Linux 2.6.25.20
[linux/fpc-iii.git] / include / asm-x86 / pgtable.h
blob9cf472aeb9ce5841185ac52131dc311123c9b6f6
1 #ifndef _ASM_X86_PGTABLE_H
2 #define _ASM_X86_PGTABLE_H
4 #define USER_PTRS_PER_PGD ((TASK_SIZE-1)/PGDIR_SIZE+1)
5 #define FIRST_USER_ADDRESS 0
7 #define _PAGE_BIT_PRESENT 0
8 #define _PAGE_BIT_RW 1
9 #define _PAGE_BIT_USER 2
10 #define _PAGE_BIT_PWT 3
11 #define _PAGE_BIT_PCD 4
12 #define _PAGE_BIT_ACCESSED 5
13 #define _PAGE_BIT_DIRTY 6
14 #define _PAGE_BIT_FILE 6
15 #define _PAGE_BIT_PSE 7 /* 4 MB (or 2MB) page */
16 #define _PAGE_BIT_PAT 7 /* on 4KB pages */
17 #define _PAGE_BIT_GLOBAL 8 /* Global TLB entry PPro+ */
18 #define _PAGE_BIT_UNUSED1 9 /* available for programmer */
19 #define _PAGE_BIT_UNUSED2 10
20 #define _PAGE_BIT_UNUSED3 11
21 #define _PAGE_BIT_PAT_LARGE 12 /* On 2MB or 1GB pages */
22 #define _PAGE_BIT_NX 63 /* No execute: only valid after cpuid check */
25 * Note: we use _AC(1, L) instead of _AC(1, UL) so that we get a
26 * sign-extended value on 32-bit with all 1's in the upper word,
27 * which preserves the upper pte values on 64-bit ptes:
29 #define _PAGE_PRESENT (_AC(1, L)<<_PAGE_BIT_PRESENT)
30 #define _PAGE_RW (_AC(1, L)<<_PAGE_BIT_RW)
31 #define _PAGE_USER (_AC(1, L)<<_PAGE_BIT_USER)
32 #define _PAGE_PWT (_AC(1, L)<<_PAGE_BIT_PWT)
33 #define _PAGE_PCD (_AC(1, L)<<_PAGE_BIT_PCD)
34 #define _PAGE_ACCESSED (_AC(1, L)<<_PAGE_BIT_ACCESSED)
35 #define _PAGE_DIRTY (_AC(1, L)<<_PAGE_BIT_DIRTY)
36 #define _PAGE_PSE (_AC(1, L)<<_PAGE_BIT_PSE) /* 2MB page */
37 #define _PAGE_GLOBAL (_AC(1, L)<<_PAGE_BIT_GLOBAL) /* Global TLB entry */
38 #define _PAGE_UNUSED1 (_AC(1, L)<<_PAGE_BIT_UNUSED1)
39 #define _PAGE_UNUSED2 (_AC(1, L)<<_PAGE_BIT_UNUSED2)
40 #define _PAGE_UNUSED3 (_AC(1, L)<<_PAGE_BIT_UNUSED3)
41 #define _PAGE_PAT (_AC(1, L)<<_PAGE_BIT_PAT)
42 #define _PAGE_PAT_LARGE (_AC(1, L)<<_PAGE_BIT_PAT_LARGE)
44 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
45 #define _PAGE_NX (_AC(1, ULL) << _PAGE_BIT_NX)
46 #else
47 #define _PAGE_NX 0
48 #endif
50 /* If _PAGE_PRESENT is clear, we use these: */
51 #define _PAGE_FILE _PAGE_DIRTY /* nonlinear file mapping, saved PTE; unset:swap */
52 #define _PAGE_PROTNONE _PAGE_PSE /* if the user mapped it with PROT_NONE;
53 pte_present gives true */
55 #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
56 #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
58 #define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
60 #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
61 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
63 #define PAGE_SHARED_EXEC __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
64 #define PAGE_COPY_NOEXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
65 #define PAGE_COPY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
66 #define PAGE_COPY PAGE_COPY_NOEXEC
67 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
68 #define PAGE_READONLY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
70 #ifdef CONFIG_X86_32
71 #define _PAGE_KERNEL_EXEC \
72 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
73 #define _PAGE_KERNEL (_PAGE_KERNEL_EXEC | _PAGE_NX)
75 #ifndef __ASSEMBLY__
76 extern pteval_t __PAGE_KERNEL, __PAGE_KERNEL_EXEC;
77 #endif /* __ASSEMBLY__ */
78 #else
79 #define __PAGE_KERNEL_EXEC \
80 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
81 #define __PAGE_KERNEL (__PAGE_KERNEL_EXEC | _PAGE_NX)
82 #endif
84 #define __PAGE_KERNEL_RO (__PAGE_KERNEL & ~_PAGE_RW)
85 #define __PAGE_KERNEL_RX (__PAGE_KERNEL_EXEC & ~_PAGE_RW)
86 #define __PAGE_KERNEL_EXEC_NOCACHE (__PAGE_KERNEL_EXEC | _PAGE_PCD | _PAGE_PWT)
87 #define __PAGE_KERNEL_NOCACHE (__PAGE_KERNEL | _PAGE_PCD | _PAGE_PWT)
88 #define __PAGE_KERNEL_UC_MINUS (__PAGE_KERNEL | _PAGE_PCD)
89 #define __PAGE_KERNEL_VSYSCALL (__PAGE_KERNEL_RX | _PAGE_USER)
90 #define __PAGE_KERNEL_VSYSCALL_NOCACHE (__PAGE_KERNEL_VSYSCALL | _PAGE_PCD | _PAGE_PWT)
91 #define __PAGE_KERNEL_LARGE (__PAGE_KERNEL | _PAGE_PSE)
92 #define __PAGE_KERNEL_LARGE_EXEC (__PAGE_KERNEL_EXEC | _PAGE_PSE)
94 #ifdef CONFIG_X86_32
95 # define MAKE_GLOBAL(x) __pgprot((x))
96 #else
97 # define MAKE_GLOBAL(x) __pgprot((x) | _PAGE_GLOBAL)
98 #endif
100 #define PAGE_KERNEL MAKE_GLOBAL(__PAGE_KERNEL)
101 #define PAGE_KERNEL_RO MAKE_GLOBAL(__PAGE_KERNEL_RO)
102 #define PAGE_KERNEL_EXEC MAKE_GLOBAL(__PAGE_KERNEL_EXEC)
103 #define PAGE_KERNEL_RX MAKE_GLOBAL(__PAGE_KERNEL_RX)
104 #define PAGE_KERNEL_NOCACHE MAKE_GLOBAL(__PAGE_KERNEL_NOCACHE)
105 #define PAGE_KERNEL_UC_MINUS MAKE_GLOBAL(__PAGE_KERNEL_UC_MINUS)
106 #define PAGE_KERNEL_EXEC_NOCACHE MAKE_GLOBAL(__PAGE_KERNEL_EXEC_NOCACHE)
107 #define PAGE_KERNEL_LARGE MAKE_GLOBAL(__PAGE_KERNEL_LARGE)
108 #define PAGE_KERNEL_LARGE_EXEC MAKE_GLOBAL(__PAGE_KERNEL_LARGE_EXEC)
109 #define PAGE_KERNEL_VSYSCALL MAKE_GLOBAL(__PAGE_KERNEL_VSYSCALL)
110 #define PAGE_KERNEL_VSYSCALL_NOCACHE MAKE_GLOBAL(__PAGE_KERNEL_VSYSCALL_NOCACHE)
112 /* xwr */
113 #define __P000 PAGE_NONE
114 #define __P001 PAGE_READONLY
115 #define __P010 PAGE_COPY
116 #define __P011 PAGE_COPY
117 #define __P100 PAGE_READONLY_EXEC
118 #define __P101 PAGE_READONLY_EXEC
119 #define __P110 PAGE_COPY_EXEC
120 #define __P111 PAGE_COPY_EXEC
122 #define __S000 PAGE_NONE
123 #define __S001 PAGE_READONLY
124 #define __S010 PAGE_SHARED
125 #define __S011 PAGE_SHARED
126 #define __S100 PAGE_READONLY_EXEC
127 #define __S101 PAGE_READONLY_EXEC
128 #define __S110 PAGE_SHARED_EXEC
129 #define __S111 PAGE_SHARED_EXEC
131 #ifndef __ASSEMBLY__
134 * ZERO_PAGE is a global shared page that is always zero: used
135 * for zero-mapped memory areas etc..
137 extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
138 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
140 extern spinlock_t pgd_lock;
141 extern struct list_head pgd_list;
144 * The following only work if pte_present() is true.
145 * Undefined behaviour if not..
147 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
148 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
149 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
150 static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
151 static inline int pte_huge(pte_t pte) { return pte_val(pte) & _PAGE_PSE; }
152 static inline int pte_global(pte_t pte) { return pte_val(pte) & _PAGE_GLOBAL; }
153 static inline int pte_exec(pte_t pte) { return !(pte_val(pte) & _PAGE_NX); }
155 static inline int pmd_large(pmd_t pte) {
156 return (pmd_val(pte) & (_PAGE_PSE|_PAGE_PRESENT)) ==
157 (_PAGE_PSE|_PAGE_PRESENT);
160 static inline pte_t pte_mkclean(pte_t pte) { return __pte(pte_val(pte) & ~(pteval_t)_PAGE_DIRTY); }
161 static inline pte_t pte_mkold(pte_t pte) { return __pte(pte_val(pte) & ~(pteval_t)_PAGE_ACCESSED); }
162 static inline pte_t pte_wrprotect(pte_t pte) { return __pte(pte_val(pte) & ~(pteval_t)_PAGE_RW); }
163 static inline pte_t pte_mkexec(pte_t pte) { return __pte(pte_val(pte) & ~(pteval_t)_PAGE_NX); }
164 static inline pte_t pte_mkdirty(pte_t pte) { return __pte(pte_val(pte) | _PAGE_DIRTY); }
165 static inline pte_t pte_mkyoung(pte_t pte) { return __pte(pte_val(pte) | _PAGE_ACCESSED); }
166 static inline pte_t pte_mkwrite(pte_t pte) { return __pte(pte_val(pte) | _PAGE_RW); }
167 static inline pte_t pte_mkhuge(pte_t pte) { return __pte(pte_val(pte) | _PAGE_PSE); }
168 static inline pte_t pte_clrhuge(pte_t pte) { return __pte(pte_val(pte) & ~(pteval_t)_PAGE_PSE); }
169 static inline pte_t pte_mkglobal(pte_t pte) { return __pte(pte_val(pte) | _PAGE_GLOBAL); }
170 static inline pte_t pte_clrglobal(pte_t pte) { return __pte(pte_val(pte) & ~(pteval_t)_PAGE_GLOBAL); }
172 extern pteval_t __supported_pte_mask;
174 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot)
176 return __pte((((phys_addr_t)page_nr << PAGE_SHIFT) |
177 pgprot_val(pgprot)) & __supported_pte_mask);
180 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
182 return __pmd((((phys_addr_t)page_nr << PAGE_SHIFT) |
183 pgprot_val(pgprot)) & __supported_pte_mask);
186 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
188 pteval_t val = pte_val(pte);
191 * Chop off the NX bit (if present), and add the NX portion of
192 * the newprot (if present):
194 val &= _PAGE_CHG_MASK & ~_PAGE_NX;
195 val |= pgprot_val(newprot) & __supported_pte_mask;
197 return __pte(val);
200 #define pte_pgprot(x) __pgprot(pte_val(x) & (0xfff | _PAGE_NX))
202 #define canon_pgprot(p) __pgprot(pgprot_val(p) & __supported_pte_mask)
204 #ifdef CONFIG_PARAVIRT
205 #include <asm/paravirt.h>
206 #else /* !CONFIG_PARAVIRT */
207 #define set_pte(ptep, pte) native_set_pte(ptep, pte)
208 #define set_pte_at(mm, addr, ptep, pte) native_set_pte_at(mm, addr, ptep, pte)
210 #define set_pte_present(mm, addr, ptep, pte) \
211 native_set_pte_present(mm, addr, ptep, pte)
212 #define set_pte_atomic(ptep, pte) \
213 native_set_pte_atomic(ptep, pte)
215 #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd)
217 #ifndef __PAGETABLE_PUD_FOLDED
218 #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd)
219 #define pgd_clear(pgd) native_pgd_clear(pgd)
220 #endif
222 #ifndef set_pud
223 # define set_pud(pudp, pud) native_set_pud(pudp, pud)
224 #endif
226 #ifndef __PAGETABLE_PMD_FOLDED
227 #define pud_clear(pud) native_pud_clear(pud)
228 #endif
230 #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep)
231 #define pmd_clear(pmd) native_pmd_clear(pmd)
233 #define pte_update(mm, addr, ptep) do { } while (0)
234 #define pte_update_defer(mm, addr, ptep) do { } while (0)
235 #endif /* CONFIG_PARAVIRT */
237 #endif /* __ASSEMBLY__ */
239 #ifdef CONFIG_X86_32
240 # include "pgtable_32.h"
241 #else
242 # include "pgtable_64.h"
243 #endif
245 #ifndef __ASSEMBLY__
247 enum {
248 PG_LEVEL_NONE,
249 PG_LEVEL_4K,
250 PG_LEVEL_2M,
251 PG_LEVEL_1G,
255 * Helper function that returns the kernel pagetable entry controlling
256 * the virtual address 'address'. NULL means no pagetable entry present.
257 * NOTE: the return type is pte_t but if the pmd is PSE then we return it
258 * as a pte too.
260 extern pte_t *lookup_address(unsigned long address, unsigned int *level);
262 /* local pte updates need not use xchg for locking */
263 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
265 pte_t res = *ptep;
267 /* Pure native function needs no input for mm, addr */
268 native_pte_clear(NULL, 0, ptep);
269 return res;
272 static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr,
273 pte_t *ptep , pte_t pte)
275 native_set_pte(ptep, pte);
278 #ifndef CONFIG_PARAVIRT
280 * Rules for using pte_update - it must be called after any PTE update which
281 * has not been done using the set_pte / clear_pte interfaces. It is used by
282 * shadow mode hypervisors to resynchronize the shadow page tables. Kernel PTE
283 * updates should either be sets, clears, or set_pte_atomic for P->P
284 * transitions, which means this hook should only be called for user PTEs.
285 * This hook implies a P->P protection or access change has taken place, which
286 * requires a subsequent TLB flush. The notification can optionally be delayed
287 * until the TLB flush event by using the pte_update_defer form of the
288 * interface, but care must be taken to assure that the flush happens while
289 * still holding the same page table lock so that the shadow and primary pages
290 * do not become out of sync on SMP.
292 #define pte_update(mm, addr, ptep) do { } while (0)
293 #define pte_update_defer(mm, addr, ptep) do { } while (0)
294 #endif
297 * We only update the dirty/accessed state if we set
298 * the dirty bit by hand in the kernel, since the hardware
299 * will do the accessed bit for us, and we don't want to
300 * race with other CPU's that might be updating the dirty
301 * bit at the same time.
303 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
304 #define ptep_set_access_flags(vma, address, ptep, entry, dirty) \
305 ({ \
306 int __changed = !pte_same(*(ptep), entry); \
307 if (__changed && dirty) { \
308 *ptep = entry; \
309 pte_update_defer((vma)->vm_mm, (address), (ptep)); \
310 flush_tlb_page(vma, address); \
312 __changed; \
315 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
316 #define ptep_test_and_clear_young(vma, addr, ptep) ({ \
317 int __ret = 0; \
318 if (pte_young(*(ptep))) \
319 __ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, \
320 &(ptep)->pte); \
321 if (__ret) \
322 pte_update((vma)->vm_mm, addr, ptep); \
323 __ret; \
326 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
327 #define ptep_clear_flush_young(vma, address, ptep) \
328 ({ \
329 int __young; \
330 __young = ptep_test_and_clear_young((vma), (address), (ptep)); \
331 if (__young) \
332 flush_tlb_page(vma, address); \
333 __young; \
336 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
337 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
339 pte_t pte = native_ptep_get_and_clear(ptep);
340 pte_update(mm, addr, ptep);
341 return pte;
344 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
345 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long addr, pte_t *ptep, int full)
347 pte_t pte;
348 if (full) {
350 * Full address destruction in progress; paravirt does not
351 * care about updates and native needs no locking
353 pte = native_local_ptep_get_and_clear(ptep);
354 } else {
355 pte = ptep_get_and_clear(mm, addr, ptep);
357 return pte;
360 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
361 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
363 clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte);
364 pte_update(mm, addr, ptep);
367 #include <asm-generic/pgtable.h>
368 #endif /* __ASSEMBLY__ */
370 #endif /* _ASM_X86_PGTABLE_H */