2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 #include <linux/delay.h>
54 #include <linux/stop_machine.h>
55 #include <linux/random.h>
56 #include <linux/trace_events.h>
57 #include <linux/suspend.h>
62 #ifdef MODULE_PARAM_PREFIX
63 #undef MODULE_PARAM_PREFIX
65 #define MODULE_PARAM_PREFIX "rcutree."
67 /* Data structures. */
70 * In order to export the rcu_state name to the tracing tools, it
71 * needs to be added in the __tracepoint_string section.
72 * This requires defining a separate variable tp_<sname>_varname
73 * that points to the string being used, and this will allow
74 * the tracing userspace tools to be able to decipher the string
75 * address to the matching string.
78 # define DEFINE_RCU_TPS(sname) \
79 static char sname##_varname[] = #sname; \
80 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
81 # define RCU_STATE_NAME(sname) sname##_varname
83 # define DEFINE_RCU_TPS(sname)
84 # define RCU_STATE_NAME(sname) __stringify(sname)
87 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
88 DEFINE_RCU_TPS(sname) \
89 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
90 struct rcu_state sname##_state = { \
91 .level = { &sname##_state.node[0] }, \
92 .rda = &sname##_data, \
94 .gp_state = RCU_GP_IDLE, \
95 .gpnum = 0UL - 300UL, \
96 .completed = 0UL - 300UL, \
97 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
98 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
99 .orphan_donetail = &sname##_state.orphan_donelist, \
100 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
101 .name = RCU_STATE_NAME(sname), \
103 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
104 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
107 RCU_STATE_INITIALIZER(rcu_sched
, 's', call_rcu_sched
);
108 RCU_STATE_INITIALIZER(rcu_bh
, 'b', call_rcu_bh
);
110 static struct rcu_state
*const rcu_state_p
;
111 LIST_HEAD(rcu_struct_flavors
);
113 /* Dump rcu_node combining tree at boot to verify correct setup. */
114 static bool dump_tree
;
115 module_param(dump_tree
, bool, 0444);
116 /* Control rcu_node-tree auto-balancing at boot time. */
117 static bool rcu_fanout_exact
;
118 module_param(rcu_fanout_exact
, bool, 0444);
119 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
120 static int rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
121 module_param(rcu_fanout_leaf
, int, 0444);
122 int rcu_num_lvls __read_mostly
= RCU_NUM_LVLS
;
123 /* Number of rcu_nodes at specified level. */
124 static int num_rcu_lvl
[] = NUM_RCU_LVL_INIT
;
125 int rcu_num_nodes __read_mostly
= NUM_RCU_NODES
; /* Total # rcu_nodes in use. */
126 /* panic() on RCU Stall sysctl. */
127 int sysctl_panic_on_rcu_stall __read_mostly
;
130 * The rcu_scheduler_active variable is initialized to the value
131 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
132 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
133 * RCU can assume that there is but one task, allowing RCU to (for example)
134 * optimize synchronize_rcu() to a simple barrier(). When this variable
135 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
136 * to detect real grace periods. This variable is also used to suppress
137 * boot-time false positives from lockdep-RCU error checking. Finally, it
138 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
139 * is fully initialized, including all of its kthreads having been spawned.
141 int rcu_scheduler_active __read_mostly
;
142 EXPORT_SYMBOL_GPL(rcu_scheduler_active
);
145 * The rcu_scheduler_fully_active variable transitions from zero to one
146 * during the early_initcall() processing, which is after the scheduler
147 * is capable of creating new tasks. So RCU processing (for example,
148 * creating tasks for RCU priority boosting) must be delayed until after
149 * rcu_scheduler_fully_active transitions from zero to one. We also
150 * currently delay invocation of any RCU callbacks until after this point.
152 * It might later prove better for people registering RCU callbacks during
153 * early boot to take responsibility for these callbacks, but one step at
156 static int rcu_scheduler_fully_active __read_mostly
;
158 static void rcu_init_new_rnp(struct rcu_node
*rnp_leaf
);
159 static void rcu_cleanup_dead_rnp(struct rcu_node
*rnp_leaf
);
160 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
);
161 static void invoke_rcu_core(void);
162 static void invoke_rcu_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
);
163 static void rcu_report_exp_rdp(struct rcu_state
*rsp
,
164 struct rcu_data
*rdp
, bool wake
);
165 static void sync_sched_exp_online_cleanup(int cpu
);
167 /* rcuc/rcub kthread realtime priority */
168 #ifdef CONFIG_RCU_KTHREAD_PRIO
169 static int kthread_prio
= CONFIG_RCU_KTHREAD_PRIO
;
170 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
171 static int kthread_prio
= IS_ENABLED(CONFIG_RCU_BOOST
) ? 1 : 0;
172 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
173 module_param(kthread_prio
, int, 0644);
175 /* Delay in jiffies for grace-period initialization delays, debug only. */
177 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
178 static int gp_preinit_delay
= CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY
;
179 module_param(gp_preinit_delay
, int, 0644);
180 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
181 static const int gp_preinit_delay
;
182 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
184 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
185 static int gp_init_delay
= CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY
;
186 module_param(gp_init_delay
, int, 0644);
187 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
188 static const int gp_init_delay
;
189 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
191 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
192 static int gp_cleanup_delay
= CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY
;
193 module_param(gp_cleanup_delay
, int, 0644);
194 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
195 static const int gp_cleanup_delay
;
196 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
199 * Number of grace periods between delays, normalized by the duration of
200 * the delay. The longer the the delay, the more the grace periods between
201 * each delay. The reason for this normalization is that it means that,
202 * for non-zero delays, the overall slowdown of grace periods is constant
203 * regardless of the duration of the delay. This arrangement balances
204 * the need for long delays to increase some race probabilities with the
205 * need for fast grace periods to increase other race probabilities.
207 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
210 * Track the rcutorture test sequence number and the update version
211 * number within a given test. The rcutorture_testseq is incremented
212 * on every rcutorture module load and unload, so has an odd value
213 * when a test is running. The rcutorture_vernum is set to zero
214 * when rcutorture starts and is incremented on each rcutorture update.
215 * These variables enable correlating rcutorture output with the
216 * RCU tracing information.
218 unsigned long rcutorture_testseq
;
219 unsigned long rcutorture_vernum
;
222 * Compute the mask of online CPUs for the specified rcu_node structure.
223 * This will not be stable unless the rcu_node structure's ->lock is
224 * held, but the bit corresponding to the current CPU will be stable
227 unsigned long rcu_rnp_online_cpus(struct rcu_node
*rnp
)
229 return READ_ONCE(rnp
->qsmaskinitnext
);
233 * Return true if an RCU grace period is in progress. The READ_ONCE()s
234 * permit this function to be invoked without holding the root rcu_node
235 * structure's ->lock, but of course results can be subject to change.
237 static int rcu_gp_in_progress(struct rcu_state
*rsp
)
239 return READ_ONCE(rsp
->completed
) != READ_ONCE(rsp
->gpnum
);
243 * Note a quiescent state. Because we do not need to know
244 * how many quiescent states passed, just if there was at least
245 * one since the start of the grace period, this just sets a flag.
246 * The caller must have disabled preemption.
248 void rcu_sched_qs(void)
250 if (!__this_cpu_read(rcu_sched_data
.cpu_no_qs
.s
))
252 trace_rcu_grace_period(TPS("rcu_sched"),
253 __this_cpu_read(rcu_sched_data
.gpnum
),
255 __this_cpu_write(rcu_sched_data
.cpu_no_qs
.b
.norm
, false);
256 if (!__this_cpu_read(rcu_sched_data
.cpu_no_qs
.b
.exp
))
258 __this_cpu_write(rcu_sched_data
.cpu_no_qs
.b
.exp
, false);
259 rcu_report_exp_rdp(&rcu_sched_state
,
260 this_cpu_ptr(&rcu_sched_data
), true);
265 if (__this_cpu_read(rcu_bh_data
.cpu_no_qs
.s
)) {
266 trace_rcu_grace_period(TPS("rcu_bh"),
267 __this_cpu_read(rcu_bh_data
.gpnum
),
269 __this_cpu_write(rcu_bh_data
.cpu_no_qs
.b
.norm
, false);
273 static DEFINE_PER_CPU(int, rcu_sched_qs_mask
);
275 static DEFINE_PER_CPU(struct rcu_dynticks
, rcu_dynticks
) = {
276 .dynticks_nesting
= DYNTICK_TASK_EXIT_IDLE
,
277 .dynticks
= ATOMIC_INIT(1),
278 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
279 .dynticks_idle_nesting
= DYNTICK_TASK_NEST_VALUE
,
280 .dynticks_idle
= ATOMIC_INIT(1),
281 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
284 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr
);
285 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr
);
288 * Let the RCU core know that this CPU has gone through the scheduler,
289 * which is a quiescent state. This is called when the need for a
290 * quiescent state is urgent, so we burn an atomic operation and full
291 * memory barriers to let the RCU core know about it, regardless of what
292 * this CPU might (or might not) do in the near future.
294 * We inform the RCU core by emulating a zero-duration dyntick-idle
295 * period, which we in turn do by incrementing the ->dynticks counter
298 * The caller must have disabled interrupts.
300 static void rcu_momentary_dyntick_idle(void)
302 struct rcu_data
*rdp
;
303 struct rcu_dynticks
*rdtp
;
305 struct rcu_state
*rsp
;
308 * Yes, we can lose flag-setting operations. This is OK, because
309 * the flag will be set again after some delay.
311 resched_mask
= raw_cpu_read(rcu_sched_qs_mask
);
312 raw_cpu_write(rcu_sched_qs_mask
, 0);
314 /* Find the flavor that needs a quiescent state. */
315 for_each_rcu_flavor(rsp
) {
316 rdp
= raw_cpu_ptr(rsp
->rda
);
317 if (!(resched_mask
& rsp
->flavor_mask
))
319 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
320 if (READ_ONCE(rdp
->mynode
->completed
) !=
321 READ_ONCE(rdp
->cond_resched_completed
))
325 * Pretend to be momentarily idle for the quiescent state.
326 * This allows the grace-period kthread to record the
327 * quiescent state, with no need for this CPU to do anything
330 rdtp
= this_cpu_ptr(&rcu_dynticks
);
331 smp_mb__before_atomic(); /* Earlier stuff before QS. */
332 atomic_add(2, &rdtp
->dynticks
); /* QS. */
333 smp_mb__after_atomic(); /* Later stuff after QS. */
339 * Note a context switch. This is a quiescent state for RCU-sched,
340 * and requires special handling for preemptible RCU.
341 * The caller must have disabled interrupts.
343 void rcu_note_context_switch(void)
345 barrier(); /* Avoid RCU read-side critical sections leaking down. */
346 trace_rcu_utilization(TPS("Start context switch"));
348 rcu_preempt_note_context_switch();
349 if (unlikely(raw_cpu_read(rcu_sched_qs_mask
)))
350 rcu_momentary_dyntick_idle();
351 trace_rcu_utilization(TPS("End context switch"));
352 barrier(); /* Avoid RCU read-side critical sections leaking up. */
354 EXPORT_SYMBOL_GPL(rcu_note_context_switch
);
357 * Register a quiescent state for all RCU flavors. If there is an
358 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
359 * dyntick-idle quiescent state visible to other CPUs (but only for those
360 * RCU flavors in desperate need of a quiescent state, which will normally
361 * be none of them). Either way, do a lightweight quiescent state for
364 * The barrier() calls are redundant in the common case when this is
365 * called externally, but just in case this is called from within this
369 void rcu_all_qs(void)
373 barrier(); /* Avoid RCU read-side critical sections leaking down. */
374 if (unlikely(raw_cpu_read(rcu_sched_qs_mask
))) {
375 local_irq_save(flags
);
376 rcu_momentary_dyntick_idle();
377 local_irq_restore(flags
);
379 if (unlikely(raw_cpu_read(rcu_sched_data
.cpu_no_qs
.b
.exp
))) {
381 * Yes, we just checked a per-CPU variable with preemption
382 * enabled, so we might be migrated to some other CPU at
383 * this point. That is OK because in that case, the
384 * migration will supply the needed quiescent state.
385 * We might end up needlessly disabling preemption and
386 * invoking rcu_sched_qs() on the destination CPU, but
387 * the probability and cost are both quite low, so this
388 * should not be a problem in practice.
394 this_cpu_inc(rcu_qs_ctr
);
395 barrier(); /* Avoid RCU read-side critical sections leaking up. */
397 EXPORT_SYMBOL_GPL(rcu_all_qs
);
399 static long blimit
= 10; /* Maximum callbacks per rcu_do_batch. */
400 static long qhimark
= 10000; /* If this many pending, ignore blimit. */
401 static long qlowmark
= 100; /* Once only this many pending, use blimit. */
403 module_param(blimit
, long, 0444);
404 module_param(qhimark
, long, 0444);
405 module_param(qlowmark
, long, 0444);
407 static ulong jiffies_till_first_fqs
= ULONG_MAX
;
408 static ulong jiffies_till_next_fqs
= ULONG_MAX
;
409 static bool rcu_kick_kthreads
;
411 module_param(jiffies_till_first_fqs
, ulong
, 0644);
412 module_param(jiffies_till_next_fqs
, ulong
, 0644);
413 module_param(rcu_kick_kthreads
, bool, 0644);
416 * How long the grace period must be before we start recruiting
417 * quiescent-state help from rcu_note_context_switch().
419 static ulong jiffies_till_sched_qs
= HZ
/ 20;
420 module_param(jiffies_till_sched_qs
, ulong
, 0644);
422 static bool rcu_start_gp_advanced(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
423 struct rcu_data
*rdp
);
424 static void force_qs_rnp(struct rcu_state
*rsp
,
425 int (*f
)(struct rcu_data
*rsp
, bool *isidle
,
426 unsigned long *maxj
),
427 bool *isidle
, unsigned long *maxj
);
428 static void force_quiescent_state(struct rcu_state
*rsp
);
429 static int rcu_pending(void);
432 * Return the number of RCU batches started thus far for debug & stats.
434 unsigned long rcu_batches_started(void)
436 return rcu_state_p
->gpnum
;
438 EXPORT_SYMBOL_GPL(rcu_batches_started
);
441 * Return the number of RCU-sched batches started thus far for debug & stats.
443 unsigned long rcu_batches_started_sched(void)
445 return rcu_sched_state
.gpnum
;
447 EXPORT_SYMBOL_GPL(rcu_batches_started_sched
);
450 * Return the number of RCU BH batches started thus far for debug & stats.
452 unsigned long rcu_batches_started_bh(void)
454 return rcu_bh_state
.gpnum
;
456 EXPORT_SYMBOL_GPL(rcu_batches_started_bh
);
459 * Return the number of RCU batches completed thus far for debug & stats.
461 unsigned long rcu_batches_completed(void)
463 return rcu_state_p
->completed
;
465 EXPORT_SYMBOL_GPL(rcu_batches_completed
);
468 * Return the number of RCU-sched batches completed thus far for debug & stats.
470 unsigned long rcu_batches_completed_sched(void)
472 return rcu_sched_state
.completed
;
474 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched
);
477 * Return the number of RCU BH batches completed thus far for debug & stats.
479 unsigned long rcu_batches_completed_bh(void)
481 return rcu_bh_state
.completed
;
483 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh
);
486 * Return the number of RCU expedited batches completed thus far for
487 * debug & stats. Odd numbers mean that a batch is in progress, even
488 * numbers mean idle. The value returned will thus be roughly double
489 * the cumulative batches since boot.
491 unsigned long rcu_exp_batches_completed(void)
493 return rcu_state_p
->expedited_sequence
;
495 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed
);
498 * Return the number of RCU-sched expedited batches completed thus far
499 * for debug & stats. Similar to rcu_exp_batches_completed().
501 unsigned long rcu_exp_batches_completed_sched(void)
503 return rcu_sched_state
.expedited_sequence
;
505 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched
);
508 * Force a quiescent state.
510 void rcu_force_quiescent_state(void)
512 force_quiescent_state(rcu_state_p
);
514 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state
);
517 * Force a quiescent state for RCU BH.
519 void rcu_bh_force_quiescent_state(void)
521 force_quiescent_state(&rcu_bh_state
);
523 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state
);
526 * Force a quiescent state for RCU-sched.
528 void rcu_sched_force_quiescent_state(void)
530 force_quiescent_state(&rcu_sched_state
);
532 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state
);
535 * Show the state of the grace-period kthreads.
537 void show_rcu_gp_kthreads(void)
539 struct rcu_state
*rsp
;
541 for_each_rcu_flavor(rsp
) {
542 pr_info("%s: wait state: %d ->state: %#lx\n",
543 rsp
->name
, rsp
->gp_state
, rsp
->gp_kthread
->state
);
544 /* sched_show_task(rsp->gp_kthread); */
547 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads
);
550 * Record the number of times rcutorture tests have been initiated and
551 * terminated. This information allows the debugfs tracing stats to be
552 * correlated to the rcutorture messages, even when the rcutorture module
553 * is being repeatedly loaded and unloaded. In other words, we cannot
554 * store this state in rcutorture itself.
556 void rcutorture_record_test_transition(void)
558 rcutorture_testseq
++;
559 rcutorture_vernum
= 0;
561 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition
);
564 * Send along grace-period-related data for rcutorture diagnostics.
566 void rcutorture_get_gp_data(enum rcutorture_type test_type
, int *flags
,
567 unsigned long *gpnum
, unsigned long *completed
)
569 struct rcu_state
*rsp
= NULL
;
578 case RCU_SCHED_FLAVOR
:
579 rsp
= &rcu_sched_state
;
585 *flags
= READ_ONCE(rsp
->gp_flags
);
586 *gpnum
= READ_ONCE(rsp
->gpnum
);
587 *completed
= READ_ONCE(rsp
->completed
);
594 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data
);
597 * Record the number of writer passes through the current rcutorture test.
598 * This is also used to correlate debugfs tracing stats with the rcutorture
601 void rcutorture_record_progress(unsigned long vernum
)
605 EXPORT_SYMBOL_GPL(rcutorture_record_progress
);
608 * Does the CPU have callbacks ready to be invoked?
611 cpu_has_callbacks_ready_to_invoke(struct rcu_data
*rdp
)
613 return &rdp
->nxtlist
!= rdp
->nxttail
[RCU_DONE_TAIL
] &&
614 rdp
->nxttail
[RCU_DONE_TAIL
] != NULL
;
618 * Return the root node of the specified rcu_state structure.
620 static struct rcu_node
*rcu_get_root(struct rcu_state
*rsp
)
622 return &rsp
->node
[0];
626 * Is there any need for future grace periods?
627 * Interrupts must be disabled. If the caller does not hold the root
628 * rnp_node structure's ->lock, the results are advisory only.
630 static int rcu_future_needs_gp(struct rcu_state
*rsp
)
632 struct rcu_node
*rnp
= rcu_get_root(rsp
);
633 int idx
= (READ_ONCE(rnp
->completed
) + 1) & 0x1;
634 int *fp
= &rnp
->need_future_gp
[idx
];
636 return READ_ONCE(*fp
);
640 * Does the current CPU require a not-yet-started grace period?
641 * The caller must have disabled interrupts to prevent races with
642 * normal callback registry.
645 cpu_needs_another_gp(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
649 if (rcu_gp_in_progress(rsp
))
650 return false; /* No, a grace period is already in progress. */
651 if (rcu_future_needs_gp(rsp
))
652 return true; /* Yes, a no-CBs CPU needs one. */
653 if (!rdp
->nxttail
[RCU_NEXT_TAIL
])
654 return false; /* No, this is a no-CBs (or offline) CPU. */
655 if (*rdp
->nxttail
[RCU_NEXT_READY_TAIL
])
656 return true; /* Yes, CPU has newly registered callbacks. */
657 for (i
= RCU_WAIT_TAIL
; i
< RCU_NEXT_TAIL
; i
++)
658 if (rdp
->nxttail
[i
- 1] != rdp
->nxttail
[i
] &&
659 ULONG_CMP_LT(READ_ONCE(rsp
->completed
),
660 rdp
->nxtcompleted
[i
]))
661 return true; /* Yes, CBs for future grace period. */
662 return false; /* No grace period needed. */
666 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
668 * If the new value of the ->dynticks_nesting counter now is zero,
669 * we really have entered idle, and must do the appropriate accounting.
670 * The caller must have disabled interrupts.
672 static void rcu_eqs_enter_common(long long oldval
, bool user
)
674 struct rcu_state
*rsp
;
675 struct rcu_data
*rdp
;
676 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
678 trace_rcu_dyntick(TPS("Start"), oldval
, rdtp
->dynticks_nesting
);
679 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
680 !user
&& !is_idle_task(current
)) {
681 struct task_struct
*idle __maybe_unused
=
682 idle_task(smp_processor_id());
684 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval
, 0);
685 rcu_ftrace_dump(DUMP_ORIG
);
686 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
687 current
->pid
, current
->comm
,
688 idle
->pid
, idle
->comm
); /* must be idle task! */
690 for_each_rcu_flavor(rsp
) {
691 rdp
= this_cpu_ptr(rsp
->rda
);
692 do_nocb_deferred_wakeup(rdp
);
694 rcu_prepare_for_idle();
695 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
696 smp_mb__before_atomic(); /* See above. */
697 atomic_inc(&rdtp
->dynticks
);
698 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
699 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
700 atomic_read(&rdtp
->dynticks
) & 0x1);
701 rcu_dynticks_task_enter();
704 * It is illegal to enter an extended quiescent state while
705 * in an RCU read-side critical section.
707 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map
),
708 "Illegal idle entry in RCU read-side critical section.");
709 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
),
710 "Illegal idle entry in RCU-bh read-side critical section.");
711 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map
),
712 "Illegal idle entry in RCU-sched read-side critical section.");
716 * Enter an RCU extended quiescent state, which can be either the
717 * idle loop or adaptive-tickless usermode execution.
719 static void rcu_eqs_enter(bool user
)
722 struct rcu_dynticks
*rdtp
;
724 rdtp
= this_cpu_ptr(&rcu_dynticks
);
725 oldval
= rdtp
->dynticks_nesting
;
726 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
727 (oldval
& DYNTICK_TASK_NEST_MASK
) == 0);
728 if ((oldval
& DYNTICK_TASK_NEST_MASK
) == DYNTICK_TASK_NEST_VALUE
) {
729 rdtp
->dynticks_nesting
= 0;
730 rcu_eqs_enter_common(oldval
, user
);
732 rdtp
->dynticks_nesting
-= DYNTICK_TASK_NEST_VALUE
;
737 * rcu_idle_enter - inform RCU that current CPU is entering idle
739 * Enter idle mode, in other words, -leave- the mode in which RCU
740 * read-side critical sections can occur. (Though RCU read-side
741 * critical sections can occur in irq handlers in idle, a possibility
742 * handled by irq_enter() and irq_exit().)
744 * We crowbar the ->dynticks_nesting field to zero to allow for
745 * the possibility of usermode upcalls having messed up our count
746 * of interrupt nesting level during the prior busy period.
748 void rcu_idle_enter(void)
752 local_irq_save(flags
);
753 rcu_eqs_enter(false);
754 rcu_sysidle_enter(0);
755 local_irq_restore(flags
);
757 EXPORT_SYMBOL_GPL(rcu_idle_enter
);
759 #ifdef CONFIG_NO_HZ_FULL
761 * rcu_user_enter - inform RCU that we are resuming userspace.
763 * Enter RCU idle mode right before resuming userspace. No use of RCU
764 * is permitted between this call and rcu_user_exit(). This way the
765 * CPU doesn't need to maintain the tick for RCU maintenance purposes
766 * when the CPU runs in userspace.
768 void rcu_user_enter(void)
772 #endif /* CONFIG_NO_HZ_FULL */
775 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
777 * Exit from an interrupt handler, which might possibly result in entering
778 * idle mode, in other words, leaving the mode in which read-side critical
779 * sections can occur. The caller must have disabled interrupts.
781 * This code assumes that the idle loop never does anything that might
782 * result in unbalanced calls to irq_enter() and irq_exit(). If your
783 * architecture violates this assumption, RCU will give you what you
784 * deserve, good and hard. But very infrequently and irreproducibly.
786 * Use things like work queues to work around this limitation.
788 * You have been warned.
790 void rcu_irq_exit(void)
793 struct rcu_dynticks
*rdtp
;
795 rdtp
= this_cpu_ptr(&rcu_dynticks
);
797 /* Page faults can happen in NMI handlers, so check... */
798 if (READ_ONCE(rdtp
->dynticks_nmi_nesting
))
801 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
802 oldval
= rdtp
->dynticks_nesting
;
803 rdtp
->dynticks_nesting
--;
804 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
805 rdtp
->dynticks_nesting
< 0);
806 if (rdtp
->dynticks_nesting
)
807 trace_rcu_dyntick(TPS("--="), oldval
, rdtp
->dynticks_nesting
);
809 rcu_eqs_enter_common(oldval
, true);
810 rcu_sysidle_enter(1);
814 * Wrapper for rcu_irq_exit() where interrupts are enabled.
816 void rcu_irq_exit_irqson(void)
820 local_irq_save(flags
);
822 local_irq_restore(flags
);
826 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
828 * If the new value of the ->dynticks_nesting counter was previously zero,
829 * we really have exited idle, and must do the appropriate accounting.
830 * The caller must have disabled interrupts.
832 static void rcu_eqs_exit_common(long long oldval
, int user
)
834 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
836 rcu_dynticks_task_exit();
837 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
838 atomic_inc(&rdtp
->dynticks
);
839 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
840 smp_mb__after_atomic(); /* See above. */
841 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
842 !(atomic_read(&rdtp
->dynticks
) & 0x1));
843 rcu_cleanup_after_idle();
844 trace_rcu_dyntick(TPS("End"), oldval
, rdtp
->dynticks_nesting
);
845 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
846 !user
&& !is_idle_task(current
)) {
847 struct task_struct
*idle __maybe_unused
=
848 idle_task(smp_processor_id());
850 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
851 oldval
, rdtp
->dynticks_nesting
);
852 rcu_ftrace_dump(DUMP_ORIG
);
853 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
854 current
->pid
, current
->comm
,
855 idle
->pid
, idle
->comm
); /* must be idle task! */
860 * Exit an RCU extended quiescent state, which can be either the
861 * idle loop or adaptive-tickless usermode execution.
863 static void rcu_eqs_exit(bool user
)
865 struct rcu_dynticks
*rdtp
;
868 rdtp
= this_cpu_ptr(&rcu_dynticks
);
869 oldval
= rdtp
->dynticks_nesting
;
870 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) && oldval
< 0);
871 if (oldval
& DYNTICK_TASK_NEST_MASK
) {
872 rdtp
->dynticks_nesting
+= DYNTICK_TASK_NEST_VALUE
;
874 rdtp
->dynticks_nesting
= DYNTICK_TASK_EXIT_IDLE
;
875 rcu_eqs_exit_common(oldval
, user
);
880 * rcu_idle_exit - inform RCU that current CPU is leaving idle
882 * Exit idle mode, in other words, -enter- the mode in which RCU
883 * read-side critical sections can occur.
885 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
886 * allow for the possibility of usermode upcalls messing up our count
887 * of interrupt nesting level during the busy period that is just
890 void rcu_idle_exit(void)
894 local_irq_save(flags
);
897 local_irq_restore(flags
);
899 EXPORT_SYMBOL_GPL(rcu_idle_exit
);
901 #ifdef CONFIG_NO_HZ_FULL
903 * rcu_user_exit - inform RCU that we are exiting userspace.
905 * Exit RCU idle mode while entering the kernel because it can
906 * run a RCU read side critical section anytime.
908 void rcu_user_exit(void)
912 #endif /* CONFIG_NO_HZ_FULL */
915 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
917 * Enter an interrupt handler, which might possibly result in exiting
918 * idle mode, in other words, entering the mode in which read-side critical
919 * sections can occur. The caller must have disabled interrupts.
921 * Note that the Linux kernel is fully capable of entering an interrupt
922 * handler that it never exits, for example when doing upcalls to
923 * user mode! This code assumes that the idle loop never does upcalls to
924 * user mode. If your architecture does do upcalls from the idle loop (or
925 * does anything else that results in unbalanced calls to the irq_enter()
926 * and irq_exit() functions), RCU will give you what you deserve, good
927 * and hard. But very infrequently and irreproducibly.
929 * Use things like work queues to work around this limitation.
931 * You have been warned.
933 void rcu_irq_enter(void)
935 struct rcu_dynticks
*rdtp
;
938 rdtp
= this_cpu_ptr(&rcu_dynticks
);
940 /* Page faults can happen in NMI handlers, so check... */
941 if (READ_ONCE(rdtp
->dynticks_nmi_nesting
))
944 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
945 oldval
= rdtp
->dynticks_nesting
;
946 rdtp
->dynticks_nesting
++;
947 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
948 rdtp
->dynticks_nesting
== 0);
950 trace_rcu_dyntick(TPS("++="), oldval
, rdtp
->dynticks_nesting
);
952 rcu_eqs_exit_common(oldval
, true);
957 * Wrapper for rcu_irq_enter() where interrupts are enabled.
959 void rcu_irq_enter_irqson(void)
963 local_irq_save(flags
);
965 local_irq_restore(flags
);
969 * rcu_nmi_enter - inform RCU of entry to NMI context
971 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
972 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
973 * that the CPU is active. This implementation permits nested NMIs, as
974 * long as the nesting level does not overflow an int. (You will probably
975 * run out of stack space first.)
977 void rcu_nmi_enter(void)
979 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
982 /* Complain about underflow. */
983 WARN_ON_ONCE(rdtp
->dynticks_nmi_nesting
< 0);
986 * If idle from RCU viewpoint, atomically increment ->dynticks
987 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
988 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
989 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
990 * to be in the outermost NMI handler that interrupted an RCU-idle
991 * period (observation due to Andy Lutomirski).
993 if (!(atomic_read(&rdtp
->dynticks
) & 0x1)) {
994 smp_mb__before_atomic(); /* Force delay from prior write. */
995 atomic_inc(&rdtp
->dynticks
);
996 /* atomic_inc() before later RCU read-side crit sects */
997 smp_mb__after_atomic(); /* See above. */
998 WARN_ON_ONCE(!(atomic_read(&rdtp
->dynticks
) & 0x1));
1001 rdtp
->dynticks_nmi_nesting
+= incby
;
1006 * rcu_nmi_exit - inform RCU of exit from NMI context
1008 * If we are returning from the outermost NMI handler that interrupted an
1009 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1010 * to let the RCU grace-period handling know that the CPU is back to
1013 void rcu_nmi_exit(void)
1015 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
1018 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1019 * (We are exiting an NMI handler, so RCU better be paying attention
1022 WARN_ON_ONCE(rdtp
->dynticks_nmi_nesting
<= 0);
1023 WARN_ON_ONCE(!(atomic_read(&rdtp
->dynticks
) & 0x1));
1026 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1027 * leave it in non-RCU-idle state.
1029 if (rdtp
->dynticks_nmi_nesting
!= 1) {
1030 rdtp
->dynticks_nmi_nesting
-= 2;
1034 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1035 rdtp
->dynticks_nmi_nesting
= 0;
1036 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
1037 smp_mb__before_atomic(); /* See above. */
1038 atomic_inc(&rdtp
->dynticks
);
1039 smp_mb__after_atomic(); /* Force delay to next write. */
1040 WARN_ON_ONCE(atomic_read(&rdtp
->dynticks
) & 0x1);
1044 * __rcu_is_watching - are RCU read-side critical sections safe?
1046 * Return true if RCU is watching the running CPU, which means that
1047 * this CPU can safely enter RCU read-side critical sections. Unlike
1048 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
1049 * least disabled preemption.
1051 bool notrace
__rcu_is_watching(void)
1053 return atomic_read(this_cpu_ptr(&rcu_dynticks
.dynticks
)) & 0x1;
1057 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1059 * If the current CPU is in its idle loop and is neither in an interrupt
1060 * or NMI handler, return true.
1062 bool notrace
rcu_is_watching(void)
1066 preempt_disable_notrace();
1067 ret
= __rcu_is_watching();
1068 preempt_enable_notrace();
1071 EXPORT_SYMBOL_GPL(rcu_is_watching
);
1073 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1076 * Is the current CPU online? Disable preemption to avoid false positives
1077 * that could otherwise happen due to the current CPU number being sampled,
1078 * this task being preempted, its old CPU being taken offline, resuming
1079 * on some other CPU, then determining that its old CPU is now offline.
1080 * It is OK to use RCU on an offline processor during initial boot, hence
1081 * the check for rcu_scheduler_fully_active. Note also that it is OK
1082 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1083 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1084 * offline to continue to use RCU for one jiffy after marking itself
1085 * offline in the cpu_online_mask. This leniency is necessary given the
1086 * non-atomic nature of the online and offline processing, for example,
1087 * the fact that a CPU enters the scheduler after completing the teardown
1090 * This is also why RCU internally marks CPUs online during in the
1091 * preparation phase and offline after the CPU has been taken down.
1093 * Disable checking if in an NMI handler because we cannot safely report
1094 * errors from NMI handlers anyway.
1096 bool rcu_lockdep_current_cpu_online(void)
1098 struct rcu_data
*rdp
;
1099 struct rcu_node
*rnp
;
1105 rdp
= this_cpu_ptr(&rcu_sched_data
);
1107 ret
= (rdp
->grpmask
& rcu_rnp_online_cpus(rnp
)) ||
1108 !rcu_scheduler_fully_active
;
1112 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online
);
1114 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1117 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1119 * If the current CPU is idle or running at a first-level (not nested)
1120 * interrupt from idle, return true. The caller must have at least
1121 * disabled preemption.
1123 static int rcu_is_cpu_rrupt_from_idle(void)
1125 return __this_cpu_read(rcu_dynticks
.dynticks_nesting
) <= 1;
1129 * Snapshot the specified CPU's dynticks counter so that we can later
1130 * credit them with an implicit quiescent state. Return 1 if this CPU
1131 * is in dynticks idle mode, which is an extended quiescent state.
1133 static int dyntick_save_progress_counter(struct rcu_data
*rdp
,
1134 bool *isidle
, unsigned long *maxj
)
1136 rdp
->dynticks_snap
= atomic_add_return(0, &rdp
->dynticks
->dynticks
);
1137 rcu_sysidle_check_cpu(rdp
, isidle
, maxj
);
1138 if ((rdp
->dynticks_snap
& 0x1) == 0) {
1139 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, TPS("dti"));
1140 if (ULONG_CMP_LT(READ_ONCE(rdp
->gpnum
) + ULONG_MAX
/ 4,
1141 rdp
->mynode
->gpnum
))
1142 WRITE_ONCE(rdp
->gpwrap
, true);
1149 * Return true if the specified CPU has passed through a quiescent
1150 * state by virtue of being in or having passed through an dynticks
1151 * idle state since the last call to dyntick_save_progress_counter()
1152 * for this same CPU, or by virtue of having been offline.
1154 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
,
1155 bool *isidle
, unsigned long *maxj
)
1161 curr
= (unsigned int)atomic_add_return(0, &rdp
->dynticks
->dynticks
);
1162 snap
= (unsigned int)rdp
->dynticks_snap
;
1165 * If the CPU passed through or entered a dynticks idle phase with
1166 * no active irq/NMI handlers, then we can safely pretend that the CPU
1167 * already acknowledged the request to pass through a quiescent
1168 * state. Either way, that CPU cannot possibly be in an RCU
1169 * read-side critical section that started before the beginning
1170 * of the current RCU grace period.
1172 if ((curr
& 0x1) == 0 || UINT_CMP_GE(curr
, snap
+ 2)) {
1173 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, TPS("dti"));
1174 rdp
->dynticks_fqs
++;
1179 * Check for the CPU being offline, but only if the grace period
1180 * is old enough. We don't need to worry about the CPU changing
1181 * state: If we see it offline even once, it has been through a
1184 * The reason for insisting that the grace period be at least
1185 * one jiffy old is that CPUs that are not quite online and that
1186 * have just gone offline can still execute RCU read-side critical
1189 if (ULONG_CMP_GE(rdp
->rsp
->gp_start
+ 2, jiffies
))
1190 return 0; /* Grace period is not old enough. */
1192 if (cpu_is_offline(rdp
->cpu
)) {
1193 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, TPS("ofl"));
1199 * A CPU running for an extended time within the kernel can
1200 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1201 * even context-switching back and forth between a pair of
1202 * in-kernel CPU-bound tasks cannot advance grace periods.
1203 * So if the grace period is old enough, make the CPU pay attention.
1204 * Note that the unsynchronized assignments to the per-CPU
1205 * rcu_sched_qs_mask variable are safe. Yes, setting of
1206 * bits can be lost, but they will be set again on the next
1207 * force-quiescent-state pass. So lost bit sets do not result
1208 * in incorrect behavior, merely in a grace period lasting
1209 * a few jiffies longer than it might otherwise. Because
1210 * there are at most four threads involved, and because the
1211 * updates are only once every few jiffies, the probability of
1212 * lossage (and thus of slight grace-period extension) is
1215 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1216 * is set too high, we override with half of the RCU CPU stall
1219 rcrmp
= &per_cpu(rcu_sched_qs_mask
, rdp
->cpu
);
1220 if (ULONG_CMP_GE(jiffies
,
1221 rdp
->rsp
->gp_start
+ jiffies_till_sched_qs
) ||
1222 ULONG_CMP_GE(jiffies
, rdp
->rsp
->jiffies_resched
)) {
1223 if (!(READ_ONCE(*rcrmp
) & rdp
->rsp
->flavor_mask
)) {
1224 WRITE_ONCE(rdp
->cond_resched_completed
,
1225 READ_ONCE(rdp
->mynode
->completed
));
1226 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1228 READ_ONCE(*rcrmp
) + rdp
->rsp
->flavor_mask
);
1230 rdp
->rsp
->jiffies_resched
+= 5; /* Re-enable beating. */
1233 /* And if it has been a really long time, kick the CPU as well. */
1234 if (ULONG_CMP_GE(jiffies
,
1235 rdp
->rsp
->gp_start
+ 2 * jiffies_till_sched_qs
) ||
1236 ULONG_CMP_GE(jiffies
, rdp
->rsp
->gp_start
+ jiffies_till_sched_qs
))
1237 resched_cpu(rdp
->cpu
); /* Force CPU into scheduler. */
1242 static void record_gp_stall_check_time(struct rcu_state
*rsp
)
1244 unsigned long j
= jiffies
;
1248 smp_wmb(); /* Record start time before stall time. */
1249 j1
= rcu_jiffies_till_stall_check();
1250 WRITE_ONCE(rsp
->jiffies_stall
, j
+ j1
);
1251 rsp
->jiffies_resched
= j
+ j1
/ 2;
1252 rsp
->n_force_qs_gpstart
= READ_ONCE(rsp
->n_force_qs
);
1256 * Convert a ->gp_state value to a character string.
1258 static const char *gp_state_getname(short gs
)
1260 if (gs
< 0 || gs
>= ARRAY_SIZE(gp_state_names
))
1262 return gp_state_names
[gs
];
1266 * Complain about starvation of grace-period kthread.
1268 static void rcu_check_gp_kthread_starvation(struct rcu_state
*rsp
)
1274 gpa
= READ_ONCE(rsp
->gp_activity
);
1275 if (j
- gpa
> 2 * HZ
) {
1276 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1278 rsp
->gpnum
, rsp
->completed
,
1280 gp_state_getname(rsp
->gp_state
), rsp
->gp_state
,
1281 rsp
->gp_kthread
? rsp
->gp_kthread
->state
: ~0);
1282 if (rsp
->gp_kthread
) {
1283 sched_show_task(rsp
->gp_kthread
);
1284 wake_up_process(rsp
->gp_kthread
);
1290 * Dump stacks of all tasks running on stalled CPUs.
1292 static void rcu_dump_cpu_stacks(struct rcu_state
*rsp
)
1295 unsigned long flags
;
1296 struct rcu_node
*rnp
;
1298 rcu_for_each_leaf_node(rsp
, rnp
) {
1299 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1300 if (rnp
->qsmask
!= 0) {
1301 for_each_leaf_node_possible_cpu(rnp
, cpu
)
1302 if (rnp
->qsmask
& leaf_node_cpu_bit(rnp
, cpu
))
1305 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1310 * If too much time has passed in the current grace period, and if
1311 * so configured, go kick the relevant kthreads.
1313 static void rcu_stall_kick_kthreads(struct rcu_state
*rsp
)
1317 if (!rcu_kick_kthreads
)
1319 j
= READ_ONCE(rsp
->jiffies_kick_kthreads
);
1320 if (time_after(jiffies
, j
) && rsp
->gp_kthread
) {
1321 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp
->name
);
1322 rcu_ftrace_dump(DUMP_ALL
);
1323 wake_up_process(rsp
->gp_kthread
);
1324 WRITE_ONCE(rsp
->jiffies_kick_kthreads
, j
+ HZ
);
1328 static inline void panic_on_rcu_stall(void)
1330 if (sysctl_panic_on_rcu_stall
)
1331 panic("RCU Stall\n");
1334 static void print_other_cpu_stall(struct rcu_state
*rsp
, unsigned long gpnum
)
1338 unsigned long flags
;
1342 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1345 /* Kick and suppress, if so configured. */
1346 rcu_stall_kick_kthreads(rsp
);
1347 if (rcu_cpu_stall_suppress
)
1350 /* Only let one CPU complain about others per time interval. */
1352 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1353 delta
= jiffies
- READ_ONCE(rsp
->jiffies_stall
);
1354 if (delta
< RCU_STALL_RAT_DELAY
|| !rcu_gp_in_progress(rsp
)) {
1355 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1358 WRITE_ONCE(rsp
->jiffies_stall
,
1359 jiffies
+ 3 * rcu_jiffies_till_stall_check() + 3);
1360 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1363 * OK, time to rat on our buddy...
1364 * See Documentation/RCU/stallwarn.txt for info on how to debug
1365 * RCU CPU stall warnings.
1367 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1369 print_cpu_stall_info_begin();
1370 rcu_for_each_leaf_node(rsp
, rnp
) {
1371 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1372 ndetected
+= rcu_print_task_stall(rnp
);
1373 if (rnp
->qsmask
!= 0) {
1374 for_each_leaf_node_possible_cpu(rnp
, cpu
)
1375 if (rnp
->qsmask
& leaf_node_cpu_bit(rnp
, cpu
)) {
1376 print_cpu_stall_info(rsp
, cpu
);
1380 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1383 print_cpu_stall_info_end();
1384 for_each_possible_cpu(cpu
)
1385 totqlen
+= per_cpu_ptr(rsp
->rda
, cpu
)->qlen
;
1386 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1387 smp_processor_id(), (long)(jiffies
- rsp
->gp_start
),
1388 (long)rsp
->gpnum
, (long)rsp
->completed
, totqlen
);
1390 rcu_dump_cpu_stacks(rsp
);
1392 if (READ_ONCE(rsp
->gpnum
) != gpnum
||
1393 READ_ONCE(rsp
->completed
) == gpnum
) {
1394 pr_err("INFO: Stall ended before state dump start\n");
1397 gpa
= READ_ONCE(rsp
->gp_activity
);
1398 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1399 rsp
->name
, j
- gpa
, j
, gpa
,
1400 jiffies_till_next_fqs
,
1401 rcu_get_root(rsp
)->qsmask
);
1402 /* In this case, the current CPU might be at fault. */
1403 sched_show_task(current
);
1407 /* Complain about tasks blocking the grace period. */
1408 rcu_print_detail_task_stall(rsp
);
1410 rcu_check_gp_kthread_starvation(rsp
);
1412 panic_on_rcu_stall();
1414 force_quiescent_state(rsp
); /* Kick them all. */
1417 static void print_cpu_stall(struct rcu_state
*rsp
)
1420 unsigned long flags
;
1421 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1424 /* Kick and suppress, if so configured. */
1425 rcu_stall_kick_kthreads(rsp
);
1426 if (rcu_cpu_stall_suppress
)
1430 * OK, time to rat on ourselves...
1431 * See Documentation/RCU/stallwarn.txt for info on how to debug
1432 * RCU CPU stall warnings.
1434 pr_err("INFO: %s self-detected stall on CPU", rsp
->name
);
1435 print_cpu_stall_info_begin();
1436 print_cpu_stall_info(rsp
, smp_processor_id());
1437 print_cpu_stall_info_end();
1438 for_each_possible_cpu(cpu
)
1439 totqlen
+= per_cpu_ptr(rsp
->rda
, cpu
)->qlen
;
1440 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1441 jiffies
- rsp
->gp_start
,
1442 (long)rsp
->gpnum
, (long)rsp
->completed
, totqlen
);
1444 rcu_check_gp_kthread_starvation(rsp
);
1446 rcu_dump_cpu_stacks(rsp
);
1448 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1449 if (ULONG_CMP_GE(jiffies
, READ_ONCE(rsp
->jiffies_stall
)))
1450 WRITE_ONCE(rsp
->jiffies_stall
,
1451 jiffies
+ 3 * rcu_jiffies_till_stall_check() + 3);
1452 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1454 panic_on_rcu_stall();
1457 * Attempt to revive the RCU machinery by forcing a context switch.
1459 * A context switch would normally allow the RCU state machine to make
1460 * progress and it could be we're stuck in kernel space without context
1461 * switches for an entirely unreasonable amount of time.
1463 resched_cpu(smp_processor_id());
1466 static void check_cpu_stall(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1468 unsigned long completed
;
1469 unsigned long gpnum
;
1473 struct rcu_node
*rnp
;
1475 if ((rcu_cpu_stall_suppress
&& !rcu_kick_kthreads
) ||
1476 !rcu_gp_in_progress(rsp
))
1478 rcu_stall_kick_kthreads(rsp
);
1482 * Lots of memory barriers to reject false positives.
1484 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1485 * then rsp->gp_start, and finally rsp->completed. These values
1486 * are updated in the opposite order with memory barriers (or
1487 * equivalent) during grace-period initialization and cleanup.
1488 * Now, a false positive can occur if we get an new value of
1489 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1490 * the memory barriers, the only way that this can happen is if one
1491 * grace period ends and another starts between these two fetches.
1492 * Detect this by comparing rsp->completed with the previous fetch
1495 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1496 * and rsp->gp_start suffice to forestall false positives.
1498 gpnum
= READ_ONCE(rsp
->gpnum
);
1499 smp_rmb(); /* Pick up ->gpnum first... */
1500 js
= READ_ONCE(rsp
->jiffies_stall
);
1501 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1502 gps
= READ_ONCE(rsp
->gp_start
);
1503 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1504 completed
= READ_ONCE(rsp
->completed
);
1505 if (ULONG_CMP_GE(completed
, gpnum
) ||
1506 ULONG_CMP_LT(j
, js
) ||
1507 ULONG_CMP_GE(gps
, js
))
1508 return; /* No stall or GP completed since entering function. */
1510 if (rcu_gp_in_progress(rsp
) &&
1511 (READ_ONCE(rnp
->qsmask
) & rdp
->grpmask
)) {
1513 /* We haven't checked in, so go dump stack. */
1514 print_cpu_stall(rsp
);
1516 } else if (rcu_gp_in_progress(rsp
) &&
1517 ULONG_CMP_GE(j
, js
+ RCU_STALL_RAT_DELAY
)) {
1519 /* They had a few time units to dump stack, so complain. */
1520 print_other_cpu_stall(rsp
, gpnum
);
1525 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1527 * Set the stall-warning timeout way off into the future, thus preventing
1528 * any RCU CPU stall-warning messages from appearing in the current set of
1529 * RCU grace periods.
1531 * The caller must disable hard irqs.
1533 void rcu_cpu_stall_reset(void)
1535 struct rcu_state
*rsp
;
1537 for_each_rcu_flavor(rsp
)
1538 WRITE_ONCE(rsp
->jiffies_stall
, jiffies
+ ULONG_MAX
/ 2);
1542 * Initialize the specified rcu_data structure's default callback list
1543 * to empty. The default callback list is the one that is not used by
1544 * no-callbacks CPUs.
1546 static void init_default_callback_list(struct rcu_data
*rdp
)
1550 rdp
->nxtlist
= NULL
;
1551 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
1552 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
1556 * Initialize the specified rcu_data structure's callback list to empty.
1558 static void init_callback_list(struct rcu_data
*rdp
)
1560 if (init_nocb_callback_list(rdp
))
1562 init_default_callback_list(rdp
);
1566 * Determine the value that ->completed will have at the end of the
1567 * next subsequent grace period. This is used to tag callbacks so that
1568 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1569 * been dyntick-idle for an extended period with callbacks under the
1570 * influence of RCU_FAST_NO_HZ.
1572 * The caller must hold rnp->lock with interrupts disabled.
1574 static unsigned long rcu_cbs_completed(struct rcu_state
*rsp
,
1575 struct rcu_node
*rnp
)
1578 * If RCU is idle, we just wait for the next grace period.
1579 * But we can only be sure that RCU is idle if we are looking
1580 * at the root rcu_node structure -- otherwise, a new grace
1581 * period might have started, but just not yet gotten around
1582 * to initializing the current non-root rcu_node structure.
1584 if (rcu_get_root(rsp
) == rnp
&& rnp
->gpnum
== rnp
->completed
)
1585 return rnp
->completed
+ 1;
1588 * Otherwise, wait for a possible partial grace period and
1589 * then the subsequent full grace period.
1591 return rnp
->completed
+ 2;
1595 * Trace-event helper function for rcu_start_future_gp() and
1596 * rcu_nocb_wait_gp().
1598 static void trace_rcu_future_gp(struct rcu_node
*rnp
, struct rcu_data
*rdp
,
1599 unsigned long c
, const char *s
)
1601 trace_rcu_future_grace_period(rdp
->rsp
->name
, rnp
->gpnum
,
1602 rnp
->completed
, c
, rnp
->level
,
1603 rnp
->grplo
, rnp
->grphi
, s
);
1607 * Start some future grace period, as needed to handle newly arrived
1608 * callbacks. The required future grace periods are recorded in each
1609 * rcu_node structure's ->need_future_gp field. Returns true if there
1610 * is reason to awaken the grace-period kthread.
1612 * The caller must hold the specified rcu_node structure's ->lock.
1614 static bool __maybe_unused
1615 rcu_start_future_gp(struct rcu_node
*rnp
, struct rcu_data
*rdp
,
1616 unsigned long *c_out
)
1621 struct rcu_node
*rnp_root
= rcu_get_root(rdp
->rsp
);
1624 * Pick up grace-period number for new callbacks. If this
1625 * grace period is already marked as needed, return to the caller.
1627 c
= rcu_cbs_completed(rdp
->rsp
, rnp
);
1628 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startleaf"));
1629 if (rnp
->need_future_gp
[c
& 0x1]) {
1630 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Prestartleaf"));
1635 * If either this rcu_node structure or the root rcu_node structure
1636 * believe that a grace period is in progress, then we must wait
1637 * for the one following, which is in "c". Because our request
1638 * will be noticed at the end of the current grace period, we don't
1639 * need to explicitly start one. We only do the lockless check
1640 * of rnp_root's fields if the current rcu_node structure thinks
1641 * there is no grace period in flight, and because we hold rnp->lock,
1642 * the only possible change is when rnp_root's two fields are
1643 * equal, in which case rnp_root->gpnum might be concurrently
1644 * incremented. But that is OK, as it will just result in our
1645 * doing some extra useless work.
1647 if (rnp
->gpnum
!= rnp
->completed
||
1648 READ_ONCE(rnp_root
->gpnum
) != READ_ONCE(rnp_root
->completed
)) {
1649 rnp
->need_future_gp
[c
& 0x1]++;
1650 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startedleaf"));
1655 * There might be no grace period in progress. If we don't already
1656 * hold it, acquire the root rcu_node structure's lock in order to
1657 * start one (if needed).
1659 if (rnp
!= rnp_root
)
1660 raw_spin_lock_rcu_node(rnp_root
);
1663 * Get a new grace-period number. If there really is no grace
1664 * period in progress, it will be smaller than the one we obtained
1665 * earlier. Adjust callbacks as needed. Note that even no-CBs
1666 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1668 c
= rcu_cbs_completed(rdp
->rsp
, rnp_root
);
1669 for (i
= RCU_DONE_TAIL
; i
< RCU_NEXT_TAIL
; i
++)
1670 if (ULONG_CMP_LT(c
, rdp
->nxtcompleted
[i
]))
1671 rdp
->nxtcompleted
[i
] = c
;
1674 * If the needed for the required grace period is already
1675 * recorded, trace and leave.
1677 if (rnp_root
->need_future_gp
[c
& 0x1]) {
1678 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Prestartedroot"));
1682 /* Record the need for the future grace period. */
1683 rnp_root
->need_future_gp
[c
& 0x1]++;
1685 /* If a grace period is not already in progress, start one. */
1686 if (rnp_root
->gpnum
!= rnp_root
->completed
) {
1687 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startedleafroot"));
1689 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startedroot"));
1690 ret
= rcu_start_gp_advanced(rdp
->rsp
, rnp_root
, rdp
);
1693 if (rnp
!= rnp_root
)
1694 raw_spin_unlock_rcu_node(rnp_root
);
1702 * Clean up any old requests for the just-ended grace period. Also return
1703 * whether any additional grace periods have been requested. Also invoke
1704 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1705 * waiting for this grace period to complete.
1707 static int rcu_future_gp_cleanup(struct rcu_state
*rsp
, struct rcu_node
*rnp
)
1709 int c
= rnp
->completed
;
1711 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
1713 rnp
->need_future_gp
[c
& 0x1] = 0;
1714 needmore
= rnp
->need_future_gp
[(c
+ 1) & 0x1];
1715 trace_rcu_future_gp(rnp
, rdp
, c
,
1716 needmore
? TPS("CleanupMore") : TPS("Cleanup"));
1721 * Awaken the grace-period kthread for the specified flavor of RCU.
1722 * Don't do a self-awaken, and don't bother awakening when there is
1723 * nothing for the grace-period kthread to do (as in several CPUs
1724 * raced to awaken, and we lost), and finally don't try to awaken
1725 * a kthread that has not yet been created.
1727 static void rcu_gp_kthread_wake(struct rcu_state
*rsp
)
1729 if (current
== rsp
->gp_kthread
||
1730 !READ_ONCE(rsp
->gp_flags
) ||
1733 swake_up(&rsp
->gp_wq
);
1737 * If there is room, assign a ->completed number to any callbacks on
1738 * this CPU that have not already been assigned. Also accelerate any
1739 * callbacks that were previously assigned a ->completed number that has
1740 * since proven to be too conservative, which can happen if callbacks get
1741 * assigned a ->completed number while RCU is idle, but with reference to
1742 * a non-root rcu_node structure. This function is idempotent, so it does
1743 * not hurt to call it repeatedly. Returns an flag saying that we should
1744 * awaken the RCU grace-period kthread.
1746 * The caller must hold rnp->lock with interrupts disabled.
1748 static bool rcu_accelerate_cbs(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1749 struct rcu_data
*rdp
)
1755 /* If the CPU has no callbacks, nothing to do. */
1756 if (!rdp
->nxttail
[RCU_NEXT_TAIL
] || !*rdp
->nxttail
[RCU_DONE_TAIL
])
1760 * Starting from the sublist containing the callbacks most
1761 * recently assigned a ->completed number and working down, find the
1762 * first sublist that is not assignable to an upcoming grace period.
1763 * Such a sublist has something in it (first two tests) and has
1764 * a ->completed number assigned that will complete sooner than
1765 * the ->completed number for newly arrived callbacks (last test).
1767 * The key point is that any later sublist can be assigned the
1768 * same ->completed number as the newly arrived callbacks, which
1769 * means that the callbacks in any of these later sublist can be
1770 * grouped into a single sublist, whether or not they have already
1771 * been assigned a ->completed number.
1773 c
= rcu_cbs_completed(rsp
, rnp
);
1774 for (i
= RCU_NEXT_TAIL
- 1; i
> RCU_DONE_TAIL
; i
--)
1775 if (rdp
->nxttail
[i
] != rdp
->nxttail
[i
- 1] &&
1776 !ULONG_CMP_GE(rdp
->nxtcompleted
[i
], c
))
1780 * If there are no sublist for unassigned callbacks, leave.
1781 * At the same time, advance "i" one sublist, so that "i" will
1782 * index into the sublist where all the remaining callbacks should
1785 if (++i
>= RCU_NEXT_TAIL
)
1789 * Assign all subsequent callbacks' ->completed number to the next
1790 * full grace period and group them all in the sublist initially
1793 for (; i
<= RCU_NEXT_TAIL
; i
++) {
1794 rdp
->nxttail
[i
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
1795 rdp
->nxtcompleted
[i
] = c
;
1797 /* Record any needed additional grace periods. */
1798 ret
= rcu_start_future_gp(rnp
, rdp
, NULL
);
1800 /* Trace depending on how much we were able to accelerate. */
1801 if (!*rdp
->nxttail
[RCU_WAIT_TAIL
])
1802 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("AccWaitCB"));
1804 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("AccReadyCB"));
1809 * Move any callbacks whose grace period has completed to the
1810 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1811 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1812 * sublist. This function is idempotent, so it does not hurt to
1813 * invoke it repeatedly. As long as it is not invoked -too- often...
1814 * Returns true if the RCU grace-period kthread needs to be awakened.
1816 * The caller must hold rnp->lock with interrupts disabled.
1818 static bool rcu_advance_cbs(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1819 struct rcu_data
*rdp
)
1823 /* If the CPU has no callbacks, nothing to do. */
1824 if (!rdp
->nxttail
[RCU_NEXT_TAIL
] || !*rdp
->nxttail
[RCU_DONE_TAIL
])
1828 * Find all callbacks whose ->completed numbers indicate that they
1829 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1831 for (i
= RCU_WAIT_TAIL
; i
< RCU_NEXT_TAIL
; i
++) {
1832 if (ULONG_CMP_LT(rnp
->completed
, rdp
->nxtcompleted
[i
]))
1834 rdp
->nxttail
[RCU_DONE_TAIL
] = rdp
->nxttail
[i
];
1836 /* Clean up any sublist tail pointers that were misordered above. */
1837 for (j
= RCU_WAIT_TAIL
; j
< i
; j
++)
1838 rdp
->nxttail
[j
] = rdp
->nxttail
[RCU_DONE_TAIL
];
1840 /* Copy down callbacks to fill in empty sublists. */
1841 for (j
= RCU_WAIT_TAIL
; i
< RCU_NEXT_TAIL
; i
++, j
++) {
1842 if (rdp
->nxttail
[j
] == rdp
->nxttail
[RCU_NEXT_TAIL
])
1844 rdp
->nxttail
[j
] = rdp
->nxttail
[i
];
1845 rdp
->nxtcompleted
[j
] = rdp
->nxtcompleted
[i
];
1848 /* Classify any remaining callbacks. */
1849 return rcu_accelerate_cbs(rsp
, rnp
, rdp
);
1853 * Update CPU-local rcu_data state to record the beginnings and ends of
1854 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1855 * structure corresponding to the current CPU, and must have irqs disabled.
1856 * Returns true if the grace-period kthread needs to be awakened.
1858 static bool __note_gp_changes(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1859 struct rcu_data
*rdp
)
1864 /* Handle the ends of any preceding grace periods first. */
1865 if (rdp
->completed
== rnp
->completed
&&
1866 !unlikely(READ_ONCE(rdp
->gpwrap
))) {
1868 /* No grace period end, so just accelerate recent callbacks. */
1869 ret
= rcu_accelerate_cbs(rsp
, rnp
, rdp
);
1873 /* Advance callbacks. */
1874 ret
= rcu_advance_cbs(rsp
, rnp
, rdp
);
1876 /* Remember that we saw this grace-period completion. */
1877 rdp
->completed
= rnp
->completed
;
1878 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("cpuend"));
1881 if (rdp
->gpnum
!= rnp
->gpnum
|| unlikely(READ_ONCE(rdp
->gpwrap
))) {
1883 * If the current grace period is waiting for this CPU,
1884 * set up to detect a quiescent state, otherwise don't
1885 * go looking for one.
1887 rdp
->gpnum
= rnp
->gpnum
;
1888 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("cpustart"));
1889 need_gp
= !!(rnp
->qsmask
& rdp
->grpmask
);
1890 rdp
->cpu_no_qs
.b
.norm
= need_gp
;
1891 rdp
->rcu_qs_ctr_snap
= __this_cpu_read(rcu_qs_ctr
);
1892 rdp
->core_needs_qs
= need_gp
;
1893 zero_cpu_stall_ticks(rdp
);
1894 WRITE_ONCE(rdp
->gpwrap
, false);
1899 static void note_gp_changes(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1901 unsigned long flags
;
1903 struct rcu_node
*rnp
;
1905 local_irq_save(flags
);
1907 if ((rdp
->gpnum
== READ_ONCE(rnp
->gpnum
) &&
1908 rdp
->completed
== READ_ONCE(rnp
->completed
) &&
1909 !unlikely(READ_ONCE(rdp
->gpwrap
))) || /* w/out lock. */
1910 !raw_spin_trylock_rcu_node(rnp
)) { /* irqs already off, so later. */
1911 local_irq_restore(flags
);
1914 needwake
= __note_gp_changes(rsp
, rnp
, rdp
);
1915 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1917 rcu_gp_kthread_wake(rsp
);
1920 static void rcu_gp_slow(struct rcu_state
*rsp
, int delay
)
1923 !(rsp
->gpnum
% (rcu_num_nodes
* PER_RCU_NODE_PERIOD
* delay
)))
1924 schedule_timeout_uninterruptible(delay
);
1928 * Initialize a new grace period. Return false if no grace period required.
1930 static bool rcu_gp_init(struct rcu_state
*rsp
)
1932 unsigned long oldmask
;
1933 struct rcu_data
*rdp
;
1934 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1936 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
1937 raw_spin_lock_irq_rcu_node(rnp
);
1938 if (!READ_ONCE(rsp
->gp_flags
)) {
1939 /* Spurious wakeup, tell caller to go back to sleep. */
1940 raw_spin_unlock_irq_rcu_node(rnp
);
1943 WRITE_ONCE(rsp
->gp_flags
, 0); /* Clear all flags: New grace period. */
1945 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp
))) {
1947 * Grace period already in progress, don't start another.
1948 * Not supposed to be able to happen.
1950 raw_spin_unlock_irq_rcu_node(rnp
);
1954 /* Advance to a new grace period and initialize state. */
1955 record_gp_stall_check_time(rsp
);
1956 /* Record GP times before starting GP, hence smp_store_release(). */
1957 smp_store_release(&rsp
->gpnum
, rsp
->gpnum
+ 1);
1958 trace_rcu_grace_period(rsp
->name
, rsp
->gpnum
, TPS("start"));
1959 raw_spin_unlock_irq_rcu_node(rnp
);
1962 * Apply per-leaf buffered online and offline operations to the
1963 * rcu_node tree. Note that this new grace period need not wait
1964 * for subsequent online CPUs, and that quiescent-state forcing
1965 * will handle subsequent offline CPUs.
1967 rcu_for_each_leaf_node(rsp
, rnp
) {
1968 rcu_gp_slow(rsp
, gp_preinit_delay
);
1969 raw_spin_lock_irq_rcu_node(rnp
);
1970 if (rnp
->qsmaskinit
== rnp
->qsmaskinitnext
&&
1971 !rnp
->wait_blkd_tasks
) {
1972 /* Nothing to do on this leaf rcu_node structure. */
1973 raw_spin_unlock_irq_rcu_node(rnp
);
1977 /* Record old state, apply changes to ->qsmaskinit field. */
1978 oldmask
= rnp
->qsmaskinit
;
1979 rnp
->qsmaskinit
= rnp
->qsmaskinitnext
;
1981 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1982 if (!oldmask
!= !rnp
->qsmaskinit
) {
1983 if (!oldmask
) /* First online CPU for this rcu_node. */
1984 rcu_init_new_rnp(rnp
);
1985 else if (rcu_preempt_has_tasks(rnp
)) /* blocked tasks */
1986 rnp
->wait_blkd_tasks
= true;
1987 else /* Last offline CPU and can propagate. */
1988 rcu_cleanup_dead_rnp(rnp
);
1992 * If all waited-on tasks from prior grace period are
1993 * done, and if all this rcu_node structure's CPUs are
1994 * still offline, propagate up the rcu_node tree and
1995 * clear ->wait_blkd_tasks. Otherwise, if one of this
1996 * rcu_node structure's CPUs has since come back online,
1997 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1998 * checks for this, so just call it unconditionally).
2000 if (rnp
->wait_blkd_tasks
&&
2001 (!rcu_preempt_has_tasks(rnp
) ||
2003 rnp
->wait_blkd_tasks
= false;
2004 rcu_cleanup_dead_rnp(rnp
);
2007 raw_spin_unlock_irq_rcu_node(rnp
);
2011 * Set the quiescent-state-needed bits in all the rcu_node
2012 * structures for all currently online CPUs in breadth-first order,
2013 * starting from the root rcu_node structure, relying on the layout
2014 * of the tree within the rsp->node[] array. Note that other CPUs
2015 * will access only the leaves of the hierarchy, thus seeing that no
2016 * grace period is in progress, at least until the corresponding
2017 * leaf node has been initialized.
2019 * The grace period cannot complete until the initialization
2020 * process finishes, because this kthread handles both.
2022 rcu_for_each_node_breadth_first(rsp
, rnp
) {
2023 rcu_gp_slow(rsp
, gp_init_delay
);
2024 raw_spin_lock_irq_rcu_node(rnp
);
2025 rdp
= this_cpu_ptr(rsp
->rda
);
2026 rcu_preempt_check_blocked_tasks(rnp
);
2027 rnp
->qsmask
= rnp
->qsmaskinit
;
2028 WRITE_ONCE(rnp
->gpnum
, rsp
->gpnum
);
2029 if (WARN_ON_ONCE(rnp
->completed
!= rsp
->completed
))
2030 WRITE_ONCE(rnp
->completed
, rsp
->completed
);
2031 if (rnp
== rdp
->mynode
)
2032 (void)__note_gp_changes(rsp
, rnp
, rdp
);
2033 rcu_preempt_boost_start_gp(rnp
);
2034 trace_rcu_grace_period_init(rsp
->name
, rnp
->gpnum
,
2035 rnp
->level
, rnp
->grplo
,
2036 rnp
->grphi
, rnp
->qsmask
);
2037 raw_spin_unlock_irq_rcu_node(rnp
);
2038 cond_resched_rcu_qs();
2039 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2046 * Helper function for wait_event_interruptible_timeout() wakeup
2047 * at force-quiescent-state time.
2049 static bool rcu_gp_fqs_check_wake(struct rcu_state
*rsp
, int *gfp
)
2051 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2053 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2054 *gfp
= READ_ONCE(rsp
->gp_flags
);
2055 if (*gfp
& RCU_GP_FLAG_FQS
)
2058 /* The current grace period has completed. */
2059 if (!READ_ONCE(rnp
->qsmask
) && !rcu_preempt_blocked_readers_cgp(rnp
))
2066 * Do one round of quiescent-state forcing.
2068 static void rcu_gp_fqs(struct rcu_state
*rsp
, bool first_time
)
2070 bool isidle
= false;
2072 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2074 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2077 /* Collect dyntick-idle snapshots. */
2078 if (is_sysidle_rcu_state(rsp
)) {
2080 maxj
= jiffies
- ULONG_MAX
/ 4;
2082 force_qs_rnp(rsp
, dyntick_save_progress_counter
,
2084 rcu_sysidle_report_gp(rsp
, isidle
, maxj
);
2086 /* Handle dyntick-idle and offline CPUs. */
2088 force_qs_rnp(rsp
, rcu_implicit_dynticks_qs
, &isidle
, &maxj
);
2090 /* Clear flag to prevent immediate re-entry. */
2091 if (READ_ONCE(rsp
->gp_flags
) & RCU_GP_FLAG_FQS
) {
2092 raw_spin_lock_irq_rcu_node(rnp
);
2093 WRITE_ONCE(rsp
->gp_flags
,
2094 READ_ONCE(rsp
->gp_flags
) & ~RCU_GP_FLAG_FQS
);
2095 raw_spin_unlock_irq_rcu_node(rnp
);
2100 * Clean up after the old grace period.
2102 static void rcu_gp_cleanup(struct rcu_state
*rsp
)
2104 unsigned long gp_duration
;
2105 bool needgp
= false;
2107 struct rcu_data
*rdp
;
2108 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2109 struct swait_queue_head
*sq
;
2111 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2112 raw_spin_lock_irq_rcu_node(rnp
);
2113 gp_duration
= jiffies
- rsp
->gp_start
;
2114 if (gp_duration
> rsp
->gp_max
)
2115 rsp
->gp_max
= gp_duration
;
2118 * We know the grace period is complete, but to everyone else
2119 * it appears to still be ongoing. But it is also the case
2120 * that to everyone else it looks like there is nothing that
2121 * they can do to advance the grace period. It is therefore
2122 * safe for us to drop the lock in order to mark the grace
2123 * period as completed in all of the rcu_node structures.
2125 raw_spin_unlock_irq_rcu_node(rnp
);
2128 * Propagate new ->completed value to rcu_node structures so
2129 * that other CPUs don't have to wait until the start of the next
2130 * grace period to process their callbacks. This also avoids
2131 * some nasty RCU grace-period initialization races by forcing
2132 * the end of the current grace period to be completely recorded in
2133 * all of the rcu_node structures before the beginning of the next
2134 * grace period is recorded in any of the rcu_node structures.
2136 rcu_for_each_node_breadth_first(rsp
, rnp
) {
2137 raw_spin_lock_irq_rcu_node(rnp
);
2138 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp
));
2139 WARN_ON_ONCE(rnp
->qsmask
);
2140 WRITE_ONCE(rnp
->completed
, rsp
->gpnum
);
2141 rdp
= this_cpu_ptr(rsp
->rda
);
2142 if (rnp
== rdp
->mynode
)
2143 needgp
= __note_gp_changes(rsp
, rnp
, rdp
) || needgp
;
2144 /* smp_mb() provided by prior unlock-lock pair. */
2145 nocb
+= rcu_future_gp_cleanup(rsp
, rnp
);
2146 sq
= rcu_nocb_gp_get(rnp
);
2147 raw_spin_unlock_irq_rcu_node(rnp
);
2148 rcu_nocb_gp_cleanup(sq
);
2149 cond_resched_rcu_qs();
2150 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2151 rcu_gp_slow(rsp
, gp_cleanup_delay
);
2153 rnp
= rcu_get_root(rsp
);
2154 raw_spin_lock_irq_rcu_node(rnp
); /* Order GP before ->completed update. */
2155 rcu_nocb_gp_set(rnp
, nocb
);
2157 /* Declare grace period done. */
2158 WRITE_ONCE(rsp
->completed
, rsp
->gpnum
);
2159 trace_rcu_grace_period(rsp
->name
, rsp
->completed
, TPS("end"));
2160 rsp
->gp_state
= RCU_GP_IDLE
;
2161 rdp
= this_cpu_ptr(rsp
->rda
);
2162 /* Advance CBs to reduce false positives below. */
2163 needgp
= rcu_advance_cbs(rsp
, rnp
, rdp
) || needgp
;
2164 if (needgp
|| cpu_needs_another_gp(rsp
, rdp
)) {
2165 WRITE_ONCE(rsp
->gp_flags
, RCU_GP_FLAG_INIT
);
2166 trace_rcu_grace_period(rsp
->name
,
2167 READ_ONCE(rsp
->gpnum
),
2170 raw_spin_unlock_irq_rcu_node(rnp
);
2174 * Body of kthread that handles grace periods.
2176 static int __noreturn
rcu_gp_kthread(void *arg
)
2182 struct rcu_state
*rsp
= arg
;
2183 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2185 rcu_bind_gp_kthread();
2188 /* Handle grace-period start. */
2190 trace_rcu_grace_period(rsp
->name
,
2191 READ_ONCE(rsp
->gpnum
),
2193 rsp
->gp_state
= RCU_GP_WAIT_GPS
;
2194 swait_event_interruptible(rsp
->gp_wq
,
2195 READ_ONCE(rsp
->gp_flags
) &
2197 rsp
->gp_state
= RCU_GP_DONE_GPS
;
2198 /* Locking provides needed memory barrier. */
2199 if (rcu_gp_init(rsp
))
2201 cond_resched_rcu_qs();
2202 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2203 WARN_ON(signal_pending(current
));
2204 trace_rcu_grace_period(rsp
->name
,
2205 READ_ONCE(rsp
->gpnum
),
2209 /* Handle quiescent-state forcing. */
2210 first_gp_fqs
= true;
2211 j
= jiffies_till_first_fqs
;
2214 jiffies_till_first_fqs
= HZ
;
2219 rsp
->jiffies_force_qs
= jiffies
+ j
;
2220 WRITE_ONCE(rsp
->jiffies_kick_kthreads
,
2223 trace_rcu_grace_period(rsp
->name
,
2224 READ_ONCE(rsp
->gpnum
),
2226 rsp
->gp_state
= RCU_GP_WAIT_FQS
;
2227 ret
= swait_event_interruptible_timeout(rsp
->gp_wq
,
2228 rcu_gp_fqs_check_wake(rsp
, &gf
), j
);
2229 rsp
->gp_state
= RCU_GP_DOING_FQS
;
2230 /* Locking provides needed memory barriers. */
2231 /* If grace period done, leave loop. */
2232 if (!READ_ONCE(rnp
->qsmask
) &&
2233 !rcu_preempt_blocked_readers_cgp(rnp
))
2235 /* If time for quiescent-state forcing, do it. */
2236 if (ULONG_CMP_GE(jiffies
, rsp
->jiffies_force_qs
) ||
2237 (gf
& RCU_GP_FLAG_FQS
)) {
2238 trace_rcu_grace_period(rsp
->name
,
2239 READ_ONCE(rsp
->gpnum
),
2241 rcu_gp_fqs(rsp
, first_gp_fqs
);
2242 first_gp_fqs
= false;
2243 trace_rcu_grace_period(rsp
->name
,
2244 READ_ONCE(rsp
->gpnum
),
2246 cond_resched_rcu_qs();
2247 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2248 ret
= 0; /* Force full wait till next FQS. */
2249 j
= jiffies_till_next_fqs
;
2252 jiffies_till_next_fqs
= HZ
;
2255 jiffies_till_next_fqs
= 1;
2258 /* Deal with stray signal. */
2259 cond_resched_rcu_qs();
2260 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2261 WARN_ON(signal_pending(current
));
2262 trace_rcu_grace_period(rsp
->name
,
2263 READ_ONCE(rsp
->gpnum
),
2265 ret
= 1; /* Keep old FQS timing. */
2267 if (time_after(jiffies
, rsp
->jiffies_force_qs
))
2270 j
= rsp
->jiffies_force_qs
- j
;
2274 /* Handle grace-period end. */
2275 rsp
->gp_state
= RCU_GP_CLEANUP
;
2276 rcu_gp_cleanup(rsp
);
2277 rsp
->gp_state
= RCU_GP_CLEANED
;
2282 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2283 * in preparation for detecting the next grace period. The caller must hold
2284 * the root node's ->lock and hard irqs must be disabled.
2286 * Note that it is legal for a dying CPU (which is marked as offline) to
2287 * invoke this function. This can happen when the dying CPU reports its
2290 * Returns true if the grace-period kthread must be awakened.
2293 rcu_start_gp_advanced(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
2294 struct rcu_data
*rdp
)
2296 if (!rsp
->gp_kthread
|| !cpu_needs_another_gp(rsp
, rdp
)) {
2298 * Either we have not yet spawned the grace-period
2299 * task, this CPU does not need another grace period,
2300 * or a grace period is already in progress.
2301 * Either way, don't start a new grace period.
2305 WRITE_ONCE(rsp
->gp_flags
, RCU_GP_FLAG_INIT
);
2306 trace_rcu_grace_period(rsp
->name
, READ_ONCE(rsp
->gpnum
),
2310 * We can't do wakeups while holding the rnp->lock, as that
2311 * could cause possible deadlocks with the rq->lock. Defer
2312 * the wakeup to our caller.
2318 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2319 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2320 * is invoked indirectly from rcu_advance_cbs(), which would result in
2321 * endless recursion -- or would do so if it wasn't for the self-deadlock
2322 * that is encountered beforehand.
2324 * Returns true if the grace-period kthread needs to be awakened.
2326 static bool rcu_start_gp(struct rcu_state
*rsp
)
2328 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
2329 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2333 * If there is no grace period in progress right now, any
2334 * callbacks we have up to this point will be satisfied by the
2335 * next grace period. Also, advancing the callbacks reduces the
2336 * probability of false positives from cpu_needs_another_gp()
2337 * resulting in pointless grace periods. So, advance callbacks
2338 * then start the grace period!
2340 ret
= rcu_advance_cbs(rsp
, rnp
, rdp
) || ret
;
2341 ret
= rcu_start_gp_advanced(rsp
, rnp
, rdp
) || ret
;
2346 * Report a full set of quiescent states to the specified rcu_state data
2347 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2348 * kthread if another grace period is required. Whether we wake
2349 * the grace-period kthread or it awakens itself for the next round
2350 * of quiescent-state forcing, that kthread will clean up after the
2351 * just-completed grace period. Note that the caller must hold rnp->lock,
2352 * which is released before return.
2354 static void rcu_report_qs_rsp(struct rcu_state
*rsp
, unsigned long flags
)
2355 __releases(rcu_get_root(rsp
)->lock
)
2357 WARN_ON_ONCE(!rcu_gp_in_progress(rsp
));
2358 WRITE_ONCE(rsp
->gp_flags
, READ_ONCE(rsp
->gp_flags
) | RCU_GP_FLAG_FQS
);
2359 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp
), flags
);
2360 rcu_gp_kthread_wake(rsp
);
2364 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2365 * Allows quiescent states for a group of CPUs to be reported at one go
2366 * to the specified rcu_node structure, though all the CPUs in the group
2367 * must be represented by the same rcu_node structure (which need not be a
2368 * leaf rcu_node structure, though it often will be). The gps parameter
2369 * is the grace-period snapshot, which means that the quiescent states
2370 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2371 * must be held upon entry, and it is released before return.
2374 rcu_report_qs_rnp(unsigned long mask
, struct rcu_state
*rsp
,
2375 struct rcu_node
*rnp
, unsigned long gps
, unsigned long flags
)
2376 __releases(rnp
->lock
)
2378 unsigned long oldmask
= 0;
2379 struct rcu_node
*rnp_c
;
2381 /* Walk up the rcu_node hierarchy. */
2383 if (!(rnp
->qsmask
& mask
) || rnp
->gpnum
!= gps
) {
2386 * Our bit has already been cleared, or the
2387 * relevant grace period is already over, so done.
2389 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2392 WARN_ON_ONCE(oldmask
); /* Any child must be all zeroed! */
2393 rnp
->qsmask
&= ~mask
;
2394 trace_rcu_quiescent_state_report(rsp
->name
, rnp
->gpnum
,
2395 mask
, rnp
->qsmask
, rnp
->level
,
2396 rnp
->grplo
, rnp
->grphi
,
2398 if (rnp
->qsmask
!= 0 || rcu_preempt_blocked_readers_cgp(rnp
)) {
2400 /* Other bits still set at this level, so done. */
2401 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2404 mask
= rnp
->grpmask
;
2405 if (rnp
->parent
== NULL
) {
2407 /* No more levels. Exit loop holding root lock. */
2411 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2414 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2415 oldmask
= rnp_c
->qsmask
;
2419 * Get here if we are the last CPU to pass through a quiescent
2420 * state for this grace period. Invoke rcu_report_qs_rsp()
2421 * to clean up and start the next grace period if one is needed.
2423 rcu_report_qs_rsp(rsp
, flags
); /* releases rnp->lock. */
2427 * Record a quiescent state for all tasks that were previously queued
2428 * on the specified rcu_node structure and that were blocking the current
2429 * RCU grace period. The caller must hold the specified rnp->lock with
2430 * irqs disabled, and this lock is released upon return, but irqs remain
2433 static void rcu_report_unblock_qs_rnp(struct rcu_state
*rsp
,
2434 struct rcu_node
*rnp
, unsigned long flags
)
2435 __releases(rnp
->lock
)
2439 struct rcu_node
*rnp_p
;
2441 if (rcu_state_p
== &rcu_sched_state
|| rsp
!= rcu_state_p
||
2442 rnp
->qsmask
!= 0 || rcu_preempt_blocked_readers_cgp(rnp
)) {
2443 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2444 return; /* Still need more quiescent states! */
2447 rnp_p
= rnp
->parent
;
2448 if (rnp_p
== NULL
) {
2450 * Only one rcu_node structure in the tree, so don't
2451 * try to report up to its nonexistent parent!
2453 rcu_report_qs_rsp(rsp
, flags
);
2457 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2459 mask
= rnp
->grpmask
;
2460 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
2461 raw_spin_lock_rcu_node(rnp_p
); /* irqs already disabled. */
2462 rcu_report_qs_rnp(mask
, rsp
, rnp_p
, gps
, flags
);
2466 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2467 * structure. This must be called from the specified CPU.
2470 rcu_report_qs_rdp(int cpu
, struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2472 unsigned long flags
;
2475 struct rcu_node
*rnp
;
2478 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2479 if ((rdp
->cpu_no_qs
.b
.norm
&&
2480 rdp
->rcu_qs_ctr_snap
== __this_cpu_read(rcu_qs_ctr
)) ||
2481 rdp
->gpnum
!= rnp
->gpnum
|| rnp
->completed
== rnp
->gpnum
||
2485 * The grace period in which this quiescent state was
2486 * recorded has ended, so don't report it upwards.
2487 * We will instead need a new quiescent state that lies
2488 * within the current grace period.
2490 rdp
->cpu_no_qs
.b
.norm
= true; /* need qs for new gp. */
2491 rdp
->rcu_qs_ctr_snap
= __this_cpu_read(rcu_qs_ctr
);
2492 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2495 mask
= rdp
->grpmask
;
2496 if ((rnp
->qsmask
& mask
) == 0) {
2497 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2499 rdp
->core_needs_qs
= false;
2502 * This GP can't end until cpu checks in, so all of our
2503 * callbacks can be processed during the next GP.
2505 needwake
= rcu_accelerate_cbs(rsp
, rnp
, rdp
);
2507 rcu_report_qs_rnp(mask
, rsp
, rnp
, rnp
->gpnum
, flags
);
2508 /* ^^^ Released rnp->lock */
2510 rcu_gp_kthread_wake(rsp
);
2515 * Check to see if there is a new grace period of which this CPU
2516 * is not yet aware, and if so, set up local rcu_data state for it.
2517 * Otherwise, see if this CPU has just passed through its first
2518 * quiescent state for this grace period, and record that fact if so.
2521 rcu_check_quiescent_state(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2523 /* Check for grace-period ends and beginnings. */
2524 note_gp_changes(rsp
, rdp
);
2527 * Does this CPU still need to do its part for current grace period?
2528 * If no, return and let the other CPUs do their part as well.
2530 if (!rdp
->core_needs_qs
)
2534 * Was there a quiescent state since the beginning of the grace
2535 * period? If no, then exit and wait for the next call.
2537 if (rdp
->cpu_no_qs
.b
.norm
&&
2538 rdp
->rcu_qs_ctr_snap
== __this_cpu_read(rcu_qs_ctr
))
2542 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2545 rcu_report_qs_rdp(rdp
->cpu
, rsp
, rdp
);
2549 * Send the specified CPU's RCU callbacks to the orphanage. The
2550 * specified CPU must be offline, and the caller must hold the
2554 rcu_send_cbs_to_orphanage(int cpu
, struct rcu_state
*rsp
,
2555 struct rcu_node
*rnp
, struct rcu_data
*rdp
)
2557 /* No-CBs CPUs do not have orphanable callbacks. */
2558 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
) || rcu_is_nocb_cpu(rdp
->cpu
))
2562 * Orphan the callbacks. First adjust the counts. This is safe
2563 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2564 * cannot be running now. Thus no memory barrier is required.
2566 if (rdp
->nxtlist
!= NULL
) {
2567 rsp
->qlen_lazy
+= rdp
->qlen_lazy
;
2568 rsp
->qlen
+= rdp
->qlen
;
2569 rdp
->n_cbs_orphaned
+= rdp
->qlen
;
2571 WRITE_ONCE(rdp
->qlen
, 0);
2575 * Next, move those callbacks still needing a grace period to
2576 * the orphanage, where some other CPU will pick them up.
2577 * Some of the callbacks might have gone partway through a grace
2578 * period, but that is too bad. They get to start over because we
2579 * cannot assume that grace periods are synchronized across CPUs.
2580 * We don't bother updating the ->nxttail[] array yet, instead
2581 * we just reset the whole thing later on.
2583 if (*rdp
->nxttail
[RCU_DONE_TAIL
] != NULL
) {
2584 *rsp
->orphan_nxttail
= *rdp
->nxttail
[RCU_DONE_TAIL
];
2585 rsp
->orphan_nxttail
= rdp
->nxttail
[RCU_NEXT_TAIL
];
2586 *rdp
->nxttail
[RCU_DONE_TAIL
] = NULL
;
2590 * Then move the ready-to-invoke callbacks to the orphanage,
2591 * where some other CPU will pick them up. These will not be
2592 * required to pass though another grace period: They are done.
2594 if (rdp
->nxtlist
!= NULL
) {
2595 *rsp
->orphan_donetail
= rdp
->nxtlist
;
2596 rsp
->orphan_donetail
= rdp
->nxttail
[RCU_DONE_TAIL
];
2600 * Finally, initialize the rcu_data structure's list to empty and
2601 * disallow further callbacks on this CPU.
2603 init_callback_list(rdp
);
2604 rdp
->nxttail
[RCU_NEXT_TAIL
] = NULL
;
2608 * Adopt the RCU callbacks from the specified rcu_state structure's
2609 * orphanage. The caller must hold the ->orphan_lock.
2611 static void rcu_adopt_orphan_cbs(struct rcu_state
*rsp
, unsigned long flags
)
2614 struct rcu_data
*rdp
= raw_cpu_ptr(rsp
->rda
);
2616 /* No-CBs CPUs are handled specially. */
2617 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
) ||
2618 rcu_nocb_adopt_orphan_cbs(rsp
, rdp
, flags
))
2621 /* Do the accounting first. */
2622 rdp
->qlen_lazy
+= rsp
->qlen_lazy
;
2623 rdp
->qlen
+= rsp
->qlen
;
2624 rdp
->n_cbs_adopted
+= rsp
->qlen
;
2625 if (rsp
->qlen_lazy
!= rsp
->qlen
)
2626 rcu_idle_count_callbacks_posted();
2631 * We do not need a memory barrier here because the only way we
2632 * can get here if there is an rcu_barrier() in flight is if
2633 * we are the task doing the rcu_barrier().
2636 /* First adopt the ready-to-invoke callbacks. */
2637 if (rsp
->orphan_donelist
!= NULL
) {
2638 *rsp
->orphan_donetail
= *rdp
->nxttail
[RCU_DONE_TAIL
];
2639 *rdp
->nxttail
[RCU_DONE_TAIL
] = rsp
->orphan_donelist
;
2640 for (i
= RCU_NEXT_SIZE
- 1; i
>= RCU_DONE_TAIL
; i
--)
2641 if (rdp
->nxttail
[i
] == rdp
->nxttail
[RCU_DONE_TAIL
])
2642 rdp
->nxttail
[i
] = rsp
->orphan_donetail
;
2643 rsp
->orphan_donelist
= NULL
;
2644 rsp
->orphan_donetail
= &rsp
->orphan_donelist
;
2647 /* And then adopt the callbacks that still need a grace period. */
2648 if (rsp
->orphan_nxtlist
!= NULL
) {
2649 *rdp
->nxttail
[RCU_NEXT_TAIL
] = rsp
->orphan_nxtlist
;
2650 rdp
->nxttail
[RCU_NEXT_TAIL
] = rsp
->orphan_nxttail
;
2651 rsp
->orphan_nxtlist
= NULL
;
2652 rsp
->orphan_nxttail
= &rsp
->orphan_nxtlist
;
2657 * Trace the fact that this CPU is going offline.
2659 static void rcu_cleanup_dying_cpu(struct rcu_state
*rsp
)
2661 RCU_TRACE(unsigned long mask
);
2662 RCU_TRACE(struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
));
2663 RCU_TRACE(struct rcu_node
*rnp
= rdp
->mynode
);
2665 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
))
2668 RCU_TRACE(mask
= rdp
->grpmask
);
2669 trace_rcu_grace_period(rsp
->name
,
2670 rnp
->gpnum
+ 1 - !!(rnp
->qsmask
& mask
),
2675 * All CPUs for the specified rcu_node structure have gone offline,
2676 * and all tasks that were preempted within an RCU read-side critical
2677 * section while running on one of those CPUs have since exited their RCU
2678 * read-side critical section. Some other CPU is reporting this fact with
2679 * the specified rcu_node structure's ->lock held and interrupts disabled.
2680 * This function therefore goes up the tree of rcu_node structures,
2681 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2682 * the leaf rcu_node structure's ->qsmaskinit field has already been
2685 * This function does check that the specified rcu_node structure has
2686 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2687 * prematurely. That said, invoking it after the fact will cost you
2688 * a needless lock acquisition. So once it has done its work, don't
2691 static void rcu_cleanup_dead_rnp(struct rcu_node
*rnp_leaf
)
2694 struct rcu_node
*rnp
= rnp_leaf
;
2696 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
) ||
2697 rnp
->qsmaskinit
|| rcu_preempt_has_tasks(rnp
))
2700 mask
= rnp
->grpmask
;
2704 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
2705 rnp
->qsmaskinit
&= ~mask
;
2706 rnp
->qsmask
&= ~mask
;
2707 if (rnp
->qsmaskinit
) {
2708 raw_spin_unlock_rcu_node(rnp
);
2709 /* irqs remain disabled. */
2712 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
2717 * The CPU has been completely removed, and some other CPU is reporting
2718 * this fact from process context. Do the remainder of the cleanup,
2719 * including orphaning the outgoing CPU's RCU callbacks, and also
2720 * adopting them. There can only be one CPU hotplug operation at a time,
2721 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2723 static void rcu_cleanup_dead_cpu(int cpu
, struct rcu_state
*rsp
)
2725 unsigned long flags
;
2726 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2727 struct rcu_node
*rnp
= rdp
->mynode
; /* Outgoing CPU's rdp & rnp. */
2729 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
))
2732 /* Adjust any no-longer-needed kthreads. */
2733 rcu_boost_kthread_setaffinity(rnp
, -1);
2735 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2736 raw_spin_lock_irqsave(&rsp
->orphan_lock
, flags
);
2737 rcu_send_cbs_to_orphanage(cpu
, rsp
, rnp
, rdp
);
2738 rcu_adopt_orphan_cbs(rsp
, flags
);
2739 raw_spin_unlock_irqrestore(&rsp
->orphan_lock
, flags
);
2741 WARN_ONCE(rdp
->qlen
!= 0 || rdp
->nxtlist
!= NULL
,
2742 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2743 cpu
, rdp
->qlen
, rdp
->nxtlist
);
2747 * Invoke any RCU callbacks that have made it to the end of their grace
2748 * period. Thottle as specified by rdp->blimit.
2750 static void rcu_do_batch(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2752 unsigned long flags
;
2753 struct rcu_head
*next
, *list
, **tail
;
2754 long bl
, count
, count_lazy
;
2757 /* If no callbacks are ready, just return. */
2758 if (!cpu_has_callbacks_ready_to_invoke(rdp
)) {
2759 trace_rcu_batch_start(rsp
->name
, rdp
->qlen_lazy
, rdp
->qlen
, 0);
2760 trace_rcu_batch_end(rsp
->name
, 0, !!READ_ONCE(rdp
->nxtlist
),
2761 need_resched(), is_idle_task(current
),
2762 rcu_is_callbacks_kthread());
2767 * Extract the list of ready callbacks, disabling to prevent
2768 * races with call_rcu() from interrupt handlers.
2770 local_irq_save(flags
);
2771 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2773 trace_rcu_batch_start(rsp
->name
, rdp
->qlen_lazy
, rdp
->qlen
, bl
);
2774 list
= rdp
->nxtlist
;
2775 rdp
->nxtlist
= *rdp
->nxttail
[RCU_DONE_TAIL
];
2776 *rdp
->nxttail
[RCU_DONE_TAIL
] = NULL
;
2777 tail
= rdp
->nxttail
[RCU_DONE_TAIL
];
2778 for (i
= RCU_NEXT_SIZE
- 1; i
>= 0; i
--)
2779 if (rdp
->nxttail
[i
] == rdp
->nxttail
[RCU_DONE_TAIL
])
2780 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
2781 local_irq_restore(flags
);
2783 /* Invoke callbacks. */
2784 count
= count_lazy
= 0;
2788 debug_rcu_head_unqueue(list
);
2789 if (__rcu_reclaim(rsp
->name
, list
))
2792 /* Stop only if limit reached and CPU has something to do. */
2793 if (++count
>= bl
&&
2795 (!is_idle_task(current
) && !rcu_is_callbacks_kthread())))
2799 local_irq_save(flags
);
2800 trace_rcu_batch_end(rsp
->name
, count
, !!list
, need_resched(),
2801 is_idle_task(current
),
2802 rcu_is_callbacks_kthread());
2804 /* Update count, and requeue any remaining callbacks. */
2806 *tail
= rdp
->nxtlist
;
2807 rdp
->nxtlist
= list
;
2808 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
2809 if (&rdp
->nxtlist
== rdp
->nxttail
[i
])
2810 rdp
->nxttail
[i
] = tail
;
2814 smp_mb(); /* List handling before counting for rcu_barrier(). */
2815 rdp
->qlen_lazy
-= count_lazy
;
2816 WRITE_ONCE(rdp
->qlen
, rdp
->qlen
- count
);
2817 rdp
->n_cbs_invoked
+= count
;
2819 /* Reinstate batch limit if we have worked down the excess. */
2820 if (rdp
->blimit
== LONG_MAX
&& rdp
->qlen
<= qlowmark
)
2821 rdp
->blimit
= blimit
;
2823 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2824 if (rdp
->qlen
== 0 && rdp
->qlen_last_fqs_check
!= 0) {
2825 rdp
->qlen_last_fqs_check
= 0;
2826 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
2827 } else if (rdp
->qlen
< rdp
->qlen_last_fqs_check
- qhimark
)
2828 rdp
->qlen_last_fqs_check
= rdp
->qlen
;
2829 WARN_ON_ONCE((rdp
->nxtlist
== NULL
) != (rdp
->qlen
== 0));
2831 local_irq_restore(flags
);
2833 /* Re-invoke RCU core processing if there are callbacks remaining. */
2834 if (cpu_has_callbacks_ready_to_invoke(rdp
))
2839 * Check to see if this CPU is in a non-context-switch quiescent state
2840 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2841 * Also schedule RCU core processing.
2843 * This function must be called from hardirq context. It is normally
2844 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2845 * false, there is no point in invoking rcu_check_callbacks().
2847 void rcu_check_callbacks(int user
)
2849 trace_rcu_utilization(TPS("Start scheduler-tick"));
2850 increment_cpu_stall_ticks();
2851 if (user
|| rcu_is_cpu_rrupt_from_idle()) {
2854 * Get here if this CPU took its interrupt from user
2855 * mode or from the idle loop, and if this is not a
2856 * nested interrupt. In this case, the CPU is in
2857 * a quiescent state, so note it.
2859 * No memory barrier is required here because both
2860 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2861 * variables that other CPUs neither access nor modify,
2862 * at least not while the corresponding CPU is online.
2868 } else if (!in_softirq()) {
2871 * Get here if this CPU did not take its interrupt from
2872 * softirq, in other words, if it is not interrupting
2873 * a rcu_bh read-side critical section. This is an _bh
2874 * critical section, so note it.
2879 rcu_preempt_check_callbacks();
2883 rcu_note_voluntary_context_switch(current
);
2884 trace_rcu_utilization(TPS("End scheduler-tick"));
2888 * Scan the leaf rcu_node structures, processing dyntick state for any that
2889 * have not yet encountered a quiescent state, using the function specified.
2890 * Also initiate boosting for any threads blocked on the root rcu_node.
2892 * The caller must have suppressed start of new grace periods.
2894 static void force_qs_rnp(struct rcu_state
*rsp
,
2895 int (*f
)(struct rcu_data
*rsp
, bool *isidle
,
2896 unsigned long *maxj
),
2897 bool *isidle
, unsigned long *maxj
)
2900 unsigned long flags
;
2902 struct rcu_node
*rnp
;
2904 rcu_for_each_leaf_node(rsp
, rnp
) {
2905 cond_resched_rcu_qs();
2907 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2908 if (rnp
->qsmask
== 0) {
2909 if (rcu_state_p
== &rcu_sched_state
||
2910 rsp
!= rcu_state_p
||
2911 rcu_preempt_blocked_readers_cgp(rnp
)) {
2913 * No point in scanning bits because they
2914 * are all zero. But we might need to
2915 * priority-boost blocked readers.
2917 rcu_initiate_boost(rnp
, flags
);
2918 /* rcu_initiate_boost() releases rnp->lock */
2922 (rnp
->parent
->qsmask
& rnp
->grpmask
)) {
2924 * Race between grace-period
2925 * initialization and task exiting RCU
2926 * read-side critical section: Report.
2928 rcu_report_unblock_qs_rnp(rsp
, rnp
, flags
);
2929 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2933 for_each_leaf_node_possible_cpu(rnp
, cpu
) {
2934 unsigned long bit
= leaf_node_cpu_bit(rnp
, cpu
);
2935 if ((rnp
->qsmask
& bit
) != 0) {
2936 if (f(per_cpu_ptr(rsp
->rda
, cpu
), isidle
, maxj
))
2941 /* Idle/offline CPUs, report (releases rnp->lock. */
2942 rcu_report_qs_rnp(mask
, rsp
, rnp
, rnp
->gpnum
, flags
);
2944 /* Nothing to do here, so just drop the lock. */
2945 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2951 * Force quiescent states on reluctant CPUs, and also detect which
2952 * CPUs are in dyntick-idle mode.
2954 static void force_quiescent_state(struct rcu_state
*rsp
)
2956 unsigned long flags
;
2958 struct rcu_node
*rnp
;
2959 struct rcu_node
*rnp_old
= NULL
;
2961 /* Funnel through hierarchy to reduce memory contention. */
2962 rnp
= __this_cpu_read(rsp
->rda
->mynode
);
2963 for (; rnp
!= NULL
; rnp
= rnp
->parent
) {
2964 ret
= (READ_ONCE(rsp
->gp_flags
) & RCU_GP_FLAG_FQS
) ||
2965 !raw_spin_trylock(&rnp
->fqslock
);
2966 if (rnp_old
!= NULL
)
2967 raw_spin_unlock(&rnp_old
->fqslock
);
2969 rsp
->n_force_qs_lh
++;
2974 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2976 /* Reached the root of the rcu_node tree, acquire lock. */
2977 raw_spin_lock_irqsave_rcu_node(rnp_old
, flags
);
2978 raw_spin_unlock(&rnp_old
->fqslock
);
2979 if (READ_ONCE(rsp
->gp_flags
) & RCU_GP_FLAG_FQS
) {
2980 rsp
->n_force_qs_lh
++;
2981 raw_spin_unlock_irqrestore_rcu_node(rnp_old
, flags
);
2982 return; /* Someone beat us to it. */
2984 WRITE_ONCE(rsp
->gp_flags
, READ_ONCE(rsp
->gp_flags
) | RCU_GP_FLAG_FQS
);
2985 raw_spin_unlock_irqrestore_rcu_node(rnp_old
, flags
);
2986 rcu_gp_kthread_wake(rsp
);
2990 * This does the RCU core processing work for the specified rcu_state
2991 * and rcu_data structures. This may be called only from the CPU to
2992 * whom the rdp belongs.
2995 __rcu_process_callbacks(struct rcu_state
*rsp
)
2997 unsigned long flags
;
2999 struct rcu_data
*rdp
= raw_cpu_ptr(rsp
->rda
);
3001 WARN_ON_ONCE(rdp
->beenonline
== 0);
3003 /* Update RCU state based on any recent quiescent states. */
3004 rcu_check_quiescent_state(rsp
, rdp
);
3006 /* Does this CPU require a not-yet-started grace period? */
3007 local_irq_save(flags
);
3008 if (cpu_needs_another_gp(rsp
, rdp
)) {
3009 raw_spin_lock_rcu_node(rcu_get_root(rsp
)); /* irqs disabled. */
3010 needwake
= rcu_start_gp(rsp
);
3011 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp
), flags
);
3013 rcu_gp_kthread_wake(rsp
);
3015 local_irq_restore(flags
);
3018 /* If there are callbacks ready, invoke them. */
3019 if (cpu_has_callbacks_ready_to_invoke(rdp
))
3020 invoke_rcu_callbacks(rsp
, rdp
);
3022 /* Do any needed deferred wakeups of rcuo kthreads. */
3023 do_nocb_deferred_wakeup(rdp
);
3027 * Do RCU core processing for the current CPU.
3029 static __latent_entropy
void rcu_process_callbacks(struct softirq_action
*unused
)
3031 struct rcu_state
*rsp
;
3033 if (cpu_is_offline(smp_processor_id()))
3035 trace_rcu_utilization(TPS("Start RCU core"));
3036 for_each_rcu_flavor(rsp
)
3037 __rcu_process_callbacks(rsp
);
3038 trace_rcu_utilization(TPS("End RCU core"));
3042 * Schedule RCU callback invocation. If the specified type of RCU
3043 * does not support RCU priority boosting, just do a direct call,
3044 * otherwise wake up the per-CPU kernel kthread. Note that because we
3045 * are running on the current CPU with softirqs disabled, the
3046 * rcu_cpu_kthread_task cannot disappear out from under us.
3048 static void invoke_rcu_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
3050 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active
)))
3052 if (likely(!rsp
->boost
)) {
3053 rcu_do_batch(rsp
, rdp
);
3056 invoke_rcu_callbacks_kthread();
3059 static void invoke_rcu_core(void)
3061 if (cpu_online(smp_processor_id()))
3062 raise_softirq(RCU_SOFTIRQ
);
3066 * Handle any core-RCU processing required by a call_rcu() invocation.
3068 static void __call_rcu_core(struct rcu_state
*rsp
, struct rcu_data
*rdp
,
3069 struct rcu_head
*head
, unsigned long flags
)
3074 * If called from an extended quiescent state, invoke the RCU
3075 * core in order to force a re-evaluation of RCU's idleness.
3077 if (!rcu_is_watching())
3080 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3081 if (irqs_disabled_flags(flags
) || cpu_is_offline(smp_processor_id()))
3085 * Force the grace period if too many callbacks or too long waiting.
3086 * Enforce hysteresis, and don't invoke force_quiescent_state()
3087 * if some other CPU has recently done so. Also, don't bother
3088 * invoking force_quiescent_state() if the newly enqueued callback
3089 * is the only one waiting for a grace period to complete.
3091 if (unlikely(rdp
->qlen
> rdp
->qlen_last_fqs_check
+ qhimark
)) {
3093 /* Are we ignoring a completed grace period? */
3094 note_gp_changes(rsp
, rdp
);
3096 /* Start a new grace period if one not already started. */
3097 if (!rcu_gp_in_progress(rsp
)) {
3098 struct rcu_node
*rnp_root
= rcu_get_root(rsp
);
3100 raw_spin_lock_rcu_node(rnp_root
);
3101 needwake
= rcu_start_gp(rsp
);
3102 raw_spin_unlock_rcu_node(rnp_root
);
3104 rcu_gp_kthread_wake(rsp
);
3106 /* Give the grace period a kick. */
3107 rdp
->blimit
= LONG_MAX
;
3108 if (rsp
->n_force_qs
== rdp
->n_force_qs_snap
&&
3109 *rdp
->nxttail
[RCU_DONE_TAIL
] != head
)
3110 force_quiescent_state(rsp
);
3111 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
3112 rdp
->qlen_last_fqs_check
= rdp
->qlen
;
3118 * RCU callback function to leak a callback.
3120 static void rcu_leak_callback(struct rcu_head
*rhp
)
3125 * Helper function for call_rcu() and friends. The cpu argument will
3126 * normally be -1, indicating "currently running CPU". It may specify
3127 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3128 * is expected to specify a CPU.
3131 __call_rcu(struct rcu_head
*head
, rcu_callback_t func
,
3132 struct rcu_state
*rsp
, int cpu
, bool lazy
)
3134 unsigned long flags
;
3135 struct rcu_data
*rdp
;
3137 WARN_ON_ONCE((unsigned long)head
& 0x1); /* Misaligned rcu_head! */
3138 if (debug_rcu_head_queue(head
)) {
3139 /* Probable double call_rcu(), so leak the callback. */
3140 WRITE_ONCE(head
->func
, rcu_leak_callback
);
3141 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3148 * Opportunistically note grace-period endings and beginnings.
3149 * Note that we might see a beginning right after we see an
3150 * end, but never vice versa, since this CPU has to pass through
3151 * a quiescent state betweentimes.
3153 local_irq_save(flags
);
3154 rdp
= this_cpu_ptr(rsp
->rda
);
3156 /* Add the callback to our list. */
3157 if (unlikely(rdp
->nxttail
[RCU_NEXT_TAIL
] == NULL
) || cpu
!= -1) {
3161 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3162 if (likely(rdp
->mynode
)) {
3163 /* Post-boot, so this should be for a no-CBs CPU. */
3164 offline
= !__call_rcu_nocb(rdp
, head
, lazy
, flags
);
3165 WARN_ON_ONCE(offline
);
3166 /* Offline CPU, _call_rcu() illegal, leak callback. */
3167 local_irq_restore(flags
);
3171 * Very early boot, before rcu_init(). Initialize if needed
3172 * and then drop through to queue the callback.
3175 WARN_ON_ONCE(!rcu_is_watching());
3176 if (!likely(rdp
->nxtlist
))
3177 init_default_callback_list(rdp
);
3179 WRITE_ONCE(rdp
->qlen
, rdp
->qlen
+ 1);
3183 rcu_idle_count_callbacks_posted();
3184 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3185 *rdp
->nxttail
[RCU_NEXT_TAIL
] = head
;
3186 rdp
->nxttail
[RCU_NEXT_TAIL
] = &head
->next
;
3188 if (__is_kfree_rcu_offset((unsigned long)func
))
3189 trace_rcu_kfree_callback(rsp
->name
, head
, (unsigned long)func
,
3190 rdp
->qlen_lazy
, rdp
->qlen
);
3192 trace_rcu_callback(rsp
->name
, head
, rdp
->qlen_lazy
, rdp
->qlen
);
3194 /* Go handle any RCU core processing required. */
3195 __call_rcu_core(rsp
, rdp
, head
, flags
);
3196 local_irq_restore(flags
);
3200 * Queue an RCU-sched callback for invocation after a grace period.
3202 void call_rcu_sched(struct rcu_head
*head
, rcu_callback_t func
)
3204 __call_rcu(head
, func
, &rcu_sched_state
, -1, 0);
3206 EXPORT_SYMBOL_GPL(call_rcu_sched
);
3209 * Queue an RCU callback for invocation after a quicker grace period.
3211 void call_rcu_bh(struct rcu_head
*head
, rcu_callback_t func
)
3213 __call_rcu(head
, func
, &rcu_bh_state
, -1, 0);
3215 EXPORT_SYMBOL_GPL(call_rcu_bh
);
3218 * Queue an RCU callback for lazy invocation after a grace period.
3219 * This will likely be later named something like "call_rcu_lazy()",
3220 * but this change will require some way of tagging the lazy RCU
3221 * callbacks in the list of pending callbacks. Until then, this
3222 * function may only be called from __kfree_rcu().
3224 void kfree_call_rcu(struct rcu_head
*head
,
3225 rcu_callback_t func
)
3227 __call_rcu(head
, func
, rcu_state_p
, -1, 1);
3229 EXPORT_SYMBOL_GPL(kfree_call_rcu
);
3232 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3233 * any blocking grace-period wait automatically implies a grace period
3234 * if there is only one CPU online at any point time during execution
3235 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3236 * occasionally incorrectly indicate that there are multiple CPUs online
3237 * when there was in fact only one the whole time, as this just adds
3238 * some overhead: RCU still operates correctly.
3240 static inline int rcu_blocking_is_gp(void)
3244 might_sleep(); /* Check for RCU read-side critical section. */
3246 ret
= num_online_cpus() <= 1;
3252 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3254 * Control will return to the caller some time after a full rcu-sched
3255 * grace period has elapsed, in other words after all currently executing
3256 * rcu-sched read-side critical sections have completed. These read-side
3257 * critical sections are delimited by rcu_read_lock_sched() and
3258 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3259 * local_irq_disable(), and so on may be used in place of
3260 * rcu_read_lock_sched().
3262 * This means that all preempt_disable code sequences, including NMI and
3263 * non-threaded hardware-interrupt handlers, in progress on entry will
3264 * have completed before this primitive returns. However, this does not
3265 * guarantee that softirq handlers will have completed, since in some
3266 * kernels, these handlers can run in process context, and can block.
3268 * Note that this guarantee implies further memory-ordering guarantees.
3269 * On systems with more than one CPU, when synchronize_sched() returns,
3270 * each CPU is guaranteed to have executed a full memory barrier since the
3271 * end of its last RCU-sched read-side critical section whose beginning
3272 * preceded the call to synchronize_sched(). In addition, each CPU having
3273 * an RCU read-side critical section that extends beyond the return from
3274 * synchronize_sched() is guaranteed to have executed a full memory barrier
3275 * after the beginning of synchronize_sched() and before the beginning of
3276 * that RCU read-side critical section. Note that these guarantees include
3277 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3278 * that are executing in the kernel.
3280 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3281 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3282 * to have executed a full memory barrier during the execution of
3283 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3284 * again only if the system has more than one CPU).
3286 * This primitive provides the guarantees made by the (now removed)
3287 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3288 * guarantees that rcu_read_lock() sections will have completed.
3289 * In "classic RCU", these two guarantees happen to be one and
3290 * the same, but can differ in realtime RCU implementations.
3292 void synchronize_sched(void)
3294 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
) ||
3295 lock_is_held(&rcu_lock_map
) ||
3296 lock_is_held(&rcu_sched_lock_map
),
3297 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3298 if (rcu_blocking_is_gp())
3300 if (rcu_gp_is_expedited())
3301 synchronize_sched_expedited();
3303 wait_rcu_gp(call_rcu_sched
);
3305 EXPORT_SYMBOL_GPL(synchronize_sched
);
3308 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3310 * Control will return to the caller some time after a full rcu_bh grace
3311 * period has elapsed, in other words after all currently executing rcu_bh
3312 * read-side critical sections have completed. RCU read-side critical
3313 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3314 * and may be nested.
3316 * See the description of synchronize_sched() for more detailed information
3317 * on memory ordering guarantees.
3319 void synchronize_rcu_bh(void)
3321 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
) ||
3322 lock_is_held(&rcu_lock_map
) ||
3323 lock_is_held(&rcu_sched_lock_map
),
3324 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3325 if (rcu_blocking_is_gp())
3327 if (rcu_gp_is_expedited())
3328 synchronize_rcu_bh_expedited();
3330 wait_rcu_gp(call_rcu_bh
);
3332 EXPORT_SYMBOL_GPL(synchronize_rcu_bh
);
3335 * get_state_synchronize_rcu - Snapshot current RCU state
3337 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3338 * to determine whether or not a full grace period has elapsed in the
3341 unsigned long get_state_synchronize_rcu(void)
3344 * Any prior manipulation of RCU-protected data must happen
3345 * before the load from ->gpnum.
3350 * Make sure this load happens before the purportedly
3351 * time-consuming work between get_state_synchronize_rcu()
3352 * and cond_synchronize_rcu().
3354 return smp_load_acquire(&rcu_state_p
->gpnum
);
3356 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu
);
3359 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3361 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3363 * If a full RCU grace period has elapsed since the earlier call to
3364 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3365 * synchronize_rcu() to wait for a full grace period.
3367 * Yes, this function does not take counter wrap into account. But
3368 * counter wrap is harmless. If the counter wraps, we have waited for
3369 * more than 2 billion grace periods (and way more on a 64-bit system!),
3370 * so waiting for one additional grace period should be just fine.
3372 void cond_synchronize_rcu(unsigned long oldstate
)
3374 unsigned long newstate
;
3377 * Ensure that this load happens before any RCU-destructive
3378 * actions the caller might carry out after we return.
3380 newstate
= smp_load_acquire(&rcu_state_p
->completed
);
3381 if (ULONG_CMP_GE(oldstate
, newstate
))
3384 EXPORT_SYMBOL_GPL(cond_synchronize_rcu
);
3387 * get_state_synchronize_sched - Snapshot current RCU-sched state
3389 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3390 * to determine whether or not a full grace period has elapsed in the
3393 unsigned long get_state_synchronize_sched(void)
3396 * Any prior manipulation of RCU-protected data must happen
3397 * before the load from ->gpnum.
3402 * Make sure this load happens before the purportedly
3403 * time-consuming work between get_state_synchronize_sched()
3404 * and cond_synchronize_sched().
3406 return smp_load_acquire(&rcu_sched_state
.gpnum
);
3408 EXPORT_SYMBOL_GPL(get_state_synchronize_sched
);
3411 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3413 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3415 * If a full RCU-sched grace period has elapsed since the earlier call to
3416 * get_state_synchronize_sched(), just return. Otherwise, invoke
3417 * synchronize_sched() to wait for a full grace period.
3419 * Yes, this function does not take counter wrap into account. But
3420 * counter wrap is harmless. If the counter wraps, we have waited for
3421 * more than 2 billion grace periods (and way more on a 64-bit system!),
3422 * so waiting for one additional grace period should be just fine.
3424 void cond_synchronize_sched(unsigned long oldstate
)
3426 unsigned long newstate
;
3429 * Ensure that this load happens before any RCU-destructive
3430 * actions the caller might carry out after we return.
3432 newstate
= smp_load_acquire(&rcu_sched_state
.completed
);
3433 if (ULONG_CMP_GE(oldstate
, newstate
))
3434 synchronize_sched();
3436 EXPORT_SYMBOL_GPL(cond_synchronize_sched
);
3438 /* Adjust sequence number for start of update-side operation. */
3439 static void rcu_seq_start(unsigned long *sp
)
3441 WRITE_ONCE(*sp
, *sp
+ 1);
3442 smp_mb(); /* Ensure update-side operation after counter increment. */
3443 WARN_ON_ONCE(!(*sp
& 0x1));
3446 /* Adjust sequence number for end of update-side operation. */
3447 static void rcu_seq_end(unsigned long *sp
)
3449 smp_mb(); /* Ensure update-side operation before counter increment. */
3450 WRITE_ONCE(*sp
, *sp
+ 1);
3451 WARN_ON_ONCE(*sp
& 0x1);
3454 /* Take a snapshot of the update side's sequence number. */
3455 static unsigned long rcu_seq_snap(unsigned long *sp
)
3459 s
= (READ_ONCE(*sp
) + 3) & ~0x1;
3460 smp_mb(); /* Above access must not bleed into critical section. */
3465 * Given a snapshot from rcu_seq_snap(), determine whether or not a
3466 * full update-side operation has occurred.
3468 static bool rcu_seq_done(unsigned long *sp
, unsigned long s
)
3470 return ULONG_CMP_GE(READ_ONCE(*sp
), s
);
3474 * Check to see if there is any immediate RCU-related work to be done
3475 * by the current CPU, for the specified type of RCU, returning 1 if so.
3476 * The checks are in order of increasing expense: checks that can be
3477 * carried out against CPU-local state are performed first. However,
3478 * we must check for CPU stalls first, else we might not get a chance.
3480 static int __rcu_pending(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
3482 struct rcu_node
*rnp
= rdp
->mynode
;
3484 rdp
->n_rcu_pending
++;
3486 /* Check for CPU stalls, if enabled. */
3487 check_cpu_stall(rsp
, rdp
);
3489 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3490 if (rcu_nohz_full_cpu(rsp
))
3493 /* Is the RCU core waiting for a quiescent state from this CPU? */
3494 if (rcu_scheduler_fully_active
&&
3495 rdp
->core_needs_qs
&& rdp
->cpu_no_qs
.b
.norm
&&
3496 rdp
->rcu_qs_ctr_snap
== __this_cpu_read(rcu_qs_ctr
)) {
3497 rdp
->n_rp_core_needs_qs
++;
3498 } else if (rdp
->core_needs_qs
&&
3499 (!rdp
->cpu_no_qs
.b
.norm
||
3500 rdp
->rcu_qs_ctr_snap
!= __this_cpu_read(rcu_qs_ctr
))) {
3501 rdp
->n_rp_report_qs
++;
3505 /* Does this CPU have callbacks ready to invoke? */
3506 if (cpu_has_callbacks_ready_to_invoke(rdp
)) {
3507 rdp
->n_rp_cb_ready
++;
3511 /* Has RCU gone idle with this CPU needing another grace period? */
3512 if (cpu_needs_another_gp(rsp
, rdp
)) {
3513 rdp
->n_rp_cpu_needs_gp
++;
3517 /* Has another RCU grace period completed? */
3518 if (READ_ONCE(rnp
->completed
) != rdp
->completed
) { /* outside lock */
3519 rdp
->n_rp_gp_completed
++;
3523 /* Has a new RCU grace period started? */
3524 if (READ_ONCE(rnp
->gpnum
) != rdp
->gpnum
||
3525 unlikely(READ_ONCE(rdp
->gpwrap
))) { /* outside lock */
3526 rdp
->n_rp_gp_started
++;
3530 /* Does this CPU need a deferred NOCB wakeup? */
3531 if (rcu_nocb_need_deferred_wakeup(rdp
)) {
3532 rdp
->n_rp_nocb_defer_wakeup
++;
3537 rdp
->n_rp_need_nothing
++;
3542 * Check to see if there is any immediate RCU-related work to be done
3543 * by the current CPU, returning 1 if so. This function is part of the
3544 * RCU implementation; it is -not- an exported member of the RCU API.
3546 static int rcu_pending(void)
3548 struct rcu_state
*rsp
;
3550 for_each_rcu_flavor(rsp
)
3551 if (__rcu_pending(rsp
, this_cpu_ptr(rsp
->rda
)))
3557 * Return true if the specified CPU has any callback. If all_lazy is
3558 * non-NULL, store an indication of whether all callbacks are lazy.
3559 * (If there are no callbacks, all of them are deemed to be lazy.)
3561 static bool __maybe_unused
rcu_cpu_has_callbacks(bool *all_lazy
)
3565 struct rcu_data
*rdp
;
3566 struct rcu_state
*rsp
;
3568 for_each_rcu_flavor(rsp
) {
3569 rdp
= this_cpu_ptr(rsp
->rda
);
3573 if (rdp
->qlen
!= rdp
->qlen_lazy
|| !all_lazy
) {
3584 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3585 * the compiler is expected to optimize this away.
3587 static void _rcu_barrier_trace(struct rcu_state
*rsp
, const char *s
,
3588 int cpu
, unsigned long done
)
3590 trace_rcu_barrier(rsp
->name
, s
, cpu
,
3591 atomic_read(&rsp
->barrier_cpu_count
), done
);
3595 * RCU callback function for _rcu_barrier(). If we are last, wake
3596 * up the task executing _rcu_barrier().
3598 static void rcu_barrier_callback(struct rcu_head
*rhp
)
3600 struct rcu_data
*rdp
= container_of(rhp
, struct rcu_data
, barrier_head
);
3601 struct rcu_state
*rsp
= rdp
->rsp
;
3603 if (atomic_dec_and_test(&rsp
->barrier_cpu_count
)) {
3604 _rcu_barrier_trace(rsp
, "LastCB", -1, rsp
->barrier_sequence
);
3605 complete(&rsp
->barrier_completion
);
3607 _rcu_barrier_trace(rsp
, "CB", -1, rsp
->barrier_sequence
);
3612 * Called with preemption disabled, and from cross-cpu IRQ context.
3614 static void rcu_barrier_func(void *type
)
3616 struct rcu_state
*rsp
= type
;
3617 struct rcu_data
*rdp
= raw_cpu_ptr(rsp
->rda
);
3619 _rcu_barrier_trace(rsp
, "IRQ", -1, rsp
->barrier_sequence
);
3620 atomic_inc(&rsp
->barrier_cpu_count
);
3621 rsp
->call(&rdp
->barrier_head
, rcu_barrier_callback
);
3625 * Orchestrate the specified type of RCU barrier, waiting for all
3626 * RCU callbacks of the specified type to complete.
3628 static void _rcu_barrier(struct rcu_state
*rsp
)
3631 struct rcu_data
*rdp
;
3632 unsigned long s
= rcu_seq_snap(&rsp
->barrier_sequence
);
3634 _rcu_barrier_trace(rsp
, "Begin", -1, s
);
3636 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3637 mutex_lock(&rsp
->barrier_mutex
);
3639 /* Did someone else do our work for us? */
3640 if (rcu_seq_done(&rsp
->barrier_sequence
, s
)) {
3641 _rcu_barrier_trace(rsp
, "EarlyExit", -1, rsp
->barrier_sequence
);
3642 smp_mb(); /* caller's subsequent code after above check. */
3643 mutex_unlock(&rsp
->barrier_mutex
);
3647 /* Mark the start of the barrier operation. */
3648 rcu_seq_start(&rsp
->barrier_sequence
);
3649 _rcu_barrier_trace(rsp
, "Inc1", -1, rsp
->barrier_sequence
);
3652 * Initialize the count to one rather than to zero in order to
3653 * avoid a too-soon return to zero in case of a short grace period
3654 * (or preemption of this task). Exclude CPU-hotplug operations
3655 * to ensure that no offline CPU has callbacks queued.
3657 init_completion(&rsp
->barrier_completion
);
3658 atomic_set(&rsp
->barrier_cpu_count
, 1);
3662 * Force each CPU with callbacks to register a new callback.
3663 * When that callback is invoked, we will know that all of the
3664 * corresponding CPU's preceding callbacks have been invoked.
3666 for_each_possible_cpu(cpu
) {
3667 if (!cpu_online(cpu
) && !rcu_is_nocb_cpu(cpu
))
3669 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3670 if (rcu_is_nocb_cpu(cpu
)) {
3671 if (!rcu_nocb_cpu_needs_barrier(rsp
, cpu
)) {
3672 _rcu_barrier_trace(rsp
, "OfflineNoCB", cpu
,
3673 rsp
->barrier_sequence
);
3675 _rcu_barrier_trace(rsp
, "OnlineNoCB", cpu
,
3676 rsp
->barrier_sequence
);
3677 smp_mb__before_atomic();
3678 atomic_inc(&rsp
->barrier_cpu_count
);
3679 __call_rcu(&rdp
->barrier_head
,
3680 rcu_barrier_callback
, rsp
, cpu
, 0);
3682 } else if (READ_ONCE(rdp
->qlen
)) {
3683 _rcu_barrier_trace(rsp
, "OnlineQ", cpu
,
3684 rsp
->barrier_sequence
);
3685 smp_call_function_single(cpu
, rcu_barrier_func
, rsp
, 1);
3687 _rcu_barrier_trace(rsp
, "OnlineNQ", cpu
,
3688 rsp
->barrier_sequence
);
3694 * Now that we have an rcu_barrier_callback() callback on each
3695 * CPU, and thus each counted, remove the initial count.
3697 if (atomic_dec_and_test(&rsp
->barrier_cpu_count
))
3698 complete(&rsp
->barrier_completion
);
3700 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3701 wait_for_completion(&rsp
->barrier_completion
);
3703 /* Mark the end of the barrier operation. */
3704 _rcu_barrier_trace(rsp
, "Inc2", -1, rsp
->barrier_sequence
);
3705 rcu_seq_end(&rsp
->barrier_sequence
);
3707 /* Other rcu_barrier() invocations can now safely proceed. */
3708 mutex_unlock(&rsp
->barrier_mutex
);
3712 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3714 void rcu_barrier_bh(void)
3716 _rcu_barrier(&rcu_bh_state
);
3718 EXPORT_SYMBOL_GPL(rcu_barrier_bh
);
3721 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3723 void rcu_barrier_sched(void)
3725 _rcu_barrier(&rcu_sched_state
);
3727 EXPORT_SYMBOL_GPL(rcu_barrier_sched
);
3730 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3731 * first CPU in a given leaf rcu_node structure coming online. The caller
3732 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3735 static void rcu_init_new_rnp(struct rcu_node
*rnp_leaf
)
3738 struct rcu_node
*rnp
= rnp_leaf
;
3741 mask
= rnp
->grpmask
;
3745 raw_spin_lock_rcu_node(rnp
); /* Interrupts already disabled. */
3746 rnp
->qsmaskinit
|= mask
;
3747 raw_spin_unlock_rcu_node(rnp
); /* Interrupts remain disabled. */
3752 * Do boot-time initialization of a CPU's per-CPU RCU data.
3755 rcu_boot_init_percpu_data(int cpu
, struct rcu_state
*rsp
)
3757 unsigned long flags
;
3758 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3759 struct rcu_node
*rnp
= rcu_get_root(rsp
);
3761 /* Set up local state, ensuring consistent view of global state. */
3762 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3763 rdp
->grpmask
= leaf_node_cpu_bit(rdp
->mynode
, cpu
);
3764 rdp
->dynticks
= &per_cpu(rcu_dynticks
, cpu
);
3765 WARN_ON_ONCE(rdp
->dynticks
->dynticks_nesting
!= DYNTICK_TASK_EXIT_IDLE
);
3766 WARN_ON_ONCE(atomic_read(&rdp
->dynticks
->dynticks
) != 1);
3769 rcu_boot_init_nocb_percpu_data(rdp
);
3770 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3774 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3775 * offline event can be happening at a given time. Note also that we
3776 * can accept some slop in the rsp->completed access due to the fact
3777 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3780 rcu_init_percpu_data(int cpu
, struct rcu_state
*rsp
)
3782 unsigned long flags
;
3784 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3785 struct rcu_node
*rnp
= rcu_get_root(rsp
);
3787 /* Set up local state, ensuring consistent view of global state. */
3788 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3789 rdp
->qlen_last_fqs_check
= 0;
3790 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
3791 rdp
->blimit
= blimit
;
3793 init_callback_list(rdp
); /* Re-enable callbacks on this CPU. */
3794 rdp
->dynticks
->dynticks_nesting
= DYNTICK_TASK_EXIT_IDLE
;
3795 rcu_sysidle_init_percpu_data(rdp
->dynticks
);
3796 atomic_set(&rdp
->dynticks
->dynticks
,
3797 (atomic_read(&rdp
->dynticks
->dynticks
) & ~0x1) + 1);
3798 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
3801 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3802 * propagation up the rcu_node tree will happen at the beginning
3803 * of the next grace period.
3806 mask
= rdp
->grpmask
;
3807 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
3808 if (!rdp
->beenonline
)
3809 WRITE_ONCE(rsp
->ncpus
, READ_ONCE(rsp
->ncpus
) + 1);
3810 rdp
->beenonline
= true; /* We have now been online. */
3811 rdp
->gpnum
= rnp
->completed
; /* Make CPU later note any new GP. */
3812 rdp
->completed
= rnp
->completed
;
3813 rdp
->cpu_no_qs
.b
.norm
= true;
3814 rdp
->rcu_qs_ctr_snap
= per_cpu(rcu_qs_ctr
, cpu
);
3815 rdp
->core_needs_qs
= false;
3816 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("cpuonl"));
3817 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3820 int rcutree_prepare_cpu(unsigned int cpu
)
3822 struct rcu_state
*rsp
;
3824 for_each_rcu_flavor(rsp
)
3825 rcu_init_percpu_data(cpu
, rsp
);
3827 rcu_prepare_kthreads(cpu
);
3828 rcu_spawn_all_nocb_kthreads(cpu
);
3833 static void rcutree_affinity_setting(unsigned int cpu
, int outgoing
)
3835 struct rcu_data
*rdp
= per_cpu_ptr(rcu_state_p
->rda
, cpu
);
3837 rcu_boost_kthread_setaffinity(rdp
->mynode
, outgoing
);
3840 int rcutree_online_cpu(unsigned int cpu
)
3842 sync_sched_exp_online_cleanup(cpu
);
3843 rcutree_affinity_setting(cpu
, -1);
3847 int rcutree_offline_cpu(unsigned int cpu
)
3849 rcutree_affinity_setting(cpu
, cpu
);
3854 int rcutree_dying_cpu(unsigned int cpu
)
3856 struct rcu_state
*rsp
;
3858 for_each_rcu_flavor(rsp
)
3859 rcu_cleanup_dying_cpu(rsp
);
3863 int rcutree_dead_cpu(unsigned int cpu
)
3865 struct rcu_state
*rsp
;
3867 for_each_rcu_flavor(rsp
) {
3868 rcu_cleanup_dead_cpu(cpu
, rsp
);
3869 do_nocb_deferred_wakeup(per_cpu_ptr(rsp
->rda
, cpu
));
3875 * Mark the specified CPU as being online so that subsequent grace periods
3876 * (both expedited and normal) will wait on it. Note that this means that
3877 * incoming CPUs are not allowed to use RCU read-side critical sections
3878 * until this function is called. Failing to observe this restriction
3879 * will result in lockdep splats.
3881 void rcu_cpu_starting(unsigned int cpu
)
3883 unsigned long flags
;
3885 struct rcu_data
*rdp
;
3886 struct rcu_node
*rnp
;
3887 struct rcu_state
*rsp
;
3889 for_each_rcu_flavor(rsp
) {
3890 rdp
= this_cpu_ptr(rsp
->rda
);
3892 mask
= rdp
->grpmask
;
3893 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3894 rnp
->qsmaskinitnext
|= mask
;
3895 rnp
->expmaskinitnext
|= mask
;
3896 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3900 #ifdef CONFIG_HOTPLUG_CPU
3902 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3903 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3905 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3906 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3909 static void rcu_cleanup_dying_idle_cpu(int cpu
, struct rcu_state
*rsp
)
3911 unsigned long flags
;
3913 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3914 struct rcu_node
*rnp
= rdp
->mynode
; /* Outgoing CPU's rdp & rnp. */
3916 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3917 mask
= rdp
->grpmask
;
3918 raw_spin_lock_irqsave_rcu_node(rnp
, flags
); /* Enforce GP memory-order guarantee. */
3919 rnp
->qsmaskinitnext
&= ~mask
;
3920 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3923 void rcu_report_dead(unsigned int cpu
)
3925 struct rcu_state
*rsp
;
3927 /* QS for any half-done expedited RCU-sched GP. */
3929 rcu_report_exp_rdp(&rcu_sched_state
,
3930 this_cpu_ptr(rcu_sched_state
.rda
), true);
3932 for_each_rcu_flavor(rsp
)
3933 rcu_cleanup_dying_idle_cpu(cpu
, rsp
);
3937 static int rcu_pm_notify(struct notifier_block
*self
,
3938 unsigned long action
, void *hcpu
)
3941 case PM_HIBERNATION_PREPARE
:
3942 case PM_SUSPEND_PREPARE
:
3943 if (nr_cpu_ids
<= 256) /* Expediting bad for large systems. */
3946 case PM_POST_HIBERNATION
:
3947 case PM_POST_SUSPEND
:
3948 if (nr_cpu_ids
<= 256) /* Expediting bad for large systems. */
3949 rcu_unexpedite_gp();
3958 * Spawn the kthreads that handle each RCU flavor's grace periods.
3960 static int __init
rcu_spawn_gp_kthread(void)
3962 unsigned long flags
;
3963 int kthread_prio_in
= kthread_prio
;
3964 struct rcu_node
*rnp
;
3965 struct rcu_state
*rsp
;
3966 struct sched_param sp
;
3967 struct task_struct
*t
;
3969 /* Force priority into range. */
3970 if (IS_ENABLED(CONFIG_RCU_BOOST
) && kthread_prio
< 1)
3972 else if (kthread_prio
< 0)
3974 else if (kthread_prio
> 99)
3976 if (kthread_prio
!= kthread_prio_in
)
3977 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3978 kthread_prio
, kthread_prio_in
);
3980 rcu_scheduler_fully_active
= 1;
3981 for_each_rcu_flavor(rsp
) {
3982 t
= kthread_create(rcu_gp_kthread
, rsp
, "%s", rsp
->name
);
3984 rnp
= rcu_get_root(rsp
);
3985 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3986 rsp
->gp_kthread
= t
;
3988 sp
.sched_priority
= kthread_prio
;
3989 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
3991 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3994 rcu_spawn_nocb_kthreads();
3995 rcu_spawn_boost_kthreads();
3998 early_initcall(rcu_spawn_gp_kthread
);
4001 * This function is invoked towards the end of the scheduler's
4002 * initialization process. Before this is called, the idle task might
4003 * contain synchronous grace-period primitives (during which time, this idle
4004 * task is booting the system, and such primitives are no-ops). After this
4005 * function is called, any synchronous grace-period primitives are run as
4006 * expedited, with the requesting task driving the grace period forward.
4007 * A later core_initcall() rcu_exp_runtime_mode() will switch to full
4008 * runtime RCU functionality.
4010 void rcu_scheduler_starting(void)
4012 WARN_ON(num_online_cpus() != 1);
4013 WARN_ON(nr_context_switches() > 0);
4014 rcu_test_sync_prims();
4015 rcu_scheduler_active
= RCU_SCHEDULER_INIT
;
4016 rcu_test_sync_prims();
4020 * Compute the per-level fanout, either using the exact fanout specified
4021 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4023 static void __init
rcu_init_levelspread(int *levelspread
, const int *levelcnt
)
4027 if (rcu_fanout_exact
) {
4028 levelspread
[rcu_num_lvls
- 1] = rcu_fanout_leaf
;
4029 for (i
= rcu_num_lvls
- 2; i
>= 0; i
--)
4030 levelspread
[i
] = RCU_FANOUT
;
4036 for (i
= rcu_num_lvls
- 1; i
>= 0; i
--) {
4038 levelspread
[i
] = (cprv
+ ccur
- 1) / ccur
;
4045 * Helper function for rcu_init() that initializes one rcu_state structure.
4047 static void __init
rcu_init_one(struct rcu_state
*rsp
)
4049 static const char * const buf
[] = RCU_NODE_NAME_INIT
;
4050 static const char * const fqs
[] = RCU_FQS_NAME_INIT
;
4051 static struct lock_class_key rcu_node_class
[RCU_NUM_LVLS
];
4052 static struct lock_class_key rcu_fqs_class
[RCU_NUM_LVLS
];
4053 static u8 fl_mask
= 0x1;
4055 int levelcnt
[RCU_NUM_LVLS
]; /* # nodes in each level. */
4056 int levelspread
[RCU_NUM_LVLS
]; /* kids/node in each level. */
4060 struct rcu_node
*rnp
;
4062 BUILD_BUG_ON(RCU_NUM_LVLS
> ARRAY_SIZE(buf
)); /* Fix buf[] init! */
4064 /* Silence gcc 4.8 false positive about array index out of range. */
4065 if (rcu_num_lvls
<= 0 || rcu_num_lvls
> RCU_NUM_LVLS
)
4066 panic("rcu_init_one: rcu_num_lvls out of range");
4068 /* Initialize the level-tracking arrays. */
4070 for (i
= 0; i
< rcu_num_lvls
; i
++)
4071 levelcnt
[i
] = num_rcu_lvl
[i
];
4072 for (i
= 1; i
< rcu_num_lvls
; i
++)
4073 rsp
->level
[i
] = rsp
->level
[i
- 1] + levelcnt
[i
- 1];
4074 rcu_init_levelspread(levelspread
, levelcnt
);
4075 rsp
->flavor_mask
= fl_mask
;
4078 /* Initialize the elements themselves, starting from the leaves. */
4080 for (i
= rcu_num_lvls
- 1; i
>= 0; i
--) {
4081 cpustride
*= levelspread
[i
];
4082 rnp
= rsp
->level
[i
];
4083 for (j
= 0; j
< levelcnt
[i
]; j
++, rnp
++) {
4084 raw_spin_lock_init(&ACCESS_PRIVATE(rnp
, lock
));
4085 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp
, lock
),
4086 &rcu_node_class
[i
], buf
[i
]);
4087 raw_spin_lock_init(&rnp
->fqslock
);
4088 lockdep_set_class_and_name(&rnp
->fqslock
,
4089 &rcu_fqs_class
[i
], fqs
[i
]);
4090 rnp
->gpnum
= rsp
->gpnum
;
4091 rnp
->completed
= rsp
->completed
;
4093 rnp
->qsmaskinit
= 0;
4094 rnp
->grplo
= j
* cpustride
;
4095 rnp
->grphi
= (j
+ 1) * cpustride
- 1;
4096 if (rnp
->grphi
>= nr_cpu_ids
)
4097 rnp
->grphi
= nr_cpu_ids
- 1;
4103 rnp
->grpnum
= j
% levelspread
[i
- 1];
4104 rnp
->grpmask
= 1UL << rnp
->grpnum
;
4105 rnp
->parent
= rsp
->level
[i
- 1] +
4106 j
/ levelspread
[i
- 1];
4109 INIT_LIST_HEAD(&rnp
->blkd_tasks
);
4110 rcu_init_one_nocb(rnp
);
4111 init_waitqueue_head(&rnp
->exp_wq
[0]);
4112 init_waitqueue_head(&rnp
->exp_wq
[1]);
4113 init_waitqueue_head(&rnp
->exp_wq
[2]);
4114 init_waitqueue_head(&rnp
->exp_wq
[3]);
4115 spin_lock_init(&rnp
->exp_lock
);
4119 init_swait_queue_head(&rsp
->gp_wq
);
4120 init_swait_queue_head(&rsp
->expedited_wq
);
4121 rnp
= rsp
->level
[rcu_num_lvls
- 1];
4122 for_each_possible_cpu(i
) {
4123 while (i
> rnp
->grphi
)
4125 per_cpu_ptr(rsp
->rda
, i
)->mynode
= rnp
;
4126 rcu_boot_init_percpu_data(i
, rsp
);
4128 list_add(&rsp
->flavors
, &rcu_struct_flavors
);
4132 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4133 * replace the definitions in tree.h because those are needed to size
4134 * the ->node array in the rcu_state structure.
4136 static void __init
rcu_init_geometry(void)
4140 int rcu_capacity
[RCU_NUM_LVLS
];
4143 * Initialize any unspecified boot parameters.
4144 * The default values of jiffies_till_first_fqs and
4145 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4146 * value, which is a function of HZ, then adding one for each
4147 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4149 d
= RCU_JIFFIES_TILL_FORCE_QS
+ nr_cpu_ids
/ RCU_JIFFIES_FQS_DIV
;
4150 if (jiffies_till_first_fqs
== ULONG_MAX
)
4151 jiffies_till_first_fqs
= d
;
4152 if (jiffies_till_next_fqs
== ULONG_MAX
)
4153 jiffies_till_next_fqs
= d
;
4155 /* If the compile-time values are accurate, just leave. */
4156 if (rcu_fanout_leaf
== RCU_FANOUT_LEAF
&&
4157 nr_cpu_ids
== NR_CPUS
)
4159 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4160 rcu_fanout_leaf
, nr_cpu_ids
);
4163 * The boot-time rcu_fanout_leaf parameter must be at least two
4164 * and cannot exceed the number of bits in the rcu_node masks.
4165 * Complain and fall back to the compile-time values if this
4166 * limit is exceeded.
4168 if (rcu_fanout_leaf
< 2 ||
4169 rcu_fanout_leaf
> sizeof(unsigned long) * 8) {
4170 rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
4176 * Compute number of nodes that can be handled an rcu_node tree
4177 * with the given number of levels.
4179 rcu_capacity
[0] = rcu_fanout_leaf
;
4180 for (i
= 1; i
< RCU_NUM_LVLS
; i
++)
4181 rcu_capacity
[i
] = rcu_capacity
[i
- 1] * RCU_FANOUT
;
4184 * The tree must be able to accommodate the configured number of CPUs.
4185 * If this limit is exceeded, fall back to the compile-time values.
4187 if (nr_cpu_ids
> rcu_capacity
[RCU_NUM_LVLS
- 1]) {
4188 rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
4193 /* Calculate the number of levels in the tree. */
4194 for (i
= 0; nr_cpu_ids
> rcu_capacity
[i
]; i
++) {
4196 rcu_num_lvls
= i
+ 1;
4198 /* Calculate the number of rcu_nodes at each level of the tree. */
4199 for (i
= 0; i
< rcu_num_lvls
; i
++) {
4200 int cap
= rcu_capacity
[(rcu_num_lvls
- 1) - i
];
4201 num_rcu_lvl
[i
] = DIV_ROUND_UP(nr_cpu_ids
, cap
);
4204 /* Calculate the total number of rcu_node structures. */
4206 for (i
= 0; i
< rcu_num_lvls
; i
++)
4207 rcu_num_nodes
+= num_rcu_lvl
[i
];
4211 * Dump out the structure of the rcu_node combining tree associated
4212 * with the rcu_state structure referenced by rsp.
4214 static void __init
rcu_dump_rcu_node_tree(struct rcu_state
*rsp
)
4217 struct rcu_node
*rnp
;
4219 pr_info("rcu_node tree layout dump\n");
4221 rcu_for_each_node_breadth_first(rsp
, rnp
) {
4222 if (rnp
->level
!= level
) {
4227 pr_cont("%d:%d ^%d ", rnp
->grplo
, rnp
->grphi
, rnp
->grpnum
);
4232 void __init
rcu_init(void)
4236 rcu_early_boot_tests();
4238 rcu_bootup_announce();
4239 rcu_init_geometry();
4240 rcu_init_one(&rcu_bh_state
);
4241 rcu_init_one(&rcu_sched_state
);
4243 rcu_dump_rcu_node_tree(&rcu_sched_state
);
4244 __rcu_init_preempt();
4245 open_softirq(RCU_SOFTIRQ
, rcu_process_callbacks
);
4248 * We don't need protection against CPU-hotplug here because
4249 * this is called early in boot, before either interrupts
4250 * or the scheduler are operational.
4252 pm_notifier(rcu_pm_notify
, 0);
4253 for_each_online_cpu(cpu
) {
4254 rcutree_prepare_cpu(cpu
);
4255 rcu_cpu_starting(cpu
);
4259 #include "tree_exp.h"
4260 #include "tree_plugin.h"