Linux 2.6.25.20
[linux/fpc-iii.git] / fs / ext4 / inode.c
blob945cbf6cb1fc6d686c5ef89ba2663ce753dab160
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/ext4_jbd2.h>
29 #include <linux/jbd2.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "xattr.h"
40 #include "acl.h"
43 * Test whether an inode is a fast symlink.
45 static int ext4_inode_is_fast_symlink(struct inode *inode)
47 int ea_blocks = EXT4_I(inode)->i_file_acl ?
48 (inode->i_sb->s_blocksize >> 9) : 0;
50 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
54 * The ext4 forget function must perform a revoke if we are freeing data
55 * which has been journaled. Metadata (eg. indirect blocks) must be
56 * revoked in all cases.
58 * "bh" may be NULL: a metadata block may have been freed from memory
59 * but there may still be a record of it in the journal, and that record
60 * still needs to be revoked.
62 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
63 struct buffer_head *bh, ext4_fsblk_t blocknr)
65 int err;
67 might_sleep();
69 BUFFER_TRACE(bh, "enter");
71 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
72 "data mode %lx\n",
73 bh, is_metadata, inode->i_mode,
74 test_opt(inode->i_sb, DATA_FLAGS));
76 /* Never use the revoke function if we are doing full data
77 * journaling: there is no need to, and a V1 superblock won't
78 * support it. Otherwise, only skip the revoke on un-journaled
79 * data blocks. */
81 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
82 (!is_metadata && !ext4_should_journal_data(inode))) {
83 if (bh) {
84 BUFFER_TRACE(bh, "call jbd2_journal_forget");
85 return ext4_journal_forget(handle, bh);
87 return 0;
91 * data!=journal && (is_metadata || should_journal_data(inode))
93 BUFFER_TRACE(bh, "call ext4_journal_revoke");
94 err = ext4_journal_revoke(handle, blocknr, bh);
95 if (err)
96 ext4_abort(inode->i_sb, __FUNCTION__,
97 "error %d when attempting revoke", err);
98 BUFFER_TRACE(bh, "exit");
99 return err;
103 * Work out how many blocks we need to proceed with the next chunk of a
104 * truncate transaction.
106 static unsigned long blocks_for_truncate(struct inode *inode)
108 ext4_lblk_t needed;
110 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
112 /* Give ourselves just enough room to cope with inodes in which
113 * i_blocks is corrupt: we've seen disk corruptions in the past
114 * which resulted in random data in an inode which looked enough
115 * like a regular file for ext4 to try to delete it. Things
116 * will go a bit crazy if that happens, but at least we should
117 * try not to panic the whole kernel. */
118 if (needed < 2)
119 needed = 2;
121 /* But we need to bound the transaction so we don't overflow the
122 * journal. */
123 if (needed > EXT4_MAX_TRANS_DATA)
124 needed = EXT4_MAX_TRANS_DATA;
126 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
130 * Truncate transactions can be complex and absolutely huge. So we need to
131 * be able to restart the transaction at a conventient checkpoint to make
132 * sure we don't overflow the journal.
134 * start_transaction gets us a new handle for a truncate transaction,
135 * and extend_transaction tries to extend the existing one a bit. If
136 * extend fails, we need to propagate the failure up and restart the
137 * transaction in the top-level truncate loop. --sct
139 static handle_t *start_transaction(struct inode *inode)
141 handle_t *result;
143 result = ext4_journal_start(inode, blocks_for_truncate(inode));
144 if (!IS_ERR(result))
145 return result;
147 ext4_std_error(inode->i_sb, PTR_ERR(result));
148 return result;
152 * Try to extend this transaction for the purposes of truncation.
154 * Returns 0 if we managed to create more room. If we can't create more
155 * room, and the transaction must be restarted we return 1.
157 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
159 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
160 return 0;
161 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
162 return 0;
163 return 1;
167 * Restart the transaction associated with *handle. This does a commit,
168 * so before we call here everything must be consistently dirtied against
169 * this transaction.
171 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
173 jbd_debug(2, "restarting handle %p\n", handle);
174 return ext4_journal_restart(handle, blocks_for_truncate(inode));
178 * Called at the last iput() if i_nlink is zero.
180 void ext4_delete_inode (struct inode * inode)
182 handle_t *handle;
184 truncate_inode_pages(&inode->i_data, 0);
186 if (is_bad_inode(inode))
187 goto no_delete;
189 handle = start_transaction(inode);
190 if (IS_ERR(handle)) {
192 * If we're going to skip the normal cleanup, we still need to
193 * make sure that the in-core orphan linked list is properly
194 * cleaned up.
196 ext4_orphan_del(NULL, inode);
197 goto no_delete;
200 if (IS_SYNC(inode))
201 handle->h_sync = 1;
202 inode->i_size = 0;
203 if (inode->i_blocks)
204 ext4_truncate(inode);
206 * Kill off the orphan record which ext4_truncate created.
207 * AKPM: I think this can be inside the above `if'.
208 * Note that ext4_orphan_del() has to be able to cope with the
209 * deletion of a non-existent orphan - this is because we don't
210 * know if ext4_truncate() actually created an orphan record.
211 * (Well, we could do this if we need to, but heck - it works)
213 ext4_orphan_del(handle, inode);
214 EXT4_I(inode)->i_dtime = get_seconds();
217 * One subtle ordering requirement: if anything has gone wrong
218 * (transaction abort, IO errors, whatever), then we can still
219 * do these next steps (the fs will already have been marked as
220 * having errors), but we can't free the inode if the mark_dirty
221 * fails.
223 if (ext4_mark_inode_dirty(handle, inode))
224 /* If that failed, just do the required in-core inode clear. */
225 clear_inode(inode);
226 else
227 ext4_free_inode(handle, inode);
228 ext4_journal_stop(handle);
229 return;
230 no_delete:
231 clear_inode(inode); /* We must guarantee clearing of inode... */
234 typedef struct {
235 __le32 *p;
236 __le32 key;
237 struct buffer_head *bh;
238 } Indirect;
240 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
242 p->key = *(p->p = v);
243 p->bh = bh;
247 * ext4_block_to_path - parse the block number into array of offsets
248 * @inode: inode in question (we are only interested in its superblock)
249 * @i_block: block number to be parsed
250 * @offsets: array to store the offsets in
251 * @boundary: set this non-zero if the referred-to block is likely to be
252 * followed (on disk) by an indirect block.
254 * To store the locations of file's data ext4 uses a data structure common
255 * for UNIX filesystems - tree of pointers anchored in the inode, with
256 * data blocks at leaves and indirect blocks in intermediate nodes.
257 * This function translates the block number into path in that tree -
258 * return value is the path length and @offsets[n] is the offset of
259 * pointer to (n+1)th node in the nth one. If @block is out of range
260 * (negative or too large) warning is printed and zero returned.
262 * Note: function doesn't find node addresses, so no IO is needed. All
263 * we need to know is the capacity of indirect blocks (taken from the
264 * inode->i_sb).
268 * Portability note: the last comparison (check that we fit into triple
269 * indirect block) is spelled differently, because otherwise on an
270 * architecture with 32-bit longs and 8Kb pages we might get into trouble
271 * if our filesystem had 8Kb blocks. We might use long long, but that would
272 * kill us on x86. Oh, well, at least the sign propagation does not matter -
273 * i_block would have to be negative in the very beginning, so we would not
274 * get there at all.
277 static int ext4_block_to_path(struct inode *inode,
278 ext4_lblk_t i_block,
279 ext4_lblk_t offsets[4], int *boundary)
281 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
282 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
283 const long direct_blocks = EXT4_NDIR_BLOCKS,
284 indirect_blocks = ptrs,
285 double_blocks = (1 << (ptrs_bits * 2));
286 int n = 0;
287 int final = 0;
289 if (i_block < 0) {
290 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
291 } else if (i_block < direct_blocks) {
292 offsets[n++] = i_block;
293 final = direct_blocks;
294 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
295 offsets[n++] = EXT4_IND_BLOCK;
296 offsets[n++] = i_block;
297 final = ptrs;
298 } else if ((i_block -= indirect_blocks) < double_blocks) {
299 offsets[n++] = EXT4_DIND_BLOCK;
300 offsets[n++] = i_block >> ptrs_bits;
301 offsets[n++] = i_block & (ptrs - 1);
302 final = ptrs;
303 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
304 offsets[n++] = EXT4_TIND_BLOCK;
305 offsets[n++] = i_block >> (ptrs_bits * 2);
306 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
307 offsets[n++] = i_block & (ptrs - 1);
308 final = ptrs;
309 } else {
310 ext4_warning(inode->i_sb, "ext4_block_to_path",
311 "block %lu > max",
312 i_block + direct_blocks +
313 indirect_blocks + double_blocks);
315 if (boundary)
316 *boundary = final - 1 - (i_block & (ptrs - 1));
317 return n;
321 * ext4_get_branch - read the chain of indirect blocks leading to data
322 * @inode: inode in question
323 * @depth: depth of the chain (1 - direct pointer, etc.)
324 * @offsets: offsets of pointers in inode/indirect blocks
325 * @chain: place to store the result
326 * @err: here we store the error value
328 * Function fills the array of triples <key, p, bh> and returns %NULL
329 * if everything went OK or the pointer to the last filled triple
330 * (incomplete one) otherwise. Upon the return chain[i].key contains
331 * the number of (i+1)-th block in the chain (as it is stored in memory,
332 * i.e. little-endian 32-bit), chain[i].p contains the address of that
333 * number (it points into struct inode for i==0 and into the bh->b_data
334 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
335 * block for i>0 and NULL for i==0. In other words, it holds the block
336 * numbers of the chain, addresses they were taken from (and where we can
337 * verify that chain did not change) and buffer_heads hosting these
338 * numbers.
340 * Function stops when it stumbles upon zero pointer (absent block)
341 * (pointer to last triple returned, *@err == 0)
342 * or when it gets an IO error reading an indirect block
343 * (ditto, *@err == -EIO)
344 * or when it reads all @depth-1 indirect blocks successfully and finds
345 * the whole chain, all way to the data (returns %NULL, *err == 0).
347 * Need to be called with
348 * down_read(&EXT4_I(inode)->i_data_sem)
350 static Indirect *ext4_get_branch(struct inode *inode, int depth,
351 ext4_lblk_t *offsets,
352 Indirect chain[4], int *err)
354 struct super_block *sb = inode->i_sb;
355 Indirect *p = chain;
356 struct buffer_head *bh;
358 *err = 0;
359 /* i_data is not going away, no lock needed */
360 add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
361 if (!p->key)
362 goto no_block;
363 while (--depth) {
364 bh = sb_bread(sb, le32_to_cpu(p->key));
365 if (!bh)
366 goto failure;
367 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
368 /* Reader: end */
369 if (!p->key)
370 goto no_block;
372 return NULL;
374 failure:
375 *err = -EIO;
376 no_block:
377 return p;
381 * ext4_find_near - find a place for allocation with sufficient locality
382 * @inode: owner
383 * @ind: descriptor of indirect block.
385 * This function returns the prefered place for block allocation.
386 * It is used when heuristic for sequential allocation fails.
387 * Rules are:
388 * + if there is a block to the left of our position - allocate near it.
389 * + if pointer will live in indirect block - allocate near that block.
390 * + if pointer will live in inode - allocate in the same
391 * cylinder group.
393 * In the latter case we colour the starting block by the callers PID to
394 * prevent it from clashing with concurrent allocations for a different inode
395 * in the same block group. The PID is used here so that functionally related
396 * files will be close-by on-disk.
398 * Caller must make sure that @ind is valid and will stay that way.
400 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
402 struct ext4_inode_info *ei = EXT4_I(inode);
403 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
404 __le32 *p;
405 ext4_fsblk_t bg_start;
406 ext4_fsblk_t last_block;
407 ext4_grpblk_t colour;
409 /* Try to find previous block */
410 for (p = ind->p - 1; p >= start; p--) {
411 if (*p)
412 return le32_to_cpu(*p);
415 /* No such thing, so let's try location of indirect block */
416 if (ind->bh)
417 return ind->bh->b_blocknr;
420 * It is going to be referred to from the inode itself? OK, just put it
421 * into the same cylinder group then.
423 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
424 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
426 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
427 colour = (current->pid % 16) *
428 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
429 else
430 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
431 return bg_start + colour;
435 * ext4_find_goal - find a prefered place for allocation.
436 * @inode: owner
437 * @block: block we want
438 * @partial: pointer to the last triple within a chain
440 * Normally this function find the prefered place for block allocation,
441 * returns it.
443 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
444 Indirect *partial)
446 struct ext4_block_alloc_info *block_i;
448 block_i = EXT4_I(inode)->i_block_alloc_info;
451 * try the heuristic for sequential allocation,
452 * failing that at least try to get decent locality.
454 if (block_i && (block == block_i->last_alloc_logical_block + 1)
455 && (block_i->last_alloc_physical_block != 0)) {
456 return block_i->last_alloc_physical_block + 1;
459 return ext4_find_near(inode, partial);
463 * ext4_blks_to_allocate: Look up the block map and count the number
464 * of direct blocks need to be allocated for the given branch.
466 * @branch: chain of indirect blocks
467 * @k: number of blocks need for indirect blocks
468 * @blks: number of data blocks to be mapped.
469 * @blocks_to_boundary: the offset in the indirect block
471 * return the total number of blocks to be allocate, including the
472 * direct and indirect blocks.
474 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
475 int blocks_to_boundary)
477 unsigned long count = 0;
480 * Simple case, [t,d]Indirect block(s) has not allocated yet
481 * then it's clear blocks on that path have not allocated
483 if (k > 0) {
484 /* right now we don't handle cross boundary allocation */
485 if (blks < blocks_to_boundary + 1)
486 count += blks;
487 else
488 count += blocks_to_boundary + 1;
489 return count;
492 count++;
493 while (count < blks && count <= blocks_to_boundary &&
494 le32_to_cpu(*(branch[0].p + count)) == 0) {
495 count++;
497 return count;
501 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
502 * @indirect_blks: the number of blocks need to allocate for indirect
503 * blocks
505 * @new_blocks: on return it will store the new block numbers for
506 * the indirect blocks(if needed) and the first direct block,
507 * @blks: on return it will store the total number of allocated
508 * direct blocks
510 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
511 ext4_fsblk_t goal, int indirect_blks, int blks,
512 ext4_fsblk_t new_blocks[4], int *err)
514 int target, i;
515 unsigned long count = 0;
516 int index = 0;
517 ext4_fsblk_t current_block = 0;
518 int ret = 0;
521 * Here we try to allocate the requested multiple blocks at once,
522 * on a best-effort basis.
523 * To build a branch, we should allocate blocks for
524 * the indirect blocks(if not allocated yet), and at least
525 * the first direct block of this branch. That's the
526 * minimum number of blocks need to allocate(required)
528 target = blks + indirect_blks;
530 while (1) {
531 count = target;
532 /* allocating blocks for indirect blocks and direct blocks */
533 current_block = ext4_new_blocks(handle,inode,goal,&count,err);
534 if (*err)
535 goto failed_out;
537 target -= count;
538 /* allocate blocks for indirect blocks */
539 while (index < indirect_blks && count) {
540 new_blocks[index++] = current_block++;
541 count--;
544 if (count > 0)
545 break;
548 /* save the new block number for the first direct block */
549 new_blocks[index] = current_block;
551 /* total number of blocks allocated for direct blocks */
552 ret = count;
553 *err = 0;
554 return ret;
555 failed_out:
556 for (i = 0; i <index; i++)
557 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
558 return ret;
562 * ext4_alloc_branch - allocate and set up a chain of blocks.
563 * @inode: owner
564 * @indirect_blks: number of allocated indirect blocks
565 * @blks: number of allocated direct blocks
566 * @offsets: offsets (in the blocks) to store the pointers to next.
567 * @branch: place to store the chain in.
569 * This function allocates blocks, zeroes out all but the last one,
570 * links them into chain and (if we are synchronous) writes them to disk.
571 * In other words, it prepares a branch that can be spliced onto the
572 * inode. It stores the information about that chain in the branch[], in
573 * the same format as ext4_get_branch() would do. We are calling it after
574 * we had read the existing part of chain and partial points to the last
575 * triple of that (one with zero ->key). Upon the exit we have the same
576 * picture as after the successful ext4_get_block(), except that in one
577 * place chain is disconnected - *branch->p is still zero (we did not
578 * set the last link), but branch->key contains the number that should
579 * be placed into *branch->p to fill that gap.
581 * If allocation fails we free all blocks we've allocated (and forget
582 * their buffer_heads) and return the error value the from failed
583 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
584 * as described above and return 0.
586 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
587 int indirect_blks, int *blks, ext4_fsblk_t goal,
588 ext4_lblk_t *offsets, Indirect *branch)
590 int blocksize = inode->i_sb->s_blocksize;
591 int i, n = 0;
592 int err = 0;
593 struct buffer_head *bh;
594 int num;
595 ext4_fsblk_t new_blocks[4];
596 ext4_fsblk_t current_block;
598 num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
599 *blks, new_blocks, &err);
600 if (err)
601 return err;
603 branch[0].key = cpu_to_le32(new_blocks[0]);
605 * metadata blocks and data blocks are allocated.
607 for (n = 1; n <= indirect_blks; n++) {
609 * Get buffer_head for parent block, zero it out
610 * and set the pointer to new one, then send
611 * parent to disk.
613 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
614 branch[n].bh = bh;
615 lock_buffer(bh);
616 BUFFER_TRACE(bh, "call get_create_access");
617 err = ext4_journal_get_create_access(handle, bh);
618 if (err) {
619 unlock_buffer(bh);
620 brelse(bh);
621 goto failed;
624 memset(bh->b_data, 0, blocksize);
625 branch[n].p = (__le32 *) bh->b_data + offsets[n];
626 branch[n].key = cpu_to_le32(new_blocks[n]);
627 *branch[n].p = branch[n].key;
628 if ( n == indirect_blks) {
629 current_block = new_blocks[n];
631 * End of chain, update the last new metablock of
632 * the chain to point to the new allocated
633 * data blocks numbers
635 for (i=1; i < num; i++)
636 *(branch[n].p + i) = cpu_to_le32(++current_block);
638 BUFFER_TRACE(bh, "marking uptodate");
639 set_buffer_uptodate(bh);
640 unlock_buffer(bh);
642 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
643 err = ext4_journal_dirty_metadata(handle, bh);
644 if (err)
645 goto failed;
647 *blks = num;
648 return err;
649 failed:
650 /* Allocation failed, free what we already allocated */
651 for (i = 1; i <= n ; i++) {
652 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
653 ext4_journal_forget(handle, branch[i].bh);
655 for (i = 0; i <indirect_blks; i++)
656 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
658 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
660 return err;
664 * ext4_splice_branch - splice the allocated branch onto inode.
665 * @inode: owner
666 * @block: (logical) number of block we are adding
667 * @chain: chain of indirect blocks (with a missing link - see
668 * ext4_alloc_branch)
669 * @where: location of missing link
670 * @num: number of indirect blocks we are adding
671 * @blks: number of direct blocks we are adding
673 * This function fills the missing link and does all housekeeping needed in
674 * inode (->i_blocks, etc.). In case of success we end up with the full
675 * chain to new block and return 0.
677 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
678 ext4_lblk_t block, Indirect *where, int num, int blks)
680 int i;
681 int err = 0;
682 struct ext4_block_alloc_info *block_i;
683 ext4_fsblk_t current_block;
685 block_i = EXT4_I(inode)->i_block_alloc_info;
687 * If we're splicing into a [td]indirect block (as opposed to the
688 * inode) then we need to get write access to the [td]indirect block
689 * before the splice.
691 if (where->bh) {
692 BUFFER_TRACE(where->bh, "get_write_access");
693 err = ext4_journal_get_write_access(handle, where->bh);
694 if (err)
695 goto err_out;
697 /* That's it */
699 *where->p = where->key;
702 * Update the host buffer_head or inode to point to more just allocated
703 * direct blocks blocks
705 if (num == 0 && blks > 1) {
706 current_block = le32_to_cpu(where->key) + 1;
707 for (i = 1; i < blks; i++)
708 *(where->p + i ) = cpu_to_le32(current_block++);
712 * update the most recently allocated logical & physical block
713 * in i_block_alloc_info, to assist find the proper goal block for next
714 * allocation
716 if (block_i) {
717 block_i->last_alloc_logical_block = block + blks - 1;
718 block_i->last_alloc_physical_block =
719 le32_to_cpu(where[num].key) + blks - 1;
722 /* We are done with atomic stuff, now do the rest of housekeeping */
724 inode->i_ctime = ext4_current_time(inode);
725 ext4_mark_inode_dirty(handle, inode);
727 /* had we spliced it onto indirect block? */
728 if (where->bh) {
730 * If we spliced it onto an indirect block, we haven't
731 * altered the inode. Note however that if it is being spliced
732 * onto an indirect block at the very end of the file (the
733 * file is growing) then we *will* alter the inode to reflect
734 * the new i_size. But that is not done here - it is done in
735 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
737 jbd_debug(5, "splicing indirect only\n");
738 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
739 err = ext4_journal_dirty_metadata(handle, where->bh);
740 if (err)
741 goto err_out;
742 } else {
744 * OK, we spliced it into the inode itself on a direct block.
745 * Inode was dirtied above.
747 jbd_debug(5, "splicing direct\n");
749 return err;
751 err_out:
752 for (i = 1; i <= num; i++) {
753 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
754 ext4_journal_forget(handle, where[i].bh);
755 ext4_free_blocks(handle, inode,
756 le32_to_cpu(where[i-1].key), 1, 0);
758 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
760 return err;
764 * Allocation strategy is simple: if we have to allocate something, we will
765 * have to go the whole way to leaf. So let's do it before attaching anything
766 * to tree, set linkage between the newborn blocks, write them if sync is
767 * required, recheck the path, free and repeat if check fails, otherwise
768 * set the last missing link (that will protect us from any truncate-generated
769 * removals - all blocks on the path are immune now) and possibly force the
770 * write on the parent block.
771 * That has a nice additional property: no special recovery from the failed
772 * allocations is needed - we simply release blocks and do not touch anything
773 * reachable from inode.
775 * `handle' can be NULL if create == 0.
777 * return > 0, # of blocks mapped or allocated.
778 * return = 0, if plain lookup failed.
779 * return < 0, error case.
782 * Need to be called with
783 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
784 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
786 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
787 ext4_lblk_t iblock, unsigned long maxblocks,
788 struct buffer_head *bh_result,
789 int create, int extend_disksize)
791 int err = -EIO;
792 ext4_lblk_t offsets[4];
793 Indirect chain[4];
794 Indirect *partial;
795 ext4_fsblk_t goal;
796 int indirect_blks;
797 int blocks_to_boundary = 0;
798 int depth;
799 struct ext4_inode_info *ei = EXT4_I(inode);
800 int count = 0;
801 ext4_fsblk_t first_block = 0;
804 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
805 J_ASSERT(handle != NULL || create == 0);
806 depth = ext4_block_to_path(inode, iblock, offsets,
807 &blocks_to_boundary);
809 if (depth == 0)
810 goto out;
812 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
814 /* Simplest case - block found, no allocation needed */
815 if (!partial) {
816 first_block = le32_to_cpu(chain[depth - 1].key);
817 clear_buffer_new(bh_result);
818 count++;
819 /*map more blocks*/
820 while (count < maxblocks && count <= blocks_to_boundary) {
821 ext4_fsblk_t blk;
823 blk = le32_to_cpu(*(chain[depth-1].p + count));
825 if (blk == first_block + count)
826 count++;
827 else
828 break;
830 goto got_it;
833 /* Next simple case - plain lookup or failed read of indirect block */
834 if (!create || err == -EIO)
835 goto cleanup;
838 * Okay, we need to do block allocation. Lazily initialize the block
839 * allocation info here if necessary
841 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
842 ext4_init_block_alloc_info(inode);
844 goal = ext4_find_goal(inode, iblock, partial);
846 /* the number of blocks need to allocate for [d,t]indirect blocks */
847 indirect_blks = (chain + depth) - partial - 1;
850 * Next look up the indirect map to count the totoal number of
851 * direct blocks to allocate for this branch.
853 count = ext4_blks_to_allocate(partial, indirect_blks,
854 maxblocks, blocks_to_boundary);
856 * Block out ext4_truncate while we alter the tree
858 err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
859 offsets + (partial - chain), partial);
862 * The ext4_splice_branch call will free and forget any buffers
863 * on the new chain if there is a failure, but that risks using
864 * up transaction credits, especially for bitmaps where the
865 * credits cannot be returned. Can we handle this somehow? We
866 * may need to return -EAGAIN upwards in the worst case. --sct
868 if (!err)
869 err = ext4_splice_branch(handle, inode, iblock,
870 partial, indirect_blks, count);
872 * i_disksize growing is protected by i_data_sem. Don't forget to
873 * protect it if you're about to implement concurrent
874 * ext4_get_block() -bzzz
876 if (!err && extend_disksize && inode->i_size > ei->i_disksize)
877 ei->i_disksize = inode->i_size;
878 if (err)
879 goto cleanup;
881 set_buffer_new(bh_result);
882 got_it:
883 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
884 if (count > blocks_to_boundary)
885 set_buffer_boundary(bh_result);
886 err = count;
887 /* Clean up and exit */
888 partial = chain + depth - 1; /* the whole chain */
889 cleanup:
890 while (partial > chain) {
891 BUFFER_TRACE(partial->bh, "call brelse");
892 brelse(partial->bh);
893 partial--;
895 BUFFER_TRACE(bh_result, "returned");
896 out:
897 return err;
900 /* Maximum number of blocks we map for direct IO at once. */
901 #define DIO_MAX_BLOCKS 4096
903 * Number of credits we need for writing DIO_MAX_BLOCKS:
904 * We need sb + group descriptor + bitmap + inode -> 4
905 * For B blocks with A block pointers per block we need:
906 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
907 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
909 #define DIO_CREDITS 25
915 * ext4_ext4 get_block() wrapper function
916 * It will do a look up first, and returns if the blocks already mapped.
917 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
918 * and store the allocated blocks in the result buffer head and mark it
919 * mapped.
921 * If file type is extents based, it will call ext4_ext_get_blocks(),
922 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
923 * based files
925 * On success, it returns the number of blocks being mapped or allocate.
926 * if create==0 and the blocks are pre-allocated and uninitialized block,
927 * the result buffer head is unmapped. If the create ==1, it will make sure
928 * the buffer head is mapped.
930 * It returns 0 if plain look up failed (blocks have not been allocated), in
931 * that casem, buffer head is unmapped
933 * It returns the error in case of allocation failure.
935 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
936 unsigned long max_blocks, struct buffer_head *bh,
937 int create, int extend_disksize)
939 int retval;
941 clear_buffer_mapped(bh);
944 * Try to see if we can get the block without requesting
945 * for new file system block.
947 down_read((&EXT4_I(inode)->i_data_sem));
948 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
949 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
950 bh, 0, 0);
951 } else {
952 retval = ext4_get_blocks_handle(handle,
953 inode, block, max_blocks, bh, 0, 0);
955 up_read((&EXT4_I(inode)->i_data_sem));
957 /* If it is only a block(s) look up */
958 if (!create)
959 return retval;
962 * Returns if the blocks have already allocated
964 * Note that if blocks have been preallocated
965 * ext4_ext_get_block() returns th create = 0
966 * with buffer head unmapped.
968 if (retval > 0 && buffer_mapped(bh))
969 return retval;
972 * New blocks allocate and/or writing to uninitialized extent
973 * will possibly result in updating i_data, so we take
974 * the write lock of i_data_sem, and call get_blocks()
975 * with create == 1 flag.
977 down_write((&EXT4_I(inode)->i_data_sem));
979 * We need to check for EXT4 here because migrate
980 * could have changed the inode type in between
982 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
983 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
984 bh, create, extend_disksize);
985 } else {
986 retval = ext4_get_blocks_handle(handle, inode, block,
987 max_blocks, bh, create, extend_disksize);
989 up_write((&EXT4_I(inode)->i_data_sem));
990 return retval;
993 static int ext4_get_block(struct inode *inode, sector_t iblock,
994 struct buffer_head *bh_result, int create)
996 handle_t *handle = ext4_journal_current_handle();
997 int ret = 0, started = 0;
998 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1000 if (create && !handle) {
1001 /* Direct IO write... */
1002 if (max_blocks > DIO_MAX_BLOCKS)
1003 max_blocks = DIO_MAX_BLOCKS;
1004 handle = ext4_journal_start(inode, DIO_CREDITS +
1005 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb));
1006 if (IS_ERR(handle)) {
1007 ret = PTR_ERR(handle);
1008 goto out;
1010 started = 1;
1013 ret = ext4_get_blocks_wrap(handle, inode, iblock,
1014 max_blocks, bh_result, create, 0);
1015 if (ret > 0) {
1016 bh_result->b_size = (ret << inode->i_blkbits);
1017 ret = 0;
1019 if (started)
1020 ext4_journal_stop(handle);
1021 out:
1022 return ret;
1026 * `handle' can be NULL if create is zero
1028 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1029 ext4_lblk_t block, int create, int *errp)
1031 struct buffer_head dummy;
1032 int fatal = 0, err;
1034 J_ASSERT(handle != NULL || create == 0);
1036 dummy.b_state = 0;
1037 dummy.b_blocknr = -1000;
1038 buffer_trace_init(&dummy.b_history);
1039 err = ext4_get_blocks_wrap(handle, inode, block, 1,
1040 &dummy, create, 1);
1042 * ext4_get_blocks_handle() returns number of blocks
1043 * mapped. 0 in case of a HOLE.
1045 if (err > 0) {
1046 if (err > 1)
1047 WARN_ON(1);
1048 err = 0;
1050 *errp = err;
1051 if (!err && buffer_mapped(&dummy)) {
1052 struct buffer_head *bh;
1053 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1054 if (!bh) {
1055 *errp = -EIO;
1056 goto err;
1058 if (buffer_new(&dummy)) {
1059 J_ASSERT(create != 0);
1060 J_ASSERT(handle != NULL);
1063 * Now that we do not always journal data, we should
1064 * keep in mind whether this should always journal the
1065 * new buffer as metadata. For now, regular file
1066 * writes use ext4_get_block instead, so it's not a
1067 * problem.
1069 lock_buffer(bh);
1070 BUFFER_TRACE(bh, "call get_create_access");
1071 fatal = ext4_journal_get_create_access(handle, bh);
1072 if (!fatal && !buffer_uptodate(bh)) {
1073 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1074 set_buffer_uptodate(bh);
1076 unlock_buffer(bh);
1077 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1078 err = ext4_journal_dirty_metadata(handle, bh);
1079 if (!fatal)
1080 fatal = err;
1081 } else {
1082 BUFFER_TRACE(bh, "not a new buffer");
1084 if (fatal) {
1085 *errp = fatal;
1086 brelse(bh);
1087 bh = NULL;
1089 return bh;
1091 err:
1092 return NULL;
1095 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1096 ext4_lblk_t block, int create, int *err)
1098 struct buffer_head * bh;
1100 bh = ext4_getblk(handle, inode, block, create, err);
1101 if (!bh)
1102 return bh;
1103 if (buffer_uptodate(bh))
1104 return bh;
1105 ll_rw_block(READ_META, 1, &bh);
1106 wait_on_buffer(bh);
1107 if (buffer_uptodate(bh))
1108 return bh;
1109 put_bh(bh);
1110 *err = -EIO;
1111 return NULL;
1114 static int walk_page_buffers( handle_t *handle,
1115 struct buffer_head *head,
1116 unsigned from,
1117 unsigned to,
1118 int *partial,
1119 int (*fn)( handle_t *handle,
1120 struct buffer_head *bh))
1122 struct buffer_head *bh;
1123 unsigned block_start, block_end;
1124 unsigned blocksize = head->b_size;
1125 int err, ret = 0;
1126 struct buffer_head *next;
1128 for ( bh = head, block_start = 0;
1129 ret == 0 && (bh != head || !block_start);
1130 block_start = block_end, bh = next)
1132 next = bh->b_this_page;
1133 block_end = block_start + blocksize;
1134 if (block_end <= from || block_start >= to) {
1135 if (partial && !buffer_uptodate(bh))
1136 *partial = 1;
1137 continue;
1139 err = (*fn)(handle, bh);
1140 if (!ret)
1141 ret = err;
1143 return ret;
1147 * To preserve ordering, it is essential that the hole instantiation and
1148 * the data write be encapsulated in a single transaction. We cannot
1149 * close off a transaction and start a new one between the ext4_get_block()
1150 * and the commit_write(). So doing the jbd2_journal_start at the start of
1151 * prepare_write() is the right place.
1153 * Also, this function can nest inside ext4_writepage() ->
1154 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1155 * has generated enough buffer credits to do the whole page. So we won't
1156 * block on the journal in that case, which is good, because the caller may
1157 * be PF_MEMALLOC.
1159 * By accident, ext4 can be reentered when a transaction is open via
1160 * quota file writes. If we were to commit the transaction while thus
1161 * reentered, there can be a deadlock - we would be holding a quota
1162 * lock, and the commit would never complete if another thread had a
1163 * transaction open and was blocking on the quota lock - a ranking
1164 * violation.
1166 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1167 * will _not_ run commit under these circumstances because handle->h_ref
1168 * is elevated. We'll still have enough credits for the tiny quotafile
1169 * write.
1171 static int do_journal_get_write_access(handle_t *handle,
1172 struct buffer_head *bh)
1174 if (!buffer_mapped(bh) || buffer_freed(bh))
1175 return 0;
1176 return ext4_journal_get_write_access(handle, bh);
1179 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1180 loff_t pos, unsigned len, unsigned flags,
1181 struct page **pagep, void **fsdata)
1183 struct inode *inode = mapping->host;
1184 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1185 handle_t *handle;
1186 int retries = 0;
1187 struct page *page;
1188 pgoff_t index;
1189 unsigned from, to;
1191 index = pos >> PAGE_CACHE_SHIFT;
1192 from = pos & (PAGE_CACHE_SIZE - 1);
1193 to = from + len;
1195 retry:
1196 page = __grab_cache_page(mapping, index);
1197 if (!page)
1198 return -ENOMEM;
1199 *pagep = page;
1201 handle = ext4_journal_start(inode, needed_blocks);
1202 if (IS_ERR(handle)) {
1203 unlock_page(page);
1204 page_cache_release(page);
1205 ret = PTR_ERR(handle);
1206 goto out;
1209 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1210 ext4_get_block);
1212 if (!ret && ext4_should_journal_data(inode)) {
1213 ret = walk_page_buffers(handle, page_buffers(page),
1214 from, to, NULL, do_journal_get_write_access);
1217 if (ret) {
1218 ext4_journal_stop(handle);
1219 unlock_page(page);
1220 page_cache_release(page);
1223 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1224 goto retry;
1225 out:
1226 return ret;
1229 int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1231 int err = jbd2_journal_dirty_data(handle, bh);
1232 if (err)
1233 ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__,
1234 bh, handle, err);
1235 return err;
1238 /* For write_end() in data=journal mode */
1239 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1241 if (!buffer_mapped(bh) || buffer_freed(bh))
1242 return 0;
1243 set_buffer_uptodate(bh);
1244 return ext4_journal_dirty_metadata(handle, bh);
1248 * Generic write_end handler for ordered and writeback ext4 journal modes.
1249 * We can't use generic_write_end, because that unlocks the page and we need to
1250 * unlock the page after ext4_journal_stop, but ext4_journal_stop must run
1251 * after block_write_end.
1253 static int ext4_generic_write_end(struct file *file,
1254 struct address_space *mapping,
1255 loff_t pos, unsigned len, unsigned copied,
1256 struct page *page, void *fsdata)
1258 struct inode *inode = file->f_mapping->host;
1260 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1262 if (pos+copied > inode->i_size) {
1263 i_size_write(inode, pos+copied);
1264 mark_inode_dirty(inode);
1267 return copied;
1271 * We need to pick up the new inode size which generic_commit_write gave us
1272 * `file' can be NULL - eg, when called from page_symlink().
1274 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1275 * buffers are managed internally.
1277 static int ext4_ordered_write_end(struct file *file,
1278 struct address_space *mapping,
1279 loff_t pos, unsigned len, unsigned copied,
1280 struct page *page, void *fsdata)
1282 handle_t *handle = ext4_journal_current_handle();
1283 struct inode *inode = file->f_mapping->host;
1284 unsigned from, to;
1285 int ret = 0, ret2;
1287 from = pos & (PAGE_CACHE_SIZE - 1);
1288 to = from + len;
1290 ret = walk_page_buffers(handle, page_buffers(page),
1291 from, to, NULL, ext4_journal_dirty_data);
1293 if (ret == 0) {
1295 * generic_write_end() will run mark_inode_dirty() if i_size
1296 * changes. So let's piggyback the i_disksize mark_inode_dirty
1297 * into that.
1299 loff_t new_i_size;
1301 new_i_size = pos + copied;
1302 if (new_i_size > EXT4_I(inode)->i_disksize)
1303 EXT4_I(inode)->i_disksize = new_i_size;
1304 copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1305 page, fsdata);
1306 if (copied < 0)
1307 ret = copied;
1309 ret2 = ext4_journal_stop(handle);
1310 if (!ret)
1311 ret = ret2;
1312 unlock_page(page);
1313 page_cache_release(page);
1315 return ret ? ret : copied;
1318 static int ext4_writeback_write_end(struct file *file,
1319 struct address_space *mapping,
1320 loff_t pos, unsigned len, unsigned copied,
1321 struct page *page, void *fsdata)
1323 handle_t *handle = ext4_journal_current_handle();
1324 struct inode *inode = file->f_mapping->host;
1325 int ret = 0, ret2;
1326 loff_t new_i_size;
1328 new_i_size = pos + copied;
1329 if (new_i_size > EXT4_I(inode)->i_disksize)
1330 EXT4_I(inode)->i_disksize = new_i_size;
1332 copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1333 page, fsdata);
1334 if (copied < 0)
1335 ret = copied;
1337 ret2 = ext4_journal_stop(handle);
1338 if (!ret)
1339 ret = ret2;
1340 unlock_page(page);
1341 page_cache_release(page);
1343 return ret ? ret : copied;
1346 static int ext4_journalled_write_end(struct file *file,
1347 struct address_space *mapping,
1348 loff_t pos, unsigned len, unsigned copied,
1349 struct page *page, void *fsdata)
1351 handle_t *handle = ext4_journal_current_handle();
1352 struct inode *inode = mapping->host;
1353 int ret = 0, ret2;
1354 int partial = 0;
1355 unsigned from, to;
1357 from = pos & (PAGE_CACHE_SIZE - 1);
1358 to = from + len;
1360 if (copied < len) {
1361 if (!PageUptodate(page))
1362 copied = 0;
1363 page_zero_new_buffers(page, from+copied, to);
1366 ret = walk_page_buffers(handle, page_buffers(page), from,
1367 to, &partial, write_end_fn);
1368 if (!partial)
1369 SetPageUptodate(page);
1370 if (pos+copied > inode->i_size)
1371 i_size_write(inode, pos+copied);
1372 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1373 if (inode->i_size > EXT4_I(inode)->i_disksize) {
1374 EXT4_I(inode)->i_disksize = inode->i_size;
1375 ret2 = ext4_mark_inode_dirty(handle, inode);
1376 if (!ret)
1377 ret = ret2;
1380 ret2 = ext4_journal_stop(handle);
1381 if (!ret)
1382 ret = ret2;
1383 unlock_page(page);
1384 page_cache_release(page);
1386 return ret ? ret : copied;
1390 * bmap() is special. It gets used by applications such as lilo and by
1391 * the swapper to find the on-disk block of a specific piece of data.
1393 * Naturally, this is dangerous if the block concerned is still in the
1394 * journal. If somebody makes a swapfile on an ext4 data-journaling
1395 * filesystem and enables swap, then they may get a nasty shock when the
1396 * data getting swapped to that swapfile suddenly gets overwritten by
1397 * the original zero's written out previously to the journal and
1398 * awaiting writeback in the kernel's buffer cache.
1400 * So, if we see any bmap calls here on a modified, data-journaled file,
1401 * take extra steps to flush any blocks which might be in the cache.
1403 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
1405 struct inode *inode = mapping->host;
1406 journal_t *journal;
1407 int err;
1409 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
1411 * This is a REALLY heavyweight approach, but the use of
1412 * bmap on dirty files is expected to be extremely rare:
1413 * only if we run lilo or swapon on a freshly made file
1414 * do we expect this to happen.
1416 * (bmap requires CAP_SYS_RAWIO so this does not
1417 * represent an unprivileged user DOS attack --- we'd be
1418 * in trouble if mortal users could trigger this path at
1419 * will.)
1421 * NB. EXT4_STATE_JDATA is not set on files other than
1422 * regular files. If somebody wants to bmap a directory
1423 * or symlink and gets confused because the buffer
1424 * hasn't yet been flushed to disk, they deserve
1425 * everything they get.
1428 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
1429 journal = EXT4_JOURNAL(inode);
1430 jbd2_journal_lock_updates(journal);
1431 err = jbd2_journal_flush(journal);
1432 jbd2_journal_unlock_updates(journal);
1434 if (err)
1435 return 0;
1438 return generic_block_bmap(mapping,block,ext4_get_block);
1441 static int bget_one(handle_t *handle, struct buffer_head *bh)
1443 get_bh(bh);
1444 return 0;
1447 static int bput_one(handle_t *handle, struct buffer_head *bh)
1449 put_bh(bh);
1450 return 0;
1453 static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1455 if (buffer_mapped(bh))
1456 return ext4_journal_dirty_data(handle, bh);
1457 return 0;
1461 * Note that we always start a transaction even if we're not journalling
1462 * data. This is to preserve ordering: any hole instantiation within
1463 * __block_write_full_page -> ext4_get_block() should be journalled
1464 * along with the data so we don't crash and then get metadata which
1465 * refers to old data.
1467 * In all journalling modes block_write_full_page() will start the I/O.
1469 * Problem:
1471 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1472 * ext4_writepage()
1474 * Similar for:
1476 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1478 * Same applies to ext4_get_block(). We will deadlock on various things like
1479 * lock_journal and i_data_sem
1481 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1482 * allocations fail.
1484 * 16May01: If we're reentered then journal_current_handle() will be
1485 * non-zero. We simply *return*.
1487 * 1 July 2001: @@@ FIXME:
1488 * In journalled data mode, a data buffer may be metadata against the
1489 * current transaction. But the same file is part of a shared mapping
1490 * and someone does a writepage() on it.
1492 * We will move the buffer onto the async_data list, but *after* it has
1493 * been dirtied. So there's a small window where we have dirty data on
1494 * BJ_Metadata.
1496 * Note that this only applies to the last partial page in the file. The
1497 * bit which block_write_full_page() uses prepare/commit for. (That's
1498 * broken code anyway: it's wrong for msync()).
1500 * It's a rare case: affects the final partial page, for journalled data
1501 * where the file is subject to bith write() and writepage() in the same
1502 * transction. To fix it we'll need a custom block_write_full_page().
1503 * We'll probably need that anyway for journalling writepage() output.
1505 * We don't honour synchronous mounts for writepage(). That would be
1506 * disastrous. Any write() or metadata operation will sync the fs for
1507 * us.
1509 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1510 * we don't need to open a transaction here.
1512 static int ext4_ordered_writepage(struct page *page,
1513 struct writeback_control *wbc)
1515 struct inode *inode = page->mapping->host;
1516 struct buffer_head *page_bufs;
1517 handle_t *handle = NULL;
1518 int ret = 0;
1519 int err;
1521 J_ASSERT(PageLocked(page));
1524 * We give up here if we're reentered, because it might be for a
1525 * different filesystem.
1527 if (ext4_journal_current_handle())
1528 goto out_fail;
1530 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1532 if (IS_ERR(handle)) {
1533 ret = PTR_ERR(handle);
1534 goto out_fail;
1537 if (!page_has_buffers(page)) {
1538 create_empty_buffers(page, inode->i_sb->s_blocksize,
1539 (1 << BH_Dirty)|(1 << BH_Uptodate));
1541 page_bufs = page_buffers(page);
1542 walk_page_buffers(handle, page_bufs, 0,
1543 PAGE_CACHE_SIZE, NULL, bget_one);
1545 ret = block_write_full_page(page, ext4_get_block, wbc);
1548 * The page can become unlocked at any point now, and
1549 * truncate can then come in and change things. So we
1550 * can't touch *page from now on. But *page_bufs is
1551 * safe due to elevated refcount.
1555 * And attach them to the current transaction. But only if
1556 * block_write_full_page() succeeded. Otherwise they are unmapped,
1557 * and generally junk.
1559 if (ret == 0) {
1560 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1561 NULL, jbd2_journal_dirty_data_fn);
1562 if (!ret)
1563 ret = err;
1565 walk_page_buffers(handle, page_bufs, 0,
1566 PAGE_CACHE_SIZE, NULL, bput_one);
1567 err = ext4_journal_stop(handle);
1568 if (!ret)
1569 ret = err;
1570 return ret;
1572 out_fail:
1573 redirty_page_for_writepage(wbc, page);
1574 unlock_page(page);
1575 return ret;
1578 static int ext4_writeback_writepage(struct page *page,
1579 struct writeback_control *wbc)
1581 struct inode *inode = page->mapping->host;
1582 handle_t *handle = NULL;
1583 int ret = 0;
1584 int err;
1586 if (ext4_journal_current_handle())
1587 goto out_fail;
1589 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1590 if (IS_ERR(handle)) {
1591 ret = PTR_ERR(handle);
1592 goto out_fail;
1595 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
1596 ret = nobh_writepage(page, ext4_get_block, wbc);
1597 else
1598 ret = block_write_full_page(page, ext4_get_block, wbc);
1600 err = ext4_journal_stop(handle);
1601 if (!ret)
1602 ret = err;
1603 return ret;
1605 out_fail:
1606 redirty_page_for_writepage(wbc, page);
1607 unlock_page(page);
1608 return ret;
1611 static int ext4_journalled_writepage(struct page *page,
1612 struct writeback_control *wbc)
1614 struct inode *inode = page->mapping->host;
1615 handle_t *handle = NULL;
1616 int ret = 0;
1617 int err;
1619 if (ext4_journal_current_handle())
1620 goto no_write;
1622 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1623 if (IS_ERR(handle)) {
1624 ret = PTR_ERR(handle);
1625 goto no_write;
1628 if (!page_has_buffers(page) || PageChecked(page)) {
1630 * It's mmapped pagecache. Add buffers and journal it. There
1631 * doesn't seem much point in redirtying the page here.
1633 ClearPageChecked(page);
1634 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1635 ext4_get_block);
1636 if (ret != 0) {
1637 ext4_journal_stop(handle);
1638 goto out_unlock;
1640 ret = walk_page_buffers(handle, page_buffers(page), 0,
1641 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1643 err = walk_page_buffers(handle, page_buffers(page), 0,
1644 PAGE_CACHE_SIZE, NULL, write_end_fn);
1645 if (ret == 0)
1646 ret = err;
1647 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1648 unlock_page(page);
1649 } else {
1651 * It may be a page full of checkpoint-mode buffers. We don't
1652 * really know unless we go poke around in the buffer_heads.
1653 * But block_write_full_page will do the right thing.
1655 ret = block_write_full_page(page, ext4_get_block, wbc);
1657 err = ext4_journal_stop(handle);
1658 if (!ret)
1659 ret = err;
1660 out:
1661 return ret;
1663 no_write:
1664 redirty_page_for_writepage(wbc, page);
1665 out_unlock:
1666 unlock_page(page);
1667 goto out;
1670 static int ext4_readpage(struct file *file, struct page *page)
1672 return mpage_readpage(page, ext4_get_block);
1675 static int
1676 ext4_readpages(struct file *file, struct address_space *mapping,
1677 struct list_head *pages, unsigned nr_pages)
1679 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
1682 static void ext4_invalidatepage(struct page *page, unsigned long offset)
1684 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1687 * If it's a full truncate we just forget about the pending dirtying
1689 if (offset == 0)
1690 ClearPageChecked(page);
1692 jbd2_journal_invalidatepage(journal, page, offset);
1695 static int ext4_releasepage(struct page *page, gfp_t wait)
1697 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1699 WARN_ON(PageChecked(page));
1700 if (!page_has_buffers(page))
1701 return 0;
1702 return jbd2_journal_try_to_free_buffers(journal, page, wait);
1706 * If the O_DIRECT write will extend the file then add this inode to the
1707 * orphan list. So recovery will truncate it back to the original size
1708 * if the machine crashes during the write.
1710 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1711 * crashes then stale disk data _may_ be exposed inside the file. But current
1712 * VFS code falls back into buffered path in that case so we are safe.
1714 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
1715 const struct iovec *iov, loff_t offset,
1716 unsigned long nr_segs)
1718 struct file *file = iocb->ki_filp;
1719 struct inode *inode = file->f_mapping->host;
1720 struct ext4_inode_info *ei = EXT4_I(inode);
1721 handle_t *handle;
1722 ssize_t ret;
1723 int orphan = 0;
1724 size_t count = iov_length(iov, nr_segs);
1726 if (rw == WRITE) {
1727 loff_t final_size = offset + count;
1729 if (final_size > inode->i_size) {
1730 /* Credits for sb + inode write */
1731 handle = ext4_journal_start(inode, 2);
1732 if (IS_ERR(handle)) {
1733 ret = PTR_ERR(handle);
1734 goto out;
1736 ret = ext4_orphan_add(handle, inode);
1737 if (ret) {
1738 ext4_journal_stop(handle);
1739 goto out;
1741 orphan = 1;
1742 ei->i_disksize = inode->i_size;
1743 ext4_journal_stop(handle);
1747 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1748 offset, nr_segs,
1749 ext4_get_block, NULL);
1751 if (orphan) {
1752 int err;
1754 /* Credits for sb + inode write */
1755 handle = ext4_journal_start(inode, 2);
1756 if (IS_ERR(handle)) {
1757 /* This is really bad luck. We've written the data
1758 * but cannot extend i_size. Bail out and pretend
1759 * the write failed... */
1760 ret = PTR_ERR(handle);
1761 goto out;
1763 if (inode->i_nlink)
1764 ext4_orphan_del(handle, inode);
1765 if (ret > 0) {
1766 loff_t end = offset + ret;
1767 if (end > inode->i_size) {
1768 ei->i_disksize = end;
1769 i_size_write(inode, end);
1771 * We're going to return a positive `ret'
1772 * here due to non-zero-length I/O, so there's
1773 * no way of reporting error returns from
1774 * ext4_mark_inode_dirty() to userspace. So
1775 * ignore it.
1777 ext4_mark_inode_dirty(handle, inode);
1780 err = ext4_journal_stop(handle);
1781 if (ret == 0)
1782 ret = err;
1784 out:
1785 return ret;
1789 * Pages can be marked dirty completely asynchronously from ext4's journalling
1790 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1791 * much here because ->set_page_dirty is called under VFS locks. The page is
1792 * not necessarily locked.
1794 * We cannot just dirty the page and leave attached buffers clean, because the
1795 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1796 * or jbddirty because all the journalling code will explode.
1798 * So what we do is to mark the page "pending dirty" and next time writepage
1799 * is called, propagate that into the buffers appropriately.
1801 static int ext4_journalled_set_page_dirty(struct page *page)
1803 SetPageChecked(page);
1804 return __set_page_dirty_nobuffers(page);
1807 static const struct address_space_operations ext4_ordered_aops = {
1808 .readpage = ext4_readpage,
1809 .readpages = ext4_readpages,
1810 .writepage = ext4_ordered_writepage,
1811 .sync_page = block_sync_page,
1812 .write_begin = ext4_write_begin,
1813 .write_end = ext4_ordered_write_end,
1814 .bmap = ext4_bmap,
1815 .invalidatepage = ext4_invalidatepage,
1816 .releasepage = ext4_releasepage,
1817 .direct_IO = ext4_direct_IO,
1818 .migratepage = buffer_migrate_page,
1821 static const struct address_space_operations ext4_writeback_aops = {
1822 .readpage = ext4_readpage,
1823 .readpages = ext4_readpages,
1824 .writepage = ext4_writeback_writepage,
1825 .sync_page = block_sync_page,
1826 .write_begin = ext4_write_begin,
1827 .write_end = ext4_writeback_write_end,
1828 .bmap = ext4_bmap,
1829 .invalidatepage = ext4_invalidatepage,
1830 .releasepage = ext4_releasepage,
1831 .direct_IO = ext4_direct_IO,
1832 .migratepage = buffer_migrate_page,
1835 static const struct address_space_operations ext4_journalled_aops = {
1836 .readpage = ext4_readpage,
1837 .readpages = ext4_readpages,
1838 .writepage = ext4_journalled_writepage,
1839 .sync_page = block_sync_page,
1840 .write_begin = ext4_write_begin,
1841 .write_end = ext4_journalled_write_end,
1842 .set_page_dirty = ext4_journalled_set_page_dirty,
1843 .bmap = ext4_bmap,
1844 .invalidatepage = ext4_invalidatepage,
1845 .releasepage = ext4_releasepage,
1848 void ext4_set_aops(struct inode *inode)
1850 if (ext4_should_order_data(inode))
1851 inode->i_mapping->a_ops = &ext4_ordered_aops;
1852 else if (ext4_should_writeback_data(inode))
1853 inode->i_mapping->a_ops = &ext4_writeback_aops;
1854 else
1855 inode->i_mapping->a_ops = &ext4_journalled_aops;
1859 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
1860 * up to the end of the block which corresponds to `from'.
1861 * This required during truncate. We need to physically zero the tail end
1862 * of that block so it doesn't yield old data if the file is later grown.
1864 int ext4_block_truncate_page(handle_t *handle, struct page *page,
1865 struct address_space *mapping, loff_t from)
1867 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1868 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1869 unsigned blocksize, length, pos;
1870 ext4_lblk_t iblock;
1871 struct inode *inode = mapping->host;
1872 struct buffer_head *bh;
1873 int err = 0;
1875 blocksize = inode->i_sb->s_blocksize;
1876 length = blocksize - (offset & (blocksize - 1));
1877 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1880 * For "nobh" option, we can only work if we don't need to
1881 * read-in the page - otherwise we create buffers to do the IO.
1883 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1884 ext4_should_writeback_data(inode) && PageUptodate(page)) {
1885 zero_user(page, offset, length);
1886 set_page_dirty(page);
1887 goto unlock;
1890 if (!page_has_buffers(page))
1891 create_empty_buffers(page, blocksize, 0);
1893 /* Find the buffer that contains "offset" */
1894 bh = page_buffers(page);
1895 pos = blocksize;
1896 while (offset >= pos) {
1897 bh = bh->b_this_page;
1898 iblock++;
1899 pos += blocksize;
1902 err = 0;
1903 if (buffer_freed(bh)) {
1904 BUFFER_TRACE(bh, "freed: skip");
1905 goto unlock;
1908 if (!buffer_mapped(bh)) {
1909 BUFFER_TRACE(bh, "unmapped");
1910 ext4_get_block(inode, iblock, bh, 0);
1911 /* unmapped? It's a hole - nothing to do */
1912 if (!buffer_mapped(bh)) {
1913 BUFFER_TRACE(bh, "still unmapped");
1914 goto unlock;
1918 /* Ok, it's mapped. Make sure it's up-to-date */
1919 if (PageUptodate(page))
1920 set_buffer_uptodate(bh);
1922 if (!buffer_uptodate(bh)) {
1923 err = -EIO;
1924 ll_rw_block(READ, 1, &bh);
1925 wait_on_buffer(bh);
1926 /* Uhhuh. Read error. Complain and punt. */
1927 if (!buffer_uptodate(bh))
1928 goto unlock;
1931 if (ext4_should_journal_data(inode)) {
1932 BUFFER_TRACE(bh, "get write access");
1933 err = ext4_journal_get_write_access(handle, bh);
1934 if (err)
1935 goto unlock;
1938 zero_user(page, offset, length);
1940 BUFFER_TRACE(bh, "zeroed end of block");
1942 err = 0;
1943 if (ext4_should_journal_data(inode)) {
1944 err = ext4_journal_dirty_metadata(handle, bh);
1945 } else {
1946 if (ext4_should_order_data(inode))
1947 err = ext4_journal_dirty_data(handle, bh);
1948 mark_buffer_dirty(bh);
1951 unlock:
1952 unlock_page(page);
1953 page_cache_release(page);
1954 return err;
1958 * Probably it should be a library function... search for first non-zero word
1959 * or memcmp with zero_page, whatever is better for particular architecture.
1960 * Linus?
1962 static inline int all_zeroes(__le32 *p, __le32 *q)
1964 while (p < q)
1965 if (*p++)
1966 return 0;
1967 return 1;
1971 * ext4_find_shared - find the indirect blocks for partial truncation.
1972 * @inode: inode in question
1973 * @depth: depth of the affected branch
1974 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
1975 * @chain: place to store the pointers to partial indirect blocks
1976 * @top: place to the (detached) top of branch
1978 * This is a helper function used by ext4_truncate().
1980 * When we do truncate() we may have to clean the ends of several
1981 * indirect blocks but leave the blocks themselves alive. Block is
1982 * partially truncated if some data below the new i_size is refered
1983 * from it (and it is on the path to the first completely truncated
1984 * data block, indeed). We have to free the top of that path along
1985 * with everything to the right of the path. Since no allocation
1986 * past the truncation point is possible until ext4_truncate()
1987 * finishes, we may safely do the latter, but top of branch may
1988 * require special attention - pageout below the truncation point
1989 * might try to populate it.
1991 * We atomically detach the top of branch from the tree, store the
1992 * block number of its root in *@top, pointers to buffer_heads of
1993 * partially truncated blocks - in @chain[].bh and pointers to
1994 * their last elements that should not be removed - in
1995 * @chain[].p. Return value is the pointer to last filled element
1996 * of @chain.
1998 * The work left to caller to do the actual freeing of subtrees:
1999 * a) free the subtree starting from *@top
2000 * b) free the subtrees whose roots are stored in
2001 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2002 * c) free the subtrees growing from the inode past the @chain[0].
2003 * (no partially truncated stuff there). */
2005 static Indirect *ext4_find_shared(struct inode *inode, int depth,
2006 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
2008 Indirect *partial, *p;
2009 int k, err;
2011 *top = 0;
2012 /* Make k index the deepest non-null offest + 1 */
2013 for (k = depth; k > 1 && !offsets[k-1]; k--)
2015 partial = ext4_get_branch(inode, k, offsets, chain, &err);
2016 /* Writer: pointers */
2017 if (!partial)
2018 partial = chain + k-1;
2020 * If the branch acquired continuation since we've looked at it -
2021 * fine, it should all survive and (new) top doesn't belong to us.
2023 if (!partial->key && *partial->p)
2024 /* Writer: end */
2025 goto no_top;
2026 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2029 * OK, we've found the last block that must survive. The rest of our
2030 * branch should be detached before unlocking. However, if that rest
2031 * of branch is all ours and does not grow immediately from the inode
2032 * it's easier to cheat and just decrement partial->p.
2034 if (p == chain + k - 1 && p > chain) {
2035 p->p--;
2036 } else {
2037 *top = *p->p;
2038 /* Nope, don't do this in ext4. Must leave the tree intact */
2039 #if 0
2040 *p->p = 0;
2041 #endif
2043 /* Writer: end */
2045 while(partial > p) {
2046 brelse(partial->bh);
2047 partial--;
2049 no_top:
2050 return partial;
2054 * Zero a number of block pointers in either an inode or an indirect block.
2055 * If we restart the transaction we must again get write access to the
2056 * indirect block for further modification.
2058 * We release `count' blocks on disk, but (last - first) may be greater
2059 * than `count' because there can be holes in there.
2061 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
2062 struct buffer_head *bh, ext4_fsblk_t block_to_free,
2063 unsigned long count, __le32 *first, __le32 *last)
2065 __le32 *p;
2066 if (try_to_extend_transaction(handle, inode)) {
2067 if (bh) {
2068 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2069 ext4_journal_dirty_metadata(handle, bh);
2071 ext4_mark_inode_dirty(handle, inode);
2072 ext4_journal_test_restart(handle, inode);
2073 if (bh) {
2074 BUFFER_TRACE(bh, "retaking write access");
2075 ext4_journal_get_write_access(handle, bh);
2080 * Any buffers which are on the journal will be in memory. We find
2081 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
2082 * on them. We've already detached each block from the file, so
2083 * bforget() in jbd2_journal_forget() should be safe.
2085 * AKPM: turn on bforget in jbd2_journal_forget()!!!
2087 for (p = first; p < last; p++) {
2088 u32 nr = le32_to_cpu(*p);
2089 if (nr) {
2090 struct buffer_head *tbh;
2092 *p = 0;
2093 tbh = sb_find_get_block(inode->i_sb, nr);
2094 ext4_forget(handle, 0, inode, tbh, nr);
2098 ext4_free_blocks(handle, inode, block_to_free, count, 0);
2102 * ext4_free_data - free a list of data blocks
2103 * @handle: handle for this transaction
2104 * @inode: inode we are dealing with
2105 * @this_bh: indirect buffer_head which contains *@first and *@last
2106 * @first: array of block numbers
2107 * @last: points immediately past the end of array
2109 * We are freeing all blocks refered from that array (numbers are stored as
2110 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2112 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2113 * blocks are contiguous then releasing them at one time will only affect one
2114 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2115 * actually use a lot of journal space.
2117 * @this_bh will be %NULL if @first and @last point into the inode's direct
2118 * block pointers.
2120 static void ext4_free_data(handle_t *handle, struct inode *inode,
2121 struct buffer_head *this_bh,
2122 __le32 *first, __le32 *last)
2124 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
2125 unsigned long count = 0; /* Number of blocks in the run */
2126 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
2127 corresponding to
2128 block_to_free */
2129 ext4_fsblk_t nr; /* Current block # */
2130 __le32 *p; /* Pointer into inode/ind
2131 for current block */
2132 int err;
2134 if (this_bh) { /* For indirect block */
2135 BUFFER_TRACE(this_bh, "get_write_access");
2136 err = ext4_journal_get_write_access(handle, this_bh);
2137 /* Important: if we can't update the indirect pointers
2138 * to the blocks, we can't free them. */
2139 if (err)
2140 return;
2143 for (p = first; p < last; p++) {
2144 nr = le32_to_cpu(*p);
2145 if (nr) {
2146 /* accumulate blocks to free if they're contiguous */
2147 if (count == 0) {
2148 block_to_free = nr;
2149 block_to_free_p = p;
2150 count = 1;
2151 } else if (nr == block_to_free + count) {
2152 count++;
2153 } else {
2154 ext4_clear_blocks(handle, inode, this_bh,
2155 block_to_free,
2156 count, block_to_free_p, p);
2157 block_to_free = nr;
2158 block_to_free_p = p;
2159 count = 1;
2164 if (count > 0)
2165 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
2166 count, block_to_free_p, p);
2168 if (this_bh) {
2169 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
2170 ext4_journal_dirty_metadata(handle, this_bh);
2175 * ext4_free_branches - free an array of branches
2176 * @handle: JBD handle for this transaction
2177 * @inode: inode we are dealing with
2178 * @parent_bh: the buffer_head which contains *@first and *@last
2179 * @first: array of block numbers
2180 * @last: pointer immediately past the end of array
2181 * @depth: depth of the branches to free
2183 * We are freeing all blocks refered from these branches (numbers are
2184 * stored as little-endian 32-bit) and updating @inode->i_blocks
2185 * appropriately.
2187 static void ext4_free_branches(handle_t *handle, struct inode *inode,
2188 struct buffer_head *parent_bh,
2189 __le32 *first, __le32 *last, int depth)
2191 ext4_fsblk_t nr;
2192 __le32 *p;
2194 if (is_handle_aborted(handle))
2195 return;
2197 if (depth--) {
2198 struct buffer_head *bh;
2199 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2200 p = last;
2201 while (--p >= first) {
2202 nr = le32_to_cpu(*p);
2203 if (!nr)
2204 continue; /* A hole */
2206 /* Go read the buffer for the next level down */
2207 bh = sb_bread(inode->i_sb, nr);
2210 * A read failure? Report error and clear slot
2211 * (should be rare).
2213 if (!bh) {
2214 ext4_error(inode->i_sb, "ext4_free_branches",
2215 "Read failure, inode=%lu, block=%llu",
2216 inode->i_ino, nr);
2217 continue;
2220 /* This zaps the entire block. Bottom up. */
2221 BUFFER_TRACE(bh, "free child branches");
2222 ext4_free_branches(handle, inode, bh,
2223 (__le32*)bh->b_data,
2224 (__le32*)bh->b_data + addr_per_block,
2225 depth);
2228 * We've probably journalled the indirect block several
2229 * times during the truncate. But it's no longer
2230 * needed and we now drop it from the transaction via
2231 * jbd2_journal_revoke().
2233 * That's easy if it's exclusively part of this
2234 * transaction. But if it's part of the committing
2235 * transaction then jbd2_journal_forget() will simply
2236 * brelse() it. That means that if the underlying
2237 * block is reallocated in ext4_get_block(),
2238 * unmap_underlying_metadata() will find this block
2239 * and will try to get rid of it. damn, damn.
2241 * If this block has already been committed to the
2242 * journal, a revoke record will be written. And
2243 * revoke records must be emitted *before* clearing
2244 * this block's bit in the bitmaps.
2246 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
2249 * Everything below this this pointer has been
2250 * released. Now let this top-of-subtree go.
2252 * We want the freeing of this indirect block to be
2253 * atomic in the journal with the updating of the
2254 * bitmap block which owns it. So make some room in
2255 * the journal.
2257 * We zero the parent pointer *after* freeing its
2258 * pointee in the bitmaps, so if extend_transaction()
2259 * for some reason fails to put the bitmap changes and
2260 * the release into the same transaction, recovery
2261 * will merely complain about releasing a free block,
2262 * rather than leaking blocks.
2264 if (is_handle_aborted(handle))
2265 return;
2266 if (try_to_extend_transaction(handle, inode)) {
2267 ext4_mark_inode_dirty(handle, inode);
2268 ext4_journal_test_restart(handle, inode);
2271 ext4_free_blocks(handle, inode, nr, 1, 1);
2273 if (parent_bh) {
2275 * The block which we have just freed is
2276 * pointed to by an indirect block: journal it
2278 BUFFER_TRACE(parent_bh, "get_write_access");
2279 if (!ext4_journal_get_write_access(handle,
2280 parent_bh)){
2281 *p = 0;
2282 BUFFER_TRACE(parent_bh,
2283 "call ext4_journal_dirty_metadata");
2284 ext4_journal_dirty_metadata(handle,
2285 parent_bh);
2289 } else {
2290 /* We have reached the bottom of the tree. */
2291 BUFFER_TRACE(parent_bh, "free data blocks");
2292 ext4_free_data(handle, inode, parent_bh, first, last);
2297 * ext4_truncate()
2299 * We block out ext4_get_block() block instantiations across the entire
2300 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
2301 * simultaneously on behalf of the same inode.
2303 * As we work through the truncate and commmit bits of it to the journal there
2304 * is one core, guiding principle: the file's tree must always be consistent on
2305 * disk. We must be able to restart the truncate after a crash.
2307 * The file's tree may be transiently inconsistent in memory (although it
2308 * probably isn't), but whenever we close off and commit a journal transaction,
2309 * the contents of (the filesystem + the journal) must be consistent and
2310 * restartable. It's pretty simple, really: bottom up, right to left (although
2311 * left-to-right works OK too).
2313 * Note that at recovery time, journal replay occurs *before* the restart of
2314 * truncate against the orphan inode list.
2316 * The committed inode has the new, desired i_size (which is the same as
2317 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
2318 * that this inode's truncate did not complete and it will again call
2319 * ext4_truncate() to have another go. So there will be instantiated blocks
2320 * to the right of the truncation point in a crashed ext4 filesystem. But
2321 * that's fine - as long as they are linked from the inode, the post-crash
2322 * ext4_truncate() run will find them and release them.
2324 void ext4_truncate(struct inode *inode)
2326 handle_t *handle;
2327 struct ext4_inode_info *ei = EXT4_I(inode);
2328 __le32 *i_data = ei->i_data;
2329 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2330 struct address_space *mapping = inode->i_mapping;
2331 ext4_lblk_t offsets[4];
2332 Indirect chain[4];
2333 Indirect *partial;
2334 __le32 nr = 0;
2335 int n;
2336 ext4_lblk_t last_block;
2337 unsigned blocksize = inode->i_sb->s_blocksize;
2338 struct page *page;
2340 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2341 S_ISLNK(inode->i_mode)))
2342 return;
2343 if (ext4_inode_is_fast_symlink(inode))
2344 return;
2345 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2346 return;
2349 * We have to lock the EOF page here, because lock_page() nests
2350 * outside jbd2_journal_start().
2352 if ((inode->i_size & (blocksize - 1)) == 0) {
2353 /* Block boundary? Nothing to do */
2354 page = NULL;
2355 } else {
2356 page = grab_cache_page(mapping,
2357 inode->i_size >> PAGE_CACHE_SHIFT);
2358 if (!page)
2359 return;
2362 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
2363 ext4_ext_truncate(inode, page);
2364 return;
2367 handle = start_transaction(inode);
2368 if (IS_ERR(handle)) {
2369 if (page) {
2370 clear_highpage(page);
2371 flush_dcache_page(page);
2372 unlock_page(page);
2373 page_cache_release(page);
2375 return; /* AKPM: return what? */
2378 last_block = (inode->i_size + blocksize-1)
2379 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
2381 if (page)
2382 ext4_block_truncate_page(handle, page, mapping, inode->i_size);
2384 n = ext4_block_to_path(inode, last_block, offsets, NULL);
2385 if (n == 0)
2386 goto out_stop; /* error */
2389 * OK. This truncate is going to happen. We add the inode to the
2390 * orphan list, so that if this truncate spans multiple transactions,
2391 * and we crash, we will resume the truncate when the filesystem
2392 * recovers. It also marks the inode dirty, to catch the new size.
2394 * Implication: the file must always be in a sane, consistent
2395 * truncatable state while each transaction commits.
2397 if (ext4_orphan_add(handle, inode))
2398 goto out_stop;
2401 * The orphan list entry will now protect us from any crash which
2402 * occurs before the truncate completes, so it is now safe to propagate
2403 * the new, shorter inode size (held for now in i_size) into the
2404 * on-disk inode. We do this via i_disksize, which is the value which
2405 * ext4 *really* writes onto the disk inode.
2407 ei->i_disksize = inode->i_size;
2410 * From here we block out all ext4_get_block() callers who want to
2411 * modify the block allocation tree.
2413 down_write(&ei->i_data_sem);
2415 if (n == 1) { /* direct blocks */
2416 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
2417 i_data + EXT4_NDIR_BLOCKS);
2418 goto do_indirects;
2421 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
2422 /* Kill the top of shared branch (not detached) */
2423 if (nr) {
2424 if (partial == chain) {
2425 /* Shared branch grows from the inode */
2426 ext4_free_branches(handle, inode, NULL,
2427 &nr, &nr+1, (chain+n-1) - partial);
2428 *partial->p = 0;
2430 * We mark the inode dirty prior to restart,
2431 * and prior to stop. No need for it here.
2433 } else {
2434 /* Shared branch grows from an indirect block */
2435 BUFFER_TRACE(partial->bh, "get_write_access");
2436 ext4_free_branches(handle, inode, partial->bh,
2437 partial->p,
2438 partial->p+1, (chain+n-1) - partial);
2441 /* Clear the ends of indirect blocks on the shared branch */
2442 while (partial > chain) {
2443 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
2444 (__le32*)partial->bh->b_data+addr_per_block,
2445 (chain+n-1) - partial);
2446 BUFFER_TRACE(partial->bh, "call brelse");
2447 brelse (partial->bh);
2448 partial--;
2450 do_indirects:
2451 /* Kill the remaining (whole) subtrees */
2452 switch (offsets[0]) {
2453 default:
2454 nr = i_data[EXT4_IND_BLOCK];
2455 if (nr) {
2456 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2457 i_data[EXT4_IND_BLOCK] = 0;
2459 case EXT4_IND_BLOCK:
2460 nr = i_data[EXT4_DIND_BLOCK];
2461 if (nr) {
2462 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2463 i_data[EXT4_DIND_BLOCK] = 0;
2465 case EXT4_DIND_BLOCK:
2466 nr = i_data[EXT4_TIND_BLOCK];
2467 if (nr) {
2468 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2469 i_data[EXT4_TIND_BLOCK] = 0;
2471 case EXT4_TIND_BLOCK:
2475 ext4_discard_reservation(inode);
2477 up_write(&ei->i_data_sem);
2478 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
2479 ext4_mark_inode_dirty(handle, inode);
2482 * In a multi-transaction truncate, we only make the final transaction
2483 * synchronous
2485 if (IS_SYNC(inode))
2486 handle->h_sync = 1;
2487 out_stop:
2489 * If this was a simple ftruncate(), and the file will remain alive
2490 * then we need to clear up the orphan record which we created above.
2491 * However, if this was a real unlink then we were called by
2492 * ext4_delete_inode(), and we allow that function to clean up the
2493 * orphan info for us.
2495 if (inode->i_nlink)
2496 ext4_orphan_del(handle, inode);
2498 ext4_journal_stop(handle);
2501 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
2502 unsigned long ino, struct ext4_iloc *iloc)
2504 unsigned long desc, group_desc;
2505 ext4_group_t block_group;
2506 unsigned long offset;
2507 ext4_fsblk_t block;
2508 struct buffer_head *bh;
2509 struct ext4_group_desc * gdp;
2511 if (!ext4_valid_inum(sb, ino)) {
2513 * This error is already checked for in namei.c unless we are
2514 * looking at an NFS filehandle, in which case no error
2515 * report is needed
2517 return 0;
2520 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
2521 if (block_group >= EXT4_SB(sb)->s_groups_count) {
2522 ext4_error(sb,"ext4_get_inode_block","group >= groups count");
2523 return 0;
2525 smp_rmb();
2526 group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2527 desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2528 bh = EXT4_SB(sb)->s_group_desc[group_desc];
2529 if (!bh) {
2530 ext4_error (sb, "ext4_get_inode_block",
2531 "Descriptor not loaded");
2532 return 0;
2535 gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data +
2536 desc * EXT4_DESC_SIZE(sb));
2538 * Figure out the offset within the block group inode table
2540 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
2541 EXT4_INODE_SIZE(sb);
2542 block = ext4_inode_table(sb, gdp) +
2543 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
2545 iloc->block_group = block_group;
2546 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
2547 return block;
2551 * ext4_get_inode_loc returns with an extra refcount against the inode's
2552 * underlying buffer_head on success. If 'in_mem' is true, we have all
2553 * data in memory that is needed to recreate the on-disk version of this
2554 * inode.
2556 static int __ext4_get_inode_loc(struct inode *inode,
2557 struct ext4_iloc *iloc, int in_mem)
2559 ext4_fsblk_t block;
2560 struct buffer_head *bh;
2562 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2563 if (!block)
2564 return -EIO;
2566 bh = sb_getblk(inode->i_sb, block);
2567 if (!bh) {
2568 ext4_error (inode->i_sb, "ext4_get_inode_loc",
2569 "unable to read inode block - "
2570 "inode=%lu, block=%llu",
2571 inode->i_ino, block);
2572 return -EIO;
2574 if (!buffer_uptodate(bh)) {
2575 lock_buffer(bh);
2576 if (buffer_uptodate(bh)) {
2577 /* someone brought it uptodate while we waited */
2578 unlock_buffer(bh);
2579 goto has_buffer;
2583 * If we have all information of the inode in memory and this
2584 * is the only valid inode in the block, we need not read the
2585 * block.
2587 if (in_mem) {
2588 struct buffer_head *bitmap_bh;
2589 struct ext4_group_desc *desc;
2590 int inodes_per_buffer;
2591 int inode_offset, i;
2592 ext4_group_t block_group;
2593 int start;
2595 block_group = (inode->i_ino - 1) /
2596 EXT4_INODES_PER_GROUP(inode->i_sb);
2597 inodes_per_buffer = bh->b_size /
2598 EXT4_INODE_SIZE(inode->i_sb);
2599 inode_offset = ((inode->i_ino - 1) %
2600 EXT4_INODES_PER_GROUP(inode->i_sb));
2601 start = inode_offset & ~(inodes_per_buffer - 1);
2603 /* Is the inode bitmap in cache? */
2604 desc = ext4_get_group_desc(inode->i_sb,
2605 block_group, NULL);
2606 if (!desc)
2607 goto make_io;
2609 bitmap_bh = sb_getblk(inode->i_sb,
2610 ext4_inode_bitmap(inode->i_sb, desc));
2611 if (!bitmap_bh)
2612 goto make_io;
2615 * If the inode bitmap isn't in cache then the
2616 * optimisation may end up performing two reads instead
2617 * of one, so skip it.
2619 if (!buffer_uptodate(bitmap_bh)) {
2620 brelse(bitmap_bh);
2621 goto make_io;
2623 for (i = start; i < start + inodes_per_buffer; i++) {
2624 if (i == inode_offset)
2625 continue;
2626 if (ext4_test_bit(i, bitmap_bh->b_data))
2627 break;
2629 brelse(bitmap_bh);
2630 if (i == start + inodes_per_buffer) {
2631 /* all other inodes are free, so skip I/O */
2632 memset(bh->b_data, 0, bh->b_size);
2633 set_buffer_uptodate(bh);
2634 unlock_buffer(bh);
2635 goto has_buffer;
2639 make_io:
2641 * There are other valid inodes in the buffer, this inode
2642 * has in-inode xattrs, or we don't have this inode in memory.
2643 * Read the block from disk.
2645 get_bh(bh);
2646 bh->b_end_io = end_buffer_read_sync;
2647 submit_bh(READ_META, bh);
2648 wait_on_buffer(bh);
2649 if (!buffer_uptodate(bh)) {
2650 ext4_error(inode->i_sb, "ext4_get_inode_loc",
2651 "unable to read inode block - "
2652 "inode=%lu, block=%llu",
2653 inode->i_ino, block);
2654 brelse(bh);
2655 return -EIO;
2658 has_buffer:
2659 iloc->bh = bh;
2660 return 0;
2663 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
2665 /* We have all inode data except xattrs in memory here. */
2666 return __ext4_get_inode_loc(inode, iloc,
2667 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
2670 void ext4_set_inode_flags(struct inode *inode)
2672 unsigned int flags = EXT4_I(inode)->i_flags;
2674 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2675 if (flags & EXT4_SYNC_FL)
2676 inode->i_flags |= S_SYNC;
2677 if (flags & EXT4_APPEND_FL)
2678 inode->i_flags |= S_APPEND;
2679 if (flags & EXT4_IMMUTABLE_FL)
2680 inode->i_flags |= S_IMMUTABLE;
2681 if (flags & EXT4_NOATIME_FL)
2682 inode->i_flags |= S_NOATIME;
2683 if (flags & EXT4_DIRSYNC_FL)
2684 inode->i_flags |= S_DIRSYNC;
2687 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
2688 void ext4_get_inode_flags(struct ext4_inode_info *ei)
2690 unsigned int flags = ei->vfs_inode.i_flags;
2692 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
2693 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
2694 if (flags & S_SYNC)
2695 ei->i_flags |= EXT4_SYNC_FL;
2696 if (flags & S_APPEND)
2697 ei->i_flags |= EXT4_APPEND_FL;
2698 if (flags & S_IMMUTABLE)
2699 ei->i_flags |= EXT4_IMMUTABLE_FL;
2700 if (flags & S_NOATIME)
2701 ei->i_flags |= EXT4_NOATIME_FL;
2702 if (flags & S_DIRSYNC)
2703 ei->i_flags |= EXT4_DIRSYNC_FL;
2705 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
2706 struct ext4_inode_info *ei)
2708 blkcnt_t i_blocks ;
2709 struct inode *inode = &(ei->vfs_inode);
2710 struct super_block *sb = inode->i_sb;
2712 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2713 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2714 /* we are using combined 48 bit field */
2715 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
2716 le32_to_cpu(raw_inode->i_blocks_lo);
2717 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
2718 /* i_blocks represent file system block size */
2719 return i_blocks << (inode->i_blkbits - 9);
2720 } else {
2721 return i_blocks;
2723 } else {
2724 return le32_to_cpu(raw_inode->i_blocks_lo);
2728 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
2730 struct ext4_iloc iloc;
2731 struct ext4_inode *raw_inode;
2732 struct ext4_inode_info *ei;
2733 struct buffer_head *bh;
2734 struct inode *inode;
2735 long ret;
2736 int block;
2738 inode = iget_locked(sb, ino);
2739 if (!inode)
2740 return ERR_PTR(-ENOMEM);
2741 if (!(inode->i_state & I_NEW))
2742 return inode;
2744 ei = EXT4_I(inode);
2745 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
2746 ei->i_acl = EXT4_ACL_NOT_CACHED;
2747 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
2748 #endif
2749 ei->i_block_alloc_info = NULL;
2751 ret = __ext4_get_inode_loc(inode, &iloc, 0);
2752 if (ret < 0)
2753 goto bad_inode;
2754 bh = iloc.bh;
2755 raw_inode = ext4_raw_inode(&iloc);
2756 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2757 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2758 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2759 if(!(test_opt (inode->i_sb, NO_UID32))) {
2760 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2761 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2763 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2765 ei->i_state = 0;
2766 ei->i_dir_start_lookup = 0;
2767 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2768 /* We now have enough fields to check if the inode was active or not.
2769 * This is needed because nfsd might try to access dead inodes
2770 * the test is that same one that e2fsck uses
2771 * NeilBrown 1999oct15
2773 if (inode->i_nlink == 0) {
2774 if (inode->i_mode == 0 ||
2775 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
2776 /* this inode is deleted */
2777 brelse (bh);
2778 ret = -ESTALE;
2779 goto bad_inode;
2781 /* The only unlinked inodes we let through here have
2782 * valid i_mode and are being read by the orphan
2783 * recovery code: that's fine, we're about to complete
2784 * the process of deleting those. */
2786 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2787 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
2788 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
2789 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2790 cpu_to_le32(EXT4_OS_HURD)) {
2791 ei->i_file_acl |=
2792 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
2794 inode->i_size = ext4_isize(raw_inode);
2795 ei->i_disksize = inode->i_size;
2796 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2797 ei->i_block_group = iloc.block_group;
2799 * NOTE! The in-memory inode i_data array is in little-endian order
2800 * even on big-endian machines: we do NOT byteswap the block numbers!
2802 for (block = 0; block < EXT4_N_BLOCKS; block++)
2803 ei->i_data[block] = raw_inode->i_block[block];
2804 INIT_LIST_HEAD(&ei->i_orphan);
2806 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2807 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2808 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2809 EXT4_INODE_SIZE(inode->i_sb)) {
2810 brelse (bh);
2811 ret = -EIO;
2812 goto bad_inode;
2814 if (ei->i_extra_isize == 0) {
2815 /* The extra space is currently unused. Use it. */
2816 ei->i_extra_isize = sizeof(struct ext4_inode) -
2817 EXT4_GOOD_OLD_INODE_SIZE;
2818 } else {
2819 __le32 *magic = (void *)raw_inode +
2820 EXT4_GOOD_OLD_INODE_SIZE +
2821 ei->i_extra_isize;
2822 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
2823 ei->i_state |= EXT4_STATE_XATTR;
2825 } else
2826 ei->i_extra_isize = 0;
2828 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
2829 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
2830 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
2831 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
2833 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
2834 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2835 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
2836 inode->i_version |=
2837 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
2840 if (S_ISREG(inode->i_mode)) {
2841 inode->i_op = &ext4_file_inode_operations;
2842 inode->i_fop = &ext4_file_operations;
2843 ext4_set_aops(inode);
2844 } else if (S_ISDIR(inode->i_mode)) {
2845 inode->i_op = &ext4_dir_inode_operations;
2846 inode->i_fop = &ext4_dir_operations;
2847 } else if (S_ISLNK(inode->i_mode)) {
2848 if (ext4_inode_is_fast_symlink(inode))
2849 inode->i_op = &ext4_fast_symlink_inode_operations;
2850 else {
2851 inode->i_op = &ext4_symlink_inode_operations;
2852 ext4_set_aops(inode);
2854 } else {
2855 inode->i_op = &ext4_special_inode_operations;
2856 if (raw_inode->i_block[0])
2857 init_special_inode(inode, inode->i_mode,
2858 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2859 else
2860 init_special_inode(inode, inode->i_mode,
2861 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2863 brelse (iloc.bh);
2864 ext4_set_inode_flags(inode);
2865 unlock_new_inode(inode);
2866 return inode;
2868 bad_inode:
2869 iget_failed(inode);
2870 return ERR_PTR(ret);
2873 static int ext4_inode_blocks_set(handle_t *handle,
2874 struct ext4_inode *raw_inode,
2875 struct ext4_inode_info *ei)
2877 struct inode *inode = &(ei->vfs_inode);
2878 u64 i_blocks = inode->i_blocks;
2879 struct super_block *sb = inode->i_sb;
2880 int err = 0;
2882 if (i_blocks <= ~0U) {
2884 * i_blocks can be represnted in a 32 bit variable
2885 * as multiple of 512 bytes
2887 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
2888 raw_inode->i_blocks_high = 0;
2889 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2890 } else if (i_blocks <= 0xffffffffffffULL) {
2892 * i_blocks can be represented in a 48 bit variable
2893 * as multiple of 512 bytes
2895 err = ext4_update_rocompat_feature(handle, sb,
2896 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2897 if (err)
2898 goto err_out;
2899 /* i_block is stored in the split 48 bit fields */
2900 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
2901 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2902 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2903 } else {
2905 * i_blocks should be represented in a 48 bit variable
2906 * as multiple of file system block size
2908 err = ext4_update_rocompat_feature(handle, sb,
2909 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2910 if (err)
2911 goto err_out;
2912 ei->i_flags |= EXT4_HUGE_FILE_FL;
2913 /* i_block is stored in file system block size */
2914 i_blocks = i_blocks >> (inode->i_blkbits - 9);
2915 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
2916 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2918 err_out:
2919 return err;
2923 * Post the struct inode info into an on-disk inode location in the
2924 * buffer-cache. This gobbles the caller's reference to the
2925 * buffer_head in the inode location struct.
2927 * The caller must have write access to iloc->bh.
2929 static int ext4_do_update_inode(handle_t *handle,
2930 struct inode *inode,
2931 struct ext4_iloc *iloc)
2933 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
2934 struct ext4_inode_info *ei = EXT4_I(inode);
2935 struct buffer_head *bh = iloc->bh;
2936 int err = 0, rc, block;
2938 /* For fields not not tracking in the in-memory inode,
2939 * initialise them to zero for new inodes. */
2940 if (ei->i_state & EXT4_STATE_NEW)
2941 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
2943 ext4_get_inode_flags(ei);
2944 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2945 if(!(test_opt(inode->i_sb, NO_UID32))) {
2946 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2947 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2949 * Fix up interoperability with old kernels. Otherwise, old inodes get
2950 * re-used with the upper 16 bits of the uid/gid intact
2952 if(!ei->i_dtime) {
2953 raw_inode->i_uid_high =
2954 cpu_to_le16(high_16_bits(inode->i_uid));
2955 raw_inode->i_gid_high =
2956 cpu_to_le16(high_16_bits(inode->i_gid));
2957 } else {
2958 raw_inode->i_uid_high = 0;
2959 raw_inode->i_gid_high = 0;
2961 } else {
2962 raw_inode->i_uid_low =
2963 cpu_to_le16(fs_high2lowuid(inode->i_uid));
2964 raw_inode->i_gid_low =
2965 cpu_to_le16(fs_high2lowgid(inode->i_gid));
2966 raw_inode->i_uid_high = 0;
2967 raw_inode->i_gid_high = 0;
2969 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2971 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
2972 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
2973 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
2974 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
2976 if (ext4_inode_blocks_set(handle, raw_inode, ei))
2977 goto out_brelse;
2978 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2979 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2980 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2981 cpu_to_le32(EXT4_OS_HURD))
2982 raw_inode->i_file_acl_high =
2983 cpu_to_le16(ei->i_file_acl >> 32);
2984 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
2985 ext4_isize_set(raw_inode, ei->i_disksize);
2986 if (ei->i_disksize > 0x7fffffffULL) {
2987 struct super_block *sb = inode->i_sb;
2988 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
2989 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
2990 EXT4_SB(sb)->s_es->s_rev_level ==
2991 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
2992 /* If this is the first large file
2993 * created, add a flag to the superblock.
2995 err = ext4_journal_get_write_access(handle,
2996 EXT4_SB(sb)->s_sbh);
2997 if (err)
2998 goto out_brelse;
2999 ext4_update_dynamic_rev(sb);
3000 EXT4_SET_RO_COMPAT_FEATURE(sb,
3001 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3002 sb->s_dirt = 1;
3003 handle->h_sync = 1;
3004 err = ext4_journal_dirty_metadata(handle,
3005 EXT4_SB(sb)->s_sbh);
3008 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3009 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3010 if (old_valid_dev(inode->i_rdev)) {
3011 raw_inode->i_block[0] =
3012 cpu_to_le32(old_encode_dev(inode->i_rdev));
3013 raw_inode->i_block[1] = 0;
3014 } else {
3015 raw_inode->i_block[0] = 0;
3016 raw_inode->i_block[1] =
3017 cpu_to_le32(new_encode_dev(inode->i_rdev));
3018 raw_inode->i_block[2] = 0;
3020 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
3021 raw_inode->i_block[block] = ei->i_data[block];
3023 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
3024 if (ei->i_extra_isize) {
3025 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3026 raw_inode->i_version_hi =
3027 cpu_to_le32(inode->i_version >> 32);
3028 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3032 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3033 rc = ext4_journal_dirty_metadata(handle, bh);
3034 if (!err)
3035 err = rc;
3036 ei->i_state &= ~EXT4_STATE_NEW;
3038 out_brelse:
3039 brelse (bh);
3040 ext4_std_error(inode->i_sb, err);
3041 return err;
3045 * ext4_write_inode()
3047 * We are called from a few places:
3049 * - Within generic_file_write() for O_SYNC files.
3050 * Here, there will be no transaction running. We wait for any running
3051 * trasnaction to commit.
3053 * - Within sys_sync(), kupdate and such.
3054 * We wait on commit, if tol to.
3056 * - Within prune_icache() (PF_MEMALLOC == true)
3057 * Here we simply return. We can't afford to block kswapd on the
3058 * journal commit.
3060 * In all cases it is actually safe for us to return without doing anything,
3061 * because the inode has been copied into a raw inode buffer in
3062 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
3063 * knfsd.
3065 * Note that we are absolutely dependent upon all inode dirtiers doing the
3066 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3067 * which we are interested.
3069 * It would be a bug for them to not do this. The code:
3071 * mark_inode_dirty(inode)
3072 * stuff();
3073 * inode->i_size = expr;
3075 * is in error because a kswapd-driven write_inode() could occur while
3076 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3077 * will no longer be on the superblock's dirty inode list.
3079 int ext4_write_inode(struct inode *inode, int wait)
3081 if (current->flags & PF_MEMALLOC)
3082 return 0;
3084 if (ext4_journal_current_handle()) {
3085 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3086 dump_stack();
3087 return -EIO;
3090 if (!wait)
3091 return 0;
3093 return ext4_force_commit(inode->i_sb);
3097 * ext4_setattr()
3099 * Called from notify_change.
3101 * We want to trap VFS attempts to truncate the file as soon as
3102 * possible. In particular, we want to make sure that when the VFS
3103 * shrinks i_size, we put the inode on the orphan list and modify
3104 * i_disksize immediately, so that during the subsequent flushing of
3105 * dirty pages and freeing of disk blocks, we can guarantee that any
3106 * commit will leave the blocks being flushed in an unused state on
3107 * disk. (On recovery, the inode will get truncated and the blocks will
3108 * be freed, so we have a strong guarantee that no future commit will
3109 * leave these blocks visible to the user.)
3111 * Called with inode->sem down.
3113 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3115 struct inode *inode = dentry->d_inode;
3116 int error, rc = 0;
3117 const unsigned int ia_valid = attr->ia_valid;
3119 error = inode_change_ok(inode, attr);
3120 if (error)
3121 return error;
3123 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3124 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3125 handle_t *handle;
3127 /* (user+group)*(old+new) structure, inode write (sb,
3128 * inode block, ? - but truncate inode update has it) */
3129 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
3130 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3131 if (IS_ERR(handle)) {
3132 error = PTR_ERR(handle);
3133 goto err_out;
3135 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3136 if (error) {
3137 ext4_journal_stop(handle);
3138 return error;
3140 /* Update corresponding info in inode so that everything is in
3141 * one transaction */
3142 if (attr->ia_valid & ATTR_UID)
3143 inode->i_uid = attr->ia_uid;
3144 if (attr->ia_valid & ATTR_GID)
3145 inode->i_gid = attr->ia_gid;
3146 error = ext4_mark_inode_dirty(handle, inode);
3147 ext4_journal_stop(handle);
3150 if (attr->ia_valid & ATTR_SIZE) {
3151 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
3152 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3154 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
3155 error = -EFBIG;
3156 goto err_out;
3161 if (S_ISREG(inode->i_mode) &&
3162 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3163 handle_t *handle;
3165 handle = ext4_journal_start(inode, 3);
3166 if (IS_ERR(handle)) {
3167 error = PTR_ERR(handle);
3168 goto err_out;
3171 error = ext4_orphan_add(handle, inode);
3172 EXT4_I(inode)->i_disksize = attr->ia_size;
3173 rc = ext4_mark_inode_dirty(handle, inode);
3174 if (!error)
3175 error = rc;
3176 ext4_journal_stop(handle);
3179 rc = inode_setattr(inode, attr);
3181 /* If inode_setattr's call to ext4_truncate failed to get a
3182 * transaction handle at all, we need to clean up the in-core
3183 * orphan list manually. */
3184 if (inode->i_nlink)
3185 ext4_orphan_del(NULL, inode);
3187 if (!rc && (ia_valid & ATTR_MODE))
3188 rc = ext4_acl_chmod(inode);
3190 err_out:
3191 ext4_std_error(inode->i_sb, error);
3192 if (!error)
3193 error = rc;
3194 return error;
3199 * How many blocks doth make a writepage()?
3201 * With N blocks per page, it may be:
3202 * N data blocks
3203 * 2 indirect block
3204 * 2 dindirect
3205 * 1 tindirect
3206 * N+5 bitmap blocks (from the above)
3207 * N+5 group descriptor summary blocks
3208 * 1 inode block
3209 * 1 superblock.
3210 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
3212 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
3214 * With ordered or writeback data it's the same, less the N data blocks.
3216 * If the inode's direct blocks can hold an integral number of pages then a
3217 * page cannot straddle two indirect blocks, and we can only touch one indirect
3218 * and dindirect block, and the "5" above becomes "3".
3220 * This still overestimates under most circumstances. If we were to pass the
3221 * start and end offsets in here as well we could do block_to_path() on each
3222 * block and work out the exact number of indirects which are touched. Pah.
3225 int ext4_writepage_trans_blocks(struct inode *inode)
3227 int bpp = ext4_journal_blocks_per_page(inode);
3228 int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
3229 int ret;
3231 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3232 return ext4_ext_writepage_trans_blocks(inode, bpp);
3234 if (ext4_should_journal_data(inode))
3235 ret = 3 * (bpp + indirects) + 2;
3236 else
3237 ret = 2 * (bpp + indirects) + 2;
3239 #ifdef CONFIG_QUOTA
3240 /* We know that structure was already allocated during DQUOT_INIT so
3241 * we will be updating only the data blocks + inodes */
3242 ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
3243 #endif
3245 return ret;
3249 * The caller must have previously called ext4_reserve_inode_write().
3250 * Give this, we know that the caller already has write access to iloc->bh.
3252 int ext4_mark_iloc_dirty(handle_t *handle,
3253 struct inode *inode, struct ext4_iloc *iloc)
3255 int err = 0;
3257 if (test_opt(inode->i_sb, I_VERSION))
3258 inode_inc_iversion(inode);
3260 /* the do_update_inode consumes one bh->b_count */
3261 get_bh(iloc->bh);
3263 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
3264 err = ext4_do_update_inode(handle, inode, iloc);
3265 put_bh(iloc->bh);
3266 return err;
3270 * On success, We end up with an outstanding reference count against
3271 * iloc->bh. This _must_ be cleaned up later.
3275 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
3276 struct ext4_iloc *iloc)
3278 int err = 0;
3279 if (handle) {
3280 err = ext4_get_inode_loc(inode, iloc);
3281 if (!err) {
3282 BUFFER_TRACE(iloc->bh, "get_write_access");
3283 err = ext4_journal_get_write_access(handle, iloc->bh);
3284 if (err) {
3285 brelse(iloc->bh);
3286 iloc->bh = NULL;
3290 ext4_std_error(inode->i_sb, err);
3291 return err;
3295 * Expand an inode by new_extra_isize bytes.
3296 * Returns 0 on success or negative error number on failure.
3298 static int ext4_expand_extra_isize(struct inode *inode,
3299 unsigned int new_extra_isize,
3300 struct ext4_iloc iloc,
3301 handle_t *handle)
3303 struct ext4_inode *raw_inode;
3304 struct ext4_xattr_ibody_header *header;
3305 struct ext4_xattr_entry *entry;
3307 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
3308 return 0;
3310 raw_inode = ext4_raw_inode(&iloc);
3312 header = IHDR(inode, raw_inode);
3313 entry = IFIRST(header);
3315 /* No extended attributes present */
3316 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
3317 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
3318 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
3319 new_extra_isize);
3320 EXT4_I(inode)->i_extra_isize = new_extra_isize;
3321 return 0;
3324 /* try to expand with EAs present */
3325 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
3326 raw_inode, handle);
3330 * What we do here is to mark the in-core inode as clean with respect to inode
3331 * dirtiness (it may still be data-dirty).
3332 * This means that the in-core inode may be reaped by prune_icache
3333 * without having to perform any I/O. This is a very good thing,
3334 * because *any* task may call prune_icache - even ones which
3335 * have a transaction open against a different journal.
3337 * Is this cheating? Not really. Sure, we haven't written the
3338 * inode out, but prune_icache isn't a user-visible syncing function.
3339 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3340 * we start and wait on commits.
3342 * Is this efficient/effective? Well, we're being nice to the system
3343 * by cleaning up our inodes proactively so they can be reaped
3344 * without I/O. But we are potentially leaving up to five seconds'
3345 * worth of inodes floating about which prune_icache wants us to
3346 * write out. One way to fix that would be to get prune_icache()
3347 * to do a write_super() to free up some memory. It has the desired
3348 * effect.
3350 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
3352 struct ext4_iloc iloc;
3353 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3354 static unsigned int mnt_count;
3355 int err, ret;
3357 might_sleep();
3358 err = ext4_reserve_inode_write(handle, inode, &iloc);
3359 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
3360 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
3362 * We need extra buffer credits since we may write into EA block
3363 * with this same handle. If journal_extend fails, then it will
3364 * only result in a minor loss of functionality for that inode.
3365 * If this is felt to be critical, then e2fsck should be run to
3366 * force a large enough s_min_extra_isize.
3368 if ((jbd2_journal_extend(handle,
3369 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
3370 ret = ext4_expand_extra_isize(inode,
3371 sbi->s_want_extra_isize,
3372 iloc, handle);
3373 if (ret) {
3374 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
3375 if (mnt_count !=
3376 le16_to_cpu(sbi->s_es->s_mnt_count)) {
3377 ext4_warning(inode->i_sb, __FUNCTION__,
3378 "Unable to expand inode %lu. Delete"
3379 " some EAs or run e2fsck.",
3380 inode->i_ino);
3381 mnt_count =
3382 le16_to_cpu(sbi->s_es->s_mnt_count);
3387 if (!err)
3388 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
3389 return err;
3393 * ext4_dirty_inode() is called from __mark_inode_dirty()
3395 * We're really interested in the case where a file is being extended.
3396 * i_size has been changed by generic_commit_write() and we thus need
3397 * to include the updated inode in the current transaction.
3399 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3400 * are allocated to the file.
3402 * If the inode is marked synchronous, we don't honour that here - doing
3403 * so would cause a commit on atime updates, which we don't bother doing.
3404 * We handle synchronous inodes at the highest possible level.
3406 void ext4_dirty_inode(struct inode *inode)
3408 handle_t *current_handle = ext4_journal_current_handle();
3409 handle_t *handle;
3411 handle = ext4_journal_start(inode, 2);
3412 if (IS_ERR(handle))
3413 goto out;
3414 if (current_handle &&
3415 current_handle->h_transaction != handle->h_transaction) {
3416 /* This task has a transaction open against a different fs */
3417 printk(KERN_EMERG "%s: transactions do not match!\n",
3418 __FUNCTION__);
3419 } else {
3420 jbd_debug(5, "marking dirty. outer handle=%p\n",
3421 current_handle);
3422 ext4_mark_inode_dirty(handle, inode);
3424 ext4_journal_stop(handle);
3425 out:
3426 return;
3429 #if 0
3431 * Bind an inode's backing buffer_head into this transaction, to prevent
3432 * it from being flushed to disk early. Unlike
3433 * ext4_reserve_inode_write, this leaves behind no bh reference and
3434 * returns no iloc structure, so the caller needs to repeat the iloc
3435 * lookup to mark the inode dirty later.
3437 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
3439 struct ext4_iloc iloc;
3441 int err = 0;
3442 if (handle) {
3443 err = ext4_get_inode_loc(inode, &iloc);
3444 if (!err) {
3445 BUFFER_TRACE(iloc.bh, "get_write_access");
3446 err = jbd2_journal_get_write_access(handle, iloc.bh);
3447 if (!err)
3448 err = ext4_journal_dirty_metadata(handle,
3449 iloc.bh);
3450 brelse(iloc.bh);
3453 ext4_std_error(inode->i_sb, err);
3454 return err;
3456 #endif
3458 int ext4_change_inode_journal_flag(struct inode *inode, int val)
3460 journal_t *journal;
3461 handle_t *handle;
3462 int err;
3465 * We have to be very careful here: changing a data block's
3466 * journaling status dynamically is dangerous. If we write a
3467 * data block to the journal, change the status and then delete
3468 * that block, we risk forgetting to revoke the old log record
3469 * from the journal and so a subsequent replay can corrupt data.
3470 * So, first we make sure that the journal is empty and that
3471 * nobody is changing anything.
3474 journal = EXT4_JOURNAL(inode);
3475 if (is_journal_aborted(journal))
3476 return -EROFS;
3478 jbd2_journal_lock_updates(journal);
3479 jbd2_journal_flush(journal);
3482 * OK, there are no updates running now, and all cached data is
3483 * synced to disk. We are now in a completely consistent state
3484 * which doesn't have anything in the journal, and we know that
3485 * no filesystem updates are running, so it is safe to modify
3486 * the inode's in-core data-journaling state flag now.
3489 if (val)
3490 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
3491 else
3492 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
3493 ext4_set_aops(inode);
3495 jbd2_journal_unlock_updates(journal);
3497 /* Finally we can mark the inode as dirty. */
3499 handle = ext4_journal_start(inode, 1);
3500 if (IS_ERR(handle))
3501 return PTR_ERR(handle);
3503 err = ext4_mark_inode_dirty(handle, inode);
3504 handle->h_sync = 1;
3505 ext4_journal_stop(handle);
3506 ext4_std_error(inode->i_sb, err);
3508 return err;