(&event
->mmap_mutex
);
5090 atomic_dec(&rb
->mmap_count
);
5092 if (!atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
))
5095 ring_buffer_attach(event
, NULL
);
5096 mutex_unlock(&event
->mmap_mutex
);
5098 /* If there's still other mmap()s of this buffer, we're done. */
5099 if (atomic_read(&rb
->mmap_count
))
5103 * No other mmap()s, detach from all other events that might redirect
5104 * into the now unreachable buffer. Somewhat complicated by the
5105 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5109 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
) {
5110 if (!atomic_long_inc_not_zero(&event
->refcount
)) {
5112 * This event is en-route to free_event() which will
5113 * detach it and remove it from the list.
5119 mutex_lock(&event
->mmap_mutex
);
5121 * Check we didn't race with perf_event_set_output() which can
5122 * swizzle the rb from under us while we were waiting to
5123 * acquire mmap_mutex.
5125 * If we find a different rb; ignore this event, a next
5126 * iteration will no longer find it on the list. We have to
5127 * still restart the iteration to make sure we're not now
5128 * iterating the wrong list.
5130 if (event
->rb
== rb
)
5131 ring_buffer_attach(event
, NULL
);
5133 mutex_unlock(&event
->mmap_mutex
);
5137 * Restart the iteration; either we're on the wrong list or
5138 * destroyed its integrity by doing a deletion.
5145 * It could be there's still a few 0-ref events on the list; they'll
5146 * get cleaned up by free_event() -- they'll also still have their
5147 * ref on the rb and will free it whenever they are done with it.
5149 * Aside from that, this buffer is 'fully' detached and unmapped,
5150 * undo the VM accounting.
5153 atomic_long_sub((size
>> PAGE_SHIFT
) + 1, &mmap_user
->locked_vm
);
5154 vma
->vm_mm
->pinned_vm
-= mmap_locked
;
5155 free_uid(mmap_user
);
5158 ring_buffer_put(rb
); /* could be last */
5161 static const struct vm_operations_struct perf_mmap_vmops
= {
5162 .open
= perf_mmap_open
,
5163 .close
= perf_mmap_close
, /* non mergable */
5164 .fault
= perf_mmap_fault
,
5165 .page_mkwrite
= perf_mmap_fault
,
5168 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
5170 struct perf_event
*event
= file
->private_data
;
5171 unsigned long user_locked
, user_lock_limit
;
5172 struct user_struct
*user
= current_user();
5173 unsigned long locked
, lock_limit
;
5174 struct ring_buffer
*rb
= NULL
;
5175 unsigned long vma_size
;
5176 unsigned long nr_pages
;
5177 long user_extra
= 0, extra
= 0;
5178 int ret
= 0, flags
= 0;
5181 * Don't allow mmap() of inherited per-task counters. This would
5182 * create a performance issue due to all children writing to the
5185 if (event
->cpu
== -1 && event
->attr
.inherit
)
5188 if (!(vma
->vm_flags
& VM_SHARED
))
5191 vma_size
= vma
->vm_end
- vma
->vm_start
;
5193 if (vma
->vm_pgoff
== 0) {
5194 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
5197 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5198 * mapped, all subsequent mappings should have the same size
5199 * and offset. Must be above the normal perf buffer.
5201 u64 aux_offset
, aux_size
;
5206 nr_pages
= vma_size
/ PAGE_SIZE
;
5208 mutex_lock(&event
->mmap_mutex
);
5215 aux_offset
= ACCESS_ONCE(rb
->user_page
->aux_offset
);
5216 aux_size
= ACCESS_ONCE(rb
->user_page
->aux_size
);
5218 if (aux_offset
< perf_data_size(rb
) + PAGE_SIZE
)
5221 if (aux_offset
!= vma
->vm_pgoff
<< PAGE_SHIFT
)
5224 /* already mapped with a different offset */
5225 if (rb_has_aux(rb
) && rb
->aux_pgoff
!= vma
->vm_pgoff
)
5228 if (aux_size
!= vma_size
|| aux_size
!= nr_pages
* PAGE_SIZE
)
5231 /* already mapped with a different size */
5232 if (rb_has_aux(rb
) && rb
->aux_nr_pages
!= nr_pages
)
5235 if (!is_power_of_2(nr_pages
))
5238 if (!atomic_inc_not_zero(&rb
->mmap_count
))
5241 if (rb_has_aux(rb
)) {
5242 atomic_inc(&rb
->aux_mmap_count
);
5247 atomic_set(&rb
->aux_mmap_count
, 1);
5248 user_extra
= nr_pages
;
5254 * If we have rb pages ensure they're a power-of-two number, so we
5255 * can do bitmasks instead of modulo.
5257 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
5260 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
5263 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
5265 mutex_lock(&event
->mmap_mutex
);
5267 if (event
->rb
->nr_pages
!= nr_pages
) {
5272 if (!atomic_inc_not_zero(&event
->rb
->mmap_count
)) {
5274 * Raced against perf_mmap_close() through
5275 * perf_event_set_output(). Try again, hope for better
5278 mutex_unlock(&event
->mmap_mutex
);
5285 user_extra
= nr_pages
+ 1;
5288 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
5291 * Increase the limit linearly with more CPUs:
5293 user_lock_limit
*= num_online_cpus();
5295 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
5297 if (user_locked
> user_lock_limit
)
5298 extra
= user_locked
- user_lock_limit
;
5300 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
5301 lock_limit
>>= PAGE_SHIFT
;
5302 locked
= vma
->vm_mm
->pinned_vm
+ extra
;
5304 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
5305 !capable(CAP_IPC_LOCK
)) {
5310 WARN_ON(!rb
&& event
->rb
);
5312 if (vma
->vm_flags
& VM_WRITE
)
5313 flags
|= RING_BUFFER_WRITABLE
;
5316 rb
= rb_alloc(nr_pages
,
5317 event
->attr
.watermark
? event
->attr
.wakeup_watermark
: 0,
5325 atomic_set(&rb
->mmap_count
, 1);
5326 rb
->mmap_user
= get_current_user();
5327 rb
->mmap_locked
= extra
;
5329 ring_buffer_attach(event
, rb
);
5331 perf_event_init_userpage(event
);
5332 perf_event_update_userpage(event
);
5334 ret
= rb_alloc_aux(rb
, event
, vma
->vm_pgoff
, nr_pages
,
5335 event
->attr
.aux_watermark
, flags
);
5337 rb
->aux_mmap_locked
= extra
;
5342 atomic_long_add(user_extra
, &user
->locked_vm
);
5343 vma
->vm_mm
->pinned_vm
+= extra
;
5345 atomic_inc(&event
->mmap_count
);
5347 atomic_dec(&rb
->mmap_count
);
5350 mutex_unlock(&event
->mmap_mutex
);
5353 * Since pinned accounting is per vm we cannot allow fork() to copy our
5356 vma
->vm_flags
|= VM_DONTCOPY
| VM_DONTEXPAND
| VM_DONTDUMP
;
5357 vma
->vm_ops
= &perf_mmap_vmops
;
5359 if (event
->pmu
->event_mapped
)
5360 event
->pmu
->event_mapped(event
);
5365 static int perf_fasync(int fd
, struct file
*filp
, int on
)
5367 struct inode
*inode
= file_inode(filp
);
5368 struct perf_event
*event
= filp
->private_data
;
5372 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
5373 inode_unlock(inode
);
5381 static const struct file_operations perf_fops
= {
5382 .llseek
= no_llseek
,
5383 .release
= perf_release
,
5386 .unlocked_ioctl
= perf_ioctl
,
5387 .compat_ioctl
= perf_compat_ioctl
,
5389 .fasync
= perf_fasync
,
5395 * If there's data, ensure we set the poll() state and publish everything
5396 * to user-space before waking everybody up.
5399 static inline struct fasync_struct
**perf_event_fasync(struct perf_event
*event
)
5401 /* only the parent has fasync state */
5403 event
= event
->parent
;
5404 return &event
->fasync
;
5407 void perf_event_wakeup(struct perf_event
*event
)
5409 ring_buffer_wakeup(event
);
5411 if (event
->pending_kill
) {
5412 kill_fasync(perf_event_fasync(event
), SIGIO
, event
->pending_kill
);
5413 event
->pending_kill
= 0;
5417 static void perf_pending_event(struct irq_work
*entry
)
5419 struct perf_event
*event
= container_of(entry
,
5420 struct perf_event
, pending
);
5423 rctx
= perf_swevent_get_recursion_context();
5425 * If we 'fail' here, that's OK, it means recursion is already disabled
5426 * and we won't recurse 'further'.
5429 if (event
->pending_disable
) {
5430 event
->pending_disable
= 0;
5431 perf_event_disable_local(event
);
5434 if (event
->pending_wakeup
) {
5435 event
->pending_wakeup
= 0;
5436 perf_event_wakeup(event
);
5440 perf_swevent_put_recursion_context(rctx
);
5444 * We assume there is only KVM supporting the callbacks.
5445 * Later on, we might change it to a list if there is
5446 * another virtualization implementation supporting the callbacks.
5448 struct perf_guest_info_callbacks
*perf_guest_cbs
;
5450 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
5452 perf_guest_cbs
= cbs
;
5455 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks
);
5457 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
5459 perf_guest_cbs
= NULL
;
5462 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks
);
5465 perf_output_sample_regs(struct perf_output_handle
*handle
,
5466 struct pt_regs
*regs
, u64 mask
)
5469 DECLARE_BITMAP(_mask
, 64);
5471 bitmap_from_u64(_mask
, mask
);
5472 for_each_set_bit(bit
, _mask
, sizeof(mask
) * BITS_PER_BYTE
) {
5475 val
= perf_reg_value(regs
, bit
);
5476 perf_output_put(handle
, val
);
5480 static void perf_sample_regs_user(struct perf_regs
*regs_user
,
5481 struct pt_regs
*regs
,
5482 struct pt_regs
*regs_user_copy
)
5484 if (user_mode(regs
)) {
5485 regs_user
->abi
= perf_reg_abi(current
);
5486 regs_user
->regs
= regs
;
5487 } else if (current
->mm
) {
5488 perf_get_regs_user(regs_user
, regs
, regs_user_copy
);
5490 regs_user
->abi
= PERF_SAMPLE_REGS_ABI_NONE
;
5491 regs_user
->regs
= NULL
;
5495 static void perf_sample_regs_intr(struct perf_regs
*regs_intr
,
5496 struct pt_regs
*regs
)
5498 regs_intr
->regs
= regs
;
5499 regs_intr
->abi
= perf_reg_abi(current
);
5504 * Get remaining task size from user stack pointer.
5506 * It'd be better to take stack vma map and limit this more
5507 * precisly, but there's no way to get it safely under interrupt,
5508 * so using TASK_SIZE as limit.
5510 static u64
perf_ustack_task_size(struct pt_regs
*regs
)
5512 unsigned long addr
= perf_user_stack_pointer(regs
);
5514 if (!addr
|| addr
>= TASK_SIZE
)
5517 return TASK_SIZE
- addr
;
5521 perf_sample_ustack_size(u16 stack_size
, u16 header_size
,
5522 struct pt_regs
*regs
)
5526 /* No regs, no stack pointer, no dump. */
5531 * Check if we fit in with the requested stack size into the:
5533 * If we don't, we limit the size to the TASK_SIZE.
5535 * - remaining sample size
5536 * If we don't, we customize the stack size to
5537 * fit in to the remaining sample size.
5540 task_size
= min((u64
) USHRT_MAX
, perf_ustack_task_size(regs
));
5541 stack_size
= min(stack_size
, (u16
) task_size
);
5543 /* Current header size plus static size and dynamic size. */
5544 header_size
+= 2 * sizeof(u64
);
5546 /* Do we fit in with the current stack dump size? */
5547 if ((u16
) (header_size
+ stack_size
) < header_size
) {
5549 * If we overflow the maximum size for the sample,
5550 * we customize the stack dump size to fit in.
5552 stack_size
= USHRT_MAX
- header_size
- sizeof(u64
);
5553 stack_size
= round_up(stack_size
, sizeof(u64
));
5560 perf_output_sample_ustack(struct perf_output_handle
*handle
, u64 dump_size
,
5561 struct pt_regs
*regs
)
5563 /* Case of a kernel thread, nothing to dump */
5566 perf_output_put(handle
, size
);
5576 * - the size requested by user or the best one we can fit
5577 * in to the sample max size
5579 * - user stack dump data
5581 * - the actual dumped size
5585 perf_output_put(handle
, dump_size
);
5588 sp
= perf_user_stack_pointer(regs
);
5591 rem
= __output_copy_user(handle
, (void *) sp
, dump_size
);
5593 dyn_size
= dump_size
- rem
;
5595 perf_output_skip(handle
, rem
);
5598 perf_output_put(handle
, dyn_size
);
5602 static void __perf_event_header__init_id(struct perf_event_header
*header
,
5603 struct perf_sample_data
*data
,
5604 struct perf_event
*event
)
5606 u64 sample_type
= event
->attr
.sample_type
;
5608 data
->type
= sample_type
;
5609 header
->size
+= event
->id_header_size
;
5611 if (sample_type
& PERF_SAMPLE_TID
) {
5612 /* namespace issues */
5613 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
5614 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
5617 if (sample_type
& PERF_SAMPLE_TIME
)
5618 data
->time
= perf_event_clock(event
);
5620 if (sample_type
& (PERF_SAMPLE_ID
| PERF_SAMPLE_IDENTIFIER
))
5621 data
->id
= primary_event_id(event
);
5623 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
5624 data
->stream_id
= event
->id
;
5626 if (sample_type
& PERF_SAMPLE_CPU
) {
5627 data
->cpu_entry
.cpu
= raw_smp_processor_id();
5628 data
->cpu_entry
.reserved
= 0;
5632 void perf_event_header__init_id(struct perf_event_header
*header
,
5633 struct perf_sample_data
*data
,
5634 struct perf_event
*event
)
5636 if (event
->attr
.sample_id_all
)
5637 __perf_event_header__init_id(header
, data
, event
);
5640 static void __perf_event__output_id_sample(struct perf_output_handle
*handle
,
5641 struct perf_sample_data
*data
)
5643 u64 sample_type
= data
->type
;
5645 if (sample_type
& PERF_SAMPLE_TID
)
5646 perf_output_put(handle
, data
->tid_entry
);
5648 if (sample_type
& PERF_SAMPLE_TIME
)
5649 perf_output_put(handle
, data
->time
);
5651 if (sample_type
& PERF_SAMPLE_ID
)
5652 perf_output_put(handle
, data
->id
);
5654 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
5655 perf_output_put(handle
, data
->stream_id
);
5657 if (sample_type
& PERF_SAMPLE_CPU
)
5658 perf_output_put(handle
, data
->cpu_entry
);
5660 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
5661 perf_output_put(handle
, data
->id
);
5664 void perf_event__output_id_sample(struct perf_event
*event
,
5665 struct perf_output_handle
*handle
,
5666 struct perf_sample_data
*sample
)
5668 if (event
->attr
.sample_id_all
)
5669 __perf_event__output_id_sample(handle
, sample
);
5672 static void perf_output_read_one(struct perf_output_handle
*handle
,
5673 struct perf_event
*event
,
5674 u64 enabled
, u64 running
)
5676 u64 read_format
= event
->attr
.read_format
;
5680 values
[n
++] = perf_event_count(event
);
5681 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
5682 values
[n
++] = enabled
+
5683 atomic64_read(&event
->child_total_time_enabled
);
5685 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
5686 values
[n
++] = running
+
5687 atomic64_read(&event
->child_total_time_running
);
5689 if (read_format
& PERF_FORMAT_ID
)
5690 values
[n
++] = primary_event_id(event
);
5692 __output_copy(handle
, values
, n
* sizeof(u64
));
5695 static void perf_output_read_group(struct perf_output_handle
*handle
,
5696 struct perf_event
*event
,
5697 u64 enabled
, u64 running
)
5699 struct perf_event
*leader
= event
->group_leader
, *sub
;
5700 u64 read_format
= event
->attr
.read_format
;
5704 values
[n
++] = 1 + leader
->nr_siblings
;
5706 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
5707 values
[n
++] = enabled
;
5709 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
5710 values
[n
++] = running
;
5712 if ((leader
!= event
) &&
5713 (leader
->state
== PERF_EVENT_STATE_ACTIVE
))
5714 leader
->pmu
->read(leader
);
5716 values
[n
++] = perf_event_count(leader
);
5717 if (read_format
& PERF_FORMAT_ID
)
5718 values
[n
++] = primary_event_id(leader
);
5720 __output_copy(handle
, values
, n
* sizeof(u64
));
5722 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
5725 if ((sub
!= event
) &&
5726 (sub
->state
== PERF_EVENT_STATE_ACTIVE
))
5727 sub
->pmu
->read(sub
);
5729 values
[n
++] = perf_event_count(sub
);
5730 if (read_format
& PERF_FORMAT_ID
)
5731 values
[n
++] = primary_event_id(sub
);
5733 __output_copy(handle
, values
, n
* sizeof(u64
));
5737 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5738 PERF_FORMAT_TOTAL_TIME_RUNNING)
5741 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5743 * The problem is that its both hard and excessively expensive to iterate the
5744 * child list, not to mention that its impossible to IPI the children running
5745 * on another CPU, from interrupt/NMI context.
5747 static void perf_output_read(struct perf_output_handle
*handle
,
5748 struct perf_event
*event
)
5750 u64 enabled
= 0, running
= 0, now
;
5751 u64 read_format
= event
->attr
.read_format
;
5754 * compute total_time_enabled, total_time_running
5755 * based on snapshot values taken when the event
5756 * was last scheduled in.
5758 * we cannot simply called update_context_time()
5759 * because of locking issue as we are called in
5762 if (read_format
& PERF_FORMAT_TOTAL_TIMES
)
5763 calc_timer_values(event
, &now
, &enabled
, &running
);
5765 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
5766 perf_output_read_group(handle
, event
, enabled
, running
);
5768 perf_output_read_one(handle
, event
, enabled
, running
);
5771 void perf_output_sample(struct perf_output_handle
*handle
,
5772 struct perf_event_header
*header
,
5773 struct perf_sample_data
*data
,
5774 struct perf_event
*event
)
5776 u64 sample_type
= data
->type
;
5778 perf_output_put(handle
, *header
);
5780 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
5781 perf_output_put(handle
, data
->id
);
5783 if (sample_type
& PERF_SAMPLE_IP
)
5784 perf_output_put(handle
, data
->ip
);
5786 if (sample_type
& PERF_SAMPLE_TID
)
5787 perf_output_put(handle
, data
->tid_entry
);
5789 if (sample_type
& PERF_SAMPLE_TIME
)
5790 perf_output_put(handle
, data
->time
);
5792 if (sample_type
& PERF_SAMPLE_ADDR
)
5793 perf_output_put(handle
, data
->addr
);
5795 if (sample_type
& PERF_SAMPLE_ID
)
5796 perf_output_put(handle
, data
->id
);
5798 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
5799 perf_output_put(handle
, data
->stream_id
);
5801 if (sample_type
& PERF_SAMPLE_CPU
)
5802 perf_output_put(handle
, data
->cpu_entry
);
5804 if (sample_type
& PERF_SAMPLE_PERIOD
)
5805 perf_output_put(handle
, data
->period
);
5807 if (sample_type
& PERF_SAMPLE_READ
)
5808 perf_output_read(handle
, event
);
5810 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
5811 if (data
->callchain
) {
5814 if (data
->callchain
)
5815 size
+= data
->callchain
->nr
;
5817 size
*= sizeof(u64
);
5819 __output_copy(handle
, data
->callchain
, size
);
5822 perf_output_put(handle
, nr
);
5826 if (sample_type
& PERF_SAMPLE_RAW
) {
5827 struct perf_raw_record
*raw
= data
->raw
;
5830 struct perf_raw_frag
*frag
= &raw
->frag
;
5832 perf_output_put(handle
, raw
->size
);
5835 __output_custom(handle
, frag
->copy
,
5836 frag
->data
, frag
->size
);
5838 __output_copy(handle
, frag
->data
,
5841 if (perf_raw_frag_last(frag
))
5846 __output_skip(handle
, NULL
, frag
->pad
);
5852 .size
= sizeof(u32
),
5855 perf_output_put(handle
, raw
);
5859 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
5860 if (data
->br_stack
) {
5863 size
= data
->br_stack
->nr
5864 * sizeof(struct perf_branch_entry
);
5866 perf_output_put(handle
, data
->br_stack
->nr
);
5867 perf_output_copy(handle
, data
->br_stack
->entries
, size
);
5870 * we always store at least the value of nr
5873 perf_output_put(handle
, nr
);
5877 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
5878 u64 abi
= data
->regs_user
.abi
;
5881 * If there are no regs to dump, notice it through
5882 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5884 perf_output_put(handle
, abi
);
5887 u64 mask
= event
->attr
.sample_regs_user
;
5888 perf_output_sample_regs(handle
,
5889 data
->regs_user
.regs
,
5894 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
5895 perf_output_sample_ustack(handle
,
5896 data
->stack_user_size
,
5897 data
->regs_user
.regs
);
5900 if (sample_type
& PERF_SAMPLE_WEIGHT
)
5901 perf_output_put(handle
, data
->weight
);
5903 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
5904 perf_output_put(handle
, data
->data_src
.val
);
5906 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
5907 perf_output_put(handle
, data
->txn
);
5909 if (sample_type
& PERF_SAMPLE_REGS_INTR
) {
5910 u64 abi
= data
->regs_intr
.abi
;
5912 * If there are no regs to dump, notice it through
5913 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5915 perf_output_put(handle
, abi
);
5918 u64 mask
= event
->attr
.sample_regs_intr
;
5920 perf_output_sample_regs(handle
,
5921 data
->regs_intr
.regs
,
5926 if (!event
->attr
.watermark
) {
5927 int wakeup_events
= event
->attr
.wakeup_events
;
5929 if (wakeup_events
) {
5930 struct ring_buffer
*rb
= handle
->rb
;
5931 int events
= local_inc_return(&rb
->events
);
5933 if (events
>= wakeup_events
) {
5934 local_sub(wakeup_events
, &rb
->events
);
5935 local_inc(&rb
->wakeup
);
5941 void perf_prepare_sample(struct perf_event_header
*header
,
5942 struct perf_sample_data
*data
,
5943 struct perf_event
*event
,
5944 struct pt_regs
*regs
)
5946 u64 sample_type
= event
->attr
.sample_type
;
5948 header
->type
= PERF_RECORD_SAMPLE
;
5949 header
->size
= sizeof(*header
) + event
->header_size
;
5952 header
->misc
|= perf_misc_flags(regs
);
5954 __perf_event_header__init_id(header
, data
, event
);
5956 if (sample_type
& PERF_SAMPLE_IP
)
5957 data
->ip
= perf_instruction_pointer(regs
);
5959 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
5962 data
->callchain
= perf_callchain(event
, regs
);
5964 if (data
->callchain
)
5965 size
+= data
->callchain
->nr
;
5967 header
->size
+= size
* sizeof(u64
);
5970 if (sample_type
& PERF_SAMPLE_RAW
) {
5971 struct perf_raw_record
*raw
= data
->raw
;
5975 struct perf_raw_frag
*frag
= &raw
->frag
;
5980 if (perf_raw_frag_last(frag
))
5985 size
= round_up(sum
+ sizeof(u32
), sizeof(u64
));
5986 raw
->size
= size
- sizeof(u32
);
5987 frag
->pad
= raw
->size
- sum
;
5992 header
->size
+= size
;
5995 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
5996 int size
= sizeof(u64
); /* nr */
5997 if (data
->br_stack
) {
5998 size
+= data
->br_stack
->nr
5999 * sizeof(struct perf_branch_entry
);
6001 header
->size
+= size
;
6004 if (sample_type
& (PERF_SAMPLE_REGS_USER
| PERF_SAMPLE_STACK_USER
))
6005 perf_sample_regs_user(&data
->regs_user
, regs
,
6006 &data
->regs_user_copy
);
6008 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
6009 /* regs dump ABI info */
6010 int size
= sizeof(u64
);
6012 if (data
->regs_user
.regs
) {
6013 u64 mask
= event
->attr
.sample_regs_user
;
6014 size
+= hweight64(mask
) * sizeof(u64
);
6017 header
->size
+= size
;
6020 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
6022 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6023 * processed as the last one or have additional check added
6024 * in case new sample type is added, because we could eat
6025 * up the rest of the sample size.
6027 u16 stack_size
= event
->attr
.sample_stack_user
;
6028 u16 size
= sizeof(u64
);
6030 stack_size
= perf_sample_ustack_size(stack_size
, header
->size
,
6031 data
->regs_user
.regs
);
6034 * If there is something to dump, add space for the dump
6035 * itself and for the field that tells the dynamic size,
6036 * which is how many have been actually dumped.
6039 size
+= sizeof(u64
) + stack_size
;
6041 data
->stack_user_size
= stack_size
;
6042 header
->size
+= size
;
6045 if (sample_type
& PERF_SAMPLE_REGS_INTR
) {
6046 /* regs dump ABI info */
6047 int size
= sizeof(u64
);
6049 perf_sample_regs_intr(&data
->regs_intr
, regs
);
6051 if (data
->regs_intr
.regs
) {
6052 u64 mask
= event
->attr
.sample_regs_intr
;
6054 size
+= hweight64(mask
) * sizeof(u64
);
6057 header
->size
+= size
;
6061 static void __always_inline
6062 __perf_event_output(struct perf_event
*event
,
6063 struct perf_sample_data
*data
,
6064 struct pt_regs
*regs
,
6065 int (*output_begin
)(struct perf_output_handle
*,
6066 struct perf_event
*,
6069 struct perf_output_handle handle
;
6070 struct perf_event_header header
;
6072 /* protect the callchain buffers */
6075 perf_prepare_sample(&header
, data
, event
, regs
);
6077 if (output_begin(&handle
, event
, header
.size
))
6080 perf_output_sample(&handle
, &header
, data
, event
);
6082 perf_output_end(&handle
);
6089 perf_event_output_forward(struct perf_event
*event
,
6090 struct perf_sample_data
*data
,
6091 struct pt_regs
*regs
)
6093 __perf_event_output(event
, data
, regs
, perf_output_begin_forward
);
6097 perf_event_output_backward(struct perf_event
*event
,
6098 struct perf_sample_data
*data
,
6099 struct pt_regs
*regs
)
6101 __perf_event_output(event
, data
, regs
, perf_output_begin_backward
);
6105 perf_event_output(struct perf_event
*event
,
6106 struct perf_sample_data
*data
,
6107 struct pt_regs
*regs
)
6109 __perf_event_output(event
, data
, regs
, perf_output_begin
);
6116 struct perf_read_event
{
6117 struct perf_event_header header
;
6124 perf_event_read_event(struct perf_event
*event
,
6125 struct task_struct
*task
)
6127 struct perf_output_handle handle
;
6128 struct perf_sample_data sample
;
6129 struct perf_read_event read_event
= {
6131 .type
= PERF_RECORD_READ
,
6133 .size
= sizeof(read_event
) + event
->read_size
,
6135 .pid
= perf_event_pid(event
, task
),
6136 .tid
= perf_event_tid(event
, task
),
6140 perf_event_header__init_id(&read_event
.header
, &sample
, event
);
6141 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
);
6145 perf_output_put(&handle
, read_event
);
6146 perf_output_read(&handle
, event
);
6147 perf_event__output_id_sample(event
, &handle
, &sample
);
6149 perf_output_end(&handle
);
6152 typedef void (perf_iterate_f
)(struct perf_event
*event
, void *data
);
6155 perf_iterate_ctx(struct perf_event_context
*ctx
,
6156 perf_iterate_f output
,
6157 void *data
, bool all
)
6159 struct perf_event
*event
;
6161 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
6163 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
6165 if (!event_filter_match(event
))
6169 output(event
, data
);
6173 static void perf_iterate_sb_cpu(perf_iterate_f output
, void *data
)
6175 struct pmu_event_list
*pel
= this_cpu_ptr(&pmu_sb_events
);
6176 struct perf_event
*event
;
6178 list_for_each_entry_rcu(event
, &pel
->list
, sb_list
) {
6180 * Skip events that are not fully formed yet; ensure that
6181 * if we observe event->ctx, both event and ctx will be
6182 * complete enough. See perf_install_in_context().
6184 if (!smp_load_acquire(&event
->ctx
))
6187 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
6189 if (!event_filter_match(event
))
6191 output(event
, data
);
6196 * Iterate all events that need to receive side-band events.
6198 * For new callers; ensure that account_pmu_sb_event() includes
6199 * your event, otherwise it might not get delivered.
6202 perf_iterate_sb(perf_iterate_f output
, void *data
,
6203 struct perf_event_context
*task_ctx
)
6205 struct perf_event_context
*ctx
;
6212 * If we have task_ctx != NULL we only notify the task context itself.
6213 * The task_ctx is set only for EXIT events before releasing task
6217 perf_iterate_ctx(task_ctx
, output
, data
, false);
6221 perf_iterate_sb_cpu(output
, data
);
6223 for_each_task_context_nr(ctxn
) {
6224 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
6226 perf_iterate_ctx(ctx
, output
, data
, false);
6234 * Clear all file-based filters at exec, they'll have to be
6235 * re-instated when/if these objects are mmapped again.
6237 static void perf_event_addr_filters_exec(struct perf_event
*event
, void *data
)
6239 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
6240 struct perf_addr_filter
*filter
;
6241 unsigned int restart
= 0, count
= 0;
6242 unsigned long flags
;
6244 if (!has_addr_filter(event
))
6247 raw_spin_lock_irqsave(&ifh
->lock
, flags
);
6248 list_for_each_entry(filter
, &ifh
->list
, entry
) {
6249 if (filter
->inode
) {
6250 event
->addr_filters_offs
[count
] = 0;
6258 event
->addr_filters_gen
++;
6259 raw_spin_unlock_irqrestore(&ifh
->lock
, flags
);
6262 perf_event_stop(event
, 1);
6265 void perf_event_exec(void)
6267 struct perf_event_context
*ctx
;
6271 for_each_task_context_nr(ctxn
) {
6272 ctx
= current
->perf_event_ctxp
[ctxn
];
6276 perf_event_enable_on_exec(ctxn
);
6278 perf_iterate_ctx(ctx
, perf_event_addr_filters_exec
, NULL
,
6284 struct remote_output
{
6285 struct ring_buffer
*rb
;
6289 static void __perf_event_output_stop(struct perf_event
*event
, void *data
)
6291 struct perf_event
*parent
= event
->parent
;
6292 struct remote_output
*ro
= data
;
6293 struct ring_buffer
*rb
= ro
->rb
;
6294 struct stop_event_data sd
= {
6298 if (!has_aux(event
))
6305 * In case of inheritance, it will be the parent that links to the
6306 * ring-buffer, but it will be the child that's actually using it.
6308 * We are using event::rb to determine if the event should be stopped,
6309 * however this may race with ring_buffer_attach() (through set_output),
6310 * which will make us skip the event that actually needs to be stopped.
6311 * So ring_buffer_attach() has to stop an aux event before re-assigning
6314 if (rcu_dereference(parent
->rb
) == rb
)
6315 ro
->err
= __perf_event_stop(&sd
);
6318 static int __perf_pmu_output_stop(void *info
)
6320 struct perf_event
*event
= info
;
6321 struct pmu
*pmu
= event
->pmu
;
6322 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
6323 struct remote_output ro
= {
6328 perf_iterate_ctx(&cpuctx
->ctx
, __perf_event_output_stop
, &ro
, false);
6329 if (cpuctx
->task_ctx
)
6330 perf_iterate_ctx(cpuctx
->task_ctx
, __perf_event_output_stop
,
6337 static void perf_pmu_output_stop(struct perf_event
*event
)
6339 struct perf_event
*iter
;
6344 list_for_each_entry_rcu(iter
, &event
->rb
->event_list
, rb_entry
) {
6346 * For per-CPU events, we need to make sure that neither they
6347 * nor their children are running; for cpu==-1 events it's
6348 * sufficient to stop the event itself if it's active, since
6349 * it can't have children.
6353 cpu
= READ_ONCE(iter
->oncpu
);
6358 err
= cpu_function_call(cpu
, __perf_pmu_output_stop
, event
);
6359 if (err
== -EAGAIN
) {
6368 * task tracking -- fork/exit
6370 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6373 struct perf_task_event
{
6374 struct task_struct
*task
;
6375 struct perf_event_context
*task_ctx
;
6378 struct perf_event_header header
;
6388 static int perf_event_task_match(struct perf_event
*event
)
6390 return event
->attr
.comm
|| event
->attr
.mmap
||
6391 event
->attr
.mmap2
|| event
->attr
.mmap_data
||
6395 static void perf_event_task_output(struct perf_event
*event
,
6398 struct perf_task_event
*task_event
= data
;
6399 struct perf_output_handle handle
;
6400 struct perf_sample_data sample
;
6401 struct task_struct
*task
= task_event
->task
;
6402 int ret
, size
= task_event
->event_id
.header
.size
;
6404 if (!perf_event_task_match(event
))
6407 perf_event_header__init_id(&task_event
->event_id
.header
, &sample
, event
);
6409 ret
= perf_output_begin(&handle
, event
,
6410 task_event
->event_id
.header
.size
);
6414 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
6415 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
6417 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
6418 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
6420 task_event
->event_id
.time
= perf_event_clock(event
);
6422 perf_output_put(&handle
, task_event
->event_id
);
6424 perf_event__output_id_sample(event
, &handle
, &sample
);
6426 perf_output_end(&handle
);
6428 task_event
->event_id
.header
.size
= size
;
6431 static void perf_event_task(struct task_struct
*task
,
6432 struct perf_event_context
*task_ctx
,
6435 struct perf_task_event task_event
;
6437 if (!atomic_read(&nr_comm_events
) &&
6438 !atomic_read(&nr_mmap_events
) &&
6439 !atomic_read(&nr_task_events
))
6442 task_event
= (struct perf_task_event
){
6444 .task_ctx
= task_ctx
,
6447 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
6449 .size
= sizeof(task_event
.event_id
),
6459 perf_iterate_sb(perf_event_task_output
,
6464 void perf_event_fork(struct task_struct
*task
)
6466 perf_event_task(task
, NULL
, 1);
6473 struct perf_comm_event
{
6474 struct task_struct
*task
;
6479 struct perf_event_header header
;
6486 static int perf_event_comm_match(struct perf_event
*event
)
6488 return event
->attr
.comm
;
6491 static void perf_event_comm_output(struct perf_event
*event
,
6494 struct perf_comm_event
*comm_event
= data
;
6495 struct perf_output_handle handle
;
6496 struct perf_sample_data sample
;
6497 int size
= comm_event
->event_id
.header
.size
;
6500 if (!perf_event_comm_match(event
))
6503 perf_event_header__init_id(&comm_event
->event_id
.header
, &sample
, event
);
6504 ret
= perf_output_begin(&handle
, event
,
6505 comm_event
->event_id
.header
.size
);
6510 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
6511 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
6513 perf_output_put(&handle
, comm_event
->event_id
);
6514 __output_copy(&handle
, comm_event
->comm
,
6515 comm_event
->comm_size
);
6517 perf_event__output_id_sample(event
, &handle
, &sample
);
6519 perf_output_end(&handle
);
6521 comm_event
->event_id
.header
.size
= size
;
6524 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
6526 char comm
[TASK_COMM_LEN
];
6529 memset(comm
, 0, sizeof(comm
));
6530 strlcpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
6531 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
6533 comm_event
->comm
= comm
;
6534 comm_event
->comm_size
= size
;
6536 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
6538 perf_iterate_sb(perf_event_comm_output
,
6543 void perf_event_comm(struct task_struct
*task
, bool exec
)
6545 struct perf_comm_event comm_event
;
6547 if (!atomic_read(&nr_comm_events
))
6550 comm_event
= (struct perf_comm_event
){
6556 .type
= PERF_RECORD_COMM
,
6557 .misc
= exec
? PERF_RECORD_MISC_COMM_EXEC
: 0,
6565 perf_event_comm_event(&comm_event
);
6572 struct perf_mmap_event
{
6573 struct vm_area_struct
*vma
;
6575 const char *file_name
;
6583 struct perf_event_header header
;
6593 static int perf_event_mmap_match(struct perf_event
*event
,
6596 struct perf_mmap_event
*mmap_event
= data
;
6597 struct vm_area_struct
*vma
= mmap_event
->vma
;
6598 int executable
= vma
->vm_flags
& VM_EXEC
;
6600 return (!executable
&& event
->attr
.mmap_data
) ||
6601 (executable
&& (event
->attr
.mmap
|| event
->attr
.mmap2
));
6604 static void perf_event_mmap_output(struct perf_event
*event
,
6607 struct perf_mmap_event
*mmap_event
= data
;
6608 struct perf_output_handle handle
;
6609 struct perf_sample_data sample
;
6610 int size
= mmap_event
->event_id
.header
.size
;
6613 if (!perf_event_mmap_match(event
, data
))
6616 if (event
->attr
.mmap2
) {
6617 mmap_event
->event_id
.header
.type
= PERF_RECORD_MMAP2
;
6618 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->maj
);
6619 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->min
);
6620 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino
);
6621 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino_generation
);
6622 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->prot
);
6623 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->flags
);
6626 perf_event_header__init_id(&mmap_event
->event_id
.header
, &sample
, event
);
6627 ret
= perf_output_begin(&handle
, event
,
6628 mmap_event
->event_id
.header
.size
);
6632 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
6633 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
6635 perf_output_put(&handle
, mmap_event
->event_id
);
6637 if (event
->attr
.mmap2
) {
6638 perf_output_put(&handle
, mmap_event
->maj
);
6639 perf_output_put(&handle
, mmap_event
->min
);
6640 perf_output_put(&handle
, mmap_event
->ino
);
6641 perf_output_put(&handle
, mmap_event
->ino_generation
);
6642 perf_output_put(&handle
, mmap_event
->prot
);
6643 perf_output_put(&handle
, mmap_event
->flags
);
6646 __output_copy(&handle
, mmap_event
->file_name
,
6647 mmap_event
->file_size
);
6649 perf_event__output_id_sample(event
, &handle
, &sample
);
6651 perf_output_end(&handle
);
6653 mmap_event
->event_id
.header
.size
= size
;
6656 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
6658 struct vm_area_struct
*vma
= mmap_event
->vma
;
6659 struct file
*file
= vma
->vm_file
;
6660 int maj
= 0, min
= 0;
6661 u64 ino
= 0, gen
= 0;
6662 u32 prot
= 0, flags
= 0;
6668 if (vma
->vm_flags
& VM_READ
)
6670 if (vma
->vm_flags
& VM_WRITE
)
6672 if (vma
->vm_flags
& VM_EXEC
)
6675 if (vma
->vm_flags
& VM_MAYSHARE
)
6678 flags
= MAP_PRIVATE
;
6680 if (vma
->vm_flags
& VM_DENYWRITE
)
6681 flags
|= MAP_DENYWRITE
;
6682 if (vma
->vm_flags
& VM_MAYEXEC
)
6683 flags
|= MAP_EXECUTABLE
;
6684 if (vma
->vm_flags
& VM_LOCKED
)
6685 flags
|= MAP_LOCKED
;
6686 if (vma
->vm_flags
& VM_HUGETLB
)
6687 flags
|= MAP_HUGETLB
;
6690 struct inode
*inode
;
6693 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
6699 * d_path() works from the end of the rb backwards, so we
6700 * need to add enough zero bytes after the string to handle
6701 * the 64bit alignment we do later.
6703 name
= file_path(file
, buf
, PATH_MAX
- sizeof(u64
));
6708 inode
= file_inode(vma
->vm_file
);
6709 dev
= inode
->i_sb
->s_dev
;
6711 gen
= inode
->i_generation
;
6717 if (vma
->vm_ops
&& vma
->vm_ops
->name
) {
6718 name
= (char *) vma
->vm_ops
->name(vma
);
6723 name
= (char *)arch_vma_name(vma
);
6727 if (vma
->vm_start
<= vma
->vm_mm
->start_brk
&&
6728 vma
->vm_end
>= vma
->vm_mm
->brk
) {
6732 if (vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
6733 vma
->vm_end
>= vma
->vm_mm
->start_stack
) {
6743 strlcpy(tmp
, name
, sizeof(tmp
));
6747 * Since our buffer works in 8 byte units we need to align our string
6748 * size to a multiple of 8. However, we must guarantee the tail end is
6749 * zero'd out to avoid leaking random bits to userspace.
6751 size
= strlen(name
)+1;
6752 while (!IS_ALIGNED(size
, sizeof(u64
)))
6753 name
[size
++] = '\0';
6755 mmap_event
->file_name
= name
;
6756 mmap_event
->file_size
= size
;
6757 mmap_event
->maj
= maj
;
6758 mmap_event
->min
= min
;
6759 mmap_event
->ino
= ino
;
6760 mmap_event
->ino_generation
= gen
;
6761 mmap_event
->prot
= prot
;
6762 mmap_event
->flags
= flags
;
6764 if (!(vma
->vm_flags
& VM_EXEC
))
6765 mmap_event
->event_id
.header
.misc
|= PERF_RECORD_MISC_MMAP_DATA
;
6767 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
6769 perf_iterate_sb(perf_event_mmap_output
,
6777 * Check whether inode and address range match filter criteria.
6779 static bool perf_addr_filter_match(struct perf_addr_filter
*filter
,
6780 struct file
*file
, unsigned long offset
,
6783 if (filter
->inode
!= file
->f_inode
)
6786 if (filter
->offset
> offset
+ size
)
6789 if (filter
->offset
+ filter
->size
< offset
)
6795 static void __perf_addr_filters_adjust(struct perf_event
*event
, void *data
)
6797 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
6798 struct vm_area_struct
*vma
= data
;
6799 unsigned long off
= vma
->vm_pgoff
<< PAGE_SHIFT
, flags
;
6800 struct file
*file
= vma
->vm_file
;
6801 struct perf_addr_filter
*filter
;
6802 unsigned int restart
= 0, count
= 0;
6804 if (!has_addr_filter(event
))
6810 raw_spin_lock_irqsave(&ifh
->lock
, flags
);
6811 list_for_each_entry(filter
, &ifh
->list
, entry
) {
6812 if (perf_addr_filter_match(filter
, file
, off
,
6813 vma
->vm_end
- vma
->vm_start
)) {
6814 event
->addr_filters_offs
[count
] = vma
->vm_start
;
6822 event
->addr_filters_gen
++;
6823 raw_spin_unlock_irqrestore(&ifh
->lock
, flags
);
6826 perf_event_stop(event
, 1);
6830 * Adjust all task's events' filters to the new vma
6832 static void perf_addr_filters_adjust(struct vm_area_struct
*vma
)
6834 struct perf_event_context
*ctx
;
6838 * Data tracing isn't supported yet and as such there is no need
6839 * to keep track of anything that isn't related to executable code:
6841 if (!(vma
->vm_flags
& VM_EXEC
))
6845 for_each_task_context_nr(ctxn
) {
6846 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
6850 perf_iterate_ctx(ctx
, __perf_addr_filters_adjust
, vma
, true);
6855 void perf_event_mmap(struct vm_area_struct
*vma
)
6857 struct perf_mmap_event mmap_event
;
6859 if (!atomic_read(&nr_mmap_events
))
6862 mmap_event
= (struct perf_mmap_event
){
6868 .type
= PERF_RECORD_MMAP
,
6869 .misc
= PERF_RECORD_MISC_USER
,
6874 .start
= vma
->vm_start
,
6875 .len
= vma
->vm_end
- vma
->vm_start
,
6876 .pgoff
= (u64
)vma
->vm_pgoff
<< PAGE_SHIFT
,
6878 /* .maj (attr_mmap2 only) */
6879 /* .min (attr_mmap2 only) */
6880 /* .ino (attr_mmap2 only) */
6881 /* .ino_generation (attr_mmap2 only) */
6882 /* .prot (attr_mmap2 only) */
6883 /* .flags (attr_mmap2 only) */
6886 perf_addr_filters_adjust(vma
);
6887 perf_event_mmap_event(&mmap_event
);
6890 void perf_event_aux_event(struct perf_event
*event
, unsigned long head
,
6891 unsigned long size
, u64 flags
)
6893 struct perf_output_handle handle
;
6894 struct perf_sample_data sample
;
6895 struct perf_aux_event
{
6896 struct perf_event_header header
;
6902 .type
= PERF_RECORD_AUX
,
6904 .size
= sizeof(rec
),
6912 perf_event_header__init_id(&rec
.header
, &sample
, event
);
6913 ret
= perf_output_begin(&handle
, event
, rec
.header
.size
);
6918 perf_output_put(&handle
, rec
);
6919 perf_event__output_id_sample(event
, &handle
, &sample
);
6921 perf_output_end(&handle
);
6925 * Lost/dropped samples logging
6927 void perf_log_lost_samples(struct perf_event
*event
, u64 lost
)
6929 struct perf_output_handle handle
;
6930 struct perf_sample_data sample
;
6934 struct perf_event_header header
;
6936 } lost_samples_event
= {
6938 .type
= PERF_RECORD_LOST_SAMPLES
,
6940 .size
= sizeof(lost_samples_event
),
6945 perf_event_header__init_id(&lost_samples_event
.header
, &sample
, event
);
6947 ret
= perf_output_begin(&handle
, event
,
6948 lost_samples_event
.header
.size
);
6952 perf_output_put(&handle
, lost_samples_event
);
6953 perf_event__output_id_sample(event
, &handle
, &sample
);
6954 perf_output_end(&handle
);
6958 * context_switch tracking
6961 struct perf_switch_event
{
6962 struct task_struct
*task
;
6963 struct task_struct
*next_prev
;
6966 struct perf_event_header header
;
6972 static int perf_event_switch_match(struct perf_event
*event
)
6974 return event
->attr
.context_switch
;
6977 static void perf_event_switch_output(struct perf_event
*event
, void *data
)
6979 struct perf_switch_event
*se
= data
;
6980 struct perf_output_handle handle
;
6981 struct perf_sample_data sample
;
6984 if (!perf_event_switch_match(event
))
6987 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6988 if (event
->ctx
->task
) {
6989 se
->event_id
.header
.type
= PERF_RECORD_SWITCH
;
6990 se
->event_id
.header
.size
= sizeof(se
->event_id
.header
);
6992 se
->event_id
.header
.type
= PERF_RECORD_SWITCH_CPU_WIDE
;
6993 se
->event_id
.header
.size
= sizeof(se
->event_id
);
6994 se
->event_id
.next_prev_pid
=
6995 perf_event_pid(event
, se
->next_prev
);
6996 se
->event_id
.next_prev_tid
=
6997 perf_event_tid(event
, se
->next_prev
);
7000 perf_event_header__init_id(&se
->event_id
.header
, &sample
, event
);
7002 ret
= perf_output_begin(&handle
, event
, se
->event_id
.header
.size
);
7006 if (event
->ctx
->task
)
7007 perf_output_put(&handle
, se
->event_id
.header
);
7009 perf_output_put(&handle
, se
->event_id
);
7011 perf_event__output_id_sample(event
, &handle
, &sample
);
7013 perf_output_end(&handle
);
7016 static void perf_event_switch(struct task_struct
*task
,
7017 struct task_struct
*next_prev
, bool sched_in
)
7019 struct perf_switch_event switch_event
;
7021 /* N.B. caller checks nr_switch_events != 0 */
7023 switch_event
= (struct perf_switch_event
){
7025 .next_prev
= next_prev
,
7029 .misc
= sched_in
? 0 : PERF_RECORD_MISC_SWITCH_OUT
,
7032 /* .next_prev_pid */
7033 /* .next_prev_tid */
7037 perf_iterate_sb(perf_event_switch_output
,
7043 * IRQ throttle logging
7046 static void perf_log_throttle(struct perf_event
*event
, int enable
)
7048 struct perf_output_handle handle
;
7049 struct perf_sample_data sample
;
7053 struct perf_event_header header
;
7057 } throttle_event
= {
7059 .type
= PERF_RECORD_THROTTLE
,
7061 .size
= sizeof(throttle_event
),
7063 .time
= perf_event_clock(event
),
7064 .id
= primary_event_id(event
),
7065 .stream_id
= event
->id
,
7069 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
7071 perf_event_header__init_id(&throttle_event
.header
, &sample
, event
);
7073 ret
= perf_output_begin(&handle
, event
,
7074 throttle_event
.header
.size
);
7078 perf_output_put(&handle
, throttle_event
);
7079 perf_event__output_id_sample(event
, &handle
, &sample
);
7080 perf_output_end(&handle
);
7083 static void perf_log_itrace_start(struct perf_event
*event
)
7085 struct perf_output_handle handle
;
7086 struct perf_sample_data sample
;
7087 struct perf_aux_event
{
7088 struct perf_event_header header
;
7095 event
= event
->parent
;
7097 if (!(event
->pmu
->capabilities
& PERF_PMU_CAP_ITRACE
) ||
7098 event
->hw
.itrace_started
)
7101 rec
.header
.type
= PERF_RECORD_ITRACE_START
;
7102 rec
.header
.misc
= 0;
7103 rec
.header
.size
= sizeof(rec
);
7104 rec
.pid
= perf_event_pid(event
, current
);
7105 rec
.tid
= perf_event_tid(event
, current
);
7107 perf_event_header__init_id(&rec
.header
, &sample
, event
);
7108 ret
= perf_output_begin(&handle
, event
, rec
.header
.size
);
7113 perf_output_put(&handle
, rec
);
7114 perf_event__output_id_sample(event
, &handle
, &sample
);
7116 perf_output_end(&handle
);
7120 __perf_event_account_interrupt(struct perf_event
*event
, int throttle
)
7122 struct hw_perf_event
*hwc
= &event
->hw
;
7126 seq
= __this_cpu_read(perf_throttled_seq
);
7127 if (seq
!= hwc
->interrupts_seq
) {
7128 hwc
->interrupts_seq
= seq
;
7129 hwc
->interrupts
= 1;
7132 if (unlikely(throttle
7133 && hwc
->interrupts
>= max_samples_per_tick
)) {
7134 __this_cpu_inc(perf_throttled_count
);
7135 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS
);
7136 hwc
->interrupts
= MAX_INTERRUPTS
;
7137 perf_log_throttle(event
, 0);
7142 if (event
->attr
.freq
) {
7143 u64 now
= perf_clock();
7144 s64 delta
= now
- hwc
->freq_time_stamp
;
7146 hwc
->freq_time_stamp
= now
;
7148 if (delta
> 0 && delta
< 2*TICK_NSEC
)
7149 perf_adjust_period(event
, delta
, hwc
->last_period
, true);
7155 int perf_event_account_interrupt(struct perf_event
*event
)
7157 return __perf_event_account_interrupt(event
, 1);
7161 * Generic event overflow handling, sampling.
7164 static int __perf_event_overflow(struct perf_event
*event
,
7165 int throttle
, struct perf_sample_data
*data
,
7166 struct pt_regs
*regs
)
7168 int events
= atomic_read(&event
->event_limit
);
7172 * Non-sampling counters might still use the PMI to fold short
7173 * hardware counters, ignore those.
7175 if (unlikely(!is_sampling_event(event
)))
7178 ret
= __perf_event_account_interrupt(event
, throttle
);
7181 * XXX event_limit might not quite work as expected on inherited
7185 event
->pending_kill
= POLL_IN
;
7186 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
7188 event
->pending_kill
= POLL_HUP
;
7190 perf_event_disable_inatomic(event
);
7193 READ_ONCE(event
->overflow_handler
)(event
, data
, regs
);
7195 if (*perf_event_fasync(event
) && event
->pending_kill
) {
7196 event
->pending_wakeup
= 1;
7197 irq_work_queue(&event
->pending
);
7203 int perf_event_overflow(struct perf_event
*event
,
7204 struct perf_sample_data
*data
,
7205 struct pt_regs
*regs
)
7207 return __perf_event_overflow(event
, 1, data
, regs
);
7211 * Generic software event infrastructure
7214 struct swevent_htable
{
7215 struct swevent_hlist
*swevent_hlist
;
7216 struct mutex hlist_mutex
;
7219 /* Recursion avoidance in each contexts */
7220 int recursion
[PERF_NR_CONTEXTS
];
7223 static DEFINE_PER_CPU(struct swevent_htable
, swevent_htable
);
7226 * We directly increment event->count and keep a second value in
7227 * event->hw.period_left to count intervals. This period event
7228 * is kept in the range [-sample_period, 0] so that we can use the
7232 u64
perf_swevent_set_period(struct perf_event
*event
)
7234 struct hw_perf_event
*hwc
= &event
->hw
;
7235 u64 period
= hwc
->last_period
;
7239 hwc
->last_period
= hwc
->sample_period
;
7242 old
= val
= local64_read(&hwc
->period_left
);
7246 nr
= div64_u64(period
+ val
, period
);
7247 offset
= nr
* period
;
7249 if (local64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
7255 static void perf_swevent_overflow(struct perf_event
*event
, u64 overflow
,
7256 struct perf_sample_data
*data
,
7257 struct pt_regs
*regs
)
7259 struct hw_perf_event
*hwc
= &event
->hw
;
7263 overflow
= perf_swevent_set_period(event
);
7265 if (hwc
->interrupts
== MAX_INTERRUPTS
)
7268 for (; overflow
; overflow
--) {
7269 if (__perf_event_overflow(event
, throttle
,
7272 * We inhibit the overflow from happening when
7273 * hwc->interrupts == MAX_INTERRUPTS.
7281 static void perf_swevent_event(struct perf_event
*event
, u64 nr
,
7282 struct perf_sample_data
*data
,
7283 struct pt_regs
*regs
)
7285 struct hw_perf_event
*hwc
= &event
->hw
;
7287 local64_add(nr
, &event
->count
);
7292 if (!is_sampling_event(event
))
7295 if ((event
->attr
.sample_type
& PERF_SAMPLE_PERIOD
) && !event
->attr
.freq
) {
7297 return perf_swevent_overflow(event
, 1, data
, regs
);
7299 data
->period
= event
->hw
.last_period
;
7301 if (nr
== 1 && hwc
->sample_period
== 1 && !event
->attr
.freq
)
7302 return perf_swevent_overflow(event
, 1, data
, regs
);
7304 if (local64_add_negative(nr
, &hwc
->period_left
))
7307 perf_swevent_overflow(event
, 0, data
, regs
);
7310 static int perf_exclude_event(struct perf_event
*event
,
7311 struct pt_regs
*regs
)
7313 if (event
->hw
.state
& PERF_HES_STOPPED
)
7317 if (event
->attr
.exclude_user
&& user_mode(regs
))
7320 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
7327 static int perf_swevent_match(struct perf_event
*event
,
7328 enum perf_type_id type
,
7330 struct perf_sample_data
*data
,
7331 struct pt_regs
*regs
)
7333 if (event
->attr
.type
!= type
)
7336 if (event
->attr
.config
!= event_id
)
7339 if (perf_exclude_event(event
, regs
))
7345 static inline u64
swevent_hash(u64 type
, u32 event_id
)
7347 u64 val
= event_id
| (type
<< 32);
7349 return hash_64(val
, SWEVENT_HLIST_BITS
);
7352 static inline struct hlist_head
*
7353 __find_swevent_head(struct swevent_hlist
*hlist
, u64 type
, u32 event_id
)
7355 u64 hash
= swevent_hash(type
, event_id
);
7357 return &hlist
->heads
[hash
];
7360 /* For the read side: events when they trigger */
7361 static inline struct hlist_head
*
7362 find_swevent_head_rcu(struct swevent_htable
*swhash
, u64 type
, u32 event_id
)
7364 struct swevent_hlist
*hlist
;
7366 hlist
= rcu_dereference(swhash
->swevent_hlist
);
7370 return __find_swevent_head(hlist
, type
, event_id
);
7373 /* For the event head insertion and removal in the hlist */
7374 static inline struct hlist_head
*
7375 find_swevent_head(struct swevent_htable
*swhash
, struct perf_event
*event
)
7377 struct swevent_hlist
*hlist
;
7378 u32 event_id
= event
->attr
.config
;
7379 u64 type
= event
->attr
.type
;
7382 * Event scheduling is always serialized against hlist allocation
7383 * and release. Which makes the protected version suitable here.
7384 * The context lock guarantees that.
7386 hlist
= rcu_dereference_protected(swhash
->swevent_hlist
,
7387 lockdep_is_held(&event
->ctx
->lock
));
7391 return __find_swevent_head(hlist
, type
, event_id
);
7394 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
7396 struct perf_sample_data
*data
,
7397 struct pt_regs
*regs
)
7399 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
7400 struct perf_event
*event
;
7401 struct hlist_head
*head
;
7404 head
= find_swevent_head_rcu(swhash
, type
, event_id
);
7408 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
7409 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
7410 perf_swevent_event(event
, nr
, data
, regs
);
7416 DEFINE_PER_CPU(struct pt_regs
, __perf_regs
[4]);
7418 int perf_swevent_get_recursion_context(void)
7420 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
7422 return get_recursion_context(swhash
->recursion
);
7424 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context
);
7426 void perf_swevent_put_recursion_context(int rctx
)
7428 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
7430 put_recursion_context(swhash
->recursion
, rctx
);
7433 void ___perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
7435 struct perf_sample_data data
;
7437 if (WARN_ON_ONCE(!regs
))
7440 perf_sample_data_init(&data
, addr
, 0);
7441 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, &data
, regs
);
7444 void __perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
7448 preempt_disable_notrace();
7449 rctx
= perf_swevent_get_recursion_context();
7450 if (unlikely(rctx
< 0))
7453 ___perf_sw_event(event_id
, nr
, regs
, addr
);
7455 perf_swevent_put_recursion_context(rctx
);
7457 preempt_enable_notrace();
7460 static void perf_swevent_read(struct perf_event
*event
)
7464 static int perf_swevent_add(struct perf_event
*event
, int flags
)
7466 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
7467 struct hw_perf_event
*hwc
= &event
->hw
;
7468 struct hlist_head
*head
;
7470 if (is_sampling_event(event
)) {
7471 hwc
->last_period
= hwc
->sample_period
;
7472 perf_swevent_set_period(event
);
7475 hwc
->state
= !(flags
& PERF_EF_START
);
7477 head
= find_swevent_head(swhash
, event
);
7478 if (WARN_ON_ONCE(!head
))
7481 hlist_add_head_rcu(&event
->hlist_entry
, head
);
7482 perf_event_update_userpage(event
);
7487 static void perf_swevent_del(struct perf_event
*event
, int flags
)
7489 hlist_del_rcu(&event
->hlist_entry
);
7492 static void perf_swevent_start(struct perf_event
*event
, int flags
)
7494 event
->hw
.state
= 0;
7497 static void perf_swevent_stop(struct perf_event
*event
, int flags
)
7499 event
->hw
.state
= PERF_HES_STOPPED
;
7502 /* Deref the hlist from the update side */
7503 static inline struct swevent_hlist
*
7504 swevent_hlist_deref(struct swevent_htable
*swhash
)
7506 return rcu_dereference_protected(swhash
->swevent_hlist
,
7507 lockdep_is_held(&swhash
->hlist_mutex
));
7510 static void swevent_hlist_release(struct swevent_htable
*swhash
)
7512 struct swevent_hlist
*hlist
= swevent_hlist_deref(swhash
);
7517 RCU_INIT_POINTER(swhash
->swevent_hlist
, NULL
);
7518 kfree_rcu(hlist
, rcu_head
);
7521 static void swevent_hlist_put_cpu(int cpu
)
7523 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
7525 mutex_lock(&swhash
->hlist_mutex
);
7527 if (!--swhash
->hlist_refcount
)
7528 swevent_hlist_release(swhash
);
7530 mutex_unlock(&swhash
->hlist_mutex
);
7533 static void swevent_hlist_put(void)
7537 for_each_possible_cpu(cpu
)
7538 swevent_hlist_put_cpu(cpu
);
7541 static int swevent_hlist_get_cpu(int cpu
)
7543 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
7546 mutex_lock(&swhash
->hlist_mutex
);
7547 if (!swevent_hlist_deref(swhash
) && cpu_online(cpu
)) {
7548 struct swevent_hlist
*hlist
;
7550 hlist
= kzalloc(sizeof(*hlist
), GFP_KERNEL
);
7555 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
7557 swhash
->hlist_refcount
++;
7559 mutex_unlock(&swhash
->hlist_mutex
);
7564 static int swevent_hlist_get(void)
7566 int err
, cpu
, failed_cpu
;
7569 for_each_possible_cpu(cpu
) {
7570 err
= swevent_hlist_get_cpu(cpu
);
7580 for_each_possible_cpu(cpu
) {
7581 if (cpu
== failed_cpu
)
7583 swevent_hlist_put_cpu(cpu
);
7590 struct static_key perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
7592 static void sw_perf_event_destroy(struct perf_event
*event
)
7594 u64 event_id
= event
->attr
.config
;
7596 WARN_ON(event
->parent
);
7598 static_key_slow_dec(&perf_swevent_enabled
[event_id
]);
7599 swevent_hlist_put();
7602 static int perf_swevent_init(struct perf_event
*event
)
7604 u64 event_id
= event
->attr
.config
;
7606 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
7610 * no branch sampling for software events
7612 if (has_branch_stack(event
))
7616 case PERF_COUNT_SW_CPU_CLOCK
:
7617 case PERF_COUNT_SW_TASK_CLOCK
:
7624 if (event_id
>= PERF_COUNT_SW_MAX
)
7627 if (!event
->parent
) {
7630 err
= swevent_hlist_get();
7634 static_key_slow_inc(&perf_swevent_enabled
[event_id
]);
7635 event
->destroy
= sw_perf_event_destroy
;
7641 static struct pmu perf_swevent
= {
7642 .task_ctx_nr
= perf_sw_context
,
7644 .capabilities
= PERF_PMU_CAP_NO_NMI
,
7646 .event_init
= perf_swevent_init
,
7647 .add
= perf_swevent_add
,
7648 .del
= perf_swevent_del
,
7649 .start
= perf_swevent_start
,
7650 .stop
= perf_swevent_stop
,
7651 .read
= perf_swevent_read
,
7654 #ifdef CONFIG_EVENT_TRACING
7656 static int perf_tp_filter_match(struct perf_event
*event
,
7657 struct perf_sample_data
*data
)
7659 void *record
= data
->raw
->frag
.data
;
7661 /* only top level events have filters set */
7663 event
= event
->parent
;
7665 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
7670 static int perf_tp_event_match(struct perf_event
*event
,
7671 struct perf_sample_data
*data
,
7672 struct pt_regs
*regs
)
7674 if (event
->hw
.state
& PERF_HES_STOPPED
)
7677 * All tracepoints are from kernel-space.
7679 if (event
->attr
.exclude_kernel
)
7682 if (!perf_tp_filter_match(event
, data
))
7688 void perf_trace_run_bpf_submit(void *raw_data
, int size
, int rctx
,
7689 struct trace_event_call
*call
, u64 count
,
7690 struct pt_regs
*regs
, struct hlist_head
*head
,
7691 struct task_struct
*task
)
7693 struct bpf_prog
*prog
= call
->prog
;
7696 *(struct pt_regs
**)raw_data
= regs
;
7697 if (!trace_call_bpf(prog
, raw_data
) || hlist_empty(head
)) {
7698 perf_swevent_put_recursion_context(rctx
);
7702 perf_tp_event(call
->event
.type
, count
, raw_data
, size
, regs
, head
,
7705 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit
);
7707 void perf_tp_event(u16 event_type
, u64 count
, void *record
, int entry_size
,
7708 struct pt_regs
*regs
, struct hlist_head
*head
, int rctx
,
7709 struct task_struct
*task
)
7711 struct perf_sample_data data
;
7712 struct perf_event
*event
;
7714 struct perf_raw_record raw
= {
7721 perf_sample_data_init(&data
, 0, 0);
7724 perf_trace_buf_update(record
, event_type
);
7726 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
7727 if (perf_tp_event_match(event
, &data
, regs
))
7728 perf_swevent_event(event
, count
, &data
, regs
);
7732 * If we got specified a target task, also iterate its context and
7733 * deliver this event there too.
7735 if (task
&& task
!= current
) {
7736 struct perf_event_context
*ctx
;
7737 struct trace_entry
*entry
= record
;
7740 ctx
= rcu_dereference(task
->perf_event_ctxp
[perf_sw_context
]);
7744 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
7745 if (event
->cpu
!= smp_processor_id())
7747 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
7749 if (event
->attr
.config
!= entry
->type
)
7751 if (perf_tp_event_match(event
, &data
, regs
))
7752 perf_swevent_event(event
, count
, &data
, regs
);
7758 perf_swevent_put_recursion_context(rctx
);
7760 EXPORT_SYMBOL_GPL(perf_tp_event
);
7762 static void tp_perf_event_destroy(struct perf_event
*event
)
7764 perf_trace_destroy(event
);
7767 static int perf_tp_event_init(struct perf_event
*event
)
7771 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
7775 * no branch sampling for tracepoint events
7777 if (has_branch_stack(event
))
7780 err
= perf_trace_init(event
);
7784 event
->destroy
= tp_perf_event_destroy
;
7789 static struct pmu perf_tracepoint
= {
7790 .task_ctx_nr
= perf_sw_context
,
7792 .event_init
= perf_tp_event_init
,
7793 .add
= perf_trace_add
,
7794 .del
= perf_trace_del
,
7795 .start
= perf_swevent_start
,
7796 .stop
= perf_swevent_stop
,
7797 .read
= perf_swevent_read
,
7800 static inline void perf_tp_register(void)
7802 perf_pmu_register(&perf_tracepoint
, "tracepoint", PERF_TYPE_TRACEPOINT
);
7805 static void perf_event_free_filter(struct perf_event
*event
)
7807 ftrace_profile_free_filter(event
);
7810 #ifdef CONFIG_BPF_SYSCALL
7811 static void bpf_overflow_handler(struct perf_event
*event
,
7812 struct perf_sample_data
*data
,
7813 struct pt_regs
*regs
)
7815 struct bpf_perf_event_data_kern ctx
= {
7822 if (unlikely(__this_cpu_inc_return(bpf_prog_active
) != 1))
7825 ret
= BPF_PROG_RUN(event
->prog
, (void *)&ctx
);
7828 __this_cpu_dec(bpf_prog_active
);
7833 event
->orig_overflow_handler(event
, data
, regs
);
7836 static int perf_event_set_bpf_handler(struct perf_event
*event
, u32 prog_fd
)
7838 struct bpf_prog
*prog
;
7840 if (event
->overflow_handler_context
)
7841 /* hw breakpoint or kernel counter */
7847 prog
= bpf_prog_get_type(prog_fd
, BPF_PROG_TYPE_PERF_EVENT
);
7849 return PTR_ERR(prog
);
7852 event
->orig_overflow_handler
= READ_ONCE(event
->overflow_handler
);
7853 WRITE_ONCE(event
->overflow_handler
, bpf_overflow_handler
);
7857 static void perf_event_free_bpf_handler(struct perf_event
*event
)
7859 struct bpf_prog
*prog
= event
->prog
;
7864 WRITE_ONCE(event
->overflow_handler
, event
->orig_overflow_handler
);
7869 static int perf_event_set_bpf_handler(struct perf_event
*event
, u32 prog_fd
)
7873 static void perf_event_free_bpf_handler(struct perf_event
*event
)
7878 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
)
7880 bool is_kprobe
, is_tracepoint
;
7881 struct bpf_prog
*prog
;
7883 if (event
->attr
.type
== PERF_TYPE_HARDWARE
||
7884 event
->attr
.type
== PERF_TYPE_SOFTWARE
)
7885 return perf_event_set_bpf_handler(event
, prog_fd
);
7887 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
7890 if (event
->tp_event
->prog
)
7893 is_kprobe
= event
->tp_event
->flags
& TRACE_EVENT_FL_UKPROBE
;
7894 is_tracepoint
= event
->tp_event
->flags
& TRACE_EVENT_FL_TRACEPOINT
;
7895 if (!is_kprobe
&& !is_tracepoint
)
7896 /* bpf programs can only be attached to u/kprobe or tracepoint */
7899 prog
= bpf_prog_get(prog_fd
);
7901 return PTR_ERR(prog
);
7903 if ((is_kprobe
&& prog
->type
!= BPF_PROG_TYPE_KPROBE
) ||
7904 (is_tracepoint
&& prog
->type
!= BPF_PROG_TYPE_TRACEPOINT
)) {
7905 /* valid fd, but invalid bpf program type */
7910 if (is_tracepoint
) {
7911 int off
= trace_event_get_offsets(event
->tp_event
);
7913 if (prog
->aux
->max_ctx_offset
> off
) {
7918 event
->tp_event
->prog
= prog
;
7919 event
->tp_event
->bpf_prog_owner
= event
;
7924 static void perf_event_free_bpf_prog(struct perf_event
*event
)
7926 struct bpf_prog
*prog
;
7928 perf_event_free_bpf_handler(event
);
7930 if (!event
->tp_event
)
7933 prog
= event
->tp_event
->prog
;
7934 if (prog
&& event
->tp_event
->bpf_prog_owner
== event
) {
7935 event
->tp_event
->prog
= NULL
;
7942 static inline void perf_tp_register(void)
7946 static void perf_event_free_filter(struct perf_event
*event
)
7950 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
)
7955 static void perf_event_free_bpf_prog(struct perf_event
*event
)
7958 #endif /* CONFIG_EVENT_TRACING */
7960 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7961 void perf_bp_event(struct perf_event
*bp
, void *data
)
7963 struct perf_sample_data sample
;
7964 struct pt_regs
*regs
= data
;
7966 perf_sample_data_init(&sample
, bp
->attr
.bp_addr
, 0);
7968 if (!bp
->hw
.state
&& !perf_exclude_event(bp
, regs
))
7969 perf_swevent_event(bp
, 1, &sample
, regs
);
7974 * Allocate a new address filter
7976 static struct perf_addr_filter
*
7977 perf_addr_filter_new(struct perf_event
*event
, struct list_head
*filters
)
7979 int node
= cpu_to_node(event
->cpu
== -1 ? 0 : event
->cpu
);
7980 struct perf_addr_filter
*filter
;
7982 filter
= kzalloc_node(sizeof(*filter
), GFP_KERNEL
, node
);
7986 INIT_LIST_HEAD(&filter
->entry
);
7987 list_add_tail(&filter
->entry
, filters
);
7992 static void free_filters_list(struct list_head
*filters
)
7994 struct perf_addr_filter
*filter
, *iter
;
7996 list_for_each_entry_safe(filter
, iter
, filters
, entry
) {
7998 iput(filter
->inode
);
7999 list_del(&filter
->entry
);
8005 * Free existing address filters and optionally install new ones
8007 static void perf_addr_filters_splice(struct perf_event
*event
,
8008 struct list_head
*head
)
8010 unsigned long flags
;
8013 if (!has_addr_filter(event
))
8016 /* don't bother with children, they don't have their own filters */
8020 raw_spin_lock_irqsave(&event
->addr_filters
.lock
, flags
);
8022 list_splice_init(&event
->addr_filters
.list
, &list
);
8024 list_splice(head
, &event
->addr_filters
.list
);
8026 raw_spin_unlock_irqrestore(&event
->addr_filters
.lock
, flags
);
8028 free_filters_list(&list
);
8032 * Scan through mm's vmas and see if one of them matches the
8033 * @filter; if so, adjust filter's address range.
8034 * Called with mm::mmap_sem down for reading.
8036 static unsigned long perf_addr_filter_apply(struct perf_addr_filter
*filter
,
8037 struct mm_struct
*mm
)
8039 struct vm_area_struct
*vma
;
8041 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
8042 struct file
*file
= vma
->vm_file
;
8043 unsigned long off
= vma
->vm_pgoff
<< PAGE_SHIFT
;
8044 unsigned long vma_size
= vma
->vm_end
- vma
->vm_start
;
8049 if (!perf_addr_filter_match(filter
, file
, off
, vma_size
))
8052 return vma
->vm_start
;
8059 * Update event's address range filters based on the
8060 * task's existing mappings, if any.
8062 static void perf_event_addr_filters_apply(struct perf_event
*event
)
8064 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
8065 struct task_struct
*task
= READ_ONCE(event
->ctx
->task
);
8066 struct perf_addr_filter
*filter
;
8067 struct mm_struct
*mm
= NULL
;
8068 unsigned int count
= 0;
8069 unsigned long flags
;
8072 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8073 * will stop on the parent's child_mutex that our caller is also holding
8075 if (task
== TASK_TOMBSTONE
)
8078 mm
= get_task_mm(event
->ctx
->task
);
8082 down_read(&mm
->mmap_sem
);
8084 raw_spin_lock_irqsave(&ifh
->lock
, flags
);
8085 list_for_each_entry(filter
, &ifh
->list
, entry
) {
8086 event
->addr_filters_offs
[count
] = 0;
8089 * Adjust base offset if the filter is associated to a binary
8090 * that needs to be mapped:
8093 event
->addr_filters_offs
[count
] =
8094 perf_addr_filter_apply(filter
, mm
);
8099 event
->addr_filters_gen
++;
8100 raw_spin_unlock_irqrestore(&ifh
->lock
, flags
);
8102 up_read(&mm
->mmap_sem
);
8107 perf_event_stop(event
, 1);
8111 * Address range filtering: limiting the data to certain
8112 * instruction address ranges. Filters are ioctl()ed to us from
8113 * userspace as ascii strings.
8115 * Filter string format:
8118 * where ACTION is one of the
8119 * * "filter": limit the trace to this region
8120 * * "start": start tracing from this address
8121 * * "stop": stop tracing at this address/region;
8123 * * for kernel addresses: <start address>[/<size>]
8124 * * for object files: <start address>[/<size>]@</path/to/object/file>
8126 * if <size> is not specified, the range is treated as a single address.
8140 IF_STATE_ACTION
= 0,
8145 static const match_table_t if_tokens
= {
8146 { IF_ACT_FILTER
, "filter" },
8147 { IF_ACT_START
, "start" },
8148 { IF_ACT_STOP
, "stop" },
8149 { IF_SRC_FILE
, "%u/%u@%s" },
8150 { IF_SRC_KERNEL
, "%u/%u" },
8151 { IF_SRC_FILEADDR
, "%u@%s" },
8152 { IF_SRC_KERNELADDR
, "%u" },
8153 { IF_ACT_NONE
, NULL
},
8157 * Address filter string parser
8160 perf_event_parse_addr_filter(struct perf_event
*event
, char *fstr
,
8161 struct list_head
*filters
)
8163 struct perf_addr_filter
*filter
= NULL
;
8164 char *start
, *orig
, *filename
= NULL
;
8166 substring_t args
[MAX_OPT_ARGS
];
8167 int state
= IF_STATE_ACTION
, token
;
8168 unsigned int kernel
= 0;
8171 orig
= fstr
= kstrdup(fstr
, GFP_KERNEL
);
8175 while ((start
= strsep(&fstr
, " ,\n")) != NULL
) {
8181 /* filter definition begins */
8182 if (state
== IF_STATE_ACTION
) {
8183 filter
= perf_addr_filter_new(event
, filters
);
8188 token
= match_token(start
, if_tokens
, args
);
8195 if (state
!= IF_STATE_ACTION
)
8198 state
= IF_STATE_SOURCE
;
8201 case IF_SRC_KERNELADDR
:
8205 case IF_SRC_FILEADDR
:
8207 if (state
!= IF_STATE_SOURCE
)
8210 if (token
== IF_SRC_FILE
|| token
== IF_SRC_KERNEL
)
8214 ret
= kstrtoul(args
[0].from
, 0, &filter
->offset
);
8218 if (filter
->range
) {
8220 ret
= kstrtoul(args
[1].from
, 0, &filter
->size
);
8225 if (token
== IF_SRC_FILE
|| token
== IF_SRC_FILEADDR
) {
8226 int fpos
= filter
->range
? 2 : 1;
8228 filename
= match_strdup(&args
[fpos
]);
8235 state
= IF_STATE_END
;
8243 * Filter definition is fully parsed, validate and install it.
8244 * Make sure that it doesn't contradict itself or the event's
8247 if (state
== IF_STATE_END
) {
8248 if (kernel
&& event
->attr
.exclude_kernel
)
8255 /* look up the path and grab its inode */
8256 ret
= kern_path(filename
, LOOKUP_FOLLOW
, &path
);
8258 goto fail_free_name
;
8260 filter
->inode
= igrab(d_inode(path
.dentry
));
8266 if (!filter
->inode
||
8267 !S_ISREG(filter
->inode
->i_mode
))
8268 /* free_filters_list() will iput() */
8272 /* ready to consume more filters */
8273 state
= IF_STATE_ACTION
;
8278 if (state
!= IF_STATE_ACTION
)
8288 free_filters_list(filters
);
8295 perf_event_set_addr_filter(struct perf_event
*event
, char *filter_str
)
8301 * Since this is called in perf_ioctl() path, we're already holding
8304 lockdep_assert_held(&event
->ctx
->mutex
);
8306 if (WARN_ON_ONCE(event
->parent
))
8310 * For now, we only support filtering in per-task events; doing so
8311 * for CPU-wide events requires additional context switching trickery,
8312 * since same object code will be mapped at different virtual
8313 * addresses in different processes.
8315 if (!event
->ctx
->task
)
8318 ret
= perf_event_parse_addr_filter(event
, filter_str
, &filters
);
8322 ret
= event
->pmu
->addr_filters_validate(&filters
);
8324 free_filters_list(&filters
);
8328 /* remove existing filters, if any */
8329 perf_addr_filters_splice(event
, &filters
);
8331 /* install new filters */
8332 perf_event_for_each_child(event
, perf_event_addr_filters_apply
);
8337 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
8342 if ((event
->attr
.type
!= PERF_TYPE_TRACEPOINT
||
8343 !IS_ENABLED(CONFIG_EVENT_TRACING
)) &&
8344 !has_addr_filter(event
))
8347 filter_str
= strndup_user(arg
, PAGE_SIZE
);
8348 if (IS_ERR(filter_str
))
8349 return PTR_ERR(filter_str
);
8351 if (IS_ENABLED(CONFIG_EVENT_TRACING
) &&
8352 event
->attr
.type
== PERF_TYPE_TRACEPOINT
)
8353 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
,
8355 else if (has_addr_filter(event
))
8356 ret
= perf_event_set_addr_filter(event
, filter_str
);
8363 * hrtimer based swevent callback
8366 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
8368 enum hrtimer_restart ret
= HRTIMER_RESTART
;
8369 struct perf_sample_data data
;
8370 struct pt_regs
*regs
;
8371 struct perf_event
*event
;
8374 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
8376 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
8377 return HRTIMER_NORESTART
;
8379 event
->pmu
->read(event
);
8381 perf_sample_data_init(&data
, 0, event
->hw
.last_period
);
8382 regs
= get_irq_regs();
8384 if (regs
&& !perf_exclude_event(event
, regs
)) {
8385 if (!(event
->attr
.exclude_idle
&& is_idle_task(current
)))
8386 if (__perf_event_overflow(event
, 1, &data
, regs
))
8387 ret
= HRTIMER_NORESTART
;
8390 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
8391 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
8396 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
8398 struct hw_perf_event
*hwc
= &event
->hw
;
8401 if (!is_sampling_event(event
))
8404 period
= local64_read(&hwc
->period_left
);
8409 local64_set(&hwc
->period_left
, 0);
8411 period
= max_t(u64
, 10000, hwc
->sample_period
);
8413 hrtimer_start(&hwc
->hrtimer
, ns_to_ktime(period
),
8414 HRTIMER_MODE_REL_PINNED
);
8417 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
8419 struct hw_perf_event
*hwc
= &event
->hw
;
8421 if (is_sampling_event(event
)) {
8422 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
8423 local64_set(&hwc
->period_left
, ktime_to_ns(remaining
));
8425 hrtimer_cancel(&hwc
->hrtimer
);
8429 static void perf_swevent_init_hrtimer(struct perf_event
*event
)
8431 struct hw_perf_event
*hwc
= &event
->hw
;
8433 if (!is_sampling_event(event
))
8436 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
8437 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
8440 * Since hrtimers have a fixed rate, we can do a static freq->period
8441 * mapping and avoid the whole period adjust feedback stuff.
8443 if (event
->attr
.freq
) {
8444 long freq
= event
->attr
.sample_freq
;
8446 event
->attr
.sample_period
= NSEC_PER_SEC
/ freq
;
8447 hwc
->sample_period
= event
->attr
.sample_period
;
8448 local64_set(&hwc
->period_left
, hwc
->sample_period
);
8449 hwc
->last_period
= hwc
->sample_period
;
8450 event
->attr
.freq
= 0;
8455 * Software event: cpu wall time clock
8458 static void cpu_clock_event_update(struct perf_event
*event
)
8463 now
= local_clock();
8464 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
8465 local64_add(now
- prev
, &event
->count
);
8468 static void cpu_clock_event_start(struct perf_event
*event
, int flags
)
8470 local64_set(&event
->hw
.prev_count
, local_clock());
8471 perf_swevent_start_hrtimer(event
);
8474 static void cpu_clock_event_stop(struct perf_event
*event
, int flags
)
8476 perf_swevent_cancel_hrtimer(event
);
8477 cpu_clock_event_update(event
);
8480 static int cpu_clock_event_add(struct perf_event
*event
, int flags
)
8482 if (flags
& PERF_EF_START
)
8483 cpu_clock_event_start(event
, flags
);
8484 perf_event_update_userpage(event
);
8489 static void cpu_clock_event_del(struct perf_event
*event
, int flags
)
8491 cpu_clock_event_stop(event
, flags
);
8494 static void cpu_clock_event_read(struct perf_event
*event
)
8496 cpu_clock_event_update(event
);
8499 static int cpu_clock_event_init(struct perf_event
*event
)
8501 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
8504 if (event
->attr
.config
!= PERF_COUNT_SW_CPU_CLOCK
)
8508 * no branch sampling for software events
8510 if (has_branch_stack(event
))
8513 perf_swevent_init_hrtimer(event
);
8518 static struct pmu perf_cpu_clock
= {
8519 .task_ctx_nr
= perf_sw_context
,
8521 .capabilities
= PERF_PMU_CAP_NO_NMI
,
8523 .event_init
= cpu_clock_event_init
,
8524 .add
= cpu_clock_event_add
,
8525 .del
= cpu_clock_event_del
,
8526 .start
= cpu_clock_event_start
,
8527 .stop
= cpu_clock_event_stop
,
8528 .read
= cpu_clock_event_read
,
8532 * Software event: task time clock
8535 static void task_clock_event_update(struct perf_event
*event
, u64 now
)
8540 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
8542 local64_add(delta
, &event
->count
);
8545 static void task_clock_event_start(struct perf_event
*event
, int flags
)
8547 local64_set(&event
->hw
.prev_count
, event
->ctx
->time
);
8548 perf_swevent_start_hrtimer(event
);
8551 static void task_clock_event_stop(struct perf_event
*event
, int flags
)
8553 perf_swevent_cancel_hrtimer(event
);
8554 task_clock_event_update(event
, event
->ctx
->time
);
8557 static int task_clock_event_add(struct perf_event
*event
, int flags
)
8559 if (flags
& PERF_EF_START
)
8560 task_clock_event_start(event
, flags
);
8561 perf_event_update_userpage(event
);
8566 static void task_clock_event_del(struct perf_event
*event
, int flags
)
8568 task_clock_event_stop(event
, PERF_EF_UPDATE
);
8571 static void task_clock_event_read(struct perf_event
*event
)
8573 u64 now
= perf_clock();
8574 u64 delta
= now
- event
->ctx
->timestamp
;
8575 u64 time
= event
->ctx
->time
+ delta
;
8577 task_clock_event_update(event
, time
);
8580 static int task_clock_event_init(struct perf_event
*event
)
8582 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
8585 if (event
->attr
.config
!= PERF_COUNT_SW_TASK_CLOCK
)
8589 * no branch sampling for software events
8591 if (has_branch_stack(event
))
8594 perf_swevent_init_hrtimer(event
);
8599 static struct pmu perf_task_clock
= {
8600 .task_ctx_nr
= perf_sw_context
,
8602 .capabilities
= PERF_PMU_CAP_NO_NMI
,
8604 .event_init
= task_clock_event_init
,
8605 .add
= task_clock_event_add
,
8606 .del
= task_clock_event_del
,
8607 .start
= task_clock_event_start
,
8608 .stop
= task_clock_event_stop
,
8609 .read
= task_clock_event_read
,
8612 static void perf_pmu_nop_void(struct pmu
*pmu
)
8616 static void perf_pmu_nop_txn(struct pmu
*pmu
, unsigned int flags
)
8620 static int perf_pmu_nop_int(struct pmu
*pmu
)
8625 static DEFINE_PER_CPU(unsigned int, nop_txn_flags
);
8627 static void perf_pmu_start_txn(struct pmu
*pmu
, unsigned int flags
)
8629 __this_cpu_write(nop_txn_flags
, flags
);
8631 if (flags
& ~PERF_PMU_TXN_ADD
)
8634 perf_pmu_disable(pmu
);
8637 static int perf_pmu_commit_txn(struct pmu
*pmu
)
8639 unsigned int flags
= __this_cpu_read(nop_txn_flags
);
8641 __this_cpu_write(nop_txn_flags
, 0);
8643 if (flags
& ~PERF_PMU_TXN_ADD
)
8646 perf_pmu_enable(pmu
);
8650 static void perf_pmu_cancel_txn(struct pmu
*pmu
)
8652 unsigned int flags
= __this_cpu_read(nop_txn_flags
);
8654 __this_cpu_write(nop_txn_flags
, 0);
8656 if (flags
& ~PERF_PMU_TXN_ADD
)
8659 perf_pmu_enable(pmu
);
8662 static int perf_event_idx_default(struct perf_event
*event
)
8668 * Ensures all contexts with the same task_ctx_nr have the same
8669 * pmu_cpu_context too.
8671 static struct perf_cpu_context __percpu
*find_pmu_context(int ctxn
)
8678 list_for_each_entry(pmu
, &pmus
, entry
) {
8679 if (pmu
->task_ctx_nr
== ctxn
)
8680 return pmu
->pmu_cpu_context
;
8686 static void update_pmu_context(struct pmu
*pmu
, struct pmu
*old_pmu
)
8690 for_each_possible_cpu(cpu
) {
8691 struct perf_cpu_context
*cpuctx
;
8693 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
8695 if (cpuctx
->unique_pmu
== old_pmu
)
8696 cpuctx
->unique_pmu
= pmu
;
8700 static void free_pmu_context(struct pmu
*pmu
)
8704 mutex_lock(&pmus_lock
);
8706 * Like a real lame refcount.
8708 list_for_each_entry(i
, &pmus
, entry
) {
8709 if (i
->pmu_cpu_context
== pmu
->pmu_cpu_context
) {
8710 update_pmu_context(i
, pmu
);
8715 free_percpu(pmu
->pmu_cpu_context
);
8717 mutex_unlock(&pmus_lock
);
8721 * Let userspace know that this PMU supports address range filtering:
8723 static ssize_t
nr_addr_filters_show(struct device
*dev
,
8724 struct device_attribute
*attr
,
8727 struct pmu
*pmu
= dev_get_drvdata(dev
);
8729 return snprintf(page
, PAGE_SIZE
- 1, "%d\n", pmu
->nr_addr_filters
);
8731 DEVICE_ATTR_RO(nr_addr_filters
);
8733 static struct idr pmu_idr
;
8736 type_show(struct device
*dev
, struct device_attribute
*attr
, char *page
)
8738 struct pmu
*pmu
= dev_get_drvdata(dev
);
8740 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->type
);
8742 static DEVICE_ATTR_RO(type
);
8745 perf_event_mux_interval_ms_show(struct device
*dev
,
8746 struct device_attribute
*attr
,
8749 struct pmu
*pmu
= dev_get_drvdata(dev
);
8751 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->hrtimer_interval_ms
);
8754 static DEFINE_MUTEX(mux_interval_mutex
);
8757 perf_event_mux_interval_ms_store(struct device
*dev
,
8758 struct device_attribute
*attr
,
8759 const char *buf
, size_t count
)
8761 struct pmu
*pmu
= dev_get_drvdata(dev
);
8762 int timer
, cpu
, ret
;
8764 ret
= kstrtoint(buf
, 0, &timer
);
8771 /* same value, noting to do */
8772 if (timer
== pmu
->hrtimer_interval_ms
)
8775 mutex_lock(&mux_interval_mutex
);
8776 pmu
->hrtimer_interval_ms
= timer
;
8778 /* update all cpuctx for this PMU */
8780 for_each_online_cpu(cpu
) {
8781 struct perf_cpu_context
*cpuctx
;
8782 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
8783 cpuctx
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* timer
);
8785 cpu_function_call(cpu
,
8786 (remote_function_f
)perf_mux_hrtimer_restart
, cpuctx
);
8789 mutex_unlock(&mux_interval_mutex
);
8793 static DEVICE_ATTR_RW(perf_event_mux_interval_ms
);
8795 static struct attribute
*pmu_dev_attrs
[] = {
8796 &dev_attr_type
.attr
,
8797 &dev_attr_perf_event_mux_interval_ms
.attr
,
8800 ATTRIBUTE_GROUPS(pmu_dev
);
8802 static int pmu_bus_running
;
8803 static struct bus_type pmu_bus
= {
8804 .name
= "event_source",
8805 .dev_groups
= pmu_dev_groups
,
8808 static void pmu_dev_release(struct device
*dev
)
8813 static int pmu_dev_alloc(struct pmu
*pmu
)
8817 pmu
->dev
= kzalloc(sizeof(struct device
), GFP_KERNEL
);
8821 pmu
->dev
->groups
= pmu
->attr_groups
;
8822 device_initialize(pmu
->dev
);
8823 ret
= dev_set_name(pmu
->dev
, "%s", pmu
->name
);
8827 dev_set_drvdata(pmu
->dev
, pmu
);
8828 pmu
->dev
->bus
= &pmu_bus
;
8829 pmu
->dev
->release
= pmu_dev_release
;
8830 ret
= device_add(pmu
->dev
);
8834 /* For PMUs with address filters, throw in an extra attribute: */
8835 if (pmu
->nr_addr_filters
)
8836 ret
= device_create_file(pmu
->dev
, &dev_attr_nr_addr_filters
);
8845 device_del(pmu
->dev
);
8848 put_device(pmu
->dev
);
8852 static struct lock_class_key cpuctx_mutex
;
8853 static struct lock_class_key cpuctx_lock
;
8855 int perf_pmu_register(struct pmu
*pmu
, const char *name
, int type
)
8859 mutex_lock(&pmus_lock
);
8861 pmu
->pmu_disable_count
= alloc_percpu(int);
8862 if (!pmu
->pmu_disable_count
)
8871 type
= idr_alloc(&pmu_idr
, pmu
, PERF_TYPE_MAX
, 0, GFP_KERNEL
);
8879 if (pmu_bus_running
) {
8880 ret
= pmu_dev_alloc(pmu
);
8886 if (pmu
->task_ctx_nr
== perf_hw_context
) {
8887 static int hw_context_taken
= 0;
8890 * Other than systems with heterogeneous CPUs, it never makes
8891 * sense for two PMUs to share perf_hw_context. PMUs which are
8892 * uncore must use perf_invalid_context.
8894 if (WARN_ON_ONCE(hw_context_taken
&&
8895 !(pmu
->capabilities
& PERF_PMU_CAP_HETEROGENEOUS_CPUS
)))
8896 pmu
->task_ctx_nr
= perf_invalid_context
;
8898 hw_context_taken
= 1;
8901 pmu
->pmu_cpu_context
= find_pmu_context(pmu
->task_ctx_nr
);
8902 if (pmu
->pmu_cpu_context
)
8903 goto got_cpu_context
;
8906 pmu
->pmu_cpu_context
= alloc_percpu(struct perf_cpu_context
);
8907 if (!pmu
->pmu_cpu_context
)
8910 for_each_possible_cpu(cpu
) {
8911 struct perf_cpu_context
*cpuctx
;
8913 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
8914 __perf_event_init_context(&cpuctx
->ctx
);
8915 lockdep_set_class(&cpuctx
->ctx
.mutex
, &cpuctx_mutex
);
8916 lockdep_set_class(&cpuctx
->ctx
.lock
, &cpuctx_lock
);
8917 cpuctx
->ctx
.pmu
= pmu
;
8919 __perf_mux_hrtimer_init(cpuctx
, cpu
);
8921 cpuctx
->unique_pmu
= pmu
;
8925 if (!pmu
->start_txn
) {
8926 if (pmu
->pmu_enable
) {
8928 * If we have pmu_enable/pmu_disable calls, install
8929 * transaction stubs that use that to try and batch
8930 * hardware accesses.
8932 pmu
->start_txn
= perf_pmu_start_txn
;
8933 pmu
->commit_txn
= perf_pmu_commit_txn
;
8934 pmu
->cancel_txn
= perf_pmu_cancel_txn
;
8936 pmu
->start_txn
= perf_pmu_nop_txn
;
8937 pmu
->commit_txn
= perf_pmu_nop_int
;
8938 pmu
->cancel_txn
= perf_pmu_nop_void
;
8942 if (!pmu
->pmu_enable
) {
8943 pmu
->pmu_enable
= perf_pmu_nop_void
;
8944 pmu
->pmu_disable
= perf_pmu_nop_void
;
8947 if (!pmu
->event_idx
)
8948 pmu
->event_idx
= perf_event_idx_default
;
8950 list_add_rcu(&pmu
->entry
, &pmus
);
8951 atomic_set(&pmu
->exclusive_cnt
, 0);
8954 mutex_unlock(&pmus_lock
);
8959 device_del(pmu
->dev
);
8960 put_device(pmu
->dev
);
8963 if (pmu
->type
>= PERF_TYPE_MAX
)
8964 idr_remove(&pmu_idr
, pmu
->type
);
8967 free_percpu(pmu
->pmu_disable_count
);
8970 EXPORT_SYMBOL_GPL(perf_pmu_register
);
8972 void perf_pmu_unregister(struct pmu
*pmu
)
8976 mutex_lock(&pmus_lock
);
8977 remove_device
= pmu_bus_running
;
8978 list_del_rcu(&pmu
->entry
);
8979 mutex_unlock(&pmus_lock
);
8982 * We dereference the pmu list under both SRCU and regular RCU, so
8983 * synchronize against both of those.
8985 synchronize_srcu(&pmus_srcu
);
8988 free_percpu(pmu
->pmu_disable_count
);
8989 if (pmu
->type
>= PERF_TYPE_MAX
)
8990 idr_remove(&pmu_idr
, pmu
->type
);
8991 if (remove_device
) {
8992 if (pmu
->nr_addr_filters
)
8993 device_remove_file(pmu
->dev
, &dev_attr_nr_addr_filters
);
8994 device_del(pmu
->dev
);
8995 put_device(pmu
->dev
);
8997 free_pmu_context(pmu
);
8999 EXPORT_SYMBOL_GPL(perf_pmu_unregister
);
9001 static int perf_try_init_event(struct pmu
*pmu
, struct perf_event
*event
)
9003 struct perf_event_context
*ctx
= NULL
;
9006 if (!try_module_get(pmu
->module
))
9009 if (event
->group_leader
!= event
) {
9011 * This ctx->mutex can nest when we're called through
9012 * inheritance. See the perf_event_ctx_lock_nested() comment.
9014 ctx
= perf_event_ctx_lock_nested(event
->group_leader
,
9015 SINGLE_DEPTH_NESTING
);
9020 ret
= pmu
->event_init(event
);
9023 perf_event_ctx_unlock(event
->group_leader
, ctx
);
9026 module_put(pmu
->module
);
9031 static struct pmu
*perf_init_event(struct perf_event
*event
)
9033 struct pmu
*pmu
= NULL
;
9037 idx
= srcu_read_lock(&pmus_srcu
);
9040 pmu
= idr_find(&pmu_idr
, event
->attr
.type
);
9043 ret
= perf_try_init_event(pmu
, event
);
9049 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
9050 ret
= perf_try_init_event(pmu
, event
);
9054 if (ret
!= -ENOENT
) {
9059 pmu
= ERR_PTR(-ENOENT
);
9061 srcu_read_unlock(&pmus_srcu
, idx
);
9066 static void attach_sb_event(struct perf_event
*event
)
9068 struct pmu_event_list
*pel
= per_cpu_ptr(&pmu_sb_events
, event
->cpu
);
9070 raw_spin_lock(&pel
->lock
);
9071 list_add_rcu(&event
->sb_list
, &pel
->list
);
9072 raw_spin_unlock(&pel
->lock
);
9076 * We keep a list of all !task (and therefore per-cpu) events
9077 * that need to receive side-band records.
9079 * This avoids having to scan all the various PMU per-cpu contexts
9082 static void account_pmu_sb_event(struct perf_event
*event
)
9084 if (is_sb_event(event
))
9085 attach_sb_event(event
);
9088 static void account_event_cpu(struct perf_event
*event
, int cpu
)
9093 if (is_cgroup_event(event
))
9094 atomic_inc(&per_cpu(perf_cgroup_events
, cpu
));
9097 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9098 static void account_freq_event_nohz(void)
9100 #ifdef CONFIG_NO_HZ_FULL
9101 /* Lock so we don't race with concurrent unaccount */
9102 spin_lock(&nr_freq_lock
);
9103 if (atomic_inc_return(&nr_freq_events
) == 1)
9104 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS
);
9105 spin_unlock(&nr_freq_lock
);
9109 static void account_freq_event(void)
9111 if (tick_nohz_full_enabled())
9112 account_freq_event_nohz();
9114 atomic_inc(&nr_freq_events
);
9118 static void account_event(struct perf_event
*event
)
9125 if (event
->attach_state
& PERF_ATTACH_TASK
)
9127 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
9128 atomic_inc(&nr_mmap_events
);
9129 if (event
->attr
.comm
)
9130 atomic_inc(&nr_comm_events
);
9131 if (event
->attr
.task
)
9132 atomic_inc(&nr_task_events
);
9133 if (event
->attr
.freq
)
9134 account_freq_event();
9135 if (event
->attr
.context_switch
) {
9136 atomic_inc(&nr_switch_events
);
9139 if (has_branch_stack(event
))
9141 if (is_cgroup_event(event
))
9145 if (atomic_inc_not_zero(&perf_sched_count
))
9148 mutex_lock(&perf_sched_mutex
);
9149 if (!atomic_read(&perf_sched_count
)) {
9150 static_branch_enable(&perf_sched_events
);
9152 * Guarantee that all CPUs observe they key change and
9153 * call the perf scheduling hooks before proceeding to
9154 * install events that need them.
9156 synchronize_sched();
9159 * Now that we have waited for the sync_sched(), allow further
9160 * increments to by-pass the mutex.
9162 atomic_inc(&perf_sched_count
);
9163 mutex_unlock(&perf_sched_mutex
);
9167 account_event_cpu(event
, event
->cpu
);
9169 account_pmu_sb_event(event
);
9173 * Allocate and initialize a event structure
9175 static struct perf_event
*
9176 perf_event_alloc(struct perf_event_attr
*attr
, int cpu
,
9177 struct task_struct
*task
,
9178 struct perf_event
*group_leader
,
9179 struct perf_event
*parent_event
,
9180 perf_overflow_handler_t overflow_handler
,
9181 void *context
, int cgroup_fd
)
9184 struct perf_event
*event
;
9185 struct hw_perf_event
*hwc
;
9188 if ((unsigned)cpu
>= nr_cpu_ids
) {
9189 if (!task
|| cpu
!= -1)
9190 return ERR_PTR(-EINVAL
);
9193 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
9195 return ERR_PTR(-ENOMEM
);
9198 * Single events are their own group leaders, with an
9199 * empty sibling list:
9202 group_leader
= event
;
9204 mutex_init(&event
->child_mutex
);
9205 INIT_LIST_HEAD(&event
->child_list
);
9207 INIT_LIST_HEAD(&event
->group_entry
);
9208 INIT_LIST_HEAD(&event
->event_entry
);
9209 INIT_LIST_HEAD(&event
->sibling_list
);
9210 INIT_LIST_HEAD(&event
->rb_entry
);
9211 INIT_LIST_HEAD(&event
->active_entry
);
9212 INIT_LIST_HEAD(&event
->addr_filters
.list
);
9213 INIT_HLIST_NODE(&event
->hlist_entry
);
9216 init_waitqueue_head(&event
->waitq
);
9217 init_irq_work(&event
->pending
, perf_pending_event
);
9219 mutex_init(&event
->mmap_mutex
);
9220 raw_spin_lock_init(&event
->addr_filters
.lock
);
9222 atomic_long_set(&event
->refcount
, 1);
9224 event
->attr
= *attr
;
9225 event
->group_leader
= group_leader
;
9229 event
->parent
= parent_event
;
9231 event
->ns
= get_pid_ns(task_active_pid_ns(current
));
9232 event
->id
= atomic64_inc_return(&perf_event_id
);
9234 event
->state
= PERF_EVENT_STATE_INACTIVE
;
9237 event
->attach_state
= PERF_ATTACH_TASK
;
9239 * XXX pmu::event_init needs to know what task to account to
9240 * and we cannot use the ctx information because we need the
9241 * pmu before we get a ctx.
9243 get_task_struct(task
);
9244 event
->hw
.target
= task
;
9247 event
->clock
= &local_clock
;
9249 event
->clock
= parent_event
->clock
;
9251 if (!overflow_handler
&& parent_event
) {
9252 overflow_handler
= parent_event
->overflow_handler
;
9253 context
= parent_event
->overflow_handler_context
;
9254 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9255 if (overflow_handler
== bpf_overflow_handler
) {
9256 struct bpf_prog
*prog
= bpf_prog_inc(parent_event
->prog
);
9259 err
= PTR_ERR(prog
);
9263 event
->orig_overflow_handler
=
9264 parent_event
->orig_overflow_handler
;
9269 if (overflow_handler
) {
9270 event
->overflow_handler
= overflow_handler
;
9271 event
->overflow_handler_context
= context
;
9272 } else if (is_write_backward(event
)){
9273 event
->overflow_handler
= perf_event_output_backward
;
9274 event
->overflow_handler_context
= NULL
;
9276 event
->overflow_handler
= perf_event_output_forward
;
9277 event
->overflow_handler_context
= NULL
;
9280 perf_event__state_init(event
);
9285 hwc
->sample_period
= attr
->sample_period
;
9286 if (attr
->freq
&& attr
->sample_freq
)
9287 hwc
->sample_period
= 1;
9288 hwc
->last_period
= hwc
->sample_period
;
9290 local64_set(&hwc
->period_left
, hwc
->sample_period
);
9293 * We currently do not support PERF_SAMPLE_READ on inherited events.
9294 * See perf_output_read().
9296 if (attr
->inherit
&& (attr
->sample_type
& PERF_SAMPLE_READ
))
9299 if (!has_branch_stack(event
))
9300 event
->attr
.branch_sample_type
= 0;
9302 if (cgroup_fd
!= -1) {
9303 err
= perf_cgroup_connect(cgroup_fd
, event
, attr
, group_leader
);
9308 pmu
= perf_init_event(event
);
9311 else if (IS_ERR(pmu
)) {
9316 err
= exclusive_event_init(event
);
9320 if (has_addr_filter(event
)) {
9321 event
->addr_filters_offs
= kcalloc(pmu
->nr_addr_filters
,
9322 sizeof(unsigned long),
9324 if (!event
->addr_filters_offs
) {
9329 /* force hw sync on the address filters */
9330 event
->addr_filters_gen
= 1;
9333 if (!event
->parent
) {
9334 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
) {
9335 err
= get_callchain_buffers(attr
->sample_max_stack
);
9337 goto err_addr_filters
;
9341 /* symmetric to unaccount_event() in _free_event() */
9342 account_event(event
);
9347 kfree(event
->addr_filters_offs
);
9350 exclusive_event_destroy(event
);
9354 event
->destroy(event
);
9355 module_put(pmu
->module
);
9357 if (is_cgroup_event(event
))
9358 perf_detach_cgroup(event
);
9360 put_pid_ns(event
->ns
);
9361 if (event
->hw
.target
)
9362 put_task_struct(event
->hw
.target
);
9365 return ERR_PTR(err
);
9368 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
9369 struct perf_event_attr
*attr
)
9374 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
9378 * zero the full structure, so that a short copy will be nice.
9380 memset(attr
, 0, sizeof(*attr
));
9382 ret
= get_user(size
, &uattr
->size
);
9386 if (size
> PAGE_SIZE
) /* silly large */
9389 if (!size
) /* abi compat */
9390 size
= PERF_ATTR_SIZE_VER0
;
9392 if (size
< PERF_ATTR_SIZE_VER0
)
9396 * If we're handed a bigger struct than we know of,
9397 * ensure all the unknown bits are 0 - i.e. new
9398 * user-space does not rely on any kernel feature
9399 * extensions we dont know about yet.
9401 if (size
> sizeof(*attr
)) {
9402 unsigned char __user
*addr
;
9403 unsigned char __user
*end
;
9406 addr
= (void __user
*)uattr
+ sizeof(*attr
);
9407 end
= (void __user
*)uattr
+ size
;
9409 for (; addr
< end
; addr
++) {
9410 ret
= get_user(val
, addr
);
9416 size
= sizeof(*attr
);
9419 ret
= copy_from_user(attr
, uattr
, size
);
9423 if (attr
->__reserved_1
)
9426 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
9429 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
9432 if (attr
->sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
9433 u64 mask
= attr
->branch_sample_type
;
9435 /* only using defined bits */
9436 if (mask
& ~(PERF_SAMPLE_BRANCH_MAX
-1))
9439 /* at least one branch bit must be set */
9440 if (!(mask
& ~PERF_SAMPLE_BRANCH_PLM_ALL
))
9443 /* propagate priv level, when not set for branch */
9444 if (!(mask
& PERF_SAMPLE_BRANCH_PLM_ALL
)) {
9446 /* exclude_kernel checked on syscall entry */
9447 if (!attr
->exclude_kernel
)
9448 mask
|= PERF_SAMPLE_BRANCH_KERNEL
;
9450 if (!attr
->exclude_user
)
9451 mask
|= PERF_SAMPLE_BRANCH_USER
;
9453 if (!attr
->exclude_hv
)
9454 mask
|= PERF_SAMPLE_BRANCH_HV
;
9456 * adjust user setting (for HW filter setup)
9458 attr
->branch_sample_type
= mask
;
9460 /* privileged levels capture (kernel, hv): check permissions */
9461 if ((mask
& PERF_SAMPLE_BRANCH_PERM_PLM
)
9462 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
9466 if (attr
->sample_type
& PERF_SAMPLE_REGS_USER
) {
9467 ret
= perf_reg_validate(attr
->sample_regs_user
);
9472 if (attr
->sample_type
& PERF_SAMPLE_STACK_USER
) {
9473 if (!arch_perf_have_user_stack_dump())
9477 * We have __u32 type for the size, but so far
9478 * we can only use __u16 as maximum due to the
9479 * __u16 sample size limit.
9481 if (attr
->sample_stack_user
>= USHRT_MAX
)
9483 else if (!IS_ALIGNED(attr
->sample_stack_user
, sizeof(u64
)))
9487 if (attr
->sample_type
& PERF_SAMPLE_REGS_INTR
)
9488 ret
= perf_reg_validate(attr
->sample_regs_intr
);
9493 put_user(sizeof(*attr
), &uattr
->size
);
9499 perf_event_set_output(struct perf_event
*event
, struct perf_event
*output_event
)
9501 struct ring_buffer
*rb
= NULL
;
9507 /* don't allow circular references */
9508 if (event
== output_event
)
9512 * Don't allow cross-cpu buffers
9514 if (output_event
->cpu
!= event
->cpu
)
9518 * If its not a per-cpu rb, it must be the same task.
9520 if (output_event
->cpu
== -1 && output_event
->ctx
!= event
->ctx
)
9524 * Mixing clocks in the same buffer is trouble you don't need.
9526 if (output_event
->clock
!= event
->clock
)
9530 * Either writing ring buffer from beginning or from end.
9531 * Mixing is not allowed.
9533 if (is_write_backward(output_event
) != is_write_backward(event
))
9537 * If both events generate aux data, they must be on the same PMU
9539 if (has_aux(event
) && has_aux(output_event
) &&
9540 event
->pmu
!= output_event
->pmu
)
9544 mutex_lock(&event
->mmap_mutex
);
9545 /* Can't redirect output if we've got an active mmap() */
9546 if (atomic_read(&event
->mmap_count
))
9550 /* get the rb we want to redirect to */
9551 rb
= ring_buffer_get(output_event
);
9556 ring_buffer_attach(event
, rb
);
9560 mutex_unlock(&event
->mmap_mutex
);
9566 static void mutex_lock_double(struct mutex
*a
, struct mutex
*b
)
9572 mutex_lock_nested(b
, SINGLE_DEPTH_NESTING
);
9575 static int perf_event_set_clock(struct perf_event
*event
, clockid_t clk_id
)
9577 bool nmi_safe
= false;
9580 case CLOCK_MONOTONIC
:
9581 event
->clock
= &ktime_get_mono_fast_ns
;
9585 case CLOCK_MONOTONIC_RAW
:
9586 event
->clock
= &ktime_get_raw_fast_ns
;
9590 case CLOCK_REALTIME
:
9591 event
->clock
= &ktime_get_real_ns
;
9594 case CLOCK_BOOTTIME
:
9595 event
->clock
= &ktime_get_boot_ns
;
9599 event
->clock
= &ktime_get_tai_ns
;
9606 if (!nmi_safe
&& !(event
->pmu
->capabilities
& PERF_PMU_CAP_NO_NMI
))
9613 * Variation on perf_event_ctx_lock_nested(), except we take two context
9616 static struct perf_event_context
*
9617 __perf_event_ctx_lock_double(struct perf_event
*group_leader
,
9618 struct perf_event_context
*ctx
)
9620 struct perf_event_context
*gctx
;
9624 gctx
= READ_ONCE(group_leader
->ctx
);
9625 if (!atomic_inc_not_zero(&gctx
->refcount
)) {
9631 mutex_lock_double(&gctx
->mutex
, &ctx
->mutex
);
9633 if (group_leader
->ctx
!= gctx
) {
9634 mutex_unlock(&ctx
->mutex
);
9635 mutex_unlock(&gctx
->mutex
);
9644 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9646 * @attr_uptr: event_id type attributes for monitoring/sampling
9649 * @group_fd: group leader event fd
9651 SYSCALL_DEFINE5(perf_event_open
,
9652 struct perf_event_attr __user
*, attr_uptr
,
9653 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
9655 struct perf_event
*group_leader
= NULL
, *output_event
= NULL
;
9656 struct perf_event
*event
, *sibling
;
9657 struct perf_event_attr attr
;
9658 struct perf_event_context
*ctx
, *uninitialized_var(gctx
);
9659 struct file
*event_file
= NULL
;
9660 struct fd group
= {NULL
, 0};
9661 struct task_struct
*task
= NULL
;
9666 int f_flags
= O_RDWR
;
9669 /* for future expandability... */
9670 if (flags
& ~PERF_FLAG_ALL
)
9673 err
= perf_copy_attr(attr_uptr
, &attr
);
9677 if (!attr
.exclude_kernel
) {
9678 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
9683 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
9686 if (attr
.sample_period
& (1ULL << 63))
9690 if (!attr
.sample_max_stack
)
9691 attr
.sample_max_stack
= sysctl_perf_event_max_stack
;
9694 * In cgroup mode, the pid argument is used to pass the fd
9695 * opened to the cgroup directory in cgroupfs. The cpu argument
9696 * designates the cpu on which to monitor threads from that
9699 if ((flags
& PERF_FLAG_PID_CGROUP
) && (pid
== -1 || cpu
== -1))
9702 if (flags
& PERF_FLAG_FD_CLOEXEC
)
9703 f_flags
|= O_CLOEXEC
;
9705 event_fd
= get_unused_fd_flags(f_flags
);
9709 if (group_fd
!= -1) {
9710 err
= perf_fget_light(group_fd
, &group
);
9713 group_leader
= group
.file
->private_data
;
9714 if (flags
& PERF_FLAG_FD_OUTPUT
)
9715 output_event
= group_leader
;
9716 if (flags
& PERF_FLAG_FD_NO_GROUP
)
9717 group_leader
= NULL
;
9720 if (pid
!= -1 && !(flags
& PERF_FLAG_PID_CGROUP
)) {
9721 task
= find_lively_task_by_vpid(pid
);
9723 err
= PTR_ERR(task
);
9728 if (task
&& group_leader
&&
9729 group_leader
->attr
.inherit
!= attr
.inherit
) {
9737 err
= mutex_lock_interruptible(&task
->signal
->cred_guard_mutex
);
9742 * Reuse ptrace permission checks for now.
9744 * We must hold cred_guard_mutex across this and any potential
9745 * perf_install_in_context() call for this new event to
9746 * serialize against exec() altering our credentials (and the
9747 * perf_event_exit_task() that could imply).
9750 if (!ptrace_may_access(task
, PTRACE_MODE_READ_REALCREDS
))
9754 if (flags
& PERF_FLAG_PID_CGROUP
)
9757 event
= perf_event_alloc(&attr
, cpu
, task
, group_leader
, NULL
,
9758 NULL
, NULL
, cgroup_fd
);
9759 if (IS_ERR(event
)) {
9760 err
= PTR_ERR(event
);
9764 if (is_sampling_event(event
)) {
9765 if (event
->pmu
->capabilities
& PERF_PMU_CAP_NO_INTERRUPT
) {
9772 * Special case software events and allow them to be part of
9773 * any hardware group.
9777 if (attr
.use_clockid
) {
9778 err
= perf_event_set_clock(event
, attr
.clockid
);
9783 if (pmu
->task_ctx_nr
== perf_sw_context
)
9784 event
->event_caps
|= PERF_EV_CAP_SOFTWARE
;
9787 (is_software_event(event
) != is_software_event(group_leader
))) {
9788 if (is_software_event(event
)) {
9790 * If event and group_leader are not both a software
9791 * event, and event is, then group leader is not.
9793 * Allow the addition of software events to !software
9794 * groups, this is safe because software events never
9797 pmu
= group_leader
->pmu
;
9798 } else if (is_software_event(group_leader
) &&
9799 (group_leader
->group_caps
& PERF_EV_CAP_SOFTWARE
)) {
9801 * In case the group is a pure software group, and we
9802 * try to add a hardware event, move the whole group to
9803 * the hardware context.
9810 * Get the target context (task or percpu):
9812 ctx
= find_get_context(pmu
, task
, event
);
9818 if ((pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
) && group_leader
) {
9824 * Look up the group leader (we will attach this event to it):
9830 * Do not allow a recursive hierarchy (this new sibling
9831 * becoming part of another group-sibling):
9833 if (group_leader
->group_leader
!= group_leader
)
9836 /* All events in a group should have the same clock */
9837 if (group_leader
->clock
!= event
->clock
)
9841 * Make sure we're both events for the same CPU;
9842 * grouping events for different CPUs is broken; since
9843 * you can never concurrently schedule them anyhow.
9845 if (group_leader
->cpu
!= event
->cpu
)
9849 * Make sure we're both on the same task, or both
9852 if (group_leader
->ctx
->task
!= ctx
->task
)
9856 * Do not allow to attach to a group in a different task
9857 * or CPU context. If we're moving SW events, we'll fix
9858 * this up later, so allow that.
9860 if (!move_group
&& group_leader
->ctx
!= ctx
)
9864 * Only a group leader can be exclusive or pinned
9866 if (attr
.exclusive
|| attr
.pinned
)
9871 err
= perf_event_set_output(event
, output_event
);
9876 event_file
= anon_inode_getfile("[perf_event]", &perf_fops
, event
,
9878 if (IS_ERR(event_file
)) {
9879 err
= PTR_ERR(event_file
);
9885 gctx
= __perf_event_ctx_lock_double(group_leader
, ctx
);
9887 if (gctx
->task
== TASK_TOMBSTONE
) {
9893 * Check if we raced against another sys_perf_event_open() call
9894 * moving the software group underneath us.
9896 if (!(group_leader
->group_caps
& PERF_EV_CAP_SOFTWARE
)) {
9898 * If someone moved the group out from under us, check
9899 * if this new event wound up on the same ctx, if so
9900 * its the regular !move_group case, otherwise fail.
9906 perf_event_ctx_unlock(group_leader
, gctx
);
9911 mutex_lock(&ctx
->mutex
);
9914 if (ctx
->task
== TASK_TOMBSTONE
) {
9919 if (!perf_event_validate_size(event
)) {
9925 * Must be under the same ctx::mutex as perf_install_in_context(),
9926 * because we need to serialize with concurrent event creation.
9928 if (!exclusive_event_installable(event
, ctx
)) {
9929 /* exclusive and group stuff are assumed mutually exclusive */
9930 WARN_ON_ONCE(move_group
);
9936 WARN_ON_ONCE(ctx
->parent_ctx
);
9939 * This is the point on no return; we cannot fail hereafter. This is
9940 * where we start modifying current state.
9945 * See perf_event_ctx_lock() for comments on the details
9946 * of swizzling perf_event::ctx.
9948 perf_remove_from_context(group_leader
, 0);
9950 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
9952 perf_remove_from_context(sibling
, 0);
9957 * Wait for everybody to stop referencing the events through
9958 * the old lists, before installing it on new lists.
9963 * Install the group siblings before the group leader.
9965 * Because a group leader will try and install the entire group
9966 * (through the sibling list, which is still in-tact), we can
9967 * end up with siblings installed in the wrong context.
9969 * By installing siblings first we NO-OP because they're not
9970 * reachable through the group lists.
9972 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
9974 perf_event__state_init(sibling
);
9975 perf_install_in_context(ctx
, sibling
, sibling
->cpu
);
9980 * Removing from the context ends up with disabled
9981 * event. What we want here is event in the initial
9982 * startup state, ready to be add into new context.
9984 perf_event__state_init(group_leader
);
9985 perf_install_in_context(ctx
, group_leader
, group_leader
->cpu
);
9989 * Now that all events are installed in @ctx, nothing
9990 * references @gctx anymore, so drop the last reference we have
9997 * Precalculate sample_data sizes; do while holding ctx::mutex such
9998 * that we're serialized against further additions and before
9999 * perf_install_in_context() which is the point the event is active and
10000 * can use these values.
10002 perf_event__header_size(event
);
10003 perf_event__id_header_size(event
);
10005 event
->owner
= current
;
10007 perf_install_in_context(ctx
, event
, event
->cpu
);
10008 perf_unpin_context(ctx
);
10011 perf_event_ctx_unlock(group_leader
, gctx
);
10012 mutex_unlock(&ctx
->mutex
);
10015 mutex_unlock(&task
->signal
->cred_guard_mutex
);
10016 put_task_struct(task
);
10021 mutex_lock(¤t
->perf_event_mutex
);
10022 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
10023 mutex_unlock(¤t
->perf_event_mutex
);
10026 * Drop the reference on the group_event after placing the
10027 * new event on the sibling_list. This ensures destruction
10028 * of the group leader will find the pointer to itself in
10029 * perf_group_detach().
10032 fd_install(event_fd
, event_file
);
10037 perf_event_ctx_unlock(group_leader
, gctx
);
10038 mutex_unlock(&ctx
->mutex
);
10042 perf_unpin_context(ctx
);
10046 * If event_file is set, the fput() above will have called ->release()
10047 * and that will take care of freeing the event.
10053 mutex_unlock(&task
->signal
->cred_guard_mutex
);
10058 put_task_struct(task
);
10062 put_unused_fd(event_fd
);
10067 * perf_event_create_kernel_counter
10069 * @attr: attributes of the counter to create
10070 * @cpu: cpu in which the counter is bound
10071 * @task: task to profile (NULL for percpu)
10073 struct perf_event
*
10074 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
10075 struct task_struct
*task
,
10076 perf_overflow_handler_t overflow_handler
,
10079 struct perf_event_context
*ctx
;
10080 struct perf_event
*event
;
10084 * Get the target context (task or percpu):
10087 event
= perf_event_alloc(attr
, cpu
, task
, NULL
, NULL
,
10088 overflow_handler
, context
, -1);
10089 if (IS_ERR(event
)) {
10090 err
= PTR_ERR(event
);
10094 /* Mark owner so we could distinguish it from user events. */
10095 event
->owner
= TASK_TOMBSTONE
;
10097 ctx
= find_get_context(event
->pmu
, task
, event
);
10099 err
= PTR_ERR(ctx
);
10103 WARN_ON_ONCE(ctx
->parent_ctx
);
10104 mutex_lock(&ctx
->mutex
);
10105 if (ctx
->task
== TASK_TOMBSTONE
) {
10110 if (!exclusive_event_installable(event
, ctx
)) {
10115 perf_install_in_context(ctx
, event
, cpu
);
10116 perf_unpin_context(ctx
);
10117 mutex_unlock(&ctx
->mutex
);
10122 mutex_unlock(&ctx
->mutex
);
10123 perf_unpin_context(ctx
);
10128 return ERR_PTR(err
);
10130 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
10132 void perf_pmu_migrate_context(struct pmu
*pmu
, int src_cpu
, int dst_cpu
)
10134 struct perf_event_context
*src_ctx
;
10135 struct perf_event_context
*dst_ctx
;
10136 struct perf_event
*event
, *tmp
;
10139 src_ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, src_cpu
)->ctx
;
10140 dst_ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, dst_cpu
)->ctx
;
10143 * See perf_event_ctx_lock() for comments on the details
10144 * of swizzling perf_event::ctx.
10146 mutex_lock_double(&src_ctx
->mutex
, &dst_ctx
->mutex
);
10147 list_for_each_entry_safe(event
, tmp
, &src_ctx
->event_list
,
10149 perf_remove_from_context(event
, 0);
10150 unaccount_event_cpu(event
, src_cpu
);
10152 list_add(&event
->migrate_entry
, &events
);
10156 * Wait for the events to quiesce before re-instating them.
10161 * Re-instate events in 2 passes.
10163 * Skip over group leaders and only install siblings on this first
10164 * pass, siblings will not get enabled without a leader, however a
10165 * leader will enable its siblings, even if those are still on the old
10168 list_for_each_entry_safe(event
, tmp
, &events
, migrate_entry
) {
10169 if (event
->group_leader
== event
)
10172 list_del(&event
->migrate_entry
);
10173 if (event
->state
>= PERF_EVENT_STATE_OFF
)
10174 event
->state
= PERF_EVENT_STATE_INACTIVE
;
10175 account_event_cpu(event
, dst_cpu
);
10176 perf_install_in_context(dst_ctx
, event
, dst_cpu
);
10181 * Once all the siblings are setup properly, install the group leaders
10184 list_for_each_entry_safe(event
, tmp
, &events
, migrate_entry
) {
10185 list_del(&event
->migrate_entry
);
10186 if (event
->state
>= PERF_EVENT_STATE_OFF
)
10187 event
->state
= PERF_EVENT_STATE_INACTIVE
;
10188 account_event_cpu(event
, dst_cpu
);
10189 perf_install_in_context(dst_ctx
, event
, dst_cpu
);
10192 mutex_unlock(&dst_ctx
->mutex
);
10193 mutex_unlock(&src_ctx
->mutex
);
10195 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context
);
10197 static void sync_child_event(struct perf_event
*child_event
,
10198 struct task_struct
*child
)
10200 struct perf_event
*parent_event
= child_event
->parent
;
10203 if (child_event
->attr
.inherit_stat
)
10204 perf_event_read_event(child_event
, child
);
10206 child_val
= perf_event_count(child_event
);
10209 * Add back the child's count to the parent's count:
10211 atomic64_add(child_val
, &parent_event
->child_count
);
10212 atomic64_add(child_event
->total_time_enabled
,
10213 &parent_event
->child_total_time_enabled
);
10214 atomic64_add(child_event
->total_time_running
,
10215 &parent_event
->child_total_time_running
);
10219 perf_event_exit_event(struct perf_event
*child_event
,
10220 struct perf_event_context
*child_ctx
,
10221 struct task_struct
*child
)
10223 struct perf_event
*parent_event
= child_event
->parent
;
10226 * Do not destroy the 'original' grouping; because of the context
10227 * switch optimization the original events could've ended up in a
10228 * random child task.
10230 * If we were to destroy the original group, all group related
10231 * operations would cease to function properly after this random
10234 * Do destroy all inherited groups, we don't care about those
10235 * and being thorough is better.
10237 raw_spin_lock_irq(&child_ctx
->lock
);
10238 WARN_ON_ONCE(child_ctx
->is_active
);
10241 perf_group_detach(child_event
);
10242 list_del_event(child_event
, child_ctx
);
10243 child_event
->state
= PERF_EVENT_STATE_EXIT
; /* is_event_hup() */
10244 raw_spin_unlock_irq(&child_ctx
->lock
);
10247 * Parent events are governed by their filedesc, retain them.
10249 if (!parent_event
) {
10250 perf_event_wakeup(child_event
);
10254 * Child events can be cleaned up.
10257 sync_child_event(child_event
, child
);
10260 * Remove this event from the parent's list
10262 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
10263 mutex_lock(&parent_event
->child_mutex
);
10264 list_del_init(&child_event
->child_list
);
10265 mutex_unlock(&parent_event
->child_mutex
);
10268 * Kick perf_poll() for is_event_hup().
10270 perf_event_wakeup(parent_event
);
10271 free_event(child_event
);
10272 put_event(parent_event
);
10275 static void perf_event_exit_task_context(struct task_struct
*child
, int ctxn
)
10277 struct perf_event_context
*child_ctx
, *clone_ctx
= NULL
;
10278 struct perf_event
*child_event
, *next
;
10280 WARN_ON_ONCE(child
!= current
);
10282 child_ctx
= perf_pin_task_context(child
, ctxn
);
10287 * In order to reduce the amount of tricky in ctx tear-down, we hold
10288 * ctx::mutex over the entire thing. This serializes against almost
10289 * everything that wants to access the ctx.
10291 * The exception is sys_perf_event_open() /
10292 * perf_event_create_kernel_count() which does find_get_context()
10293 * without ctx::mutex (it cannot because of the move_group double mutex
10294 * lock thing). See the comments in perf_install_in_context().
10296 mutex_lock(&child_ctx
->mutex
);
10299 * In a single ctx::lock section, de-schedule the events and detach the
10300 * context from the task such that we cannot ever get it scheduled back
10303 raw_spin_lock_irq(&child_ctx
->lock
);
10304 task_ctx_sched_out(__get_cpu_context(child_ctx
), child_ctx
);
10307 * Now that the context is inactive, destroy the task <-> ctx relation
10308 * and mark the context dead.
10310 RCU_INIT_POINTER(child
->perf_event_ctxp
[ctxn
], NULL
);
10311 put_ctx(child_ctx
); /* cannot be last */
10312 WRITE_ONCE(child_ctx
->task
, TASK_TOMBSTONE
);
10313 put_task_struct(current
); /* cannot be last */
10315 clone_ctx
= unclone_ctx(child_ctx
);
10316 raw_spin_unlock_irq(&child_ctx
->lock
);
10319 put_ctx(clone_ctx
);
10322 * Report the task dead after unscheduling the events so that we
10323 * won't get any samples after PERF_RECORD_EXIT. We can however still
10324 * get a few PERF_RECORD_READ events.
10326 perf_event_task(child
, child_ctx
, 0);
10328 list_for_each_entry_safe(child_event
, next
, &child_ctx
->event_list
, event_entry
)
10329 perf_event_exit_event(child_event
, child_ctx
, child
);
10331 mutex_unlock(&child_ctx
->mutex
);
10333 put_ctx(child_ctx
);
10337 * When a child task exits, feed back event values to parent events.
10339 * Can be called with cred_guard_mutex held when called from
10340 * install_exec_creds().
10342 void perf_event_exit_task(struct task_struct
*child
)
10344 struct perf_event
*event
, *tmp
;
10347 mutex_lock(&child
->perf_event_mutex
);
10348 list_for_each_entry_safe(event
, tmp
, &child
->perf_event_list
,
10350 list_del_init(&event
->owner_entry
);
10353 * Ensure the list deletion is visible before we clear
10354 * the owner, closes a race against perf_release() where
10355 * we need to serialize on the owner->perf_event_mutex.
10357 smp_store_release(&event
->owner
, NULL
);
10359 mutex_unlock(&child
->perf_event_mutex
);
10361 for_each_task_context_nr(ctxn
)
10362 perf_event_exit_task_context(child
, ctxn
);
10365 * The perf_event_exit_task_context calls perf_event_task
10366 * with child's task_ctx, which generates EXIT events for
10367 * child contexts and sets child->perf_event_ctxp[] to NULL.
10368 * At this point we need to send EXIT events to cpu contexts.
10370 perf_event_task(child
, NULL
, 0);
10373 static void perf_free_event(struct perf_event
*event
,
10374 struct perf_event_context
*ctx
)
10376 struct perf_event
*parent
= event
->parent
;
10378 if (WARN_ON_ONCE(!parent
))
10381 mutex_lock(&parent
->child_mutex
);
10382 list_del_init(&event
->child_list
);
10383 mutex_unlock(&parent
->child_mutex
);
10387 raw_spin_lock_irq(&ctx
->lock
);
10388 perf_group_detach(event
);
10389 list_del_event(event
, ctx
);
10390 raw_spin_unlock_irq(&ctx
->lock
);
10395 * Free an unexposed, unused context as created by inheritance by
10396 * perf_event_init_task below, used by fork() in case of fail.
10398 * Not all locks are strictly required, but take them anyway to be nice and
10399 * help out with the lockdep assertions.
10401 void perf_event_free_task(struct task_struct
*task
)
10403 struct perf_event_context
*ctx
;
10404 struct perf_event
*event
, *tmp
;
10407 for_each_task_context_nr(ctxn
) {
10408 ctx
= task
->perf_event_ctxp
[ctxn
];
10412 mutex_lock(&ctx
->mutex
);
10413 raw_spin_lock_irq(&ctx
->lock
);
10415 * Destroy the task <-> ctx relation and mark the context dead.
10417 * This is important because even though the task hasn't been
10418 * exposed yet the context has been (through child_list).
10420 RCU_INIT_POINTER(task
->perf_event_ctxp
[ctxn
], NULL
);
10421 WRITE_ONCE(ctx
->task
, TASK_TOMBSTONE
);
10422 put_task_struct(task
); /* cannot be last */
10423 raw_spin_unlock_irq(&ctx
->lock
);
10425 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
,
10427 perf_free_event(event
, ctx
);
10429 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
,
10431 perf_free_event(event
, ctx
);
10433 if (!list_empty(&ctx
->pinned_groups
) ||
10434 !list_empty(&ctx
->flexible_groups
))
10437 mutex_unlock(&ctx
->mutex
);
10443 void perf_event_delayed_put(struct task_struct
*task
)
10447 for_each_task_context_nr(ctxn
)
10448 WARN_ON_ONCE(task
->perf_event_ctxp
[ctxn
]);
10451 struct file
*perf_event_get(unsigned int fd
)
10455 file
= fget_raw(fd
);
10457 return ERR_PTR(-EBADF
);
10459 if (file
->f_op
!= &perf_fops
) {
10461 return ERR_PTR(-EBADF
);
10467 const struct perf_event_attr
*perf_event_attrs(struct perf_event
*event
)
10470 return ERR_PTR(-EINVAL
);
10472 return &event
->attr
;
10476 * inherit a event from parent task to child task:
10478 static struct perf_event
*
10479 inherit_event(struct perf_event
*parent_event
,
10480 struct task_struct
*parent
,
10481 struct perf_event_context
*parent_ctx
,
10482 struct task_struct
*child
,
10483 struct perf_event
*group_leader
,
10484 struct perf_event_context
*child_ctx
)
10486 enum perf_event_active_state parent_state
= parent_event
->state
;
10487 struct perf_event
*child_event
;
10488 unsigned long flags
;
10491 * Instead of creating recursive hierarchies of events,
10492 * we link inherited events back to the original parent,
10493 * which has a filp for sure, which we use as the reference
10496 if (parent_event
->parent
)
10497 parent_event
= parent_event
->parent
;
10499 child_event
= perf_event_alloc(&parent_event
->attr
,
10502 group_leader
, parent_event
,
10504 if (IS_ERR(child_event
))
10505 return child_event
;
10508 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10509 * must be under the same lock in order to serialize against
10510 * perf_event_release_kernel(), such that either we must observe
10511 * is_orphaned_event() or they will observe us on the child_list.
10513 mutex_lock(&parent_event
->child_mutex
);
10514 if (is_orphaned_event(parent_event
) ||
10515 !atomic_long_inc_not_zero(&parent_event
->refcount
)) {
10516 mutex_unlock(&parent_event
->child_mutex
);
10517 free_event(child_event
);
10521 get_ctx(child_ctx
);
10524 * Make the child state follow the state of the parent event,
10525 * not its attr.disabled bit. We hold the parent's mutex,
10526 * so we won't race with perf_event_{en, dis}able_family.
10528 if (parent_state
>= PERF_EVENT_STATE_INACTIVE
)
10529 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
10531 child_event
->state
= PERF_EVENT_STATE_OFF
;
10533 if (parent_event
->attr
.freq
) {
10534 u64 sample_period
= parent_event
->hw
.sample_period
;
10535 struct hw_perf_event
*hwc
= &child_event
->hw
;
10537 hwc
->sample_period
= sample_period
;
10538 hwc
->last_period
= sample_period
;
10540 local64_set(&hwc
->period_left
, sample_period
);
10543 child_event
->ctx
= child_ctx
;
10544 child_event
->overflow_handler
= parent_event
->overflow_handler
;
10545 child_event
->overflow_handler_context
10546 = parent_event
->overflow_handler_context
;
10549 * Precalculate sample_data sizes
10551 perf_event__header_size(child_event
);
10552 perf_event__id_header_size(child_event
);
10555 * Link it up in the child's context:
10557 raw_spin_lock_irqsave(&child_ctx
->lock
, flags
);
10558 add_event_to_ctx(child_event
, child_ctx
);
10559 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
10562 * Link this into the parent event's child list
10564 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
10565 mutex_unlock(&parent_event
->child_mutex
);
10567 return child_event
;
10570 static int inherit_group(struct perf_event
*parent_event
,
10571 struct task_struct
*parent
,
10572 struct perf_event_context
*parent_ctx
,
10573 struct task_struct
*child
,
10574 struct perf_event_context
*child_ctx
)
10576 struct perf_event
*leader
;
10577 struct perf_event
*sub
;
10578 struct perf_event
*child_ctr
;
10580 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
10581 child
, NULL
, child_ctx
);
10582 if (IS_ERR(leader
))
10583 return PTR_ERR(leader
);
10584 list_for_each_entry(sub
, &parent_event
->sibling_list
, group_entry
) {
10585 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
10586 child
, leader
, child_ctx
);
10587 if (IS_ERR(child_ctr
))
10588 return PTR_ERR(child_ctr
);
10594 inherit_task_group(struct perf_event
*event
, struct task_struct
*parent
,
10595 struct perf_event_context
*parent_ctx
,
10596 struct task_struct
*child
, int ctxn
,
10597 int *inherited_all
)
10600 struct perf_event_context
*child_ctx
;
10602 if (!event
->attr
.inherit
) {
10603 *inherited_all
= 0;
10607 child_ctx
= child
->perf_event_ctxp
[ctxn
];
10610 * This is executed from the parent task context, so
10611 * inherit events that have been marked for cloning.
10612 * First allocate and initialize a context for the
10616 child_ctx
= alloc_perf_context(parent_ctx
->pmu
, child
);
10620 child
->perf_event_ctxp
[ctxn
] = child_ctx
;
10623 ret
= inherit_group(event
, parent
, parent_ctx
,
10627 *inherited_all
= 0;
10633 * Initialize the perf_event context in task_struct
10635 static int perf_event_init_context(struct task_struct
*child
, int ctxn
)
10637 struct perf_event_context
*child_ctx
, *parent_ctx
;
10638 struct perf_event_context
*cloned_ctx
;
10639 struct perf_event
*event
;
10640 struct task_struct
*parent
= current
;
10641 int inherited_all
= 1;
10642 unsigned long flags
;
10645 if (likely(!parent
->perf_event_ctxp
[ctxn
]))
10649 * If the parent's context is a clone, pin it so it won't get
10650 * swapped under us.
10652 parent_ctx
= perf_pin_task_context(parent
, ctxn
);
10657 * No need to check if parent_ctx != NULL here; since we saw
10658 * it non-NULL earlier, the only reason for it to become NULL
10659 * is if we exit, and since we're currently in the middle of
10660 * a fork we can't be exiting at the same time.
10664 * Lock the parent list. No need to lock the child - not PID
10665 * hashed yet and not running, so nobody can access it.
10667 mutex_lock(&parent_ctx
->mutex
);
10670 * We dont have to disable NMIs - we are only looking at
10671 * the list, not manipulating it:
10673 list_for_each_entry(event
, &parent_ctx
->pinned_groups
, group_entry
) {
10674 ret
= inherit_task_group(event
, parent
, parent_ctx
,
10675 child
, ctxn
, &inherited_all
);
10681 * We can't hold ctx->lock when iterating the ->flexible_group list due
10682 * to allocations, but we need to prevent rotation because
10683 * rotate_ctx() will change the list from interrupt context.
10685 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
10686 parent_ctx
->rotate_disable
= 1;
10687 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
10689 list_for_each_entry(event
, &parent_ctx
->flexible_groups
, group_entry
) {
10690 ret
= inherit_task_group(event
, parent
, parent_ctx
,
10691 child
, ctxn
, &inherited_all
);
10696 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
10697 parent_ctx
->rotate_disable
= 0;
10699 child_ctx
= child
->perf_event_ctxp
[ctxn
];
10701 if (child_ctx
&& inherited_all
) {
10703 * Mark the child context as a clone of the parent
10704 * context, or of whatever the parent is a clone of.
10706 * Note that if the parent is a clone, the holding of
10707 * parent_ctx->lock avoids it from being uncloned.
10709 cloned_ctx
= parent_ctx
->parent_ctx
;
10711 child_ctx
->parent_ctx
= cloned_ctx
;
10712 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
10714 child_ctx
->parent_ctx
= parent_ctx
;
10715 child_ctx
->parent_gen
= parent_ctx
->generation
;
10717 get_ctx(child_ctx
->parent_ctx
);
10720 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
10722 mutex_unlock(&parent_ctx
->mutex
);
10724 perf_unpin_context(parent_ctx
);
10725 put_ctx(parent_ctx
);
10731 * Initialize the perf_event context in task_struct
10733 int perf_event_init_task(struct task_struct
*child
)
10737 memset(child
->perf_event_ctxp
, 0, sizeof(child
->perf_event_ctxp
));
10738 mutex_init(&child
->perf_event_mutex
);
10739 INIT_LIST_HEAD(&child
->perf_event_list
);
10741 for_each_task_context_nr(ctxn
) {
10742 ret
= perf_event_init_context(child
, ctxn
);
10744 perf_event_free_task(child
);
10752 static void __init
perf_event_init_all_cpus(void)
10754 struct swevent_htable
*swhash
;
10757 for_each_possible_cpu(cpu
) {
10758 swhash
= &per_cpu(swevent_htable
, cpu
);
10759 mutex_init(&swhash
->hlist_mutex
);
10760 INIT_LIST_HEAD(&per_cpu(active_ctx_list
, cpu
));
10762 INIT_LIST_HEAD(&per_cpu(pmu_sb_events
.list
, cpu
));
10763 raw_spin_lock_init(&per_cpu(pmu_sb_events
.lock
, cpu
));
10765 INIT_LIST_HEAD(&per_cpu(sched_cb_list
, cpu
));
10769 int perf_event_init_cpu(unsigned int cpu
)
10771 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
10773 mutex_lock(&swhash
->hlist_mutex
);
10774 if (swhash
->hlist_refcount
> 0 && !swevent_hlist_deref(swhash
)) {
10775 struct swevent_hlist
*hlist
;
10777 hlist
= kzalloc_node(sizeof(*hlist
), GFP_KERNEL
, cpu_to_node(cpu
));
10779 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
10781 mutex_unlock(&swhash
->hlist_mutex
);
10785 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10786 static void __perf_event_exit_context(void *__info
)
10788 struct perf_event_context
*ctx
= __info
;
10789 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
10790 struct perf_event
*event
;
10792 raw_spin_lock(&ctx
->lock
);
10793 list_for_each_entry(event
, &ctx
->event_list
, event_entry
)
10794 __perf_remove_from_context(event
, cpuctx
, ctx
, (void *)DETACH_GROUP
);
10795 raw_spin_unlock(&ctx
->lock
);
10798 static void perf_event_exit_cpu_context(int cpu
)
10800 struct perf_event_context
*ctx
;
10804 idx
= srcu_read_lock(&pmus_srcu
);
10805 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
10806 ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
)->ctx
;
10808 mutex_lock(&ctx
->mutex
);
10809 smp_call_function_single(cpu
, __perf_event_exit_context
, ctx
, 1);
10810 mutex_unlock(&ctx
->mutex
);
10812 srcu_read_unlock(&pmus_srcu
, idx
);
10816 static void perf_event_exit_cpu_context(int cpu
) { }
10820 int perf_event_exit_cpu(unsigned int cpu
)
10822 perf_event_exit_cpu_context(cpu
);
10827 perf_reboot(struct notifier_block
*notifier
, unsigned long val
, void *v
)
10831 for_each_online_cpu(cpu
)
10832 perf_event_exit_cpu(cpu
);
10838 * Run the perf reboot notifier at the very last possible moment so that
10839 * the generic watchdog code runs as long as possible.
10841 static struct notifier_block perf_reboot_notifier
= {
10842 .notifier_call
= perf_reboot
,
10843 .priority
= INT_MIN
,
10846 void __init
perf_event_init(void)
10850 idr_init(&pmu_idr
);
10852 perf_event_init_all_cpus();
10853 init_srcu_struct(&pmus_srcu
);
10854 perf_pmu_register(&perf_swevent
, "software", PERF_TYPE_SOFTWARE
);
10855 perf_pmu_register(&perf_cpu_clock
, NULL
, -1);
10856 perf_pmu_register(&perf_task_clock
, NULL
, -1);
10857 perf_tp_register();
10858 perf_event_init_cpu(smp_processor_id());
10859 register_reboot_notifier(&perf_reboot_notifier
);
10861 ret
= init_hw_breakpoint();
10862 WARN(ret
, "hw_breakpoint initialization failed with: %d", ret
);
10865 * Build time assertion that we keep the data_head at the intended
10866 * location. IOW, validation we got the __reserved[] size right.
10868 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page
, data_head
))
10872 ssize_t
perf_event_sysfs_show(struct device
*dev
, struct device_attribute
*attr
,
10875 struct perf_pmu_events_attr
*pmu_attr
=
10876 container_of(attr
, struct perf_pmu_events_attr
, attr
);
10878 if (pmu_attr
->event_str
)
10879 return sprintf(page
, "%s\n", pmu_attr
->event_str
);
10883 EXPORT_SYMBOL_GPL(perf_event_sysfs_show
);
10885 static int __init
perf_event_sysfs_init(void)
10890 mutex_lock(&pmus_lock
);
10892 ret
= bus_register(&pmu_bus
);
10896 list_for_each_entry(pmu
, &pmus
, entry
) {
10897 if (!pmu
->name
|| pmu
->type
< 0)
10900 ret
= pmu_dev_alloc(pmu
);
10901 WARN(ret
, "Failed to register pmu: %s, reason %d\n", pmu
->name
, ret
);
10903 pmu_bus_running
= 1;
10907 mutex_unlock(&pmus_lock
);
10911 device_initcall(perf_event_sysfs_init
);
10913 #ifdef CONFIG_CGROUP_PERF
10914 static struct cgroup_subsys_state
*
10915 perf_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
10917 struct perf_cgroup
*jc
;
10919 jc
= kzalloc(sizeof(*jc
), GFP_KERNEL
);
10921 return ERR_PTR(-ENOMEM
);
10923 jc
->info
= alloc_percpu(struct perf_cgroup_info
);
10926 return ERR_PTR(-ENOMEM
);
10932 static void perf_cgroup_css_free(struct cgroup_subsys_state
*css
)
10934 struct perf_cgroup
*jc
= container_of(css
, struct perf_cgroup
, css
);
10936 free_percpu(jc
->info
);
10940 static int __perf_cgroup_move(void *info
)
10942 struct task_struct
*task
= info
;
10944 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
| PERF_CGROUP_SWIN
);
10949 static void perf_cgroup_attach(struct cgroup_taskset
*tset
)
10951 struct task_struct
*task
;
10952 struct cgroup_subsys_state
*css
;
10954 cgroup_taskset_for_each(task
, css
, tset
)
10955 task_function_call(task
, __perf_cgroup_move
, task
);
10958 struct cgroup_subsys perf_event_cgrp_subsys
= {
10959 .css_alloc
= perf_cgroup_css_alloc
,
10960 .css_free
= perf_cgroup_css_free
,
10961 .attach
= perf_cgroup_attach
,
10963 #endif /* CONFIG_CGROUP_PERF */