2 * Performance events ring-buffer code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/perf_event.h>
13 #include <linux/vmalloc.h>
14 #include <linux/slab.h>
15 #include <linux/circ_buf.h>
16 #include <linux/poll.h>
17 #include <linux/nospec.h>
21 static void perf_output_wakeup(struct perf_output_handle
*handle
)
23 atomic_set(&handle
->rb
->poll
, POLLIN
);
25 handle
->event
->pending_wakeup
= 1;
26 irq_work_queue(&handle
->event
->pending
);
30 * We need to ensure a later event_id doesn't publish a head when a former
31 * event isn't done writing. However since we need to deal with NMIs we
32 * cannot fully serialize things.
34 * We only publish the head (and generate a wakeup) when the outer-most
37 static void perf_output_get_handle(struct perf_output_handle
*handle
)
39 struct ring_buffer
*rb
= handle
->rb
;
43 handle
->wakeup
= local_read(&rb
->wakeup
);
46 static void perf_output_put_handle(struct perf_output_handle
*handle
)
48 struct ring_buffer
*rb
= handle
->rb
;
52 head
= local_read(&rb
->head
);
55 * IRQ/NMI can happen here, which means we can miss a head update.
58 if (!local_dec_and_test(&rb
->nest
))
62 * Since the mmap() consumer (userspace) can run on a different CPU:
66 * if (LOAD ->data_tail) { LOAD ->data_head
68 * STORE $data LOAD $data
69 * smp_wmb() (B) smp_mb() (D)
70 * STORE ->data_head STORE ->data_tail
73 * Where A pairs with D, and B pairs with C.
75 * In our case (A) is a control dependency that separates the load of
76 * the ->data_tail and the stores of $data. In case ->data_tail
77 * indicates there is no room in the buffer to store $data we do not.
79 * D needs to be a full barrier since it separates the data READ
80 * from the tail WRITE.
82 * For B a WMB is sufficient since it separates two WRITEs, and for C
83 * an RMB is sufficient since it separates two READs.
85 * See perf_output_begin().
87 smp_wmb(); /* B, matches C */
88 rb
->user_page
->data_head
= head
;
91 * Now check if we missed an update -- rely on previous implied
92 * compiler barriers to force a re-read.
94 if (unlikely(head
!= local_read(&rb
->head
))) {
99 if (handle
->wakeup
!= local_read(&rb
->wakeup
))
100 perf_output_wakeup(handle
);
106 static bool __always_inline
107 ring_buffer_has_space(unsigned long head
, unsigned long tail
,
108 unsigned long data_size
, unsigned int size
,
112 return CIRC_SPACE(head
, tail
, data_size
) >= size
;
114 return CIRC_SPACE(tail
, head
, data_size
) >= size
;
117 static int __always_inline
118 __perf_output_begin(struct perf_output_handle
*handle
,
119 struct perf_event
*event
, unsigned int size
,
122 struct ring_buffer
*rb
;
123 unsigned long tail
, offset
, head
;
124 int have_lost
, page_shift
;
126 struct perf_event_header header
;
133 * For inherited events we send all the output towards the parent.
136 event
= event
->parent
;
138 rb
= rcu_dereference(event
->rb
);
142 if (unlikely(rb
->paused
)) {
144 local_inc(&rb
->lost
);
149 handle
->event
= event
;
151 have_lost
= local_read(&rb
->lost
);
152 if (unlikely(have_lost
)) {
153 size
+= sizeof(lost_event
);
154 if (event
->attr
.sample_id_all
)
155 size
+= event
->id_header_size
;
158 perf_output_get_handle(handle
);
161 tail
= READ_ONCE(rb
->user_page
->data_tail
);
162 offset
= head
= local_read(&rb
->head
);
163 if (!rb
->overwrite
) {
164 if (unlikely(!ring_buffer_has_space(head
, tail
,
171 * The above forms a control dependency barrier separating the
172 * @tail load above from the data stores below. Since the @tail
173 * load is required to compute the branch to fail below.
175 * A, matches D; the full memory barrier userspace SHOULD issue
176 * after reading the data and before storing the new tail
179 * See perf_output_put_handle().
186 } while (local_cmpxchg(&rb
->head
, offset
, head
) != offset
);
194 * We rely on the implied barrier() by local_cmpxchg() to ensure
195 * none of the data stores below can be lifted up by the compiler.
198 if (unlikely(head
- local_read(&rb
->wakeup
) > rb
->watermark
))
199 local_add(rb
->watermark
, &rb
->wakeup
);
201 page_shift
= PAGE_SHIFT
+ page_order(rb
);
203 handle
->page
= (offset
>> page_shift
) & (rb
->nr_pages
- 1);
204 offset
&= (1UL << page_shift
) - 1;
205 handle
->addr
= rb
->data_pages
[handle
->page
] + offset
;
206 handle
->size
= (1UL << page_shift
) - offset
;
208 if (unlikely(have_lost
)) {
209 struct perf_sample_data sample_data
;
211 lost_event
.header
.size
= sizeof(lost_event
);
212 lost_event
.header
.type
= PERF_RECORD_LOST
;
213 lost_event
.header
.misc
= 0;
214 lost_event
.id
= event
->id
;
215 lost_event
.lost
= local_xchg(&rb
->lost
, 0);
217 perf_event_header__init_id(&lost_event
.header
,
218 &sample_data
, event
);
219 perf_output_put(handle
, lost_event
);
220 perf_event__output_id_sample(event
, handle
, &sample_data
);
226 local_inc(&rb
->lost
);
227 perf_output_put_handle(handle
);
234 int perf_output_begin_forward(struct perf_output_handle
*handle
,
235 struct perf_event
*event
, unsigned int size
)
237 return __perf_output_begin(handle
, event
, size
, false);
240 int perf_output_begin_backward(struct perf_output_handle
*handle
,
241 struct perf_event
*event
, unsigned int size
)
243 return __perf_output_begin(handle
, event
, size
, true);
246 int perf_output_begin(struct perf_output_handle
*handle
,
247 struct perf_event
*event
, unsigned int size
)
250 return __perf_output_begin(handle
, event
, size
,
251 unlikely(is_write_backward(event
)));
254 unsigned int perf_output_copy(struct perf_output_handle
*handle
,
255 const void *buf
, unsigned int len
)
257 return __output_copy(handle
, buf
, len
);
260 unsigned int perf_output_skip(struct perf_output_handle
*handle
,
263 return __output_skip(handle
, NULL
, len
);
266 void perf_output_end(struct perf_output_handle
*handle
)
268 perf_output_put_handle(handle
);
273 ring_buffer_init(struct ring_buffer
*rb
, long watermark
, int flags
)
275 long max_size
= perf_data_size(rb
);
278 rb
->watermark
= min(max_size
, watermark
);
281 rb
->watermark
= max_size
/ 2;
283 if (flags
& RING_BUFFER_WRITABLE
)
288 atomic_set(&rb
->refcount
, 1);
290 INIT_LIST_HEAD(&rb
->event_list
);
291 spin_lock_init(&rb
->event_lock
);
294 * perf_output_begin() only checks rb->paused, therefore
295 * rb->paused must be true if we have no pages for output.
302 * This is called before hardware starts writing to the AUX area to
303 * obtain an output handle and make sure there's room in the buffer.
304 * When the capture completes, call perf_aux_output_end() to commit
305 * the recorded data to the buffer.
307 * The ordering is similar to that of perf_output_{begin,end}, with
308 * the exception of (B), which should be taken care of by the pmu
309 * driver, since ordering rules will differ depending on hardware.
311 * Call this from pmu::start(); see the comment in perf_aux_output_end()
312 * about its use in pmu callbacks. Both can also be called from the PMI
315 void *perf_aux_output_begin(struct perf_output_handle
*handle
,
316 struct perf_event
*event
)
318 struct perf_event
*output_event
= event
;
319 unsigned long aux_head
, aux_tail
;
320 struct ring_buffer
*rb
;
322 if (output_event
->parent
)
323 output_event
= output_event
->parent
;
326 * Since this will typically be open across pmu::add/pmu::del, we
327 * grab ring_buffer's refcount instead of holding rcu read lock
328 * to make sure it doesn't disappear under us.
330 rb
= ring_buffer_get(output_event
);
338 * If aux_mmap_count is zero, the aux buffer is in perf_mmap_close(),
339 * about to get freed, so we leave immediately.
341 * Checking rb::aux_mmap_count and rb::refcount has to be done in
342 * the same order, see perf_mmap_close. Otherwise we end up freeing
343 * aux pages in this path, which is a bug, because in_atomic().
345 if (!atomic_read(&rb
->aux_mmap_count
))
348 if (!atomic_inc_not_zero(&rb
->aux_refcount
))
352 * Nesting is not supported for AUX area, make sure nested
353 * writers are caught early
355 if (WARN_ON_ONCE(local_xchg(&rb
->aux_nest
, 1)))
358 aux_head
= local_read(&rb
->aux_head
);
361 handle
->event
= event
;
362 handle
->head
= aux_head
;
366 * In overwrite mode, AUX data stores do not depend on aux_tail,
367 * therefore (A) control dependency barrier does not exist. The
368 * (B) <-> (C) ordering is still observed by the pmu driver.
370 if (!rb
->aux_overwrite
) {
371 aux_tail
= ACCESS_ONCE(rb
->user_page
->aux_tail
);
372 handle
->wakeup
= local_read(&rb
->aux_wakeup
) + rb
->aux_watermark
;
373 if (aux_head
- aux_tail
< perf_aux_size(rb
))
374 handle
->size
= CIRC_SPACE(aux_head
, aux_tail
, perf_aux_size(rb
));
377 * handle->size computation depends on aux_tail load; this forms a
378 * control dependency barrier separating aux_tail load from aux data
379 * store that will be enabled on successful return
381 if (!handle
->size
) { /* A, matches D */
382 event
->pending_disable
= 1;
383 perf_output_wakeup(handle
);
384 local_set(&rb
->aux_nest
, 0);
389 return handle
->rb
->aux_priv
;
397 handle
->event
= NULL
;
403 * Commit the data written by hardware into the ring buffer by adjusting
404 * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the
405 * pmu driver's responsibility to observe ordering rules of the hardware,
406 * so that all the data is externally visible before this is called.
408 * Note: this has to be called from pmu::stop() callback, as the assumption
409 * of the AUX buffer management code is that after pmu::stop(), the AUX
410 * transaction must be stopped and therefore drop the AUX reference count.
412 void perf_aux_output_end(struct perf_output_handle
*handle
, unsigned long size
,
415 struct ring_buffer
*rb
= handle
->rb
;
416 bool wakeup
= truncated
;
417 unsigned long aux_head
;
421 flags
|= PERF_AUX_FLAG_TRUNCATED
;
423 /* in overwrite mode, driver provides aux_head via handle */
424 if (rb
->aux_overwrite
) {
425 flags
|= PERF_AUX_FLAG_OVERWRITE
;
427 aux_head
= handle
->head
;
428 local_set(&rb
->aux_head
, aux_head
);
430 aux_head
= local_read(&rb
->aux_head
);
431 local_add(size
, &rb
->aux_head
);
436 * Only send RECORD_AUX if we have something useful to communicate
439 perf_event_aux_event(handle
->event
, aux_head
, size
, flags
);
442 aux_head
= rb
->user_page
->aux_head
= local_read(&rb
->aux_head
);
444 if (aux_head
- local_read(&rb
->aux_wakeup
) >= rb
->aux_watermark
) {
446 local_add(rb
->aux_watermark
, &rb
->aux_wakeup
);
451 handle
->event
->pending_disable
= 1;
452 perf_output_wakeup(handle
);
455 handle
->event
= NULL
;
457 local_set(&rb
->aux_nest
, 0);
464 * Skip over a given number of bytes in the AUX buffer, due to, for example,
465 * hardware's alignment constraints.
467 int perf_aux_output_skip(struct perf_output_handle
*handle
, unsigned long size
)
469 struct ring_buffer
*rb
= handle
->rb
;
470 unsigned long aux_head
;
472 if (size
> handle
->size
)
475 local_add(size
, &rb
->aux_head
);
477 aux_head
= rb
->user_page
->aux_head
= local_read(&rb
->aux_head
);
478 if (aux_head
- local_read(&rb
->aux_wakeup
) >= rb
->aux_watermark
) {
479 perf_output_wakeup(handle
);
480 local_add(rb
->aux_watermark
, &rb
->aux_wakeup
);
481 handle
->wakeup
= local_read(&rb
->aux_wakeup
) +
485 handle
->head
= aux_head
;
486 handle
->size
-= size
;
491 void *perf_get_aux(struct perf_output_handle
*handle
)
493 /* this is only valid between perf_aux_output_begin and *_end */
497 return handle
->rb
->aux_priv
;
500 #define PERF_AUX_GFP (GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY)
502 static struct page
*rb_alloc_aux_page(int node
, int order
)
506 if (order
> MAX_ORDER
)
510 page
= alloc_pages_node(node
, PERF_AUX_GFP
, order
);
511 } while (!page
&& order
--);
515 * Communicate the allocation size to the driver:
516 * if we managed to secure a high-order allocation,
517 * set its first page's private to this order;
518 * !PagePrivate(page) means it's just a normal page.
520 split_page(page
, order
);
521 SetPagePrivate(page
);
522 set_page_private(page
, order
);
528 static void rb_free_aux_page(struct ring_buffer
*rb
, int idx
)
530 struct page
*page
= virt_to_page(rb
->aux_pages
[idx
]);
532 ClearPagePrivate(page
);
533 page
->mapping
= NULL
;
537 static void __rb_free_aux(struct ring_buffer
*rb
)
542 * Should never happen, the last reference should be dropped from
543 * perf_mmap_close() path, which first stops aux transactions (which
544 * in turn are the atomic holders of aux_refcount) and then does the
545 * last rb_free_aux().
547 WARN_ON_ONCE(in_atomic());
550 rb
->free_aux(rb
->aux_priv
);
555 if (rb
->aux_nr_pages
) {
556 for (pg
= 0; pg
< rb
->aux_nr_pages
; pg
++)
557 rb_free_aux_page(rb
, pg
);
559 kfree(rb
->aux_pages
);
560 rb
->aux_nr_pages
= 0;
564 int rb_alloc_aux(struct ring_buffer
*rb
, struct perf_event
*event
,
565 pgoff_t pgoff
, int nr_pages
, long watermark
, int flags
)
567 bool overwrite
= !(flags
& RING_BUFFER_WRITABLE
);
568 int node
= (event
->cpu
== -1) ? -1 : cpu_to_node(event
->cpu
);
569 int ret
= -ENOMEM
, max_order
= 0;
574 if (event
->pmu
->capabilities
& PERF_PMU_CAP_AUX_NO_SG
) {
576 * We need to start with the max_order that fits in nr_pages,
577 * not the other way around, hence ilog2() and not get_order.
579 max_order
= ilog2(nr_pages
);
582 * PMU requests more than one contiguous chunks of memory
583 * for SW double buffering
585 if ((event
->pmu
->capabilities
& PERF_PMU_CAP_AUX_SW_DOUBLEBUF
) &&
594 rb
->aux_pages
= kzalloc_node(nr_pages
* sizeof(void *), GFP_KERNEL
, node
);
598 rb
->free_aux
= event
->pmu
->free_aux
;
599 for (rb
->aux_nr_pages
= 0; rb
->aux_nr_pages
< nr_pages
;) {
603 order
= min(max_order
, ilog2(nr_pages
- rb
->aux_nr_pages
));
604 page
= rb_alloc_aux_page(node
, order
);
608 for (last
= rb
->aux_nr_pages
+ (1 << page_private(page
));
609 last
> rb
->aux_nr_pages
; rb
->aux_nr_pages
++)
610 rb
->aux_pages
[rb
->aux_nr_pages
] = page_address(page
++);
614 * In overwrite mode, PMUs that don't support SG may not handle more
615 * than one contiguous allocation, since they rely on PMI to do double
616 * buffering. In this case, the entire buffer has to be one contiguous
619 if ((event
->pmu
->capabilities
& PERF_PMU_CAP_AUX_NO_SG
) &&
621 struct page
*page
= virt_to_page(rb
->aux_pages
[0]);
623 if (page_private(page
) != max_order
)
627 rb
->aux_priv
= event
->pmu
->setup_aux(event
->cpu
, rb
->aux_pages
, nr_pages
,
635 * aux_pages (and pmu driver's private data, aux_priv) will be
636 * referenced in both producer's and consumer's contexts, thus
637 * we keep a refcount here to make sure either of the two can
638 * reference them safely.
640 atomic_set(&rb
->aux_refcount
, 1);
642 rb
->aux_overwrite
= overwrite
;
643 rb
->aux_watermark
= watermark
;
645 if (!rb
->aux_watermark
&& !rb
->aux_overwrite
)
646 rb
->aux_watermark
= nr_pages
<< (PAGE_SHIFT
- 1);
650 rb
->aux_pgoff
= pgoff
;
657 void rb_free_aux(struct ring_buffer
*rb
)
659 if (atomic_dec_and_test(&rb
->aux_refcount
))
663 #ifndef CONFIG_PERF_USE_VMALLOC
666 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
670 __perf_mmap_to_page(struct ring_buffer
*rb
, unsigned long pgoff
)
672 if (pgoff
> rb
->nr_pages
)
676 return virt_to_page(rb
->user_page
);
678 return virt_to_page(rb
->data_pages
[pgoff
- 1]);
681 static void *perf_mmap_alloc_page(int cpu
)
686 node
= (cpu
== -1) ? cpu
: cpu_to_node(cpu
);
687 page
= alloc_pages_node(node
, GFP_KERNEL
| __GFP_ZERO
, 0);
691 return page_address(page
);
694 struct ring_buffer
*rb_alloc(int nr_pages
, long watermark
, int cpu
, int flags
)
696 struct ring_buffer
*rb
;
700 size
= sizeof(struct ring_buffer
);
701 size
+= nr_pages
* sizeof(void *);
703 rb
= kzalloc(size
, GFP_KERNEL
);
707 rb
->user_page
= perf_mmap_alloc_page(cpu
);
711 for (i
= 0; i
< nr_pages
; i
++) {
712 rb
->data_pages
[i
] = perf_mmap_alloc_page(cpu
);
713 if (!rb
->data_pages
[i
])
714 goto fail_data_pages
;
717 rb
->nr_pages
= nr_pages
;
719 ring_buffer_init(rb
, watermark
, flags
);
724 for (i
--; i
>= 0; i
--)
725 free_page((unsigned long)rb
->data_pages
[i
]);
727 free_page((unsigned long)rb
->user_page
);
736 static void perf_mmap_free_page(unsigned long addr
)
738 struct page
*page
= virt_to_page((void *)addr
);
740 page
->mapping
= NULL
;
744 void rb_free(struct ring_buffer
*rb
)
748 perf_mmap_free_page((unsigned long)rb
->user_page
);
749 for (i
= 0; i
< rb
->nr_pages
; i
++)
750 perf_mmap_free_page((unsigned long)rb
->data_pages
[i
]);
755 static int data_page_nr(struct ring_buffer
*rb
)
757 return rb
->nr_pages
<< page_order(rb
);
761 __perf_mmap_to_page(struct ring_buffer
*rb
, unsigned long pgoff
)
763 /* The '>' counts in the user page. */
764 if (pgoff
> data_page_nr(rb
))
767 return vmalloc_to_page((void *)rb
->user_page
+ pgoff
* PAGE_SIZE
);
770 static void perf_mmap_unmark_page(void *addr
)
772 struct page
*page
= vmalloc_to_page(addr
);
774 page
->mapping
= NULL
;
777 static void rb_free_work(struct work_struct
*work
)
779 struct ring_buffer
*rb
;
783 rb
= container_of(work
, struct ring_buffer
, work
);
784 nr
= data_page_nr(rb
);
786 base
= rb
->user_page
;
787 /* The '<=' counts in the user page. */
788 for (i
= 0; i
<= nr
; i
++)
789 perf_mmap_unmark_page(base
+ (i
* PAGE_SIZE
));
795 void rb_free(struct ring_buffer
*rb
)
797 schedule_work(&rb
->work
);
800 struct ring_buffer
*rb_alloc(int nr_pages
, long watermark
, int cpu
, int flags
)
802 struct ring_buffer
*rb
;
806 size
= sizeof(struct ring_buffer
);
807 size
+= sizeof(void *);
809 rb
= kzalloc(size
, GFP_KERNEL
);
813 INIT_WORK(&rb
->work
, rb_free_work
);
815 all_buf
= vmalloc_user((nr_pages
+ 1) * PAGE_SIZE
);
819 rb
->user_page
= all_buf
;
820 rb
->data_pages
[0] = all_buf
+ PAGE_SIZE
;
823 rb
->page_order
= ilog2(nr_pages
);
826 ring_buffer_init(rb
, watermark
, flags
);
840 perf_mmap_to_page(struct ring_buffer
*rb
, unsigned long pgoff
)
842 if (rb
->aux_nr_pages
) {
843 /* above AUX space */
844 if (pgoff
> rb
->aux_pgoff
+ rb
->aux_nr_pages
)
848 if (pgoff
>= rb
->aux_pgoff
) {
849 int aux_pgoff
= array_index_nospec(pgoff
- rb
->aux_pgoff
, rb
->aux_nr_pages
);
850 return virt_to_page(rb
->aux_pages
[aux_pgoff
]);
854 return __perf_mmap_to_page(rb
, pgoff
);