2 * User-space Probes (UProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2008-2012
22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h> /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h> /* anon_vma_prepare */
32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
33 #include <linux/swap.h> /* try_to_free_swap */
34 #include <linux/ptrace.h> /* user_enable_single_step */
35 #include <linux/kdebug.h> /* notifier mechanism */
36 #include "../../mm/internal.h" /* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38 #include <linux/task_work.h>
39 #include <linux/shmem_fs.h>
41 #include <linux/uprobes.h>
43 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
44 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
46 static struct rb_root uprobes_tree
= RB_ROOT
;
48 * allows us to skip the uprobe_mmap if there are no uprobe events active
49 * at this time. Probably a fine grained per inode count is better?
51 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
53 static DEFINE_SPINLOCK(uprobes_treelock
); /* serialize rbtree access */
55 #define UPROBES_HASH_SZ 13
56 /* serialize uprobe->pending_list */
57 static struct mutex uprobes_mmap_mutex
[UPROBES_HASH_SZ
];
58 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
60 static struct percpu_rw_semaphore dup_mmap_sem
;
62 /* Have a copy of original instruction */
63 #define UPROBE_COPY_INSN 0
66 struct rb_node rb_node
; /* node in the rb tree */
68 struct rw_semaphore register_rwsem
;
69 struct rw_semaphore consumer_rwsem
;
70 struct list_head pending_list
;
71 struct uprobe_consumer
*consumers
;
72 struct inode
*inode
; /* Also hold a ref to inode */
77 * The generic code assumes that it has two members of unknown type
78 * owned by the arch-specific code:
80 * insn - copy_insn() saves the original instruction here for
81 * arch_uprobe_analyze_insn().
83 * ixol - potentially modified instruction to execute out of
84 * line, copied to xol_area by xol_get_insn_slot().
86 struct arch_uprobe arch
;
90 * Execute out of line area: anonymous executable mapping installed
91 * by the probed task to execute the copy of the original instruction
92 * mangled by set_swbp().
94 * On a breakpoint hit, thread contests for a slot. It frees the
95 * slot after singlestep. Currently a fixed number of slots are
99 wait_queue_head_t wq
; /* if all slots are busy */
100 atomic_t slot_count
; /* number of in-use slots */
101 unsigned long *bitmap
; /* 0 = free slot */
103 struct vm_special_mapping xol_mapping
;
104 struct page
*pages
[2];
106 * We keep the vma's vm_start rather than a pointer to the vma
107 * itself. The probed process or a naughty kernel module could make
108 * the vma go away, and we must handle that reasonably gracefully.
110 unsigned long vaddr
; /* Page(s) of instruction slots */
114 * valid_vma: Verify if the specified vma is an executable vma
115 * Relax restrictions while unregistering: vm_flags might have
116 * changed after breakpoint was inserted.
117 * - is_register: indicates if we are in register context.
118 * - Return 1 if the specified virtual address is in an
121 static bool valid_vma(struct vm_area_struct
*vma
, bool is_register
)
123 vm_flags_t flags
= VM_HUGETLB
| VM_MAYEXEC
| VM_MAYSHARE
;
128 return vma
->vm_file
&& (vma
->vm_flags
& flags
) == VM_MAYEXEC
;
131 static unsigned long offset_to_vaddr(struct vm_area_struct
*vma
, loff_t offset
)
133 return vma
->vm_start
+ offset
- ((loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
);
136 static loff_t
vaddr_to_offset(struct vm_area_struct
*vma
, unsigned long vaddr
)
138 return ((loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
) + (vaddr
- vma
->vm_start
);
142 * __replace_page - replace page in vma by new page.
143 * based on replace_page in mm/ksm.c
145 * @vma: vma that holds the pte pointing to page
146 * @addr: address the old @page is mapped at
147 * @page: the cowed page we are replacing by kpage
148 * @kpage: the modified page we replace page by
150 * Returns 0 on success, -EFAULT on failure.
152 static int __replace_page(struct vm_area_struct
*vma
, unsigned long addr
,
153 struct page
*old_page
, struct page
*new_page
)
155 struct mm_struct
*mm
= vma
->vm_mm
;
159 /* For mmu_notifiers */
160 const unsigned long mmun_start
= addr
;
161 const unsigned long mmun_end
= addr
+ PAGE_SIZE
;
162 struct mem_cgroup
*memcg
;
164 err
= mem_cgroup_try_charge(new_page
, vma
->vm_mm
, GFP_KERNEL
, &memcg
,
169 /* For try_to_free_swap() and munlock_vma_page() below */
172 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
174 ptep
= page_check_address(old_page
, mm
, addr
, &ptl
, 0);
176 mem_cgroup_cancel_charge(new_page
, memcg
, false);
181 page_add_new_anon_rmap(new_page
, vma
, addr
, false);
182 mem_cgroup_commit_charge(new_page
, memcg
, false, false);
183 lru_cache_add_active_or_unevictable(new_page
, vma
);
185 if (!PageAnon(old_page
)) {
186 dec_mm_counter(mm
, mm_counter_file(old_page
));
187 inc_mm_counter(mm
, MM_ANONPAGES
);
190 flush_cache_page(vma
, addr
, pte_pfn(*ptep
));
191 ptep_clear_flush_notify(vma
, addr
, ptep
);
192 set_pte_at_notify(mm
, addr
, ptep
, mk_pte(new_page
, vma
->vm_page_prot
));
194 page_remove_rmap(old_page
, false);
195 if (!page_mapped(old_page
))
196 try_to_free_swap(old_page
);
197 pte_unmap_unlock(ptep
, ptl
);
199 if (vma
->vm_flags
& VM_LOCKED
)
200 munlock_vma_page(old_page
);
205 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
206 unlock_page(old_page
);
211 * is_swbp_insn - check if instruction is breakpoint instruction.
212 * @insn: instruction to be checked.
213 * Default implementation of is_swbp_insn
214 * Returns true if @insn is a breakpoint instruction.
216 bool __weak
is_swbp_insn(uprobe_opcode_t
*insn
)
218 return *insn
== UPROBE_SWBP_INSN
;
222 * is_trap_insn - check if instruction is breakpoint instruction.
223 * @insn: instruction to be checked.
224 * Default implementation of is_trap_insn
225 * Returns true if @insn is a breakpoint instruction.
227 * This function is needed for the case where an architecture has multiple
228 * trap instructions (like powerpc).
230 bool __weak
is_trap_insn(uprobe_opcode_t
*insn
)
232 return is_swbp_insn(insn
);
235 static void copy_from_page(struct page
*page
, unsigned long vaddr
, void *dst
, int len
)
237 void *kaddr
= kmap_atomic(page
);
238 memcpy(dst
, kaddr
+ (vaddr
& ~PAGE_MASK
), len
);
239 kunmap_atomic(kaddr
);
242 static void copy_to_page(struct page
*page
, unsigned long vaddr
, const void *src
, int len
)
244 void *kaddr
= kmap_atomic(page
);
245 memcpy(kaddr
+ (vaddr
& ~PAGE_MASK
), src
, len
);
246 kunmap_atomic(kaddr
);
249 static int verify_opcode(struct page
*page
, unsigned long vaddr
, uprobe_opcode_t
*new_opcode
)
251 uprobe_opcode_t old_opcode
;
255 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
256 * We do not check if it is any other 'trap variant' which could
257 * be conditional trap instruction such as the one powerpc supports.
259 * The logic is that we do not care if the underlying instruction
260 * is a trap variant; uprobes always wins over any other (gdb)
263 copy_from_page(page
, vaddr
, &old_opcode
, UPROBE_SWBP_INSN_SIZE
);
264 is_swbp
= is_swbp_insn(&old_opcode
);
266 if (is_swbp_insn(new_opcode
)) {
267 if (is_swbp
) /* register: already installed? */
270 if (!is_swbp
) /* unregister: was it changed by us? */
279 * Expect the breakpoint instruction to be the smallest size instruction for
280 * the architecture. If an arch has variable length instruction and the
281 * breakpoint instruction is not of the smallest length instruction
282 * supported by that architecture then we need to modify is_trap_at_addr and
283 * uprobe_write_opcode accordingly. This would never be a problem for archs
284 * that have fixed length instructions.
286 * uprobe_write_opcode - write the opcode at a given virtual address.
287 * @mm: the probed process address space.
288 * @vaddr: the virtual address to store the opcode.
289 * @opcode: opcode to be written at @vaddr.
291 * Called with mm->mmap_sem held for write.
292 * Return 0 (success) or a negative errno.
294 int uprobe_write_opcode(struct mm_struct
*mm
, unsigned long vaddr
,
295 uprobe_opcode_t opcode
)
297 struct page
*old_page
, *new_page
;
298 struct vm_area_struct
*vma
;
302 /* Read the page with vaddr into memory */
303 ret
= get_user_pages_remote(NULL
, mm
, vaddr
, 1, FOLL_FORCE
, &old_page
,
308 ret
= verify_opcode(old_page
, vaddr
, &opcode
);
312 ret
= anon_vma_prepare(vma
);
317 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, vaddr
);
321 __SetPageUptodate(new_page
);
322 copy_highpage(new_page
, old_page
);
323 copy_to_page(new_page
, vaddr
, &opcode
, UPROBE_SWBP_INSN_SIZE
);
325 ret
= __replace_page(vma
, vaddr
, old_page
, new_page
);
330 if (unlikely(ret
== -EAGAIN
))
336 * set_swbp - store breakpoint at a given address.
337 * @auprobe: arch specific probepoint information.
338 * @mm: the probed process address space.
339 * @vaddr: the virtual address to insert the opcode.
341 * For mm @mm, store the breakpoint instruction at @vaddr.
342 * Return 0 (success) or a negative errno.
344 int __weak
set_swbp(struct arch_uprobe
*auprobe
, struct mm_struct
*mm
, unsigned long vaddr
)
346 return uprobe_write_opcode(mm
, vaddr
, UPROBE_SWBP_INSN
);
350 * set_orig_insn - Restore the original instruction.
351 * @mm: the probed process address space.
352 * @auprobe: arch specific probepoint information.
353 * @vaddr: the virtual address to insert the opcode.
355 * For mm @mm, restore the original opcode (opcode) at @vaddr.
356 * Return 0 (success) or a negative errno.
359 set_orig_insn(struct arch_uprobe
*auprobe
, struct mm_struct
*mm
, unsigned long vaddr
)
361 return uprobe_write_opcode(mm
, vaddr
, *(uprobe_opcode_t
*)&auprobe
->insn
);
364 static struct uprobe
*get_uprobe(struct uprobe
*uprobe
)
366 atomic_inc(&uprobe
->ref
);
370 static void put_uprobe(struct uprobe
*uprobe
)
372 if (atomic_dec_and_test(&uprobe
->ref
))
376 static int match_uprobe(struct uprobe
*l
, struct uprobe
*r
)
378 if (l
->inode
< r
->inode
)
381 if (l
->inode
> r
->inode
)
384 if (l
->offset
< r
->offset
)
387 if (l
->offset
> r
->offset
)
393 static struct uprobe
*__find_uprobe(struct inode
*inode
, loff_t offset
)
395 struct uprobe u
= { .inode
= inode
, .offset
= offset
};
396 struct rb_node
*n
= uprobes_tree
.rb_node
;
397 struct uprobe
*uprobe
;
401 uprobe
= rb_entry(n
, struct uprobe
, rb_node
);
402 match
= match_uprobe(&u
, uprobe
);
404 return get_uprobe(uprobe
);
415 * Find a uprobe corresponding to a given inode:offset
416 * Acquires uprobes_treelock
418 static struct uprobe
*find_uprobe(struct inode
*inode
, loff_t offset
)
420 struct uprobe
*uprobe
;
422 spin_lock(&uprobes_treelock
);
423 uprobe
= __find_uprobe(inode
, offset
);
424 spin_unlock(&uprobes_treelock
);
429 static struct uprobe
*__insert_uprobe(struct uprobe
*uprobe
)
431 struct rb_node
**p
= &uprobes_tree
.rb_node
;
432 struct rb_node
*parent
= NULL
;
438 u
= rb_entry(parent
, struct uprobe
, rb_node
);
439 match
= match_uprobe(uprobe
, u
);
441 return get_uprobe(u
);
444 p
= &parent
->rb_left
;
446 p
= &parent
->rb_right
;
451 rb_link_node(&uprobe
->rb_node
, parent
, p
);
452 rb_insert_color(&uprobe
->rb_node
, &uprobes_tree
);
453 /* get access + creation ref */
454 atomic_set(&uprobe
->ref
, 2);
460 * Acquire uprobes_treelock.
461 * Matching uprobe already exists in rbtree;
462 * increment (access refcount) and return the matching uprobe.
464 * No matching uprobe; insert the uprobe in rb_tree;
465 * get a double refcount (access + creation) and return NULL.
467 static struct uprobe
*insert_uprobe(struct uprobe
*uprobe
)
471 spin_lock(&uprobes_treelock
);
472 u
= __insert_uprobe(uprobe
);
473 spin_unlock(&uprobes_treelock
);
478 static struct uprobe
*alloc_uprobe(struct inode
*inode
, loff_t offset
)
480 struct uprobe
*uprobe
, *cur_uprobe
;
482 uprobe
= kzalloc(sizeof(struct uprobe
), GFP_KERNEL
);
486 uprobe
->inode
= igrab(inode
);
487 uprobe
->offset
= offset
;
488 init_rwsem(&uprobe
->register_rwsem
);
489 init_rwsem(&uprobe
->consumer_rwsem
);
491 /* add to uprobes_tree, sorted on inode:offset */
492 cur_uprobe
= insert_uprobe(uprobe
);
493 /* a uprobe exists for this inode:offset combination */
503 static void consumer_add(struct uprobe
*uprobe
, struct uprobe_consumer
*uc
)
505 down_write(&uprobe
->consumer_rwsem
);
506 uc
->next
= uprobe
->consumers
;
507 uprobe
->consumers
= uc
;
508 up_write(&uprobe
->consumer_rwsem
);
512 * For uprobe @uprobe, delete the consumer @uc.
513 * Return true if the @uc is deleted successfully
516 static bool consumer_del(struct uprobe
*uprobe
, struct uprobe_consumer
*uc
)
518 struct uprobe_consumer
**con
;
521 down_write(&uprobe
->consumer_rwsem
);
522 for (con
= &uprobe
->consumers
; *con
; con
= &(*con
)->next
) {
529 up_write(&uprobe
->consumer_rwsem
);
534 static int __copy_insn(struct address_space
*mapping
, struct file
*filp
,
535 void *insn
, int nbytes
, loff_t offset
)
539 * Ensure that the page that has the original instruction is populated
540 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
541 * see uprobe_register().
543 if (mapping
->a_ops
->readpage
)
544 page
= read_mapping_page(mapping
, offset
>> PAGE_SHIFT
, filp
);
546 page
= shmem_read_mapping_page(mapping
, offset
>> PAGE_SHIFT
);
548 return PTR_ERR(page
);
550 copy_from_page(page
, offset
, insn
, nbytes
);
556 static int copy_insn(struct uprobe
*uprobe
, struct file
*filp
)
558 struct address_space
*mapping
= uprobe
->inode
->i_mapping
;
559 loff_t offs
= uprobe
->offset
;
560 void *insn
= &uprobe
->arch
.insn
;
561 int size
= sizeof(uprobe
->arch
.insn
);
564 /* Copy only available bytes, -EIO if nothing was read */
566 if (offs
>= i_size_read(uprobe
->inode
))
569 len
= min_t(int, size
, PAGE_SIZE
- (offs
& ~PAGE_MASK
));
570 err
= __copy_insn(mapping
, filp
, insn
, len
, offs
);
582 static int prepare_uprobe(struct uprobe
*uprobe
, struct file
*file
,
583 struct mm_struct
*mm
, unsigned long vaddr
)
587 if (test_bit(UPROBE_COPY_INSN
, &uprobe
->flags
))
590 /* TODO: move this into _register, until then we abuse this sem. */
591 down_write(&uprobe
->consumer_rwsem
);
592 if (test_bit(UPROBE_COPY_INSN
, &uprobe
->flags
))
595 ret
= copy_insn(uprobe
, file
);
600 if (is_trap_insn((uprobe_opcode_t
*)&uprobe
->arch
.insn
))
603 ret
= arch_uprobe_analyze_insn(&uprobe
->arch
, mm
, vaddr
);
607 /* uprobe_write_opcode() assumes we don't cross page boundary */
608 BUG_ON((uprobe
->offset
& ~PAGE_MASK
) +
609 UPROBE_SWBP_INSN_SIZE
> PAGE_SIZE
);
611 smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
612 set_bit(UPROBE_COPY_INSN
, &uprobe
->flags
);
615 up_write(&uprobe
->consumer_rwsem
);
620 static inline bool consumer_filter(struct uprobe_consumer
*uc
,
621 enum uprobe_filter_ctx ctx
, struct mm_struct
*mm
)
623 return !uc
->filter
|| uc
->filter(uc
, ctx
, mm
);
626 static bool filter_chain(struct uprobe
*uprobe
,
627 enum uprobe_filter_ctx ctx
, struct mm_struct
*mm
)
629 struct uprobe_consumer
*uc
;
632 down_read(&uprobe
->consumer_rwsem
);
633 for (uc
= uprobe
->consumers
; uc
; uc
= uc
->next
) {
634 ret
= consumer_filter(uc
, ctx
, mm
);
638 up_read(&uprobe
->consumer_rwsem
);
644 install_breakpoint(struct uprobe
*uprobe
, struct mm_struct
*mm
,
645 struct vm_area_struct
*vma
, unsigned long vaddr
)
650 ret
= prepare_uprobe(uprobe
, vma
->vm_file
, mm
, vaddr
);
655 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
656 * the task can hit this breakpoint right after __replace_page().
658 first_uprobe
= !test_bit(MMF_HAS_UPROBES
, &mm
->flags
);
660 set_bit(MMF_HAS_UPROBES
, &mm
->flags
);
662 ret
= set_swbp(&uprobe
->arch
, mm
, vaddr
);
664 clear_bit(MMF_RECALC_UPROBES
, &mm
->flags
);
665 else if (first_uprobe
)
666 clear_bit(MMF_HAS_UPROBES
, &mm
->flags
);
672 remove_breakpoint(struct uprobe
*uprobe
, struct mm_struct
*mm
, unsigned long vaddr
)
674 set_bit(MMF_RECALC_UPROBES
, &mm
->flags
);
675 return set_orig_insn(&uprobe
->arch
, mm
, vaddr
);
678 static inline bool uprobe_is_active(struct uprobe
*uprobe
)
680 return !RB_EMPTY_NODE(&uprobe
->rb_node
);
683 * There could be threads that have already hit the breakpoint. They
684 * will recheck the current insn and restart if find_uprobe() fails.
685 * See find_active_uprobe().
687 static void delete_uprobe(struct uprobe
*uprobe
)
689 if (WARN_ON(!uprobe_is_active(uprobe
)))
692 spin_lock(&uprobes_treelock
);
693 rb_erase(&uprobe
->rb_node
, &uprobes_tree
);
694 spin_unlock(&uprobes_treelock
);
695 RB_CLEAR_NODE(&uprobe
->rb_node
); /* for uprobe_is_active() */
701 struct map_info
*next
;
702 struct mm_struct
*mm
;
706 static inline struct map_info
*free_map_info(struct map_info
*info
)
708 struct map_info
*next
= info
->next
;
713 static struct map_info
*
714 build_map_info(struct address_space
*mapping
, loff_t offset
, bool is_register
)
716 unsigned long pgoff
= offset
>> PAGE_SHIFT
;
717 struct vm_area_struct
*vma
;
718 struct map_info
*curr
= NULL
;
719 struct map_info
*prev
= NULL
;
720 struct map_info
*info
;
724 i_mmap_lock_read(mapping
);
725 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
726 if (!valid_vma(vma
, is_register
))
729 if (!prev
&& !more
) {
731 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
732 * reclaim. This is optimistic, no harm done if it fails.
734 prev
= kmalloc(sizeof(struct map_info
),
735 GFP_NOWAIT
| __GFP_NOMEMALLOC
| __GFP_NOWARN
);
744 if (!atomic_inc_not_zero(&vma
->vm_mm
->mm_users
))
752 info
->mm
= vma
->vm_mm
;
753 info
->vaddr
= offset_to_vaddr(vma
, offset
);
755 i_mmap_unlock_read(mapping
);
767 info
= kmalloc(sizeof(struct map_info
), GFP_KERNEL
);
769 curr
= ERR_PTR(-ENOMEM
);
779 prev
= free_map_info(prev
);
784 register_for_each_vma(struct uprobe
*uprobe
, struct uprobe_consumer
*new)
786 bool is_register
= !!new;
787 struct map_info
*info
;
790 percpu_down_write(&dup_mmap_sem
);
791 info
= build_map_info(uprobe
->inode
->i_mapping
,
792 uprobe
->offset
, is_register
);
799 struct mm_struct
*mm
= info
->mm
;
800 struct vm_area_struct
*vma
;
802 if (err
&& is_register
)
805 down_write(&mm
->mmap_sem
);
806 vma
= find_vma(mm
, info
->vaddr
);
807 if (!vma
|| !valid_vma(vma
, is_register
) ||
808 file_inode(vma
->vm_file
) != uprobe
->inode
)
811 if (vma
->vm_start
> info
->vaddr
||
812 vaddr_to_offset(vma
, info
->vaddr
) != uprobe
->offset
)
816 /* consult only the "caller", new consumer. */
817 if (consumer_filter(new,
818 UPROBE_FILTER_REGISTER
, mm
))
819 err
= install_breakpoint(uprobe
, mm
, vma
, info
->vaddr
);
820 } else if (test_bit(MMF_HAS_UPROBES
, &mm
->flags
)) {
821 if (!filter_chain(uprobe
,
822 UPROBE_FILTER_UNREGISTER
, mm
))
823 err
|= remove_breakpoint(uprobe
, mm
, info
->vaddr
);
827 up_write(&mm
->mmap_sem
);
830 info
= free_map_info(info
);
833 percpu_up_write(&dup_mmap_sem
);
837 static int __uprobe_register(struct uprobe
*uprobe
, struct uprobe_consumer
*uc
)
839 consumer_add(uprobe
, uc
);
840 return register_for_each_vma(uprobe
, uc
);
843 static void __uprobe_unregister(struct uprobe
*uprobe
, struct uprobe_consumer
*uc
)
847 if (WARN_ON(!consumer_del(uprobe
, uc
)))
850 err
= register_for_each_vma(uprobe
, NULL
);
851 /* TODO : cant unregister? schedule a worker thread */
852 if (!uprobe
->consumers
&& !err
)
853 delete_uprobe(uprobe
);
857 * uprobe_register - register a probe
858 * @inode: the file in which the probe has to be placed.
859 * @offset: offset from the start of the file.
860 * @uc: information on howto handle the probe..
862 * Apart from the access refcount, uprobe_register() takes a creation
863 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
864 * inserted into the rbtree (i.e first consumer for a @inode:@offset
865 * tuple). Creation refcount stops uprobe_unregister from freeing the
866 * @uprobe even before the register operation is complete. Creation
867 * refcount is released when the last @uc for the @uprobe
870 * Return errno if it cannot successully install probes
871 * else return 0 (success)
873 int uprobe_register(struct inode
*inode
, loff_t offset
, struct uprobe_consumer
*uc
)
875 struct uprobe
*uprobe
;
878 /* Uprobe must have at least one set consumer */
879 if (!uc
->handler
&& !uc
->ret_handler
)
882 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
883 if (!inode
->i_mapping
->a_ops
->readpage
&& !shmem_mapping(inode
->i_mapping
))
885 /* Racy, just to catch the obvious mistakes */
886 if (offset
> i_size_read(inode
))
890 uprobe
= alloc_uprobe(inode
, offset
);
894 * We can race with uprobe_unregister()->delete_uprobe().
895 * Check uprobe_is_active() and retry if it is false.
897 down_write(&uprobe
->register_rwsem
);
899 if (likely(uprobe_is_active(uprobe
))) {
900 ret
= __uprobe_register(uprobe
, uc
);
902 __uprobe_unregister(uprobe
, uc
);
904 up_write(&uprobe
->register_rwsem
);
907 if (unlikely(ret
== -EAGAIN
))
911 EXPORT_SYMBOL_GPL(uprobe_register
);
914 * uprobe_apply - unregister a already registered probe.
915 * @inode: the file in which the probe has to be removed.
916 * @offset: offset from the start of the file.
917 * @uc: consumer which wants to add more or remove some breakpoints
918 * @add: add or remove the breakpoints
920 int uprobe_apply(struct inode
*inode
, loff_t offset
,
921 struct uprobe_consumer
*uc
, bool add
)
923 struct uprobe
*uprobe
;
924 struct uprobe_consumer
*con
;
927 uprobe
= find_uprobe(inode
, offset
);
928 if (WARN_ON(!uprobe
))
931 down_write(&uprobe
->register_rwsem
);
932 for (con
= uprobe
->consumers
; con
&& con
!= uc
; con
= con
->next
)
935 ret
= register_for_each_vma(uprobe
, add
? uc
: NULL
);
936 up_write(&uprobe
->register_rwsem
);
943 * uprobe_unregister - unregister a already registered probe.
944 * @inode: the file in which the probe has to be removed.
945 * @offset: offset from the start of the file.
946 * @uc: identify which probe if multiple probes are colocated.
948 void uprobe_unregister(struct inode
*inode
, loff_t offset
, struct uprobe_consumer
*uc
)
950 struct uprobe
*uprobe
;
952 uprobe
= find_uprobe(inode
, offset
);
953 if (WARN_ON(!uprobe
))
956 down_write(&uprobe
->register_rwsem
);
957 __uprobe_unregister(uprobe
, uc
);
958 up_write(&uprobe
->register_rwsem
);
961 EXPORT_SYMBOL_GPL(uprobe_unregister
);
963 static int unapply_uprobe(struct uprobe
*uprobe
, struct mm_struct
*mm
)
965 struct vm_area_struct
*vma
;
968 down_read(&mm
->mmap_sem
);
969 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
973 if (!valid_vma(vma
, false) ||
974 file_inode(vma
->vm_file
) != uprobe
->inode
)
977 offset
= (loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
;
978 if (uprobe
->offset
< offset
||
979 uprobe
->offset
>= offset
+ vma
->vm_end
- vma
->vm_start
)
982 vaddr
= offset_to_vaddr(vma
, uprobe
->offset
);
983 err
|= remove_breakpoint(uprobe
, mm
, vaddr
);
985 up_read(&mm
->mmap_sem
);
990 static struct rb_node
*
991 find_node_in_range(struct inode
*inode
, loff_t min
, loff_t max
)
993 struct rb_node
*n
= uprobes_tree
.rb_node
;
996 struct uprobe
*u
= rb_entry(n
, struct uprobe
, rb_node
);
998 if (inode
< u
->inode
) {
1000 } else if (inode
> u
->inode
) {
1003 if (max
< u
->offset
)
1005 else if (min
> u
->offset
)
1016 * For a given range in vma, build a list of probes that need to be inserted.
1018 static void build_probe_list(struct inode
*inode
,
1019 struct vm_area_struct
*vma
,
1020 unsigned long start
, unsigned long end
,
1021 struct list_head
*head
)
1024 struct rb_node
*n
, *t
;
1027 INIT_LIST_HEAD(head
);
1028 min
= vaddr_to_offset(vma
, start
);
1029 max
= min
+ (end
- start
) - 1;
1031 spin_lock(&uprobes_treelock
);
1032 n
= find_node_in_range(inode
, min
, max
);
1034 for (t
= n
; t
; t
= rb_prev(t
)) {
1035 u
= rb_entry(t
, struct uprobe
, rb_node
);
1036 if (u
->inode
!= inode
|| u
->offset
< min
)
1038 list_add(&u
->pending_list
, head
);
1041 for (t
= n
; (t
= rb_next(t
)); ) {
1042 u
= rb_entry(t
, struct uprobe
, rb_node
);
1043 if (u
->inode
!= inode
|| u
->offset
> max
)
1045 list_add(&u
->pending_list
, head
);
1049 spin_unlock(&uprobes_treelock
);
1053 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1055 * Currently we ignore all errors and always return 0, the callers
1056 * can't handle the failure anyway.
1058 int uprobe_mmap(struct vm_area_struct
*vma
)
1060 struct list_head tmp_list
;
1061 struct uprobe
*uprobe
, *u
;
1062 struct inode
*inode
;
1064 if (no_uprobe_events() || !valid_vma(vma
, true))
1067 inode
= file_inode(vma
->vm_file
);
1071 mutex_lock(uprobes_mmap_hash(inode
));
1072 build_probe_list(inode
, vma
, vma
->vm_start
, vma
->vm_end
, &tmp_list
);
1074 * We can race with uprobe_unregister(), this uprobe can be already
1075 * removed. But in this case filter_chain() must return false, all
1076 * consumers have gone away.
1078 list_for_each_entry_safe(uprobe
, u
, &tmp_list
, pending_list
) {
1079 if (!fatal_signal_pending(current
) &&
1080 filter_chain(uprobe
, UPROBE_FILTER_MMAP
, vma
->vm_mm
)) {
1081 unsigned long vaddr
= offset_to_vaddr(vma
, uprobe
->offset
);
1082 install_breakpoint(uprobe
, vma
->vm_mm
, vma
, vaddr
);
1086 mutex_unlock(uprobes_mmap_hash(inode
));
1092 vma_has_uprobes(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
1095 struct inode
*inode
;
1098 inode
= file_inode(vma
->vm_file
);
1100 min
= vaddr_to_offset(vma
, start
);
1101 max
= min
+ (end
- start
) - 1;
1103 spin_lock(&uprobes_treelock
);
1104 n
= find_node_in_range(inode
, min
, max
);
1105 spin_unlock(&uprobes_treelock
);
1111 * Called in context of a munmap of a vma.
1113 void uprobe_munmap(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
1115 if (no_uprobe_events() || !valid_vma(vma
, false))
1118 if (!atomic_read(&vma
->vm_mm
->mm_users
)) /* called by mmput() ? */
1121 if (!test_bit(MMF_HAS_UPROBES
, &vma
->vm_mm
->flags
) ||
1122 test_bit(MMF_RECALC_UPROBES
, &vma
->vm_mm
->flags
))
1125 if (vma_has_uprobes(vma
, start
, end
))
1126 set_bit(MMF_RECALC_UPROBES
, &vma
->vm_mm
->flags
);
1129 /* Slot allocation for XOL */
1130 static int xol_add_vma(struct mm_struct
*mm
, struct xol_area
*area
)
1132 struct vm_area_struct
*vma
;
1135 if (down_write_killable(&mm
->mmap_sem
))
1138 if (mm
->uprobes_state
.xol_area
) {
1144 /* Try to map as high as possible, this is only a hint. */
1145 area
->vaddr
= get_unmapped_area(NULL
, TASK_SIZE
- PAGE_SIZE
,
1147 if (area
->vaddr
& ~PAGE_MASK
) {
1153 vma
= _install_special_mapping(mm
, area
->vaddr
, PAGE_SIZE
,
1154 VM_EXEC
|VM_MAYEXEC
|VM_DONTCOPY
|VM_IO
,
1155 &area
->xol_mapping
);
1162 smp_wmb(); /* pairs with get_xol_area() */
1163 mm
->uprobes_state
.xol_area
= area
;
1165 up_write(&mm
->mmap_sem
);
1170 static struct xol_area
*__create_xol_area(unsigned long vaddr
)
1172 struct mm_struct
*mm
= current
->mm
;
1173 uprobe_opcode_t insn
= UPROBE_SWBP_INSN
;
1174 struct xol_area
*area
;
1176 area
= kmalloc(sizeof(*area
), GFP_KERNEL
);
1177 if (unlikely(!area
))
1180 area
->bitmap
= kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE
) * sizeof(long), GFP_KERNEL
);
1184 area
->xol_mapping
.name
= "[uprobes]";
1185 area
->xol_mapping
.fault
= NULL
;
1186 area
->xol_mapping
.pages
= area
->pages
;
1187 area
->pages
[0] = alloc_page(GFP_HIGHUSER
);
1188 if (!area
->pages
[0])
1190 area
->pages
[1] = NULL
;
1192 area
->vaddr
= vaddr
;
1193 init_waitqueue_head(&area
->wq
);
1194 /* Reserve the 1st slot for get_trampoline_vaddr() */
1195 set_bit(0, area
->bitmap
);
1196 atomic_set(&area
->slot_count
, 1);
1197 copy_to_page(area
->pages
[0], 0, &insn
, UPROBE_SWBP_INSN_SIZE
);
1199 if (!xol_add_vma(mm
, area
))
1202 __free_page(area
->pages
[0]);
1204 kfree(area
->bitmap
);
1212 * get_xol_area - Allocate process's xol_area if necessary.
1213 * This area will be used for storing instructions for execution out of line.
1215 * Returns the allocated area or NULL.
1217 static struct xol_area
*get_xol_area(void)
1219 struct mm_struct
*mm
= current
->mm
;
1220 struct xol_area
*area
;
1222 if (!mm
->uprobes_state
.xol_area
)
1223 __create_xol_area(0);
1225 area
= mm
->uprobes_state
.xol_area
;
1226 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1231 * uprobe_clear_state - Free the area allocated for slots.
1233 void uprobe_clear_state(struct mm_struct
*mm
)
1235 struct xol_area
*area
= mm
->uprobes_state
.xol_area
;
1240 put_page(area
->pages
[0]);
1241 kfree(area
->bitmap
);
1245 void uprobe_start_dup_mmap(void)
1247 percpu_down_read(&dup_mmap_sem
);
1250 void uprobe_end_dup_mmap(void)
1252 percpu_up_read(&dup_mmap_sem
);
1255 void uprobe_dup_mmap(struct mm_struct
*oldmm
, struct mm_struct
*newmm
)
1257 if (test_bit(MMF_HAS_UPROBES
, &oldmm
->flags
)) {
1258 set_bit(MMF_HAS_UPROBES
, &newmm
->flags
);
1259 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1260 set_bit(MMF_RECALC_UPROBES
, &newmm
->flags
);
1265 * - search for a free slot.
1267 static unsigned long xol_take_insn_slot(struct xol_area
*area
)
1269 unsigned long slot_addr
;
1273 slot_nr
= find_first_zero_bit(area
->bitmap
, UINSNS_PER_PAGE
);
1274 if (slot_nr
< UINSNS_PER_PAGE
) {
1275 if (!test_and_set_bit(slot_nr
, area
->bitmap
))
1278 slot_nr
= UINSNS_PER_PAGE
;
1281 wait_event(area
->wq
, (atomic_read(&area
->slot_count
) < UINSNS_PER_PAGE
));
1282 } while (slot_nr
>= UINSNS_PER_PAGE
);
1284 slot_addr
= area
->vaddr
+ (slot_nr
* UPROBE_XOL_SLOT_BYTES
);
1285 atomic_inc(&area
->slot_count
);
1291 * xol_get_insn_slot - allocate a slot for xol.
1292 * Returns the allocated slot address or 0.
1294 static unsigned long xol_get_insn_slot(struct uprobe
*uprobe
)
1296 struct xol_area
*area
;
1297 unsigned long xol_vaddr
;
1299 area
= get_xol_area();
1303 xol_vaddr
= xol_take_insn_slot(area
);
1304 if (unlikely(!xol_vaddr
))
1307 arch_uprobe_copy_ixol(area
->pages
[0], xol_vaddr
,
1308 &uprobe
->arch
.ixol
, sizeof(uprobe
->arch
.ixol
));
1314 * xol_free_insn_slot - If slot was earlier allocated by
1315 * @xol_get_insn_slot(), make the slot available for
1316 * subsequent requests.
1318 static void xol_free_insn_slot(struct task_struct
*tsk
)
1320 struct xol_area
*area
;
1321 unsigned long vma_end
;
1322 unsigned long slot_addr
;
1324 if (!tsk
->mm
|| !tsk
->mm
->uprobes_state
.xol_area
|| !tsk
->utask
)
1327 slot_addr
= tsk
->utask
->xol_vaddr
;
1328 if (unlikely(!slot_addr
))
1331 area
= tsk
->mm
->uprobes_state
.xol_area
;
1332 vma_end
= area
->vaddr
+ PAGE_SIZE
;
1333 if (area
->vaddr
<= slot_addr
&& slot_addr
< vma_end
) {
1334 unsigned long offset
;
1337 offset
= slot_addr
- area
->vaddr
;
1338 slot_nr
= offset
/ UPROBE_XOL_SLOT_BYTES
;
1339 if (slot_nr
>= UINSNS_PER_PAGE
)
1342 clear_bit(slot_nr
, area
->bitmap
);
1343 atomic_dec(&area
->slot_count
);
1344 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1345 if (waitqueue_active(&area
->wq
))
1348 tsk
->utask
->xol_vaddr
= 0;
1352 void __weak
arch_uprobe_copy_ixol(struct page
*page
, unsigned long vaddr
,
1353 void *src
, unsigned long len
)
1355 /* Initialize the slot */
1356 copy_to_page(page
, vaddr
, src
, len
);
1359 * We probably need flush_icache_user_range() but it needs vma.
1360 * This should work on most of architectures by default. If
1361 * architecture needs to do something different it can define
1362 * its own version of the function.
1364 flush_dcache_page(page
);
1368 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1369 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1371 * Return the address of the breakpoint instruction.
1373 unsigned long __weak
uprobe_get_swbp_addr(struct pt_regs
*regs
)
1375 return instruction_pointer(regs
) - UPROBE_SWBP_INSN_SIZE
;
1378 unsigned long uprobe_get_trap_addr(struct pt_regs
*regs
)
1380 struct uprobe_task
*utask
= current
->utask
;
1382 if (unlikely(utask
&& utask
->active_uprobe
))
1383 return utask
->vaddr
;
1385 return instruction_pointer(regs
);
1388 static struct return_instance
*free_ret_instance(struct return_instance
*ri
)
1390 struct return_instance
*next
= ri
->next
;
1391 put_uprobe(ri
->uprobe
);
1397 * Called with no locks held.
1398 * Called in context of a exiting or a exec-ing thread.
1400 void uprobe_free_utask(struct task_struct
*t
)
1402 struct uprobe_task
*utask
= t
->utask
;
1403 struct return_instance
*ri
;
1408 if (utask
->active_uprobe
)
1409 put_uprobe(utask
->active_uprobe
);
1411 ri
= utask
->return_instances
;
1413 ri
= free_ret_instance(ri
);
1415 xol_free_insn_slot(t
);
1421 * Allocate a uprobe_task object for the task if if necessary.
1422 * Called when the thread hits a breakpoint.
1425 * - pointer to new uprobe_task on success
1428 static struct uprobe_task
*get_utask(void)
1430 if (!current
->utask
)
1431 current
->utask
= kzalloc(sizeof(struct uprobe_task
), GFP_KERNEL
);
1432 return current
->utask
;
1435 static int dup_utask(struct task_struct
*t
, struct uprobe_task
*o_utask
)
1437 struct uprobe_task
*n_utask
;
1438 struct return_instance
**p
, *o
, *n
;
1440 n_utask
= kzalloc(sizeof(struct uprobe_task
), GFP_KERNEL
);
1445 p
= &n_utask
->return_instances
;
1446 for (o
= o_utask
->return_instances
; o
; o
= o
->next
) {
1447 n
= kmalloc(sizeof(struct return_instance
), GFP_KERNEL
);
1452 get_uprobe(n
->uprobe
);
1463 static void uprobe_warn(struct task_struct
*t
, const char *msg
)
1465 pr_warn("uprobe: %s:%d failed to %s\n",
1466 current
->comm
, current
->pid
, msg
);
1469 static void dup_xol_work(struct callback_head
*work
)
1471 if (current
->flags
& PF_EXITING
)
1474 if (!__create_xol_area(current
->utask
->dup_xol_addr
) &&
1475 !fatal_signal_pending(current
))
1476 uprobe_warn(current
, "dup xol area");
1480 * Called in context of a new clone/fork from copy_process.
1482 void uprobe_copy_process(struct task_struct
*t
, unsigned long flags
)
1484 struct uprobe_task
*utask
= current
->utask
;
1485 struct mm_struct
*mm
= current
->mm
;
1486 struct xol_area
*area
;
1490 if (!utask
|| !utask
->return_instances
)
1493 if (mm
== t
->mm
&& !(flags
& CLONE_VFORK
))
1496 if (dup_utask(t
, utask
))
1497 return uprobe_warn(t
, "dup ret instances");
1499 /* The task can fork() after dup_xol_work() fails */
1500 area
= mm
->uprobes_state
.xol_area
;
1502 return uprobe_warn(t
, "dup xol area");
1507 t
->utask
->dup_xol_addr
= area
->vaddr
;
1508 init_task_work(&t
->utask
->dup_xol_work
, dup_xol_work
);
1509 task_work_add(t
, &t
->utask
->dup_xol_work
, true);
1513 * Current area->vaddr notion assume the trampoline address is always
1514 * equal area->vaddr.
1516 * Returns -1 in case the xol_area is not allocated.
1518 static unsigned long get_trampoline_vaddr(void)
1520 struct xol_area
*area
;
1521 unsigned long trampoline_vaddr
= -1;
1523 area
= current
->mm
->uprobes_state
.xol_area
;
1524 smp_read_barrier_depends();
1526 trampoline_vaddr
= area
->vaddr
;
1528 return trampoline_vaddr
;
1531 static void cleanup_return_instances(struct uprobe_task
*utask
, bool chained
,
1532 struct pt_regs
*regs
)
1534 struct return_instance
*ri
= utask
->return_instances
;
1535 enum rp_check ctx
= chained
? RP_CHECK_CHAIN_CALL
: RP_CHECK_CALL
;
1537 while (ri
&& !arch_uretprobe_is_alive(ri
, ctx
, regs
)) {
1538 ri
= free_ret_instance(ri
);
1541 utask
->return_instances
= ri
;
1544 static void prepare_uretprobe(struct uprobe
*uprobe
, struct pt_regs
*regs
)
1546 struct return_instance
*ri
;
1547 struct uprobe_task
*utask
;
1548 unsigned long orig_ret_vaddr
, trampoline_vaddr
;
1551 if (!get_xol_area())
1554 utask
= get_utask();
1558 if (utask
->depth
>= MAX_URETPROBE_DEPTH
) {
1559 printk_ratelimited(KERN_INFO
"uprobe: omit uretprobe due to"
1560 " nestedness limit pid/tgid=%d/%d\n",
1561 current
->pid
, current
->tgid
);
1565 ri
= kmalloc(sizeof(struct return_instance
), GFP_KERNEL
);
1569 trampoline_vaddr
= get_trampoline_vaddr();
1570 orig_ret_vaddr
= arch_uretprobe_hijack_return_addr(trampoline_vaddr
, regs
);
1571 if (orig_ret_vaddr
== -1)
1574 /* drop the entries invalidated by longjmp() */
1575 chained
= (orig_ret_vaddr
== trampoline_vaddr
);
1576 cleanup_return_instances(utask
, chained
, regs
);
1579 * We don't want to keep trampoline address in stack, rather keep the
1580 * original return address of first caller thru all the consequent
1581 * instances. This also makes breakpoint unwrapping easier.
1584 if (!utask
->return_instances
) {
1586 * This situation is not possible. Likely we have an
1587 * attack from user-space.
1589 uprobe_warn(current
, "handle tail call");
1592 orig_ret_vaddr
= utask
->return_instances
->orig_ret_vaddr
;
1595 ri
->uprobe
= get_uprobe(uprobe
);
1596 ri
->func
= instruction_pointer(regs
);
1597 ri
->stack
= user_stack_pointer(regs
);
1598 ri
->orig_ret_vaddr
= orig_ret_vaddr
;
1599 ri
->chained
= chained
;
1602 ri
->next
= utask
->return_instances
;
1603 utask
->return_instances
= ri
;
1610 /* Prepare to single-step probed instruction out of line. */
1612 pre_ssout(struct uprobe
*uprobe
, struct pt_regs
*regs
, unsigned long bp_vaddr
)
1614 struct uprobe_task
*utask
;
1615 unsigned long xol_vaddr
;
1618 utask
= get_utask();
1622 xol_vaddr
= xol_get_insn_slot(uprobe
);
1626 utask
->xol_vaddr
= xol_vaddr
;
1627 utask
->vaddr
= bp_vaddr
;
1629 err
= arch_uprobe_pre_xol(&uprobe
->arch
, regs
);
1630 if (unlikely(err
)) {
1631 xol_free_insn_slot(current
);
1635 utask
->active_uprobe
= uprobe
;
1636 utask
->state
= UTASK_SSTEP
;
1641 * If we are singlestepping, then ensure this thread is not connected to
1642 * non-fatal signals until completion of singlestep. When xol insn itself
1643 * triggers the signal, restart the original insn even if the task is
1644 * already SIGKILL'ed (since coredump should report the correct ip). This
1645 * is even more important if the task has a handler for SIGSEGV/etc, The
1646 * _same_ instruction should be repeated again after return from the signal
1647 * handler, and SSTEP can never finish in this case.
1649 bool uprobe_deny_signal(void)
1651 struct task_struct
*t
= current
;
1652 struct uprobe_task
*utask
= t
->utask
;
1654 if (likely(!utask
|| !utask
->active_uprobe
))
1657 WARN_ON_ONCE(utask
->state
!= UTASK_SSTEP
);
1659 if (signal_pending(t
)) {
1660 spin_lock_irq(&t
->sighand
->siglock
);
1661 clear_tsk_thread_flag(t
, TIF_SIGPENDING
);
1662 spin_unlock_irq(&t
->sighand
->siglock
);
1664 if (__fatal_signal_pending(t
) || arch_uprobe_xol_was_trapped(t
)) {
1665 utask
->state
= UTASK_SSTEP_TRAPPED
;
1666 set_tsk_thread_flag(t
, TIF_UPROBE
);
1673 static void mmf_recalc_uprobes(struct mm_struct
*mm
)
1675 struct vm_area_struct
*vma
;
1677 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1678 if (!valid_vma(vma
, false))
1681 * This is not strictly accurate, we can race with
1682 * uprobe_unregister() and see the already removed
1683 * uprobe if delete_uprobe() was not yet called.
1684 * Or this uprobe can be filtered out.
1686 if (vma_has_uprobes(vma
, vma
->vm_start
, vma
->vm_end
))
1690 clear_bit(MMF_HAS_UPROBES
, &mm
->flags
);
1693 static int is_trap_at_addr(struct mm_struct
*mm
, unsigned long vaddr
)
1696 uprobe_opcode_t opcode
;
1699 pagefault_disable();
1700 result
= __get_user(opcode
, (uprobe_opcode_t __user
*)vaddr
);
1703 if (likely(result
== 0))
1707 * The NULL 'tsk' here ensures that any faults that occur here
1708 * will not be accounted to the task. 'mm' *is* current->mm,
1709 * but we treat this as a 'remote' access since it is
1710 * essentially a kernel access to the memory.
1712 result
= get_user_pages_remote(NULL
, mm
, vaddr
, 1, FOLL_FORCE
, &page
,
1717 copy_from_page(page
, vaddr
, &opcode
, UPROBE_SWBP_INSN_SIZE
);
1720 /* This needs to return true for any variant of the trap insn */
1721 return is_trap_insn(&opcode
);
1724 static struct uprobe
*find_active_uprobe(unsigned long bp_vaddr
, int *is_swbp
)
1726 struct mm_struct
*mm
= current
->mm
;
1727 struct uprobe
*uprobe
= NULL
;
1728 struct vm_area_struct
*vma
;
1730 down_read(&mm
->mmap_sem
);
1731 vma
= find_vma(mm
, bp_vaddr
);
1732 if (vma
&& vma
->vm_start
<= bp_vaddr
) {
1733 if (valid_vma(vma
, false)) {
1734 struct inode
*inode
= file_inode(vma
->vm_file
);
1735 loff_t offset
= vaddr_to_offset(vma
, bp_vaddr
);
1737 uprobe
= find_uprobe(inode
, offset
);
1741 *is_swbp
= is_trap_at_addr(mm
, bp_vaddr
);
1746 if (!uprobe
&& test_and_clear_bit(MMF_RECALC_UPROBES
, &mm
->flags
))
1747 mmf_recalc_uprobes(mm
);
1748 up_read(&mm
->mmap_sem
);
1753 static void handler_chain(struct uprobe
*uprobe
, struct pt_regs
*regs
)
1755 struct uprobe_consumer
*uc
;
1756 int remove
= UPROBE_HANDLER_REMOVE
;
1757 bool need_prep
= false; /* prepare return uprobe, when needed */
1759 down_read(&uprobe
->register_rwsem
);
1760 for (uc
= uprobe
->consumers
; uc
; uc
= uc
->next
) {
1764 rc
= uc
->handler(uc
, regs
);
1765 WARN(rc
& ~UPROBE_HANDLER_MASK
,
1766 "bad rc=0x%x from %pf()\n", rc
, uc
->handler
);
1769 if (uc
->ret_handler
)
1775 if (need_prep
&& !remove
)
1776 prepare_uretprobe(uprobe
, regs
); /* put bp at return */
1778 if (remove
&& uprobe
->consumers
) {
1779 WARN_ON(!uprobe_is_active(uprobe
));
1780 unapply_uprobe(uprobe
, current
->mm
);
1782 up_read(&uprobe
->register_rwsem
);
1786 handle_uretprobe_chain(struct return_instance
*ri
, struct pt_regs
*regs
)
1788 struct uprobe
*uprobe
= ri
->uprobe
;
1789 struct uprobe_consumer
*uc
;
1791 down_read(&uprobe
->register_rwsem
);
1792 for (uc
= uprobe
->consumers
; uc
; uc
= uc
->next
) {
1793 if (uc
->ret_handler
)
1794 uc
->ret_handler(uc
, ri
->func
, regs
);
1796 up_read(&uprobe
->register_rwsem
);
1799 static struct return_instance
*find_next_ret_chain(struct return_instance
*ri
)
1804 chained
= ri
->chained
;
1805 ri
= ri
->next
; /* can't be NULL if chained */
1811 static void handle_trampoline(struct pt_regs
*regs
)
1813 struct uprobe_task
*utask
;
1814 struct return_instance
*ri
, *next
;
1817 utask
= current
->utask
;
1821 ri
= utask
->return_instances
;
1827 * We should throw out the frames invalidated by longjmp().
1828 * If this chain is valid, then the next one should be alive
1829 * or NULL; the latter case means that nobody but ri->func
1830 * could hit this trampoline on return. TODO: sigaltstack().
1832 next
= find_next_ret_chain(ri
);
1833 valid
= !next
|| arch_uretprobe_is_alive(next
, RP_CHECK_RET
, regs
);
1835 instruction_pointer_set(regs
, ri
->orig_ret_vaddr
);
1838 handle_uretprobe_chain(ri
, regs
);
1839 ri
= free_ret_instance(ri
);
1841 } while (ri
!= next
);
1844 utask
->return_instances
= ri
;
1848 uprobe_warn(current
, "handle uretprobe, sending SIGILL.");
1849 force_sig_info(SIGILL
, SEND_SIG_FORCED
, current
);
1853 bool __weak
arch_uprobe_ignore(struct arch_uprobe
*aup
, struct pt_regs
*regs
)
1858 bool __weak
arch_uretprobe_is_alive(struct return_instance
*ret
, enum rp_check ctx
,
1859 struct pt_regs
*regs
)
1865 * Run handler and ask thread to singlestep.
1866 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1868 static void handle_swbp(struct pt_regs
*regs
)
1870 struct uprobe
*uprobe
;
1871 unsigned long bp_vaddr
;
1872 int uninitialized_var(is_swbp
);
1874 bp_vaddr
= uprobe_get_swbp_addr(regs
);
1875 if (bp_vaddr
== get_trampoline_vaddr())
1876 return handle_trampoline(regs
);
1878 uprobe
= find_active_uprobe(bp_vaddr
, &is_swbp
);
1881 /* No matching uprobe; signal SIGTRAP. */
1882 send_sig(SIGTRAP
, current
, 0);
1885 * Either we raced with uprobe_unregister() or we can't
1886 * access this memory. The latter is only possible if
1887 * another thread plays with our ->mm. In both cases
1888 * we can simply restart. If this vma was unmapped we
1889 * can pretend this insn was not executed yet and get
1890 * the (correct) SIGSEGV after restart.
1892 instruction_pointer_set(regs
, bp_vaddr
);
1897 /* change it in advance for ->handler() and restart */
1898 instruction_pointer_set(regs
, bp_vaddr
);
1901 * TODO: move copy_insn/etc into _register and remove this hack.
1902 * After we hit the bp, _unregister + _register can install the
1903 * new and not-yet-analyzed uprobe at the same address, restart.
1905 if (unlikely(!test_bit(UPROBE_COPY_INSN
, &uprobe
->flags
)))
1909 * Pairs with the smp_wmb() in prepare_uprobe().
1911 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
1912 * we must also see the stores to &uprobe->arch performed by the
1913 * prepare_uprobe() call.
1917 /* Tracing handlers use ->utask to communicate with fetch methods */
1921 if (arch_uprobe_ignore(&uprobe
->arch
, regs
))
1924 handler_chain(uprobe
, regs
);
1926 if (arch_uprobe_skip_sstep(&uprobe
->arch
, regs
))
1929 if (!pre_ssout(uprobe
, regs
, bp_vaddr
))
1932 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1938 * Perform required fix-ups and disable singlestep.
1939 * Allow pending signals to take effect.
1941 static void handle_singlestep(struct uprobe_task
*utask
, struct pt_regs
*regs
)
1943 struct uprobe
*uprobe
;
1946 uprobe
= utask
->active_uprobe
;
1947 if (utask
->state
== UTASK_SSTEP_ACK
)
1948 err
= arch_uprobe_post_xol(&uprobe
->arch
, regs
);
1949 else if (utask
->state
== UTASK_SSTEP_TRAPPED
)
1950 arch_uprobe_abort_xol(&uprobe
->arch
, regs
);
1955 utask
->active_uprobe
= NULL
;
1956 utask
->state
= UTASK_RUNNING
;
1957 xol_free_insn_slot(current
);
1959 spin_lock_irq(¤t
->sighand
->siglock
);
1960 recalc_sigpending(); /* see uprobe_deny_signal() */
1961 spin_unlock_irq(¤t
->sighand
->siglock
);
1963 if (unlikely(err
)) {
1964 uprobe_warn(current
, "execute the probed insn, sending SIGILL.");
1965 force_sig_info(SIGILL
, SEND_SIG_FORCED
, current
);
1970 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1971 * allows the thread to return from interrupt. After that handle_swbp()
1972 * sets utask->active_uprobe.
1974 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1975 * and allows the thread to return from interrupt.
1977 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1978 * uprobe_notify_resume().
1980 void uprobe_notify_resume(struct pt_regs
*regs
)
1982 struct uprobe_task
*utask
;
1984 clear_thread_flag(TIF_UPROBE
);
1986 utask
= current
->utask
;
1987 if (utask
&& utask
->active_uprobe
)
1988 handle_singlestep(utask
, regs
);
1994 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1995 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1997 int uprobe_pre_sstep_notifier(struct pt_regs
*regs
)
2002 if (!test_bit(MMF_HAS_UPROBES
, ¤t
->mm
->flags
) &&
2003 (!current
->utask
|| !current
->utask
->return_instances
))
2006 set_thread_flag(TIF_UPROBE
);
2011 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2012 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2014 int uprobe_post_sstep_notifier(struct pt_regs
*regs
)
2016 struct uprobe_task
*utask
= current
->utask
;
2018 if (!current
->mm
|| !utask
|| !utask
->active_uprobe
)
2019 /* task is currently not uprobed */
2022 utask
->state
= UTASK_SSTEP_ACK
;
2023 set_thread_flag(TIF_UPROBE
);
2027 static struct notifier_block uprobe_exception_nb
= {
2028 .notifier_call
= arch_uprobe_exception_notify
,
2029 .priority
= INT_MAX
-1, /* notified after kprobes, kgdb */
2032 static int __init
init_uprobes(void)
2036 for (i
= 0; i
< UPROBES_HASH_SZ
; i
++)
2037 mutex_init(&uprobes_mmap_mutex
[i
]);
2039 if (percpu_init_rwsem(&dup_mmap_sem
))
2042 return register_die_notifier(&uprobe_exception_nb
);
2044 __initcall(init_uprobes
);