2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
37 #include <trace/events/kmem.h>
43 * 1. slab_mutex (Global Mutex)
45 * 3. slab_lock(page) (Only on some arches and for debugging)
49 * The role of the slab_mutex is to protect the list of all the slabs
50 * and to synchronize major metadata changes to slab cache structures.
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
86 * freed then the slab will show up again on the partial lists.
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
94 * Overloading of page flags that are otherwise used for LRU management.
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
117 static inline int kmem_cache_debug(struct kmem_cache
*s
)
119 #ifdef CONFIG_SLUB_DEBUG
120 return unlikely(s
->flags
& SLAB_DEBUG_FLAGS
);
126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache
*s
)
128 #ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s
);
136 * Issues still to be resolved:
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
140 * - Variable sizing of the per node arrays
143 /* Enable to test recovery from slab corruption on boot */
144 #undef SLUB_RESILIENCY_TEST
146 /* Enable to log cmpxchg failures */
147 #undef SLUB_DEBUG_CMPXCHG
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
153 #define MIN_PARTIAL 5
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
158 * sort the partial list by the number of objects in use.
160 #define MAX_PARTIAL 10
162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
173 * Set of flags that will prevent slab merging
175 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
179 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
180 SLAB_CACHE_DMA | SLAB_NOTRACK)
183 #define OO_MASK ((1 << OO_SHIFT) - 1)
184 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
186 /* Internal SLUB flags */
187 #define __OBJECT_POISON 0x80000000UL /* Poison object */
188 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
191 static struct notifier_block slab_notifier
;
195 * Tracking user of a slab.
197 #define TRACK_ADDRS_COUNT 16
199 unsigned long addr
; /* Called from address */
200 #ifdef CONFIG_STACKTRACE
201 unsigned long addrs
[TRACK_ADDRS_COUNT
]; /* Called from address */
203 int cpu
; /* Was running on cpu */
204 int pid
; /* Pid context */
205 unsigned long when
; /* When did the operation occur */
208 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
211 static int sysfs_slab_add(struct kmem_cache
*);
212 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
213 static void sysfs_slab_remove(struct kmem_cache
*);
214 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
);
216 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
217 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
219 static inline void sysfs_slab_remove(struct kmem_cache
*s
) { }
221 static inline void memcg_propagate_slab_attrs(struct kmem_cache
*s
) { }
224 static inline void stat(const struct kmem_cache
*s
, enum stat_item si
)
226 #ifdef CONFIG_SLUB_STATS
227 __this_cpu_inc(s
->cpu_slab
->stat
[si
]);
231 /********************************************************************
232 * Core slab cache functions
233 *******************************************************************/
235 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
237 return s
->node
[node
];
240 /* Verify that a pointer has an address that is valid within a slab page */
241 static inline int check_valid_pointer(struct kmem_cache
*s
,
242 struct page
*page
, const void *object
)
249 base
= page_address(page
);
250 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
251 (object
- base
) % s
->size
) {
258 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
260 return *(void **)(object
+ s
->offset
);
263 static void prefetch_freepointer(const struct kmem_cache
*s
, void *object
)
265 prefetch(object
+ s
->offset
);
268 static inline void *get_freepointer_safe(struct kmem_cache
*s
, void *object
)
272 #ifdef CONFIG_DEBUG_PAGEALLOC
273 probe_kernel_read(&p
, (void **)(object
+ s
->offset
), sizeof(p
));
275 p
= get_freepointer(s
, object
);
280 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
282 *(void **)(object
+ s
->offset
) = fp
;
285 /* Loop over all objects in a slab */
286 #define for_each_object(__p, __s, __addr, __objects) \
287 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
290 /* Determine object index from a given position */
291 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
293 return (p
- addr
) / s
->size
;
296 static inline size_t slab_ksize(const struct kmem_cache
*s
)
298 #ifdef CONFIG_SLUB_DEBUG
300 * Debugging requires use of the padding between object
301 * and whatever may come after it.
303 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
304 return s
->object_size
;
308 * If we have the need to store the freelist pointer
309 * back there or track user information then we can
310 * only use the space before that information.
312 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
315 * Else we can use all the padding etc for the allocation
320 static inline int order_objects(int order
, unsigned long size
, int reserved
)
322 return ((PAGE_SIZE
<< order
) - reserved
) / size
;
325 static inline struct kmem_cache_order_objects
oo_make(int order
,
326 unsigned long size
, int reserved
)
328 struct kmem_cache_order_objects x
= {
329 (order
<< OO_SHIFT
) + order_objects(order
, size
, reserved
)
335 static inline int oo_order(struct kmem_cache_order_objects x
)
337 return x
.x
>> OO_SHIFT
;
340 static inline int oo_objects(struct kmem_cache_order_objects x
)
342 return x
.x
& OO_MASK
;
346 * Per slab locking using the pagelock
348 static __always_inline
void slab_lock(struct page
*page
)
350 bit_spin_lock(PG_locked
, &page
->flags
);
353 static __always_inline
void slab_unlock(struct page
*page
)
355 __bit_spin_unlock(PG_locked
, &page
->flags
);
358 static inline void set_page_slub_counters(struct page
*page
, unsigned long counters_new
)
361 tmp
.counters
= counters_new
;
363 * page->counters can cover frozen/inuse/objects as well
364 * as page->_count. If we assign to ->counters directly
365 * we run the risk of losing updates to page->_count, so
366 * be careful and only assign to the fields we need.
368 page
->frozen
= tmp
.frozen
;
369 page
->inuse
= tmp
.inuse
;
370 page
->objects
= tmp
.objects
;
373 /* Interrupts must be disabled (for the fallback code to work right) */
374 static inline bool __cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
375 void *freelist_old
, unsigned long counters_old
,
376 void *freelist_new
, unsigned long counters_new
,
379 VM_BUG_ON(!irqs_disabled());
380 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
381 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
382 if (s
->flags
& __CMPXCHG_DOUBLE
) {
383 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
384 freelist_old
, counters_old
,
385 freelist_new
, counters_new
))
391 if (page
->freelist
== freelist_old
&&
392 page
->counters
== counters_old
) {
393 page
->freelist
= freelist_new
;
394 set_page_slub_counters(page
, counters_new
);
402 stat(s
, CMPXCHG_DOUBLE_FAIL
);
404 #ifdef SLUB_DEBUG_CMPXCHG
405 printk(KERN_INFO
"%s %s: cmpxchg double redo ", n
, s
->name
);
411 static inline bool cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
412 void *freelist_old
, unsigned long counters_old
,
413 void *freelist_new
, unsigned long counters_new
,
416 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
417 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
418 if (s
->flags
& __CMPXCHG_DOUBLE
) {
419 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
420 freelist_old
, counters_old
,
421 freelist_new
, counters_new
))
428 local_irq_save(flags
);
430 if (page
->freelist
== freelist_old
&&
431 page
->counters
== counters_old
) {
432 page
->freelist
= freelist_new
;
433 set_page_slub_counters(page
, counters_new
);
435 local_irq_restore(flags
);
439 local_irq_restore(flags
);
443 stat(s
, CMPXCHG_DOUBLE_FAIL
);
445 #ifdef SLUB_DEBUG_CMPXCHG
446 printk(KERN_INFO
"%s %s: cmpxchg double redo ", n
, s
->name
);
452 #ifdef CONFIG_SLUB_DEBUG
454 * Determine a map of object in use on a page.
456 * Node listlock must be held to guarantee that the page does
457 * not vanish from under us.
459 static void get_map(struct kmem_cache
*s
, struct page
*page
, unsigned long *map
)
462 void *addr
= page_address(page
);
464 for (p
= page
->freelist
; p
; p
= get_freepointer(s
, p
))
465 set_bit(slab_index(p
, s
, addr
), map
);
471 #ifdef CONFIG_SLUB_DEBUG_ON
472 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
474 static int slub_debug
;
477 static char *slub_debug_slabs
;
478 static int disable_higher_order_debug
;
483 static void print_section(char *text
, u8
*addr
, unsigned int length
)
485 print_hex_dump(KERN_ERR
, text
, DUMP_PREFIX_ADDRESS
, 16, 1, addr
,
489 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
490 enum track_item alloc
)
495 p
= object
+ s
->offset
+ sizeof(void *);
497 p
= object
+ s
->inuse
;
502 static void set_track(struct kmem_cache
*s
, void *object
,
503 enum track_item alloc
, unsigned long addr
)
505 struct track
*p
= get_track(s
, object
, alloc
);
508 #ifdef CONFIG_STACKTRACE
509 struct stack_trace trace
;
512 trace
.nr_entries
= 0;
513 trace
.max_entries
= TRACK_ADDRS_COUNT
;
514 trace
.entries
= p
->addrs
;
516 save_stack_trace(&trace
);
518 /* See rant in lockdep.c */
519 if (trace
.nr_entries
!= 0 &&
520 trace
.entries
[trace
.nr_entries
- 1] == ULONG_MAX
)
523 for (i
= trace
.nr_entries
; i
< TRACK_ADDRS_COUNT
; i
++)
527 p
->cpu
= smp_processor_id();
528 p
->pid
= current
->pid
;
531 memset(p
, 0, sizeof(struct track
));
534 static void init_tracking(struct kmem_cache
*s
, void *object
)
536 if (!(s
->flags
& SLAB_STORE_USER
))
539 set_track(s
, object
, TRACK_FREE
, 0UL);
540 set_track(s
, object
, TRACK_ALLOC
, 0UL);
543 static void print_track(const char *s
, struct track
*t
)
548 printk(KERN_ERR
"INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
549 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
550 #ifdef CONFIG_STACKTRACE
553 for (i
= 0; i
< TRACK_ADDRS_COUNT
; i
++)
555 printk(KERN_ERR
"\t%pS\n", (void *)t
->addrs
[i
]);
562 static void print_tracking(struct kmem_cache
*s
, void *object
)
564 if (!(s
->flags
& SLAB_STORE_USER
))
567 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
568 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
571 static void print_page_info(struct page
*page
)
574 "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
575 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
579 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
585 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
587 printk(KERN_ERR
"========================================"
588 "=====================================\n");
589 printk(KERN_ERR
"BUG %s (%s): %s\n", s
->name
, print_tainted(), buf
);
590 printk(KERN_ERR
"----------------------------------------"
591 "-------------------------------------\n\n");
593 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
596 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
602 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
604 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
607 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
609 unsigned int off
; /* Offset of last byte */
610 u8
*addr
= page_address(page
);
612 print_tracking(s
, p
);
614 print_page_info(page
);
616 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
617 p
, p
- addr
, get_freepointer(s
, p
));
620 print_section("Bytes b4 ", p
- 16, 16);
622 print_section("Object ", p
, min_t(unsigned long, s
->object_size
,
624 if (s
->flags
& SLAB_RED_ZONE
)
625 print_section("Redzone ", p
+ s
->object_size
,
626 s
->inuse
- s
->object_size
);
629 off
= s
->offset
+ sizeof(void *);
633 if (s
->flags
& SLAB_STORE_USER
)
634 off
+= 2 * sizeof(struct track
);
637 /* Beginning of the filler is the free pointer */
638 print_section("Padding ", p
+ off
, s
->size
- off
);
643 static void object_err(struct kmem_cache
*s
, struct page
*page
,
644 u8
*object
, char *reason
)
646 slab_bug(s
, "%s", reason
);
647 print_trailer(s
, page
, object
);
650 static void slab_err(struct kmem_cache
*s
, struct page
*page
,
651 const char *fmt
, ...)
657 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
659 slab_bug(s
, "%s", buf
);
660 print_page_info(page
);
664 static void init_object(struct kmem_cache
*s
, void *object
, u8 val
)
668 if (s
->flags
& __OBJECT_POISON
) {
669 memset(p
, POISON_FREE
, s
->object_size
- 1);
670 p
[s
->object_size
- 1] = POISON_END
;
673 if (s
->flags
& SLAB_RED_ZONE
)
674 memset(p
+ s
->object_size
, val
, s
->inuse
- s
->object_size
);
677 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
678 void *from
, void *to
)
680 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
681 memset(from
, data
, to
- from
);
684 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
685 u8
*object
, char *what
,
686 u8
*start
, unsigned int value
, unsigned int bytes
)
691 fault
= memchr_inv(start
, value
, bytes
);
696 while (end
> fault
&& end
[-1] == value
)
699 slab_bug(s
, "%s overwritten", what
);
700 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
701 fault
, end
- 1, fault
[0], value
);
702 print_trailer(s
, page
, object
);
704 restore_bytes(s
, what
, value
, fault
, end
);
712 * Bytes of the object to be managed.
713 * If the freepointer may overlay the object then the free
714 * pointer is the first word of the object.
716 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
719 * object + s->object_size
720 * Padding to reach word boundary. This is also used for Redzoning.
721 * Padding is extended by another word if Redzoning is enabled and
722 * object_size == inuse.
724 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
725 * 0xcc (RED_ACTIVE) for objects in use.
728 * Meta data starts here.
730 * A. Free pointer (if we cannot overwrite object on free)
731 * B. Tracking data for SLAB_STORE_USER
732 * C. Padding to reach required alignment boundary or at mininum
733 * one word if debugging is on to be able to detect writes
734 * before the word boundary.
736 * Padding is done using 0x5a (POISON_INUSE)
739 * Nothing is used beyond s->size.
741 * If slabcaches are merged then the object_size and inuse boundaries are mostly
742 * ignored. And therefore no slab options that rely on these boundaries
743 * may be used with merged slabcaches.
746 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
748 unsigned long off
= s
->inuse
; /* The end of info */
751 /* Freepointer is placed after the object. */
752 off
+= sizeof(void *);
754 if (s
->flags
& SLAB_STORE_USER
)
755 /* We also have user information there */
756 off
+= 2 * sizeof(struct track
);
761 return check_bytes_and_report(s
, page
, p
, "Object padding",
762 p
+ off
, POISON_INUSE
, s
->size
- off
);
765 /* Check the pad bytes at the end of a slab page */
766 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
774 if (!(s
->flags
& SLAB_POISON
))
777 start
= page_address(page
);
778 length
= (PAGE_SIZE
<< compound_order(page
)) - s
->reserved
;
779 end
= start
+ length
;
780 remainder
= length
% s
->size
;
784 fault
= memchr_inv(end
- remainder
, POISON_INUSE
, remainder
);
787 while (end
> fault
&& end
[-1] == POISON_INUSE
)
790 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
791 print_section("Padding ", end
- remainder
, remainder
);
793 restore_bytes(s
, "slab padding", POISON_INUSE
, end
- remainder
, end
);
797 static int check_object(struct kmem_cache
*s
, struct page
*page
,
798 void *object
, u8 val
)
801 u8
*endobject
= object
+ s
->object_size
;
803 if (s
->flags
& SLAB_RED_ZONE
) {
804 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
805 endobject
, val
, s
->inuse
- s
->object_size
))
808 if ((s
->flags
& SLAB_POISON
) && s
->object_size
< s
->inuse
) {
809 check_bytes_and_report(s
, page
, p
, "Alignment padding",
810 endobject
, POISON_INUSE
,
811 s
->inuse
- s
->object_size
);
815 if (s
->flags
& SLAB_POISON
) {
816 if (val
!= SLUB_RED_ACTIVE
&& (s
->flags
& __OBJECT_POISON
) &&
817 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
818 POISON_FREE
, s
->object_size
- 1) ||
819 !check_bytes_and_report(s
, page
, p
, "Poison",
820 p
+ s
->object_size
- 1, POISON_END
, 1)))
823 * check_pad_bytes cleans up on its own.
825 check_pad_bytes(s
, page
, p
);
828 if (!s
->offset
&& val
== SLUB_RED_ACTIVE
)
830 * Object and freepointer overlap. Cannot check
831 * freepointer while object is allocated.
835 /* Check free pointer validity */
836 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
837 object_err(s
, page
, p
, "Freepointer corrupt");
839 * No choice but to zap it and thus lose the remainder
840 * of the free objects in this slab. May cause
841 * another error because the object count is now wrong.
843 set_freepointer(s
, p
, NULL
);
849 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
853 VM_BUG_ON(!irqs_disabled());
855 if (!PageSlab(page
)) {
856 slab_err(s
, page
, "Not a valid slab page");
860 maxobj
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
861 if (page
->objects
> maxobj
) {
862 slab_err(s
, page
, "objects %u > max %u",
863 s
->name
, page
->objects
, maxobj
);
866 if (page
->inuse
> page
->objects
) {
867 slab_err(s
, page
, "inuse %u > max %u",
868 s
->name
, page
->inuse
, page
->objects
);
871 /* Slab_pad_check fixes things up after itself */
872 slab_pad_check(s
, page
);
877 * Determine if a certain object on a page is on the freelist. Must hold the
878 * slab lock to guarantee that the chains are in a consistent state.
880 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
885 unsigned long max_objects
;
888 while (fp
&& nr
<= page
->objects
) {
891 if (!check_valid_pointer(s
, page
, fp
)) {
893 object_err(s
, page
, object
,
894 "Freechain corrupt");
895 set_freepointer(s
, object
, NULL
);
897 slab_err(s
, page
, "Freepointer corrupt");
898 page
->freelist
= NULL
;
899 page
->inuse
= page
->objects
;
900 slab_fix(s
, "Freelist cleared");
906 fp
= get_freepointer(s
, object
);
910 max_objects
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
911 if (max_objects
> MAX_OBJS_PER_PAGE
)
912 max_objects
= MAX_OBJS_PER_PAGE
;
914 if (page
->objects
!= max_objects
) {
915 slab_err(s
, page
, "Wrong number of objects. Found %d but "
916 "should be %d", page
->objects
, max_objects
);
917 page
->objects
= max_objects
;
918 slab_fix(s
, "Number of objects adjusted.");
920 if (page
->inuse
!= page
->objects
- nr
) {
921 slab_err(s
, page
, "Wrong object count. Counter is %d but "
922 "counted were %d", page
->inuse
, page
->objects
- nr
);
923 page
->inuse
= page
->objects
- nr
;
924 slab_fix(s
, "Object count adjusted.");
926 return search
== NULL
;
929 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
932 if (s
->flags
& SLAB_TRACE
) {
933 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
935 alloc
? "alloc" : "free",
940 print_section("Object ", (void *)object
,
948 * Hooks for other subsystems that check memory allocations. In a typical
949 * production configuration these hooks all should produce no code at all.
951 static inline void kmalloc_large_node_hook(void *ptr
, size_t size
, gfp_t flags
)
953 kmemleak_alloc(ptr
, size
, 1, flags
);
956 static inline void kfree_hook(const void *x
)
961 static inline int slab_pre_alloc_hook(struct kmem_cache
*s
, gfp_t flags
)
963 flags
&= gfp_allowed_mask
;
964 lockdep_trace_alloc(flags
);
965 might_sleep_if(flags
& __GFP_WAIT
);
967 return should_failslab(s
->object_size
, flags
, s
->flags
);
970 static inline void slab_post_alloc_hook(struct kmem_cache
*s
,
971 gfp_t flags
, void *object
)
973 flags
&= gfp_allowed_mask
;
974 kmemcheck_slab_alloc(s
, flags
, object
, slab_ksize(s
));
975 kmemleak_alloc_recursive(object
, s
->object_size
, 1, s
->flags
, flags
);
978 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
)
980 kmemleak_free_recursive(x
, s
->flags
);
983 * Trouble is that we may no longer disable interrupts in the fast path
984 * So in order to make the debug calls that expect irqs to be
985 * disabled we need to disable interrupts temporarily.
987 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
991 local_irq_save(flags
);
992 kmemcheck_slab_free(s
, x
, s
->object_size
);
993 debug_check_no_locks_freed(x
, s
->object_size
);
994 local_irq_restore(flags
);
997 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
998 debug_check_no_obj_freed(x
, s
->object_size
);
1002 * Tracking of fully allocated slabs for debugging purposes.
1004 static void add_full(struct kmem_cache
*s
,
1005 struct kmem_cache_node
*n
, struct page
*page
)
1007 if (!(s
->flags
& SLAB_STORE_USER
))
1010 lockdep_assert_held(&n
->list_lock
);
1011 list_add(&page
->lru
, &n
->full
);
1014 static void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
, struct page
*page
)
1016 if (!(s
->flags
& SLAB_STORE_USER
))
1019 lockdep_assert_held(&n
->list_lock
);
1020 list_del(&page
->lru
);
1023 /* Tracking of the number of slabs for debugging purposes */
1024 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1026 struct kmem_cache_node
*n
= get_node(s
, node
);
1028 return atomic_long_read(&n
->nr_slabs
);
1031 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1033 return atomic_long_read(&n
->nr_slabs
);
1036 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1038 struct kmem_cache_node
*n
= get_node(s
, node
);
1041 * May be called early in order to allocate a slab for the
1042 * kmem_cache_node structure. Solve the chicken-egg
1043 * dilemma by deferring the increment of the count during
1044 * bootstrap (see early_kmem_cache_node_alloc).
1047 atomic_long_inc(&n
->nr_slabs
);
1048 atomic_long_add(objects
, &n
->total_objects
);
1051 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1053 struct kmem_cache_node
*n
= get_node(s
, node
);
1055 atomic_long_dec(&n
->nr_slabs
);
1056 atomic_long_sub(objects
, &n
->total_objects
);
1059 /* Object debug checks for alloc/free paths */
1060 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
1063 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
1066 init_object(s
, object
, SLUB_RED_INACTIVE
);
1067 init_tracking(s
, object
);
1070 static noinline
int alloc_debug_processing(struct kmem_cache
*s
,
1072 void *object
, unsigned long addr
)
1074 if (!check_slab(s
, page
))
1077 if (!check_valid_pointer(s
, page
, object
)) {
1078 object_err(s
, page
, object
, "Freelist Pointer check fails");
1082 if (!check_object(s
, page
, object
, SLUB_RED_INACTIVE
))
1085 /* Success perform special debug activities for allocs */
1086 if (s
->flags
& SLAB_STORE_USER
)
1087 set_track(s
, object
, TRACK_ALLOC
, addr
);
1088 trace(s
, page
, object
, 1);
1089 init_object(s
, object
, SLUB_RED_ACTIVE
);
1093 if (PageSlab(page
)) {
1095 * If this is a slab page then lets do the best we can
1096 * to avoid issues in the future. Marking all objects
1097 * as used avoids touching the remaining objects.
1099 slab_fix(s
, "Marking all objects used");
1100 page
->inuse
= page
->objects
;
1101 page
->freelist
= NULL
;
1106 static noinline
struct kmem_cache_node
*free_debug_processing(
1107 struct kmem_cache
*s
, struct page
*page
, void *object
,
1108 unsigned long addr
, unsigned long *flags
)
1110 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1112 spin_lock_irqsave(&n
->list_lock
, *flags
);
1115 if (!check_slab(s
, page
))
1118 if (!check_valid_pointer(s
, page
, object
)) {
1119 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
1123 if (on_freelist(s
, page
, object
)) {
1124 object_err(s
, page
, object
, "Object already free");
1128 if (!check_object(s
, page
, object
, SLUB_RED_ACTIVE
))
1131 if (unlikely(s
!= page
->slab_cache
)) {
1132 if (!PageSlab(page
)) {
1133 slab_err(s
, page
, "Attempt to free object(0x%p) "
1134 "outside of slab", object
);
1135 } else if (!page
->slab_cache
) {
1137 "SLUB <none>: no slab for object 0x%p.\n",
1141 object_err(s
, page
, object
,
1142 "page slab pointer corrupt.");
1146 if (s
->flags
& SLAB_STORE_USER
)
1147 set_track(s
, object
, TRACK_FREE
, addr
);
1148 trace(s
, page
, object
, 0);
1149 init_object(s
, object
, SLUB_RED_INACTIVE
);
1153 * Keep node_lock to preserve integrity
1154 * until the object is actually freed
1160 spin_unlock_irqrestore(&n
->list_lock
, *flags
);
1161 slab_fix(s
, "Object at 0x%p not freed", object
);
1165 static int __init
setup_slub_debug(char *str
)
1167 slub_debug
= DEBUG_DEFAULT_FLAGS
;
1168 if (*str
++ != '=' || !*str
)
1170 * No options specified. Switch on full debugging.
1176 * No options but restriction on slabs. This means full
1177 * debugging for slabs matching a pattern.
1181 if (tolower(*str
) == 'o') {
1183 * Avoid enabling debugging on caches if its minimum order
1184 * would increase as a result.
1186 disable_higher_order_debug
= 1;
1193 * Switch off all debugging measures.
1198 * Determine which debug features should be switched on
1200 for (; *str
&& *str
!= ','; str
++) {
1201 switch (tolower(*str
)) {
1203 slub_debug
|= SLAB_DEBUG_FREE
;
1206 slub_debug
|= SLAB_RED_ZONE
;
1209 slub_debug
|= SLAB_POISON
;
1212 slub_debug
|= SLAB_STORE_USER
;
1215 slub_debug
|= SLAB_TRACE
;
1218 slub_debug
|= SLAB_FAILSLAB
;
1221 printk(KERN_ERR
"slub_debug option '%c' "
1222 "unknown. skipped\n", *str
);
1228 slub_debug_slabs
= str
+ 1;
1233 __setup("slub_debug", setup_slub_debug
);
1235 static unsigned long kmem_cache_flags(unsigned long object_size
,
1236 unsigned long flags
, const char *name
,
1237 void (*ctor
)(void *))
1240 * Enable debugging if selected on the kernel commandline.
1242 if (slub_debug
&& (!slub_debug_slabs
|| (name
&&
1243 !strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
)))))
1244 flags
|= slub_debug
;
1249 static inline void setup_object_debug(struct kmem_cache
*s
,
1250 struct page
*page
, void *object
) {}
1252 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1253 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1255 static inline struct kmem_cache_node
*free_debug_processing(
1256 struct kmem_cache
*s
, struct page
*page
, void *object
,
1257 unsigned long addr
, unsigned long *flags
) { return NULL
; }
1259 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1261 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1262 void *object
, u8 val
) { return 1; }
1263 static inline void add_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1264 struct page
*page
) {}
1265 static inline void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1266 struct page
*page
) {}
1267 static inline unsigned long kmem_cache_flags(unsigned long object_size
,
1268 unsigned long flags
, const char *name
,
1269 void (*ctor
)(void *))
1273 #define slub_debug 0
1275 #define disable_higher_order_debug 0
1277 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1279 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1281 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1283 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1286 static inline void kmalloc_large_node_hook(void *ptr
, size_t size
, gfp_t flags
)
1288 kmemleak_alloc(ptr
, size
, 1, flags
);
1291 static inline void kfree_hook(const void *x
)
1296 static inline int slab_pre_alloc_hook(struct kmem_cache
*s
, gfp_t flags
)
1299 static inline void slab_post_alloc_hook(struct kmem_cache
*s
, gfp_t flags
,
1302 kmemleak_alloc_recursive(object
, s
->object_size
, 1, s
->flags
,
1303 flags
& gfp_allowed_mask
);
1306 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
)
1308 kmemleak_free_recursive(x
, s
->flags
);
1311 #endif /* CONFIG_SLUB_DEBUG */
1314 * Slab allocation and freeing
1316 static inline struct page
*alloc_slab_page(gfp_t flags
, int node
,
1317 struct kmem_cache_order_objects oo
)
1319 int order
= oo_order(oo
);
1321 flags
|= __GFP_NOTRACK
;
1323 if (node
== NUMA_NO_NODE
)
1324 return alloc_pages(flags
, order
);
1326 return alloc_pages_exact_node(node
, flags
, order
);
1329 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1332 struct kmem_cache_order_objects oo
= s
->oo
;
1335 flags
&= gfp_allowed_mask
;
1337 if (flags
& __GFP_WAIT
)
1340 flags
|= s
->allocflags
;
1343 * Let the initial higher-order allocation fail under memory pressure
1344 * so we fall-back to the minimum order allocation.
1346 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1348 page
= alloc_slab_page(alloc_gfp
, node
, oo
);
1349 if (unlikely(!page
)) {
1352 * Allocation may have failed due to fragmentation.
1353 * Try a lower order alloc if possible
1355 page
= alloc_slab_page(flags
, node
, oo
);
1358 stat(s
, ORDER_FALLBACK
);
1361 if (kmemcheck_enabled
&& page
1362 && !(s
->flags
& (SLAB_NOTRACK
| DEBUG_DEFAULT_FLAGS
))) {
1363 int pages
= 1 << oo_order(oo
);
1365 kmemcheck_alloc_shadow(page
, oo_order(oo
), flags
, node
);
1368 * Objects from caches that have a constructor don't get
1369 * cleared when they're allocated, so we need to do it here.
1372 kmemcheck_mark_uninitialized_pages(page
, pages
);
1374 kmemcheck_mark_unallocated_pages(page
, pages
);
1377 if (flags
& __GFP_WAIT
)
1378 local_irq_disable();
1382 page
->objects
= oo_objects(oo
);
1383 mod_zone_page_state(page_zone(page
),
1384 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1385 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1391 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1394 setup_object_debug(s
, page
, object
);
1395 if (unlikely(s
->ctor
))
1399 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1407 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1409 page
= allocate_slab(s
,
1410 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1414 order
= compound_order(page
);
1415 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1416 memcg_bind_pages(s
, order
);
1417 page
->slab_cache
= s
;
1418 __SetPageSlab(page
);
1419 if (page
->pfmemalloc
)
1420 SetPageSlabPfmemalloc(page
);
1422 start
= page_address(page
);
1424 if (unlikely(s
->flags
& SLAB_POISON
))
1425 memset(start
, POISON_INUSE
, PAGE_SIZE
<< order
);
1428 for_each_object(p
, s
, start
, page
->objects
) {
1429 setup_object(s
, page
, last
);
1430 set_freepointer(s
, last
, p
);
1433 setup_object(s
, page
, last
);
1434 set_freepointer(s
, last
, NULL
);
1436 page
->freelist
= start
;
1437 page
->inuse
= page
->objects
;
1443 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1445 int order
= compound_order(page
);
1446 int pages
= 1 << order
;
1448 if (kmem_cache_debug(s
)) {
1451 slab_pad_check(s
, page
);
1452 for_each_object(p
, s
, page_address(page
),
1454 check_object(s
, page
, p
, SLUB_RED_INACTIVE
);
1457 kmemcheck_free_shadow(page
, compound_order(page
));
1459 mod_zone_page_state(page_zone(page
),
1460 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1461 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1464 __ClearPageSlabPfmemalloc(page
);
1465 __ClearPageSlab(page
);
1467 memcg_release_pages(s
, order
);
1468 page_mapcount_reset(page
);
1469 if (current
->reclaim_state
)
1470 current
->reclaim_state
->reclaimed_slab
+= pages
;
1471 __free_memcg_kmem_pages(page
, order
);
1474 #define need_reserve_slab_rcu \
1475 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1477 static void rcu_free_slab(struct rcu_head
*h
)
1481 if (need_reserve_slab_rcu
)
1482 page
= virt_to_head_page(h
);
1484 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1486 __free_slab(page
->slab_cache
, page
);
1489 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1491 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1492 struct rcu_head
*head
;
1494 if (need_reserve_slab_rcu
) {
1495 int order
= compound_order(page
);
1496 int offset
= (PAGE_SIZE
<< order
) - s
->reserved
;
1498 VM_BUG_ON(s
->reserved
!= sizeof(*head
));
1499 head
= page_address(page
) + offset
;
1502 * RCU free overloads the RCU head over the LRU
1504 head
= (void *)&page
->lru
;
1507 call_rcu(head
, rcu_free_slab
);
1509 __free_slab(s
, page
);
1512 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1514 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1519 * Management of partially allocated slabs.
1522 __add_partial(struct kmem_cache_node
*n
, struct page
*page
, int tail
)
1525 if (tail
== DEACTIVATE_TO_TAIL
)
1526 list_add_tail(&page
->lru
, &n
->partial
);
1528 list_add(&page
->lru
, &n
->partial
);
1531 static inline void add_partial(struct kmem_cache_node
*n
,
1532 struct page
*page
, int tail
)
1534 lockdep_assert_held(&n
->list_lock
);
1535 __add_partial(n
, page
, tail
);
1539 __remove_partial(struct kmem_cache_node
*n
, struct page
*page
)
1541 list_del(&page
->lru
);
1545 static inline void remove_partial(struct kmem_cache_node
*n
,
1548 lockdep_assert_held(&n
->list_lock
);
1549 __remove_partial(n
, page
);
1553 * Remove slab from the partial list, freeze it and
1554 * return the pointer to the freelist.
1556 * Returns a list of objects or NULL if it fails.
1558 static inline void *acquire_slab(struct kmem_cache
*s
,
1559 struct kmem_cache_node
*n
, struct page
*page
,
1560 int mode
, int *objects
)
1563 unsigned long counters
;
1566 lockdep_assert_held(&n
->list_lock
);
1569 * Zap the freelist and set the frozen bit.
1570 * The old freelist is the list of objects for the
1571 * per cpu allocation list.
1573 freelist
= page
->freelist
;
1574 counters
= page
->counters
;
1575 new.counters
= counters
;
1576 *objects
= new.objects
- new.inuse
;
1578 new.inuse
= page
->objects
;
1579 new.freelist
= NULL
;
1581 new.freelist
= freelist
;
1584 VM_BUG_ON(new.frozen
);
1587 if (!__cmpxchg_double_slab(s
, page
,
1589 new.freelist
, new.counters
,
1593 remove_partial(n
, page
);
1598 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
);
1599 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
);
1602 * Try to allocate a partial slab from a specific node.
1604 static void *get_partial_node(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1605 struct kmem_cache_cpu
*c
, gfp_t flags
)
1607 struct page
*page
, *page2
;
1608 void *object
= NULL
;
1613 * Racy check. If we mistakenly see no partial slabs then we
1614 * just allocate an empty slab. If we mistakenly try to get a
1615 * partial slab and there is none available then get_partials()
1618 if (!n
|| !n
->nr_partial
)
1621 spin_lock(&n
->list_lock
);
1622 list_for_each_entry_safe(page
, page2
, &n
->partial
, lru
) {
1625 if (!pfmemalloc_match(page
, flags
))
1628 t
= acquire_slab(s
, n
, page
, object
== NULL
, &objects
);
1632 available
+= objects
;
1635 stat(s
, ALLOC_FROM_PARTIAL
);
1638 put_cpu_partial(s
, page
, 0);
1639 stat(s
, CPU_PARTIAL_NODE
);
1641 if (!kmem_cache_has_cpu_partial(s
)
1642 || available
> s
->cpu_partial
/ 2)
1646 spin_unlock(&n
->list_lock
);
1651 * Get a page from somewhere. Search in increasing NUMA distances.
1653 static void *get_any_partial(struct kmem_cache
*s
, gfp_t flags
,
1654 struct kmem_cache_cpu
*c
)
1657 struct zonelist
*zonelist
;
1660 enum zone_type high_zoneidx
= gfp_zone(flags
);
1662 unsigned int cpuset_mems_cookie
;
1665 * The defrag ratio allows a configuration of the tradeoffs between
1666 * inter node defragmentation and node local allocations. A lower
1667 * defrag_ratio increases the tendency to do local allocations
1668 * instead of attempting to obtain partial slabs from other nodes.
1670 * If the defrag_ratio is set to 0 then kmalloc() always
1671 * returns node local objects. If the ratio is higher then kmalloc()
1672 * may return off node objects because partial slabs are obtained
1673 * from other nodes and filled up.
1675 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1676 * defrag_ratio = 1000) then every (well almost) allocation will
1677 * first attempt to defrag slab caches on other nodes. This means
1678 * scanning over all nodes to look for partial slabs which may be
1679 * expensive if we do it every time we are trying to find a slab
1680 * with available objects.
1682 if (!s
->remote_node_defrag_ratio
||
1683 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1687 cpuset_mems_cookie
= get_mems_allowed();
1688 zonelist
= node_zonelist(slab_node(), flags
);
1689 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1690 struct kmem_cache_node
*n
;
1692 n
= get_node(s
, zone_to_nid(zone
));
1694 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1695 n
->nr_partial
> s
->min_partial
) {
1696 object
= get_partial_node(s
, n
, c
, flags
);
1699 * Return the object even if
1700 * put_mems_allowed indicated that
1701 * the cpuset mems_allowed was
1702 * updated in parallel. It's a
1703 * harmless race between the alloc
1704 * and the cpuset update.
1706 put_mems_allowed(cpuset_mems_cookie
);
1711 } while (!put_mems_allowed(cpuset_mems_cookie
));
1717 * Get a partial page, lock it and return it.
1719 static void *get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
,
1720 struct kmem_cache_cpu
*c
)
1723 int searchnode
= (node
== NUMA_NO_NODE
) ? numa_node_id() : node
;
1725 object
= get_partial_node(s
, get_node(s
, searchnode
), c
, flags
);
1726 if (object
|| node
!= NUMA_NO_NODE
)
1729 return get_any_partial(s
, flags
, c
);
1732 #ifdef CONFIG_PREEMPT
1734 * Calculate the next globally unique transaction for disambiguiation
1735 * during cmpxchg. The transactions start with the cpu number and are then
1736 * incremented by CONFIG_NR_CPUS.
1738 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1741 * No preemption supported therefore also no need to check for
1747 static inline unsigned long next_tid(unsigned long tid
)
1749 return tid
+ TID_STEP
;
1752 static inline unsigned int tid_to_cpu(unsigned long tid
)
1754 return tid
% TID_STEP
;
1757 static inline unsigned long tid_to_event(unsigned long tid
)
1759 return tid
/ TID_STEP
;
1762 static inline unsigned int init_tid(int cpu
)
1767 static inline void note_cmpxchg_failure(const char *n
,
1768 const struct kmem_cache
*s
, unsigned long tid
)
1770 #ifdef SLUB_DEBUG_CMPXCHG
1771 unsigned long actual_tid
= __this_cpu_read(s
->cpu_slab
->tid
);
1773 printk(KERN_INFO
"%s %s: cmpxchg redo ", n
, s
->name
);
1775 #ifdef CONFIG_PREEMPT
1776 if (tid_to_cpu(tid
) != tid_to_cpu(actual_tid
))
1777 printk("due to cpu change %d -> %d\n",
1778 tid_to_cpu(tid
), tid_to_cpu(actual_tid
));
1781 if (tid_to_event(tid
) != tid_to_event(actual_tid
))
1782 printk("due to cpu running other code. Event %ld->%ld\n",
1783 tid_to_event(tid
), tid_to_event(actual_tid
));
1785 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1786 actual_tid
, tid
, next_tid(tid
));
1788 stat(s
, CMPXCHG_DOUBLE_CPU_FAIL
);
1791 static void init_kmem_cache_cpus(struct kmem_cache
*s
)
1795 for_each_possible_cpu(cpu
)
1796 per_cpu_ptr(s
->cpu_slab
, cpu
)->tid
= init_tid(cpu
);
1800 * Remove the cpu slab
1802 static void deactivate_slab(struct kmem_cache
*s
, struct page
*page
,
1805 enum slab_modes
{ M_NONE
, M_PARTIAL
, M_FULL
, M_FREE
};
1806 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1808 enum slab_modes l
= M_NONE
, m
= M_NONE
;
1810 int tail
= DEACTIVATE_TO_HEAD
;
1814 if (page
->freelist
) {
1815 stat(s
, DEACTIVATE_REMOTE_FREES
);
1816 tail
= DEACTIVATE_TO_TAIL
;
1820 * Stage one: Free all available per cpu objects back
1821 * to the page freelist while it is still frozen. Leave the
1824 * There is no need to take the list->lock because the page
1827 while (freelist
&& (nextfree
= get_freepointer(s
, freelist
))) {
1829 unsigned long counters
;
1832 prior
= page
->freelist
;
1833 counters
= page
->counters
;
1834 set_freepointer(s
, freelist
, prior
);
1835 new.counters
= counters
;
1837 VM_BUG_ON(!new.frozen
);
1839 } while (!__cmpxchg_double_slab(s
, page
,
1841 freelist
, new.counters
,
1842 "drain percpu freelist"));
1844 freelist
= nextfree
;
1848 * Stage two: Ensure that the page is unfrozen while the
1849 * list presence reflects the actual number of objects
1852 * We setup the list membership and then perform a cmpxchg
1853 * with the count. If there is a mismatch then the page
1854 * is not unfrozen but the page is on the wrong list.
1856 * Then we restart the process which may have to remove
1857 * the page from the list that we just put it on again
1858 * because the number of objects in the slab may have
1863 old
.freelist
= page
->freelist
;
1864 old
.counters
= page
->counters
;
1865 VM_BUG_ON(!old
.frozen
);
1867 /* Determine target state of the slab */
1868 new.counters
= old
.counters
;
1871 set_freepointer(s
, freelist
, old
.freelist
);
1872 new.freelist
= freelist
;
1874 new.freelist
= old
.freelist
;
1878 if (!new.inuse
&& n
->nr_partial
> s
->min_partial
)
1880 else if (new.freelist
) {
1885 * Taking the spinlock removes the possiblity
1886 * that acquire_slab() will see a slab page that
1889 spin_lock(&n
->list_lock
);
1893 if (kmem_cache_debug(s
) && !lock
) {
1896 * This also ensures that the scanning of full
1897 * slabs from diagnostic functions will not see
1900 spin_lock(&n
->list_lock
);
1908 remove_partial(n
, page
);
1910 else if (l
== M_FULL
)
1912 remove_full(s
, n
, page
);
1914 if (m
== M_PARTIAL
) {
1916 add_partial(n
, page
, tail
);
1919 } else if (m
== M_FULL
) {
1921 stat(s
, DEACTIVATE_FULL
);
1922 add_full(s
, n
, page
);
1928 if (!__cmpxchg_double_slab(s
, page
,
1929 old
.freelist
, old
.counters
,
1930 new.freelist
, new.counters
,
1935 spin_unlock(&n
->list_lock
);
1938 stat(s
, DEACTIVATE_EMPTY
);
1939 discard_slab(s
, page
);
1945 * Unfreeze all the cpu partial slabs.
1947 * This function must be called with interrupts disabled
1948 * for the cpu using c (or some other guarantee must be there
1949 * to guarantee no concurrent accesses).
1951 static void unfreeze_partials(struct kmem_cache
*s
,
1952 struct kmem_cache_cpu
*c
)
1954 #ifdef CONFIG_SLUB_CPU_PARTIAL
1955 struct kmem_cache_node
*n
= NULL
, *n2
= NULL
;
1956 struct page
*page
, *discard_page
= NULL
;
1958 while ((page
= c
->partial
)) {
1962 c
->partial
= page
->next
;
1964 n2
= get_node(s
, page_to_nid(page
));
1967 spin_unlock(&n
->list_lock
);
1970 spin_lock(&n
->list_lock
);
1975 old
.freelist
= page
->freelist
;
1976 old
.counters
= page
->counters
;
1977 VM_BUG_ON(!old
.frozen
);
1979 new.counters
= old
.counters
;
1980 new.freelist
= old
.freelist
;
1984 } while (!__cmpxchg_double_slab(s
, page
,
1985 old
.freelist
, old
.counters
,
1986 new.freelist
, new.counters
,
1987 "unfreezing slab"));
1989 if (unlikely(!new.inuse
&& n
->nr_partial
> s
->min_partial
)) {
1990 page
->next
= discard_page
;
1991 discard_page
= page
;
1993 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
1994 stat(s
, FREE_ADD_PARTIAL
);
1999 spin_unlock(&n
->list_lock
);
2001 while (discard_page
) {
2002 page
= discard_page
;
2003 discard_page
= discard_page
->next
;
2005 stat(s
, DEACTIVATE_EMPTY
);
2006 discard_slab(s
, page
);
2013 * Put a page that was just frozen (in __slab_free) into a partial page
2014 * slot if available. This is done without interrupts disabled and without
2015 * preemption disabled. The cmpxchg is racy and may put the partial page
2016 * onto a random cpus partial slot.
2018 * If we did not find a slot then simply move all the partials to the
2019 * per node partial list.
2021 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
)
2023 #ifdef CONFIG_SLUB_CPU_PARTIAL
2024 struct page
*oldpage
;
2031 oldpage
= this_cpu_read(s
->cpu_slab
->partial
);
2034 pobjects
= oldpage
->pobjects
;
2035 pages
= oldpage
->pages
;
2036 if (drain
&& pobjects
> s
->cpu_partial
) {
2037 unsigned long flags
;
2039 * partial array is full. Move the existing
2040 * set to the per node partial list.
2042 local_irq_save(flags
);
2043 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2044 local_irq_restore(flags
);
2048 stat(s
, CPU_PARTIAL_DRAIN
);
2053 pobjects
+= page
->objects
- page
->inuse
;
2055 page
->pages
= pages
;
2056 page
->pobjects
= pobjects
;
2057 page
->next
= oldpage
;
2059 } while (this_cpu_cmpxchg(s
->cpu_slab
->partial
, oldpage
, page
)
2064 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
2066 stat(s
, CPUSLAB_FLUSH
);
2067 deactivate_slab(s
, c
->page
, c
->freelist
);
2069 c
->tid
= next_tid(c
->tid
);
2077 * Called from IPI handler with interrupts disabled.
2079 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
2081 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2087 unfreeze_partials(s
, c
);
2091 static void flush_cpu_slab(void *d
)
2093 struct kmem_cache
*s
= d
;
2095 __flush_cpu_slab(s
, smp_processor_id());
2098 static bool has_cpu_slab(int cpu
, void *info
)
2100 struct kmem_cache
*s
= info
;
2101 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2103 return c
->page
|| c
->partial
;
2106 static void flush_all(struct kmem_cache
*s
)
2108 on_each_cpu_cond(has_cpu_slab
, flush_cpu_slab
, s
, 1, GFP_ATOMIC
);
2112 * Check if the objects in a per cpu structure fit numa
2113 * locality expectations.
2115 static inline int node_match(struct page
*page
, int node
)
2118 if (!page
|| (node
!= NUMA_NO_NODE
&& page_to_nid(page
) != node
))
2124 static int count_free(struct page
*page
)
2126 return page
->objects
- page
->inuse
;
2129 static unsigned long count_partial(struct kmem_cache_node
*n
,
2130 int (*get_count
)(struct page
*))
2132 unsigned long flags
;
2133 unsigned long x
= 0;
2136 spin_lock_irqsave(&n
->list_lock
, flags
);
2137 list_for_each_entry(page
, &n
->partial
, lru
)
2138 x
+= get_count(page
);
2139 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2143 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
2145 #ifdef CONFIG_SLUB_DEBUG
2146 return atomic_long_read(&n
->total_objects
);
2152 static noinline
void
2153 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
2158 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2160 printk(KERN_WARNING
" cache: %s, object size: %d, buffer size: %d, "
2161 "default order: %d, min order: %d\n", s
->name
, s
->object_size
,
2162 s
->size
, oo_order(s
->oo
), oo_order(s
->min
));
2164 if (oo_order(s
->min
) > get_order(s
->object_size
))
2165 printk(KERN_WARNING
" %s debugging increased min order, use "
2166 "slub_debug=O to disable.\n", s
->name
);
2168 for_each_online_node(node
) {
2169 struct kmem_cache_node
*n
= get_node(s
, node
);
2170 unsigned long nr_slabs
;
2171 unsigned long nr_objs
;
2172 unsigned long nr_free
;
2177 nr_free
= count_partial(n
, count_free
);
2178 nr_slabs
= node_nr_slabs(n
);
2179 nr_objs
= node_nr_objs(n
);
2182 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2183 node
, nr_slabs
, nr_objs
, nr_free
);
2187 static inline void *new_slab_objects(struct kmem_cache
*s
, gfp_t flags
,
2188 int node
, struct kmem_cache_cpu
**pc
)
2191 struct kmem_cache_cpu
*c
= *pc
;
2194 freelist
= get_partial(s
, flags
, node
, c
);
2199 page
= new_slab(s
, flags
, node
);
2201 c
= __this_cpu_ptr(s
->cpu_slab
);
2206 * No other reference to the page yet so we can
2207 * muck around with it freely without cmpxchg
2209 freelist
= page
->freelist
;
2210 page
->freelist
= NULL
;
2212 stat(s
, ALLOC_SLAB
);
2221 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
)
2223 if (unlikely(PageSlabPfmemalloc(page
)))
2224 return gfp_pfmemalloc_allowed(gfpflags
);
2230 * Check the page->freelist of a page and either transfer the freelist to the
2231 * per cpu freelist or deactivate the page.
2233 * The page is still frozen if the return value is not NULL.
2235 * If this function returns NULL then the page has been unfrozen.
2237 * This function must be called with interrupt disabled.
2239 static inline void *get_freelist(struct kmem_cache
*s
, struct page
*page
)
2242 unsigned long counters
;
2246 freelist
= page
->freelist
;
2247 counters
= page
->counters
;
2249 new.counters
= counters
;
2250 VM_BUG_ON(!new.frozen
);
2252 new.inuse
= page
->objects
;
2253 new.frozen
= freelist
!= NULL
;
2255 } while (!__cmpxchg_double_slab(s
, page
,
2264 * Slow path. The lockless freelist is empty or we need to perform
2267 * Processing is still very fast if new objects have been freed to the
2268 * regular freelist. In that case we simply take over the regular freelist
2269 * as the lockless freelist and zap the regular freelist.
2271 * If that is not working then we fall back to the partial lists. We take the
2272 * first element of the freelist as the object to allocate now and move the
2273 * rest of the freelist to the lockless freelist.
2275 * And if we were unable to get a new slab from the partial slab lists then
2276 * we need to allocate a new slab. This is the slowest path since it involves
2277 * a call to the page allocator and the setup of a new slab.
2279 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2280 unsigned long addr
, struct kmem_cache_cpu
*c
)
2284 unsigned long flags
;
2286 local_irq_save(flags
);
2287 #ifdef CONFIG_PREEMPT
2289 * We may have been preempted and rescheduled on a different
2290 * cpu before disabling interrupts. Need to reload cpu area
2293 c
= this_cpu_ptr(s
->cpu_slab
);
2301 if (unlikely(!node_match(page
, node
))) {
2302 stat(s
, ALLOC_NODE_MISMATCH
);
2303 deactivate_slab(s
, page
, c
->freelist
);
2310 * By rights, we should be searching for a slab page that was
2311 * PFMEMALLOC but right now, we are losing the pfmemalloc
2312 * information when the page leaves the per-cpu allocator
2314 if (unlikely(!pfmemalloc_match(page
, gfpflags
))) {
2315 deactivate_slab(s
, page
, c
->freelist
);
2321 /* must check again c->freelist in case of cpu migration or IRQ */
2322 freelist
= c
->freelist
;
2326 stat(s
, ALLOC_SLOWPATH
);
2328 freelist
= get_freelist(s
, page
);
2332 stat(s
, DEACTIVATE_BYPASS
);
2336 stat(s
, ALLOC_REFILL
);
2340 * freelist is pointing to the list of objects to be used.
2341 * page is pointing to the page from which the objects are obtained.
2342 * That page must be frozen for per cpu allocations to work.
2344 VM_BUG_ON(!c
->page
->frozen
);
2345 c
->freelist
= get_freepointer(s
, freelist
);
2346 c
->tid
= next_tid(c
->tid
);
2347 local_irq_restore(flags
);
2353 page
= c
->page
= c
->partial
;
2354 c
->partial
= page
->next
;
2355 stat(s
, CPU_PARTIAL_ALLOC
);
2360 freelist
= new_slab_objects(s
, gfpflags
, node
, &c
);
2362 if (unlikely(!freelist
)) {
2363 if (!(gfpflags
& __GFP_NOWARN
) && printk_ratelimit())
2364 slab_out_of_memory(s
, gfpflags
, node
);
2366 local_irq_restore(flags
);
2371 if (likely(!kmem_cache_debug(s
) && pfmemalloc_match(page
, gfpflags
)))
2374 /* Only entered in the debug case */
2375 if (kmem_cache_debug(s
) &&
2376 !alloc_debug_processing(s
, page
, freelist
, addr
))
2377 goto new_slab
; /* Slab failed checks. Next slab needed */
2379 deactivate_slab(s
, page
, get_freepointer(s
, freelist
));
2382 local_irq_restore(flags
);
2387 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2388 * have the fastpath folded into their functions. So no function call
2389 * overhead for requests that can be satisfied on the fastpath.
2391 * The fastpath works by first checking if the lockless freelist can be used.
2392 * If not then __slab_alloc is called for slow processing.
2394 * Otherwise we can simply pick the next object from the lockless free list.
2396 static __always_inline
void *slab_alloc_node(struct kmem_cache
*s
,
2397 gfp_t gfpflags
, int node
, unsigned long addr
)
2400 struct kmem_cache_cpu
*c
;
2404 if (slab_pre_alloc_hook(s
, gfpflags
))
2407 s
= memcg_kmem_get_cache(s
, gfpflags
);
2410 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2411 * enabled. We may switch back and forth between cpus while
2412 * reading from one cpu area. That does not matter as long
2413 * as we end up on the original cpu again when doing the cmpxchg.
2415 * Preemption is disabled for the retrieval of the tid because that
2416 * must occur from the current processor. We cannot allow rescheduling
2417 * on a different processor between the determination of the pointer
2418 * and the retrieval of the tid.
2421 c
= __this_cpu_ptr(s
->cpu_slab
);
2424 * The transaction ids are globally unique per cpu and per operation on
2425 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2426 * occurs on the right processor and that there was no operation on the
2427 * linked list in between.
2432 object
= c
->freelist
;
2434 if (unlikely(!object
|| !node_match(page
, node
)))
2435 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
2438 void *next_object
= get_freepointer_safe(s
, object
);
2441 * The cmpxchg will only match if there was no additional
2442 * operation and if we are on the right processor.
2444 * The cmpxchg does the following atomically (without lock
2446 * 1. Relocate first pointer to the current per cpu area.
2447 * 2. Verify that tid and freelist have not been changed
2448 * 3. If they were not changed replace tid and freelist
2450 * Since this is without lock semantics the protection is only
2451 * against code executing on this cpu *not* from access by
2454 if (unlikely(!this_cpu_cmpxchg_double(
2455 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2457 next_object
, next_tid(tid
)))) {
2459 note_cmpxchg_failure("slab_alloc", s
, tid
);
2462 prefetch_freepointer(s
, next_object
);
2463 stat(s
, ALLOC_FASTPATH
);
2466 if (unlikely(gfpflags
& __GFP_ZERO
) && object
)
2467 memset(object
, 0, s
->object_size
);
2469 slab_post_alloc_hook(s
, gfpflags
, object
);
2474 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
2475 gfp_t gfpflags
, unsigned long addr
)
2477 return slab_alloc_node(s
, gfpflags
, NUMA_NO_NODE
, addr
);
2480 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
2482 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2484 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->object_size
,
2489 EXPORT_SYMBOL(kmem_cache_alloc
);
2491 #ifdef CONFIG_TRACING
2492 void *kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
2494 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2495 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
);
2498 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
2502 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
2504 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2506 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
2507 s
->object_size
, s
->size
, gfpflags
, node
);
2511 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2513 #ifdef CONFIG_TRACING
2514 void *kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
2516 int node
, size_t size
)
2518 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2520 trace_kmalloc_node(_RET_IP_
, ret
,
2521 size
, s
->size
, gfpflags
, node
);
2524 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
2529 * Slow patch handling. This may still be called frequently since objects
2530 * have a longer lifetime than the cpu slabs in most processing loads.
2532 * So we still attempt to reduce cache line usage. Just take the slab
2533 * lock and free the item. If there is no additional partial page
2534 * handling required then we can return immediately.
2536 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
2537 void *x
, unsigned long addr
)
2540 void **object
= (void *)x
;
2543 unsigned long counters
;
2544 struct kmem_cache_node
*n
= NULL
;
2545 unsigned long uninitialized_var(flags
);
2547 stat(s
, FREE_SLOWPATH
);
2549 if (kmem_cache_debug(s
) &&
2550 !(n
= free_debug_processing(s
, page
, x
, addr
, &flags
)))
2555 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2558 prior
= page
->freelist
;
2559 counters
= page
->counters
;
2560 set_freepointer(s
, object
, prior
);
2561 new.counters
= counters
;
2562 was_frozen
= new.frozen
;
2564 if ((!new.inuse
|| !prior
) && !was_frozen
) {
2566 if (kmem_cache_has_cpu_partial(s
) && !prior
) {
2569 * Slab was on no list before and will be
2571 * We can defer the list move and instead
2576 } else { /* Needs to be taken off a list */
2578 n
= get_node(s
, page_to_nid(page
));
2580 * Speculatively acquire the list_lock.
2581 * If the cmpxchg does not succeed then we may
2582 * drop the list_lock without any processing.
2584 * Otherwise the list_lock will synchronize with
2585 * other processors updating the list of slabs.
2587 spin_lock_irqsave(&n
->list_lock
, flags
);
2592 } while (!cmpxchg_double_slab(s
, page
,
2594 object
, new.counters
,
2600 * If we just froze the page then put it onto the
2601 * per cpu partial list.
2603 if (new.frozen
&& !was_frozen
) {
2604 put_cpu_partial(s
, page
, 1);
2605 stat(s
, CPU_PARTIAL_FREE
);
2608 * The list lock was not taken therefore no list
2609 * activity can be necessary.
2612 stat(s
, FREE_FROZEN
);
2616 if (unlikely(!new.inuse
&& n
->nr_partial
> s
->min_partial
))
2620 * Objects left in the slab. If it was not on the partial list before
2623 if (!kmem_cache_has_cpu_partial(s
) && unlikely(!prior
)) {
2624 if (kmem_cache_debug(s
))
2625 remove_full(s
, n
, page
);
2626 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2627 stat(s
, FREE_ADD_PARTIAL
);
2629 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2635 * Slab on the partial list.
2637 remove_partial(n
, page
);
2638 stat(s
, FREE_REMOVE_PARTIAL
);
2640 /* Slab must be on the full list */
2641 remove_full(s
, n
, page
);
2644 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2646 discard_slab(s
, page
);
2650 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2651 * can perform fastpath freeing without additional function calls.
2653 * The fastpath is only possible if we are freeing to the current cpu slab
2654 * of this processor. This typically the case if we have just allocated
2657 * If fastpath is not possible then fall back to __slab_free where we deal
2658 * with all sorts of special processing.
2660 static __always_inline
void slab_free(struct kmem_cache
*s
,
2661 struct page
*page
, void *x
, unsigned long addr
)
2663 void **object
= (void *)x
;
2664 struct kmem_cache_cpu
*c
;
2667 slab_free_hook(s
, x
);
2671 * Determine the currently cpus per cpu slab.
2672 * The cpu may change afterward. However that does not matter since
2673 * data is retrieved via this pointer. If we are on the same cpu
2674 * during the cmpxchg then the free will succedd.
2677 c
= __this_cpu_ptr(s
->cpu_slab
);
2682 if (likely(page
== c
->page
)) {
2683 set_freepointer(s
, object
, c
->freelist
);
2685 if (unlikely(!this_cpu_cmpxchg_double(
2686 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2688 object
, next_tid(tid
)))) {
2690 note_cmpxchg_failure("slab_free", s
, tid
);
2693 stat(s
, FREE_FASTPATH
);
2695 __slab_free(s
, page
, x
, addr
);
2699 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
2701 s
= cache_from_obj(s
, x
);
2704 slab_free(s
, virt_to_head_page(x
), x
, _RET_IP_
);
2705 trace_kmem_cache_free(_RET_IP_
, x
);
2707 EXPORT_SYMBOL(kmem_cache_free
);
2710 * Object placement in a slab is made very easy because we always start at
2711 * offset 0. If we tune the size of the object to the alignment then we can
2712 * get the required alignment by putting one properly sized object after
2715 * Notice that the allocation order determines the sizes of the per cpu
2716 * caches. Each processor has always one slab available for allocations.
2717 * Increasing the allocation order reduces the number of times that slabs
2718 * must be moved on and off the partial lists and is therefore a factor in
2723 * Mininum / Maximum order of slab pages. This influences locking overhead
2724 * and slab fragmentation. A higher order reduces the number of partial slabs
2725 * and increases the number of allocations possible without having to
2726 * take the list_lock.
2728 static int slub_min_order
;
2729 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
2730 static int slub_min_objects
;
2733 * Merge control. If this is set then no merging of slab caches will occur.
2734 * (Could be removed. This was introduced to pacify the merge skeptics.)
2736 static int slub_nomerge
;
2739 * Calculate the order of allocation given an slab object size.
2741 * The order of allocation has significant impact on performance and other
2742 * system components. Generally order 0 allocations should be preferred since
2743 * order 0 does not cause fragmentation in the page allocator. Larger objects
2744 * be problematic to put into order 0 slabs because there may be too much
2745 * unused space left. We go to a higher order if more than 1/16th of the slab
2748 * In order to reach satisfactory performance we must ensure that a minimum
2749 * number of objects is in one slab. Otherwise we may generate too much
2750 * activity on the partial lists which requires taking the list_lock. This is
2751 * less a concern for large slabs though which are rarely used.
2753 * slub_max_order specifies the order where we begin to stop considering the
2754 * number of objects in a slab as critical. If we reach slub_max_order then
2755 * we try to keep the page order as low as possible. So we accept more waste
2756 * of space in favor of a small page order.
2758 * Higher order allocations also allow the placement of more objects in a
2759 * slab and thereby reduce object handling overhead. If the user has
2760 * requested a higher mininum order then we start with that one instead of
2761 * the smallest order which will fit the object.
2763 static inline int slab_order(int size
, int min_objects
,
2764 int max_order
, int fract_leftover
, int reserved
)
2768 int min_order
= slub_min_order
;
2770 if (order_objects(min_order
, size
, reserved
) > MAX_OBJS_PER_PAGE
)
2771 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
2773 for (order
= max(min_order
,
2774 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
2775 order
<= max_order
; order
++) {
2777 unsigned long slab_size
= PAGE_SIZE
<< order
;
2779 if (slab_size
< min_objects
* size
+ reserved
)
2782 rem
= (slab_size
- reserved
) % size
;
2784 if (rem
<= slab_size
/ fract_leftover
)
2792 static inline int calculate_order(int size
, int reserved
)
2800 * Attempt to find best configuration for a slab. This
2801 * works by first attempting to generate a layout with
2802 * the best configuration and backing off gradually.
2804 * First we reduce the acceptable waste in a slab. Then
2805 * we reduce the minimum objects required in a slab.
2807 min_objects
= slub_min_objects
;
2809 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
2810 max_objects
= order_objects(slub_max_order
, size
, reserved
);
2811 min_objects
= min(min_objects
, max_objects
);
2813 while (min_objects
> 1) {
2815 while (fraction
>= 4) {
2816 order
= slab_order(size
, min_objects
,
2817 slub_max_order
, fraction
, reserved
);
2818 if (order
<= slub_max_order
)
2826 * We were unable to place multiple objects in a slab. Now
2827 * lets see if we can place a single object there.
2829 order
= slab_order(size
, 1, slub_max_order
, 1, reserved
);
2830 if (order
<= slub_max_order
)
2834 * Doh this slab cannot be placed using slub_max_order.
2836 order
= slab_order(size
, 1, MAX_ORDER
, 1, reserved
);
2837 if (order
< MAX_ORDER
)
2843 init_kmem_cache_node(struct kmem_cache_node
*n
)
2846 spin_lock_init(&n
->list_lock
);
2847 INIT_LIST_HEAD(&n
->partial
);
2848 #ifdef CONFIG_SLUB_DEBUG
2849 atomic_long_set(&n
->nr_slabs
, 0);
2850 atomic_long_set(&n
->total_objects
, 0);
2851 INIT_LIST_HEAD(&n
->full
);
2855 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
2857 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE
<
2858 KMALLOC_SHIFT_HIGH
* sizeof(struct kmem_cache_cpu
));
2861 * Must align to double word boundary for the double cmpxchg
2862 * instructions to work; see __pcpu_double_call_return_bool().
2864 s
->cpu_slab
= __alloc_percpu(sizeof(struct kmem_cache_cpu
),
2865 2 * sizeof(void *));
2870 init_kmem_cache_cpus(s
);
2875 static struct kmem_cache
*kmem_cache_node
;
2878 * No kmalloc_node yet so do it by hand. We know that this is the first
2879 * slab on the node for this slabcache. There are no concurrent accesses
2882 * Note that this function only works on the kmem_cache_node
2883 * when allocating for the kmem_cache_node. This is used for bootstrapping
2884 * memory on a fresh node that has no slab structures yet.
2886 static void early_kmem_cache_node_alloc(int node
)
2889 struct kmem_cache_node
*n
;
2891 BUG_ON(kmem_cache_node
->size
< sizeof(struct kmem_cache_node
));
2893 page
= new_slab(kmem_cache_node
, GFP_NOWAIT
, node
);
2896 if (page_to_nid(page
) != node
) {
2897 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2899 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2900 "in order to be able to continue\n");
2905 page
->freelist
= get_freepointer(kmem_cache_node
, n
);
2908 kmem_cache_node
->node
[node
] = n
;
2909 #ifdef CONFIG_SLUB_DEBUG
2910 init_object(kmem_cache_node
, n
, SLUB_RED_ACTIVE
);
2911 init_tracking(kmem_cache_node
, n
);
2913 init_kmem_cache_node(n
);
2914 inc_slabs_node(kmem_cache_node
, node
, page
->objects
);
2917 * No locks need to be taken here as it has just been
2918 * initialized and there is no concurrent access.
2920 __add_partial(n
, page
, DEACTIVATE_TO_HEAD
);
2923 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2927 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2928 struct kmem_cache_node
*n
= s
->node
[node
];
2931 kmem_cache_free(kmem_cache_node
, n
);
2933 s
->node
[node
] = NULL
;
2937 static int init_kmem_cache_nodes(struct kmem_cache
*s
)
2941 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2942 struct kmem_cache_node
*n
;
2944 if (slab_state
== DOWN
) {
2945 early_kmem_cache_node_alloc(node
);
2948 n
= kmem_cache_alloc_node(kmem_cache_node
,
2952 free_kmem_cache_nodes(s
);
2957 init_kmem_cache_node(n
);
2962 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
2964 if (min
< MIN_PARTIAL
)
2966 else if (min
> MAX_PARTIAL
)
2968 s
->min_partial
= min
;
2972 * calculate_sizes() determines the order and the distribution of data within
2975 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
2977 unsigned long flags
= s
->flags
;
2978 unsigned long size
= s
->object_size
;
2982 * Round up object size to the next word boundary. We can only
2983 * place the free pointer at word boundaries and this determines
2984 * the possible location of the free pointer.
2986 size
= ALIGN(size
, sizeof(void *));
2988 #ifdef CONFIG_SLUB_DEBUG
2990 * Determine if we can poison the object itself. If the user of
2991 * the slab may touch the object after free or before allocation
2992 * then we should never poison the object itself.
2994 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2996 s
->flags
|= __OBJECT_POISON
;
2998 s
->flags
&= ~__OBJECT_POISON
;
3002 * If we are Redzoning then check if there is some space between the
3003 * end of the object and the free pointer. If not then add an
3004 * additional word to have some bytes to store Redzone information.
3006 if ((flags
& SLAB_RED_ZONE
) && size
== s
->object_size
)
3007 size
+= sizeof(void *);
3011 * With that we have determined the number of bytes in actual use
3012 * by the object. This is the potential offset to the free pointer.
3016 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
3019 * Relocate free pointer after the object if it is not
3020 * permitted to overwrite the first word of the object on
3023 * This is the case if we do RCU, have a constructor or
3024 * destructor or are poisoning the objects.
3027 size
+= sizeof(void *);
3030 #ifdef CONFIG_SLUB_DEBUG
3031 if (flags
& SLAB_STORE_USER
)
3033 * Need to store information about allocs and frees after
3036 size
+= 2 * sizeof(struct track
);
3038 if (flags
& SLAB_RED_ZONE
)
3040 * Add some empty padding so that we can catch
3041 * overwrites from earlier objects rather than let
3042 * tracking information or the free pointer be
3043 * corrupted if a user writes before the start
3046 size
+= sizeof(void *);
3050 * SLUB stores one object immediately after another beginning from
3051 * offset 0. In order to align the objects we have to simply size
3052 * each object to conform to the alignment.
3054 size
= ALIGN(size
, s
->align
);
3056 if (forced_order
>= 0)
3057 order
= forced_order
;
3059 order
= calculate_order(size
, s
->reserved
);
3066 s
->allocflags
|= __GFP_COMP
;
3068 if (s
->flags
& SLAB_CACHE_DMA
)
3069 s
->allocflags
|= GFP_DMA
;
3071 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
3072 s
->allocflags
|= __GFP_RECLAIMABLE
;
3075 * Determine the number of objects per slab
3077 s
->oo
= oo_make(order
, size
, s
->reserved
);
3078 s
->min
= oo_make(get_order(size
), size
, s
->reserved
);
3079 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
3082 return !!oo_objects(s
->oo
);
3085 static int kmem_cache_open(struct kmem_cache
*s
, unsigned long flags
)
3087 s
->flags
= kmem_cache_flags(s
->size
, flags
, s
->name
, s
->ctor
);
3090 if (need_reserve_slab_rcu
&& (s
->flags
& SLAB_DESTROY_BY_RCU
))
3091 s
->reserved
= sizeof(struct rcu_head
);
3093 if (!calculate_sizes(s
, -1))
3095 if (disable_higher_order_debug
) {
3097 * Disable debugging flags that store metadata if the min slab
3100 if (get_order(s
->size
) > get_order(s
->object_size
)) {
3101 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
3103 if (!calculate_sizes(s
, -1))
3108 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3109 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3110 if (system_has_cmpxchg_double() && (s
->flags
& SLAB_DEBUG_FLAGS
) == 0)
3111 /* Enable fast mode */
3112 s
->flags
|= __CMPXCHG_DOUBLE
;
3116 * The larger the object size is, the more pages we want on the partial
3117 * list to avoid pounding the page allocator excessively.
3119 set_min_partial(s
, ilog2(s
->size
) / 2);
3122 * cpu_partial determined the maximum number of objects kept in the
3123 * per cpu partial lists of a processor.
3125 * Per cpu partial lists mainly contain slabs that just have one
3126 * object freed. If they are used for allocation then they can be
3127 * filled up again with minimal effort. The slab will never hit the
3128 * per node partial lists and therefore no locking will be required.
3130 * This setting also determines
3132 * A) The number of objects from per cpu partial slabs dumped to the
3133 * per node list when we reach the limit.
3134 * B) The number of objects in cpu partial slabs to extract from the
3135 * per node list when we run out of per cpu objects. We only fetch
3136 * 50% to keep some capacity around for frees.
3138 if (!kmem_cache_has_cpu_partial(s
))
3140 else if (s
->size
>= PAGE_SIZE
)
3142 else if (s
->size
>= 1024)
3144 else if (s
->size
>= 256)
3145 s
->cpu_partial
= 13;
3147 s
->cpu_partial
= 30;
3150 s
->remote_node_defrag_ratio
= 1000;
3152 if (!init_kmem_cache_nodes(s
))
3155 if (alloc_kmem_cache_cpus(s
))
3158 free_kmem_cache_nodes(s
);
3160 if (flags
& SLAB_PANIC
)
3161 panic("Cannot create slab %s size=%lu realsize=%u "
3162 "order=%u offset=%u flags=%lx\n",
3163 s
->name
, (unsigned long)s
->size
, s
->size
,
3164 oo_order(s
->oo
), s
->offset
, flags
);
3168 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
3171 #ifdef CONFIG_SLUB_DEBUG
3172 void *addr
= page_address(page
);
3174 unsigned long *map
= kzalloc(BITS_TO_LONGS(page
->objects
) *
3175 sizeof(long), GFP_ATOMIC
);
3178 slab_err(s
, page
, text
, s
->name
);
3181 get_map(s
, page
, map
);
3182 for_each_object(p
, s
, addr
, page
->objects
) {
3184 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
3185 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu\n",
3187 print_tracking(s
, p
);
3196 * Attempt to free all partial slabs on a node.
3197 * This is called from kmem_cache_close(). We must be the last thread
3198 * using the cache and therefore we do not need to lock anymore.
3200 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
3202 struct page
*page
, *h
;
3204 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
3206 __remove_partial(n
, page
);
3207 discard_slab(s
, page
);
3209 list_slab_objects(s
, page
,
3210 "Objects remaining in %s on kmem_cache_close()");
3216 * Release all resources used by a slab cache.
3218 static inline int kmem_cache_close(struct kmem_cache
*s
)
3223 /* Attempt to free all objects */
3224 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3225 struct kmem_cache_node
*n
= get_node(s
, node
);
3228 if (n
->nr_partial
|| slabs_node(s
, node
))
3231 free_percpu(s
->cpu_slab
);
3232 free_kmem_cache_nodes(s
);
3236 int __kmem_cache_shutdown(struct kmem_cache
*s
)
3238 int rc
= kmem_cache_close(s
);
3242 * We do the same lock strategy around sysfs_slab_add, see
3243 * __kmem_cache_create. Because this is pretty much the last
3244 * operation we do and the lock will be released shortly after
3245 * that in slab_common.c, we could just move sysfs_slab_remove
3246 * to a later point in common code. We should do that when we
3247 * have a common sysfs framework for all allocators.
3249 mutex_unlock(&slab_mutex
);
3250 sysfs_slab_remove(s
);
3251 mutex_lock(&slab_mutex
);
3257 /********************************************************************
3259 *******************************************************************/
3261 static int __init
setup_slub_min_order(char *str
)
3263 get_option(&str
, &slub_min_order
);
3268 __setup("slub_min_order=", setup_slub_min_order
);
3270 static int __init
setup_slub_max_order(char *str
)
3272 get_option(&str
, &slub_max_order
);
3273 slub_max_order
= min(slub_max_order
, MAX_ORDER
- 1);
3278 __setup("slub_max_order=", setup_slub_max_order
);
3280 static int __init
setup_slub_min_objects(char *str
)
3282 get_option(&str
, &slub_min_objects
);
3287 __setup("slub_min_objects=", setup_slub_min_objects
);
3289 static int __init
setup_slub_nomerge(char *str
)
3295 __setup("slub_nomerge", setup_slub_nomerge
);
3297 void *__kmalloc(size_t size
, gfp_t flags
)
3299 struct kmem_cache
*s
;
3302 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
3303 return kmalloc_large(size
, flags
);
3305 s
= kmalloc_slab(size
, flags
);
3307 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3310 ret
= slab_alloc(s
, flags
, _RET_IP_
);
3312 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
3316 EXPORT_SYMBOL(__kmalloc
);
3319 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
3324 flags
|= __GFP_COMP
| __GFP_NOTRACK
| __GFP_KMEMCG
;
3325 page
= alloc_pages_node(node
, flags
, get_order(size
));
3327 ptr
= page_address(page
);
3329 kmalloc_large_node_hook(ptr
, size
, flags
);
3333 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3335 struct kmem_cache
*s
;
3338 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
3339 ret
= kmalloc_large_node(size
, flags
, node
);
3341 trace_kmalloc_node(_RET_IP_
, ret
,
3342 size
, PAGE_SIZE
<< get_order(size
),
3348 s
= kmalloc_slab(size
, flags
);
3350 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3353 ret
= slab_alloc_node(s
, flags
, node
, _RET_IP_
);
3355 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
3359 EXPORT_SYMBOL(__kmalloc_node
);
3362 size_t ksize(const void *object
)
3366 if (unlikely(object
== ZERO_SIZE_PTR
))
3369 page
= virt_to_head_page(object
);
3371 if (unlikely(!PageSlab(page
))) {
3372 WARN_ON(!PageCompound(page
));
3373 return PAGE_SIZE
<< compound_order(page
);
3376 return slab_ksize(page
->slab_cache
);
3378 EXPORT_SYMBOL(ksize
);
3380 void kfree(const void *x
)
3383 void *object
= (void *)x
;
3385 trace_kfree(_RET_IP_
, x
);
3387 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3390 page
= virt_to_head_page(x
);
3391 if (unlikely(!PageSlab(page
))) {
3392 BUG_ON(!PageCompound(page
));
3394 __free_memcg_kmem_pages(page
, compound_order(page
));
3397 slab_free(page
->slab_cache
, page
, object
, _RET_IP_
);
3399 EXPORT_SYMBOL(kfree
);
3402 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3403 * the remaining slabs by the number of items in use. The slabs with the
3404 * most items in use come first. New allocations will then fill those up
3405 * and thus they can be removed from the partial lists.
3407 * The slabs with the least items are placed last. This results in them
3408 * being allocated from last increasing the chance that the last objects
3409 * are freed in them.
3411 int kmem_cache_shrink(struct kmem_cache
*s
)
3415 struct kmem_cache_node
*n
;
3418 int objects
= oo_objects(s
->max
);
3419 struct list_head
*slabs_by_inuse
=
3420 kmalloc(sizeof(struct list_head
) * objects
, GFP_KERNEL
);
3421 unsigned long flags
;
3423 if (!slabs_by_inuse
)
3427 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3428 n
= get_node(s
, node
);
3433 for (i
= 0; i
< objects
; i
++)
3434 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
3436 spin_lock_irqsave(&n
->list_lock
, flags
);
3439 * Build lists indexed by the items in use in each slab.
3441 * Note that concurrent frees may occur while we hold the
3442 * list_lock. page->inuse here is the upper limit.
3444 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
3445 list_move(&page
->lru
, slabs_by_inuse
+ page
->inuse
);
3451 * Rebuild the partial list with the slabs filled up most
3452 * first and the least used slabs at the end.
3454 for (i
= objects
- 1; i
> 0; i
--)
3455 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
3457 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3459 /* Release empty slabs */
3460 list_for_each_entry_safe(page
, t
, slabs_by_inuse
, lru
)
3461 discard_slab(s
, page
);
3464 kfree(slabs_by_inuse
);
3467 EXPORT_SYMBOL(kmem_cache_shrink
);
3469 static int slab_mem_going_offline_callback(void *arg
)
3471 struct kmem_cache
*s
;
3473 mutex_lock(&slab_mutex
);
3474 list_for_each_entry(s
, &slab_caches
, list
)
3475 kmem_cache_shrink(s
);
3476 mutex_unlock(&slab_mutex
);
3481 static void slab_mem_offline_callback(void *arg
)
3483 struct kmem_cache_node
*n
;
3484 struct kmem_cache
*s
;
3485 struct memory_notify
*marg
= arg
;
3488 offline_node
= marg
->status_change_nid_normal
;
3491 * If the node still has available memory. we need kmem_cache_node
3494 if (offline_node
< 0)
3497 mutex_lock(&slab_mutex
);
3498 list_for_each_entry(s
, &slab_caches
, list
) {
3499 n
= get_node(s
, offline_node
);
3502 * if n->nr_slabs > 0, slabs still exist on the node
3503 * that is going down. We were unable to free them,
3504 * and offline_pages() function shouldn't call this
3505 * callback. So, we must fail.
3507 BUG_ON(slabs_node(s
, offline_node
));
3509 s
->node
[offline_node
] = NULL
;
3510 kmem_cache_free(kmem_cache_node
, n
);
3513 mutex_unlock(&slab_mutex
);
3516 static int slab_mem_going_online_callback(void *arg
)
3518 struct kmem_cache_node
*n
;
3519 struct kmem_cache
*s
;
3520 struct memory_notify
*marg
= arg
;
3521 int nid
= marg
->status_change_nid_normal
;
3525 * If the node's memory is already available, then kmem_cache_node is
3526 * already created. Nothing to do.
3532 * We are bringing a node online. No memory is available yet. We must
3533 * allocate a kmem_cache_node structure in order to bring the node
3536 mutex_lock(&slab_mutex
);
3537 list_for_each_entry(s
, &slab_caches
, list
) {
3539 * XXX: kmem_cache_alloc_node will fallback to other nodes
3540 * since memory is not yet available from the node that
3543 n
= kmem_cache_alloc(kmem_cache_node
, GFP_KERNEL
);
3548 init_kmem_cache_node(n
);
3552 mutex_unlock(&slab_mutex
);
3556 static int slab_memory_callback(struct notifier_block
*self
,
3557 unsigned long action
, void *arg
)
3562 case MEM_GOING_ONLINE
:
3563 ret
= slab_mem_going_online_callback(arg
);
3565 case MEM_GOING_OFFLINE
:
3566 ret
= slab_mem_going_offline_callback(arg
);
3569 case MEM_CANCEL_ONLINE
:
3570 slab_mem_offline_callback(arg
);
3573 case MEM_CANCEL_OFFLINE
:
3577 ret
= notifier_from_errno(ret
);
3583 static struct notifier_block slab_memory_callback_nb
= {
3584 .notifier_call
= slab_memory_callback
,
3585 .priority
= SLAB_CALLBACK_PRI
,
3588 /********************************************************************
3589 * Basic setup of slabs
3590 *******************************************************************/
3593 * Used for early kmem_cache structures that were allocated using
3594 * the page allocator. Allocate them properly then fix up the pointers
3595 * that may be pointing to the wrong kmem_cache structure.
3598 static struct kmem_cache
* __init
bootstrap(struct kmem_cache
*static_cache
)
3601 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
3603 memcpy(s
, static_cache
, kmem_cache
->object_size
);
3606 * This runs very early, and only the boot processor is supposed to be
3607 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3610 __flush_cpu_slab(s
, smp_processor_id());
3611 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3612 struct kmem_cache_node
*n
= get_node(s
, node
);
3616 list_for_each_entry(p
, &n
->partial
, lru
)
3619 #ifdef CONFIG_SLUB_DEBUG
3620 list_for_each_entry(p
, &n
->full
, lru
)
3625 list_add(&s
->list
, &slab_caches
);
3629 void __init
kmem_cache_init(void)
3631 static __initdata
struct kmem_cache boot_kmem_cache
,
3632 boot_kmem_cache_node
;
3634 if (debug_guardpage_minorder())
3637 kmem_cache_node
= &boot_kmem_cache_node
;
3638 kmem_cache
= &boot_kmem_cache
;
3640 create_boot_cache(kmem_cache_node
, "kmem_cache_node",
3641 sizeof(struct kmem_cache_node
), SLAB_HWCACHE_ALIGN
);
3643 register_hotmemory_notifier(&slab_memory_callback_nb
);
3645 /* Able to allocate the per node structures */
3646 slab_state
= PARTIAL
;
3648 create_boot_cache(kmem_cache
, "kmem_cache",
3649 offsetof(struct kmem_cache
, node
) +
3650 nr_node_ids
* sizeof(struct kmem_cache_node
*),
3651 SLAB_HWCACHE_ALIGN
);
3653 kmem_cache
= bootstrap(&boot_kmem_cache
);
3656 * Allocate kmem_cache_node properly from the kmem_cache slab.
3657 * kmem_cache_node is separately allocated so no need to
3658 * update any list pointers.
3660 kmem_cache_node
= bootstrap(&boot_kmem_cache_node
);
3662 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3663 create_kmalloc_caches(0);
3666 register_cpu_notifier(&slab_notifier
);
3670 "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
3671 " CPUs=%d, Nodes=%d\n",
3673 slub_min_order
, slub_max_order
, slub_min_objects
,
3674 nr_cpu_ids
, nr_node_ids
);
3677 void __init
kmem_cache_init_late(void)
3682 * Find a mergeable slab cache
3684 static int slab_unmergeable(struct kmem_cache
*s
)
3686 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3693 * We may have set a slab to be unmergeable during bootstrap.
3695 if (s
->refcount
< 0)
3701 static struct kmem_cache
*find_mergeable(struct mem_cgroup
*memcg
, size_t size
,
3702 size_t align
, unsigned long flags
, const char *name
,
3703 void (*ctor
)(void *))
3705 struct kmem_cache
*s
;
3707 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3713 size
= ALIGN(size
, sizeof(void *));
3714 align
= calculate_alignment(flags
, align
, size
);
3715 size
= ALIGN(size
, align
);
3716 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3718 list_for_each_entry(s
, &slab_caches
, list
) {
3719 if (slab_unmergeable(s
))
3725 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3728 * Check if alignment is compatible.
3729 * Courtesy of Adrian Drzewiecki
3731 if ((s
->size
& ~(align
- 1)) != s
->size
)
3734 if (s
->size
- size
>= sizeof(void *))
3737 if (!cache_match_memcg(s
, memcg
))
3746 __kmem_cache_alias(struct mem_cgroup
*memcg
, const char *name
, size_t size
,
3747 size_t align
, unsigned long flags
, void (*ctor
)(void *))
3749 struct kmem_cache
*s
;
3751 s
= find_mergeable(memcg
, size
, align
, flags
, name
, ctor
);
3755 * Adjust the object sizes so that we clear
3756 * the complete object on kzalloc.
3758 s
->object_size
= max(s
->object_size
, (int)size
);
3759 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3761 if (sysfs_slab_alias(s
, name
)) {
3770 int __kmem_cache_create(struct kmem_cache
*s
, unsigned long flags
)
3774 err
= kmem_cache_open(s
, flags
);
3778 /* Mutex is not taken during early boot */
3779 if (slab_state
<= UP
)
3782 memcg_propagate_slab_attrs(s
);
3783 mutex_unlock(&slab_mutex
);
3784 err
= sysfs_slab_add(s
);
3785 mutex_lock(&slab_mutex
);
3788 kmem_cache_close(s
);
3795 * Use the cpu notifier to insure that the cpu slabs are flushed when
3798 static int slab_cpuup_callback(struct notifier_block
*nfb
,
3799 unsigned long action
, void *hcpu
)
3801 long cpu
= (long)hcpu
;
3802 struct kmem_cache
*s
;
3803 unsigned long flags
;
3806 case CPU_UP_CANCELED
:
3807 case CPU_UP_CANCELED_FROZEN
:
3809 case CPU_DEAD_FROZEN
:
3810 mutex_lock(&slab_mutex
);
3811 list_for_each_entry(s
, &slab_caches
, list
) {
3812 local_irq_save(flags
);
3813 __flush_cpu_slab(s
, cpu
);
3814 local_irq_restore(flags
);
3816 mutex_unlock(&slab_mutex
);
3824 static struct notifier_block slab_notifier
= {
3825 .notifier_call
= slab_cpuup_callback
3830 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
3832 struct kmem_cache
*s
;
3835 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
3836 return kmalloc_large(size
, gfpflags
);
3838 s
= kmalloc_slab(size
, gfpflags
);
3840 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3843 ret
= slab_alloc(s
, gfpflags
, caller
);
3845 /* Honor the call site pointer we received. */
3846 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
3852 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3853 int node
, unsigned long caller
)
3855 struct kmem_cache
*s
;
3858 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
3859 ret
= kmalloc_large_node(size
, gfpflags
, node
);
3861 trace_kmalloc_node(caller
, ret
,
3862 size
, PAGE_SIZE
<< get_order(size
),
3868 s
= kmalloc_slab(size
, gfpflags
);
3870 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3873 ret
= slab_alloc_node(s
, gfpflags
, node
, caller
);
3875 /* Honor the call site pointer we received. */
3876 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
3883 static int count_inuse(struct page
*page
)
3888 static int count_total(struct page
*page
)
3890 return page
->objects
;
3894 #ifdef CONFIG_SLUB_DEBUG
3895 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3899 void *addr
= page_address(page
);
3901 if (!check_slab(s
, page
) ||
3902 !on_freelist(s
, page
, NULL
))
3905 /* Now we know that a valid freelist exists */
3906 bitmap_zero(map
, page
->objects
);
3908 get_map(s
, page
, map
);
3909 for_each_object(p
, s
, addr
, page
->objects
) {
3910 if (test_bit(slab_index(p
, s
, addr
), map
))
3911 if (!check_object(s
, page
, p
, SLUB_RED_INACTIVE
))
3915 for_each_object(p
, s
, addr
, page
->objects
)
3916 if (!test_bit(slab_index(p
, s
, addr
), map
))
3917 if (!check_object(s
, page
, p
, SLUB_RED_ACTIVE
))
3922 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3926 validate_slab(s
, page
, map
);
3930 static int validate_slab_node(struct kmem_cache
*s
,
3931 struct kmem_cache_node
*n
, unsigned long *map
)
3933 unsigned long count
= 0;
3935 unsigned long flags
;
3937 spin_lock_irqsave(&n
->list_lock
, flags
);
3939 list_for_each_entry(page
, &n
->partial
, lru
) {
3940 validate_slab_slab(s
, page
, map
);
3943 if (count
!= n
->nr_partial
)
3944 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3945 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3947 if (!(s
->flags
& SLAB_STORE_USER
))
3950 list_for_each_entry(page
, &n
->full
, lru
) {
3951 validate_slab_slab(s
, page
, map
);
3954 if (count
!= atomic_long_read(&n
->nr_slabs
))
3955 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3956 "counter=%ld\n", s
->name
, count
,
3957 atomic_long_read(&n
->nr_slabs
));
3960 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3964 static long validate_slab_cache(struct kmem_cache
*s
)
3967 unsigned long count
= 0;
3968 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
3969 sizeof(unsigned long), GFP_KERNEL
);
3975 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3976 struct kmem_cache_node
*n
= get_node(s
, node
);
3978 count
+= validate_slab_node(s
, n
, map
);
3984 * Generate lists of code addresses where slabcache objects are allocated
3989 unsigned long count
;
3996 DECLARE_BITMAP(cpus
, NR_CPUS
);
4002 unsigned long count
;
4003 struct location
*loc
;
4006 static void free_loc_track(struct loc_track
*t
)
4009 free_pages((unsigned long)t
->loc
,
4010 get_order(sizeof(struct location
) * t
->max
));
4013 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
4018 order
= get_order(sizeof(struct location
) * max
);
4020 l
= (void *)__get_free_pages(flags
, order
);
4025 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
4033 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
4034 const struct track
*track
)
4036 long start
, end
, pos
;
4038 unsigned long caddr
;
4039 unsigned long age
= jiffies
- track
->when
;
4045 pos
= start
+ (end
- start
+ 1) / 2;
4048 * There is nothing at "end". If we end up there
4049 * we need to add something to before end.
4054 caddr
= t
->loc
[pos
].addr
;
4055 if (track
->addr
== caddr
) {
4061 if (age
< l
->min_time
)
4063 if (age
> l
->max_time
)
4066 if (track
->pid
< l
->min_pid
)
4067 l
->min_pid
= track
->pid
;
4068 if (track
->pid
> l
->max_pid
)
4069 l
->max_pid
= track
->pid
;
4071 cpumask_set_cpu(track
->cpu
,
4072 to_cpumask(l
->cpus
));
4074 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4078 if (track
->addr
< caddr
)
4085 * Not found. Insert new tracking element.
4087 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
4093 (t
->count
- pos
) * sizeof(struct location
));
4096 l
->addr
= track
->addr
;
4100 l
->min_pid
= track
->pid
;
4101 l
->max_pid
= track
->pid
;
4102 cpumask_clear(to_cpumask(l
->cpus
));
4103 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
4104 nodes_clear(l
->nodes
);
4105 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4109 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
4110 struct page
*page
, enum track_item alloc
,
4113 void *addr
= page_address(page
);
4116 bitmap_zero(map
, page
->objects
);
4117 get_map(s
, page
, map
);
4119 for_each_object(p
, s
, addr
, page
->objects
)
4120 if (!test_bit(slab_index(p
, s
, addr
), map
))
4121 add_location(t
, s
, get_track(s
, p
, alloc
));
4124 static int list_locations(struct kmem_cache
*s
, char *buf
,
4125 enum track_item alloc
)
4129 struct loc_track t
= { 0, 0, NULL
};
4131 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4132 sizeof(unsigned long), GFP_KERNEL
);
4134 if (!map
|| !alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
4137 return sprintf(buf
, "Out of memory\n");
4139 /* Push back cpu slabs */
4142 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4143 struct kmem_cache_node
*n
= get_node(s
, node
);
4144 unsigned long flags
;
4147 if (!atomic_long_read(&n
->nr_slabs
))
4150 spin_lock_irqsave(&n
->list_lock
, flags
);
4151 list_for_each_entry(page
, &n
->partial
, lru
)
4152 process_slab(&t
, s
, page
, alloc
, map
);
4153 list_for_each_entry(page
, &n
->full
, lru
)
4154 process_slab(&t
, s
, page
, alloc
, map
);
4155 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4158 for (i
= 0; i
< t
.count
; i
++) {
4159 struct location
*l
= &t
.loc
[i
];
4161 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
4163 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
4166 len
+= sprintf(buf
+ len
, "%pS", (void *)l
->addr
);
4168 len
+= sprintf(buf
+ len
, "<not-available>");
4170 if (l
->sum_time
!= l
->min_time
) {
4171 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
4173 (long)div_u64(l
->sum_time
, l
->count
),
4176 len
+= sprintf(buf
+ len
, " age=%ld",
4179 if (l
->min_pid
!= l
->max_pid
)
4180 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
4181 l
->min_pid
, l
->max_pid
);
4183 len
+= sprintf(buf
+ len
, " pid=%ld",
4186 if (num_online_cpus() > 1 &&
4187 !cpumask_empty(to_cpumask(l
->cpus
)) &&
4188 len
< PAGE_SIZE
- 60) {
4189 len
+= sprintf(buf
+ len
, " cpus=");
4190 len
+= cpulist_scnprintf(buf
+ len
,
4191 PAGE_SIZE
- len
- 50,
4192 to_cpumask(l
->cpus
));
4195 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
4196 len
< PAGE_SIZE
- 60) {
4197 len
+= sprintf(buf
+ len
, " nodes=");
4198 len
+= nodelist_scnprintf(buf
+ len
,
4199 PAGE_SIZE
- len
- 50,
4203 len
+= sprintf(buf
+ len
, "\n");
4209 len
+= sprintf(buf
, "No data\n");
4214 #ifdef SLUB_RESILIENCY_TEST
4215 static void resiliency_test(void)
4219 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 16 || KMALLOC_SHIFT_HIGH
< 10);
4221 printk(KERN_ERR
"SLUB resiliency testing\n");
4222 printk(KERN_ERR
"-----------------------\n");
4223 printk(KERN_ERR
"A. Corruption after allocation\n");
4225 p
= kzalloc(16, GFP_KERNEL
);
4227 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
4228 " 0x12->0x%p\n\n", p
+ 16);
4230 validate_slab_cache(kmalloc_caches
[4]);
4232 /* Hmmm... The next two are dangerous */
4233 p
= kzalloc(32, GFP_KERNEL
);
4234 p
[32 + sizeof(void *)] = 0x34;
4235 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
4236 " 0x34 -> -0x%p\n", p
);
4238 "If allocated object is overwritten then not detectable\n\n");
4240 validate_slab_cache(kmalloc_caches
[5]);
4241 p
= kzalloc(64, GFP_KERNEL
);
4242 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
4244 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4247 "If allocated object is overwritten then not detectable\n\n");
4248 validate_slab_cache(kmalloc_caches
[6]);
4250 printk(KERN_ERR
"\nB. Corruption after free\n");
4251 p
= kzalloc(128, GFP_KERNEL
);
4254 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
4255 validate_slab_cache(kmalloc_caches
[7]);
4257 p
= kzalloc(256, GFP_KERNEL
);
4260 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4262 validate_slab_cache(kmalloc_caches
[8]);
4264 p
= kzalloc(512, GFP_KERNEL
);
4267 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
4268 validate_slab_cache(kmalloc_caches
[9]);
4272 static void resiliency_test(void) {};
4277 enum slab_stat_type
{
4278 SL_ALL
, /* All slabs */
4279 SL_PARTIAL
, /* Only partially allocated slabs */
4280 SL_CPU
, /* Only slabs used for cpu caches */
4281 SL_OBJECTS
, /* Determine allocated objects not slabs */
4282 SL_TOTAL
/* Determine object capacity not slabs */
4285 #define SO_ALL (1 << SL_ALL)
4286 #define SO_PARTIAL (1 << SL_PARTIAL)
4287 #define SO_CPU (1 << SL_CPU)
4288 #define SO_OBJECTS (1 << SL_OBJECTS)
4289 #define SO_TOTAL (1 << SL_TOTAL)
4291 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
4292 char *buf
, unsigned long flags
)
4294 unsigned long total
= 0;
4297 unsigned long *nodes
;
4299 nodes
= kzalloc(sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
4303 if (flags
& SO_CPU
) {
4306 for_each_possible_cpu(cpu
) {
4307 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
,
4312 page
= ACCESS_ONCE(c
->page
);
4316 node
= page_to_nid(page
);
4317 if (flags
& SO_TOTAL
)
4319 else if (flags
& SO_OBJECTS
)
4327 page
= ACCESS_ONCE(c
->partial
);
4329 node
= page_to_nid(page
);
4330 if (flags
& SO_TOTAL
)
4332 else if (flags
& SO_OBJECTS
)
4342 lock_memory_hotplug();
4343 #ifdef CONFIG_SLUB_DEBUG
4344 if (flags
& SO_ALL
) {
4345 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4346 struct kmem_cache_node
*n
= get_node(s
, node
);
4348 if (flags
& SO_TOTAL
)
4349 x
= atomic_long_read(&n
->total_objects
);
4350 else if (flags
& SO_OBJECTS
)
4351 x
= atomic_long_read(&n
->total_objects
) -
4352 count_partial(n
, count_free
);
4354 x
= atomic_long_read(&n
->nr_slabs
);
4361 if (flags
& SO_PARTIAL
) {
4362 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4363 struct kmem_cache_node
*n
= get_node(s
, node
);
4365 if (flags
& SO_TOTAL
)
4366 x
= count_partial(n
, count_total
);
4367 else if (flags
& SO_OBJECTS
)
4368 x
= count_partial(n
, count_inuse
);
4375 x
= sprintf(buf
, "%lu", total
);
4377 for_each_node_state(node
, N_NORMAL_MEMORY
)
4379 x
+= sprintf(buf
+ x
, " N%d=%lu",
4382 unlock_memory_hotplug();
4384 return x
+ sprintf(buf
+ x
, "\n");
4387 #ifdef CONFIG_SLUB_DEBUG
4388 static int any_slab_objects(struct kmem_cache
*s
)
4392 for_each_online_node(node
) {
4393 struct kmem_cache_node
*n
= get_node(s
, node
);
4398 if (atomic_long_read(&n
->total_objects
))
4405 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4406 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4408 struct slab_attribute
{
4409 struct attribute attr
;
4410 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
4411 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
4414 #define SLAB_ATTR_RO(_name) \
4415 static struct slab_attribute _name##_attr = \
4416 __ATTR(_name, 0400, _name##_show, NULL)
4418 #define SLAB_ATTR(_name) \
4419 static struct slab_attribute _name##_attr = \
4420 __ATTR(_name, 0600, _name##_show, _name##_store)
4422 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
4424 return sprintf(buf
, "%d\n", s
->size
);
4426 SLAB_ATTR_RO(slab_size
);
4428 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
4430 return sprintf(buf
, "%d\n", s
->align
);
4432 SLAB_ATTR_RO(align
);
4434 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
4436 return sprintf(buf
, "%d\n", s
->object_size
);
4438 SLAB_ATTR_RO(object_size
);
4440 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
4442 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
4444 SLAB_ATTR_RO(objs_per_slab
);
4446 static ssize_t
order_store(struct kmem_cache
*s
,
4447 const char *buf
, size_t length
)
4449 unsigned long order
;
4452 err
= kstrtoul(buf
, 10, &order
);
4456 if (order
> slub_max_order
|| order
< slub_min_order
)
4459 calculate_sizes(s
, order
);
4463 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
4465 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
4469 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
4471 return sprintf(buf
, "%lu\n", s
->min_partial
);
4474 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
4480 err
= kstrtoul(buf
, 10, &min
);
4484 set_min_partial(s
, min
);
4487 SLAB_ATTR(min_partial
);
4489 static ssize_t
cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4491 return sprintf(buf
, "%u\n", s
->cpu_partial
);
4494 static ssize_t
cpu_partial_store(struct kmem_cache
*s
, const char *buf
,
4497 unsigned long objects
;
4500 err
= kstrtoul(buf
, 10, &objects
);
4503 if (objects
&& !kmem_cache_has_cpu_partial(s
))
4506 s
->cpu_partial
= objects
;
4510 SLAB_ATTR(cpu_partial
);
4512 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
4516 return sprintf(buf
, "%pS\n", s
->ctor
);
4520 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
4522 return sprintf(buf
, "%d\n", s
->refcount
- 1);
4524 SLAB_ATTR_RO(aliases
);
4526 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
4528 return show_slab_objects(s
, buf
, SO_PARTIAL
);
4530 SLAB_ATTR_RO(partial
);
4532 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
4534 return show_slab_objects(s
, buf
, SO_CPU
);
4536 SLAB_ATTR_RO(cpu_slabs
);
4538 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
4540 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
4542 SLAB_ATTR_RO(objects
);
4544 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
4546 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
4548 SLAB_ATTR_RO(objects_partial
);
4550 static ssize_t
slabs_cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4557 for_each_online_cpu(cpu
) {
4558 struct page
*page
= per_cpu_ptr(s
->cpu_slab
, cpu
)->partial
;
4561 pages
+= page
->pages
;
4562 objects
+= page
->pobjects
;
4566 len
= sprintf(buf
, "%d(%d)", objects
, pages
);
4569 for_each_online_cpu(cpu
) {
4570 struct page
*page
= per_cpu_ptr(s
->cpu_slab
, cpu
) ->partial
;
4572 if (page
&& len
< PAGE_SIZE
- 20)
4573 len
+= sprintf(buf
+ len
, " C%d=%d(%d)", cpu
,
4574 page
->pobjects
, page
->pages
);
4577 return len
+ sprintf(buf
+ len
, "\n");
4579 SLAB_ATTR_RO(slabs_cpu_partial
);
4581 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
4583 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
4586 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
4587 const char *buf
, size_t length
)
4589 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
4591 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
4594 SLAB_ATTR(reclaim_account
);
4596 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
4598 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
4600 SLAB_ATTR_RO(hwcache_align
);
4602 #ifdef CONFIG_ZONE_DMA
4603 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
4605 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
4607 SLAB_ATTR_RO(cache_dma
);
4610 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
4612 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
4614 SLAB_ATTR_RO(destroy_by_rcu
);
4616 static ssize_t
reserved_show(struct kmem_cache
*s
, char *buf
)
4618 return sprintf(buf
, "%d\n", s
->reserved
);
4620 SLAB_ATTR_RO(reserved
);
4622 #ifdef CONFIG_SLUB_DEBUG
4623 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
4625 return show_slab_objects(s
, buf
, SO_ALL
);
4627 SLAB_ATTR_RO(slabs
);
4629 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
4631 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
4633 SLAB_ATTR_RO(total_objects
);
4635 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
4637 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
4640 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
4641 const char *buf
, size_t length
)
4643 s
->flags
&= ~SLAB_DEBUG_FREE
;
4644 if (buf
[0] == '1') {
4645 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4646 s
->flags
|= SLAB_DEBUG_FREE
;
4650 SLAB_ATTR(sanity_checks
);
4652 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
4654 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
4657 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
4660 s
->flags
&= ~SLAB_TRACE
;
4661 if (buf
[0] == '1') {
4662 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4663 s
->flags
|= SLAB_TRACE
;
4669 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
4671 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
4674 static ssize_t
red_zone_store(struct kmem_cache
*s
,
4675 const char *buf
, size_t length
)
4677 if (any_slab_objects(s
))
4680 s
->flags
&= ~SLAB_RED_ZONE
;
4681 if (buf
[0] == '1') {
4682 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4683 s
->flags
|= SLAB_RED_ZONE
;
4685 calculate_sizes(s
, -1);
4688 SLAB_ATTR(red_zone
);
4690 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
4692 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
4695 static ssize_t
poison_store(struct kmem_cache
*s
,
4696 const char *buf
, size_t length
)
4698 if (any_slab_objects(s
))
4701 s
->flags
&= ~SLAB_POISON
;
4702 if (buf
[0] == '1') {
4703 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4704 s
->flags
|= SLAB_POISON
;
4706 calculate_sizes(s
, -1);
4711 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
4713 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
4716 static ssize_t
store_user_store(struct kmem_cache
*s
,
4717 const char *buf
, size_t length
)
4719 if (any_slab_objects(s
))
4722 s
->flags
&= ~SLAB_STORE_USER
;
4723 if (buf
[0] == '1') {
4724 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4725 s
->flags
|= SLAB_STORE_USER
;
4727 calculate_sizes(s
, -1);
4730 SLAB_ATTR(store_user
);
4732 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4737 static ssize_t
validate_store(struct kmem_cache
*s
,
4738 const char *buf
, size_t length
)
4742 if (buf
[0] == '1') {
4743 ret
= validate_slab_cache(s
);
4749 SLAB_ATTR(validate
);
4751 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4753 if (!(s
->flags
& SLAB_STORE_USER
))
4755 return list_locations(s
, buf
, TRACK_ALLOC
);
4757 SLAB_ATTR_RO(alloc_calls
);
4759 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4761 if (!(s
->flags
& SLAB_STORE_USER
))
4763 return list_locations(s
, buf
, TRACK_FREE
);
4765 SLAB_ATTR_RO(free_calls
);
4766 #endif /* CONFIG_SLUB_DEBUG */
4768 #ifdef CONFIG_FAILSLAB
4769 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
4771 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
4774 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
4777 s
->flags
&= ~SLAB_FAILSLAB
;
4779 s
->flags
|= SLAB_FAILSLAB
;
4782 SLAB_ATTR(failslab
);
4785 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4790 static ssize_t
shrink_store(struct kmem_cache
*s
,
4791 const char *buf
, size_t length
)
4793 if (buf
[0] == '1') {
4794 int rc
= kmem_cache_shrink(s
);
4805 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4807 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4810 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4811 const char *buf
, size_t length
)
4813 unsigned long ratio
;
4816 err
= kstrtoul(buf
, 10, &ratio
);
4821 s
->remote_node_defrag_ratio
= ratio
* 10;
4825 SLAB_ATTR(remote_node_defrag_ratio
);
4828 #ifdef CONFIG_SLUB_STATS
4829 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
4831 unsigned long sum
= 0;
4834 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
4839 for_each_online_cpu(cpu
) {
4840 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
4846 len
= sprintf(buf
, "%lu", sum
);
4849 for_each_online_cpu(cpu
) {
4850 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
4851 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
4855 return len
+ sprintf(buf
+ len
, "\n");
4858 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
4862 for_each_online_cpu(cpu
)
4863 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
4866 #define STAT_ATTR(si, text) \
4867 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4869 return show_stat(s, buf, si); \
4871 static ssize_t text##_store(struct kmem_cache *s, \
4872 const char *buf, size_t length) \
4874 if (buf[0] != '0') \
4876 clear_stat(s, si); \
4881 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4882 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
4883 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
4884 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
4885 STAT_ATTR(FREE_FROZEN
, free_frozen
);
4886 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
4887 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
4888 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
4889 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
4890 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
4891 STAT_ATTR(ALLOC_NODE_MISMATCH
, alloc_node_mismatch
);
4892 STAT_ATTR(FREE_SLAB
, free_slab
);
4893 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
4894 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
4895 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
4896 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
4897 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
4898 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
4899 STAT_ATTR(DEACTIVATE_BYPASS
, deactivate_bypass
);
4900 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
4901 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL
, cmpxchg_double_cpu_fail
);
4902 STAT_ATTR(CMPXCHG_DOUBLE_FAIL
, cmpxchg_double_fail
);
4903 STAT_ATTR(CPU_PARTIAL_ALLOC
, cpu_partial_alloc
);
4904 STAT_ATTR(CPU_PARTIAL_FREE
, cpu_partial_free
);
4905 STAT_ATTR(CPU_PARTIAL_NODE
, cpu_partial_node
);
4906 STAT_ATTR(CPU_PARTIAL_DRAIN
, cpu_partial_drain
);
4909 static struct attribute
*slab_attrs
[] = {
4910 &slab_size_attr
.attr
,
4911 &object_size_attr
.attr
,
4912 &objs_per_slab_attr
.attr
,
4914 &min_partial_attr
.attr
,
4915 &cpu_partial_attr
.attr
,
4917 &objects_partial_attr
.attr
,
4919 &cpu_slabs_attr
.attr
,
4923 &hwcache_align_attr
.attr
,
4924 &reclaim_account_attr
.attr
,
4925 &destroy_by_rcu_attr
.attr
,
4927 &reserved_attr
.attr
,
4928 &slabs_cpu_partial_attr
.attr
,
4929 #ifdef CONFIG_SLUB_DEBUG
4930 &total_objects_attr
.attr
,
4932 &sanity_checks_attr
.attr
,
4934 &red_zone_attr
.attr
,
4936 &store_user_attr
.attr
,
4937 &validate_attr
.attr
,
4938 &alloc_calls_attr
.attr
,
4939 &free_calls_attr
.attr
,
4941 #ifdef CONFIG_ZONE_DMA
4942 &cache_dma_attr
.attr
,
4945 &remote_node_defrag_ratio_attr
.attr
,
4947 #ifdef CONFIG_SLUB_STATS
4948 &alloc_fastpath_attr
.attr
,
4949 &alloc_slowpath_attr
.attr
,
4950 &free_fastpath_attr
.attr
,
4951 &free_slowpath_attr
.attr
,
4952 &free_frozen_attr
.attr
,
4953 &free_add_partial_attr
.attr
,
4954 &free_remove_partial_attr
.attr
,
4955 &alloc_from_partial_attr
.attr
,
4956 &alloc_slab_attr
.attr
,
4957 &alloc_refill_attr
.attr
,
4958 &alloc_node_mismatch_attr
.attr
,
4959 &free_slab_attr
.attr
,
4960 &cpuslab_flush_attr
.attr
,
4961 &deactivate_full_attr
.attr
,
4962 &deactivate_empty_attr
.attr
,
4963 &deactivate_to_head_attr
.attr
,
4964 &deactivate_to_tail_attr
.attr
,
4965 &deactivate_remote_frees_attr
.attr
,
4966 &deactivate_bypass_attr
.attr
,
4967 &order_fallback_attr
.attr
,
4968 &cmpxchg_double_fail_attr
.attr
,
4969 &cmpxchg_double_cpu_fail_attr
.attr
,
4970 &cpu_partial_alloc_attr
.attr
,
4971 &cpu_partial_free_attr
.attr
,
4972 &cpu_partial_node_attr
.attr
,
4973 &cpu_partial_drain_attr
.attr
,
4975 #ifdef CONFIG_FAILSLAB
4976 &failslab_attr
.attr
,
4982 static struct attribute_group slab_attr_group
= {
4983 .attrs
= slab_attrs
,
4986 static ssize_t
slab_attr_show(struct kobject
*kobj
,
4987 struct attribute
*attr
,
4990 struct slab_attribute
*attribute
;
4991 struct kmem_cache
*s
;
4994 attribute
= to_slab_attr(attr
);
4997 if (!attribute
->show
)
5000 err
= attribute
->show(s
, buf
);
5005 static ssize_t
slab_attr_store(struct kobject
*kobj
,
5006 struct attribute
*attr
,
5007 const char *buf
, size_t len
)
5009 struct slab_attribute
*attribute
;
5010 struct kmem_cache
*s
;
5013 attribute
= to_slab_attr(attr
);
5016 if (!attribute
->store
)
5019 err
= attribute
->store(s
, buf
, len
);
5020 #ifdef CONFIG_MEMCG_KMEM
5021 if (slab_state
>= FULL
&& err
>= 0 && is_root_cache(s
)) {
5024 mutex_lock(&slab_mutex
);
5025 if (s
->max_attr_size
< len
)
5026 s
->max_attr_size
= len
;
5029 * This is a best effort propagation, so this function's return
5030 * value will be determined by the parent cache only. This is
5031 * basically because not all attributes will have a well
5032 * defined semantics for rollbacks - most of the actions will
5033 * have permanent effects.
5035 * Returning the error value of any of the children that fail
5036 * is not 100 % defined, in the sense that users seeing the
5037 * error code won't be able to know anything about the state of
5040 * Only returning the error code for the parent cache at least
5041 * has well defined semantics. The cache being written to
5042 * directly either failed or succeeded, in which case we loop
5043 * through the descendants with best-effort propagation.
5045 for_each_memcg_cache_index(i
) {
5046 struct kmem_cache
*c
= cache_from_memcg_idx(s
, i
);
5048 attribute
->store(c
, buf
, len
);
5050 mutex_unlock(&slab_mutex
);
5056 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
)
5058 #ifdef CONFIG_MEMCG_KMEM
5060 char *buffer
= NULL
;
5062 if (!is_root_cache(s
))
5066 * This mean this cache had no attribute written. Therefore, no point
5067 * in copying default values around
5069 if (!s
->max_attr_size
)
5072 for (i
= 0; i
< ARRAY_SIZE(slab_attrs
); i
++) {
5075 struct slab_attribute
*attr
= to_slab_attr(slab_attrs
[i
]);
5077 if (!attr
|| !attr
->store
|| !attr
->show
)
5081 * It is really bad that we have to allocate here, so we will
5082 * do it only as a fallback. If we actually allocate, though,
5083 * we can just use the allocated buffer until the end.
5085 * Most of the slub attributes will tend to be very small in
5086 * size, but sysfs allows buffers up to a page, so they can
5087 * theoretically happen.
5091 else if (s
->max_attr_size
< ARRAY_SIZE(mbuf
))
5094 buffer
= (char *) get_zeroed_page(GFP_KERNEL
);
5095 if (WARN_ON(!buffer
))
5100 attr
->show(s
->memcg_params
->root_cache
, buf
);
5101 attr
->store(s
, buf
, strlen(buf
));
5105 free_page((unsigned long)buffer
);
5109 static const struct sysfs_ops slab_sysfs_ops
= {
5110 .show
= slab_attr_show
,
5111 .store
= slab_attr_store
,
5114 static struct kobj_type slab_ktype
= {
5115 .sysfs_ops
= &slab_sysfs_ops
,
5118 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
5120 struct kobj_type
*ktype
= get_ktype(kobj
);
5122 if (ktype
== &slab_ktype
)
5127 static const struct kset_uevent_ops slab_uevent_ops
= {
5128 .filter
= uevent_filter
,
5131 static struct kset
*slab_kset
;
5133 #define ID_STR_LENGTH 64
5135 /* Create a unique string id for a slab cache:
5137 * Format :[flags-]size
5139 static char *create_unique_id(struct kmem_cache
*s
)
5141 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
5148 * First flags affecting slabcache operations. We will only
5149 * get here for aliasable slabs so we do not need to support
5150 * too many flags. The flags here must cover all flags that
5151 * are matched during merging to guarantee that the id is
5154 if (s
->flags
& SLAB_CACHE_DMA
)
5156 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
5158 if (s
->flags
& SLAB_DEBUG_FREE
)
5160 if (!(s
->flags
& SLAB_NOTRACK
))
5164 p
+= sprintf(p
, "%07d", s
->size
);
5166 #ifdef CONFIG_MEMCG_KMEM
5167 if (!is_root_cache(s
))
5168 p
+= sprintf(p
, "-%08d",
5169 memcg_cache_id(s
->memcg_params
->memcg
));
5172 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
5176 static int sysfs_slab_add(struct kmem_cache
*s
)
5180 int unmergeable
= slab_unmergeable(s
);
5184 * Slabcache can never be merged so we can use the name proper.
5185 * This is typically the case for debug situations. In that
5186 * case we can catch duplicate names easily.
5188 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
5192 * Create a unique name for the slab as a target
5195 name
= create_unique_id(s
);
5198 s
->kobj
.kset
= slab_kset
;
5199 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, "%s", name
);
5201 kobject_put(&s
->kobj
);
5205 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
5207 kobject_del(&s
->kobj
);
5208 kobject_put(&s
->kobj
);
5211 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
5213 /* Setup first alias */
5214 sysfs_slab_alias(s
, s
->name
);
5220 static void sysfs_slab_remove(struct kmem_cache
*s
)
5222 if (slab_state
< FULL
)
5224 * Sysfs has not been setup yet so no need to remove the
5229 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
5230 kobject_del(&s
->kobj
);
5231 kobject_put(&s
->kobj
);
5235 * Need to buffer aliases during bootup until sysfs becomes
5236 * available lest we lose that information.
5238 struct saved_alias
{
5239 struct kmem_cache
*s
;
5241 struct saved_alias
*next
;
5244 static struct saved_alias
*alias_list
;
5246 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
5248 struct saved_alias
*al
;
5250 if (slab_state
== FULL
) {
5252 * If we have a leftover link then remove it.
5254 sysfs_remove_link(&slab_kset
->kobj
, name
);
5255 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
5258 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
5264 al
->next
= alias_list
;
5269 static int __init
slab_sysfs_init(void)
5271 struct kmem_cache
*s
;
5274 mutex_lock(&slab_mutex
);
5276 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
5278 mutex_unlock(&slab_mutex
);
5279 printk(KERN_ERR
"Cannot register slab subsystem.\n");
5285 list_for_each_entry(s
, &slab_caches
, list
) {
5286 err
= sysfs_slab_add(s
);
5288 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
5289 " to sysfs\n", s
->name
);
5292 while (alias_list
) {
5293 struct saved_alias
*al
= alias_list
;
5295 alias_list
= alias_list
->next
;
5296 err
= sysfs_slab_alias(al
->s
, al
->name
);
5298 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
5299 " %s to sysfs\n", al
->name
);
5303 mutex_unlock(&slab_mutex
);
5308 __initcall(slab_sysfs_init
);
5309 #endif /* CONFIG_SYSFS */
5312 * The /proc/slabinfo ABI
5314 #ifdef CONFIG_SLABINFO
5315 void get_slabinfo(struct kmem_cache
*s
, struct slabinfo
*sinfo
)
5317 unsigned long nr_slabs
= 0;
5318 unsigned long nr_objs
= 0;
5319 unsigned long nr_free
= 0;
5322 for_each_online_node(node
) {
5323 struct kmem_cache_node
*n
= get_node(s
, node
);
5328 nr_slabs
+= node_nr_slabs(n
);
5329 nr_objs
+= node_nr_objs(n
);
5330 nr_free
+= count_partial(n
, count_free
);
5333 sinfo
->active_objs
= nr_objs
- nr_free
;
5334 sinfo
->num_objs
= nr_objs
;
5335 sinfo
->active_slabs
= nr_slabs
;
5336 sinfo
->num_slabs
= nr_slabs
;
5337 sinfo
->objects_per_slab
= oo_objects(s
->oo
);
5338 sinfo
->cache_order
= oo_order(s
->oo
);
5341 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*s
)
5345 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
5346 size_t count
, loff_t
*ppos
)
5350 #endif /* CONFIG_SLABINFO */