Linux 4.9.151
[linux/fpc-iii.git] / kernel / events / core.c
blob1af0bbf209848b0c1f6eaea3acc9030b451281fc
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
50 #include "internal.h"
52 #include <asm/irq_regs.h>
54 typedef int (*remote_function_f)(void *);
56 struct remote_function_call {
57 struct task_struct *p;
58 remote_function_f func;
59 void *info;
60 int ret;
63 static void remote_function(void *data)
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
68 if (p) {
69 /* -EAGAIN */
70 if (task_cpu(p) != smp_processor_id())
71 return;
74 * Now that we're on right CPU with IRQs disabled, we can test
75 * if we hit the right task without races.
78 tfc->ret = -ESRCH; /* No such (running) process */
79 if (p != current)
80 return;
83 tfc->ret = tfc->func(tfc->info);
86 /**
87 * task_function_call - call a function on the cpu on which a task runs
88 * @p: the task to evaluate
89 * @func: the function to be called
90 * @info: the function call argument
92 * Calls the function @func when the task is currently running. This might
93 * be on the current CPU, which just calls the function directly
95 * returns: @func return value, or
96 * -ESRCH - when the process isn't running
97 * -EAGAIN - when the process moved away
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
102 struct remote_function_call data = {
103 .p = p,
104 .func = func,
105 .info = info,
106 .ret = -EAGAIN,
108 int ret;
110 do {
111 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 if (!ret)
113 ret = data.ret;
114 } while (ret == -EAGAIN);
116 return ret;
120 * cpu_function_call - call a function on the cpu
121 * @func: the function to be called
122 * @info: the function call argument
124 * Calls the function @func on the remote cpu.
126 * returns: @func return value or -ENXIO when the cpu is offline
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
130 struct remote_function_call data = {
131 .p = NULL,
132 .func = func,
133 .info = info,
134 .ret = -ENXIO, /* No such CPU */
137 smp_call_function_single(cpu, remote_function, &data, 1);
139 return data.ret;
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
145 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 struct perf_event_context *ctx)
151 raw_spin_lock(&cpuctx->ctx.lock);
152 if (ctx)
153 raw_spin_lock(&ctx->lock);
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 struct perf_event_context *ctx)
159 if (ctx)
160 raw_spin_unlock(&ctx->lock);
161 raw_spin_unlock(&cpuctx->ctx.lock);
164 #define TASK_TOMBSTONE ((void *)-1L)
166 static bool is_kernel_event(struct perf_event *event)
168 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
172 * On task ctx scheduling...
174 * When !ctx->nr_events a task context will not be scheduled. This means
175 * we can disable the scheduler hooks (for performance) without leaving
176 * pending task ctx state.
178 * This however results in two special cases:
180 * - removing the last event from a task ctx; this is relatively straight
181 * forward and is done in __perf_remove_from_context.
183 * - adding the first event to a task ctx; this is tricky because we cannot
184 * rely on ctx->is_active and therefore cannot use event_function_call().
185 * See perf_install_in_context().
187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 struct perf_event_context *, void *);
193 struct event_function_struct {
194 struct perf_event *event;
195 event_f func;
196 void *data;
199 static int event_function(void *info)
201 struct event_function_struct *efs = info;
202 struct perf_event *event = efs->event;
203 struct perf_event_context *ctx = event->ctx;
204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 struct perf_event_context *task_ctx = cpuctx->task_ctx;
206 int ret = 0;
208 WARN_ON_ONCE(!irqs_disabled());
210 perf_ctx_lock(cpuctx, task_ctx);
212 * Since we do the IPI call without holding ctx->lock things can have
213 * changed, double check we hit the task we set out to hit.
215 if (ctx->task) {
216 if (ctx->task != current) {
217 ret = -ESRCH;
218 goto unlock;
222 * We only use event_function_call() on established contexts,
223 * and event_function() is only ever called when active (or
224 * rather, we'll have bailed in task_function_call() or the
225 * above ctx->task != current test), therefore we must have
226 * ctx->is_active here.
228 WARN_ON_ONCE(!ctx->is_active);
230 * And since we have ctx->is_active, cpuctx->task_ctx must
231 * match.
233 WARN_ON_ONCE(task_ctx != ctx);
234 } else {
235 WARN_ON_ONCE(&cpuctx->ctx != ctx);
238 efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240 perf_ctx_unlock(cpuctx, task_ctx);
242 return ret;
245 static void event_function_call(struct perf_event *event, event_f func, void *data)
247 struct perf_event_context *ctx = event->ctx;
248 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249 struct event_function_struct efs = {
250 .event = event,
251 .func = func,
252 .data = data,
255 if (!event->parent) {
257 * If this is a !child event, we must hold ctx::mutex to
258 * stabilize the the event->ctx relation. See
259 * perf_event_ctx_lock().
261 lockdep_assert_held(&ctx->mutex);
264 if (!task) {
265 cpu_function_call(event->cpu, event_function, &efs);
266 return;
269 if (task == TASK_TOMBSTONE)
270 return;
272 again:
273 if (!task_function_call(task, event_function, &efs))
274 return;
276 raw_spin_lock_irq(&ctx->lock);
278 * Reload the task pointer, it might have been changed by
279 * a concurrent perf_event_context_sched_out().
281 task = ctx->task;
282 if (task == TASK_TOMBSTONE) {
283 raw_spin_unlock_irq(&ctx->lock);
284 return;
286 if (ctx->is_active) {
287 raw_spin_unlock_irq(&ctx->lock);
288 goto again;
290 func(event, NULL, ctx, data);
291 raw_spin_unlock_irq(&ctx->lock);
295 * Similar to event_function_call() + event_function(), but hard assumes IRQs
296 * are already disabled and we're on the right CPU.
298 static void event_function_local(struct perf_event *event, event_f func, void *data)
300 struct perf_event_context *ctx = event->ctx;
301 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302 struct task_struct *task = READ_ONCE(ctx->task);
303 struct perf_event_context *task_ctx = NULL;
305 WARN_ON_ONCE(!irqs_disabled());
307 if (task) {
308 if (task == TASK_TOMBSTONE)
309 return;
311 task_ctx = ctx;
314 perf_ctx_lock(cpuctx, task_ctx);
316 task = ctx->task;
317 if (task == TASK_TOMBSTONE)
318 goto unlock;
320 if (task) {
322 * We must be either inactive or active and the right task,
323 * otherwise we're screwed, since we cannot IPI to somewhere
324 * else.
326 if (ctx->is_active) {
327 if (WARN_ON_ONCE(task != current))
328 goto unlock;
330 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331 goto unlock;
333 } else {
334 WARN_ON_ONCE(&cpuctx->ctx != ctx);
337 func(event, cpuctx, ctx, data);
338 unlock:
339 perf_ctx_unlock(cpuctx, task_ctx);
342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343 PERF_FLAG_FD_OUTPUT |\
344 PERF_FLAG_PID_CGROUP |\
345 PERF_FLAG_FD_CLOEXEC)
348 * branch priv levels that need permission checks
350 #define PERF_SAMPLE_BRANCH_PERM_PLM \
351 (PERF_SAMPLE_BRANCH_KERNEL |\
352 PERF_SAMPLE_BRANCH_HV)
354 enum event_type_t {
355 EVENT_FLEXIBLE = 0x1,
356 EVENT_PINNED = 0x2,
357 EVENT_TIME = 0x4,
358 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
362 * perf_sched_events : >0 events exist
363 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
366 static void perf_sched_delayed(struct work_struct *work);
367 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
368 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
369 static DEFINE_MUTEX(perf_sched_mutex);
370 static atomic_t perf_sched_count;
372 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
373 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
374 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
376 static atomic_t nr_mmap_events __read_mostly;
377 static atomic_t nr_comm_events __read_mostly;
378 static atomic_t nr_task_events __read_mostly;
379 static atomic_t nr_freq_events __read_mostly;
380 static atomic_t nr_switch_events __read_mostly;
382 static LIST_HEAD(pmus);
383 static DEFINE_MUTEX(pmus_lock);
384 static struct srcu_struct pmus_srcu;
387 * perf event paranoia level:
388 * -1 - not paranoid at all
389 * 0 - disallow raw tracepoint access for unpriv
390 * 1 - disallow cpu events for unpriv
391 * 2 - disallow kernel profiling for unpriv
393 int sysctl_perf_event_paranoid __read_mostly = 2;
395 /* Minimum for 512 kiB + 1 user control page */
396 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
399 * max perf event sample rate
401 #define DEFAULT_MAX_SAMPLE_RATE 100000
402 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
403 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
405 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
407 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
408 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
410 static int perf_sample_allowed_ns __read_mostly =
411 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
413 static void update_perf_cpu_limits(void)
415 u64 tmp = perf_sample_period_ns;
417 tmp *= sysctl_perf_cpu_time_max_percent;
418 tmp = div_u64(tmp, 100);
419 if (!tmp)
420 tmp = 1;
422 WRITE_ONCE(perf_sample_allowed_ns, tmp);
425 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
427 int perf_proc_update_handler(struct ctl_table *table, int write,
428 void __user *buffer, size_t *lenp,
429 loff_t *ppos)
431 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
433 if (ret || !write)
434 return ret;
437 * If throttling is disabled don't allow the write:
439 if (sysctl_perf_cpu_time_max_percent == 100 ||
440 sysctl_perf_cpu_time_max_percent == 0)
441 return -EINVAL;
443 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
444 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
445 update_perf_cpu_limits();
447 return 0;
450 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
452 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
453 void __user *buffer, size_t *lenp,
454 loff_t *ppos)
456 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
458 if (ret || !write)
459 return ret;
461 if (sysctl_perf_cpu_time_max_percent == 100 ||
462 sysctl_perf_cpu_time_max_percent == 0) {
463 printk(KERN_WARNING
464 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
465 WRITE_ONCE(perf_sample_allowed_ns, 0);
466 } else {
467 update_perf_cpu_limits();
470 return 0;
474 * perf samples are done in some very critical code paths (NMIs).
475 * If they take too much CPU time, the system can lock up and not
476 * get any real work done. This will drop the sample rate when
477 * we detect that events are taking too long.
479 #define NR_ACCUMULATED_SAMPLES 128
480 static DEFINE_PER_CPU(u64, running_sample_length);
482 static u64 __report_avg;
483 static u64 __report_allowed;
485 static void perf_duration_warn(struct irq_work *w)
487 printk_ratelimited(KERN_INFO
488 "perf: interrupt took too long (%lld > %lld), lowering "
489 "kernel.perf_event_max_sample_rate to %d\n",
490 __report_avg, __report_allowed,
491 sysctl_perf_event_sample_rate);
494 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
496 void perf_sample_event_took(u64 sample_len_ns)
498 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
499 u64 running_len;
500 u64 avg_len;
501 u32 max;
503 if (max_len == 0)
504 return;
506 /* Decay the counter by 1 average sample. */
507 running_len = __this_cpu_read(running_sample_length);
508 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
509 running_len += sample_len_ns;
510 __this_cpu_write(running_sample_length, running_len);
513 * Note: this will be biased artifically low until we have
514 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
515 * from having to maintain a count.
517 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
518 if (avg_len <= max_len)
519 return;
521 __report_avg = avg_len;
522 __report_allowed = max_len;
525 * Compute a throttle threshold 25% below the current duration.
527 avg_len += avg_len / 4;
528 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
529 if (avg_len < max)
530 max /= (u32)avg_len;
531 else
532 max = 1;
534 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
535 WRITE_ONCE(max_samples_per_tick, max);
537 sysctl_perf_event_sample_rate = max * HZ;
538 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
540 if (!irq_work_queue(&perf_duration_work)) {
541 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
542 "kernel.perf_event_max_sample_rate to %d\n",
543 __report_avg, __report_allowed,
544 sysctl_perf_event_sample_rate);
548 static atomic64_t perf_event_id;
550 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
551 enum event_type_t event_type);
553 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
554 enum event_type_t event_type,
555 struct task_struct *task);
557 static void update_context_time(struct perf_event_context *ctx);
558 static u64 perf_event_time(struct perf_event *event);
560 void __weak perf_event_print_debug(void) { }
562 extern __weak const char *perf_pmu_name(void)
564 return "pmu";
567 static inline u64 perf_clock(void)
569 return local_clock();
572 static inline u64 perf_event_clock(struct perf_event *event)
574 return event->clock();
577 #ifdef CONFIG_CGROUP_PERF
579 static inline bool
580 perf_cgroup_match(struct perf_event *event)
582 struct perf_event_context *ctx = event->ctx;
583 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
585 /* @event doesn't care about cgroup */
586 if (!event->cgrp)
587 return true;
589 /* wants specific cgroup scope but @cpuctx isn't associated with any */
590 if (!cpuctx->cgrp)
591 return false;
594 * Cgroup scoping is recursive. An event enabled for a cgroup is
595 * also enabled for all its descendant cgroups. If @cpuctx's
596 * cgroup is a descendant of @event's (the test covers identity
597 * case), it's a match.
599 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
600 event->cgrp->css.cgroup);
603 static inline void perf_detach_cgroup(struct perf_event *event)
605 css_put(&event->cgrp->css);
606 event->cgrp = NULL;
609 static inline int is_cgroup_event(struct perf_event *event)
611 return event->cgrp != NULL;
614 static inline u64 perf_cgroup_event_time(struct perf_event *event)
616 struct perf_cgroup_info *t;
618 t = per_cpu_ptr(event->cgrp->info, event->cpu);
619 return t->time;
622 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
624 struct perf_cgroup_info *info;
625 u64 now;
627 now = perf_clock();
629 info = this_cpu_ptr(cgrp->info);
631 info->time += now - info->timestamp;
632 info->timestamp = now;
635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
637 struct perf_cgroup *cgrp = cpuctx->cgrp;
638 struct cgroup_subsys_state *css;
640 if (cgrp) {
641 for (css = &cgrp->css; css; css = css->parent) {
642 cgrp = container_of(css, struct perf_cgroup, css);
643 __update_cgrp_time(cgrp);
648 static inline void update_cgrp_time_from_event(struct perf_event *event)
650 struct perf_cgroup *cgrp;
653 * ensure we access cgroup data only when needed and
654 * when we know the cgroup is pinned (css_get)
656 if (!is_cgroup_event(event))
657 return;
659 cgrp = perf_cgroup_from_task(current, event->ctx);
661 * Do not update time when cgroup is not active
663 if (cgrp == event->cgrp)
664 __update_cgrp_time(event->cgrp);
667 static inline void
668 perf_cgroup_set_timestamp(struct task_struct *task,
669 struct perf_event_context *ctx)
671 struct perf_cgroup *cgrp;
672 struct perf_cgroup_info *info;
673 struct cgroup_subsys_state *css;
676 * ctx->lock held by caller
677 * ensure we do not access cgroup data
678 * unless we have the cgroup pinned (css_get)
680 if (!task || !ctx->nr_cgroups)
681 return;
683 cgrp = perf_cgroup_from_task(task, ctx);
685 for (css = &cgrp->css; css; css = css->parent) {
686 cgrp = container_of(css, struct perf_cgroup, css);
687 info = this_cpu_ptr(cgrp->info);
688 info->timestamp = ctx->timestamp;
692 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
693 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
696 * reschedule events based on the cgroup constraint of task.
698 * mode SWOUT : schedule out everything
699 * mode SWIN : schedule in based on cgroup for next
701 static void perf_cgroup_switch(struct task_struct *task, int mode)
703 struct perf_cpu_context *cpuctx;
704 struct pmu *pmu;
705 unsigned long flags;
708 * disable interrupts to avoid geting nr_cgroup
709 * changes via __perf_event_disable(). Also
710 * avoids preemption.
712 local_irq_save(flags);
715 * we reschedule only in the presence of cgroup
716 * constrained events.
719 list_for_each_entry_rcu(pmu, &pmus, entry) {
720 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
721 if (cpuctx->unique_pmu != pmu)
722 continue; /* ensure we process each cpuctx once */
725 * perf_cgroup_events says at least one
726 * context on this CPU has cgroup events.
728 * ctx->nr_cgroups reports the number of cgroup
729 * events for a context.
731 if (cpuctx->ctx.nr_cgroups > 0) {
732 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
733 perf_pmu_disable(cpuctx->ctx.pmu);
735 if (mode & PERF_CGROUP_SWOUT) {
736 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
738 * must not be done before ctxswout due
739 * to event_filter_match() in event_sched_out()
741 cpuctx->cgrp = NULL;
744 if (mode & PERF_CGROUP_SWIN) {
745 WARN_ON_ONCE(cpuctx->cgrp);
747 * set cgrp before ctxsw in to allow
748 * event_filter_match() to not have to pass
749 * task around
750 * we pass the cpuctx->ctx to perf_cgroup_from_task()
751 * because cgorup events are only per-cpu
753 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
754 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
756 perf_pmu_enable(cpuctx->ctx.pmu);
757 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
761 local_irq_restore(flags);
764 static inline void perf_cgroup_sched_out(struct task_struct *task,
765 struct task_struct *next)
767 struct perf_cgroup *cgrp1;
768 struct perf_cgroup *cgrp2 = NULL;
770 rcu_read_lock();
772 * we come here when we know perf_cgroup_events > 0
773 * we do not need to pass the ctx here because we know
774 * we are holding the rcu lock
776 cgrp1 = perf_cgroup_from_task(task, NULL);
777 cgrp2 = perf_cgroup_from_task(next, NULL);
780 * only schedule out current cgroup events if we know
781 * that we are switching to a different cgroup. Otherwise,
782 * do no touch the cgroup events.
784 if (cgrp1 != cgrp2)
785 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
787 rcu_read_unlock();
790 static inline void perf_cgroup_sched_in(struct task_struct *prev,
791 struct task_struct *task)
793 struct perf_cgroup *cgrp1;
794 struct perf_cgroup *cgrp2 = NULL;
796 rcu_read_lock();
798 * we come here when we know perf_cgroup_events > 0
799 * we do not need to pass the ctx here because we know
800 * we are holding the rcu lock
802 cgrp1 = perf_cgroup_from_task(task, NULL);
803 cgrp2 = perf_cgroup_from_task(prev, NULL);
806 * only need to schedule in cgroup events if we are changing
807 * cgroup during ctxsw. Cgroup events were not scheduled
808 * out of ctxsw out if that was not the case.
810 if (cgrp1 != cgrp2)
811 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
813 rcu_read_unlock();
816 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
817 struct perf_event_attr *attr,
818 struct perf_event *group_leader)
820 struct perf_cgroup *cgrp;
821 struct cgroup_subsys_state *css;
822 struct fd f = fdget(fd);
823 int ret = 0;
825 if (!f.file)
826 return -EBADF;
828 css = css_tryget_online_from_dir(f.file->f_path.dentry,
829 &perf_event_cgrp_subsys);
830 if (IS_ERR(css)) {
831 ret = PTR_ERR(css);
832 goto out;
835 cgrp = container_of(css, struct perf_cgroup, css);
836 event->cgrp = cgrp;
839 * all events in a group must monitor
840 * the same cgroup because a task belongs
841 * to only one perf cgroup at a time
843 if (group_leader && group_leader->cgrp != cgrp) {
844 perf_detach_cgroup(event);
845 ret = -EINVAL;
847 out:
848 fdput(f);
849 return ret;
852 static inline void
853 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
855 struct perf_cgroup_info *t;
856 t = per_cpu_ptr(event->cgrp->info, event->cpu);
857 event->shadow_ctx_time = now - t->timestamp;
860 static inline void
861 perf_cgroup_defer_enabled(struct perf_event *event)
864 * when the current task's perf cgroup does not match
865 * the event's, we need to remember to call the
866 * perf_mark_enable() function the first time a task with
867 * a matching perf cgroup is scheduled in.
869 if (is_cgroup_event(event) && !perf_cgroup_match(event))
870 event->cgrp_defer_enabled = 1;
873 static inline void
874 perf_cgroup_mark_enabled(struct perf_event *event,
875 struct perf_event_context *ctx)
877 struct perf_event *sub;
878 u64 tstamp = perf_event_time(event);
880 if (!event->cgrp_defer_enabled)
881 return;
883 event->cgrp_defer_enabled = 0;
885 event->tstamp_enabled = tstamp - event->total_time_enabled;
886 list_for_each_entry(sub, &event->sibling_list, group_entry) {
887 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
888 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
889 sub->cgrp_defer_enabled = 0;
895 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
896 * cleared when last cgroup event is removed.
898 static inline void
899 list_update_cgroup_event(struct perf_event *event,
900 struct perf_event_context *ctx, bool add)
902 struct perf_cpu_context *cpuctx;
904 if (!is_cgroup_event(event))
905 return;
907 if (add && ctx->nr_cgroups++)
908 return;
909 else if (!add && --ctx->nr_cgroups)
910 return;
912 * Because cgroup events are always per-cpu events,
913 * this will always be called from the right CPU.
915 cpuctx = __get_cpu_context(ctx);
918 * cpuctx->cgrp is NULL until a cgroup event is sched in or
919 * ctx->nr_cgroup == 0 .
921 if (add && perf_cgroup_from_task(current, ctx) == event->cgrp)
922 cpuctx->cgrp = event->cgrp;
923 else if (!add)
924 cpuctx->cgrp = NULL;
927 #else /* !CONFIG_CGROUP_PERF */
929 static inline bool
930 perf_cgroup_match(struct perf_event *event)
932 return true;
935 static inline void perf_detach_cgroup(struct perf_event *event)
938 static inline int is_cgroup_event(struct perf_event *event)
940 return 0;
943 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
945 return 0;
948 static inline void update_cgrp_time_from_event(struct perf_event *event)
952 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
956 static inline void perf_cgroup_sched_out(struct task_struct *task,
957 struct task_struct *next)
961 static inline void perf_cgroup_sched_in(struct task_struct *prev,
962 struct task_struct *task)
966 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
967 struct perf_event_attr *attr,
968 struct perf_event *group_leader)
970 return -EINVAL;
973 static inline void
974 perf_cgroup_set_timestamp(struct task_struct *task,
975 struct perf_event_context *ctx)
979 void
980 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
984 static inline void
985 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
989 static inline u64 perf_cgroup_event_time(struct perf_event *event)
991 return 0;
994 static inline void
995 perf_cgroup_defer_enabled(struct perf_event *event)
999 static inline void
1000 perf_cgroup_mark_enabled(struct perf_event *event,
1001 struct perf_event_context *ctx)
1005 static inline void
1006 list_update_cgroup_event(struct perf_event *event,
1007 struct perf_event_context *ctx, bool add)
1011 #endif
1014 * set default to be dependent on timer tick just
1015 * like original code
1017 #define PERF_CPU_HRTIMER (1000 / HZ)
1019 * function must be called with interrupts disbled
1021 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1023 struct perf_cpu_context *cpuctx;
1024 int rotations = 0;
1026 WARN_ON(!irqs_disabled());
1028 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1029 rotations = perf_rotate_context(cpuctx);
1031 raw_spin_lock(&cpuctx->hrtimer_lock);
1032 if (rotations)
1033 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1034 else
1035 cpuctx->hrtimer_active = 0;
1036 raw_spin_unlock(&cpuctx->hrtimer_lock);
1038 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1041 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1043 struct hrtimer *timer = &cpuctx->hrtimer;
1044 struct pmu *pmu = cpuctx->ctx.pmu;
1045 u64 interval;
1047 /* no multiplexing needed for SW PMU */
1048 if (pmu->task_ctx_nr == perf_sw_context)
1049 return;
1052 * check default is sane, if not set then force to
1053 * default interval (1/tick)
1055 interval = pmu->hrtimer_interval_ms;
1056 if (interval < 1)
1057 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1059 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1061 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1062 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1063 timer->function = perf_mux_hrtimer_handler;
1066 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1068 struct hrtimer *timer = &cpuctx->hrtimer;
1069 struct pmu *pmu = cpuctx->ctx.pmu;
1070 unsigned long flags;
1072 /* not for SW PMU */
1073 if (pmu->task_ctx_nr == perf_sw_context)
1074 return 0;
1076 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1077 if (!cpuctx->hrtimer_active) {
1078 cpuctx->hrtimer_active = 1;
1079 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1080 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1082 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1084 return 0;
1087 void perf_pmu_disable(struct pmu *pmu)
1089 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1090 if (!(*count)++)
1091 pmu->pmu_disable(pmu);
1094 void perf_pmu_enable(struct pmu *pmu)
1096 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1097 if (!--(*count))
1098 pmu->pmu_enable(pmu);
1101 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1104 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1105 * perf_event_task_tick() are fully serialized because they're strictly cpu
1106 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1107 * disabled, while perf_event_task_tick is called from IRQ context.
1109 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1111 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1113 WARN_ON(!irqs_disabled());
1115 WARN_ON(!list_empty(&ctx->active_ctx_list));
1117 list_add(&ctx->active_ctx_list, head);
1120 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1122 WARN_ON(!irqs_disabled());
1124 WARN_ON(list_empty(&ctx->active_ctx_list));
1126 list_del_init(&ctx->active_ctx_list);
1129 static void get_ctx(struct perf_event_context *ctx)
1131 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1134 static void free_ctx(struct rcu_head *head)
1136 struct perf_event_context *ctx;
1138 ctx = container_of(head, struct perf_event_context, rcu_head);
1139 kfree(ctx->task_ctx_data);
1140 kfree(ctx);
1143 static void put_ctx(struct perf_event_context *ctx)
1145 if (atomic_dec_and_test(&ctx->refcount)) {
1146 if (ctx->parent_ctx)
1147 put_ctx(ctx->parent_ctx);
1148 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1149 put_task_struct(ctx->task);
1150 call_rcu(&ctx->rcu_head, free_ctx);
1155 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1156 * perf_pmu_migrate_context() we need some magic.
1158 * Those places that change perf_event::ctx will hold both
1159 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1161 * Lock ordering is by mutex address. There are two other sites where
1162 * perf_event_context::mutex nests and those are:
1164 * - perf_event_exit_task_context() [ child , 0 ]
1165 * perf_event_exit_event()
1166 * put_event() [ parent, 1 ]
1168 * - perf_event_init_context() [ parent, 0 ]
1169 * inherit_task_group()
1170 * inherit_group()
1171 * inherit_event()
1172 * perf_event_alloc()
1173 * perf_init_event()
1174 * perf_try_init_event() [ child , 1 ]
1176 * While it appears there is an obvious deadlock here -- the parent and child
1177 * nesting levels are inverted between the two. This is in fact safe because
1178 * life-time rules separate them. That is an exiting task cannot fork, and a
1179 * spawning task cannot (yet) exit.
1181 * But remember that that these are parent<->child context relations, and
1182 * migration does not affect children, therefore these two orderings should not
1183 * interact.
1185 * The change in perf_event::ctx does not affect children (as claimed above)
1186 * because the sys_perf_event_open() case will install a new event and break
1187 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1188 * concerned with cpuctx and that doesn't have children.
1190 * The places that change perf_event::ctx will issue:
1192 * perf_remove_from_context();
1193 * synchronize_rcu();
1194 * perf_install_in_context();
1196 * to affect the change. The remove_from_context() + synchronize_rcu() should
1197 * quiesce the event, after which we can install it in the new location. This
1198 * means that only external vectors (perf_fops, prctl) can perturb the event
1199 * while in transit. Therefore all such accessors should also acquire
1200 * perf_event_context::mutex to serialize against this.
1202 * However; because event->ctx can change while we're waiting to acquire
1203 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1204 * function.
1206 * Lock order:
1207 * cred_guard_mutex
1208 * task_struct::perf_event_mutex
1209 * perf_event_context::mutex
1210 * perf_event::child_mutex;
1211 * perf_event_context::lock
1212 * perf_event::mmap_mutex
1213 * mmap_sem
1215 static struct perf_event_context *
1216 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1218 struct perf_event_context *ctx;
1220 again:
1221 rcu_read_lock();
1222 ctx = ACCESS_ONCE(event->ctx);
1223 if (!atomic_inc_not_zero(&ctx->refcount)) {
1224 rcu_read_unlock();
1225 goto again;
1227 rcu_read_unlock();
1229 mutex_lock_nested(&ctx->mutex, nesting);
1230 if (event->ctx != ctx) {
1231 mutex_unlock(&ctx->mutex);
1232 put_ctx(ctx);
1233 goto again;
1236 return ctx;
1239 static inline struct perf_event_context *
1240 perf_event_ctx_lock(struct perf_event *event)
1242 return perf_event_ctx_lock_nested(event, 0);
1245 static void perf_event_ctx_unlock(struct perf_event *event,
1246 struct perf_event_context *ctx)
1248 mutex_unlock(&ctx->mutex);
1249 put_ctx(ctx);
1253 * This must be done under the ctx->lock, such as to serialize against
1254 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1255 * calling scheduler related locks and ctx->lock nests inside those.
1257 static __must_check struct perf_event_context *
1258 unclone_ctx(struct perf_event_context *ctx)
1260 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1262 lockdep_assert_held(&ctx->lock);
1264 if (parent_ctx)
1265 ctx->parent_ctx = NULL;
1266 ctx->generation++;
1268 return parent_ctx;
1271 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1274 * only top level events have the pid namespace they were created in
1276 if (event->parent)
1277 event = event->parent;
1279 return task_tgid_nr_ns(p, event->ns);
1282 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1285 * only top level events have the pid namespace they were created in
1287 if (event->parent)
1288 event = event->parent;
1290 return task_pid_nr_ns(p, event->ns);
1294 * If we inherit events we want to return the parent event id
1295 * to userspace.
1297 static u64 primary_event_id(struct perf_event *event)
1299 u64 id = event->id;
1301 if (event->parent)
1302 id = event->parent->id;
1304 return id;
1308 * Get the perf_event_context for a task and lock it.
1310 * This has to cope with with the fact that until it is locked,
1311 * the context could get moved to another task.
1313 static struct perf_event_context *
1314 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1316 struct perf_event_context *ctx;
1318 retry:
1320 * One of the few rules of preemptible RCU is that one cannot do
1321 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1322 * part of the read side critical section was irqs-enabled -- see
1323 * rcu_read_unlock_special().
1325 * Since ctx->lock nests under rq->lock we must ensure the entire read
1326 * side critical section has interrupts disabled.
1328 local_irq_save(*flags);
1329 rcu_read_lock();
1330 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1331 if (ctx) {
1333 * If this context is a clone of another, it might
1334 * get swapped for another underneath us by
1335 * perf_event_task_sched_out, though the
1336 * rcu_read_lock() protects us from any context
1337 * getting freed. Lock the context and check if it
1338 * got swapped before we could get the lock, and retry
1339 * if so. If we locked the right context, then it
1340 * can't get swapped on us any more.
1342 raw_spin_lock(&ctx->lock);
1343 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1344 raw_spin_unlock(&ctx->lock);
1345 rcu_read_unlock();
1346 local_irq_restore(*flags);
1347 goto retry;
1350 if (ctx->task == TASK_TOMBSTONE ||
1351 !atomic_inc_not_zero(&ctx->refcount)) {
1352 raw_spin_unlock(&ctx->lock);
1353 ctx = NULL;
1354 } else {
1355 WARN_ON_ONCE(ctx->task != task);
1358 rcu_read_unlock();
1359 if (!ctx)
1360 local_irq_restore(*flags);
1361 return ctx;
1365 * Get the context for a task and increment its pin_count so it
1366 * can't get swapped to another task. This also increments its
1367 * reference count so that the context can't get freed.
1369 static struct perf_event_context *
1370 perf_pin_task_context(struct task_struct *task, int ctxn)
1372 struct perf_event_context *ctx;
1373 unsigned long flags;
1375 ctx = perf_lock_task_context(task, ctxn, &flags);
1376 if (ctx) {
1377 ++ctx->pin_count;
1378 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1380 return ctx;
1383 static void perf_unpin_context(struct perf_event_context *ctx)
1385 unsigned long flags;
1387 raw_spin_lock_irqsave(&ctx->lock, flags);
1388 --ctx->pin_count;
1389 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1393 * Update the record of the current time in a context.
1395 static void update_context_time(struct perf_event_context *ctx)
1397 u64 now = perf_clock();
1399 ctx->time += now - ctx->timestamp;
1400 ctx->timestamp = now;
1403 static u64 perf_event_time(struct perf_event *event)
1405 struct perf_event_context *ctx = event->ctx;
1407 if (is_cgroup_event(event))
1408 return perf_cgroup_event_time(event);
1410 return ctx ? ctx->time : 0;
1414 * Update the total_time_enabled and total_time_running fields for a event.
1416 static void update_event_times(struct perf_event *event)
1418 struct perf_event_context *ctx = event->ctx;
1419 u64 run_end;
1421 lockdep_assert_held(&ctx->lock);
1423 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1424 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1425 return;
1428 * in cgroup mode, time_enabled represents
1429 * the time the event was enabled AND active
1430 * tasks were in the monitored cgroup. This is
1431 * independent of the activity of the context as
1432 * there may be a mix of cgroup and non-cgroup events.
1434 * That is why we treat cgroup events differently
1435 * here.
1437 if (is_cgroup_event(event))
1438 run_end = perf_cgroup_event_time(event);
1439 else if (ctx->is_active)
1440 run_end = ctx->time;
1441 else
1442 run_end = event->tstamp_stopped;
1444 event->total_time_enabled = run_end - event->tstamp_enabled;
1446 if (event->state == PERF_EVENT_STATE_INACTIVE)
1447 run_end = event->tstamp_stopped;
1448 else
1449 run_end = perf_event_time(event);
1451 event->total_time_running = run_end - event->tstamp_running;
1456 * Update total_time_enabled and total_time_running for all events in a group.
1458 static void update_group_times(struct perf_event *leader)
1460 struct perf_event *event;
1462 update_event_times(leader);
1463 list_for_each_entry(event, &leader->sibling_list, group_entry)
1464 update_event_times(event);
1467 static struct list_head *
1468 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1470 if (event->attr.pinned)
1471 return &ctx->pinned_groups;
1472 else
1473 return &ctx->flexible_groups;
1477 * Add a event from the lists for its context.
1478 * Must be called with ctx->mutex and ctx->lock held.
1480 static void
1481 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1483 lockdep_assert_held(&ctx->lock);
1485 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1486 event->attach_state |= PERF_ATTACH_CONTEXT;
1489 * If we're a stand alone event or group leader, we go to the context
1490 * list, group events are kept attached to the group so that
1491 * perf_group_detach can, at all times, locate all siblings.
1493 if (event->group_leader == event) {
1494 struct list_head *list;
1496 event->group_caps = event->event_caps;
1498 list = ctx_group_list(event, ctx);
1499 list_add_tail(&event->group_entry, list);
1502 list_update_cgroup_event(event, ctx, true);
1504 list_add_rcu(&event->event_entry, &ctx->event_list);
1505 ctx->nr_events++;
1506 if (event->attr.inherit_stat)
1507 ctx->nr_stat++;
1509 ctx->generation++;
1513 * Initialize event state based on the perf_event_attr::disabled.
1515 static inline void perf_event__state_init(struct perf_event *event)
1517 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1518 PERF_EVENT_STATE_INACTIVE;
1521 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1523 int entry = sizeof(u64); /* value */
1524 int size = 0;
1525 int nr = 1;
1527 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1528 size += sizeof(u64);
1530 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1531 size += sizeof(u64);
1533 if (event->attr.read_format & PERF_FORMAT_ID)
1534 entry += sizeof(u64);
1536 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1537 nr += nr_siblings;
1538 size += sizeof(u64);
1541 size += entry * nr;
1542 event->read_size = size;
1545 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1547 struct perf_sample_data *data;
1548 u16 size = 0;
1550 if (sample_type & PERF_SAMPLE_IP)
1551 size += sizeof(data->ip);
1553 if (sample_type & PERF_SAMPLE_ADDR)
1554 size += sizeof(data->addr);
1556 if (sample_type & PERF_SAMPLE_PERIOD)
1557 size += sizeof(data->period);
1559 if (sample_type & PERF_SAMPLE_WEIGHT)
1560 size += sizeof(data->weight);
1562 if (sample_type & PERF_SAMPLE_READ)
1563 size += event->read_size;
1565 if (sample_type & PERF_SAMPLE_DATA_SRC)
1566 size += sizeof(data->data_src.val);
1568 if (sample_type & PERF_SAMPLE_TRANSACTION)
1569 size += sizeof(data->txn);
1571 event->header_size = size;
1575 * Called at perf_event creation and when events are attached/detached from a
1576 * group.
1578 static void perf_event__header_size(struct perf_event *event)
1580 __perf_event_read_size(event,
1581 event->group_leader->nr_siblings);
1582 __perf_event_header_size(event, event->attr.sample_type);
1585 static void perf_event__id_header_size(struct perf_event *event)
1587 struct perf_sample_data *data;
1588 u64 sample_type = event->attr.sample_type;
1589 u16 size = 0;
1591 if (sample_type & PERF_SAMPLE_TID)
1592 size += sizeof(data->tid_entry);
1594 if (sample_type & PERF_SAMPLE_TIME)
1595 size += sizeof(data->time);
1597 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1598 size += sizeof(data->id);
1600 if (sample_type & PERF_SAMPLE_ID)
1601 size += sizeof(data->id);
1603 if (sample_type & PERF_SAMPLE_STREAM_ID)
1604 size += sizeof(data->stream_id);
1606 if (sample_type & PERF_SAMPLE_CPU)
1607 size += sizeof(data->cpu_entry);
1609 event->id_header_size = size;
1612 static bool perf_event_validate_size(struct perf_event *event)
1615 * The values computed here will be over-written when we actually
1616 * attach the event.
1618 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1619 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1620 perf_event__id_header_size(event);
1623 * Sum the lot; should not exceed the 64k limit we have on records.
1624 * Conservative limit to allow for callchains and other variable fields.
1626 if (event->read_size + event->header_size +
1627 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1628 return false;
1630 return true;
1633 static void perf_group_attach(struct perf_event *event)
1635 struct perf_event *group_leader = event->group_leader, *pos;
1637 lockdep_assert_held(&event->ctx->lock);
1640 * We can have double attach due to group movement in perf_event_open.
1642 if (event->attach_state & PERF_ATTACH_GROUP)
1643 return;
1645 event->attach_state |= PERF_ATTACH_GROUP;
1647 if (group_leader == event)
1648 return;
1650 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1652 group_leader->group_caps &= event->event_caps;
1654 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1655 group_leader->nr_siblings++;
1657 perf_event__header_size(group_leader);
1659 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1660 perf_event__header_size(pos);
1664 * Remove a event from the lists for its context.
1665 * Must be called with ctx->mutex and ctx->lock held.
1667 static void
1668 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1670 WARN_ON_ONCE(event->ctx != ctx);
1671 lockdep_assert_held(&ctx->lock);
1674 * We can have double detach due to exit/hot-unplug + close.
1676 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1677 return;
1679 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1681 list_update_cgroup_event(event, ctx, false);
1683 ctx->nr_events--;
1684 if (event->attr.inherit_stat)
1685 ctx->nr_stat--;
1687 list_del_rcu(&event->event_entry);
1689 if (event->group_leader == event)
1690 list_del_init(&event->group_entry);
1692 update_group_times(event);
1695 * If event was in error state, then keep it
1696 * that way, otherwise bogus counts will be
1697 * returned on read(). The only way to get out
1698 * of error state is by explicit re-enabling
1699 * of the event
1701 if (event->state > PERF_EVENT_STATE_OFF)
1702 event->state = PERF_EVENT_STATE_OFF;
1704 ctx->generation++;
1707 static void perf_group_detach(struct perf_event *event)
1709 struct perf_event *sibling, *tmp;
1710 struct list_head *list = NULL;
1712 lockdep_assert_held(&event->ctx->lock);
1715 * We can have double detach due to exit/hot-unplug + close.
1717 if (!(event->attach_state & PERF_ATTACH_GROUP))
1718 return;
1720 event->attach_state &= ~PERF_ATTACH_GROUP;
1723 * If this is a sibling, remove it from its group.
1725 if (event->group_leader != event) {
1726 list_del_init(&event->group_entry);
1727 event->group_leader->nr_siblings--;
1728 goto out;
1731 if (!list_empty(&event->group_entry))
1732 list = &event->group_entry;
1735 * If this was a group event with sibling events then
1736 * upgrade the siblings to singleton events by adding them
1737 * to whatever list we are on.
1739 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1740 if (list)
1741 list_move_tail(&sibling->group_entry, list);
1742 sibling->group_leader = sibling;
1744 /* Inherit group flags from the previous leader */
1745 sibling->group_caps = event->group_caps;
1747 WARN_ON_ONCE(sibling->ctx != event->ctx);
1750 out:
1751 perf_event__header_size(event->group_leader);
1753 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1754 perf_event__header_size(tmp);
1757 static bool is_orphaned_event(struct perf_event *event)
1759 return event->state == PERF_EVENT_STATE_DEAD;
1762 static inline int __pmu_filter_match(struct perf_event *event)
1764 struct pmu *pmu = event->pmu;
1765 return pmu->filter_match ? pmu->filter_match(event) : 1;
1769 * Check whether we should attempt to schedule an event group based on
1770 * PMU-specific filtering. An event group can consist of HW and SW events,
1771 * potentially with a SW leader, so we must check all the filters, to
1772 * determine whether a group is schedulable:
1774 static inline int pmu_filter_match(struct perf_event *event)
1776 struct perf_event *child;
1778 if (!__pmu_filter_match(event))
1779 return 0;
1781 list_for_each_entry(child, &event->sibling_list, group_entry) {
1782 if (!__pmu_filter_match(child))
1783 return 0;
1786 return 1;
1789 static inline int
1790 event_filter_match(struct perf_event *event)
1792 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1793 perf_cgroup_match(event) && pmu_filter_match(event);
1796 static void
1797 event_sched_out(struct perf_event *event,
1798 struct perf_cpu_context *cpuctx,
1799 struct perf_event_context *ctx)
1801 u64 tstamp = perf_event_time(event);
1802 u64 delta;
1804 WARN_ON_ONCE(event->ctx != ctx);
1805 lockdep_assert_held(&ctx->lock);
1808 * An event which could not be activated because of
1809 * filter mismatch still needs to have its timings
1810 * maintained, otherwise bogus information is return
1811 * via read() for time_enabled, time_running:
1813 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1814 !event_filter_match(event)) {
1815 delta = tstamp - event->tstamp_stopped;
1816 event->tstamp_running += delta;
1817 event->tstamp_stopped = tstamp;
1820 if (event->state != PERF_EVENT_STATE_ACTIVE)
1821 return;
1823 perf_pmu_disable(event->pmu);
1825 event->tstamp_stopped = tstamp;
1826 event->pmu->del(event, 0);
1827 event->oncpu = -1;
1828 event->state = PERF_EVENT_STATE_INACTIVE;
1829 if (event->pending_disable) {
1830 event->pending_disable = 0;
1831 event->state = PERF_EVENT_STATE_OFF;
1834 if (!is_software_event(event))
1835 cpuctx->active_oncpu--;
1836 if (!--ctx->nr_active)
1837 perf_event_ctx_deactivate(ctx);
1838 if (event->attr.freq && event->attr.sample_freq)
1839 ctx->nr_freq--;
1840 if (event->attr.exclusive || !cpuctx->active_oncpu)
1841 cpuctx->exclusive = 0;
1843 perf_pmu_enable(event->pmu);
1846 static void
1847 group_sched_out(struct perf_event *group_event,
1848 struct perf_cpu_context *cpuctx,
1849 struct perf_event_context *ctx)
1851 struct perf_event *event;
1852 int state = group_event->state;
1854 perf_pmu_disable(ctx->pmu);
1856 event_sched_out(group_event, cpuctx, ctx);
1859 * Schedule out siblings (if any):
1861 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1862 event_sched_out(event, cpuctx, ctx);
1864 perf_pmu_enable(ctx->pmu);
1866 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1867 cpuctx->exclusive = 0;
1870 #define DETACH_GROUP 0x01UL
1873 * Cross CPU call to remove a performance event
1875 * We disable the event on the hardware level first. After that we
1876 * remove it from the context list.
1878 static void
1879 __perf_remove_from_context(struct perf_event *event,
1880 struct perf_cpu_context *cpuctx,
1881 struct perf_event_context *ctx,
1882 void *info)
1884 unsigned long flags = (unsigned long)info;
1886 event_sched_out(event, cpuctx, ctx);
1887 if (flags & DETACH_GROUP)
1888 perf_group_detach(event);
1889 list_del_event(event, ctx);
1891 if (!ctx->nr_events && ctx->is_active) {
1892 ctx->is_active = 0;
1893 if (ctx->task) {
1894 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1895 cpuctx->task_ctx = NULL;
1901 * Remove the event from a task's (or a CPU's) list of events.
1903 * If event->ctx is a cloned context, callers must make sure that
1904 * every task struct that event->ctx->task could possibly point to
1905 * remains valid. This is OK when called from perf_release since
1906 * that only calls us on the top-level context, which can't be a clone.
1907 * When called from perf_event_exit_task, it's OK because the
1908 * context has been detached from its task.
1910 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1912 struct perf_event_context *ctx = event->ctx;
1914 lockdep_assert_held(&ctx->mutex);
1916 event_function_call(event, __perf_remove_from_context, (void *)flags);
1919 * The above event_function_call() can NO-OP when it hits
1920 * TASK_TOMBSTONE. In that case we must already have been detached
1921 * from the context (by perf_event_exit_event()) but the grouping
1922 * might still be in-tact.
1924 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1925 if ((flags & DETACH_GROUP) &&
1926 (event->attach_state & PERF_ATTACH_GROUP)) {
1928 * Since in that case we cannot possibly be scheduled, simply
1929 * detach now.
1931 raw_spin_lock_irq(&ctx->lock);
1932 perf_group_detach(event);
1933 raw_spin_unlock_irq(&ctx->lock);
1938 * Cross CPU call to disable a performance event
1940 static void __perf_event_disable(struct perf_event *event,
1941 struct perf_cpu_context *cpuctx,
1942 struct perf_event_context *ctx,
1943 void *info)
1945 if (event->state < PERF_EVENT_STATE_INACTIVE)
1946 return;
1948 update_context_time(ctx);
1949 update_cgrp_time_from_event(event);
1950 update_group_times(event);
1951 if (event == event->group_leader)
1952 group_sched_out(event, cpuctx, ctx);
1953 else
1954 event_sched_out(event, cpuctx, ctx);
1955 event->state = PERF_EVENT_STATE_OFF;
1959 * Disable a event.
1961 * If event->ctx is a cloned context, callers must make sure that
1962 * every task struct that event->ctx->task could possibly point to
1963 * remains valid. This condition is satisifed when called through
1964 * perf_event_for_each_child or perf_event_for_each because they
1965 * hold the top-level event's child_mutex, so any descendant that
1966 * goes to exit will block in perf_event_exit_event().
1968 * When called from perf_pending_event it's OK because event->ctx
1969 * is the current context on this CPU and preemption is disabled,
1970 * hence we can't get into perf_event_task_sched_out for this context.
1972 static void _perf_event_disable(struct perf_event *event)
1974 struct perf_event_context *ctx = event->ctx;
1976 raw_spin_lock_irq(&ctx->lock);
1977 if (event->state <= PERF_EVENT_STATE_OFF) {
1978 raw_spin_unlock_irq(&ctx->lock);
1979 return;
1981 raw_spin_unlock_irq(&ctx->lock);
1983 event_function_call(event, __perf_event_disable, NULL);
1986 void perf_event_disable_local(struct perf_event *event)
1988 event_function_local(event, __perf_event_disable, NULL);
1992 * Strictly speaking kernel users cannot create groups and therefore this
1993 * interface does not need the perf_event_ctx_lock() magic.
1995 void perf_event_disable(struct perf_event *event)
1997 struct perf_event_context *ctx;
1999 ctx = perf_event_ctx_lock(event);
2000 _perf_event_disable(event);
2001 perf_event_ctx_unlock(event, ctx);
2003 EXPORT_SYMBOL_GPL(perf_event_disable);
2005 void perf_event_disable_inatomic(struct perf_event *event)
2007 event->pending_disable = 1;
2008 irq_work_queue(&event->pending);
2011 static void perf_set_shadow_time(struct perf_event *event,
2012 struct perf_event_context *ctx,
2013 u64 tstamp)
2016 * use the correct time source for the time snapshot
2018 * We could get by without this by leveraging the
2019 * fact that to get to this function, the caller
2020 * has most likely already called update_context_time()
2021 * and update_cgrp_time_xx() and thus both timestamp
2022 * are identical (or very close). Given that tstamp is,
2023 * already adjusted for cgroup, we could say that:
2024 * tstamp - ctx->timestamp
2025 * is equivalent to
2026 * tstamp - cgrp->timestamp.
2028 * Then, in perf_output_read(), the calculation would
2029 * work with no changes because:
2030 * - event is guaranteed scheduled in
2031 * - no scheduled out in between
2032 * - thus the timestamp would be the same
2034 * But this is a bit hairy.
2036 * So instead, we have an explicit cgroup call to remain
2037 * within the time time source all along. We believe it
2038 * is cleaner and simpler to understand.
2040 if (is_cgroup_event(event))
2041 perf_cgroup_set_shadow_time(event, tstamp);
2042 else
2043 event->shadow_ctx_time = tstamp - ctx->timestamp;
2046 #define MAX_INTERRUPTS (~0ULL)
2048 static void perf_log_throttle(struct perf_event *event, int enable);
2049 static void perf_log_itrace_start(struct perf_event *event);
2051 static int
2052 event_sched_in(struct perf_event *event,
2053 struct perf_cpu_context *cpuctx,
2054 struct perf_event_context *ctx)
2056 u64 tstamp = perf_event_time(event);
2057 int ret = 0;
2059 lockdep_assert_held(&ctx->lock);
2061 if (event->state <= PERF_EVENT_STATE_OFF)
2062 return 0;
2064 WRITE_ONCE(event->oncpu, smp_processor_id());
2066 * Order event::oncpu write to happen before the ACTIVE state
2067 * is visible.
2069 smp_wmb();
2070 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2073 * Unthrottle events, since we scheduled we might have missed several
2074 * ticks already, also for a heavily scheduling task there is little
2075 * guarantee it'll get a tick in a timely manner.
2077 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2078 perf_log_throttle(event, 1);
2079 event->hw.interrupts = 0;
2083 * The new state must be visible before we turn it on in the hardware:
2085 smp_wmb();
2087 perf_pmu_disable(event->pmu);
2089 perf_set_shadow_time(event, ctx, tstamp);
2091 perf_log_itrace_start(event);
2093 if (event->pmu->add(event, PERF_EF_START)) {
2094 event->state = PERF_EVENT_STATE_INACTIVE;
2095 event->oncpu = -1;
2096 ret = -EAGAIN;
2097 goto out;
2100 event->tstamp_running += tstamp - event->tstamp_stopped;
2102 if (!is_software_event(event))
2103 cpuctx->active_oncpu++;
2104 if (!ctx->nr_active++)
2105 perf_event_ctx_activate(ctx);
2106 if (event->attr.freq && event->attr.sample_freq)
2107 ctx->nr_freq++;
2109 if (event->attr.exclusive)
2110 cpuctx->exclusive = 1;
2112 out:
2113 perf_pmu_enable(event->pmu);
2115 return ret;
2118 static int
2119 group_sched_in(struct perf_event *group_event,
2120 struct perf_cpu_context *cpuctx,
2121 struct perf_event_context *ctx)
2123 struct perf_event *event, *partial_group = NULL;
2124 struct pmu *pmu = ctx->pmu;
2125 u64 now = ctx->time;
2126 bool simulate = false;
2128 if (group_event->state == PERF_EVENT_STATE_OFF)
2129 return 0;
2131 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2133 if (event_sched_in(group_event, cpuctx, ctx)) {
2134 pmu->cancel_txn(pmu);
2135 perf_mux_hrtimer_restart(cpuctx);
2136 return -EAGAIN;
2140 * Schedule in siblings as one group (if any):
2142 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2143 if (event_sched_in(event, cpuctx, ctx)) {
2144 partial_group = event;
2145 goto group_error;
2149 if (!pmu->commit_txn(pmu))
2150 return 0;
2152 group_error:
2154 * Groups can be scheduled in as one unit only, so undo any
2155 * partial group before returning:
2156 * The events up to the failed event are scheduled out normally,
2157 * tstamp_stopped will be updated.
2159 * The failed events and the remaining siblings need to have
2160 * their timings updated as if they had gone thru event_sched_in()
2161 * and event_sched_out(). This is required to get consistent timings
2162 * across the group. This also takes care of the case where the group
2163 * could never be scheduled by ensuring tstamp_stopped is set to mark
2164 * the time the event was actually stopped, such that time delta
2165 * calculation in update_event_times() is correct.
2167 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2168 if (event == partial_group)
2169 simulate = true;
2171 if (simulate) {
2172 event->tstamp_running += now - event->tstamp_stopped;
2173 event->tstamp_stopped = now;
2174 } else {
2175 event_sched_out(event, cpuctx, ctx);
2178 event_sched_out(group_event, cpuctx, ctx);
2180 pmu->cancel_txn(pmu);
2182 perf_mux_hrtimer_restart(cpuctx);
2184 return -EAGAIN;
2188 * Work out whether we can put this event group on the CPU now.
2190 static int group_can_go_on(struct perf_event *event,
2191 struct perf_cpu_context *cpuctx,
2192 int can_add_hw)
2195 * Groups consisting entirely of software events can always go on.
2197 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2198 return 1;
2200 * If an exclusive group is already on, no other hardware
2201 * events can go on.
2203 if (cpuctx->exclusive)
2204 return 0;
2206 * If this group is exclusive and there are already
2207 * events on the CPU, it can't go on.
2209 if (event->attr.exclusive && cpuctx->active_oncpu)
2210 return 0;
2212 * Otherwise, try to add it if all previous groups were able
2213 * to go on.
2215 return can_add_hw;
2218 static void add_event_to_ctx(struct perf_event *event,
2219 struct perf_event_context *ctx)
2221 u64 tstamp = perf_event_time(event);
2223 list_add_event(event, ctx);
2224 perf_group_attach(event);
2225 event->tstamp_enabled = tstamp;
2226 event->tstamp_running = tstamp;
2227 event->tstamp_stopped = tstamp;
2230 static void ctx_sched_out(struct perf_event_context *ctx,
2231 struct perf_cpu_context *cpuctx,
2232 enum event_type_t event_type);
2233 static void
2234 ctx_sched_in(struct perf_event_context *ctx,
2235 struct perf_cpu_context *cpuctx,
2236 enum event_type_t event_type,
2237 struct task_struct *task);
2239 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2240 struct perf_event_context *ctx)
2242 if (!cpuctx->task_ctx)
2243 return;
2245 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2246 return;
2248 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2251 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2252 struct perf_event_context *ctx,
2253 struct task_struct *task)
2255 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2256 if (ctx)
2257 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2258 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2259 if (ctx)
2260 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2263 static void ctx_resched(struct perf_cpu_context *cpuctx,
2264 struct perf_event_context *task_ctx)
2266 perf_pmu_disable(cpuctx->ctx.pmu);
2267 if (task_ctx)
2268 task_ctx_sched_out(cpuctx, task_ctx);
2269 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2270 perf_event_sched_in(cpuctx, task_ctx, current);
2271 perf_pmu_enable(cpuctx->ctx.pmu);
2275 * Cross CPU call to install and enable a performance event
2277 * Very similar to remote_function() + event_function() but cannot assume that
2278 * things like ctx->is_active and cpuctx->task_ctx are set.
2280 static int __perf_install_in_context(void *info)
2282 struct perf_event *event = info;
2283 struct perf_event_context *ctx = event->ctx;
2284 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2285 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2286 bool reprogram = true;
2287 int ret = 0;
2289 raw_spin_lock(&cpuctx->ctx.lock);
2290 if (ctx->task) {
2291 raw_spin_lock(&ctx->lock);
2292 task_ctx = ctx;
2294 reprogram = (ctx->task == current);
2297 * If the task is running, it must be running on this CPU,
2298 * otherwise we cannot reprogram things.
2300 * If its not running, we don't care, ctx->lock will
2301 * serialize against it becoming runnable.
2303 if (task_curr(ctx->task) && !reprogram) {
2304 ret = -ESRCH;
2305 goto unlock;
2308 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2309 } else if (task_ctx) {
2310 raw_spin_lock(&task_ctx->lock);
2313 if (reprogram) {
2314 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2315 add_event_to_ctx(event, ctx);
2316 ctx_resched(cpuctx, task_ctx);
2317 } else {
2318 add_event_to_ctx(event, ctx);
2321 unlock:
2322 perf_ctx_unlock(cpuctx, task_ctx);
2324 return ret;
2328 * Attach a performance event to a context.
2330 * Very similar to event_function_call, see comment there.
2332 static void
2333 perf_install_in_context(struct perf_event_context *ctx,
2334 struct perf_event *event,
2335 int cpu)
2337 struct task_struct *task = READ_ONCE(ctx->task);
2339 lockdep_assert_held(&ctx->mutex);
2341 if (event->cpu != -1)
2342 event->cpu = cpu;
2345 * Ensures that if we can observe event->ctx, both the event and ctx
2346 * will be 'complete'. See perf_iterate_sb_cpu().
2348 smp_store_release(&event->ctx, ctx);
2350 if (!task) {
2351 cpu_function_call(cpu, __perf_install_in_context, event);
2352 return;
2356 * Should not happen, we validate the ctx is still alive before calling.
2358 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2359 return;
2362 * Installing events is tricky because we cannot rely on ctx->is_active
2363 * to be set in case this is the nr_events 0 -> 1 transition.
2365 * Instead we use task_curr(), which tells us if the task is running.
2366 * However, since we use task_curr() outside of rq::lock, we can race
2367 * against the actual state. This means the result can be wrong.
2369 * If we get a false positive, we retry, this is harmless.
2371 * If we get a false negative, things are complicated. If we are after
2372 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2373 * value must be correct. If we're before, it doesn't matter since
2374 * perf_event_context_sched_in() will program the counter.
2376 * However, this hinges on the remote context switch having observed
2377 * our task->perf_event_ctxp[] store, such that it will in fact take
2378 * ctx::lock in perf_event_context_sched_in().
2380 * We do this by task_function_call(), if the IPI fails to hit the task
2381 * we know any future context switch of task must see the
2382 * perf_event_ctpx[] store.
2386 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2387 * task_cpu() load, such that if the IPI then does not find the task
2388 * running, a future context switch of that task must observe the
2389 * store.
2391 smp_mb();
2392 again:
2393 if (!task_function_call(task, __perf_install_in_context, event))
2394 return;
2396 raw_spin_lock_irq(&ctx->lock);
2397 task = ctx->task;
2398 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2400 * Cannot happen because we already checked above (which also
2401 * cannot happen), and we hold ctx->mutex, which serializes us
2402 * against perf_event_exit_task_context().
2404 raw_spin_unlock_irq(&ctx->lock);
2405 return;
2408 * If the task is not running, ctx->lock will avoid it becoming so,
2409 * thus we can safely install the event.
2411 if (task_curr(task)) {
2412 raw_spin_unlock_irq(&ctx->lock);
2413 goto again;
2415 add_event_to_ctx(event, ctx);
2416 raw_spin_unlock_irq(&ctx->lock);
2420 * Put a event into inactive state and update time fields.
2421 * Enabling the leader of a group effectively enables all
2422 * the group members that aren't explicitly disabled, so we
2423 * have to update their ->tstamp_enabled also.
2424 * Note: this works for group members as well as group leaders
2425 * since the non-leader members' sibling_lists will be empty.
2427 static void __perf_event_mark_enabled(struct perf_event *event)
2429 struct perf_event *sub;
2430 u64 tstamp = perf_event_time(event);
2432 event->state = PERF_EVENT_STATE_INACTIVE;
2433 event->tstamp_enabled = tstamp - event->total_time_enabled;
2434 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2435 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2436 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2441 * Cross CPU call to enable a performance event
2443 static void __perf_event_enable(struct perf_event *event,
2444 struct perf_cpu_context *cpuctx,
2445 struct perf_event_context *ctx,
2446 void *info)
2448 struct perf_event *leader = event->group_leader;
2449 struct perf_event_context *task_ctx;
2451 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2452 event->state <= PERF_EVENT_STATE_ERROR)
2453 return;
2455 if (ctx->is_active)
2456 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2458 __perf_event_mark_enabled(event);
2460 if (!ctx->is_active)
2461 return;
2463 if (!event_filter_match(event)) {
2464 if (is_cgroup_event(event))
2465 perf_cgroup_defer_enabled(event);
2466 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2467 return;
2471 * If the event is in a group and isn't the group leader,
2472 * then don't put it on unless the group is on.
2474 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2475 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2476 return;
2479 task_ctx = cpuctx->task_ctx;
2480 if (ctx->task)
2481 WARN_ON_ONCE(task_ctx != ctx);
2483 ctx_resched(cpuctx, task_ctx);
2487 * Enable a event.
2489 * If event->ctx is a cloned context, callers must make sure that
2490 * every task struct that event->ctx->task could possibly point to
2491 * remains valid. This condition is satisfied when called through
2492 * perf_event_for_each_child or perf_event_for_each as described
2493 * for perf_event_disable.
2495 static void _perf_event_enable(struct perf_event *event)
2497 struct perf_event_context *ctx = event->ctx;
2499 raw_spin_lock_irq(&ctx->lock);
2500 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2501 event->state < PERF_EVENT_STATE_ERROR) {
2502 raw_spin_unlock_irq(&ctx->lock);
2503 return;
2507 * If the event is in error state, clear that first.
2509 * That way, if we see the event in error state below, we know that it
2510 * has gone back into error state, as distinct from the task having
2511 * been scheduled away before the cross-call arrived.
2513 if (event->state == PERF_EVENT_STATE_ERROR)
2514 event->state = PERF_EVENT_STATE_OFF;
2515 raw_spin_unlock_irq(&ctx->lock);
2517 event_function_call(event, __perf_event_enable, NULL);
2521 * See perf_event_disable();
2523 void perf_event_enable(struct perf_event *event)
2525 struct perf_event_context *ctx;
2527 ctx = perf_event_ctx_lock(event);
2528 _perf_event_enable(event);
2529 perf_event_ctx_unlock(event, ctx);
2531 EXPORT_SYMBOL_GPL(perf_event_enable);
2533 struct stop_event_data {
2534 struct perf_event *event;
2535 unsigned int restart;
2538 static int __perf_event_stop(void *info)
2540 struct stop_event_data *sd = info;
2541 struct perf_event *event = sd->event;
2543 /* if it's already INACTIVE, do nothing */
2544 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2545 return 0;
2547 /* matches smp_wmb() in event_sched_in() */
2548 smp_rmb();
2551 * There is a window with interrupts enabled before we get here,
2552 * so we need to check again lest we try to stop another CPU's event.
2554 if (READ_ONCE(event->oncpu) != smp_processor_id())
2555 return -EAGAIN;
2557 event->pmu->stop(event, PERF_EF_UPDATE);
2560 * May race with the actual stop (through perf_pmu_output_stop()),
2561 * but it is only used for events with AUX ring buffer, and such
2562 * events will refuse to restart because of rb::aux_mmap_count==0,
2563 * see comments in perf_aux_output_begin().
2565 * Since this is happening on a event-local CPU, no trace is lost
2566 * while restarting.
2568 if (sd->restart)
2569 event->pmu->start(event, 0);
2571 return 0;
2574 static int perf_event_stop(struct perf_event *event, int restart)
2576 struct stop_event_data sd = {
2577 .event = event,
2578 .restart = restart,
2580 int ret = 0;
2582 do {
2583 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2584 return 0;
2586 /* matches smp_wmb() in event_sched_in() */
2587 smp_rmb();
2590 * We only want to restart ACTIVE events, so if the event goes
2591 * inactive here (event->oncpu==-1), there's nothing more to do;
2592 * fall through with ret==-ENXIO.
2594 ret = cpu_function_call(READ_ONCE(event->oncpu),
2595 __perf_event_stop, &sd);
2596 } while (ret == -EAGAIN);
2598 return ret;
2602 * In order to contain the amount of racy and tricky in the address filter
2603 * configuration management, it is a two part process:
2605 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2606 * we update the addresses of corresponding vmas in
2607 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2608 * (p2) when an event is scheduled in (pmu::add), it calls
2609 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2610 * if the generation has changed since the previous call.
2612 * If (p1) happens while the event is active, we restart it to force (p2).
2614 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2615 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2616 * ioctl;
2617 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2618 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2619 * for reading;
2620 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2621 * of exec.
2623 void perf_event_addr_filters_sync(struct perf_event *event)
2625 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2627 if (!has_addr_filter(event))
2628 return;
2630 raw_spin_lock(&ifh->lock);
2631 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2632 event->pmu->addr_filters_sync(event);
2633 event->hw.addr_filters_gen = event->addr_filters_gen;
2635 raw_spin_unlock(&ifh->lock);
2637 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2639 static int _perf_event_refresh(struct perf_event *event, int refresh)
2642 * not supported on inherited events
2644 if (event->attr.inherit || !is_sampling_event(event))
2645 return -EINVAL;
2647 atomic_add(refresh, &event->event_limit);
2648 _perf_event_enable(event);
2650 return 0;
2654 * See perf_event_disable()
2656 int perf_event_refresh(struct perf_event *event, int refresh)
2658 struct perf_event_context *ctx;
2659 int ret;
2661 ctx = perf_event_ctx_lock(event);
2662 ret = _perf_event_refresh(event, refresh);
2663 perf_event_ctx_unlock(event, ctx);
2665 return ret;
2667 EXPORT_SYMBOL_GPL(perf_event_refresh);
2669 static void ctx_sched_out(struct perf_event_context *ctx,
2670 struct perf_cpu_context *cpuctx,
2671 enum event_type_t event_type)
2673 int is_active = ctx->is_active;
2674 struct perf_event *event;
2676 lockdep_assert_held(&ctx->lock);
2678 if (likely(!ctx->nr_events)) {
2680 * See __perf_remove_from_context().
2682 WARN_ON_ONCE(ctx->is_active);
2683 if (ctx->task)
2684 WARN_ON_ONCE(cpuctx->task_ctx);
2685 return;
2688 ctx->is_active &= ~event_type;
2689 if (!(ctx->is_active & EVENT_ALL))
2690 ctx->is_active = 0;
2692 if (ctx->task) {
2693 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2694 if (!ctx->is_active)
2695 cpuctx->task_ctx = NULL;
2699 * Always update time if it was set; not only when it changes.
2700 * Otherwise we can 'forget' to update time for any but the last
2701 * context we sched out. For example:
2703 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2704 * ctx_sched_out(.event_type = EVENT_PINNED)
2706 * would only update time for the pinned events.
2708 if (is_active & EVENT_TIME) {
2709 /* update (and stop) ctx time */
2710 update_context_time(ctx);
2711 update_cgrp_time_from_cpuctx(cpuctx);
2714 is_active ^= ctx->is_active; /* changed bits */
2716 if (!ctx->nr_active || !(is_active & EVENT_ALL))
2717 return;
2719 perf_pmu_disable(ctx->pmu);
2720 if (is_active & EVENT_PINNED) {
2721 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2722 group_sched_out(event, cpuctx, ctx);
2725 if (is_active & EVENT_FLEXIBLE) {
2726 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2727 group_sched_out(event, cpuctx, ctx);
2729 perf_pmu_enable(ctx->pmu);
2733 * Test whether two contexts are equivalent, i.e. whether they have both been
2734 * cloned from the same version of the same context.
2736 * Equivalence is measured using a generation number in the context that is
2737 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2738 * and list_del_event().
2740 static int context_equiv(struct perf_event_context *ctx1,
2741 struct perf_event_context *ctx2)
2743 lockdep_assert_held(&ctx1->lock);
2744 lockdep_assert_held(&ctx2->lock);
2746 /* Pinning disables the swap optimization */
2747 if (ctx1->pin_count || ctx2->pin_count)
2748 return 0;
2750 /* If ctx1 is the parent of ctx2 */
2751 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2752 return 1;
2754 /* If ctx2 is the parent of ctx1 */
2755 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2756 return 1;
2759 * If ctx1 and ctx2 have the same parent; we flatten the parent
2760 * hierarchy, see perf_event_init_context().
2762 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2763 ctx1->parent_gen == ctx2->parent_gen)
2764 return 1;
2766 /* Unmatched */
2767 return 0;
2770 static void __perf_event_sync_stat(struct perf_event *event,
2771 struct perf_event *next_event)
2773 u64 value;
2775 if (!event->attr.inherit_stat)
2776 return;
2779 * Update the event value, we cannot use perf_event_read()
2780 * because we're in the middle of a context switch and have IRQs
2781 * disabled, which upsets smp_call_function_single(), however
2782 * we know the event must be on the current CPU, therefore we
2783 * don't need to use it.
2785 switch (event->state) {
2786 case PERF_EVENT_STATE_ACTIVE:
2787 event->pmu->read(event);
2788 /* fall-through */
2790 case PERF_EVENT_STATE_INACTIVE:
2791 update_event_times(event);
2792 break;
2794 default:
2795 break;
2799 * In order to keep per-task stats reliable we need to flip the event
2800 * values when we flip the contexts.
2802 value = local64_read(&next_event->count);
2803 value = local64_xchg(&event->count, value);
2804 local64_set(&next_event->count, value);
2806 swap(event->total_time_enabled, next_event->total_time_enabled);
2807 swap(event->total_time_running, next_event->total_time_running);
2810 * Since we swizzled the values, update the user visible data too.
2812 perf_event_update_userpage(event);
2813 perf_event_update_userpage(next_event);
2816 static void perf_event_sync_stat(struct perf_event_context *ctx,
2817 struct perf_event_context *next_ctx)
2819 struct perf_event *event, *next_event;
2821 if (!ctx->nr_stat)
2822 return;
2824 update_context_time(ctx);
2826 event = list_first_entry(&ctx->event_list,
2827 struct perf_event, event_entry);
2829 next_event = list_first_entry(&next_ctx->event_list,
2830 struct perf_event, event_entry);
2832 while (&event->event_entry != &ctx->event_list &&
2833 &next_event->event_entry != &next_ctx->event_list) {
2835 __perf_event_sync_stat(event, next_event);
2837 event = list_next_entry(event, event_entry);
2838 next_event = list_next_entry(next_event, event_entry);
2842 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2843 struct task_struct *next)
2845 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2846 struct perf_event_context *next_ctx;
2847 struct perf_event_context *parent, *next_parent;
2848 struct perf_cpu_context *cpuctx;
2849 int do_switch = 1;
2851 if (likely(!ctx))
2852 return;
2854 cpuctx = __get_cpu_context(ctx);
2855 if (!cpuctx->task_ctx)
2856 return;
2858 rcu_read_lock();
2859 next_ctx = next->perf_event_ctxp[ctxn];
2860 if (!next_ctx)
2861 goto unlock;
2863 parent = rcu_dereference(ctx->parent_ctx);
2864 next_parent = rcu_dereference(next_ctx->parent_ctx);
2866 /* If neither context have a parent context; they cannot be clones. */
2867 if (!parent && !next_parent)
2868 goto unlock;
2870 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2872 * Looks like the two contexts are clones, so we might be
2873 * able to optimize the context switch. We lock both
2874 * contexts and check that they are clones under the
2875 * lock (including re-checking that neither has been
2876 * uncloned in the meantime). It doesn't matter which
2877 * order we take the locks because no other cpu could
2878 * be trying to lock both of these tasks.
2880 raw_spin_lock(&ctx->lock);
2881 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2882 if (context_equiv(ctx, next_ctx)) {
2883 WRITE_ONCE(ctx->task, next);
2884 WRITE_ONCE(next_ctx->task, task);
2886 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2889 * RCU_INIT_POINTER here is safe because we've not
2890 * modified the ctx and the above modification of
2891 * ctx->task and ctx->task_ctx_data are immaterial
2892 * since those values are always verified under
2893 * ctx->lock which we're now holding.
2895 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2896 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2898 do_switch = 0;
2900 perf_event_sync_stat(ctx, next_ctx);
2902 raw_spin_unlock(&next_ctx->lock);
2903 raw_spin_unlock(&ctx->lock);
2905 unlock:
2906 rcu_read_unlock();
2908 if (do_switch) {
2909 raw_spin_lock(&ctx->lock);
2910 task_ctx_sched_out(cpuctx, ctx);
2911 raw_spin_unlock(&ctx->lock);
2915 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2917 void perf_sched_cb_dec(struct pmu *pmu)
2919 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2921 this_cpu_dec(perf_sched_cb_usages);
2923 if (!--cpuctx->sched_cb_usage)
2924 list_del(&cpuctx->sched_cb_entry);
2928 void perf_sched_cb_inc(struct pmu *pmu)
2930 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2932 if (!cpuctx->sched_cb_usage++)
2933 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2935 this_cpu_inc(perf_sched_cb_usages);
2939 * This function provides the context switch callback to the lower code
2940 * layer. It is invoked ONLY when the context switch callback is enabled.
2942 * This callback is relevant even to per-cpu events; for example multi event
2943 * PEBS requires this to provide PID/TID information. This requires we flush
2944 * all queued PEBS records before we context switch to a new task.
2946 static void perf_pmu_sched_task(struct task_struct *prev,
2947 struct task_struct *next,
2948 bool sched_in)
2950 struct perf_cpu_context *cpuctx;
2951 struct pmu *pmu;
2953 if (prev == next)
2954 return;
2956 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2957 pmu = cpuctx->unique_pmu; /* software PMUs will not have sched_task */
2959 if (WARN_ON_ONCE(!pmu->sched_task))
2960 continue;
2962 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2963 perf_pmu_disable(pmu);
2965 pmu->sched_task(cpuctx->task_ctx, sched_in);
2967 perf_pmu_enable(pmu);
2968 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2972 static void perf_event_switch(struct task_struct *task,
2973 struct task_struct *next_prev, bool sched_in);
2975 #define for_each_task_context_nr(ctxn) \
2976 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2979 * Called from scheduler to remove the events of the current task,
2980 * with interrupts disabled.
2982 * We stop each event and update the event value in event->count.
2984 * This does not protect us against NMI, but disable()
2985 * sets the disabled bit in the control field of event _before_
2986 * accessing the event control register. If a NMI hits, then it will
2987 * not restart the event.
2989 void __perf_event_task_sched_out(struct task_struct *task,
2990 struct task_struct *next)
2992 int ctxn;
2994 if (__this_cpu_read(perf_sched_cb_usages))
2995 perf_pmu_sched_task(task, next, false);
2997 if (atomic_read(&nr_switch_events))
2998 perf_event_switch(task, next, false);
3000 for_each_task_context_nr(ctxn)
3001 perf_event_context_sched_out(task, ctxn, next);
3004 * if cgroup events exist on this CPU, then we need
3005 * to check if we have to switch out PMU state.
3006 * cgroup event are system-wide mode only
3008 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3009 perf_cgroup_sched_out(task, next);
3013 * Called with IRQs disabled
3015 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3016 enum event_type_t event_type)
3018 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3021 static void
3022 ctx_pinned_sched_in(struct perf_event_context *ctx,
3023 struct perf_cpu_context *cpuctx)
3025 struct perf_event *event;
3027 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3028 if (event->state <= PERF_EVENT_STATE_OFF)
3029 continue;
3030 if (!event_filter_match(event))
3031 continue;
3033 /* may need to reset tstamp_enabled */
3034 if (is_cgroup_event(event))
3035 perf_cgroup_mark_enabled(event, ctx);
3037 if (group_can_go_on(event, cpuctx, 1))
3038 group_sched_in(event, cpuctx, ctx);
3041 * If this pinned group hasn't been scheduled,
3042 * put it in error state.
3044 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3045 update_group_times(event);
3046 event->state = PERF_EVENT_STATE_ERROR;
3051 static void
3052 ctx_flexible_sched_in(struct perf_event_context *ctx,
3053 struct perf_cpu_context *cpuctx)
3055 struct perf_event *event;
3056 int can_add_hw = 1;
3058 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3059 /* Ignore events in OFF or ERROR state */
3060 if (event->state <= PERF_EVENT_STATE_OFF)
3061 continue;
3063 * Listen to the 'cpu' scheduling filter constraint
3064 * of events:
3066 if (!event_filter_match(event))
3067 continue;
3069 /* may need to reset tstamp_enabled */
3070 if (is_cgroup_event(event))
3071 perf_cgroup_mark_enabled(event, ctx);
3073 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3074 if (group_sched_in(event, cpuctx, ctx))
3075 can_add_hw = 0;
3080 static void
3081 ctx_sched_in(struct perf_event_context *ctx,
3082 struct perf_cpu_context *cpuctx,
3083 enum event_type_t event_type,
3084 struct task_struct *task)
3086 int is_active = ctx->is_active;
3087 u64 now;
3089 lockdep_assert_held(&ctx->lock);
3091 if (likely(!ctx->nr_events))
3092 return;
3094 ctx->is_active |= (event_type | EVENT_TIME);
3095 if (ctx->task) {
3096 if (!is_active)
3097 cpuctx->task_ctx = ctx;
3098 else
3099 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3102 is_active ^= ctx->is_active; /* changed bits */
3104 if (is_active & EVENT_TIME) {
3105 /* start ctx time */
3106 now = perf_clock();
3107 ctx->timestamp = now;
3108 perf_cgroup_set_timestamp(task, ctx);
3112 * First go through the list and put on any pinned groups
3113 * in order to give them the best chance of going on.
3115 if (is_active & EVENT_PINNED)
3116 ctx_pinned_sched_in(ctx, cpuctx);
3118 /* Then walk through the lower prio flexible groups */
3119 if (is_active & EVENT_FLEXIBLE)
3120 ctx_flexible_sched_in(ctx, cpuctx);
3123 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3124 enum event_type_t event_type,
3125 struct task_struct *task)
3127 struct perf_event_context *ctx = &cpuctx->ctx;
3129 ctx_sched_in(ctx, cpuctx, event_type, task);
3132 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3133 struct task_struct *task)
3135 struct perf_cpu_context *cpuctx;
3137 cpuctx = __get_cpu_context(ctx);
3138 if (cpuctx->task_ctx == ctx)
3139 return;
3141 perf_ctx_lock(cpuctx, ctx);
3142 perf_pmu_disable(ctx->pmu);
3144 * We want to keep the following priority order:
3145 * cpu pinned (that don't need to move), task pinned,
3146 * cpu flexible, task flexible.
3148 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3149 perf_event_sched_in(cpuctx, ctx, task);
3150 perf_pmu_enable(ctx->pmu);
3151 perf_ctx_unlock(cpuctx, ctx);
3155 * Called from scheduler to add the events of the current task
3156 * with interrupts disabled.
3158 * We restore the event value and then enable it.
3160 * This does not protect us against NMI, but enable()
3161 * sets the enabled bit in the control field of event _before_
3162 * accessing the event control register. If a NMI hits, then it will
3163 * keep the event running.
3165 void __perf_event_task_sched_in(struct task_struct *prev,
3166 struct task_struct *task)
3168 struct perf_event_context *ctx;
3169 int ctxn;
3172 * If cgroup events exist on this CPU, then we need to check if we have
3173 * to switch in PMU state; cgroup event are system-wide mode only.
3175 * Since cgroup events are CPU events, we must schedule these in before
3176 * we schedule in the task events.
3178 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3179 perf_cgroup_sched_in(prev, task);
3181 for_each_task_context_nr(ctxn) {
3182 ctx = task->perf_event_ctxp[ctxn];
3183 if (likely(!ctx))
3184 continue;
3186 perf_event_context_sched_in(ctx, task);
3189 if (atomic_read(&nr_switch_events))
3190 perf_event_switch(task, prev, true);
3192 if (__this_cpu_read(perf_sched_cb_usages))
3193 perf_pmu_sched_task(prev, task, true);
3196 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3198 u64 frequency = event->attr.sample_freq;
3199 u64 sec = NSEC_PER_SEC;
3200 u64 divisor, dividend;
3202 int count_fls, nsec_fls, frequency_fls, sec_fls;
3204 count_fls = fls64(count);
3205 nsec_fls = fls64(nsec);
3206 frequency_fls = fls64(frequency);
3207 sec_fls = 30;
3210 * We got @count in @nsec, with a target of sample_freq HZ
3211 * the target period becomes:
3213 * @count * 10^9
3214 * period = -------------------
3215 * @nsec * sample_freq
3220 * Reduce accuracy by one bit such that @a and @b converge
3221 * to a similar magnitude.
3223 #define REDUCE_FLS(a, b) \
3224 do { \
3225 if (a##_fls > b##_fls) { \
3226 a >>= 1; \
3227 a##_fls--; \
3228 } else { \
3229 b >>= 1; \
3230 b##_fls--; \
3232 } while (0)
3235 * Reduce accuracy until either term fits in a u64, then proceed with
3236 * the other, so that finally we can do a u64/u64 division.
3238 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3239 REDUCE_FLS(nsec, frequency);
3240 REDUCE_FLS(sec, count);
3243 if (count_fls + sec_fls > 64) {
3244 divisor = nsec * frequency;
3246 while (count_fls + sec_fls > 64) {
3247 REDUCE_FLS(count, sec);
3248 divisor >>= 1;
3251 dividend = count * sec;
3252 } else {
3253 dividend = count * sec;
3255 while (nsec_fls + frequency_fls > 64) {
3256 REDUCE_FLS(nsec, frequency);
3257 dividend >>= 1;
3260 divisor = nsec * frequency;
3263 if (!divisor)
3264 return dividend;
3266 return div64_u64(dividend, divisor);
3269 static DEFINE_PER_CPU(int, perf_throttled_count);
3270 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3272 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3274 struct hw_perf_event *hwc = &event->hw;
3275 s64 period, sample_period;
3276 s64 delta;
3278 period = perf_calculate_period(event, nsec, count);
3280 delta = (s64)(period - hwc->sample_period);
3281 delta = (delta + 7) / 8; /* low pass filter */
3283 sample_period = hwc->sample_period + delta;
3285 if (!sample_period)
3286 sample_period = 1;
3288 hwc->sample_period = sample_period;
3290 if (local64_read(&hwc->period_left) > 8*sample_period) {
3291 if (disable)
3292 event->pmu->stop(event, PERF_EF_UPDATE);
3294 local64_set(&hwc->period_left, 0);
3296 if (disable)
3297 event->pmu->start(event, PERF_EF_RELOAD);
3302 * combine freq adjustment with unthrottling to avoid two passes over the
3303 * events. At the same time, make sure, having freq events does not change
3304 * the rate of unthrottling as that would introduce bias.
3306 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3307 int needs_unthr)
3309 struct perf_event *event;
3310 struct hw_perf_event *hwc;
3311 u64 now, period = TICK_NSEC;
3312 s64 delta;
3315 * only need to iterate over all events iff:
3316 * - context have events in frequency mode (needs freq adjust)
3317 * - there are events to unthrottle on this cpu
3319 if (!(ctx->nr_freq || needs_unthr))
3320 return;
3322 raw_spin_lock(&ctx->lock);
3323 perf_pmu_disable(ctx->pmu);
3325 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3326 if (event->state != PERF_EVENT_STATE_ACTIVE)
3327 continue;
3329 if (!event_filter_match(event))
3330 continue;
3332 perf_pmu_disable(event->pmu);
3334 hwc = &event->hw;
3336 if (hwc->interrupts == MAX_INTERRUPTS) {
3337 hwc->interrupts = 0;
3338 perf_log_throttle(event, 1);
3339 event->pmu->start(event, 0);
3342 if (!event->attr.freq || !event->attr.sample_freq)
3343 goto next;
3346 * stop the event and update event->count
3348 event->pmu->stop(event, PERF_EF_UPDATE);
3350 now = local64_read(&event->count);
3351 delta = now - hwc->freq_count_stamp;
3352 hwc->freq_count_stamp = now;
3355 * restart the event
3356 * reload only if value has changed
3357 * we have stopped the event so tell that
3358 * to perf_adjust_period() to avoid stopping it
3359 * twice.
3361 if (delta > 0)
3362 perf_adjust_period(event, period, delta, false);
3364 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3365 next:
3366 perf_pmu_enable(event->pmu);
3369 perf_pmu_enable(ctx->pmu);
3370 raw_spin_unlock(&ctx->lock);
3374 * Round-robin a context's events:
3376 static void rotate_ctx(struct perf_event_context *ctx)
3379 * Rotate the first entry last of non-pinned groups. Rotation might be
3380 * disabled by the inheritance code.
3382 if (!ctx->rotate_disable)
3383 list_rotate_left(&ctx->flexible_groups);
3386 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3388 struct perf_event_context *ctx = NULL;
3389 int rotate = 0;
3391 if (cpuctx->ctx.nr_events) {
3392 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3393 rotate = 1;
3396 ctx = cpuctx->task_ctx;
3397 if (ctx && ctx->nr_events) {
3398 if (ctx->nr_events != ctx->nr_active)
3399 rotate = 1;
3402 if (!rotate)
3403 goto done;
3405 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3406 perf_pmu_disable(cpuctx->ctx.pmu);
3408 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3409 if (ctx)
3410 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3412 rotate_ctx(&cpuctx->ctx);
3413 if (ctx)
3414 rotate_ctx(ctx);
3416 perf_event_sched_in(cpuctx, ctx, current);
3418 perf_pmu_enable(cpuctx->ctx.pmu);
3419 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3420 done:
3422 return rotate;
3425 void perf_event_task_tick(void)
3427 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3428 struct perf_event_context *ctx, *tmp;
3429 int throttled;
3431 WARN_ON(!irqs_disabled());
3433 __this_cpu_inc(perf_throttled_seq);
3434 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3435 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3437 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3438 perf_adjust_freq_unthr_context(ctx, throttled);
3441 static int event_enable_on_exec(struct perf_event *event,
3442 struct perf_event_context *ctx)
3444 if (!event->attr.enable_on_exec)
3445 return 0;
3447 event->attr.enable_on_exec = 0;
3448 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3449 return 0;
3451 __perf_event_mark_enabled(event);
3453 return 1;
3457 * Enable all of a task's events that have been marked enable-on-exec.
3458 * This expects task == current.
3460 static void perf_event_enable_on_exec(int ctxn)
3462 struct perf_event_context *ctx, *clone_ctx = NULL;
3463 struct perf_cpu_context *cpuctx;
3464 struct perf_event *event;
3465 unsigned long flags;
3466 int enabled = 0;
3468 local_irq_save(flags);
3469 ctx = current->perf_event_ctxp[ctxn];
3470 if (!ctx || !ctx->nr_events)
3471 goto out;
3473 cpuctx = __get_cpu_context(ctx);
3474 perf_ctx_lock(cpuctx, ctx);
3475 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3476 list_for_each_entry(event, &ctx->event_list, event_entry)
3477 enabled |= event_enable_on_exec(event, ctx);
3480 * Unclone and reschedule this context if we enabled any event.
3482 if (enabled) {
3483 clone_ctx = unclone_ctx(ctx);
3484 ctx_resched(cpuctx, ctx);
3486 perf_ctx_unlock(cpuctx, ctx);
3488 out:
3489 local_irq_restore(flags);
3491 if (clone_ctx)
3492 put_ctx(clone_ctx);
3495 struct perf_read_data {
3496 struct perf_event *event;
3497 bool group;
3498 int ret;
3501 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3503 u16 local_pkg, event_pkg;
3505 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3506 int local_cpu = smp_processor_id();
3508 event_pkg = topology_physical_package_id(event_cpu);
3509 local_pkg = topology_physical_package_id(local_cpu);
3511 if (event_pkg == local_pkg)
3512 return local_cpu;
3515 return event_cpu;
3519 * Cross CPU call to read the hardware event
3521 static void __perf_event_read(void *info)
3523 struct perf_read_data *data = info;
3524 struct perf_event *sub, *event = data->event;
3525 struct perf_event_context *ctx = event->ctx;
3526 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3527 struct pmu *pmu = event->pmu;
3530 * If this is a task context, we need to check whether it is
3531 * the current task context of this cpu. If not it has been
3532 * scheduled out before the smp call arrived. In that case
3533 * event->count would have been updated to a recent sample
3534 * when the event was scheduled out.
3536 if (ctx->task && cpuctx->task_ctx != ctx)
3537 return;
3539 raw_spin_lock(&ctx->lock);
3540 if (ctx->is_active) {
3541 update_context_time(ctx);
3542 update_cgrp_time_from_event(event);
3545 update_event_times(event);
3546 if (event->state != PERF_EVENT_STATE_ACTIVE)
3547 goto unlock;
3549 if (!data->group) {
3550 pmu->read(event);
3551 data->ret = 0;
3552 goto unlock;
3555 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3557 pmu->read(event);
3559 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3560 update_event_times(sub);
3561 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3563 * Use sibling's PMU rather than @event's since
3564 * sibling could be on different (eg: software) PMU.
3566 sub->pmu->read(sub);
3570 data->ret = pmu->commit_txn(pmu);
3572 unlock:
3573 raw_spin_unlock(&ctx->lock);
3576 static inline u64 perf_event_count(struct perf_event *event)
3578 if (event->pmu->count)
3579 return event->pmu->count(event);
3581 return __perf_event_count(event);
3585 * NMI-safe method to read a local event, that is an event that
3586 * is:
3587 * - either for the current task, or for this CPU
3588 * - does not have inherit set, for inherited task events
3589 * will not be local and we cannot read them atomically
3590 * - must not have a pmu::count method
3592 u64 perf_event_read_local(struct perf_event *event)
3594 unsigned long flags;
3595 u64 val;
3598 * Disabling interrupts avoids all counter scheduling (context
3599 * switches, timer based rotation and IPIs).
3601 local_irq_save(flags);
3603 /* If this is a per-task event, it must be for current */
3604 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3605 event->hw.target != current);
3607 /* If this is a per-CPU event, it must be for this CPU */
3608 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3609 event->cpu != smp_processor_id());
3612 * It must not be an event with inherit set, we cannot read
3613 * all child counters from atomic context.
3615 WARN_ON_ONCE(event->attr.inherit);
3618 * It must not have a pmu::count method, those are not
3619 * NMI safe.
3621 WARN_ON_ONCE(event->pmu->count);
3624 * If the event is currently on this CPU, its either a per-task event,
3625 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3626 * oncpu == -1).
3628 if (event->oncpu == smp_processor_id())
3629 event->pmu->read(event);
3631 val = local64_read(&event->count);
3632 local_irq_restore(flags);
3634 return val;
3637 static int perf_event_read(struct perf_event *event, bool group)
3639 int event_cpu, ret = 0;
3642 * If event is enabled and currently active on a CPU, update the
3643 * value in the event structure:
3645 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3646 struct perf_read_data data = {
3647 .event = event,
3648 .group = group,
3649 .ret = 0,
3652 event_cpu = READ_ONCE(event->oncpu);
3653 if ((unsigned)event_cpu >= nr_cpu_ids)
3654 return 0;
3656 preempt_disable();
3657 event_cpu = __perf_event_read_cpu(event, event_cpu);
3660 * Purposely ignore the smp_call_function_single() return
3661 * value.
3663 * If event_cpu isn't a valid CPU it means the event got
3664 * scheduled out and that will have updated the event count.
3666 * Therefore, either way, we'll have an up-to-date event count
3667 * after this.
3669 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3670 preempt_enable();
3671 ret = data.ret;
3672 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3673 struct perf_event_context *ctx = event->ctx;
3674 unsigned long flags;
3676 raw_spin_lock_irqsave(&ctx->lock, flags);
3678 * may read while context is not active
3679 * (e.g., thread is blocked), in that case
3680 * we cannot update context time
3682 if (ctx->is_active) {
3683 update_context_time(ctx);
3684 update_cgrp_time_from_event(event);
3686 if (group)
3687 update_group_times(event);
3688 else
3689 update_event_times(event);
3690 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3693 return ret;
3697 * Initialize the perf_event context in a task_struct:
3699 static void __perf_event_init_context(struct perf_event_context *ctx)
3701 raw_spin_lock_init(&ctx->lock);
3702 mutex_init(&ctx->mutex);
3703 INIT_LIST_HEAD(&ctx->active_ctx_list);
3704 INIT_LIST_HEAD(&ctx->pinned_groups);
3705 INIT_LIST_HEAD(&ctx->flexible_groups);
3706 INIT_LIST_HEAD(&ctx->event_list);
3707 atomic_set(&ctx->refcount, 1);
3710 static struct perf_event_context *
3711 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3713 struct perf_event_context *ctx;
3715 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3716 if (!ctx)
3717 return NULL;
3719 __perf_event_init_context(ctx);
3720 if (task) {
3721 ctx->task = task;
3722 get_task_struct(task);
3724 ctx->pmu = pmu;
3726 return ctx;
3729 static struct task_struct *
3730 find_lively_task_by_vpid(pid_t vpid)
3732 struct task_struct *task;
3734 rcu_read_lock();
3735 if (!vpid)
3736 task = current;
3737 else
3738 task = find_task_by_vpid(vpid);
3739 if (task)
3740 get_task_struct(task);
3741 rcu_read_unlock();
3743 if (!task)
3744 return ERR_PTR(-ESRCH);
3746 return task;
3750 * Returns a matching context with refcount and pincount.
3752 static struct perf_event_context *
3753 find_get_context(struct pmu *pmu, struct task_struct *task,
3754 struct perf_event *event)
3756 struct perf_event_context *ctx, *clone_ctx = NULL;
3757 struct perf_cpu_context *cpuctx;
3758 void *task_ctx_data = NULL;
3759 unsigned long flags;
3760 int ctxn, err;
3761 int cpu = event->cpu;
3763 if (!task) {
3764 /* Must be root to operate on a CPU event: */
3765 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3766 return ERR_PTR(-EACCES);
3769 * We could be clever and allow to attach a event to an
3770 * offline CPU and activate it when the CPU comes up, but
3771 * that's for later.
3773 if (!cpu_online(cpu))
3774 return ERR_PTR(-ENODEV);
3776 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3777 ctx = &cpuctx->ctx;
3778 get_ctx(ctx);
3779 ++ctx->pin_count;
3781 return ctx;
3784 err = -EINVAL;
3785 ctxn = pmu->task_ctx_nr;
3786 if (ctxn < 0)
3787 goto errout;
3789 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3790 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3791 if (!task_ctx_data) {
3792 err = -ENOMEM;
3793 goto errout;
3797 retry:
3798 ctx = perf_lock_task_context(task, ctxn, &flags);
3799 if (ctx) {
3800 clone_ctx = unclone_ctx(ctx);
3801 ++ctx->pin_count;
3803 if (task_ctx_data && !ctx->task_ctx_data) {
3804 ctx->task_ctx_data = task_ctx_data;
3805 task_ctx_data = NULL;
3807 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3809 if (clone_ctx)
3810 put_ctx(clone_ctx);
3811 } else {
3812 ctx = alloc_perf_context(pmu, task);
3813 err = -ENOMEM;
3814 if (!ctx)
3815 goto errout;
3817 if (task_ctx_data) {
3818 ctx->task_ctx_data = task_ctx_data;
3819 task_ctx_data = NULL;
3822 err = 0;
3823 mutex_lock(&task->perf_event_mutex);
3825 * If it has already passed perf_event_exit_task().
3826 * we must see PF_EXITING, it takes this mutex too.
3828 if (task->flags & PF_EXITING)
3829 err = -ESRCH;
3830 else if (task->perf_event_ctxp[ctxn])
3831 err = -EAGAIN;
3832 else {
3833 get_ctx(ctx);
3834 ++ctx->pin_count;
3835 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3837 mutex_unlock(&task->perf_event_mutex);
3839 if (unlikely(err)) {
3840 put_ctx(ctx);
3842 if (err == -EAGAIN)
3843 goto retry;
3844 goto errout;
3848 kfree(task_ctx_data);
3849 return ctx;
3851 errout:
3852 kfree(task_ctx_data);
3853 return ERR_PTR(err);
3856 static void perf_event_free_filter(struct perf_event *event);
3857 static void perf_event_free_bpf_prog(struct perf_event *event);
3859 static void free_event_rcu(struct rcu_head *head)
3861 struct perf_event *event;
3863 event = container_of(head, struct perf_event, rcu_head);
3864 if (event->ns)
3865 put_pid_ns(event->ns);
3866 perf_event_free_filter(event);
3867 kfree(event);
3870 static void ring_buffer_attach(struct perf_event *event,
3871 struct ring_buffer *rb);
3873 static void detach_sb_event(struct perf_event *event)
3875 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3877 raw_spin_lock(&pel->lock);
3878 list_del_rcu(&event->sb_list);
3879 raw_spin_unlock(&pel->lock);
3882 static bool is_sb_event(struct perf_event *event)
3884 struct perf_event_attr *attr = &event->attr;
3886 if (event->parent)
3887 return false;
3889 if (event->attach_state & PERF_ATTACH_TASK)
3890 return false;
3892 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3893 attr->comm || attr->comm_exec ||
3894 attr->task ||
3895 attr->context_switch)
3896 return true;
3897 return false;
3900 static void unaccount_pmu_sb_event(struct perf_event *event)
3902 if (is_sb_event(event))
3903 detach_sb_event(event);
3906 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3908 if (event->parent)
3909 return;
3911 if (is_cgroup_event(event))
3912 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3915 #ifdef CONFIG_NO_HZ_FULL
3916 static DEFINE_SPINLOCK(nr_freq_lock);
3917 #endif
3919 static void unaccount_freq_event_nohz(void)
3921 #ifdef CONFIG_NO_HZ_FULL
3922 spin_lock(&nr_freq_lock);
3923 if (atomic_dec_and_test(&nr_freq_events))
3924 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3925 spin_unlock(&nr_freq_lock);
3926 #endif
3929 static void unaccount_freq_event(void)
3931 if (tick_nohz_full_enabled())
3932 unaccount_freq_event_nohz();
3933 else
3934 atomic_dec(&nr_freq_events);
3937 static void unaccount_event(struct perf_event *event)
3939 bool dec = false;
3941 if (event->parent)
3942 return;
3944 if (event->attach_state & PERF_ATTACH_TASK)
3945 dec = true;
3946 if (event->attr.mmap || event->attr.mmap_data)
3947 atomic_dec(&nr_mmap_events);
3948 if (event->attr.comm)
3949 atomic_dec(&nr_comm_events);
3950 if (event->attr.task)
3951 atomic_dec(&nr_task_events);
3952 if (event->attr.freq)
3953 unaccount_freq_event();
3954 if (event->attr.context_switch) {
3955 dec = true;
3956 atomic_dec(&nr_switch_events);
3958 if (is_cgroup_event(event))
3959 dec = true;
3960 if (has_branch_stack(event))
3961 dec = true;
3963 if (dec) {
3964 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3965 schedule_delayed_work(&perf_sched_work, HZ);
3968 unaccount_event_cpu(event, event->cpu);
3970 unaccount_pmu_sb_event(event);
3973 static void perf_sched_delayed(struct work_struct *work)
3975 mutex_lock(&perf_sched_mutex);
3976 if (atomic_dec_and_test(&perf_sched_count))
3977 static_branch_disable(&perf_sched_events);
3978 mutex_unlock(&perf_sched_mutex);
3982 * The following implement mutual exclusion of events on "exclusive" pmus
3983 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3984 * at a time, so we disallow creating events that might conflict, namely:
3986 * 1) cpu-wide events in the presence of per-task events,
3987 * 2) per-task events in the presence of cpu-wide events,
3988 * 3) two matching events on the same context.
3990 * The former two cases are handled in the allocation path (perf_event_alloc(),
3991 * _free_event()), the latter -- before the first perf_install_in_context().
3993 static int exclusive_event_init(struct perf_event *event)
3995 struct pmu *pmu = event->pmu;
3997 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3998 return 0;
4001 * Prevent co-existence of per-task and cpu-wide events on the
4002 * same exclusive pmu.
4004 * Negative pmu::exclusive_cnt means there are cpu-wide
4005 * events on this "exclusive" pmu, positive means there are
4006 * per-task events.
4008 * Since this is called in perf_event_alloc() path, event::ctx
4009 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4010 * to mean "per-task event", because unlike other attach states it
4011 * never gets cleared.
4013 if (event->attach_state & PERF_ATTACH_TASK) {
4014 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4015 return -EBUSY;
4016 } else {
4017 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4018 return -EBUSY;
4021 return 0;
4024 static void exclusive_event_destroy(struct perf_event *event)
4026 struct pmu *pmu = event->pmu;
4028 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4029 return;
4031 /* see comment in exclusive_event_init() */
4032 if (event->attach_state & PERF_ATTACH_TASK)
4033 atomic_dec(&pmu->exclusive_cnt);
4034 else
4035 atomic_inc(&pmu->exclusive_cnt);
4038 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4040 if ((e1->pmu == e2->pmu) &&
4041 (e1->cpu == e2->cpu ||
4042 e1->cpu == -1 ||
4043 e2->cpu == -1))
4044 return true;
4045 return false;
4048 /* Called under the same ctx::mutex as perf_install_in_context() */
4049 static bool exclusive_event_installable(struct perf_event *event,
4050 struct perf_event_context *ctx)
4052 struct perf_event *iter_event;
4053 struct pmu *pmu = event->pmu;
4055 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4056 return true;
4058 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4059 if (exclusive_event_match(iter_event, event))
4060 return false;
4063 return true;
4066 static void perf_addr_filters_splice(struct perf_event *event,
4067 struct list_head *head);
4069 static void _free_event(struct perf_event *event)
4071 irq_work_sync(&event->pending);
4073 unaccount_event(event);
4075 if (event->rb) {
4077 * Can happen when we close an event with re-directed output.
4079 * Since we have a 0 refcount, perf_mmap_close() will skip
4080 * over us; possibly making our ring_buffer_put() the last.
4082 mutex_lock(&event->mmap_mutex);
4083 ring_buffer_attach(event, NULL);
4084 mutex_unlock(&event->mmap_mutex);
4087 if (is_cgroup_event(event))
4088 perf_detach_cgroup(event);
4090 if (!event->parent) {
4091 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4092 put_callchain_buffers();
4095 perf_event_free_bpf_prog(event);
4096 perf_addr_filters_splice(event, NULL);
4097 kfree(event->addr_filters_offs);
4099 if (event->destroy)
4100 event->destroy(event);
4102 if (event->ctx)
4103 put_ctx(event->ctx);
4105 if (event->hw.target)
4106 put_task_struct(event->hw.target);
4108 exclusive_event_destroy(event);
4109 module_put(event->pmu->module);
4111 call_rcu(&event->rcu_head, free_event_rcu);
4115 * Used to free events which have a known refcount of 1, such as in error paths
4116 * where the event isn't exposed yet and inherited events.
4118 static void free_event(struct perf_event *event)
4120 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4121 "unexpected event refcount: %ld; ptr=%p\n",
4122 atomic_long_read(&event->refcount), event)) {
4123 /* leak to avoid use-after-free */
4124 return;
4127 _free_event(event);
4131 * Remove user event from the owner task.
4133 static void perf_remove_from_owner(struct perf_event *event)
4135 struct task_struct *owner;
4137 rcu_read_lock();
4139 * Matches the smp_store_release() in perf_event_exit_task(). If we
4140 * observe !owner it means the list deletion is complete and we can
4141 * indeed free this event, otherwise we need to serialize on
4142 * owner->perf_event_mutex.
4144 owner = lockless_dereference(event->owner);
4145 if (owner) {
4147 * Since delayed_put_task_struct() also drops the last
4148 * task reference we can safely take a new reference
4149 * while holding the rcu_read_lock().
4151 get_task_struct(owner);
4153 rcu_read_unlock();
4155 if (owner) {
4157 * If we're here through perf_event_exit_task() we're already
4158 * holding ctx->mutex which would be an inversion wrt. the
4159 * normal lock order.
4161 * However we can safely take this lock because its the child
4162 * ctx->mutex.
4164 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4167 * We have to re-check the event->owner field, if it is cleared
4168 * we raced with perf_event_exit_task(), acquiring the mutex
4169 * ensured they're done, and we can proceed with freeing the
4170 * event.
4172 if (event->owner) {
4173 list_del_init(&event->owner_entry);
4174 smp_store_release(&event->owner, NULL);
4176 mutex_unlock(&owner->perf_event_mutex);
4177 put_task_struct(owner);
4181 static void put_event(struct perf_event *event)
4183 if (!atomic_long_dec_and_test(&event->refcount))
4184 return;
4186 _free_event(event);
4190 * Kill an event dead; while event:refcount will preserve the event
4191 * object, it will not preserve its functionality. Once the last 'user'
4192 * gives up the object, we'll destroy the thing.
4194 int perf_event_release_kernel(struct perf_event *event)
4196 struct perf_event_context *ctx = event->ctx;
4197 struct perf_event *child, *tmp;
4200 * If we got here through err_file: fput(event_file); we will not have
4201 * attached to a context yet.
4203 if (!ctx) {
4204 WARN_ON_ONCE(event->attach_state &
4205 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4206 goto no_ctx;
4209 if (!is_kernel_event(event))
4210 perf_remove_from_owner(event);
4212 ctx = perf_event_ctx_lock(event);
4213 WARN_ON_ONCE(ctx->parent_ctx);
4214 perf_remove_from_context(event, DETACH_GROUP);
4216 raw_spin_lock_irq(&ctx->lock);
4218 * Mark this even as STATE_DEAD, there is no external reference to it
4219 * anymore.
4221 * Anybody acquiring event->child_mutex after the below loop _must_
4222 * also see this, most importantly inherit_event() which will avoid
4223 * placing more children on the list.
4225 * Thus this guarantees that we will in fact observe and kill _ALL_
4226 * child events.
4228 event->state = PERF_EVENT_STATE_DEAD;
4229 raw_spin_unlock_irq(&ctx->lock);
4231 perf_event_ctx_unlock(event, ctx);
4233 again:
4234 mutex_lock(&event->child_mutex);
4235 list_for_each_entry(child, &event->child_list, child_list) {
4238 * Cannot change, child events are not migrated, see the
4239 * comment with perf_event_ctx_lock_nested().
4241 ctx = lockless_dereference(child->ctx);
4243 * Since child_mutex nests inside ctx::mutex, we must jump
4244 * through hoops. We start by grabbing a reference on the ctx.
4246 * Since the event cannot get freed while we hold the
4247 * child_mutex, the context must also exist and have a !0
4248 * reference count.
4250 get_ctx(ctx);
4253 * Now that we have a ctx ref, we can drop child_mutex, and
4254 * acquire ctx::mutex without fear of it going away. Then we
4255 * can re-acquire child_mutex.
4257 mutex_unlock(&event->child_mutex);
4258 mutex_lock(&ctx->mutex);
4259 mutex_lock(&event->child_mutex);
4262 * Now that we hold ctx::mutex and child_mutex, revalidate our
4263 * state, if child is still the first entry, it didn't get freed
4264 * and we can continue doing so.
4266 tmp = list_first_entry_or_null(&event->child_list,
4267 struct perf_event, child_list);
4268 if (tmp == child) {
4269 perf_remove_from_context(child, DETACH_GROUP);
4270 list_del(&child->child_list);
4271 free_event(child);
4273 * This matches the refcount bump in inherit_event();
4274 * this can't be the last reference.
4276 put_event(event);
4279 mutex_unlock(&event->child_mutex);
4280 mutex_unlock(&ctx->mutex);
4281 put_ctx(ctx);
4282 goto again;
4284 mutex_unlock(&event->child_mutex);
4286 no_ctx:
4287 put_event(event); /* Must be the 'last' reference */
4288 return 0;
4290 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4293 * Called when the last reference to the file is gone.
4295 static int perf_release(struct inode *inode, struct file *file)
4297 perf_event_release_kernel(file->private_data);
4298 return 0;
4301 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4303 struct perf_event *child;
4304 u64 total = 0;
4306 *enabled = 0;
4307 *running = 0;
4309 mutex_lock(&event->child_mutex);
4311 (void)perf_event_read(event, false);
4312 total += perf_event_count(event);
4314 *enabled += event->total_time_enabled +
4315 atomic64_read(&event->child_total_time_enabled);
4316 *running += event->total_time_running +
4317 atomic64_read(&event->child_total_time_running);
4319 list_for_each_entry(child, &event->child_list, child_list) {
4320 (void)perf_event_read(child, false);
4321 total += perf_event_count(child);
4322 *enabled += child->total_time_enabled;
4323 *running += child->total_time_running;
4325 mutex_unlock(&event->child_mutex);
4327 return total;
4329 EXPORT_SYMBOL_GPL(perf_event_read_value);
4331 static int __perf_read_group_add(struct perf_event *leader,
4332 u64 read_format, u64 *values)
4334 struct perf_event_context *ctx = leader->ctx;
4335 struct perf_event *sub;
4336 unsigned long flags;
4337 int n = 1; /* skip @nr */
4338 int ret;
4340 ret = perf_event_read(leader, true);
4341 if (ret)
4342 return ret;
4345 * Since we co-schedule groups, {enabled,running} times of siblings
4346 * will be identical to those of the leader, so we only publish one
4347 * set.
4349 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4350 values[n++] += leader->total_time_enabled +
4351 atomic64_read(&leader->child_total_time_enabled);
4354 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4355 values[n++] += leader->total_time_running +
4356 atomic64_read(&leader->child_total_time_running);
4360 * Write {count,id} tuples for every sibling.
4362 values[n++] += perf_event_count(leader);
4363 if (read_format & PERF_FORMAT_ID)
4364 values[n++] = primary_event_id(leader);
4366 raw_spin_lock_irqsave(&ctx->lock, flags);
4368 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4369 values[n++] += perf_event_count(sub);
4370 if (read_format & PERF_FORMAT_ID)
4371 values[n++] = primary_event_id(sub);
4374 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4375 return 0;
4378 static int perf_read_group(struct perf_event *event,
4379 u64 read_format, char __user *buf)
4381 struct perf_event *leader = event->group_leader, *child;
4382 struct perf_event_context *ctx = leader->ctx;
4383 int ret;
4384 u64 *values;
4386 lockdep_assert_held(&ctx->mutex);
4388 values = kzalloc(event->read_size, GFP_KERNEL);
4389 if (!values)
4390 return -ENOMEM;
4392 values[0] = 1 + leader->nr_siblings;
4395 * By locking the child_mutex of the leader we effectively
4396 * lock the child list of all siblings.. XXX explain how.
4398 mutex_lock(&leader->child_mutex);
4400 ret = __perf_read_group_add(leader, read_format, values);
4401 if (ret)
4402 goto unlock;
4404 list_for_each_entry(child, &leader->child_list, child_list) {
4405 ret = __perf_read_group_add(child, read_format, values);
4406 if (ret)
4407 goto unlock;
4410 mutex_unlock(&leader->child_mutex);
4412 ret = event->read_size;
4413 if (copy_to_user(buf, values, event->read_size))
4414 ret = -EFAULT;
4415 goto out;
4417 unlock:
4418 mutex_unlock(&leader->child_mutex);
4419 out:
4420 kfree(values);
4421 return ret;
4424 static int perf_read_one(struct perf_event *event,
4425 u64 read_format, char __user *buf)
4427 u64 enabled, running;
4428 u64 values[4];
4429 int n = 0;
4431 values[n++] = perf_event_read_value(event, &enabled, &running);
4432 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4433 values[n++] = enabled;
4434 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4435 values[n++] = running;
4436 if (read_format & PERF_FORMAT_ID)
4437 values[n++] = primary_event_id(event);
4439 if (copy_to_user(buf, values, n * sizeof(u64)))
4440 return -EFAULT;
4442 return n * sizeof(u64);
4445 static bool is_event_hup(struct perf_event *event)
4447 bool no_children;
4449 if (event->state > PERF_EVENT_STATE_EXIT)
4450 return false;
4452 mutex_lock(&event->child_mutex);
4453 no_children = list_empty(&event->child_list);
4454 mutex_unlock(&event->child_mutex);
4455 return no_children;
4459 * Read the performance event - simple non blocking version for now
4461 static ssize_t
4462 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4464 u64 read_format = event->attr.read_format;
4465 int ret;
4468 * Return end-of-file for a read on a event that is in
4469 * error state (i.e. because it was pinned but it couldn't be
4470 * scheduled on to the CPU at some point).
4472 if (event->state == PERF_EVENT_STATE_ERROR)
4473 return 0;
4475 if (count < event->read_size)
4476 return -ENOSPC;
4478 WARN_ON_ONCE(event->ctx->parent_ctx);
4479 if (read_format & PERF_FORMAT_GROUP)
4480 ret = perf_read_group(event, read_format, buf);
4481 else
4482 ret = perf_read_one(event, read_format, buf);
4484 return ret;
4487 static ssize_t
4488 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4490 struct perf_event *event = file->private_data;
4491 struct perf_event_context *ctx;
4492 int ret;
4494 ctx = perf_event_ctx_lock(event);
4495 ret = __perf_read(event, buf, count);
4496 perf_event_ctx_unlock(event, ctx);
4498 return ret;
4501 static unsigned int perf_poll(struct file *file, poll_table *wait)
4503 struct perf_event *event = file->private_data;
4504 struct ring_buffer *rb;
4505 unsigned int events = POLLHUP;
4507 poll_wait(file, &event->waitq, wait);
4509 if (is_event_hup(event))
4510 return events;
4513 * Pin the event->rb by taking event->mmap_mutex; otherwise
4514 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4516 mutex_lock(&event->mmap_mutex);
4517 rb = event->rb;
4518 if (rb)
4519 events = atomic_xchg(&rb->poll, 0);
4520 mutex_unlock(&event->mmap_mutex);
4521 return events;
4524 static void _perf_event_reset(struct perf_event *event)
4526 (void)perf_event_read(event, false);
4527 local64_set(&event->count, 0);
4528 perf_event_update_userpage(event);
4532 * Holding the top-level event's child_mutex means that any
4533 * descendant process that has inherited this event will block
4534 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4535 * task existence requirements of perf_event_enable/disable.
4537 static void perf_event_for_each_child(struct perf_event *event,
4538 void (*func)(struct perf_event *))
4540 struct perf_event *child;
4542 WARN_ON_ONCE(event->ctx->parent_ctx);
4544 mutex_lock(&event->child_mutex);
4545 func(event);
4546 list_for_each_entry(child, &event->child_list, child_list)
4547 func(child);
4548 mutex_unlock(&event->child_mutex);
4551 static void perf_event_for_each(struct perf_event *event,
4552 void (*func)(struct perf_event *))
4554 struct perf_event_context *ctx = event->ctx;
4555 struct perf_event *sibling;
4557 lockdep_assert_held(&ctx->mutex);
4559 event = event->group_leader;
4561 perf_event_for_each_child(event, func);
4562 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4563 perf_event_for_each_child(sibling, func);
4566 static void __perf_event_period(struct perf_event *event,
4567 struct perf_cpu_context *cpuctx,
4568 struct perf_event_context *ctx,
4569 void *info)
4571 u64 value = *((u64 *)info);
4572 bool active;
4574 if (event->attr.freq) {
4575 event->attr.sample_freq = value;
4576 } else {
4577 event->attr.sample_period = value;
4578 event->hw.sample_period = value;
4581 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4582 if (active) {
4583 perf_pmu_disable(ctx->pmu);
4585 * We could be throttled; unthrottle now to avoid the tick
4586 * trying to unthrottle while we already re-started the event.
4588 if (event->hw.interrupts == MAX_INTERRUPTS) {
4589 event->hw.interrupts = 0;
4590 perf_log_throttle(event, 1);
4592 event->pmu->stop(event, PERF_EF_UPDATE);
4595 local64_set(&event->hw.period_left, 0);
4597 if (active) {
4598 event->pmu->start(event, PERF_EF_RELOAD);
4599 perf_pmu_enable(ctx->pmu);
4603 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4605 u64 value;
4607 if (!is_sampling_event(event))
4608 return -EINVAL;
4610 if (copy_from_user(&value, arg, sizeof(value)))
4611 return -EFAULT;
4613 if (!value)
4614 return -EINVAL;
4616 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4617 return -EINVAL;
4619 event_function_call(event, __perf_event_period, &value);
4621 return 0;
4624 static const struct file_operations perf_fops;
4626 static inline int perf_fget_light(int fd, struct fd *p)
4628 struct fd f = fdget(fd);
4629 if (!f.file)
4630 return -EBADF;
4632 if (f.file->f_op != &perf_fops) {
4633 fdput(f);
4634 return -EBADF;
4636 *p = f;
4637 return 0;
4640 static int perf_event_set_output(struct perf_event *event,
4641 struct perf_event *output_event);
4642 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4643 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4645 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4647 void (*func)(struct perf_event *);
4648 u32 flags = arg;
4650 switch (cmd) {
4651 case PERF_EVENT_IOC_ENABLE:
4652 func = _perf_event_enable;
4653 break;
4654 case PERF_EVENT_IOC_DISABLE:
4655 func = _perf_event_disable;
4656 break;
4657 case PERF_EVENT_IOC_RESET:
4658 func = _perf_event_reset;
4659 break;
4661 case PERF_EVENT_IOC_REFRESH:
4662 return _perf_event_refresh(event, arg);
4664 case PERF_EVENT_IOC_PERIOD:
4665 return perf_event_period(event, (u64 __user *)arg);
4667 case PERF_EVENT_IOC_ID:
4669 u64 id = primary_event_id(event);
4671 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4672 return -EFAULT;
4673 return 0;
4676 case PERF_EVENT_IOC_SET_OUTPUT:
4678 int ret;
4679 if (arg != -1) {
4680 struct perf_event *output_event;
4681 struct fd output;
4682 ret = perf_fget_light(arg, &output);
4683 if (ret)
4684 return ret;
4685 output_event = output.file->private_data;
4686 ret = perf_event_set_output(event, output_event);
4687 fdput(output);
4688 } else {
4689 ret = perf_event_set_output(event, NULL);
4691 return ret;
4694 case PERF_EVENT_IOC_SET_FILTER:
4695 return perf_event_set_filter(event, (void __user *)arg);
4697 case PERF_EVENT_IOC_SET_BPF:
4698 return perf_event_set_bpf_prog(event, arg);
4700 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4701 struct ring_buffer *rb;
4703 rcu_read_lock();
4704 rb = rcu_dereference(event->rb);
4705 if (!rb || !rb->nr_pages) {
4706 rcu_read_unlock();
4707 return -EINVAL;
4709 rb_toggle_paused(rb, !!arg);
4710 rcu_read_unlock();
4711 return 0;
4713 default:
4714 return -ENOTTY;
4717 if (flags & PERF_IOC_FLAG_GROUP)
4718 perf_event_for_each(event, func);
4719 else
4720 perf_event_for_each_child(event, func);
4722 return 0;
4725 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4727 struct perf_event *event = file->private_data;
4728 struct perf_event_context *ctx;
4729 long ret;
4731 ctx = perf_event_ctx_lock(event);
4732 ret = _perf_ioctl(event, cmd, arg);
4733 perf_event_ctx_unlock(event, ctx);
4735 return ret;
4738 #ifdef CONFIG_COMPAT
4739 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4740 unsigned long arg)
4742 switch (_IOC_NR(cmd)) {
4743 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4744 case _IOC_NR(PERF_EVENT_IOC_ID):
4745 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4746 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4747 cmd &= ~IOCSIZE_MASK;
4748 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4750 break;
4752 return perf_ioctl(file, cmd, arg);
4754 #else
4755 # define perf_compat_ioctl NULL
4756 #endif
4758 int perf_event_task_enable(void)
4760 struct perf_event_context *ctx;
4761 struct perf_event *event;
4763 mutex_lock(&current->perf_event_mutex);
4764 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4765 ctx = perf_event_ctx_lock(event);
4766 perf_event_for_each_child(event, _perf_event_enable);
4767 perf_event_ctx_unlock(event, ctx);
4769 mutex_unlock(&current->perf_event_mutex);
4771 return 0;
4774 int perf_event_task_disable(void)
4776 struct perf_event_context *ctx;
4777 struct perf_event *event;
4779 mutex_lock(&current->perf_event_mutex);
4780 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4781 ctx = perf_event_ctx_lock(event);
4782 perf_event_for_each_child(event, _perf_event_disable);
4783 perf_event_ctx_unlock(event, ctx);
4785 mutex_unlock(&current->perf_event_mutex);
4787 return 0;
4790 static int perf_event_index(struct perf_event *event)
4792 if (event->hw.state & PERF_HES_STOPPED)
4793 return 0;
4795 if (event->state != PERF_EVENT_STATE_ACTIVE)
4796 return 0;
4798 return event->pmu->event_idx(event);
4801 static void calc_timer_values(struct perf_event *event,
4802 u64 *now,
4803 u64 *enabled,
4804 u64 *running)
4806 u64 ctx_time;
4808 *now = perf_clock();
4809 ctx_time = event->shadow_ctx_time + *now;
4810 *enabled = ctx_time - event->tstamp_enabled;
4811 *running = ctx_time - event->tstamp_running;
4814 static void perf_event_init_userpage(struct perf_event *event)
4816 struct perf_event_mmap_page *userpg;
4817 struct ring_buffer *rb;
4819 rcu_read_lock();
4820 rb = rcu_dereference(event->rb);
4821 if (!rb)
4822 goto unlock;
4824 userpg = rb->user_page;
4826 /* Allow new userspace to detect that bit 0 is deprecated */
4827 userpg->cap_bit0_is_deprecated = 1;
4828 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4829 userpg->data_offset = PAGE_SIZE;
4830 userpg->data_size = perf_data_size(rb);
4832 unlock:
4833 rcu_read_unlock();
4836 void __weak arch_perf_update_userpage(
4837 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4842 * Callers need to ensure there can be no nesting of this function, otherwise
4843 * the seqlock logic goes bad. We can not serialize this because the arch
4844 * code calls this from NMI context.
4846 void perf_event_update_userpage(struct perf_event *event)
4848 struct perf_event_mmap_page *userpg;
4849 struct ring_buffer *rb;
4850 u64 enabled, running, now;
4852 rcu_read_lock();
4853 rb = rcu_dereference(event->rb);
4854 if (!rb)
4855 goto unlock;
4858 * compute total_time_enabled, total_time_running
4859 * based on snapshot values taken when the event
4860 * was last scheduled in.
4862 * we cannot simply called update_context_time()
4863 * because of locking issue as we can be called in
4864 * NMI context
4866 calc_timer_values(event, &now, &enabled, &running);
4868 userpg = rb->user_page;
4870 * Disable preemption so as to not let the corresponding user-space
4871 * spin too long if we get preempted.
4873 preempt_disable();
4874 ++userpg->lock;
4875 barrier();
4876 userpg->index = perf_event_index(event);
4877 userpg->offset = perf_event_count(event);
4878 if (userpg->index)
4879 userpg->offset -= local64_read(&event->hw.prev_count);
4881 userpg->time_enabled = enabled +
4882 atomic64_read(&event->child_total_time_enabled);
4884 userpg->time_running = running +
4885 atomic64_read(&event->child_total_time_running);
4887 arch_perf_update_userpage(event, userpg, now);
4889 barrier();
4890 ++userpg->lock;
4891 preempt_enable();
4892 unlock:
4893 rcu_read_unlock();
4896 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4898 struct perf_event *event = vma->vm_file->private_data;
4899 struct ring_buffer *rb;
4900 int ret = VM_FAULT_SIGBUS;
4902 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4903 if (vmf->pgoff == 0)
4904 ret = 0;
4905 return ret;
4908 rcu_read_lock();
4909 rb = rcu_dereference(event->rb);
4910 if (!rb)
4911 goto unlock;
4913 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4914 goto unlock;
4916 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4917 if (!vmf->page)
4918 goto unlock;
4920 get_page(vmf->page);
4921 vmf->page->mapping = vma->vm_file->f_mapping;
4922 vmf->page->index = vmf->pgoff;
4924 ret = 0;
4925 unlock:
4926 rcu_read_unlock();
4928 return ret;
4931 static void ring_buffer_attach(struct perf_event *event,
4932 struct ring_buffer *rb)
4934 struct ring_buffer *old_rb = NULL;
4935 unsigned long flags;
4937 if (event->rb) {
4939 * Should be impossible, we set this when removing
4940 * event->rb_entry and wait/clear when adding event->rb_entry.
4942 WARN_ON_ONCE(event->rcu_pending);
4944 old_rb = event->rb;
4945 spin_lock_irqsave(&old_rb->event_lock, flags);
4946 list_del_rcu(&event->rb_entry);
4947 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4949 event->rcu_batches = get_state_synchronize_rcu();
4950 event->rcu_pending = 1;
4953 if (rb) {
4954 if (event->rcu_pending) {
4955 cond_synchronize_rcu(event->rcu_batches);
4956 event->rcu_pending = 0;
4959 spin_lock_irqsave(&rb->event_lock, flags);
4960 list_add_rcu(&event->rb_entry, &rb->event_list);
4961 spin_unlock_irqrestore(&rb->event_lock, flags);
4965 * Avoid racing with perf_mmap_close(AUX): stop the event
4966 * before swizzling the event::rb pointer; if it's getting
4967 * unmapped, its aux_mmap_count will be 0 and it won't
4968 * restart. See the comment in __perf_pmu_output_stop().
4970 * Data will inevitably be lost when set_output is done in
4971 * mid-air, but then again, whoever does it like this is
4972 * not in for the data anyway.
4974 if (has_aux(event))
4975 perf_event_stop(event, 0);
4977 rcu_assign_pointer(event->rb, rb);
4979 if (old_rb) {
4980 ring_buffer_put(old_rb);
4982 * Since we detached before setting the new rb, so that we
4983 * could attach the new rb, we could have missed a wakeup.
4984 * Provide it now.
4986 wake_up_all(&event->waitq);
4990 static void ring_buffer_wakeup(struct perf_event *event)
4992 struct ring_buffer *rb;
4994 rcu_read_lock();
4995 rb = rcu_dereference(event->rb);
4996 if (rb) {
4997 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4998 wake_up_all(&event->waitq);
5000 rcu_read_unlock();
5003 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5005 struct ring_buffer *rb;
5007 rcu_read_lock();
5008 rb = rcu_dereference(event->rb);
5009 if (rb) {
5010 if (!atomic_inc_not_zero(&rb->refcount))
5011 rb = NULL;
5013 rcu_read_unlock();
5015 return rb;
5018 void ring_buffer_put(struct ring_buffer *rb)
5020 if (!atomic_dec_and_test(&rb->refcount))
5021 return;
5023 WARN_ON_ONCE(!list_empty(&rb->event_list));
5025 call_rcu(&rb->rcu_head, rb_free_rcu);
5028 static void perf_mmap_open(struct vm_area_struct *vma)
5030 struct perf_event *event = vma->vm_file->private_data;
5032 atomic_inc(&event->mmap_count);
5033 atomic_inc(&event->rb->mmap_count);
5035 if (vma->vm_pgoff)
5036 atomic_inc(&event->rb->aux_mmap_count);
5038 if (event->pmu->event_mapped)
5039 event->pmu->event_mapped(event);
5042 static void perf_pmu_output_stop(struct perf_event *event);
5045 * A buffer can be mmap()ed multiple times; either directly through the same
5046 * event, or through other events by use of perf_event_set_output().
5048 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5049 * the buffer here, where we still have a VM context. This means we need
5050 * to detach all events redirecting to us.
5052 static void perf_mmap_close(struct vm_area_struct *vma)
5054 struct perf_event *event = vma->vm_file->private_data;
5056 struct ring_buffer *rb = ring_buffer_get(event);
5057 struct user_struct *mmap_user = rb->mmap_user;
5058 int mmap_locked = rb->mmap_locked;
5059 unsigned long size = perf_data_size(rb);
5061 if (event->pmu->event_unmapped)
5062 event->pmu->event_unmapped(event);
5065 * rb->aux_mmap_count will always drop before rb->mmap_count and
5066 * event->mmap_count, so it is ok to use event->mmap_mutex to
5067 * serialize with perf_mmap here.
5069 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5070 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5072 * Stop all AUX events that are writing to this buffer,
5073 * so that we can free its AUX pages and corresponding PMU
5074 * data. Note that after rb::aux_mmap_count dropped to zero,
5075 * they won't start any more (see perf_aux_output_begin()).
5077 perf_pmu_output_stop(event);
5079 /* now it's safe to free the pages */
5080 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5081 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5083 /* this has to be the last one */
5084 rb_free_aux(rb);
5085 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5087 mutex_unlock(&event->mmap_mutex);
5090 atomic_dec(&rb->mmap_count);
5092 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5093 goto out_put;
5095 ring_buffer_attach(event, NULL);
5096 mutex_unlock(&event->mmap_mutex);
5098 /* If there's still other mmap()s of this buffer, we're done. */
5099 if (atomic_read(&rb->mmap_count))
5100 goto out_put;
5103 * No other mmap()s, detach from all other events that might redirect
5104 * into the now unreachable buffer. Somewhat complicated by the
5105 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5107 again:
5108 rcu_read_lock();
5109 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5110 if (!atomic_long_inc_not_zero(&event->refcount)) {
5112 * This event is en-route to free_event() which will
5113 * detach it and remove it from the list.
5115 continue;
5117 rcu_read_unlock();
5119 mutex_lock(&event->mmap_mutex);
5121 * Check we didn't race with perf_event_set_output() which can
5122 * swizzle the rb from under us while we were waiting to
5123 * acquire mmap_mutex.
5125 * If we find a different rb; ignore this event, a next
5126 * iteration will no longer find it on the list. We have to
5127 * still restart the iteration to make sure we're not now
5128 * iterating the wrong list.
5130 if (event->rb == rb)
5131 ring_buffer_attach(event, NULL);
5133 mutex_unlock(&event->mmap_mutex);
5134 put_event(event);
5137 * Restart the iteration; either we're on the wrong list or
5138 * destroyed its integrity by doing a deletion.
5140 goto again;
5142 rcu_read_unlock();
5145 * It could be there's still a few 0-ref events on the list; they'll
5146 * get cleaned up by free_event() -- they'll also still have their
5147 * ref on the rb and will free it whenever they are done with it.
5149 * Aside from that, this buffer is 'fully' detached and unmapped,
5150 * undo the VM accounting.
5153 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5154 vma->vm_mm->pinned_vm -= mmap_locked;
5155 free_uid(mmap_user);
5157 out_put:
5158 ring_buffer_put(rb); /* could be last */
5161 static const struct vm_operations_struct perf_mmap_vmops = {
5162 .open = perf_mmap_open,
5163 .close = perf_mmap_close, /* non mergable */
5164 .fault = perf_mmap_fault,
5165 .page_mkwrite = perf_mmap_fault,
5168 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5170 struct perf_event *event = file->private_data;
5171 unsigned long user_locked, user_lock_limit;
5172 struct user_struct *user = current_user();
5173 unsigned long locked, lock_limit;
5174 struct ring_buffer *rb = NULL;
5175 unsigned long vma_size;
5176 unsigned long nr_pages;
5177 long user_extra = 0, extra = 0;
5178 int ret = 0, flags = 0;
5181 * Don't allow mmap() of inherited per-task counters. This would
5182 * create a performance issue due to all children writing to the
5183 * same rb.
5185 if (event->cpu == -1 && event->attr.inherit)
5186 return -EINVAL;
5188 if (!(vma->vm_flags & VM_SHARED))
5189 return -EINVAL;
5191 vma_size = vma->vm_end - vma->vm_start;
5193 if (vma->vm_pgoff == 0) {
5194 nr_pages = (vma_size / PAGE_SIZE) - 1;
5195 } else {
5197 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5198 * mapped, all subsequent mappings should have the same size
5199 * and offset. Must be above the normal perf buffer.
5201 u64 aux_offset, aux_size;
5203 if (!event->rb)
5204 return -EINVAL;
5206 nr_pages = vma_size / PAGE_SIZE;
5208 mutex_lock(&event->mmap_mutex);
5209 ret = -EINVAL;
5211 rb = event->rb;
5212 if (!rb)
5213 goto aux_unlock;
5215 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5216 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5218 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5219 goto aux_unlock;
5221 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5222 goto aux_unlock;
5224 /* already mapped with a different offset */
5225 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5226 goto aux_unlock;
5228 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5229 goto aux_unlock;
5231 /* already mapped with a different size */
5232 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5233 goto aux_unlock;
5235 if (!is_power_of_2(nr_pages))
5236 goto aux_unlock;
5238 if (!atomic_inc_not_zero(&rb->mmap_count))
5239 goto aux_unlock;
5241 if (rb_has_aux(rb)) {
5242 atomic_inc(&rb->aux_mmap_count);
5243 ret = 0;
5244 goto unlock;
5247 atomic_set(&rb->aux_mmap_count, 1);
5248 user_extra = nr_pages;
5250 goto accounting;
5254 * If we have rb pages ensure they're a power-of-two number, so we
5255 * can do bitmasks instead of modulo.
5257 if (nr_pages != 0 && !is_power_of_2(nr_pages))
5258 return -EINVAL;
5260 if (vma_size != PAGE_SIZE * (1 + nr_pages))
5261 return -EINVAL;
5263 WARN_ON_ONCE(event->ctx->parent_ctx);
5264 again:
5265 mutex_lock(&event->mmap_mutex);
5266 if (event->rb) {
5267 if (event->rb->nr_pages != nr_pages) {
5268 ret = -EINVAL;
5269 goto unlock;
5272 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5274 * Raced against perf_mmap_close() through
5275 * perf_event_set_output(). Try again, hope for better
5276 * luck.
5278 mutex_unlock(&event->mmap_mutex);
5279 goto again;
5282 goto unlock;
5285 user_extra = nr_pages + 1;
5287 accounting:
5288 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5291 * Increase the limit linearly with more CPUs:
5293 user_lock_limit *= num_online_cpus();
5295 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5297 if (user_locked > user_lock_limit)
5298 extra = user_locked - user_lock_limit;
5300 lock_limit = rlimit(RLIMIT_MEMLOCK);
5301 lock_limit >>= PAGE_SHIFT;
5302 locked = vma->vm_mm->pinned_vm + extra;
5304 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5305 !capable(CAP_IPC_LOCK)) {
5306 ret = -EPERM;
5307 goto unlock;
5310 WARN_ON(!rb && event->rb);
5312 if (vma->vm_flags & VM_WRITE)
5313 flags |= RING_BUFFER_WRITABLE;
5315 if (!rb) {
5316 rb = rb_alloc(nr_pages,
5317 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5318 event->cpu, flags);
5320 if (!rb) {
5321 ret = -ENOMEM;
5322 goto unlock;
5325 atomic_set(&rb->mmap_count, 1);
5326 rb->mmap_user = get_current_user();
5327 rb->mmap_locked = extra;
5329 ring_buffer_attach(event, rb);
5331 perf_event_init_userpage(event);
5332 perf_event_update_userpage(event);
5333 } else {
5334 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5335 event->attr.aux_watermark, flags);
5336 if (!ret)
5337 rb->aux_mmap_locked = extra;
5340 unlock:
5341 if (!ret) {
5342 atomic_long_add(user_extra, &user->locked_vm);
5343 vma->vm_mm->pinned_vm += extra;
5345 atomic_inc(&event->mmap_count);
5346 } else if (rb) {
5347 atomic_dec(&rb->mmap_count);
5349 aux_unlock:
5350 mutex_unlock(&event->mmap_mutex);
5353 * Since pinned accounting is per vm we cannot allow fork() to copy our
5354 * vma.
5356 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5357 vma->vm_ops = &perf_mmap_vmops;
5359 if (event->pmu->event_mapped)
5360 event->pmu->event_mapped(event);
5362 return ret;
5365 static int perf_fasync(int fd, struct file *filp, int on)
5367 struct inode *inode = file_inode(filp);
5368 struct perf_event *event = filp->private_data;
5369 int retval;
5371 inode_lock(inode);
5372 retval = fasync_helper(fd, filp, on, &event->fasync);
5373 inode_unlock(inode);
5375 if (retval < 0)
5376 return retval;
5378 return 0;
5381 static const struct file_operations perf_fops = {
5382 .llseek = no_llseek,
5383 .release = perf_release,
5384 .read = perf_read,
5385 .poll = perf_poll,
5386 .unlocked_ioctl = perf_ioctl,
5387 .compat_ioctl = perf_compat_ioctl,
5388 .mmap = perf_mmap,
5389 .fasync = perf_fasync,
5393 * Perf event wakeup
5395 * If there's data, ensure we set the poll() state and publish everything
5396 * to user-space before waking everybody up.
5399 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5401 /* only the parent has fasync state */
5402 if (event->parent)
5403 event = event->parent;
5404 return &event->fasync;
5407 void perf_event_wakeup(struct perf_event *event)
5409 ring_buffer_wakeup(event);
5411 if (event->pending_kill) {
5412 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5413 event->pending_kill = 0;
5417 static void perf_pending_event(struct irq_work *entry)
5419 struct perf_event *event = container_of(entry,
5420 struct perf_event, pending);
5421 int rctx;
5423 rctx = perf_swevent_get_recursion_context();
5425 * If we 'fail' here, that's OK, it means recursion is already disabled
5426 * and we won't recurse 'further'.
5429 if (event->pending_disable) {
5430 event->pending_disable = 0;
5431 perf_event_disable_local(event);
5434 if (event->pending_wakeup) {
5435 event->pending_wakeup = 0;
5436 perf_event_wakeup(event);
5439 if (rctx >= 0)
5440 perf_swevent_put_recursion_context(rctx);
5444 * We assume there is only KVM supporting the callbacks.
5445 * Later on, we might change it to a list if there is
5446 * another virtualization implementation supporting the callbacks.
5448 struct perf_guest_info_callbacks *perf_guest_cbs;
5450 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5452 perf_guest_cbs = cbs;
5453 return 0;
5455 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5457 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5459 perf_guest_cbs = NULL;
5460 return 0;
5462 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5464 static void
5465 perf_output_sample_regs(struct perf_output_handle *handle,
5466 struct pt_regs *regs, u64 mask)
5468 int bit;
5469 DECLARE_BITMAP(_mask, 64);
5471 bitmap_from_u64(_mask, mask);
5472 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5473 u64 val;
5475 val = perf_reg_value(regs, bit);
5476 perf_output_put(handle, val);
5480 static void perf_sample_regs_user(struct perf_regs *regs_user,
5481 struct pt_regs *regs,
5482 struct pt_regs *regs_user_copy)
5484 if (user_mode(regs)) {
5485 regs_user->abi = perf_reg_abi(current);
5486 regs_user->regs = regs;
5487 } else if (current->mm) {
5488 perf_get_regs_user(regs_user, regs, regs_user_copy);
5489 } else {
5490 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5491 regs_user->regs = NULL;
5495 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5496 struct pt_regs *regs)
5498 regs_intr->regs = regs;
5499 regs_intr->abi = perf_reg_abi(current);
5504 * Get remaining task size from user stack pointer.
5506 * It'd be better to take stack vma map and limit this more
5507 * precisly, but there's no way to get it safely under interrupt,
5508 * so using TASK_SIZE as limit.
5510 static u64 perf_ustack_task_size(struct pt_regs *regs)
5512 unsigned long addr = perf_user_stack_pointer(regs);
5514 if (!addr || addr >= TASK_SIZE)
5515 return 0;
5517 return TASK_SIZE - addr;
5520 static u16
5521 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5522 struct pt_regs *regs)
5524 u64 task_size;
5526 /* No regs, no stack pointer, no dump. */
5527 if (!regs)
5528 return 0;
5531 * Check if we fit in with the requested stack size into the:
5532 * - TASK_SIZE
5533 * If we don't, we limit the size to the TASK_SIZE.
5535 * - remaining sample size
5536 * If we don't, we customize the stack size to
5537 * fit in to the remaining sample size.
5540 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5541 stack_size = min(stack_size, (u16) task_size);
5543 /* Current header size plus static size and dynamic size. */
5544 header_size += 2 * sizeof(u64);
5546 /* Do we fit in with the current stack dump size? */
5547 if ((u16) (header_size + stack_size) < header_size) {
5549 * If we overflow the maximum size for the sample,
5550 * we customize the stack dump size to fit in.
5552 stack_size = USHRT_MAX - header_size - sizeof(u64);
5553 stack_size = round_up(stack_size, sizeof(u64));
5556 return stack_size;
5559 static void
5560 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5561 struct pt_regs *regs)
5563 /* Case of a kernel thread, nothing to dump */
5564 if (!regs) {
5565 u64 size = 0;
5566 perf_output_put(handle, size);
5567 } else {
5568 unsigned long sp;
5569 unsigned int rem;
5570 u64 dyn_size;
5571 mm_segment_t fs;
5574 * We dump:
5575 * static size
5576 * - the size requested by user or the best one we can fit
5577 * in to the sample max size
5578 * data
5579 * - user stack dump data
5580 * dynamic size
5581 * - the actual dumped size
5584 /* Static size. */
5585 perf_output_put(handle, dump_size);
5587 /* Data. */
5588 sp = perf_user_stack_pointer(regs);
5589 fs = get_fs();
5590 set_fs(USER_DS);
5591 rem = __output_copy_user(handle, (void *) sp, dump_size);
5592 set_fs(fs);
5593 dyn_size = dump_size - rem;
5595 perf_output_skip(handle, rem);
5597 /* Dynamic size. */
5598 perf_output_put(handle, dyn_size);
5602 static void __perf_event_header__init_id(struct perf_event_header *header,
5603 struct perf_sample_data *data,
5604 struct perf_event *event)
5606 u64 sample_type = event->attr.sample_type;
5608 data->type = sample_type;
5609 header->size += event->id_header_size;
5611 if (sample_type & PERF_SAMPLE_TID) {
5612 /* namespace issues */
5613 data->tid_entry.pid = perf_event_pid(event, current);
5614 data->tid_entry.tid = perf_event_tid(event, current);
5617 if (sample_type & PERF_SAMPLE_TIME)
5618 data->time = perf_event_clock(event);
5620 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5621 data->id = primary_event_id(event);
5623 if (sample_type & PERF_SAMPLE_STREAM_ID)
5624 data->stream_id = event->id;
5626 if (sample_type & PERF_SAMPLE_CPU) {
5627 data->cpu_entry.cpu = raw_smp_processor_id();
5628 data->cpu_entry.reserved = 0;
5632 void perf_event_header__init_id(struct perf_event_header *header,
5633 struct perf_sample_data *data,
5634 struct perf_event *event)
5636 if (event->attr.sample_id_all)
5637 __perf_event_header__init_id(header, data, event);
5640 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5641 struct perf_sample_data *data)
5643 u64 sample_type = data->type;
5645 if (sample_type & PERF_SAMPLE_TID)
5646 perf_output_put(handle, data->tid_entry);
5648 if (sample_type & PERF_SAMPLE_TIME)
5649 perf_output_put(handle, data->time);
5651 if (sample_type & PERF_SAMPLE_ID)
5652 perf_output_put(handle, data->id);
5654 if (sample_type & PERF_SAMPLE_STREAM_ID)
5655 perf_output_put(handle, data->stream_id);
5657 if (sample_type & PERF_SAMPLE_CPU)
5658 perf_output_put(handle, data->cpu_entry);
5660 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5661 perf_output_put(handle, data->id);
5664 void perf_event__output_id_sample(struct perf_event *event,
5665 struct perf_output_handle *handle,
5666 struct perf_sample_data *sample)
5668 if (event->attr.sample_id_all)
5669 __perf_event__output_id_sample(handle, sample);
5672 static void perf_output_read_one(struct perf_output_handle *handle,
5673 struct perf_event *event,
5674 u64 enabled, u64 running)
5676 u64 read_format = event->attr.read_format;
5677 u64 values[4];
5678 int n = 0;
5680 values[n++] = perf_event_count(event);
5681 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5682 values[n++] = enabled +
5683 atomic64_read(&event->child_total_time_enabled);
5685 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5686 values[n++] = running +
5687 atomic64_read(&event->child_total_time_running);
5689 if (read_format & PERF_FORMAT_ID)
5690 values[n++] = primary_event_id(event);
5692 __output_copy(handle, values, n * sizeof(u64));
5695 static void perf_output_read_group(struct perf_output_handle *handle,
5696 struct perf_event *event,
5697 u64 enabled, u64 running)
5699 struct perf_event *leader = event->group_leader, *sub;
5700 u64 read_format = event->attr.read_format;
5701 u64 values[5];
5702 int n = 0;
5704 values[n++] = 1 + leader->nr_siblings;
5706 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5707 values[n++] = enabled;
5709 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5710 values[n++] = running;
5712 if ((leader != event) &&
5713 (leader->state == PERF_EVENT_STATE_ACTIVE))
5714 leader->pmu->read(leader);
5716 values[n++] = perf_event_count(leader);
5717 if (read_format & PERF_FORMAT_ID)
5718 values[n++] = primary_event_id(leader);
5720 __output_copy(handle, values, n * sizeof(u64));
5722 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5723 n = 0;
5725 if ((sub != event) &&
5726 (sub->state == PERF_EVENT_STATE_ACTIVE))
5727 sub->pmu->read(sub);
5729 values[n++] = perf_event_count(sub);
5730 if (read_format & PERF_FORMAT_ID)
5731 values[n++] = primary_event_id(sub);
5733 __output_copy(handle, values, n * sizeof(u64));
5737 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5738 PERF_FORMAT_TOTAL_TIME_RUNNING)
5741 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5743 * The problem is that its both hard and excessively expensive to iterate the
5744 * child list, not to mention that its impossible to IPI the children running
5745 * on another CPU, from interrupt/NMI context.
5747 static void perf_output_read(struct perf_output_handle *handle,
5748 struct perf_event *event)
5750 u64 enabled = 0, running = 0, now;
5751 u64 read_format = event->attr.read_format;
5754 * compute total_time_enabled, total_time_running
5755 * based on snapshot values taken when the event
5756 * was last scheduled in.
5758 * we cannot simply called update_context_time()
5759 * because of locking issue as we are called in
5760 * NMI context
5762 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5763 calc_timer_values(event, &now, &enabled, &running);
5765 if (event->attr.read_format & PERF_FORMAT_GROUP)
5766 perf_output_read_group(handle, event, enabled, running);
5767 else
5768 perf_output_read_one(handle, event, enabled, running);
5771 void perf_output_sample(struct perf_output_handle *handle,
5772 struct perf_event_header *header,
5773 struct perf_sample_data *data,
5774 struct perf_event *event)
5776 u64 sample_type = data->type;
5778 perf_output_put(handle, *header);
5780 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5781 perf_output_put(handle, data->id);
5783 if (sample_type & PERF_SAMPLE_IP)
5784 perf_output_put(handle, data->ip);
5786 if (sample_type & PERF_SAMPLE_TID)
5787 perf_output_put(handle, data->tid_entry);
5789 if (sample_type & PERF_SAMPLE_TIME)
5790 perf_output_put(handle, data->time);
5792 if (sample_type & PERF_SAMPLE_ADDR)
5793 perf_output_put(handle, data->addr);
5795 if (sample_type & PERF_SAMPLE_ID)
5796 perf_output_put(handle, data->id);
5798 if (sample_type & PERF_SAMPLE_STREAM_ID)
5799 perf_output_put(handle, data->stream_id);
5801 if (sample_type & PERF_SAMPLE_CPU)
5802 perf_output_put(handle, data->cpu_entry);
5804 if (sample_type & PERF_SAMPLE_PERIOD)
5805 perf_output_put(handle, data->period);
5807 if (sample_type & PERF_SAMPLE_READ)
5808 perf_output_read(handle, event);
5810 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5811 if (data->callchain) {
5812 int size = 1;
5814 if (data->callchain)
5815 size += data->callchain->nr;
5817 size *= sizeof(u64);
5819 __output_copy(handle, data->callchain, size);
5820 } else {
5821 u64 nr = 0;
5822 perf_output_put(handle, nr);
5826 if (sample_type & PERF_SAMPLE_RAW) {
5827 struct perf_raw_record *raw = data->raw;
5829 if (raw) {
5830 struct perf_raw_frag *frag = &raw->frag;
5832 perf_output_put(handle, raw->size);
5833 do {
5834 if (frag->copy) {
5835 __output_custom(handle, frag->copy,
5836 frag->data, frag->size);
5837 } else {
5838 __output_copy(handle, frag->data,
5839 frag->size);
5841 if (perf_raw_frag_last(frag))
5842 break;
5843 frag = frag->next;
5844 } while (1);
5845 if (frag->pad)
5846 __output_skip(handle, NULL, frag->pad);
5847 } else {
5848 struct {
5849 u32 size;
5850 u32 data;
5851 } raw = {
5852 .size = sizeof(u32),
5853 .data = 0,
5855 perf_output_put(handle, raw);
5859 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5860 if (data->br_stack) {
5861 size_t size;
5863 size = data->br_stack->nr
5864 * sizeof(struct perf_branch_entry);
5866 perf_output_put(handle, data->br_stack->nr);
5867 perf_output_copy(handle, data->br_stack->entries, size);
5868 } else {
5870 * we always store at least the value of nr
5872 u64 nr = 0;
5873 perf_output_put(handle, nr);
5877 if (sample_type & PERF_SAMPLE_REGS_USER) {
5878 u64 abi = data->regs_user.abi;
5881 * If there are no regs to dump, notice it through
5882 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5884 perf_output_put(handle, abi);
5886 if (abi) {
5887 u64 mask = event->attr.sample_regs_user;
5888 perf_output_sample_regs(handle,
5889 data->regs_user.regs,
5890 mask);
5894 if (sample_type & PERF_SAMPLE_STACK_USER) {
5895 perf_output_sample_ustack(handle,
5896 data->stack_user_size,
5897 data->regs_user.regs);
5900 if (sample_type & PERF_SAMPLE_WEIGHT)
5901 perf_output_put(handle, data->weight);
5903 if (sample_type & PERF_SAMPLE_DATA_SRC)
5904 perf_output_put(handle, data->data_src.val);
5906 if (sample_type & PERF_SAMPLE_TRANSACTION)
5907 perf_output_put(handle, data->txn);
5909 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5910 u64 abi = data->regs_intr.abi;
5912 * If there are no regs to dump, notice it through
5913 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5915 perf_output_put(handle, abi);
5917 if (abi) {
5918 u64 mask = event->attr.sample_regs_intr;
5920 perf_output_sample_regs(handle,
5921 data->regs_intr.regs,
5922 mask);
5926 if (!event->attr.watermark) {
5927 int wakeup_events = event->attr.wakeup_events;
5929 if (wakeup_events) {
5930 struct ring_buffer *rb = handle->rb;
5931 int events = local_inc_return(&rb->events);
5933 if (events >= wakeup_events) {
5934 local_sub(wakeup_events, &rb->events);
5935 local_inc(&rb->wakeup);
5941 void perf_prepare_sample(struct perf_event_header *header,
5942 struct perf_sample_data *data,
5943 struct perf_event *event,
5944 struct pt_regs *regs)
5946 u64 sample_type = event->attr.sample_type;
5948 header->type = PERF_RECORD_SAMPLE;
5949 header->size = sizeof(*header) + event->header_size;
5951 header->misc = 0;
5952 header->misc |= perf_misc_flags(regs);
5954 __perf_event_header__init_id(header, data, event);
5956 if (sample_type & PERF_SAMPLE_IP)
5957 data->ip = perf_instruction_pointer(regs);
5959 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5960 int size = 1;
5962 data->callchain = perf_callchain(event, regs);
5964 if (data->callchain)
5965 size += data->callchain->nr;
5967 header->size += size * sizeof(u64);
5970 if (sample_type & PERF_SAMPLE_RAW) {
5971 struct perf_raw_record *raw = data->raw;
5972 int size;
5974 if (raw) {
5975 struct perf_raw_frag *frag = &raw->frag;
5976 u32 sum = 0;
5978 do {
5979 sum += frag->size;
5980 if (perf_raw_frag_last(frag))
5981 break;
5982 frag = frag->next;
5983 } while (1);
5985 size = round_up(sum + sizeof(u32), sizeof(u64));
5986 raw->size = size - sizeof(u32);
5987 frag->pad = raw->size - sum;
5988 } else {
5989 size = sizeof(u64);
5992 header->size += size;
5995 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5996 int size = sizeof(u64); /* nr */
5997 if (data->br_stack) {
5998 size += data->br_stack->nr
5999 * sizeof(struct perf_branch_entry);
6001 header->size += size;
6004 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6005 perf_sample_regs_user(&data->regs_user, regs,
6006 &data->regs_user_copy);
6008 if (sample_type & PERF_SAMPLE_REGS_USER) {
6009 /* regs dump ABI info */
6010 int size = sizeof(u64);
6012 if (data->regs_user.regs) {
6013 u64 mask = event->attr.sample_regs_user;
6014 size += hweight64(mask) * sizeof(u64);
6017 header->size += size;
6020 if (sample_type & PERF_SAMPLE_STACK_USER) {
6022 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6023 * processed as the last one or have additional check added
6024 * in case new sample type is added, because we could eat
6025 * up the rest of the sample size.
6027 u16 stack_size = event->attr.sample_stack_user;
6028 u16 size = sizeof(u64);
6030 stack_size = perf_sample_ustack_size(stack_size, header->size,
6031 data->regs_user.regs);
6034 * If there is something to dump, add space for the dump
6035 * itself and for the field that tells the dynamic size,
6036 * which is how many have been actually dumped.
6038 if (stack_size)
6039 size += sizeof(u64) + stack_size;
6041 data->stack_user_size = stack_size;
6042 header->size += size;
6045 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6046 /* regs dump ABI info */
6047 int size = sizeof(u64);
6049 perf_sample_regs_intr(&data->regs_intr, regs);
6051 if (data->regs_intr.regs) {
6052 u64 mask = event->attr.sample_regs_intr;
6054 size += hweight64(mask) * sizeof(u64);
6057 header->size += size;
6061 static void __always_inline
6062 __perf_event_output(struct perf_event *event,
6063 struct perf_sample_data *data,
6064 struct pt_regs *regs,
6065 int (*output_begin)(struct perf_output_handle *,
6066 struct perf_event *,
6067 unsigned int))
6069 struct perf_output_handle handle;
6070 struct perf_event_header header;
6072 /* protect the callchain buffers */
6073 rcu_read_lock();
6075 perf_prepare_sample(&header, data, event, regs);
6077 if (output_begin(&handle, event, header.size))
6078 goto exit;
6080 perf_output_sample(&handle, &header, data, event);
6082 perf_output_end(&handle);
6084 exit:
6085 rcu_read_unlock();
6088 void
6089 perf_event_output_forward(struct perf_event *event,
6090 struct perf_sample_data *data,
6091 struct pt_regs *regs)
6093 __perf_event_output(event, data, regs, perf_output_begin_forward);
6096 void
6097 perf_event_output_backward(struct perf_event *event,
6098 struct perf_sample_data *data,
6099 struct pt_regs *regs)
6101 __perf_event_output(event, data, regs, perf_output_begin_backward);
6104 void
6105 perf_event_output(struct perf_event *event,
6106 struct perf_sample_data *data,
6107 struct pt_regs *regs)
6109 __perf_event_output(event, data, regs, perf_output_begin);
6113 * read event_id
6116 struct perf_read_event {
6117 struct perf_event_header header;
6119 u32 pid;
6120 u32 tid;
6123 static void
6124 perf_event_read_event(struct perf_event *event,
6125 struct task_struct *task)
6127 struct perf_output_handle handle;
6128 struct perf_sample_data sample;
6129 struct perf_read_event read_event = {
6130 .header = {
6131 .type = PERF_RECORD_READ,
6132 .misc = 0,
6133 .size = sizeof(read_event) + event->read_size,
6135 .pid = perf_event_pid(event, task),
6136 .tid = perf_event_tid(event, task),
6138 int ret;
6140 perf_event_header__init_id(&read_event.header, &sample, event);
6141 ret = perf_output_begin(&handle, event, read_event.header.size);
6142 if (ret)
6143 return;
6145 perf_output_put(&handle, read_event);
6146 perf_output_read(&handle, event);
6147 perf_event__output_id_sample(event, &handle, &sample);
6149 perf_output_end(&handle);
6152 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6154 static void
6155 perf_iterate_ctx(struct perf_event_context *ctx,
6156 perf_iterate_f output,
6157 void *data, bool all)
6159 struct perf_event *event;
6161 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6162 if (!all) {
6163 if (event->state < PERF_EVENT_STATE_INACTIVE)
6164 continue;
6165 if (!event_filter_match(event))
6166 continue;
6169 output(event, data);
6173 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6175 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6176 struct perf_event *event;
6178 list_for_each_entry_rcu(event, &pel->list, sb_list) {
6180 * Skip events that are not fully formed yet; ensure that
6181 * if we observe event->ctx, both event and ctx will be
6182 * complete enough. See perf_install_in_context().
6184 if (!smp_load_acquire(&event->ctx))
6185 continue;
6187 if (event->state < PERF_EVENT_STATE_INACTIVE)
6188 continue;
6189 if (!event_filter_match(event))
6190 continue;
6191 output(event, data);
6196 * Iterate all events that need to receive side-band events.
6198 * For new callers; ensure that account_pmu_sb_event() includes
6199 * your event, otherwise it might not get delivered.
6201 static void
6202 perf_iterate_sb(perf_iterate_f output, void *data,
6203 struct perf_event_context *task_ctx)
6205 struct perf_event_context *ctx;
6206 int ctxn;
6208 rcu_read_lock();
6209 preempt_disable();
6212 * If we have task_ctx != NULL we only notify the task context itself.
6213 * The task_ctx is set only for EXIT events before releasing task
6214 * context.
6216 if (task_ctx) {
6217 perf_iterate_ctx(task_ctx, output, data, false);
6218 goto done;
6221 perf_iterate_sb_cpu(output, data);
6223 for_each_task_context_nr(ctxn) {
6224 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6225 if (ctx)
6226 perf_iterate_ctx(ctx, output, data, false);
6228 done:
6229 preempt_enable();
6230 rcu_read_unlock();
6234 * Clear all file-based filters at exec, they'll have to be
6235 * re-instated when/if these objects are mmapped again.
6237 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6239 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6240 struct perf_addr_filter *filter;
6241 unsigned int restart = 0, count = 0;
6242 unsigned long flags;
6244 if (!has_addr_filter(event))
6245 return;
6247 raw_spin_lock_irqsave(&ifh->lock, flags);
6248 list_for_each_entry(filter, &ifh->list, entry) {
6249 if (filter->inode) {
6250 event->addr_filters_offs[count] = 0;
6251 restart++;
6254 count++;
6257 if (restart)
6258 event->addr_filters_gen++;
6259 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6261 if (restart)
6262 perf_event_stop(event, 1);
6265 void perf_event_exec(void)
6267 struct perf_event_context *ctx;
6268 int ctxn;
6270 rcu_read_lock();
6271 for_each_task_context_nr(ctxn) {
6272 ctx = current->perf_event_ctxp[ctxn];
6273 if (!ctx)
6274 continue;
6276 perf_event_enable_on_exec(ctxn);
6278 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6279 true);
6281 rcu_read_unlock();
6284 struct remote_output {
6285 struct ring_buffer *rb;
6286 int err;
6289 static void __perf_event_output_stop(struct perf_event *event, void *data)
6291 struct perf_event *parent = event->parent;
6292 struct remote_output *ro = data;
6293 struct ring_buffer *rb = ro->rb;
6294 struct stop_event_data sd = {
6295 .event = event,
6298 if (!has_aux(event))
6299 return;
6301 if (!parent)
6302 parent = event;
6305 * In case of inheritance, it will be the parent that links to the
6306 * ring-buffer, but it will be the child that's actually using it.
6308 * We are using event::rb to determine if the event should be stopped,
6309 * however this may race with ring_buffer_attach() (through set_output),
6310 * which will make us skip the event that actually needs to be stopped.
6311 * So ring_buffer_attach() has to stop an aux event before re-assigning
6312 * its rb pointer.
6314 if (rcu_dereference(parent->rb) == rb)
6315 ro->err = __perf_event_stop(&sd);
6318 static int __perf_pmu_output_stop(void *info)
6320 struct perf_event *event = info;
6321 struct pmu *pmu = event->pmu;
6322 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6323 struct remote_output ro = {
6324 .rb = event->rb,
6327 rcu_read_lock();
6328 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6329 if (cpuctx->task_ctx)
6330 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6331 &ro, false);
6332 rcu_read_unlock();
6334 return ro.err;
6337 static void perf_pmu_output_stop(struct perf_event *event)
6339 struct perf_event *iter;
6340 int err, cpu;
6342 restart:
6343 rcu_read_lock();
6344 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6346 * For per-CPU events, we need to make sure that neither they
6347 * nor their children are running; for cpu==-1 events it's
6348 * sufficient to stop the event itself if it's active, since
6349 * it can't have children.
6351 cpu = iter->cpu;
6352 if (cpu == -1)
6353 cpu = READ_ONCE(iter->oncpu);
6355 if (cpu == -1)
6356 continue;
6358 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6359 if (err == -EAGAIN) {
6360 rcu_read_unlock();
6361 goto restart;
6364 rcu_read_unlock();
6368 * task tracking -- fork/exit
6370 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6373 struct perf_task_event {
6374 struct task_struct *task;
6375 struct perf_event_context *task_ctx;
6377 struct {
6378 struct perf_event_header header;
6380 u32 pid;
6381 u32 ppid;
6382 u32 tid;
6383 u32 ptid;
6384 u64 time;
6385 } event_id;
6388 static int perf_event_task_match(struct perf_event *event)
6390 return event->attr.comm || event->attr.mmap ||
6391 event->attr.mmap2 || event->attr.mmap_data ||
6392 event->attr.task;
6395 static void perf_event_task_output(struct perf_event *event,
6396 void *data)
6398 struct perf_task_event *task_event = data;
6399 struct perf_output_handle handle;
6400 struct perf_sample_data sample;
6401 struct task_struct *task = task_event->task;
6402 int ret, size = task_event->event_id.header.size;
6404 if (!perf_event_task_match(event))
6405 return;
6407 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6409 ret = perf_output_begin(&handle, event,
6410 task_event->event_id.header.size);
6411 if (ret)
6412 goto out;
6414 task_event->event_id.pid = perf_event_pid(event, task);
6415 task_event->event_id.ppid = perf_event_pid(event, current);
6417 task_event->event_id.tid = perf_event_tid(event, task);
6418 task_event->event_id.ptid = perf_event_tid(event, current);
6420 task_event->event_id.time = perf_event_clock(event);
6422 perf_output_put(&handle, task_event->event_id);
6424 perf_event__output_id_sample(event, &handle, &sample);
6426 perf_output_end(&handle);
6427 out:
6428 task_event->event_id.header.size = size;
6431 static void perf_event_task(struct task_struct *task,
6432 struct perf_event_context *task_ctx,
6433 int new)
6435 struct perf_task_event task_event;
6437 if (!atomic_read(&nr_comm_events) &&
6438 !atomic_read(&nr_mmap_events) &&
6439 !atomic_read(&nr_task_events))
6440 return;
6442 task_event = (struct perf_task_event){
6443 .task = task,
6444 .task_ctx = task_ctx,
6445 .event_id = {
6446 .header = {
6447 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6448 .misc = 0,
6449 .size = sizeof(task_event.event_id),
6451 /* .pid */
6452 /* .ppid */
6453 /* .tid */
6454 /* .ptid */
6455 /* .time */
6459 perf_iterate_sb(perf_event_task_output,
6460 &task_event,
6461 task_ctx);
6464 void perf_event_fork(struct task_struct *task)
6466 perf_event_task(task, NULL, 1);
6470 * comm tracking
6473 struct perf_comm_event {
6474 struct task_struct *task;
6475 char *comm;
6476 int comm_size;
6478 struct {
6479 struct perf_event_header header;
6481 u32 pid;
6482 u32 tid;
6483 } event_id;
6486 static int perf_event_comm_match(struct perf_event *event)
6488 return event->attr.comm;
6491 static void perf_event_comm_output(struct perf_event *event,
6492 void *data)
6494 struct perf_comm_event *comm_event = data;
6495 struct perf_output_handle handle;
6496 struct perf_sample_data sample;
6497 int size = comm_event->event_id.header.size;
6498 int ret;
6500 if (!perf_event_comm_match(event))
6501 return;
6503 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6504 ret = perf_output_begin(&handle, event,
6505 comm_event->event_id.header.size);
6507 if (ret)
6508 goto out;
6510 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6511 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6513 perf_output_put(&handle, comm_event->event_id);
6514 __output_copy(&handle, comm_event->comm,
6515 comm_event->comm_size);
6517 perf_event__output_id_sample(event, &handle, &sample);
6519 perf_output_end(&handle);
6520 out:
6521 comm_event->event_id.header.size = size;
6524 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6526 char comm[TASK_COMM_LEN];
6527 unsigned int size;
6529 memset(comm, 0, sizeof(comm));
6530 strlcpy(comm, comm_event->task->comm, sizeof(comm));
6531 size = ALIGN(strlen(comm)+1, sizeof(u64));
6533 comm_event->comm = comm;
6534 comm_event->comm_size = size;
6536 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6538 perf_iterate_sb(perf_event_comm_output,
6539 comm_event,
6540 NULL);
6543 void perf_event_comm(struct task_struct *task, bool exec)
6545 struct perf_comm_event comm_event;
6547 if (!atomic_read(&nr_comm_events))
6548 return;
6550 comm_event = (struct perf_comm_event){
6551 .task = task,
6552 /* .comm */
6553 /* .comm_size */
6554 .event_id = {
6555 .header = {
6556 .type = PERF_RECORD_COMM,
6557 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6558 /* .size */
6560 /* .pid */
6561 /* .tid */
6565 perf_event_comm_event(&comm_event);
6569 * mmap tracking
6572 struct perf_mmap_event {
6573 struct vm_area_struct *vma;
6575 const char *file_name;
6576 int file_size;
6577 int maj, min;
6578 u64 ino;
6579 u64 ino_generation;
6580 u32 prot, flags;
6582 struct {
6583 struct perf_event_header header;
6585 u32 pid;
6586 u32 tid;
6587 u64 start;
6588 u64 len;
6589 u64 pgoff;
6590 } event_id;
6593 static int perf_event_mmap_match(struct perf_event *event,
6594 void *data)
6596 struct perf_mmap_event *mmap_event = data;
6597 struct vm_area_struct *vma = mmap_event->vma;
6598 int executable = vma->vm_flags & VM_EXEC;
6600 return (!executable && event->attr.mmap_data) ||
6601 (executable && (event->attr.mmap || event->attr.mmap2));
6604 static void perf_event_mmap_output(struct perf_event *event,
6605 void *data)
6607 struct perf_mmap_event *mmap_event = data;
6608 struct perf_output_handle handle;
6609 struct perf_sample_data sample;
6610 int size = mmap_event->event_id.header.size;
6611 int ret;
6613 if (!perf_event_mmap_match(event, data))
6614 return;
6616 if (event->attr.mmap2) {
6617 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6618 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6619 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6620 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6621 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6622 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6623 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6626 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6627 ret = perf_output_begin(&handle, event,
6628 mmap_event->event_id.header.size);
6629 if (ret)
6630 goto out;
6632 mmap_event->event_id.pid = perf_event_pid(event, current);
6633 mmap_event->event_id.tid = perf_event_tid(event, current);
6635 perf_output_put(&handle, mmap_event->event_id);
6637 if (event->attr.mmap2) {
6638 perf_output_put(&handle, mmap_event->maj);
6639 perf_output_put(&handle, mmap_event->min);
6640 perf_output_put(&handle, mmap_event->ino);
6641 perf_output_put(&handle, mmap_event->ino_generation);
6642 perf_output_put(&handle, mmap_event->prot);
6643 perf_output_put(&handle, mmap_event->flags);
6646 __output_copy(&handle, mmap_event->file_name,
6647 mmap_event->file_size);
6649 perf_event__output_id_sample(event, &handle, &sample);
6651 perf_output_end(&handle);
6652 out:
6653 mmap_event->event_id.header.size = size;
6656 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6658 struct vm_area_struct *vma = mmap_event->vma;
6659 struct file *file = vma->vm_file;
6660 int maj = 0, min = 0;
6661 u64 ino = 0, gen = 0;
6662 u32 prot = 0, flags = 0;
6663 unsigned int size;
6664 char tmp[16];
6665 char *buf = NULL;
6666 char *name;
6668 if (vma->vm_flags & VM_READ)
6669 prot |= PROT_READ;
6670 if (vma->vm_flags & VM_WRITE)
6671 prot |= PROT_WRITE;
6672 if (vma->vm_flags & VM_EXEC)
6673 prot |= PROT_EXEC;
6675 if (vma->vm_flags & VM_MAYSHARE)
6676 flags = MAP_SHARED;
6677 else
6678 flags = MAP_PRIVATE;
6680 if (vma->vm_flags & VM_DENYWRITE)
6681 flags |= MAP_DENYWRITE;
6682 if (vma->vm_flags & VM_MAYEXEC)
6683 flags |= MAP_EXECUTABLE;
6684 if (vma->vm_flags & VM_LOCKED)
6685 flags |= MAP_LOCKED;
6686 if (vma->vm_flags & VM_HUGETLB)
6687 flags |= MAP_HUGETLB;
6689 if (file) {
6690 struct inode *inode;
6691 dev_t dev;
6693 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6694 if (!buf) {
6695 name = "//enomem";
6696 goto cpy_name;
6699 * d_path() works from the end of the rb backwards, so we
6700 * need to add enough zero bytes after the string to handle
6701 * the 64bit alignment we do later.
6703 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6704 if (IS_ERR(name)) {
6705 name = "//toolong";
6706 goto cpy_name;
6708 inode = file_inode(vma->vm_file);
6709 dev = inode->i_sb->s_dev;
6710 ino = inode->i_ino;
6711 gen = inode->i_generation;
6712 maj = MAJOR(dev);
6713 min = MINOR(dev);
6715 goto got_name;
6716 } else {
6717 if (vma->vm_ops && vma->vm_ops->name) {
6718 name = (char *) vma->vm_ops->name(vma);
6719 if (name)
6720 goto cpy_name;
6723 name = (char *)arch_vma_name(vma);
6724 if (name)
6725 goto cpy_name;
6727 if (vma->vm_start <= vma->vm_mm->start_brk &&
6728 vma->vm_end >= vma->vm_mm->brk) {
6729 name = "[heap]";
6730 goto cpy_name;
6732 if (vma->vm_start <= vma->vm_mm->start_stack &&
6733 vma->vm_end >= vma->vm_mm->start_stack) {
6734 name = "[stack]";
6735 goto cpy_name;
6738 name = "//anon";
6739 goto cpy_name;
6742 cpy_name:
6743 strlcpy(tmp, name, sizeof(tmp));
6744 name = tmp;
6745 got_name:
6747 * Since our buffer works in 8 byte units we need to align our string
6748 * size to a multiple of 8. However, we must guarantee the tail end is
6749 * zero'd out to avoid leaking random bits to userspace.
6751 size = strlen(name)+1;
6752 while (!IS_ALIGNED(size, sizeof(u64)))
6753 name[size++] = '\0';
6755 mmap_event->file_name = name;
6756 mmap_event->file_size = size;
6757 mmap_event->maj = maj;
6758 mmap_event->min = min;
6759 mmap_event->ino = ino;
6760 mmap_event->ino_generation = gen;
6761 mmap_event->prot = prot;
6762 mmap_event->flags = flags;
6764 if (!(vma->vm_flags & VM_EXEC))
6765 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6767 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6769 perf_iterate_sb(perf_event_mmap_output,
6770 mmap_event,
6771 NULL);
6773 kfree(buf);
6777 * Check whether inode and address range match filter criteria.
6779 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6780 struct file *file, unsigned long offset,
6781 unsigned long size)
6783 if (filter->inode != file->f_inode)
6784 return false;
6786 if (filter->offset > offset + size)
6787 return false;
6789 if (filter->offset + filter->size < offset)
6790 return false;
6792 return true;
6795 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6797 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6798 struct vm_area_struct *vma = data;
6799 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6800 struct file *file = vma->vm_file;
6801 struct perf_addr_filter *filter;
6802 unsigned int restart = 0, count = 0;
6804 if (!has_addr_filter(event))
6805 return;
6807 if (!file)
6808 return;
6810 raw_spin_lock_irqsave(&ifh->lock, flags);
6811 list_for_each_entry(filter, &ifh->list, entry) {
6812 if (perf_addr_filter_match(filter, file, off,
6813 vma->vm_end - vma->vm_start)) {
6814 event->addr_filters_offs[count] = vma->vm_start;
6815 restart++;
6818 count++;
6821 if (restart)
6822 event->addr_filters_gen++;
6823 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6825 if (restart)
6826 perf_event_stop(event, 1);
6830 * Adjust all task's events' filters to the new vma
6832 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6834 struct perf_event_context *ctx;
6835 int ctxn;
6838 * Data tracing isn't supported yet and as such there is no need
6839 * to keep track of anything that isn't related to executable code:
6841 if (!(vma->vm_flags & VM_EXEC))
6842 return;
6844 rcu_read_lock();
6845 for_each_task_context_nr(ctxn) {
6846 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6847 if (!ctx)
6848 continue;
6850 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6852 rcu_read_unlock();
6855 void perf_event_mmap(struct vm_area_struct *vma)
6857 struct perf_mmap_event mmap_event;
6859 if (!atomic_read(&nr_mmap_events))
6860 return;
6862 mmap_event = (struct perf_mmap_event){
6863 .vma = vma,
6864 /* .file_name */
6865 /* .file_size */
6866 .event_id = {
6867 .header = {
6868 .type = PERF_RECORD_MMAP,
6869 .misc = PERF_RECORD_MISC_USER,
6870 /* .size */
6872 /* .pid */
6873 /* .tid */
6874 .start = vma->vm_start,
6875 .len = vma->vm_end - vma->vm_start,
6876 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
6878 /* .maj (attr_mmap2 only) */
6879 /* .min (attr_mmap2 only) */
6880 /* .ino (attr_mmap2 only) */
6881 /* .ino_generation (attr_mmap2 only) */
6882 /* .prot (attr_mmap2 only) */
6883 /* .flags (attr_mmap2 only) */
6886 perf_addr_filters_adjust(vma);
6887 perf_event_mmap_event(&mmap_event);
6890 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6891 unsigned long size, u64 flags)
6893 struct perf_output_handle handle;
6894 struct perf_sample_data sample;
6895 struct perf_aux_event {
6896 struct perf_event_header header;
6897 u64 offset;
6898 u64 size;
6899 u64 flags;
6900 } rec = {
6901 .header = {
6902 .type = PERF_RECORD_AUX,
6903 .misc = 0,
6904 .size = sizeof(rec),
6906 .offset = head,
6907 .size = size,
6908 .flags = flags,
6910 int ret;
6912 perf_event_header__init_id(&rec.header, &sample, event);
6913 ret = perf_output_begin(&handle, event, rec.header.size);
6915 if (ret)
6916 return;
6918 perf_output_put(&handle, rec);
6919 perf_event__output_id_sample(event, &handle, &sample);
6921 perf_output_end(&handle);
6925 * Lost/dropped samples logging
6927 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6929 struct perf_output_handle handle;
6930 struct perf_sample_data sample;
6931 int ret;
6933 struct {
6934 struct perf_event_header header;
6935 u64 lost;
6936 } lost_samples_event = {
6937 .header = {
6938 .type = PERF_RECORD_LOST_SAMPLES,
6939 .misc = 0,
6940 .size = sizeof(lost_samples_event),
6942 .lost = lost,
6945 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6947 ret = perf_output_begin(&handle, event,
6948 lost_samples_event.header.size);
6949 if (ret)
6950 return;
6952 perf_output_put(&handle, lost_samples_event);
6953 perf_event__output_id_sample(event, &handle, &sample);
6954 perf_output_end(&handle);
6958 * context_switch tracking
6961 struct perf_switch_event {
6962 struct task_struct *task;
6963 struct task_struct *next_prev;
6965 struct {
6966 struct perf_event_header header;
6967 u32 next_prev_pid;
6968 u32 next_prev_tid;
6969 } event_id;
6972 static int perf_event_switch_match(struct perf_event *event)
6974 return event->attr.context_switch;
6977 static void perf_event_switch_output(struct perf_event *event, void *data)
6979 struct perf_switch_event *se = data;
6980 struct perf_output_handle handle;
6981 struct perf_sample_data sample;
6982 int ret;
6984 if (!perf_event_switch_match(event))
6985 return;
6987 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6988 if (event->ctx->task) {
6989 se->event_id.header.type = PERF_RECORD_SWITCH;
6990 se->event_id.header.size = sizeof(se->event_id.header);
6991 } else {
6992 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6993 se->event_id.header.size = sizeof(se->event_id);
6994 se->event_id.next_prev_pid =
6995 perf_event_pid(event, se->next_prev);
6996 se->event_id.next_prev_tid =
6997 perf_event_tid(event, se->next_prev);
7000 perf_event_header__init_id(&se->event_id.header, &sample, event);
7002 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7003 if (ret)
7004 return;
7006 if (event->ctx->task)
7007 perf_output_put(&handle, se->event_id.header);
7008 else
7009 perf_output_put(&handle, se->event_id);
7011 perf_event__output_id_sample(event, &handle, &sample);
7013 perf_output_end(&handle);
7016 static void perf_event_switch(struct task_struct *task,
7017 struct task_struct *next_prev, bool sched_in)
7019 struct perf_switch_event switch_event;
7021 /* N.B. caller checks nr_switch_events != 0 */
7023 switch_event = (struct perf_switch_event){
7024 .task = task,
7025 .next_prev = next_prev,
7026 .event_id = {
7027 .header = {
7028 /* .type */
7029 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7030 /* .size */
7032 /* .next_prev_pid */
7033 /* .next_prev_tid */
7037 perf_iterate_sb(perf_event_switch_output,
7038 &switch_event,
7039 NULL);
7043 * IRQ throttle logging
7046 static void perf_log_throttle(struct perf_event *event, int enable)
7048 struct perf_output_handle handle;
7049 struct perf_sample_data sample;
7050 int ret;
7052 struct {
7053 struct perf_event_header header;
7054 u64 time;
7055 u64 id;
7056 u64 stream_id;
7057 } throttle_event = {
7058 .header = {
7059 .type = PERF_RECORD_THROTTLE,
7060 .misc = 0,
7061 .size = sizeof(throttle_event),
7063 .time = perf_event_clock(event),
7064 .id = primary_event_id(event),
7065 .stream_id = event->id,
7068 if (enable)
7069 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7071 perf_event_header__init_id(&throttle_event.header, &sample, event);
7073 ret = perf_output_begin(&handle, event,
7074 throttle_event.header.size);
7075 if (ret)
7076 return;
7078 perf_output_put(&handle, throttle_event);
7079 perf_event__output_id_sample(event, &handle, &sample);
7080 perf_output_end(&handle);
7083 static void perf_log_itrace_start(struct perf_event *event)
7085 struct perf_output_handle handle;
7086 struct perf_sample_data sample;
7087 struct perf_aux_event {
7088 struct perf_event_header header;
7089 u32 pid;
7090 u32 tid;
7091 } rec;
7092 int ret;
7094 if (event->parent)
7095 event = event->parent;
7097 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7098 event->hw.itrace_started)
7099 return;
7101 rec.header.type = PERF_RECORD_ITRACE_START;
7102 rec.header.misc = 0;
7103 rec.header.size = sizeof(rec);
7104 rec.pid = perf_event_pid(event, current);
7105 rec.tid = perf_event_tid(event, current);
7107 perf_event_header__init_id(&rec.header, &sample, event);
7108 ret = perf_output_begin(&handle, event, rec.header.size);
7110 if (ret)
7111 return;
7113 perf_output_put(&handle, rec);
7114 perf_event__output_id_sample(event, &handle, &sample);
7116 perf_output_end(&handle);
7119 static int
7120 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7122 struct hw_perf_event *hwc = &event->hw;
7123 int ret = 0;
7124 u64 seq;
7126 seq = __this_cpu_read(perf_throttled_seq);
7127 if (seq != hwc->interrupts_seq) {
7128 hwc->interrupts_seq = seq;
7129 hwc->interrupts = 1;
7130 } else {
7131 hwc->interrupts++;
7132 if (unlikely(throttle
7133 && hwc->interrupts >= max_samples_per_tick)) {
7134 __this_cpu_inc(perf_throttled_count);
7135 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7136 hwc->interrupts = MAX_INTERRUPTS;
7137 perf_log_throttle(event, 0);
7138 ret = 1;
7142 if (event->attr.freq) {
7143 u64 now = perf_clock();
7144 s64 delta = now - hwc->freq_time_stamp;
7146 hwc->freq_time_stamp = now;
7148 if (delta > 0 && delta < 2*TICK_NSEC)
7149 perf_adjust_period(event, delta, hwc->last_period, true);
7152 return ret;
7155 int perf_event_account_interrupt(struct perf_event *event)
7157 return __perf_event_account_interrupt(event, 1);
7161 * Generic event overflow handling, sampling.
7164 static int __perf_event_overflow(struct perf_event *event,
7165 int throttle, struct perf_sample_data *data,
7166 struct pt_regs *regs)
7168 int events = atomic_read(&event->event_limit);
7169 int ret = 0;
7172 * Non-sampling counters might still use the PMI to fold short
7173 * hardware counters, ignore those.
7175 if (unlikely(!is_sampling_event(event)))
7176 return 0;
7178 ret = __perf_event_account_interrupt(event, throttle);
7181 * XXX event_limit might not quite work as expected on inherited
7182 * events
7185 event->pending_kill = POLL_IN;
7186 if (events && atomic_dec_and_test(&event->event_limit)) {
7187 ret = 1;
7188 event->pending_kill = POLL_HUP;
7190 perf_event_disable_inatomic(event);
7193 READ_ONCE(event->overflow_handler)(event, data, regs);
7195 if (*perf_event_fasync(event) && event->pending_kill) {
7196 event->pending_wakeup = 1;
7197 irq_work_queue(&event->pending);
7200 return ret;
7203 int perf_event_overflow(struct perf_event *event,
7204 struct perf_sample_data *data,
7205 struct pt_regs *regs)
7207 return __perf_event_overflow(event, 1, data, regs);
7211 * Generic software event infrastructure
7214 struct swevent_htable {
7215 struct swevent_hlist *swevent_hlist;
7216 struct mutex hlist_mutex;
7217 int hlist_refcount;
7219 /* Recursion avoidance in each contexts */
7220 int recursion[PERF_NR_CONTEXTS];
7223 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7226 * We directly increment event->count and keep a second value in
7227 * event->hw.period_left to count intervals. This period event
7228 * is kept in the range [-sample_period, 0] so that we can use the
7229 * sign as trigger.
7232 u64 perf_swevent_set_period(struct perf_event *event)
7234 struct hw_perf_event *hwc = &event->hw;
7235 u64 period = hwc->last_period;
7236 u64 nr, offset;
7237 s64 old, val;
7239 hwc->last_period = hwc->sample_period;
7241 again:
7242 old = val = local64_read(&hwc->period_left);
7243 if (val < 0)
7244 return 0;
7246 nr = div64_u64(period + val, period);
7247 offset = nr * period;
7248 val -= offset;
7249 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7250 goto again;
7252 return nr;
7255 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7256 struct perf_sample_data *data,
7257 struct pt_regs *regs)
7259 struct hw_perf_event *hwc = &event->hw;
7260 int throttle = 0;
7262 if (!overflow)
7263 overflow = perf_swevent_set_period(event);
7265 if (hwc->interrupts == MAX_INTERRUPTS)
7266 return;
7268 for (; overflow; overflow--) {
7269 if (__perf_event_overflow(event, throttle,
7270 data, regs)) {
7272 * We inhibit the overflow from happening when
7273 * hwc->interrupts == MAX_INTERRUPTS.
7275 break;
7277 throttle = 1;
7281 static void perf_swevent_event(struct perf_event *event, u64 nr,
7282 struct perf_sample_data *data,
7283 struct pt_regs *regs)
7285 struct hw_perf_event *hwc = &event->hw;
7287 local64_add(nr, &event->count);
7289 if (!regs)
7290 return;
7292 if (!is_sampling_event(event))
7293 return;
7295 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7296 data->period = nr;
7297 return perf_swevent_overflow(event, 1, data, regs);
7298 } else
7299 data->period = event->hw.last_period;
7301 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7302 return perf_swevent_overflow(event, 1, data, regs);
7304 if (local64_add_negative(nr, &hwc->period_left))
7305 return;
7307 perf_swevent_overflow(event, 0, data, regs);
7310 static int perf_exclude_event(struct perf_event *event,
7311 struct pt_regs *regs)
7313 if (event->hw.state & PERF_HES_STOPPED)
7314 return 1;
7316 if (regs) {
7317 if (event->attr.exclude_user && user_mode(regs))
7318 return 1;
7320 if (event->attr.exclude_kernel && !user_mode(regs))
7321 return 1;
7324 return 0;
7327 static int perf_swevent_match(struct perf_event *event,
7328 enum perf_type_id type,
7329 u32 event_id,
7330 struct perf_sample_data *data,
7331 struct pt_regs *regs)
7333 if (event->attr.type != type)
7334 return 0;
7336 if (event->attr.config != event_id)
7337 return 0;
7339 if (perf_exclude_event(event, regs))
7340 return 0;
7342 return 1;
7345 static inline u64 swevent_hash(u64 type, u32 event_id)
7347 u64 val = event_id | (type << 32);
7349 return hash_64(val, SWEVENT_HLIST_BITS);
7352 static inline struct hlist_head *
7353 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7355 u64 hash = swevent_hash(type, event_id);
7357 return &hlist->heads[hash];
7360 /* For the read side: events when they trigger */
7361 static inline struct hlist_head *
7362 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7364 struct swevent_hlist *hlist;
7366 hlist = rcu_dereference(swhash->swevent_hlist);
7367 if (!hlist)
7368 return NULL;
7370 return __find_swevent_head(hlist, type, event_id);
7373 /* For the event head insertion and removal in the hlist */
7374 static inline struct hlist_head *
7375 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7377 struct swevent_hlist *hlist;
7378 u32 event_id = event->attr.config;
7379 u64 type = event->attr.type;
7382 * Event scheduling is always serialized against hlist allocation
7383 * and release. Which makes the protected version suitable here.
7384 * The context lock guarantees that.
7386 hlist = rcu_dereference_protected(swhash->swevent_hlist,
7387 lockdep_is_held(&event->ctx->lock));
7388 if (!hlist)
7389 return NULL;
7391 return __find_swevent_head(hlist, type, event_id);
7394 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7395 u64 nr,
7396 struct perf_sample_data *data,
7397 struct pt_regs *regs)
7399 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7400 struct perf_event *event;
7401 struct hlist_head *head;
7403 rcu_read_lock();
7404 head = find_swevent_head_rcu(swhash, type, event_id);
7405 if (!head)
7406 goto end;
7408 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7409 if (perf_swevent_match(event, type, event_id, data, regs))
7410 perf_swevent_event(event, nr, data, regs);
7412 end:
7413 rcu_read_unlock();
7416 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7418 int perf_swevent_get_recursion_context(void)
7420 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7422 return get_recursion_context(swhash->recursion);
7424 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7426 void perf_swevent_put_recursion_context(int rctx)
7428 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7430 put_recursion_context(swhash->recursion, rctx);
7433 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7435 struct perf_sample_data data;
7437 if (WARN_ON_ONCE(!regs))
7438 return;
7440 perf_sample_data_init(&data, addr, 0);
7441 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7444 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7446 int rctx;
7448 preempt_disable_notrace();
7449 rctx = perf_swevent_get_recursion_context();
7450 if (unlikely(rctx < 0))
7451 goto fail;
7453 ___perf_sw_event(event_id, nr, regs, addr);
7455 perf_swevent_put_recursion_context(rctx);
7456 fail:
7457 preempt_enable_notrace();
7460 static void perf_swevent_read(struct perf_event *event)
7464 static int perf_swevent_add(struct perf_event *event, int flags)
7466 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7467 struct hw_perf_event *hwc = &event->hw;
7468 struct hlist_head *head;
7470 if (is_sampling_event(event)) {
7471 hwc->last_period = hwc->sample_period;
7472 perf_swevent_set_period(event);
7475 hwc->state = !(flags & PERF_EF_START);
7477 head = find_swevent_head(swhash, event);
7478 if (WARN_ON_ONCE(!head))
7479 return -EINVAL;
7481 hlist_add_head_rcu(&event->hlist_entry, head);
7482 perf_event_update_userpage(event);
7484 return 0;
7487 static void perf_swevent_del(struct perf_event *event, int flags)
7489 hlist_del_rcu(&event->hlist_entry);
7492 static void perf_swevent_start(struct perf_event *event, int flags)
7494 event->hw.state = 0;
7497 static void perf_swevent_stop(struct perf_event *event, int flags)
7499 event->hw.state = PERF_HES_STOPPED;
7502 /* Deref the hlist from the update side */
7503 static inline struct swevent_hlist *
7504 swevent_hlist_deref(struct swevent_htable *swhash)
7506 return rcu_dereference_protected(swhash->swevent_hlist,
7507 lockdep_is_held(&swhash->hlist_mutex));
7510 static void swevent_hlist_release(struct swevent_htable *swhash)
7512 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7514 if (!hlist)
7515 return;
7517 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7518 kfree_rcu(hlist, rcu_head);
7521 static void swevent_hlist_put_cpu(int cpu)
7523 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7525 mutex_lock(&swhash->hlist_mutex);
7527 if (!--swhash->hlist_refcount)
7528 swevent_hlist_release(swhash);
7530 mutex_unlock(&swhash->hlist_mutex);
7533 static void swevent_hlist_put(void)
7535 int cpu;
7537 for_each_possible_cpu(cpu)
7538 swevent_hlist_put_cpu(cpu);
7541 static int swevent_hlist_get_cpu(int cpu)
7543 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7544 int err = 0;
7546 mutex_lock(&swhash->hlist_mutex);
7547 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7548 struct swevent_hlist *hlist;
7550 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7551 if (!hlist) {
7552 err = -ENOMEM;
7553 goto exit;
7555 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7557 swhash->hlist_refcount++;
7558 exit:
7559 mutex_unlock(&swhash->hlist_mutex);
7561 return err;
7564 static int swevent_hlist_get(void)
7566 int err, cpu, failed_cpu;
7568 get_online_cpus();
7569 for_each_possible_cpu(cpu) {
7570 err = swevent_hlist_get_cpu(cpu);
7571 if (err) {
7572 failed_cpu = cpu;
7573 goto fail;
7576 put_online_cpus();
7578 return 0;
7579 fail:
7580 for_each_possible_cpu(cpu) {
7581 if (cpu == failed_cpu)
7582 break;
7583 swevent_hlist_put_cpu(cpu);
7586 put_online_cpus();
7587 return err;
7590 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7592 static void sw_perf_event_destroy(struct perf_event *event)
7594 u64 event_id = event->attr.config;
7596 WARN_ON(event->parent);
7598 static_key_slow_dec(&perf_swevent_enabled[event_id]);
7599 swevent_hlist_put();
7602 static int perf_swevent_init(struct perf_event *event)
7604 u64 event_id = event->attr.config;
7606 if (event->attr.type != PERF_TYPE_SOFTWARE)
7607 return -ENOENT;
7610 * no branch sampling for software events
7612 if (has_branch_stack(event))
7613 return -EOPNOTSUPP;
7615 switch (event_id) {
7616 case PERF_COUNT_SW_CPU_CLOCK:
7617 case PERF_COUNT_SW_TASK_CLOCK:
7618 return -ENOENT;
7620 default:
7621 break;
7624 if (event_id >= PERF_COUNT_SW_MAX)
7625 return -ENOENT;
7627 if (!event->parent) {
7628 int err;
7630 err = swevent_hlist_get();
7631 if (err)
7632 return err;
7634 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7635 event->destroy = sw_perf_event_destroy;
7638 return 0;
7641 static struct pmu perf_swevent = {
7642 .task_ctx_nr = perf_sw_context,
7644 .capabilities = PERF_PMU_CAP_NO_NMI,
7646 .event_init = perf_swevent_init,
7647 .add = perf_swevent_add,
7648 .del = perf_swevent_del,
7649 .start = perf_swevent_start,
7650 .stop = perf_swevent_stop,
7651 .read = perf_swevent_read,
7654 #ifdef CONFIG_EVENT_TRACING
7656 static int perf_tp_filter_match(struct perf_event *event,
7657 struct perf_sample_data *data)
7659 void *record = data->raw->frag.data;
7661 /* only top level events have filters set */
7662 if (event->parent)
7663 event = event->parent;
7665 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7666 return 1;
7667 return 0;
7670 static int perf_tp_event_match(struct perf_event *event,
7671 struct perf_sample_data *data,
7672 struct pt_regs *regs)
7674 if (event->hw.state & PERF_HES_STOPPED)
7675 return 0;
7677 * All tracepoints are from kernel-space.
7679 if (event->attr.exclude_kernel)
7680 return 0;
7682 if (!perf_tp_filter_match(event, data))
7683 return 0;
7685 return 1;
7688 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7689 struct trace_event_call *call, u64 count,
7690 struct pt_regs *regs, struct hlist_head *head,
7691 struct task_struct *task)
7693 struct bpf_prog *prog = call->prog;
7695 if (prog) {
7696 *(struct pt_regs **)raw_data = regs;
7697 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7698 perf_swevent_put_recursion_context(rctx);
7699 return;
7702 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7703 rctx, task);
7705 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7707 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7708 struct pt_regs *regs, struct hlist_head *head, int rctx,
7709 struct task_struct *task)
7711 struct perf_sample_data data;
7712 struct perf_event *event;
7714 struct perf_raw_record raw = {
7715 .frag = {
7716 .size = entry_size,
7717 .data = record,
7721 perf_sample_data_init(&data, 0, 0);
7722 data.raw = &raw;
7724 perf_trace_buf_update(record, event_type);
7726 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7727 if (perf_tp_event_match(event, &data, regs))
7728 perf_swevent_event(event, count, &data, regs);
7732 * If we got specified a target task, also iterate its context and
7733 * deliver this event there too.
7735 if (task && task != current) {
7736 struct perf_event_context *ctx;
7737 struct trace_entry *entry = record;
7739 rcu_read_lock();
7740 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7741 if (!ctx)
7742 goto unlock;
7744 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7745 if (event->cpu != smp_processor_id())
7746 continue;
7747 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7748 continue;
7749 if (event->attr.config != entry->type)
7750 continue;
7751 if (perf_tp_event_match(event, &data, regs))
7752 perf_swevent_event(event, count, &data, regs);
7754 unlock:
7755 rcu_read_unlock();
7758 perf_swevent_put_recursion_context(rctx);
7760 EXPORT_SYMBOL_GPL(perf_tp_event);
7762 static void tp_perf_event_destroy(struct perf_event *event)
7764 perf_trace_destroy(event);
7767 static int perf_tp_event_init(struct perf_event *event)
7769 int err;
7771 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7772 return -ENOENT;
7775 * no branch sampling for tracepoint events
7777 if (has_branch_stack(event))
7778 return -EOPNOTSUPP;
7780 err = perf_trace_init(event);
7781 if (err)
7782 return err;
7784 event->destroy = tp_perf_event_destroy;
7786 return 0;
7789 static struct pmu perf_tracepoint = {
7790 .task_ctx_nr = perf_sw_context,
7792 .event_init = perf_tp_event_init,
7793 .add = perf_trace_add,
7794 .del = perf_trace_del,
7795 .start = perf_swevent_start,
7796 .stop = perf_swevent_stop,
7797 .read = perf_swevent_read,
7800 static inline void perf_tp_register(void)
7802 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7805 static void perf_event_free_filter(struct perf_event *event)
7807 ftrace_profile_free_filter(event);
7810 #ifdef CONFIG_BPF_SYSCALL
7811 static void bpf_overflow_handler(struct perf_event *event,
7812 struct perf_sample_data *data,
7813 struct pt_regs *regs)
7815 struct bpf_perf_event_data_kern ctx = {
7816 .data = data,
7817 .regs = regs,
7819 int ret = 0;
7821 preempt_disable();
7822 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7823 goto out;
7824 rcu_read_lock();
7825 ret = BPF_PROG_RUN(event->prog, (void *)&ctx);
7826 rcu_read_unlock();
7827 out:
7828 __this_cpu_dec(bpf_prog_active);
7829 preempt_enable();
7830 if (!ret)
7831 return;
7833 event->orig_overflow_handler(event, data, regs);
7836 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7838 struct bpf_prog *prog;
7840 if (event->overflow_handler_context)
7841 /* hw breakpoint or kernel counter */
7842 return -EINVAL;
7844 if (event->prog)
7845 return -EEXIST;
7847 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7848 if (IS_ERR(prog))
7849 return PTR_ERR(prog);
7851 event->prog = prog;
7852 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
7853 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
7854 return 0;
7857 static void perf_event_free_bpf_handler(struct perf_event *event)
7859 struct bpf_prog *prog = event->prog;
7861 if (!prog)
7862 return;
7864 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
7865 event->prog = NULL;
7866 bpf_prog_put(prog);
7868 #else
7869 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7871 return -EOPNOTSUPP;
7873 static void perf_event_free_bpf_handler(struct perf_event *event)
7876 #endif
7878 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7880 bool is_kprobe, is_tracepoint;
7881 struct bpf_prog *prog;
7883 if (event->attr.type == PERF_TYPE_HARDWARE ||
7884 event->attr.type == PERF_TYPE_SOFTWARE)
7885 return perf_event_set_bpf_handler(event, prog_fd);
7887 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7888 return -EINVAL;
7890 if (event->tp_event->prog)
7891 return -EEXIST;
7893 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7894 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7895 if (!is_kprobe && !is_tracepoint)
7896 /* bpf programs can only be attached to u/kprobe or tracepoint */
7897 return -EINVAL;
7899 prog = bpf_prog_get(prog_fd);
7900 if (IS_ERR(prog))
7901 return PTR_ERR(prog);
7903 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7904 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7905 /* valid fd, but invalid bpf program type */
7906 bpf_prog_put(prog);
7907 return -EINVAL;
7910 if (is_tracepoint) {
7911 int off = trace_event_get_offsets(event->tp_event);
7913 if (prog->aux->max_ctx_offset > off) {
7914 bpf_prog_put(prog);
7915 return -EACCES;
7918 event->tp_event->prog = prog;
7919 event->tp_event->bpf_prog_owner = event;
7921 return 0;
7924 static void perf_event_free_bpf_prog(struct perf_event *event)
7926 struct bpf_prog *prog;
7928 perf_event_free_bpf_handler(event);
7930 if (!event->tp_event)
7931 return;
7933 prog = event->tp_event->prog;
7934 if (prog && event->tp_event->bpf_prog_owner == event) {
7935 event->tp_event->prog = NULL;
7936 bpf_prog_put(prog);
7940 #else
7942 static inline void perf_tp_register(void)
7946 static void perf_event_free_filter(struct perf_event *event)
7950 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7952 return -ENOENT;
7955 static void perf_event_free_bpf_prog(struct perf_event *event)
7958 #endif /* CONFIG_EVENT_TRACING */
7960 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7961 void perf_bp_event(struct perf_event *bp, void *data)
7963 struct perf_sample_data sample;
7964 struct pt_regs *regs = data;
7966 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7968 if (!bp->hw.state && !perf_exclude_event(bp, regs))
7969 perf_swevent_event(bp, 1, &sample, regs);
7971 #endif
7974 * Allocate a new address filter
7976 static struct perf_addr_filter *
7977 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7979 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7980 struct perf_addr_filter *filter;
7982 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7983 if (!filter)
7984 return NULL;
7986 INIT_LIST_HEAD(&filter->entry);
7987 list_add_tail(&filter->entry, filters);
7989 return filter;
7992 static void free_filters_list(struct list_head *filters)
7994 struct perf_addr_filter *filter, *iter;
7996 list_for_each_entry_safe(filter, iter, filters, entry) {
7997 if (filter->inode)
7998 iput(filter->inode);
7999 list_del(&filter->entry);
8000 kfree(filter);
8005 * Free existing address filters and optionally install new ones
8007 static void perf_addr_filters_splice(struct perf_event *event,
8008 struct list_head *head)
8010 unsigned long flags;
8011 LIST_HEAD(list);
8013 if (!has_addr_filter(event))
8014 return;
8016 /* don't bother with children, they don't have their own filters */
8017 if (event->parent)
8018 return;
8020 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8022 list_splice_init(&event->addr_filters.list, &list);
8023 if (head)
8024 list_splice(head, &event->addr_filters.list);
8026 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8028 free_filters_list(&list);
8032 * Scan through mm's vmas and see if one of them matches the
8033 * @filter; if so, adjust filter's address range.
8034 * Called with mm::mmap_sem down for reading.
8036 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8037 struct mm_struct *mm)
8039 struct vm_area_struct *vma;
8041 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8042 struct file *file = vma->vm_file;
8043 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8044 unsigned long vma_size = vma->vm_end - vma->vm_start;
8046 if (!file)
8047 continue;
8049 if (!perf_addr_filter_match(filter, file, off, vma_size))
8050 continue;
8052 return vma->vm_start;
8055 return 0;
8059 * Update event's address range filters based on the
8060 * task's existing mappings, if any.
8062 static void perf_event_addr_filters_apply(struct perf_event *event)
8064 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8065 struct task_struct *task = READ_ONCE(event->ctx->task);
8066 struct perf_addr_filter *filter;
8067 struct mm_struct *mm = NULL;
8068 unsigned int count = 0;
8069 unsigned long flags;
8072 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8073 * will stop on the parent's child_mutex that our caller is also holding
8075 if (task == TASK_TOMBSTONE)
8076 return;
8078 mm = get_task_mm(event->ctx->task);
8079 if (!mm)
8080 goto restart;
8082 down_read(&mm->mmap_sem);
8084 raw_spin_lock_irqsave(&ifh->lock, flags);
8085 list_for_each_entry(filter, &ifh->list, entry) {
8086 event->addr_filters_offs[count] = 0;
8089 * Adjust base offset if the filter is associated to a binary
8090 * that needs to be mapped:
8092 if (filter->inode)
8093 event->addr_filters_offs[count] =
8094 perf_addr_filter_apply(filter, mm);
8096 count++;
8099 event->addr_filters_gen++;
8100 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8102 up_read(&mm->mmap_sem);
8104 mmput(mm);
8106 restart:
8107 perf_event_stop(event, 1);
8111 * Address range filtering: limiting the data to certain
8112 * instruction address ranges. Filters are ioctl()ed to us from
8113 * userspace as ascii strings.
8115 * Filter string format:
8117 * ACTION RANGE_SPEC
8118 * where ACTION is one of the
8119 * * "filter": limit the trace to this region
8120 * * "start": start tracing from this address
8121 * * "stop": stop tracing at this address/region;
8122 * RANGE_SPEC is
8123 * * for kernel addresses: <start address>[/<size>]
8124 * * for object files: <start address>[/<size>]@</path/to/object/file>
8126 * if <size> is not specified, the range is treated as a single address.
8128 enum {
8129 IF_ACT_NONE = -1,
8130 IF_ACT_FILTER,
8131 IF_ACT_START,
8132 IF_ACT_STOP,
8133 IF_SRC_FILE,
8134 IF_SRC_KERNEL,
8135 IF_SRC_FILEADDR,
8136 IF_SRC_KERNELADDR,
8139 enum {
8140 IF_STATE_ACTION = 0,
8141 IF_STATE_SOURCE,
8142 IF_STATE_END,
8145 static const match_table_t if_tokens = {
8146 { IF_ACT_FILTER, "filter" },
8147 { IF_ACT_START, "start" },
8148 { IF_ACT_STOP, "stop" },
8149 { IF_SRC_FILE, "%u/%u@%s" },
8150 { IF_SRC_KERNEL, "%u/%u" },
8151 { IF_SRC_FILEADDR, "%u@%s" },
8152 { IF_SRC_KERNELADDR, "%u" },
8153 { IF_ACT_NONE, NULL },
8157 * Address filter string parser
8159 static int
8160 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8161 struct list_head *filters)
8163 struct perf_addr_filter *filter = NULL;
8164 char *start, *orig, *filename = NULL;
8165 struct path path;
8166 substring_t args[MAX_OPT_ARGS];
8167 int state = IF_STATE_ACTION, token;
8168 unsigned int kernel = 0;
8169 int ret = -EINVAL;
8171 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8172 if (!fstr)
8173 return -ENOMEM;
8175 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8176 ret = -EINVAL;
8178 if (!*start)
8179 continue;
8181 /* filter definition begins */
8182 if (state == IF_STATE_ACTION) {
8183 filter = perf_addr_filter_new(event, filters);
8184 if (!filter)
8185 goto fail;
8188 token = match_token(start, if_tokens, args);
8189 switch (token) {
8190 case IF_ACT_FILTER:
8191 case IF_ACT_START:
8192 filter->filter = 1;
8194 case IF_ACT_STOP:
8195 if (state != IF_STATE_ACTION)
8196 goto fail;
8198 state = IF_STATE_SOURCE;
8199 break;
8201 case IF_SRC_KERNELADDR:
8202 case IF_SRC_KERNEL:
8203 kernel = 1;
8205 case IF_SRC_FILEADDR:
8206 case IF_SRC_FILE:
8207 if (state != IF_STATE_SOURCE)
8208 goto fail;
8210 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8211 filter->range = 1;
8213 *args[0].to = 0;
8214 ret = kstrtoul(args[0].from, 0, &filter->offset);
8215 if (ret)
8216 goto fail;
8218 if (filter->range) {
8219 *args[1].to = 0;
8220 ret = kstrtoul(args[1].from, 0, &filter->size);
8221 if (ret)
8222 goto fail;
8225 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8226 int fpos = filter->range ? 2 : 1;
8228 filename = match_strdup(&args[fpos]);
8229 if (!filename) {
8230 ret = -ENOMEM;
8231 goto fail;
8235 state = IF_STATE_END;
8236 break;
8238 default:
8239 goto fail;
8243 * Filter definition is fully parsed, validate and install it.
8244 * Make sure that it doesn't contradict itself or the event's
8245 * attribute.
8247 if (state == IF_STATE_END) {
8248 if (kernel && event->attr.exclude_kernel)
8249 goto fail;
8251 if (!kernel) {
8252 if (!filename)
8253 goto fail;
8255 /* look up the path and grab its inode */
8256 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8257 if (ret)
8258 goto fail_free_name;
8260 filter->inode = igrab(d_inode(path.dentry));
8261 path_put(&path);
8262 kfree(filename);
8263 filename = NULL;
8265 ret = -EINVAL;
8266 if (!filter->inode ||
8267 !S_ISREG(filter->inode->i_mode))
8268 /* free_filters_list() will iput() */
8269 goto fail;
8272 /* ready to consume more filters */
8273 state = IF_STATE_ACTION;
8274 filter = NULL;
8278 if (state != IF_STATE_ACTION)
8279 goto fail;
8281 kfree(orig);
8283 return 0;
8285 fail_free_name:
8286 kfree(filename);
8287 fail:
8288 free_filters_list(filters);
8289 kfree(orig);
8291 return ret;
8294 static int
8295 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8297 LIST_HEAD(filters);
8298 int ret;
8301 * Since this is called in perf_ioctl() path, we're already holding
8302 * ctx::mutex.
8304 lockdep_assert_held(&event->ctx->mutex);
8306 if (WARN_ON_ONCE(event->parent))
8307 return -EINVAL;
8310 * For now, we only support filtering in per-task events; doing so
8311 * for CPU-wide events requires additional context switching trickery,
8312 * since same object code will be mapped at different virtual
8313 * addresses in different processes.
8315 if (!event->ctx->task)
8316 return -EOPNOTSUPP;
8318 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8319 if (ret)
8320 return ret;
8322 ret = event->pmu->addr_filters_validate(&filters);
8323 if (ret) {
8324 free_filters_list(&filters);
8325 return ret;
8328 /* remove existing filters, if any */
8329 perf_addr_filters_splice(event, &filters);
8331 /* install new filters */
8332 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8334 return ret;
8337 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8339 char *filter_str;
8340 int ret = -EINVAL;
8342 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8343 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8344 !has_addr_filter(event))
8345 return -EINVAL;
8347 filter_str = strndup_user(arg, PAGE_SIZE);
8348 if (IS_ERR(filter_str))
8349 return PTR_ERR(filter_str);
8351 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8352 event->attr.type == PERF_TYPE_TRACEPOINT)
8353 ret = ftrace_profile_set_filter(event, event->attr.config,
8354 filter_str);
8355 else if (has_addr_filter(event))
8356 ret = perf_event_set_addr_filter(event, filter_str);
8358 kfree(filter_str);
8359 return ret;
8363 * hrtimer based swevent callback
8366 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8368 enum hrtimer_restart ret = HRTIMER_RESTART;
8369 struct perf_sample_data data;
8370 struct pt_regs *regs;
8371 struct perf_event *event;
8372 u64 period;
8374 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8376 if (event->state != PERF_EVENT_STATE_ACTIVE)
8377 return HRTIMER_NORESTART;
8379 event->pmu->read(event);
8381 perf_sample_data_init(&data, 0, event->hw.last_period);
8382 regs = get_irq_regs();
8384 if (regs && !perf_exclude_event(event, regs)) {
8385 if (!(event->attr.exclude_idle && is_idle_task(current)))
8386 if (__perf_event_overflow(event, 1, &data, regs))
8387 ret = HRTIMER_NORESTART;
8390 period = max_t(u64, 10000, event->hw.sample_period);
8391 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8393 return ret;
8396 static void perf_swevent_start_hrtimer(struct perf_event *event)
8398 struct hw_perf_event *hwc = &event->hw;
8399 s64 period;
8401 if (!is_sampling_event(event))
8402 return;
8404 period = local64_read(&hwc->period_left);
8405 if (period) {
8406 if (period < 0)
8407 period = 10000;
8409 local64_set(&hwc->period_left, 0);
8410 } else {
8411 period = max_t(u64, 10000, hwc->sample_period);
8413 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8414 HRTIMER_MODE_REL_PINNED);
8417 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8419 struct hw_perf_event *hwc = &event->hw;
8421 if (is_sampling_event(event)) {
8422 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8423 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8425 hrtimer_cancel(&hwc->hrtimer);
8429 static void perf_swevent_init_hrtimer(struct perf_event *event)
8431 struct hw_perf_event *hwc = &event->hw;
8433 if (!is_sampling_event(event))
8434 return;
8436 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8437 hwc->hrtimer.function = perf_swevent_hrtimer;
8440 * Since hrtimers have a fixed rate, we can do a static freq->period
8441 * mapping and avoid the whole period adjust feedback stuff.
8443 if (event->attr.freq) {
8444 long freq = event->attr.sample_freq;
8446 event->attr.sample_period = NSEC_PER_SEC / freq;
8447 hwc->sample_period = event->attr.sample_period;
8448 local64_set(&hwc->period_left, hwc->sample_period);
8449 hwc->last_period = hwc->sample_period;
8450 event->attr.freq = 0;
8455 * Software event: cpu wall time clock
8458 static void cpu_clock_event_update(struct perf_event *event)
8460 s64 prev;
8461 u64 now;
8463 now = local_clock();
8464 prev = local64_xchg(&event->hw.prev_count, now);
8465 local64_add(now - prev, &event->count);
8468 static void cpu_clock_event_start(struct perf_event *event, int flags)
8470 local64_set(&event->hw.prev_count, local_clock());
8471 perf_swevent_start_hrtimer(event);
8474 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8476 perf_swevent_cancel_hrtimer(event);
8477 cpu_clock_event_update(event);
8480 static int cpu_clock_event_add(struct perf_event *event, int flags)
8482 if (flags & PERF_EF_START)
8483 cpu_clock_event_start(event, flags);
8484 perf_event_update_userpage(event);
8486 return 0;
8489 static void cpu_clock_event_del(struct perf_event *event, int flags)
8491 cpu_clock_event_stop(event, flags);
8494 static void cpu_clock_event_read(struct perf_event *event)
8496 cpu_clock_event_update(event);
8499 static int cpu_clock_event_init(struct perf_event *event)
8501 if (event->attr.type != PERF_TYPE_SOFTWARE)
8502 return -ENOENT;
8504 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8505 return -ENOENT;
8508 * no branch sampling for software events
8510 if (has_branch_stack(event))
8511 return -EOPNOTSUPP;
8513 perf_swevent_init_hrtimer(event);
8515 return 0;
8518 static struct pmu perf_cpu_clock = {
8519 .task_ctx_nr = perf_sw_context,
8521 .capabilities = PERF_PMU_CAP_NO_NMI,
8523 .event_init = cpu_clock_event_init,
8524 .add = cpu_clock_event_add,
8525 .del = cpu_clock_event_del,
8526 .start = cpu_clock_event_start,
8527 .stop = cpu_clock_event_stop,
8528 .read = cpu_clock_event_read,
8532 * Software event: task time clock
8535 static void task_clock_event_update(struct perf_event *event, u64 now)
8537 u64 prev;
8538 s64 delta;
8540 prev = local64_xchg(&event->hw.prev_count, now);
8541 delta = now - prev;
8542 local64_add(delta, &event->count);
8545 static void task_clock_event_start(struct perf_event *event, int flags)
8547 local64_set(&event->hw.prev_count, event->ctx->time);
8548 perf_swevent_start_hrtimer(event);
8551 static void task_clock_event_stop(struct perf_event *event, int flags)
8553 perf_swevent_cancel_hrtimer(event);
8554 task_clock_event_update(event, event->ctx->time);
8557 static int task_clock_event_add(struct perf_event *event, int flags)
8559 if (flags & PERF_EF_START)
8560 task_clock_event_start(event, flags);
8561 perf_event_update_userpage(event);
8563 return 0;
8566 static void task_clock_event_del(struct perf_event *event, int flags)
8568 task_clock_event_stop(event, PERF_EF_UPDATE);
8571 static void task_clock_event_read(struct perf_event *event)
8573 u64 now = perf_clock();
8574 u64 delta = now - event->ctx->timestamp;
8575 u64 time = event->ctx->time + delta;
8577 task_clock_event_update(event, time);
8580 static int task_clock_event_init(struct perf_event *event)
8582 if (event->attr.type != PERF_TYPE_SOFTWARE)
8583 return -ENOENT;
8585 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8586 return -ENOENT;
8589 * no branch sampling for software events
8591 if (has_branch_stack(event))
8592 return -EOPNOTSUPP;
8594 perf_swevent_init_hrtimer(event);
8596 return 0;
8599 static struct pmu perf_task_clock = {
8600 .task_ctx_nr = perf_sw_context,
8602 .capabilities = PERF_PMU_CAP_NO_NMI,
8604 .event_init = task_clock_event_init,
8605 .add = task_clock_event_add,
8606 .del = task_clock_event_del,
8607 .start = task_clock_event_start,
8608 .stop = task_clock_event_stop,
8609 .read = task_clock_event_read,
8612 static void perf_pmu_nop_void(struct pmu *pmu)
8616 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8620 static int perf_pmu_nop_int(struct pmu *pmu)
8622 return 0;
8625 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8627 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8629 __this_cpu_write(nop_txn_flags, flags);
8631 if (flags & ~PERF_PMU_TXN_ADD)
8632 return;
8634 perf_pmu_disable(pmu);
8637 static int perf_pmu_commit_txn(struct pmu *pmu)
8639 unsigned int flags = __this_cpu_read(nop_txn_flags);
8641 __this_cpu_write(nop_txn_flags, 0);
8643 if (flags & ~PERF_PMU_TXN_ADD)
8644 return 0;
8646 perf_pmu_enable(pmu);
8647 return 0;
8650 static void perf_pmu_cancel_txn(struct pmu *pmu)
8652 unsigned int flags = __this_cpu_read(nop_txn_flags);
8654 __this_cpu_write(nop_txn_flags, 0);
8656 if (flags & ~PERF_PMU_TXN_ADD)
8657 return;
8659 perf_pmu_enable(pmu);
8662 static int perf_event_idx_default(struct perf_event *event)
8664 return 0;
8668 * Ensures all contexts with the same task_ctx_nr have the same
8669 * pmu_cpu_context too.
8671 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8673 struct pmu *pmu;
8675 if (ctxn < 0)
8676 return NULL;
8678 list_for_each_entry(pmu, &pmus, entry) {
8679 if (pmu->task_ctx_nr == ctxn)
8680 return pmu->pmu_cpu_context;
8683 return NULL;
8686 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8688 int cpu;
8690 for_each_possible_cpu(cpu) {
8691 struct perf_cpu_context *cpuctx;
8693 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8695 if (cpuctx->unique_pmu == old_pmu)
8696 cpuctx->unique_pmu = pmu;
8700 static void free_pmu_context(struct pmu *pmu)
8702 struct pmu *i;
8704 mutex_lock(&pmus_lock);
8706 * Like a real lame refcount.
8708 list_for_each_entry(i, &pmus, entry) {
8709 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8710 update_pmu_context(i, pmu);
8711 goto out;
8715 free_percpu(pmu->pmu_cpu_context);
8716 out:
8717 mutex_unlock(&pmus_lock);
8721 * Let userspace know that this PMU supports address range filtering:
8723 static ssize_t nr_addr_filters_show(struct device *dev,
8724 struct device_attribute *attr,
8725 char *page)
8727 struct pmu *pmu = dev_get_drvdata(dev);
8729 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8731 DEVICE_ATTR_RO(nr_addr_filters);
8733 static struct idr pmu_idr;
8735 static ssize_t
8736 type_show(struct device *dev, struct device_attribute *attr, char *page)
8738 struct pmu *pmu = dev_get_drvdata(dev);
8740 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8742 static DEVICE_ATTR_RO(type);
8744 static ssize_t
8745 perf_event_mux_interval_ms_show(struct device *dev,
8746 struct device_attribute *attr,
8747 char *page)
8749 struct pmu *pmu = dev_get_drvdata(dev);
8751 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8754 static DEFINE_MUTEX(mux_interval_mutex);
8756 static ssize_t
8757 perf_event_mux_interval_ms_store(struct device *dev,
8758 struct device_attribute *attr,
8759 const char *buf, size_t count)
8761 struct pmu *pmu = dev_get_drvdata(dev);
8762 int timer, cpu, ret;
8764 ret = kstrtoint(buf, 0, &timer);
8765 if (ret)
8766 return ret;
8768 if (timer < 1)
8769 return -EINVAL;
8771 /* same value, noting to do */
8772 if (timer == pmu->hrtimer_interval_ms)
8773 return count;
8775 mutex_lock(&mux_interval_mutex);
8776 pmu->hrtimer_interval_ms = timer;
8778 /* update all cpuctx for this PMU */
8779 get_online_cpus();
8780 for_each_online_cpu(cpu) {
8781 struct perf_cpu_context *cpuctx;
8782 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8783 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8785 cpu_function_call(cpu,
8786 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8788 put_online_cpus();
8789 mutex_unlock(&mux_interval_mutex);
8791 return count;
8793 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8795 static struct attribute *pmu_dev_attrs[] = {
8796 &dev_attr_type.attr,
8797 &dev_attr_perf_event_mux_interval_ms.attr,
8798 NULL,
8800 ATTRIBUTE_GROUPS(pmu_dev);
8802 static int pmu_bus_running;
8803 static struct bus_type pmu_bus = {
8804 .name = "event_source",
8805 .dev_groups = pmu_dev_groups,
8808 static void pmu_dev_release(struct device *dev)
8810 kfree(dev);
8813 static int pmu_dev_alloc(struct pmu *pmu)
8815 int ret = -ENOMEM;
8817 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8818 if (!pmu->dev)
8819 goto out;
8821 pmu->dev->groups = pmu->attr_groups;
8822 device_initialize(pmu->dev);
8823 ret = dev_set_name(pmu->dev, "%s", pmu->name);
8824 if (ret)
8825 goto free_dev;
8827 dev_set_drvdata(pmu->dev, pmu);
8828 pmu->dev->bus = &pmu_bus;
8829 pmu->dev->release = pmu_dev_release;
8830 ret = device_add(pmu->dev);
8831 if (ret)
8832 goto free_dev;
8834 /* For PMUs with address filters, throw in an extra attribute: */
8835 if (pmu->nr_addr_filters)
8836 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8838 if (ret)
8839 goto del_dev;
8841 out:
8842 return ret;
8844 del_dev:
8845 device_del(pmu->dev);
8847 free_dev:
8848 put_device(pmu->dev);
8849 goto out;
8852 static struct lock_class_key cpuctx_mutex;
8853 static struct lock_class_key cpuctx_lock;
8855 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8857 int cpu, ret;
8859 mutex_lock(&pmus_lock);
8860 ret = -ENOMEM;
8861 pmu->pmu_disable_count = alloc_percpu(int);
8862 if (!pmu->pmu_disable_count)
8863 goto unlock;
8865 pmu->type = -1;
8866 if (!name)
8867 goto skip_type;
8868 pmu->name = name;
8870 if (type < 0) {
8871 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8872 if (type < 0) {
8873 ret = type;
8874 goto free_pdc;
8877 pmu->type = type;
8879 if (pmu_bus_running) {
8880 ret = pmu_dev_alloc(pmu);
8881 if (ret)
8882 goto free_idr;
8885 skip_type:
8886 if (pmu->task_ctx_nr == perf_hw_context) {
8887 static int hw_context_taken = 0;
8890 * Other than systems with heterogeneous CPUs, it never makes
8891 * sense for two PMUs to share perf_hw_context. PMUs which are
8892 * uncore must use perf_invalid_context.
8894 if (WARN_ON_ONCE(hw_context_taken &&
8895 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8896 pmu->task_ctx_nr = perf_invalid_context;
8898 hw_context_taken = 1;
8901 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8902 if (pmu->pmu_cpu_context)
8903 goto got_cpu_context;
8905 ret = -ENOMEM;
8906 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8907 if (!pmu->pmu_cpu_context)
8908 goto free_dev;
8910 for_each_possible_cpu(cpu) {
8911 struct perf_cpu_context *cpuctx;
8913 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8914 __perf_event_init_context(&cpuctx->ctx);
8915 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8916 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8917 cpuctx->ctx.pmu = pmu;
8919 __perf_mux_hrtimer_init(cpuctx, cpu);
8921 cpuctx->unique_pmu = pmu;
8924 got_cpu_context:
8925 if (!pmu->start_txn) {
8926 if (pmu->pmu_enable) {
8928 * If we have pmu_enable/pmu_disable calls, install
8929 * transaction stubs that use that to try and batch
8930 * hardware accesses.
8932 pmu->start_txn = perf_pmu_start_txn;
8933 pmu->commit_txn = perf_pmu_commit_txn;
8934 pmu->cancel_txn = perf_pmu_cancel_txn;
8935 } else {
8936 pmu->start_txn = perf_pmu_nop_txn;
8937 pmu->commit_txn = perf_pmu_nop_int;
8938 pmu->cancel_txn = perf_pmu_nop_void;
8942 if (!pmu->pmu_enable) {
8943 pmu->pmu_enable = perf_pmu_nop_void;
8944 pmu->pmu_disable = perf_pmu_nop_void;
8947 if (!pmu->event_idx)
8948 pmu->event_idx = perf_event_idx_default;
8950 list_add_rcu(&pmu->entry, &pmus);
8951 atomic_set(&pmu->exclusive_cnt, 0);
8952 ret = 0;
8953 unlock:
8954 mutex_unlock(&pmus_lock);
8956 return ret;
8958 free_dev:
8959 device_del(pmu->dev);
8960 put_device(pmu->dev);
8962 free_idr:
8963 if (pmu->type >= PERF_TYPE_MAX)
8964 idr_remove(&pmu_idr, pmu->type);
8966 free_pdc:
8967 free_percpu(pmu->pmu_disable_count);
8968 goto unlock;
8970 EXPORT_SYMBOL_GPL(perf_pmu_register);
8972 void perf_pmu_unregister(struct pmu *pmu)
8974 int remove_device;
8976 mutex_lock(&pmus_lock);
8977 remove_device = pmu_bus_running;
8978 list_del_rcu(&pmu->entry);
8979 mutex_unlock(&pmus_lock);
8982 * We dereference the pmu list under both SRCU and regular RCU, so
8983 * synchronize against both of those.
8985 synchronize_srcu(&pmus_srcu);
8986 synchronize_rcu();
8988 free_percpu(pmu->pmu_disable_count);
8989 if (pmu->type >= PERF_TYPE_MAX)
8990 idr_remove(&pmu_idr, pmu->type);
8991 if (remove_device) {
8992 if (pmu->nr_addr_filters)
8993 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8994 device_del(pmu->dev);
8995 put_device(pmu->dev);
8997 free_pmu_context(pmu);
8999 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9001 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9003 struct perf_event_context *ctx = NULL;
9004 int ret;
9006 if (!try_module_get(pmu->module))
9007 return -ENODEV;
9009 if (event->group_leader != event) {
9011 * This ctx->mutex can nest when we're called through
9012 * inheritance. See the perf_event_ctx_lock_nested() comment.
9014 ctx = perf_event_ctx_lock_nested(event->group_leader,
9015 SINGLE_DEPTH_NESTING);
9016 BUG_ON(!ctx);
9019 event->pmu = pmu;
9020 ret = pmu->event_init(event);
9022 if (ctx)
9023 perf_event_ctx_unlock(event->group_leader, ctx);
9025 if (ret)
9026 module_put(pmu->module);
9028 return ret;
9031 static struct pmu *perf_init_event(struct perf_event *event)
9033 struct pmu *pmu = NULL;
9034 int idx;
9035 int ret;
9037 idx = srcu_read_lock(&pmus_srcu);
9039 rcu_read_lock();
9040 pmu = idr_find(&pmu_idr, event->attr.type);
9041 rcu_read_unlock();
9042 if (pmu) {
9043 ret = perf_try_init_event(pmu, event);
9044 if (ret)
9045 pmu = ERR_PTR(ret);
9046 goto unlock;
9049 list_for_each_entry_rcu(pmu, &pmus, entry) {
9050 ret = perf_try_init_event(pmu, event);
9051 if (!ret)
9052 goto unlock;
9054 if (ret != -ENOENT) {
9055 pmu = ERR_PTR(ret);
9056 goto unlock;
9059 pmu = ERR_PTR(-ENOENT);
9060 unlock:
9061 srcu_read_unlock(&pmus_srcu, idx);
9063 return pmu;
9066 static void attach_sb_event(struct perf_event *event)
9068 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9070 raw_spin_lock(&pel->lock);
9071 list_add_rcu(&event->sb_list, &pel->list);
9072 raw_spin_unlock(&pel->lock);
9076 * We keep a list of all !task (and therefore per-cpu) events
9077 * that need to receive side-band records.
9079 * This avoids having to scan all the various PMU per-cpu contexts
9080 * looking for them.
9082 static void account_pmu_sb_event(struct perf_event *event)
9084 if (is_sb_event(event))
9085 attach_sb_event(event);
9088 static void account_event_cpu(struct perf_event *event, int cpu)
9090 if (event->parent)
9091 return;
9093 if (is_cgroup_event(event))
9094 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9097 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9098 static void account_freq_event_nohz(void)
9100 #ifdef CONFIG_NO_HZ_FULL
9101 /* Lock so we don't race with concurrent unaccount */
9102 spin_lock(&nr_freq_lock);
9103 if (atomic_inc_return(&nr_freq_events) == 1)
9104 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9105 spin_unlock(&nr_freq_lock);
9106 #endif
9109 static void account_freq_event(void)
9111 if (tick_nohz_full_enabled())
9112 account_freq_event_nohz();
9113 else
9114 atomic_inc(&nr_freq_events);
9118 static void account_event(struct perf_event *event)
9120 bool inc = false;
9122 if (event->parent)
9123 return;
9125 if (event->attach_state & PERF_ATTACH_TASK)
9126 inc = true;
9127 if (event->attr.mmap || event->attr.mmap_data)
9128 atomic_inc(&nr_mmap_events);
9129 if (event->attr.comm)
9130 atomic_inc(&nr_comm_events);
9131 if (event->attr.task)
9132 atomic_inc(&nr_task_events);
9133 if (event->attr.freq)
9134 account_freq_event();
9135 if (event->attr.context_switch) {
9136 atomic_inc(&nr_switch_events);
9137 inc = true;
9139 if (has_branch_stack(event))
9140 inc = true;
9141 if (is_cgroup_event(event))
9142 inc = true;
9144 if (inc) {
9145 if (atomic_inc_not_zero(&perf_sched_count))
9146 goto enabled;
9148 mutex_lock(&perf_sched_mutex);
9149 if (!atomic_read(&perf_sched_count)) {
9150 static_branch_enable(&perf_sched_events);
9152 * Guarantee that all CPUs observe they key change and
9153 * call the perf scheduling hooks before proceeding to
9154 * install events that need them.
9156 synchronize_sched();
9159 * Now that we have waited for the sync_sched(), allow further
9160 * increments to by-pass the mutex.
9162 atomic_inc(&perf_sched_count);
9163 mutex_unlock(&perf_sched_mutex);
9165 enabled:
9167 account_event_cpu(event, event->cpu);
9169 account_pmu_sb_event(event);
9173 * Allocate and initialize a event structure
9175 static struct perf_event *
9176 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9177 struct task_struct *task,
9178 struct perf_event *group_leader,
9179 struct perf_event *parent_event,
9180 perf_overflow_handler_t overflow_handler,
9181 void *context, int cgroup_fd)
9183 struct pmu *pmu;
9184 struct perf_event *event;
9185 struct hw_perf_event *hwc;
9186 long err = -EINVAL;
9188 if ((unsigned)cpu >= nr_cpu_ids) {
9189 if (!task || cpu != -1)
9190 return ERR_PTR(-EINVAL);
9193 event = kzalloc(sizeof(*event), GFP_KERNEL);
9194 if (!event)
9195 return ERR_PTR(-ENOMEM);
9198 * Single events are their own group leaders, with an
9199 * empty sibling list:
9201 if (!group_leader)
9202 group_leader = event;
9204 mutex_init(&event->child_mutex);
9205 INIT_LIST_HEAD(&event->child_list);
9207 INIT_LIST_HEAD(&event->group_entry);
9208 INIT_LIST_HEAD(&event->event_entry);
9209 INIT_LIST_HEAD(&event->sibling_list);
9210 INIT_LIST_HEAD(&event->rb_entry);
9211 INIT_LIST_HEAD(&event->active_entry);
9212 INIT_LIST_HEAD(&event->addr_filters.list);
9213 INIT_HLIST_NODE(&event->hlist_entry);
9216 init_waitqueue_head(&event->waitq);
9217 init_irq_work(&event->pending, perf_pending_event);
9219 mutex_init(&event->mmap_mutex);
9220 raw_spin_lock_init(&event->addr_filters.lock);
9222 atomic_long_set(&event->refcount, 1);
9223 event->cpu = cpu;
9224 event->attr = *attr;
9225 event->group_leader = group_leader;
9226 event->pmu = NULL;
9227 event->oncpu = -1;
9229 event->parent = parent_event;
9231 event->ns = get_pid_ns(task_active_pid_ns(current));
9232 event->id = atomic64_inc_return(&perf_event_id);
9234 event->state = PERF_EVENT_STATE_INACTIVE;
9236 if (task) {
9237 event->attach_state = PERF_ATTACH_TASK;
9239 * XXX pmu::event_init needs to know what task to account to
9240 * and we cannot use the ctx information because we need the
9241 * pmu before we get a ctx.
9243 get_task_struct(task);
9244 event->hw.target = task;
9247 event->clock = &local_clock;
9248 if (parent_event)
9249 event->clock = parent_event->clock;
9251 if (!overflow_handler && parent_event) {
9252 overflow_handler = parent_event->overflow_handler;
9253 context = parent_event->overflow_handler_context;
9254 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9255 if (overflow_handler == bpf_overflow_handler) {
9256 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9258 if (IS_ERR(prog)) {
9259 err = PTR_ERR(prog);
9260 goto err_ns;
9262 event->prog = prog;
9263 event->orig_overflow_handler =
9264 parent_event->orig_overflow_handler;
9266 #endif
9269 if (overflow_handler) {
9270 event->overflow_handler = overflow_handler;
9271 event->overflow_handler_context = context;
9272 } else if (is_write_backward(event)){
9273 event->overflow_handler = perf_event_output_backward;
9274 event->overflow_handler_context = NULL;
9275 } else {
9276 event->overflow_handler = perf_event_output_forward;
9277 event->overflow_handler_context = NULL;
9280 perf_event__state_init(event);
9282 pmu = NULL;
9284 hwc = &event->hw;
9285 hwc->sample_period = attr->sample_period;
9286 if (attr->freq && attr->sample_freq)
9287 hwc->sample_period = 1;
9288 hwc->last_period = hwc->sample_period;
9290 local64_set(&hwc->period_left, hwc->sample_period);
9293 * We currently do not support PERF_SAMPLE_READ on inherited events.
9294 * See perf_output_read().
9296 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9297 goto err_ns;
9299 if (!has_branch_stack(event))
9300 event->attr.branch_sample_type = 0;
9302 if (cgroup_fd != -1) {
9303 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9304 if (err)
9305 goto err_ns;
9308 pmu = perf_init_event(event);
9309 if (!pmu)
9310 goto err_ns;
9311 else if (IS_ERR(pmu)) {
9312 err = PTR_ERR(pmu);
9313 goto err_ns;
9316 err = exclusive_event_init(event);
9317 if (err)
9318 goto err_pmu;
9320 if (has_addr_filter(event)) {
9321 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9322 sizeof(unsigned long),
9323 GFP_KERNEL);
9324 if (!event->addr_filters_offs) {
9325 err = -ENOMEM;
9326 goto err_per_task;
9329 /* force hw sync on the address filters */
9330 event->addr_filters_gen = 1;
9333 if (!event->parent) {
9334 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9335 err = get_callchain_buffers(attr->sample_max_stack);
9336 if (err)
9337 goto err_addr_filters;
9341 /* symmetric to unaccount_event() in _free_event() */
9342 account_event(event);
9344 return event;
9346 err_addr_filters:
9347 kfree(event->addr_filters_offs);
9349 err_per_task:
9350 exclusive_event_destroy(event);
9352 err_pmu:
9353 if (event->destroy)
9354 event->destroy(event);
9355 module_put(pmu->module);
9356 err_ns:
9357 if (is_cgroup_event(event))
9358 perf_detach_cgroup(event);
9359 if (event->ns)
9360 put_pid_ns(event->ns);
9361 if (event->hw.target)
9362 put_task_struct(event->hw.target);
9363 kfree(event);
9365 return ERR_PTR(err);
9368 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9369 struct perf_event_attr *attr)
9371 u32 size;
9372 int ret;
9374 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9375 return -EFAULT;
9378 * zero the full structure, so that a short copy will be nice.
9380 memset(attr, 0, sizeof(*attr));
9382 ret = get_user(size, &uattr->size);
9383 if (ret)
9384 return ret;
9386 if (size > PAGE_SIZE) /* silly large */
9387 goto err_size;
9389 if (!size) /* abi compat */
9390 size = PERF_ATTR_SIZE_VER0;
9392 if (size < PERF_ATTR_SIZE_VER0)
9393 goto err_size;
9396 * If we're handed a bigger struct than we know of,
9397 * ensure all the unknown bits are 0 - i.e. new
9398 * user-space does not rely on any kernel feature
9399 * extensions we dont know about yet.
9401 if (size > sizeof(*attr)) {
9402 unsigned char __user *addr;
9403 unsigned char __user *end;
9404 unsigned char val;
9406 addr = (void __user *)uattr + sizeof(*attr);
9407 end = (void __user *)uattr + size;
9409 for (; addr < end; addr++) {
9410 ret = get_user(val, addr);
9411 if (ret)
9412 return ret;
9413 if (val)
9414 goto err_size;
9416 size = sizeof(*attr);
9419 ret = copy_from_user(attr, uattr, size);
9420 if (ret)
9421 return -EFAULT;
9423 if (attr->__reserved_1)
9424 return -EINVAL;
9426 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9427 return -EINVAL;
9429 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9430 return -EINVAL;
9432 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9433 u64 mask = attr->branch_sample_type;
9435 /* only using defined bits */
9436 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9437 return -EINVAL;
9439 /* at least one branch bit must be set */
9440 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9441 return -EINVAL;
9443 /* propagate priv level, when not set for branch */
9444 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9446 /* exclude_kernel checked on syscall entry */
9447 if (!attr->exclude_kernel)
9448 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9450 if (!attr->exclude_user)
9451 mask |= PERF_SAMPLE_BRANCH_USER;
9453 if (!attr->exclude_hv)
9454 mask |= PERF_SAMPLE_BRANCH_HV;
9456 * adjust user setting (for HW filter setup)
9458 attr->branch_sample_type = mask;
9460 /* privileged levels capture (kernel, hv): check permissions */
9461 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9462 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9463 return -EACCES;
9466 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9467 ret = perf_reg_validate(attr->sample_regs_user);
9468 if (ret)
9469 return ret;
9472 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9473 if (!arch_perf_have_user_stack_dump())
9474 return -ENOSYS;
9477 * We have __u32 type for the size, but so far
9478 * we can only use __u16 as maximum due to the
9479 * __u16 sample size limit.
9481 if (attr->sample_stack_user >= USHRT_MAX)
9482 return -EINVAL;
9483 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9484 return -EINVAL;
9487 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9488 ret = perf_reg_validate(attr->sample_regs_intr);
9489 out:
9490 return ret;
9492 err_size:
9493 put_user(sizeof(*attr), &uattr->size);
9494 ret = -E2BIG;
9495 goto out;
9498 static int
9499 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9501 struct ring_buffer *rb = NULL;
9502 int ret = -EINVAL;
9504 if (!output_event)
9505 goto set;
9507 /* don't allow circular references */
9508 if (event == output_event)
9509 goto out;
9512 * Don't allow cross-cpu buffers
9514 if (output_event->cpu != event->cpu)
9515 goto out;
9518 * If its not a per-cpu rb, it must be the same task.
9520 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9521 goto out;
9524 * Mixing clocks in the same buffer is trouble you don't need.
9526 if (output_event->clock != event->clock)
9527 goto out;
9530 * Either writing ring buffer from beginning or from end.
9531 * Mixing is not allowed.
9533 if (is_write_backward(output_event) != is_write_backward(event))
9534 goto out;
9537 * If both events generate aux data, they must be on the same PMU
9539 if (has_aux(event) && has_aux(output_event) &&
9540 event->pmu != output_event->pmu)
9541 goto out;
9543 set:
9544 mutex_lock(&event->mmap_mutex);
9545 /* Can't redirect output if we've got an active mmap() */
9546 if (atomic_read(&event->mmap_count))
9547 goto unlock;
9549 if (output_event) {
9550 /* get the rb we want to redirect to */
9551 rb = ring_buffer_get(output_event);
9552 if (!rb)
9553 goto unlock;
9556 ring_buffer_attach(event, rb);
9558 ret = 0;
9559 unlock:
9560 mutex_unlock(&event->mmap_mutex);
9562 out:
9563 return ret;
9566 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9568 if (b < a)
9569 swap(a, b);
9571 mutex_lock(a);
9572 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9575 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9577 bool nmi_safe = false;
9579 switch (clk_id) {
9580 case CLOCK_MONOTONIC:
9581 event->clock = &ktime_get_mono_fast_ns;
9582 nmi_safe = true;
9583 break;
9585 case CLOCK_MONOTONIC_RAW:
9586 event->clock = &ktime_get_raw_fast_ns;
9587 nmi_safe = true;
9588 break;
9590 case CLOCK_REALTIME:
9591 event->clock = &ktime_get_real_ns;
9592 break;
9594 case CLOCK_BOOTTIME:
9595 event->clock = &ktime_get_boot_ns;
9596 break;
9598 case CLOCK_TAI:
9599 event->clock = &ktime_get_tai_ns;
9600 break;
9602 default:
9603 return -EINVAL;
9606 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9607 return -EINVAL;
9609 return 0;
9613 * Variation on perf_event_ctx_lock_nested(), except we take two context
9614 * mutexes.
9616 static struct perf_event_context *
9617 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9618 struct perf_event_context *ctx)
9620 struct perf_event_context *gctx;
9622 again:
9623 rcu_read_lock();
9624 gctx = READ_ONCE(group_leader->ctx);
9625 if (!atomic_inc_not_zero(&gctx->refcount)) {
9626 rcu_read_unlock();
9627 goto again;
9629 rcu_read_unlock();
9631 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9633 if (group_leader->ctx != gctx) {
9634 mutex_unlock(&ctx->mutex);
9635 mutex_unlock(&gctx->mutex);
9636 put_ctx(gctx);
9637 goto again;
9640 return gctx;
9644 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9646 * @attr_uptr: event_id type attributes for monitoring/sampling
9647 * @pid: target pid
9648 * @cpu: target cpu
9649 * @group_fd: group leader event fd
9651 SYSCALL_DEFINE5(perf_event_open,
9652 struct perf_event_attr __user *, attr_uptr,
9653 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9655 struct perf_event *group_leader = NULL, *output_event = NULL;
9656 struct perf_event *event, *sibling;
9657 struct perf_event_attr attr;
9658 struct perf_event_context *ctx, *uninitialized_var(gctx);
9659 struct file *event_file = NULL;
9660 struct fd group = {NULL, 0};
9661 struct task_struct *task = NULL;
9662 struct pmu *pmu;
9663 int event_fd;
9664 int move_group = 0;
9665 int err;
9666 int f_flags = O_RDWR;
9667 int cgroup_fd = -1;
9669 /* for future expandability... */
9670 if (flags & ~PERF_FLAG_ALL)
9671 return -EINVAL;
9673 err = perf_copy_attr(attr_uptr, &attr);
9674 if (err)
9675 return err;
9677 if (!attr.exclude_kernel) {
9678 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9679 return -EACCES;
9682 if (attr.freq) {
9683 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9684 return -EINVAL;
9685 } else {
9686 if (attr.sample_period & (1ULL << 63))
9687 return -EINVAL;
9690 if (!attr.sample_max_stack)
9691 attr.sample_max_stack = sysctl_perf_event_max_stack;
9694 * In cgroup mode, the pid argument is used to pass the fd
9695 * opened to the cgroup directory in cgroupfs. The cpu argument
9696 * designates the cpu on which to monitor threads from that
9697 * cgroup.
9699 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9700 return -EINVAL;
9702 if (flags & PERF_FLAG_FD_CLOEXEC)
9703 f_flags |= O_CLOEXEC;
9705 event_fd = get_unused_fd_flags(f_flags);
9706 if (event_fd < 0)
9707 return event_fd;
9709 if (group_fd != -1) {
9710 err = perf_fget_light(group_fd, &group);
9711 if (err)
9712 goto err_fd;
9713 group_leader = group.file->private_data;
9714 if (flags & PERF_FLAG_FD_OUTPUT)
9715 output_event = group_leader;
9716 if (flags & PERF_FLAG_FD_NO_GROUP)
9717 group_leader = NULL;
9720 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9721 task = find_lively_task_by_vpid(pid);
9722 if (IS_ERR(task)) {
9723 err = PTR_ERR(task);
9724 goto err_group_fd;
9728 if (task && group_leader &&
9729 group_leader->attr.inherit != attr.inherit) {
9730 err = -EINVAL;
9731 goto err_task;
9734 get_online_cpus();
9736 if (task) {
9737 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9738 if (err)
9739 goto err_cpus;
9742 * Reuse ptrace permission checks for now.
9744 * We must hold cred_guard_mutex across this and any potential
9745 * perf_install_in_context() call for this new event to
9746 * serialize against exec() altering our credentials (and the
9747 * perf_event_exit_task() that could imply).
9749 err = -EACCES;
9750 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9751 goto err_cred;
9754 if (flags & PERF_FLAG_PID_CGROUP)
9755 cgroup_fd = pid;
9757 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9758 NULL, NULL, cgroup_fd);
9759 if (IS_ERR(event)) {
9760 err = PTR_ERR(event);
9761 goto err_cred;
9764 if (is_sampling_event(event)) {
9765 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9766 err = -EOPNOTSUPP;
9767 goto err_alloc;
9772 * Special case software events and allow them to be part of
9773 * any hardware group.
9775 pmu = event->pmu;
9777 if (attr.use_clockid) {
9778 err = perf_event_set_clock(event, attr.clockid);
9779 if (err)
9780 goto err_alloc;
9783 if (pmu->task_ctx_nr == perf_sw_context)
9784 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9786 if (group_leader &&
9787 (is_software_event(event) != is_software_event(group_leader))) {
9788 if (is_software_event(event)) {
9790 * If event and group_leader are not both a software
9791 * event, and event is, then group leader is not.
9793 * Allow the addition of software events to !software
9794 * groups, this is safe because software events never
9795 * fail to schedule.
9797 pmu = group_leader->pmu;
9798 } else if (is_software_event(group_leader) &&
9799 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9801 * In case the group is a pure software group, and we
9802 * try to add a hardware event, move the whole group to
9803 * the hardware context.
9805 move_group = 1;
9810 * Get the target context (task or percpu):
9812 ctx = find_get_context(pmu, task, event);
9813 if (IS_ERR(ctx)) {
9814 err = PTR_ERR(ctx);
9815 goto err_alloc;
9818 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9819 err = -EBUSY;
9820 goto err_context;
9824 * Look up the group leader (we will attach this event to it):
9826 if (group_leader) {
9827 err = -EINVAL;
9830 * Do not allow a recursive hierarchy (this new sibling
9831 * becoming part of another group-sibling):
9833 if (group_leader->group_leader != group_leader)
9834 goto err_context;
9836 /* All events in a group should have the same clock */
9837 if (group_leader->clock != event->clock)
9838 goto err_context;
9841 * Make sure we're both events for the same CPU;
9842 * grouping events for different CPUs is broken; since
9843 * you can never concurrently schedule them anyhow.
9845 if (group_leader->cpu != event->cpu)
9846 goto err_context;
9849 * Make sure we're both on the same task, or both
9850 * per-CPU events.
9852 if (group_leader->ctx->task != ctx->task)
9853 goto err_context;
9856 * Do not allow to attach to a group in a different task
9857 * or CPU context. If we're moving SW events, we'll fix
9858 * this up later, so allow that.
9860 if (!move_group && group_leader->ctx != ctx)
9861 goto err_context;
9864 * Only a group leader can be exclusive or pinned
9866 if (attr.exclusive || attr.pinned)
9867 goto err_context;
9870 if (output_event) {
9871 err = perf_event_set_output(event, output_event);
9872 if (err)
9873 goto err_context;
9876 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9877 f_flags);
9878 if (IS_ERR(event_file)) {
9879 err = PTR_ERR(event_file);
9880 event_file = NULL;
9881 goto err_context;
9884 if (move_group) {
9885 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
9887 if (gctx->task == TASK_TOMBSTONE) {
9888 err = -ESRCH;
9889 goto err_locked;
9893 * Check if we raced against another sys_perf_event_open() call
9894 * moving the software group underneath us.
9896 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9898 * If someone moved the group out from under us, check
9899 * if this new event wound up on the same ctx, if so
9900 * its the regular !move_group case, otherwise fail.
9902 if (gctx != ctx) {
9903 err = -EINVAL;
9904 goto err_locked;
9905 } else {
9906 perf_event_ctx_unlock(group_leader, gctx);
9907 move_group = 0;
9910 } else {
9911 mutex_lock(&ctx->mutex);
9914 if (ctx->task == TASK_TOMBSTONE) {
9915 err = -ESRCH;
9916 goto err_locked;
9919 if (!perf_event_validate_size(event)) {
9920 err = -E2BIG;
9921 goto err_locked;
9925 * Must be under the same ctx::mutex as perf_install_in_context(),
9926 * because we need to serialize with concurrent event creation.
9928 if (!exclusive_event_installable(event, ctx)) {
9929 /* exclusive and group stuff are assumed mutually exclusive */
9930 WARN_ON_ONCE(move_group);
9932 err = -EBUSY;
9933 goto err_locked;
9936 WARN_ON_ONCE(ctx->parent_ctx);
9939 * This is the point on no return; we cannot fail hereafter. This is
9940 * where we start modifying current state.
9943 if (move_group) {
9945 * See perf_event_ctx_lock() for comments on the details
9946 * of swizzling perf_event::ctx.
9948 perf_remove_from_context(group_leader, 0);
9950 list_for_each_entry(sibling, &group_leader->sibling_list,
9951 group_entry) {
9952 perf_remove_from_context(sibling, 0);
9953 put_ctx(gctx);
9957 * Wait for everybody to stop referencing the events through
9958 * the old lists, before installing it on new lists.
9960 synchronize_rcu();
9963 * Install the group siblings before the group leader.
9965 * Because a group leader will try and install the entire group
9966 * (through the sibling list, which is still in-tact), we can
9967 * end up with siblings installed in the wrong context.
9969 * By installing siblings first we NO-OP because they're not
9970 * reachable through the group lists.
9972 list_for_each_entry(sibling, &group_leader->sibling_list,
9973 group_entry) {
9974 perf_event__state_init(sibling);
9975 perf_install_in_context(ctx, sibling, sibling->cpu);
9976 get_ctx(ctx);
9980 * Removing from the context ends up with disabled
9981 * event. What we want here is event in the initial
9982 * startup state, ready to be add into new context.
9984 perf_event__state_init(group_leader);
9985 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9986 get_ctx(ctx);
9989 * Now that all events are installed in @ctx, nothing
9990 * references @gctx anymore, so drop the last reference we have
9991 * on it.
9993 put_ctx(gctx);
9997 * Precalculate sample_data sizes; do while holding ctx::mutex such
9998 * that we're serialized against further additions and before
9999 * perf_install_in_context() which is the point the event is active and
10000 * can use these values.
10002 perf_event__header_size(event);
10003 perf_event__id_header_size(event);
10005 event->owner = current;
10007 perf_install_in_context(ctx, event, event->cpu);
10008 perf_unpin_context(ctx);
10010 if (move_group)
10011 perf_event_ctx_unlock(group_leader, gctx);
10012 mutex_unlock(&ctx->mutex);
10014 if (task) {
10015 mutex_unlock(&task->signal->cred_guard_mutex);
10016 put_task_struct(task);
10019 put_online_cpus();
10021 mutex_lock(&current->perf_event_mutex);
10022 list_add_tail(&event->owner_entry, &current->perf_event_list);
10023 mutex_unlock(&current->perf_event_mutex);
10026 * Drop the reference on the group_event after placing the
10027 * new event on the sibling_list. This ensures destruction
10028 * of the group leader will find the pointer to itself in
10029 * perf_group_detach().
10031 fdput(group);
10032 fd_install(event_fd, event_file);
10033 return event_fd;
10035 err_locked:
10036 if (move_group)
10037 perf_event_ctx_unlock(group_leader, gctx);
10038 mutex_unlock(&ctx->mutex);
10039 /* err_file: */
10040 fput(event_file);
10041 err_context:
10042 perf_unpin_context(ctx);
10043 put_ctx(ctx);
10044 err_alloc:
10046 * If event_file is set, the fput() above will have called ->release()
10047 * and that will take care of freeing the event.
10049 if (!event_file)
10050 free_event(event);
10051 err_cred:
10052 if (task)
10053 mutex_unlock(&task->signal->cred_guard_mutex);
10054 err_cpus:
10055 put_online_cpus();
10056 err_task:
10057 if (task)
10058 put_task_struct(task);
10059 err_group_fd:
10060 fdput(group);
10061 err_fd:
10062 put_unused_fd(event_fd);
10063 return err;
10067 * perf_event_create_kernel_counter
10069 * @attr: attributes of the counter to create
10070 * @cpu: cpu in which the counter is bound
10071 * @task: task to profile (NULL for percpu)
10073 struct perf_event *
10074 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10075 struct task_struct *task,
10076 perf_overflow_handler_t overflow_handler,
10077 void *context)
10079 struct perf_event_context *ctx;
10080 struct perf_event *event;
10081 int err;
10084 * Get the target context (task or percpu):
10087 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10088 overflow_handler, context, -1);
10089 if (IS_ERR(event)) {
10090 err = PTR_ERR(event);
10091 goto err;
10094 /* Mark owner so we could distinguish it from user events. */
10095 event->owner = TASK_TOMBSTONE;
10097 ctx = find_get_context(event->pmu, task, event);
10098 if (IS_ERR(ctx)) {
10099 err = PTR_ERR(ctx);
10100 goto err_free;
10103 WARN_ON_ONCE(ctx->parent_ctx);
10104 mutex_lock(&ctx->mutex);
10105 if (ctx->task == TASK_TOMBSTONE) {
10106 err = -ESRCH;
10107 goto err_unlock;
10110 if (!exclusive_event_installable(event, ctx)) {
10111 err = -EBUSY;
10112 goto err_unlock;
10115 perf_install_in_context(ctx, event, cpu);
10116 perf_unpin_context(ctx);
10117 mutex_unlock(&ctx->mutex);
10119 return event;
10121 err_unlock:
10122 mutex_unlock(&ctx->mutex);
10123 perf_unpin_context(ctx);
10124 put_ctx(ctx);
10125 err_free:
10126 free_event(event);
10127 err:
10128 return ERR_PTR(err);
10130 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10132 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10134 struct perf_event_context *src_ctx;
10135 struct perf_event_context *dst_ctx;
10136 struct perf_event *event, *tmp;
10137 LIST_HEAD(events);
10139 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10140 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10143 * See perf_event_ctx_lock() for comments on the details
10144 * of swizzling perf_event::ctx.
10146 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10147 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10148 event_entry) {
10149 perf_remove_from_context(event, 0);
10150 unaccount_event_cpu(event, src_cpu);
10151 put_ctx(src_ctx);
10152 list_add(&event->migrate_entry, &events);
10156 * Wait for the events to quiesce before re-instating them.
10158 synchronize_rcu();
10161 * Re-instate events in 2 passes.
10163 * Skip over group leaders and only install siblings on this first
10164 * pass, siblings will not get enabled without a leader, however a
10165 * leader will enable its siblings, even if those are still on the old
10166 * context.
10168 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10169 if (event->group_leader == event)
10170 continue;
10172 list_del(&event->migrate_entry);
10173 if (event->state >= PERF_EVENT_STATE_OFF)
10174 event->state = PERF_EVENT_STATE_INACTIVE;
10175 account_event_cpu(event, dst_cpu);
10176 perf_install_in_context(dst_ctx, event, dst_cpu);
10177 get_ctx(dst_ctx);
10181 * Once all the siblings are setup properly, install the group leaders
10182 * to make it go.
10184 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10185 list_del(&event->migrate_entry);
10186 if (event->state >= PERF_EVENT_STATE_OFF)
10187 event->state = PERF_EVENT_STATE_INACTIVE;
10188 account_event_cpu(event, dst_cpu);
10189 perf_install_in_context(dst_ctx, event, dst_cpu);
10190 get_ctx(dst_ctx);
10192 mutex_unlock(&dst_ctx->mutex);
10193 mutex_unlock(&src_ctx->mutex);
10195 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10197 static void sync_child_event(struct perf_event *child_event,
10198 struct task_struct *child)
10200 struct perf_event *parent_event = child_event->parent;
10201 u64 child_val;
10203 if (child_event->attr.inherit_stat)
10204 perf_event_read_event(child_event, child);
10206 child_val = perf_event_count(child_event);
10209 * Add back the child's count to the parent's count:
10211 atomic64_add(child_val, &parent_event->child_count);
10212 atomic64_add(child_event->total_time_enabled,
10213 &parent_event->child_total_time_enabled);
10214 atomic64_add(child_event->total_time_running,
10215 &parent_event->child_total_time_running);
10218 static void
10219 perf_event_exit_event(struct perf_event *child_event,
10220 struct perf_event_context *child_ctx,
10221 struct task_struct *child)
10223 struct perf_event *parent_event = child_event->parent;
10226 * Do not destroy the 'original' grouping; because of the context
10227 * switch optimization the original events could've ended up in a
10228 * random child task.
10230 * If we were to destroy the original group, all group related
10231 * operations would cease to function properly after this random
10232 * child dies.
10234 * Do destroy all inherited groups, we don't care about those
10235 * and being thorough is better.
10237 raw_spin_lock_irq(&child_ctx->lock);
10238 WARN_ON_ONCE(child_ctx->is_active);
10240 if (parent_event)
10241 perf_group_detach(child_event);
10242 list_del_event(child_event, child_ctx);
10243 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10244 raw_spin_unlock_irq(&child_ctx->lock);
10247 * Parent events are governed by their filedesc, retain them.
10249 if (!parent_event) {
10250 perf_event_wakeup(child_event);
10251 return;
10254 * Child events can be cleaned up.
10257 sync_child_event(child_event, child);
10260 * Remove this event from the parent's list
10262 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10263 mutex_lock(&parent_event->child_mutex);
10264 list_del_init(&child_event->child_list);
10265 mutex_unlock(&parent_event->child_mutex);
10268 * Kick perf_poll() for is_event_hup().
10270 perf_event_wakeup(parent_event);
10271 free_event(child_event);
10272 put_event(parent_event);
10275 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10277 struct perf_event_context *child_ctx, *clone_ctx = NULL;
10278 struct perf_event *child_event, *next;
10280 WARN_ON_ONCE(child != current);
10282 child_ctx = perf_pin_task_context(child, ctxn);
10283 if (!child_ctx)
10284 return;
10287 * In order to reduce the amount of tricky in ctx tear-down, we hold
10288 * ctx::mutex over the entire thing. This serializes against almost
10289 * everything that wants to access the ctx.
10291 * The exception is sys_perf_event_open() /
10292 * perf_event_create_kernel_count() which does find_get_context()
10293 * without ctx::mutex (it cannot because of the move_group double mutex
10294 * lock thing). See the comments in perf_install_in_context().
10296 mutex_lock(&child_ctx->mutex);
10299 * In a single ctx::lock section, de-schedule the events and detach the
10300 * context from the task such that we cannot ever get it scheduled back
10301 * in.
10303 raw_spin_lock_irq(&child_ctx->lock);
10304 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
10307 * Now that the context is inactive, destroy the task <-> ctx relation
10308 * and mark the context dead.
10310 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10311 put_ctx(child_ctx); /* cannot be last */
10312 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10313 put_task_struct(current); /* cannot be last */
10315 clone_ctx = unclone_ctx(child_ctx);
10316 raw_spin_unlock_irq(&child_ctx->lock);
10318 if (clone_ctx)
10319 put_ctx(clone_ctx);
10322 * Report the task dead after unscheduling the events so that we
10323 * won't get any samples after PERF_RECORD_EXIT. We can however still
10324 * get a few PERF_RECORD_READ events.
10326 perf_event_task(child, child_ctx, 0);
10328 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10329 perf_event_exit_event(child_event, child_ctx, child);
10331 mutex_unlock(&child_ctx->mutex);
10333 put_ctx(child_ctx);
10337 * When a child task exits, feed back event values to parent events.
10339 * Can be called with cred_guard_mutex held when called from
10340 * install_exec_creds().
10342 void perf_event_exit_task(struct task_struct *child)
10344 struct perf_event *event, *tmp;
10345 int ctxn;
10347 mutex_lock(&child->perf_event_mutex);
10348 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10349 owner_entry) {
10350 list_del_init(&event->owner_entry);
10353 * Ensure the list deletion is visible before we clear
10354 * the owner, closes a race against perf_release() where
10355 * we need to serialize on the owner->perf_event_mutex.
10357 smp_store_release(&event->owner, NULL);
10359 mutex_unlock(&child->perf_event_mutex);
10361 for_each_task_context_nr(ctxn)
10362 perf_event_exit_task_context(child, ctxn);
10365 * The perf_event_exit_task_context calls perf_event_task
10366 * with child's task_ctx, which generates EXIT events for
10367 * child contexts and sets child->perf_event_ctxp[] to NULL.
10368 * At this point we need to send EXIT events to cpu contexts.
10370 perf_event_task(child, NULL, 0);
10373 static void perf_free_event(struct perf_event *event,
10374 struct perf_event_context *ctx)
10376 struct perf_event *parent = event->parent;
10378 if (WARN_ON_ONCE(!parent))
10379 return;
10381 mutex_lock(&parent->child_mutex);
10382 list_del_init(&event->child_list);
10383 mutex_unlock(&parent->child_mutex);
10385 put_event(parent);
10387 raw_spin_lock_irq(&ctx->lock);
10388 perf_group_detach(event);
10389 list_del_event(event, ctx);
10390 raw_spin_unlock_irq(&ctx->lock);
10391 free_event(event);
10395 * Free an unexposed, unused context as created by inheritance by
10396 * perf_event_init_task below, used by fork() in case of fail.
10398 * Not all locks are strictly required, but take them anyway to be nice and
10399 * help out with the lockdep assertions.
10401 void perf_event_free_task(struct task_struct *task)
10403 struct perf_event_context *ctx;
10404 struct perf_event *event, *tmp;
10405 int ctxn;
10407 for_each_task_context_nr(ctxn) {
10408 ctx = task->perf_event_ctxp[ctxn];
10409 if (!ctx)
10410 continue;
10412 mutex_lock(&ctx->mutex);
10413 raw_spin_lock_irq(&ctx->lock);
10415 * Destroy the task <-> ctx relation and mark the context dead.
10417 * This is important because even though the task hasn't been
10418 * exposed yet the context has been (through child_list).
10420 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10421 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10422 put_task_struct(task); /* cannot be last */
10423 raw_spin_unlock_irq(&ctx->lock);
10424 again:
10425 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10426 group_entry)
10427 perf_free_event(event, ctx);
10429 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10430 group_entry)
10431 perf_free_event(event, ctx);
10433 if (!list_empty(&ctx->pinned_groups) ||
10434 !list_empty(&ctx->flexible_groups))
10435 goto again;
10437 mutex_unlock(&ctx->mutex);
10439 put_ctx(ctx);
10443 void perf_event_delayed_put(struct task_struct *task)
10445 int ctxn;
10447 for_each_task_context_nr(ctxn)
10448 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10451 struct file *perf_event_get(unsigned int fd)
10453 struct file *file;
10455 file = fget_raw(fd);
10456 if (!file)
10457 return ERR_PTR(-EBADF);
10459 if (file->f_op != &perf_fops) {
10460 fput(file);
10461 return ERR_PTR(-EBADF);
10464 return file;
10467 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10469 if (!event)
10470 return ERR_PTR(-EINVAL);
10472 return &event->attr;
10476 * inherit a event from parent task to child task:
10478 static struct perf_event *
10479 inherit_event(struct perf_event *parent_event,
10480 struct task_struct *parent,
10481 struct perf_event_context *parent_ctx,
10482 struct task_struct *child,
10483 struct perf_event *group_leader,
10484 struct perf_event_context *child_ctx)
10486 enum perf_event_active_state parent_state = parent_event->state;
10487 struct perf_event *child_event;
10488 unsigned long flags;
10491 * Instead of creating recursive hierarchies of events,
10492 * we link inherited events back to the original parent,
10493 * which has a filp for sure, which we use as the reference
10494 * count:
10496 if (parent_event->parent)
10497 parent_event = parent_event->parent;
10499 child_event = perf_event_alloc(&parent_event->attr,
10500 parent_event->cpu,
10501 child,
10502 group_leader, parent_event,
10503 NULL, NULL, -1);
10504 if (IS_ERR(child_event))
10505 return child_event;
10508 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10509 * must be under the same lock in order to serialize against
10510 * perf_event_release_kernel(), such that either we must observe
10511 * is_orphaned_event() or they will observe us on the child_list.
10513 mutex_lock(&parent_event->child_mutex);
10514 if (is_orphaned_event(parent_event) ||
10515 !atomic_long_inc_not_zero(&parent_event->refcount)) {
10516 mutex_unlock(&parent_event->child_mutex);
10517 free_event(child_event);
10518 return NULL;
10521 get_ctx(child_ctx);
10524 * Make the child state follow the state of the parent event,
10525 * not its attr.disabled bit. We hold the parent's mutex,
10526 * so we won't race with perf_event_{en, dis}able_family.
10528 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10529 child_event->state = PERF_EVENT_STATE_INACTIVE;
10530 else
10531 child_event->state = PERF_EVENT_STATE_OFF;
10533 if (parent_event->attr.freq) {
10534 u64 sample_period = parent_event->hw.sample_period;
10535 struct hw_perf_event *hwc = &child_event->hw;
10537 hwc->sample_period = sample_period;
10538 hwc->last_period = sample_period;
10540 local64_set(&hwc->period_left, sample_period);
10543 child_event->ctx = child_ctx;
10544 child_event->overflow_handler = parent_event->overflow_handler;
10545 child_event->overflow_handler_context
10546 = parent_event->overflow_handler_context;
10549 * Precalculate sample_data sizes
10551 perf_event__header_size(child_event);
10552 perf_event__id_header_size(child_event);
10555 * Link it up in the child's context:
10557 raw_spin_lock_irqsave(&child_ctx->lock, flags);
10558 add_event_to_ctx(child_event, child_ctx);
10559 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10562 * Link this into the parent event's child list
10564 list_add_tail(&child_event->child_list, &parent_event->child_list);
10565 mutex_unlock(&parent_event->child_mutex);
10567 return child_event;
10570 static int inherit_group(struct perf_event *parent_event,
10571 struct task_struct *parent,
10572 struct perf_event_context *parent_ctx,
10573 struct task_struct *child,
10574 struct perf_event_context *child_ctx)
10576 struct perf_event *leader;
10577 struct perf_event *sub;
10578 struct perf_event *child_ctr;
10580 leader = inherit_event(parent_event, parent, parent_ctx,
10581 child, NULL, child_ctx);
10582 if (IS_ERR(leader))
10583 return PTR_ERR(leader);
10584 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10585 child_ctr = inherit_event(sub, parent, parent_ctx,
10586 child, leader, child_ctx);
10587 if (IS_ERR(child_ctr))
10588 return PTR_ERR(child_ctr);
10590 return 0;
10593 static int
10594 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10595 struct perf_event_context *parent_ctx,
10596 struct task_struct *child, int ctxn,
10597 int *inherited_all)
10599 int ret;
10600 struct perf_event_context *child_ctx;
10602 if (!event->attr.inherit) {
10603 *inherited_all = 0;
10604 return 0;
10607 child_ctx = child->perf_event_ctxp[ctxn];
10608 if (!child_ctx) {
10610 * This is executed from the parent task context, so
10611 * inherit events that have been marked for cloning.
10612 * First allocate and initialize a context for the
10613 * child.
10616 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10617 if (!child_ctx)
10618 return -ENOMEM;
10620 child->perf_event_ctxp[ctxn] = child_ctx;
10623 ret = inherit_group(event, parent, parent_ctx,
10624 child, child_ctx);
10626 if (ret)
10627 *inherited_all = 0;
10629 return ret;
10633 * Initialize the perf_event context in task_struct
10635 static int perf_event_init_context(struct task_struct *child, int ctxn)
10637 struct perf_event_context *child_ctx, *parent_ctx;
10638 struct perf_event_context *cloned_ctx;
10639 struct perf_event *event;
10640 struct task_struct *parent = current;
10641 int inherited_all = 1;
10642 unsigned long flags;
10643 int ret = 0;
10645 if (likely(!parent->perf_event_ctxp[ctxn]))
10646 return 0;
10649 * If the parent's context is a clone, pin it so it won't get
10650 * swapped under us.
10652 parent_ctx = perf_pin_task_context(parent, ctxn);
10653 if (!parent_ctx)
10654 return 0;
10657 * No need to check if parent_ctx != NULL here; since we saw
10658 * it non-NULL earlier, the only reason for it to become NULL
10659 * is if we exit, and since we're currently in the middle of
10660 * a fork we can't be exiting at the same time.
10664 * Lock the parent list. No need to lock the child - not PID
10665 * hashed yet and not running, so nobody can access it.
10667 mutex_lock(&parent_ctx->mutex);
10670 * We dont have to disable NMIs - we are only looking at
10671 * the list, not manipulating it:
10673 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10674 ret = inherit_task_group(event, parent, parent_ctx,
10675 child, ctxn, &inherited_all);
10676 if (ret)
10677 goto out_unlock;
10681 * We can't hold ctx->lock when iterating the ->flexible_group list due
10682 * to allocations, but we need to prevent rotation because
10683 * rotate_ctx() will change the list from interrupt context.
10685 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10686 parent_ctx->rotate_disable = 1;
10687 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10689 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10690 ret = inherit_task_group(event, parent, parent_ctx,
10691 child, ctxn, &inherited_all);
10692 if (ret)
10693 goto out_unlock;
10696 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10697 parent_ctx->rotate_disable = 0;
10699 child_ctx = child->perf_event_ctxp[ctxn];
10701 if (child_ctx && inherited_all) {
10703 * Mark the child context as a clone of the parent
10704 * context, or of whatever the parent is a clone of.
10706 * Note that if the parent is a clone, the holding of
10707 * parent_ctx->lock avoids it from being uncloned.
10709 cloned_ctx = parent_ctx->parent_ctx;
10710 if (cloned_ctx) {
10711 child_ctx->parent_ctx = cloned_ctx;
10712 child_ctx->parent_gen = parent_ctx->parent_gen;
10713 } else {
10714 child_ctx->parent_ctx = parent_ctx;
10715 child_ctx->parent_gen = parent_ctx->generation;
10717 get_ctx(child_ctx->parent_ctx);
10720 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10721 out_unlock:
10722 mutex_unlock(&parent_ctx->mutex);
10724 perf_unpin_context(parent_ctx);
10725 put_ctx(parent_ctx);
10727 return ret;
10731 * Initialize the perf_event context in task_struct
10733 int perf_event_init_task(struct task_struct *child)
10735 int ctxn, ret;
10737 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10738 mutex_init(&child->perf_event_mutex);
10739 INIT_LIST_HEAD(&child->perf_event_list);
10741 for_each_task_context_nr(ctxn) {
10742 ret = perf_event_init_context(child, ctxn);
10743 if (ret) {
10744 perf_event_free_task(child);
10745 return ret;
10749 return 0;
10752 static void __init perf_event_init_all_cpus(void)
10754 struct swevent_htable *swhash;
10755 int cpu;
10757 for_each_possible_cpu(cpu) {
10758 swhash = &per_cpu(swevent_htable, cpu);
10759 mutex_init(&swhash->hlist_mutex);
10760 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10762 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10763 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10765 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10769 int perf_event_init_cpu(unsigned int cpu)
10771 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10773 mutex_lock(&swhash->hlist_mutex);
10774 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10775 struct swevent_hlist *hlist;
10777 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10778 WARN_ON(!hlist);
10779 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10781 mutex_unlock(&swhash->hlist_mutex);
10782 return 0;
10785 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10786 static void __perf_event_exit_context(void *__info)
10788 struct perf_event_context *ctx = __info;
10789 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10790 struct perf_event *event;
10792 raw_spin_lock(&ctx->lock);
10793 list_for_each_entry(event, &ctx->event_list, event_entry)
10794 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10795 raw_spin_unlock(&ctx->lock);
10798 static void perf_event_exit_cpu_context(int cpu)
10800 struct perf_event_context *ctx;
10801 struct pmu *pmu;
10802 int idx;
10804 idx = srcu_read_lock(&pmus_srcu);
10805 list_for_each_entry_rcu(pmu, &pmus, entry) {
10806 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10808 mutex_lock(&ctx->mutex);
10809 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10810 mutex_unlock(&ctx->mutex);
10812 srcu_read_unlock(&pmus_srcu, idx);
10814 #else
10816 static void perf_event_exit_cpu_context(int cpu) { }
10818 #endif
10820 int perf_event_exit_cpu(unsigned int cpu)
10822 perf_event_exit_cpu_context(cpu);
10823 return 0;
10826 static int
10827 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10829 int cpu;
10831 for_each_online_cpu(cpu)
10832 perf_event_exit_cpu(cpu);
10834 return NOTIFY_OK;
10838 * Run the perf reboot notifier at the very last possible moment so that
10839 * the generic watchdog code runs as long as possible.
10841 static struct notifier_block perf_reboot_notifier = {
10842 .notifier_call = perf_reboot,
10843 .priority = INT_MIN,
10846 void __init perf_event_init(void)
10848 int ret;
10850 idr_init(&pmu_idr);
10852 perf_event_init_all_cpus();
10853 init_srcu_struct(&pmus_srcu);
10854 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10855 perf_pmu_register(&perf_cpu_clock, NULL, -1);
10856 perf_pmu_register(&perf_task_clock, NULL, -1);
10857 perf_tp_register();
10858 perf_event_init_cpu(smp_processor_id());
10859 register_reboot_notifier(&perf_reboot_notifier);
10861 ret = init_hw_breakpoint();
10862 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10865 * Build time assertion that we keep the data_head at the intended
10866 * location. IOW, validation we got the __reserved[] size right.
10868 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10869 != 1024);
10872 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10873 char *page)
10875 struct perf_pmu_events_attr *pmu_attr =
10876 container_of(attr, struct perf_pmu_events_attr, attr);
10878 if (pmu_attr->event_str)
10879 return sprintf(page, "%s\n", pmu_attr->event_str);
10881 return 0;
10883 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10885 static int __init perf_event_sysfs_init(void)
10887 struct pmu *pmu;
10888 int ret;
10890 mutex_lock(&pmus_lock);
10892 ret = bus_register(&pmu_bus);
10893 if (ret)
10894 goto unlock;
10896 list_for_each_entry(pmu, &pmus, entry) {
10897 if (!pmu->name || pmu->type < 0)
10898 continue;
10900 ret = pmu_dev_alloc(pmu);
10901 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10903 pmu_bus_running = 1;
10904 ret = 0;
10906 unlock:
10907 mutex_unlock(&pmus_lock);
10909 return ret;
10911 device_initcall(perf_event_sysfs_init);
10913 #ifdef CONFIG_CGROUP_PERF
10914 static struct cgroup_subsys_state *
10915 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10917 struct perf_cgroup *jc;
10919 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10920 if (!jc)
10921 return ERR_PTR(-ENOMEM);
10923 jc->info = alloc_percpu(struct perf_cgroup_info);
10924 if (!jc->info) {
10925 kfree(jc);
10926 return ERR_PTR(-ENOMEM);
10929 return &jc->css;
10932 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10934 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10936 free_percpu(jc->info);
10937 kfree(jc);
10940 static int __perf_cgroup_move(void *info)
10942 struct task_struct *task = info;
10943 rcu_read_lock();
10944 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10945 rcu_read_unlock();
10946 return 0;
10949 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10951 struct task_struct *task;
10952 struct cgroup_subsys_state *css;
10954 cgroup_taskset_for_each(task, css, tset)
10955 task_function_call(task, __perf_cgroup_move, task);
10958 struct cgroup_subsys perf_event_cgrp_subsys = {
10959 .css_alloc = perf_cgroup_css_alloc,
10960 .css_free = perf_cgroup_css_free,
10961 .attach = perf_cgroup_attach,
10963 #endif /* CONFIG_CGROUP_PERF */