Linux 2.6.25.20
[linux/fpc-iii.git] / sound / pci / cmipci.c
blob135f308607535594b95c5afd74964a378ab079db
1 /*
2 * Driver for C-Media CMI8338 and 8738 PCI soundcards.
3 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 /* Does not work. Warning may block system in capture mode */
21 /* #define USE_VAR48KRATE */
23 #include <asm/io.h>
24 #include <linux/delay.h>
25 #include <linux/interrupt.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 #include <linux/gameport.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mutex.h>
32 #include <sound/core.h>
33 #include <sound/info.h>
34 #include <sound/control.h>
35 #include <sound/pcm.h>
36 #include <sound/rawmidi.h>
37 #include <sound/mpu401.h>
38 #include <sound/opl3.h>
39 #include <sound/sb.h>
40 #include <sound/asoundef.h>
41 #include <sound/initval.h>
43 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
44 MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
45 MODULE_LICENSE("GPL");
46 MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
47 "{C-Media,CMI8738B},"
48 "{C-Media,CMI8338A},"
49 "{C-Media,CMI8338B}}");
51 #if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
52 #define SUPPORT_JOYSTICK 1
53 #endif
55 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
56 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
57 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable switches */
58 static long mpu_port[SNDRV_CARDS];
59 static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
60 static int soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
61 #ifdef SUPPORT_JOYSTICK
62 static int joystick_port[SNDRV_CARDS];
63 #endif
65 module_param_array(index, int, NULL, 0444);
66 MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
67 module_param_array(id, charp, NULL, 0444);
68 MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
69 module_param_array(enable, bool, NULL, 0444);
70 MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
71 module_param_array(mpu_port, long, NULL, 0444);
72 MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
73 module_param_array(fm_port, long, NULL, 0444);
74 MODULE_PARM_DESC(fm_port, "FM port.");
75 module_param_array(soft_ac3, bool, NULL, 0444);
76 MODULE_PARM_DESC(soft_ac3, "Sofware-conversion of raw SPDIF packets (model 033 only).");
77 #ifdef SUPPORT_JOYSTICK
78 module_param_array(joystick_port, int, NULL, 0444);
79 MODULE_PARM_DESC(joystick_port, "Joystick port address.");
80 #endif
83 * CM8x38 registers definition
86 #define CM_REG_FUNCTRL0 0x00
87 #define CM_RST_CH1 0x00080000
88 #define CM_RST_CH0 0x00040000
89 #define CM_CHEN1 0x00020000 /* ch1: enable */
90 #define CM_CHEN0 0x00010000 /* ch0: enable */
91 #define CM_PAUSE1 0x00000008 /* ch1: pause */
92 #define CM_PAUSE0 0x00000004 /* ch0: pause */
93 #define CM_CHADC1 0x00000002 /* ch1, 0:playback, 1:record */
94 #define CM_CHADC0 0x00000001 /* ch0, 0:playback, 1:record */
96 #define CM_REG_FUNCTRL1 0x04
97 #define CM_DSFC_MASK 0x0000E000 /* channel 1 (DAC?) sampling frequency */
98 #define CM_DSFC_SHIFT 13
99 #define CM_ASFC_MASK 0x00001C00 /* channel 0 (ADC?) sampling frequency */
100 #define CM_ASFC_SHIFT 10
101 #define CM_SPDF_1 0x00000200 /* SPDIF IN/OUT at channel B */
102 #define CM_SPDF_0 0x00000100 /* SPDIF OUT only channel A */
103 #define CM_SPDFLOOP 0x00000080 /* ext. SPDIIF/IN -> OUT loopback */
104 #define CM_SPDO2DAC 0x00000040 /* SPDIF/OUT can be heard from internal DAC */
105 #define CM_INTRM 0x00000020 /* master control block (MCB) interrupt enabled */
106 #define CM_BREQ 0x00000010 /* bus master enabled */
107 #define CM_VOICE_EN 0x00000008 /* legacy voice (SB16,FM) */
108 #define CM_UART_EN 0x00000004 /* legacy UART */
109 #define CM_JYSTK_EN 0x00000002 /* legacy joystick */
110 #define CM_ZVPORT 0x00000001 /* ZVPORT */
112 #define CM_REG_CHFORMAT 0x08
114 #define CM_CHB3D5C 0x80000000 /* 5,6 channels */
115 #define CM_FMOFFSET2 0x40000000 /* initial FM PCM offset 2 when Fmute=1 */
116 #define CM_CHB3D 0x20000000 /* 4 channels */
118 #define CM_CHIP_MASK1 0x1f000000
119 #define CM_CHIP_037 0x01000000
120 #define CM_SETLAT48 0x00800000 /* set latency timer 48h */
121 #define CM_EDGEIRQ 0x00400000 /* emulated edge trigger legacy IRQ */
122 #define CM_SPD24SEL39 0x00200000 /* 24-bit spdif: model 039 */
123 #define CM_AC3EN1 0x00100000 /* enable AC3: model 037 */
124 #define CM_SPDIF_SELECT1 0x00080000 /* for model <= 037 ? */
125 #define CM_SPD24SEL 0x00020000 /* 24bit spdif: model 037 */
126 /* #define CM_SPDIF_INVERSE 0x00010000 */ /* ??? */
128 #define CM_ADCBITLEN_MASK 0x0000C000
129 #define CM_ADCBITLEN_16 0x00000000
130 #define CM_ADCBITLEN_15 0x00004000
131 #define CM_ADCBITLEN_14 0x00008000
132 #define CM_ADCBITLEN_13 0x0000C000
134 #define CM_ADCDACLEN_MASK 0x00003000 /* model 037 */
135 #define CM_ADCDACLEN_060 0x00000000
136 #define CM_ADCDACLEN_066 0x00001000
137 #define CM_ADCDACLEN_130 0x00002000
138 #define CM_ADCDACLEN_280 0x00003000
140 #define CM_ADCDLEN_MASK 0x00003000 /* model 039 */
141 #define CM_ADCDLEN_ORIGINAL 0x00000000
142 #define CM_ADCDLEN_EXTRA 0x00001000
143 #define CM_ADCDLEN_24K 0x00002000
144 #define CM_ADCDLEN_WEIGHT 0x00003000
146 #define CM_CH1_SRATE_176K 0x00000800
147 #define CM_CH1_SRATE_96K 0x00000800 /* model 055? */
148 #define CM_CH1_SRATE_88K 0x00000400
149 #define CM_CH0_SRATE_176K 0x00000200
150 #define CM_CH0_SRATE_96K 0x00000200 /* model 055? */
151 #define CM_CH0_SRATE_88K 0x00000100
152 #define CM_CH0_SRATE_128K 0x00000300
153 #define CM_CH0_SRATE_MASK 0x00000300
155 #define CM_SPDIF_INVERSE2 0x00000080 /* model 055? */
156 #define CM_DBLSPDS 0x00000040 /* double SPDIF sample rate 88.2/96 */
157 #define CM_POLVALID 0x00000020 /* inverse SPDIF/IN valid bit */
158 #define CM_SPDLOCKED 0x00000010
160 #define CM_CH1FMT_MASK 0x0000000C /* bit 3: 16 bits, bit 2: stereo */
161 #define CM_CH1FMT_SHIFT 2
162 #define CM_CH0FMT_MASK 0x00000003 /* bit 1: 16 bits, bit 0: stereo */
163 #define CM_CH0FMT_SHIFT 0
165 #define CM_REG_INT_HLDCLR 0x0C
166 #define CM_CHIP_MASK2 0xff000000
167 #define CM_CHIP_8768 0x20000000
168 #define CM_CHIP_055 0x08000000
169 #define CM_CHIP_039 0x04000000
170 #define CM_CHIP_039_6CH 0x01000000
171 #define CM_UNKNOWN_INT_EN 0x00080000 /* ? */
172 #define CM_TDMA_INT_EN 0x00040000
173 #define CM_CH1_INT_EN 0x00020000
174 #define CM_CH0_INT_EN 0x00010000
176 #define CM_REG_INT_STATUS 0x10
177 #define CM_INTR 0x80000000
178 #define CM_VCO 0x08000000 /* Voice Control? CMI8738 */
179 #define CM_MCBINT 0x04000000 /* Master Control Block abort cond.? */
180 #define CM_UARTINT 0x00010000
181 #define CM_LTDMAINT 0x00008000
182 #define CM_HTDMAINT 0x00004000
183 #define CM_XDO46 0x00000080 /* Modell 033? Direct programming EEPROM (read data register) */
184 #define CM_LHBTOG 0x00000040 /* High/Low status from DMA ctrl register */
185 #define CM_LEG_HDMA 0x00000020 /* Legacy is in High DMA channel */
186 #define CM_LEG_STEREO 0x00000010 /* Legacy is in Stereo mode */
187 #define CM_CH1BUSY 0x00000008
188 #define CM_CH0BUSY 0x00000004
189 #define CM_CHINT1 0x00000002
190 #define CM_CHINT0 0x00000001
192 #define CM_REG_LEGACY_CTRL 0x14
193 #define CM_NXCHG 0x80000000 /* don't map base reg dword->sample */
194 #define CM_VMPU_MASK 0x60000000 /* MPU401 i/o port address */
195 #define CM_VMPU_330 0x00000000
196 #define CM_VMPU_320 0x20000000
197 #define CM_VMPU_310 0x40000000
198 #define CM_VMPU_300 0x60000000
199 #define CM_ENWR8237 0x10000000 /* enable bus master to write 8237 base reg */
200 #define CM_VSBSEL_MASK 0x0C000000 /* SB16 base address */
201 #define CM_VSBSEL_220 0x00000000
202 #define CM_VSBSEL_240 0x04000000
203 #define CM_VSBSEL_260 0x08000000
204 #define CM_VSBSEL_280 0x0C000000
205 #define CM_FMSEL_MASK 0x03000000 /* FM OPL3 base address */
206 #define CM_FMSEL_388 0x00000000
207 #define CM_FMSEL_3C8 0x01000000
208 #define CM_FMSEL_3E0 0x02000000
209 #define CM_FMSEL_3E8 0x03000000
210 #define CM_ENSPDOUT 0x00800000 /* enable XSPDIF/OUT to I/O interface */
211 #define CM_SPDCOPYRHT 0x00400000 /* spdif in/out copyright bit */
212 #define CM_DAC2SPDO 0x00200000 /* enable wave+fm_midi -> SPDIF/OUT */
213 #define CM_INVIDWEN 0x00100000 /* internal vendor ID write enable, model 039? */
214 #define CM_SETRETRY 0x00100000 /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
215 #define CM_C_EEACCESS 0x00080000 /* direct programming eeprom regs */
216 #define CM_C_EECS 0x00040000
217 #define CM_C_EEDI46 0x00020000
218 #define CM_C_EECK46 0x00010000
219 #define CM_CHB3D6C 0x00008000 /* 5.1 channels support */
220 #define CM_CENTR2LIN 0x00004000 /* line-in as center out */
221 #define CM_BASE2LIN 0x00002000 /* line-in as bass out */
222 #define CM_EXBASEN 0x00001000 /* external bass input enable */
224 #define CM_REG_MISC_CTRL 0x18
225 #define CM_PWD 0x80000000 /* power down */
226 #define CM_RESET 0x40000000
227 #define CM_SFIL_MASK 0x30000000 /* filter control at front end DAC, model 037? */
228 #define CM_VMGAIN 0x10000000 /* analog master amp +6dB, model 039? */
229 #define CM_TXVX 0x08000000 /* model 037? */
230 #define CM_N4SPK3D 0x04000000 /* copy front to rear */
231 #define CM_SPDO5V 0x02000000 /* 5V spdif output (1 = 0.5v (coax)) */
232 #define CM_SPDIF48K 0x01000000 /* write */
233 #define CM_SPATUS48K 0x01000000 /* read */
234 #define CM_ENDBDAC 0x00800000 /* enable double dac */
235 #define CM_XCHGDAC 0x00400000 /* 0: front=ch0, 1: front=ch1 */
236 #define CM_SPD32SEL 0x00200000 /* 0: 16bit SPDIF, 1: 32bit */
237 #define CM_SPDFLOOPI 0x00100000 /* int. SPDIF-OUT -> int. IN */
238 #define CM_FM_EN 0x00080000 /* enable legacy FM */
239 #define CM_AC3EN2 0x00040000 /* enable AC3: model 039 */
240 #define CM_ENWRASID 0x00010000 /* choose writable internal SUBID (audio) */
241 #define CM_VIDWPDSB 0x00010000 /* model 037? */
242 #define CM_SPDF_AC97 0x00008000 /* 0: SPDIF/OUT 44.1K, 1: 48K */
243 #define CM_MASK_EN 0x00004000 /* activate channel mask on legacy DMA */
244 #define CM_ENWRMSID 0x00002000 /* choose writable internal SUBID (modem) */
245 #define CM_VIDWPPRT 0x00002000 /* model 037? */
246 #define CM_SFILENB 0x00001000 /* filter stepping at front end DAC, model 037? */
247 #define CM_MMODE_MASK 0x00000E00 /* model DAA interface mode */
248 #define CM_SPDIF_SELECT2 0x00000100 /* for model > 039 ? */
249 #define CM_ENCENTER 0x00000080
250 #define CM_FLINKON 0x00000040 /* force modem link detection on, model 037 */
251 #define CM_MUTECH1 0x00000040 /* mute PCI ch1 to DAC */
252 #define CM_FLINKOFF 0x00000020 /* force modem link detection off, model 037 */
253 #define CM_MIDSMP 0x00000010 /* 1/2 interpolation at front end DAC */
254 #define CM_UPDDMA_MASK 0x0000000C /* TDMA position update notification */
255 #define CM_UPDDMA_2048 0x00000000
256 #define CM_UPDDMA_1024 0x00000004
257 #define CM_UPDDMA_512 0x00000008
258 #define CM_UPDDMA_256 0x0000000C
259 #define CM_TWAIT_MASK 0x00000003 /* model 037 */
260 #define CM_TWAIT1 0x00000002 /* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
261 #define CM_TWAIT0 0x00000001 /* i/o cycle, 0: 4, 1: 6 PCICLKs */
263 #define CM_REG_TDMA_POSITION 0x1C
264 #define CM_TDMA_CNT_MASK 0xFFFF0000 /* current byte/word count */
265 #define CM_TDMA_ADR_MASK 0x0000FFFF /* current address */
267 /* byte */
268 #define CM_REG_MIXER0 0x20
269 #define CM_REG_SBVR 0x20 /* write: sb16 version */
270 #define CM_REG_DEV 0x20 /* read: hardware device version */
272 #define CM_REG_MIXER21 0x21
273 #define CM_UNKNOWN_21_MASK 0x78 /* ? */
274 #define CM_X_ADPCM 0x04 /* SB16 ADPCM enable */
275 #define CM_PROINV 0x02 /* SBPro left/right channel switching */
276 #define CM_X_SB16 0x01 /* SB16 compatible */
278 #define CM_REG_SB16_DATA 0x22
279 #define CM_REG_SB16_ADDR 0x23
281 #define CM_REFFREQ_XIN (315*1000*1000)/22 /* 14.31818 Mhz reference clock frequency pin XIN */
282 #define CM_ADCMULT_XIN 512 /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
283 #define CM_TOLERANCE_RATE 0.001 /* Tolerance sample rate pitch (1000ppm) */
284 #define CM_MAXIMUM_RATE 80000000 /* Note more than 80MHz */
286 #define CM_REG_MIXER1 0x24
287 #define CM_FMMUTE 0x80 /* mute FM */
288 #define CM_FMMUTE_SHIFT 7
289 #define CM_WSMUTE 0x40 /* mute PCM */
290 #define CM_WSMUTE_SHIFT 6
291 #define CM_REAR2LIN 0x20 /* lin-in -> rear line out */
292 #define CM_REAR2LIN_SHIFT 5
293 #define CM_REAR2FRONT 0x10 /* exchange rear/front */
294 #define CM_REAR2FRONT_SHIFT 4
295 #define CM_WAVEINL 0x08 /* digital wave rec. left chan */
296 #define CM_WAVEINL_SHIFT 3
297 #define CM_WAVEINR 0x04 /* digical wave rec. right */
298 #define CM_WAVEINR_SHIFT 2
299 #define CM_X3DEN 0x02 /* 3D surround enable */
300 #define CM_X3DEN_SHIFT 1
301 #define CM_CDPLAY 0x01 /* enable SPDIF/IN PCM -> DAC */
302 #define CM_CDPLAY_SHIFT 0
304 #define CM_REG_MIXER2 0x25
305 #define CM_RAUXREN 0x80 /* AUX right capture */
306 #define CM_RAUXREN_SHIFT 7
307 #define CM_RAUXLEN 0x40 /* AUX left capture */
308 #define CM_RAUXLEN_SHIFT 6
309 #define CM_VAUXRM 0x20 /* AUX right mute */
310 #define CM_VAUXRM_SHIFT 5
311 #define CM_VAUXLM 0x10 /* AUX left mute */
312 #define CM_VAUXLM_SHIFT 4
313 #define CM_VADMIC_MASK 0x0e /* mic gain level (0-3) << 1 */
314 #define CM_VADMIC_SHIFT 1
315 #define CM_MICGAINZ 0x01 /* mic boost */
316 #define CM_MICGAINZ_SHIFT 0
318 #define CM_REG_MIXER3 0x24
319 #define CM_REG_AUX_VOL 0x26
320 #define CM_VAUXL_MASK 0xf0
321 #define CM_VAUXR_MASK 0x0f
323 #define CM_REG_MISC 0x27
324 #define CM_UNKNOWN_27_MASK 0xd8 /* ? */
325 #define CM_XGPO1 0x20
326 // #define CM_XGPBIO 0x04
327 #define CM_MIC_CENTER_LFE 0x04 /* mic as center/lfe out? (model 039 or later?) */
328 #define CM_SPDIF_INVERSE 0x04 /* spdif input phase inverse (model 037) */
329 #define CM_SPDVALID 0x02 /* spdif input valid check */
330 #define CM_DMAUTO 0x01 /* SB16 DMA auto detect */
332 #define CM_REG_AC97 0x28 /* hmmm.. do we have ac97 link? */
334 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
335 * or identical with AC97 codec?
337 #define CM_REG_EXTERN_CODEC CM_REG_AC97
340 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
342 #define CM_REG_MPU_PCI 0x40
345 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
347 #define CM_REG_FM_PCI 0x50
350 * access from SB-mixer port
352 #define CM_REG_EXTENT_IND 0xf0
353 #define CM_VPHONE_MASK 0xe0 /* Phone volume control (0-3) << 5 */
354 #define CM_VPHONE_SHIFT 5
355 #define CM_VPHOM 0x10 /* Phone mute control */
356 #define CM_VSPKM 0x08 /* Speaker mute control, default high */
357 #define CM_RLOOPREN 0x04 /* Rec. R-channel enable */
358 #define CM_RLOOPLEN 0x02 /* Rec. L-channel enable */
359 #define CM_VADMIC3 0x01 /* Mic record boost */
362 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
363 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
364 * unit (readonly?).
366 #define CM_REG_PLL 0xf8
369 * extended registers
371 #define CM_REG_CH0_FRAME1 0x80 /* write: base address */
372 #define CM_REG_CH0_FRAME2 0x84 /* read: current address */
373 #define CM_REG_CH1_FRAME1 0x88 /* 0-15: count of samples at bus master; buffer size */
374 #define CM_REG_CH1_FRAME2 0x8C /* 16-31: count of samples at codec; fragment size */
376 #define CM_REG_EXT_MISC 0x90
377 #define CM_ADC48K44K 0x10000000 /* ADC parameters group, 0: 44k, 1: 48k */
378 #define CM_CHB3D8C 0x00200000 /* 7.1 channels support */
379 #define CM_SPD32FMT 0x00100000 /* SPDIF/IN 32k sample rate */
380 #define CM_ADC2SPDIF 0x00080000 /* ADC output to SPDIF/OUT */
381 #define CM_SHAREADC 0x00040000 /* DAC in ADC as Center/LFE */
382 #define CM_REALTCMP 0x00020000 /* monitor the CMPL/CMPR of ADC */
383 #define CM_INVLRCK 0x00010000 /* invert ZVPORT's LRCK */
384 #define CM_UNKNOWN_90_MASK 0x0000FFFF /* ? */
387 * size of i/o region
389 #define CM_EXTENT_CODEC 0x100
390 #define CM_EXTENT_MIDI 0x2
391 #define CM_EXTENT_SYNTH 0x4
395 * channels for playback / capture
397 #define CM_CH_PLAY 0
398 #define CM_CH_CAPT 1
401 * flags to check device open/close
403 #define CM_OPEN_NONE 0
404 #define CM_OPEN_CH_MASK 0x01
405 #define CM_OPEN_DAC 0x10
406 #define CM_OPEN_ADC 0x20
407 #define CM_OPEN_SPDIF 0x40
408 #define CM_OPEN_MCHAN 0x80
409 #define CM_OPEN_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC)
410 #define CM_OPEN_PLAYBACK2 (CM_CH_CAPT | CM_OPEN_DAC)
411 #define CM_OPEN_PLAYBACK_MULTI (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
412 #define CM_OPEN_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC)
413 #define CM_OPEN_SPDIF_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
414 #define CM_OPEN_SPDIF_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
417 #if CM_CH_PLAY == 1
418 #define CM_PLAYBACK_SRATE_176K CM_CH1_SRATE_176K
419 #define CM_PLAYBACK_SPDF CM_SPDF_1
420 #define CM_CAPTURE_SPDF CM_SPDF_0
421 #else
422 #define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
423 #define CM_PLAYBACK_SPDF CM_SPDF_0
424 #define CM_CAPTURE_SPDF CM_SPDF_1
425 #endif
429 * driver data
432 struct cmipci_pcm {
433 struct snd_pcm_substream *substream;
434 u8 running; /* dac/adc running? */
435 u8 fmt; /* format bits */
436 u8 is_dac;
437 u8 needs_silencing;
438 unsigned int dma_size; /* in frames */
439 unsigned int shift;
440 unsigned int ch; /* channel (0/1) */
441 unsigned int offset; /* physical address of the buffer */
444 /* mixer elements toggled/resumed during ac3 playback */
445 struct cmipci_mixer_auto_switches {
446 const char *name; /* switch to toggle */
447 int toggle_on; /* value to change when ac3 mode */
449 static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
450 {"PCM Playback Switch", 0},
451 {"IEC958 Output Switch", 1},
452 {"IEC958 Mix Analog", 0},
453 // {"IEC958 Out To DAC", 1}, // no longer used
454 {"IEC958 Loop", 0},
456 #define CM_SAVED_MIXERS ARRAY_SIZE(cm_saved_mixer)
458 struct cmipci {
459 struct snd_card *card;
461 struct pci_dev *pci;
462 unsigned int device; /* device ID */
463 int irq;
465 unsigned long iobase;
466 unsigned int ctrl; /* FUNCTRL0 current value */
468 struct snd_pcm *pcm; /* DAC/ADC PCM */
469 struct snd_pcm *pcm2; /* 2nd DAC */
470 struct snd_pcm *pcm_spdif; /* SPDIF */
472 int chip_version;
473 int max_channels;
474 unsigned int can_ac3_sw: 1;
475 unsigned int can_ac3_hw: 1;
476 unsigned int can_multi_ch: 1;
477 unsigned int can_96k: 1; /* samplerate above 48k */
478 unsigned int do_soft_ac3: 1;
480 unsigned int spdif_playback_avail: 1; /* spdif ready? */
481 unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */
482 int spdif_counter; /* for software AC3 */
484 unsigned int dig_status;
485 unsigned int dig_pcm_status;
487 struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
489 int opened[2]; /* open mode */
490 struct mutex open_mutex;
492 unsigned int mixer_insensitive: 1;
493 struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
494 int mixer_res_status[CM_SAVED_MIXERS];
496 struct cmipci_pcm channel[2]; /* ch0 - DAC, ch1 - ADC or 2nd DAC */
498 /* external MIDI */
499 struct snd_rawmidi *rmidi;
501 #ifdef SUPPORT_JOYSTICK
502 struct gameport *gameport;
503 #endif
505 spinlock_t reg_lock;
507 #ifdef CONFIG_PM
508 unsigned int saved_regs[0x20];
509 unsigned char saved_mixers[0x20];
510 #endif
514 /* read/write operations for dword register */
515 static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
517 outl(data, cm->iobase + cmd);
520 static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
522 return inl(cm->iobase + cmd);
525 /* read/write operations for word register */
526 static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
528 outw(data, cm->iobase + cmd);
531 static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
533 return inw(cm->iobase + cmd);
536 /* read/write operations for byte register */
537 static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
539 outb(data, cm->iobase + cmd);
542 static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
544 return inb(cm->iobase + cmd);
547 /* bit operations for dword register */
548 static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
550 unsigned int val, oval;
551 val = oval = inl(cm->iobase + cmd);
552 val |= flag;
553 if (val == oval)
554 return 0;
555 outl(val, cm->iobase + cmd);
556 return 1;
559 static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
561 unsigned int val, oval;
562 val = oval = inl(cm->iobase + cmd);
563 val &= ~flag;
564 if (val == oval)
565 return 0;
566 outl(val, cm->iobase + cmd);
567 return 1;
570 /* bit operations for byte register */
571 static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
573 unsigned char val, oval;
574 val = oval = inb(cm->iobase + cmd);
575 val |= flag;
576 if (val == oval)
577 return 0;
578 outb(val, cm->iobase + cmd);
579 return 1;
582 static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
584 unsigned char val, oval;
585 val = oval = inb(cm->iobase + cmd);
586 val &= ~flag;
587 if (val == oval)
588 return 0;
589 outb(val, cm->iobase + cmd);
590 return 1;
595 * PCM interface
599 * calculate frequency
602 static unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
604 static unsigned int snd_cmipci_rate_freq(unsigned int rate)
606 unsigned int i;
608 for (i = 0; i < ARRAY_SIZE(rates); i++) {
609 if (rates[i] == rate)
610 return i;
612 snd_BUG();
613 return 0;
616 #ifdef USE_VAR48KRATE
618 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
619 * does it this way .. maybe not. Never get any information from C-Media about
620 * that <werner@suse.de>.
622 static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
624 unsigned int delta, tolerance;
625 int xm, xn, xr;
627 for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
628 rate <<= 1;
629 *n = -1;
630 if (*r > 0xff)
631 goto out;
632 tolerance = rate*CM_TOLERANCE_RATE;
634 for (xn = (1+2); xn < (0x1f+2); xn++) {
635 for (xm = (1+2); xm < (0xff+2); xm++) {
636 xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
638 if (xr < rate)
639 delta = rate - xr;
640 else
641 delta = xr - rate;
644 * If we found one, remember this,
645 * and try to find a closer one
647 if (delta < tolerance) {
648 tolerance = delta;
649 *m = xm - 2;
650 *n = xn - 2;
654 out:
655 return (*n > -1);
659 * Program pll register bits, I assume that the 8 registers 0xf8 upto 0xff
660 * are mapped onto the 8 ADC/DAC sampling frequency which can be choosen
661 * at the register CM_REG_FUNCTRL1 (0x04).
662 * Problem: other ways are also possible (any information about that?)
664 static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
666 unsigned int reg = CM_REG_PLL + slot;
668 * Guess that this programs at reg. 0x04 the pos 15:13/12:10
669 * for DSFC/ASFC (000 upto 111).
672 /* FIXME: Init (Do we've to set an other register first before programming?) */
674 /* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
675 snd_cmipci_write_b(cm, reg, rate>>8);
676 snd_cmipci_write_b(cm, reg, rate&0xff);
678 /* FIXME: Setup (Do we've to set an other register first to enable this?) */
680 #endif /* USE_VAR48KRATE */
682 static int snd_cmipci_hw_params(struct snd_pcm_substream *substream,
683 struct snd_pcm_hw_params *hw_params)
685 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
688 static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
689 struct snd_pcm_hw_params *hw_params)
691 struct cmipci *cm = snd_pcm_substream_chip(substream);
692 if (params_channels(hw_params) > 2) {
693 mutex_lock(&cm->open_mutex);
694 if (cm->opened[CM_CH_PLAY]) {
695 mutex_unlock(&cm->open_mutex);
696 return -EBUSY;
698 /* reserve the channel A */
699 cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
700 mutex_unlock(&cm->open_mutex);
702 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
705 static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
707 int reset = CM_RST_CH0 << (cm->channel[ch].ch);
708 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
709 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
710 udelay(10);
713 static int snd_cmipci_hw_free(struct snd_pcm_substream *substream)
715 return snd_pcm_lib_free_pages(substream);
722 static unsigned int hw_channels[] = {1, 2, 4, 6, 8};
723 static struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
724 .count = 3,
725 .list = hw_channels,
726 .mask = 0,
728 static struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
729 .count = 4,
730 .list = hw_channels,
731 .mask = 0,
733 static struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
734 .count = 5,
735 .list = hw_channels,
736 .mask = 0,
739 static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
741 if (channels > 2) {
742 if (!cm->can_multi_ch || !rec->ch)
743 return -EINVAL;
744 if (rec->fmt != 0x03) /* stereo 16bit only */
745 return -EINVAL;
748 if (cm->can_multi_ch) {
749 spin_lock_irq(&cm->reg_lock);
750 if (channels > 2) {
751 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
752 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
753 } else {
754 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
755 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
757 if (channels == 8)
758 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
759 else
760 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
761 if (channels == 6) {
762 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
763 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
764 } else {
765 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
766 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
768 if (channels == 4)
769 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
770 else
771 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
772 spin_unlock_irq(&cm->reg_lock);
774 return 0;
779 * prepare playback/capture channel
780 * channel to be used must have been set in rec->ch.
782 static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
783 struct snd_pcm_substream *substream)
785 unsigned int reg, freq, freq_ext, val;
786 unsigned int period_size;
787 struct snd_pcm_runtime *runtime = substream->runtime;
789 rec->fmt = 0;
790 rec->shift = 0;
791 if (snd_pcm_format_width(runtime->format) >= 16) {
792 rec->fmt |= 0x02;
793 if (snd_pcm_format_width(runtime->format) > 16)
794 rec->shift++; /* 24/32bit */
796 if (runtime->channels > 1)
797 rec->fmt |= 0x01;
798 if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
799 snd_printd("cannot set dac channels\n");
800 return -EINVAL;
803 rec->offset = runtime->dma_addr;
804 /* buffer and period sizes in frame */
805 rec->dma_size = runtime->buffer_size << rec->shift;
806 period_size = runtime->period_size << rec->shift;
807 if (runtime->channels > 2) {
808 /* multi-channels */
809 rec->dma_size = (rec->dma_size * runtime->channels) / 2;
810 period_size = (period_size * runtime->channels) / 2;
813 spin_lock_irq(&cm->reg_lock);
815 /* set buffer address */
816 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
817 snd_cmipci_write(cm, reg, rec->offset);
818 /* program sample counts */
819 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
820 snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
821 snd_cmipci_write_w(cm, reg + 2, period_size - 1);
823 /* set adc/dac flag */
824 val = rec->ch ? CM_CHADC1 : CM_CHADC0;
825 if (rec->is_dac)
826 cm->ctrl &= ~val;
827 else
828 cm->ctrl |= val;
829 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
830 //snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
832 /* set sample rate */
833 freq = 0;
834 freq_ext = 0;
835 if (runtime->rate > 48000)
836 switch (runtime->rate) {
837 case 88200: freq_ext = CM_CH0_SRATE_88K; break;
838 case 96000: freq_ext = CM_CH0_SRATE_96K; break;
839 case 128000: freq_ext = CM_CH0_SRATE_128K; break;
840 default: snd_BUG(); break;
842 else
843 freq = snd_cmipci_rate_freq(runtime->rate);
844 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
845 if (rec->ch) {
846 val &= ~CM_DSFC_MASK;
847 val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
848 } else {
849 val &= ~CM_ASFC_MASK;
850 val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
852 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
853 //snd_printd("cmipci: functrl1 = %08x\n", val);
855 /* set format */
856 val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
857 if (rec->ch) {
858 val &= ~CM_CH1FMT_MASK;
859 val |= rec->fmt << CM_CH1FMT_SHIFT;
860 } else {
861 val &= ~CM_CH0FMT_MASK;
862 val |= rec->fmt << CM_CH0FMT_SHIFT;
864 if (cm->can_96k) {
865 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
866 val |= freq_ext << (rec->ch * 2);
868 snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
869 //snd_printd("cmipci: chformat = %08x\n", val);
871 if (!rec->is_dac && cm->chip_version) {
872 if (runtime->rate > 44100)
873 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
874 else
875 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
878 rec->running = 0;
879 spin_unlock_irq(&cm->reg_lock);
881 return 0;
885 * PCM trigger/stop
887 static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
888 int cmd)
890 unsigned int inthld, chen, reset, pause;
891 int result = 0;
893 inthld = CM_CH0_INT_EN << rec->ch;
894 chen = CM_CHEN0 << rec->ch;
895 reset = CM_RST_CH0 << rec->ch;
896 pause = CM_PAUSE0 << rec->ch;
898 spin_lock(&cm->reg_lock);
899 switch (cmd) {
900 case SNDRV_PCM_TRIGGER_START:
901 rec->running = 1;
902 /* set interrupt */
903 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
904 cm->ctrl |= chen;
905 /* enable channel */
906 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
907 //snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
908 break;
909 case SNDRV_PCM_TRIGGER_STOP:
910 rec->running = 0;
911 /* disable interrupt */
912 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
913 /* reset */
914 cm->ctrl &= ~chen;
915 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
916 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
917 rec->needs_silencing = rec->is_dac;
918 break;
919 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
920 case SNDRV_PCM_TRIGGER_SUSPEND:
921 cm->ctrl |= pause;
922 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
923 break;
924 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
925 case SNDRV_PCM_TRIGGER_RESUME:
926 cm->ctrl &= ~pause;
927 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
928 break;
929 default:
930 result = -EINVAL;
931 break;
933 spin_unlock(&cm->reg_lock);
934 return result;
938 * return the current pointer
940 static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
941 struct snd_pcm_substream *substream)
943 size_t ptr;
944 unsigned int reg;
945 if (!rec->running)
946 return 0;
947 #if 1 // this seems better..
948 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
949 ptr = rec->dma_size - (snd_cmipci_read_w(cm, reg) + 1);
950 ptr >>= rec->shift;
951 #else
952 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
953 ptr = snd_cmipci_read(cm, reg) - rec->offset;
954 ptr = bytes_to_frames(substream->runtime, ptr);
955 #endif
956 if (substream->runtime->channels > 2)
957 ptr = (ptr * 2) / substream->runtime->channels;
958 return ptr;
962 * playback
965 static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
966 int cmd)
968 struct cmipci *cm = snd_pcm_substream_chip(substream);
969 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
972 static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
974 struct cmipci *cm = snd_pcm_substream_chip(substream);
975 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
981 * capture
984 static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
985 int cmd)
987 struct cmipci *cm = snd_pcm_substream_chip(substream);
988 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
991 static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
993 struct cmipci *cm = snd_pcm_substream_chip(substream);
994 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
999 * hw preparation for spdif
1002 static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
1003 struct snd_ctl_elem_info *uinfo)
1005 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1006 uinfo->count = 1;
1007 return 0;
1010 static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
1011 struct snd_ctl_elem_value *ucontrol)
1013 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1014 int i;
1016 spin_lock_irq(&chip->reg_lock);
1017 for (i = 0; i < 4; i++)
1018 ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
1019 spin_unlock_irq(&chip->reg_lock);
1020 return 0;
1023 static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1024 struct snd_ctl_elem_value *ucontrol)
1026 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1027 int i, change;
1028 unsigned int val;
1030 val = 0;
1031 spin_lock_irq(&chip->reg_lock);
1032 for (i = 0; i < 4; i++)
1033 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1034 change = val != chip->dig_status;
1035 chip->dig_status = val;
1036 spin_unlock_irq(&chip->reg_lock);
1037 return change;
1040 static struct snd_kcontrol_new snd_cmipci_spdif_default __devinitdata =
1042 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1043 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1044 .info = snd_cmipci_spdif_default_info,
1045 .get = snd_cmipci_spdif_default_get,
1046 .put = snd_cmipci_spdif_default_put
1049 static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1050 struct snd_ctl_elem_info *uinfo)
1052 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1053 uinfo->count = 1;
1054 return 0;
1057 static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1058 struct snd_ctl_elem_value *ucontrol)
1060 ucontrol->value.iec958.status[0] = 0xff;
1061 ucontrol->value.iec958.status[1] = 0xff;
1062 ucontrol->value.iec958.status[2] = 0xff;
1063 ucontrol->value.iec958.status[3] = 0xff;
1064 return 0;
1067 static struct snd_kcontrol_new snd_cmipci_spdif_mask __devinitdata =
1069 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1070 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1071 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1072 .info = snd_cmipci_spdif_mask_info,
1073 .get = snd_cmipci_spdif_mask_get,
1076 static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1077 struct snd_ctl_elem_info *uinfo)
1079 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1080 uinfo->count = 1;
1081 return 0;
1084 static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1085 struct snd_ctl_elem_value *ucontrol)
1087 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1088 int i;
1090 spin_lock_irq(&chip->reg_lock);
1091 for (i = 0; i < 4; i++)
1092 ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1093 spin_unlock_irq(&chip->reg_lock);
1094 return 0;
1097 static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1098 struct snd_ctl_elem_value *ucontrol)
1100 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1101 int i, change;
1102 unsigned int val;
1104 val = 0;
1105 spin_lock_irq(&chip->reg_lock);
1106 for (i = 0; i < 4; i++)
1107 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1108 change = val != chip->dig_pcm_status;
1109 chip->dig_pcm_status = val;
1110 spin_unlock_irq(&chip->reg_lock);
1111 return change;
1114 static struct snd_kcontrol_new snd_cmipci_spdif_stream __devinitdata =
1116 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1117 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1118 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1119 .info = snd_cmipci_spdif_stream_info,
1120 .get = snd_cmipci_spdif_stream_get,
1121 .put = snd_cmipci_spdif_stream_put
1127 /* save mixer setting and mute for AC3 playback */
1128 static int save_mixer_state(struct cmipci *cm)
1130 if (! cm->mixer_insensitive) {
1131 struct snd_ctl_elem_value *val;
1132 unsigned int i;
1134 val = kmalloc(sizeof(*val), GFP_ATOMIC);
1135 if (!val)
1136 return -ENOMEM;
1137 for (i = 0; i < CM_SAVED_MIXERS; i++) {
1138 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1139 if (ctl) {
1140 int event;
1141 memset(val, 0, sizeof(*val));
1142 ctl->get(ctl, val);
1143 cm->mixer_res_status[i] = val->value.integer.value[0];
1144 val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1145 event = SNDRV_CTL_EVENT_MASK_INFO;
1146 if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1147 ctl->put(ctl, val); /* toggle */
1148 event |= SNDRV_CTL_EVENT_MASK_VALUE;
1150 ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1151 snd_ctl_notify(cm->card, event, &ctl->id);
1154 kfree(val);
1155 cm->mixer_insensitive = 1;
1157 return 0;
1161 /* restore the previously saved mixer status */
1162 static void restore_mixer_state(struct cmipci *cm)
1164 if (cm->mixer_insensitive) {
1165 struct snd_ctl_elem_value *val;
1166 unsigned int i;
1168 val = kmalloc(sizeof(*val), GFP_KERNEL);
1169 if (!val)
1170 return;
1171 cm->mixer_insensitive = 0; /* at first clear this;
1172 otherwise the changes will be ignored */
1173 for (i = 0; i < CM_SAVED_MIXERS; i++) {
1174 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1175 if (ctl) {
1176 int event;
1178 memset(val, 0, sizeof(*val));
1179 ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1180 ctl->get(ctl, val);
1181 event = SNDRV_CTL_EVENT_MASK_INFO;
1182 if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1183 val->value.integer.value[0] = cm->mixer_res_status[i];
1184 ctl->put(ctl, val);
1185 event |= SNDRV_CTL_EVENT_MASK_VALUE;
1187 snd_ctl_notify(cm->card, event, &ctl->id);
1190 kfree(val);
1194 /* spinlock held! */
1195 static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1197 if (do_ac3) {
1198 /* AC3EN for 037 */
1199 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1200 /* AC3EN for 039 */
1201 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1203 if (cm->can_ac3_hw) {
1204 /* SPD24SEL for 037, 0x02 */
1205 /* SPD24SEL for 039, 0x20, but cannot be set */
1206 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1207 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1208 } else { /* can_ac3_sw */
1209 /* SPD32SEL for 037 & 039, 0x20 */
1210 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1211 /* set 176K sample rate to fix 033 HW bug */
1212 if (cm->chip_version == 33) {
1213 if (rate >= 48000) {
1214 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1215 } else {
1216 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1221 } else {
1222 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1223 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1225 if (cm->can_ac3_hw) {
1226 /* chip model >= 37 */
1227 if (snd_pcm_format_width(subs->runtime->format) > 16) {
1228 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1229 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1230 } else {
1231 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1232 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1234 } else {
1235 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1236 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1237 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1242 static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1244 int rate, err;
1246 rate = subs->runtime->rate;
1248 if (up && do_ac3)
1249 if ((err = save_mixer_state(cm)) < 0)
1250 return err;
1252 spin_lock_irq(&cm->reg_lock);
1253 cm->spdif_playback_avail = up;
1254 if (up) {
1255 /* they are controlled via "IEC958 Output Switch" */
1256 /* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1257 /* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1258 if (cm->spdif_playback_enabled)
1259 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1260 setup_ac3(cm, subs, do_ac3, rate);
1262 if (rate == 48000 || rate == 96000)
1263 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1264 else
1265 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1266 if (rate > 48000)
1267 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1268 else
1269 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1270 } else {
1271 /* they are controlled via "IEC958 Output Switch" */
1272 /* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1273 /* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1274 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1275 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1276 setup_ac3(cm, subs, 0, 0);
1278 spin_unlock_irq(&cm->reg_lock);
1279 return 0;
1284 * preparation
1287 /* playback - enable spdif only on the certain condition */
1288 static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1290 struct cmipci *cm = snd_pcm_substream_chip(substream);
1291 int rate = substream->runtime->rate;
1292 int err, do_spdif, do_ac3 = 0;
1294 do_spdif = (rate >= 44100 && rate <= 96000 &&
1295 substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1296 substream->runtime->channels == 2);
1297 if (do_spdif && cm->can_ac3_hw)
1298 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1299 if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
1300 return err;
1301 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1304 /* playback (via device #2) - enable spdif always */
1305 static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1307 struct cmipci *cm = snd_pcm_substream_chip(substream);
1308 int err, do_ac3;
1310 if (cm->can_ac3_hw)
1311 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1312 else
1313 do_ac3 = 1; /* doesn't matter */
1314 if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
1315 return err;
1316 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1320 * Apparently, the samples last played on channel A stay in some buffer, even
1321 * after the channel is reset, and get added to the data for the rear DACs when
1322 * playing a multichannel stream on channel B. This is likely to generate
1323 * wraparounds and thus distortions.
1324 * To avoid this, we play at least one zero sample after the actual stream has
1325 * stopped.
1327 static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1329 struct snd_pcm_runtime *runtime = rec->substream->runtime;
1330 unsigned int reg, val;
1332 if (rec->needs_silencing && runtime && runtime->dma_area) {
1333 /* set up a small silence buffer */
1334 memset(runtime->dma_area, 0, PAGE_SIZE);
1335 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1336 val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1337 snd_cmipci_write(cm, reg, val);
1339 /* configure for 16 bits, 2 channels, 8 kHz */
1340 if (runtime->channels > 2)
1341 set_dac_channels(cm, rec, 2);
1342 spin_lock_irq(&cm->reg_lock);
1343 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1344 val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1345 val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1346 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1347 val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1348 val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1349 val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1350 if (cm->can_96k)
1351 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1352 snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1354 /* start stream (we don't need interrupts) */
1355 cm->ctrl |= CM_CHEN0 << rec->ch;
1356 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1357 spin_unlock_irq(&cm->reg_lock);
1359 msleep(1);
1361 /* stop and reset stream */
1362 spin_lock_irq(&cm->reg_lock);
1363 cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1364 val = CM_RST_CH0 << rec->ch;
1365 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1366 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1367 spin_unlock_irq(&cm->reg_lock);
1369 rec->needs_silencing = 0;
1373 static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1375 struct cmipci *cm = snd_pcm_substream_chip(substream);
1376 setup_spdif_playback(cm, substream, 0, 0);
1377 restore_mixer_state(cm);
1378 snd_cmipci_silence_hack(cm, &cm->channel[0]);
1379 return snd_cmipci_hw_free(substream);
1382 static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1384 struct cmipci *cm = snd_pcm_substream_chip(substream);
1385 snd_cmipci_silence_hack(cm, &cm->channel[1]);
1386 return snd_cmipci_hw_free(substream);
1389 /* capture */
1390 static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1392 struct cmipci *cm = snd_pcm_substream_chip(substream);
1393 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1396 /* capture with spdif (via device #2) */
1397 static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1399 struct cmipci *cm = snd_pcm_substream_chip(substream);
1401 spin_lock_irq(&cm->reg_lock);
1402 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1403 if (cm->can_96k) {
1404 if (substream->runtime->rate > 48000)
1405 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1406 else
1407 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1409 if (snd_pcm_format_width(substream->runtime->format) > 16)
1410 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1411 else
1412 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1414 spin_unlock_irq(&cm->reg_lock);
1416 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1419 static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1421 struct cmipci *cm = snd_pcm_substream_chip(subs);
1423 spin_lock_irq(&cm->reg_lock);
1424 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1425 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1426 spin_unlock_irq(&cm->reg_lock);
1428 return snd_cmipci_hw_free(subs);
1433 * interrupt handler
1435 static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1437 struct cmipci *cm = dev_id;
1438 unsigned int status, mask = 0;
1440 /* fastpath out, to ease interrupt sharing */
1441 status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1442 if (!(status & CM_INTR))
1443 return IRQ_NONE;
1445 /* acknowledge interrupt */
1446 spin_lock(&cm->reg_lock);
1447 if (status & CM_CHINT0)
1448 mask |= CM_CH0_INT_EN;
1449 if (status & CM_CHINT1)
1450 mask |= CM_CH1_INT_EN;
1451 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1452 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1453 spin_unlock(&cm->reg_lock);
1455 if (cm->rmidi && (status & CM_UARTINT))
1456 snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1458 if (cm->pcm) {
1459 if ((status & CM_CHINT0) && cm->channel[0].running)
1460 snd_pcm_period_elapsed(cm->channel[0].substream);
1461 if ((status & CM_CHINT1) && cm->channel[1].running)
1462 snd_pcm_period_elapsed(cm->channel[1].substream);
1464 return IRQ_HANDLED;
1468 * h/w infos
1471 /* playback on channel A */
1472 static struct snd_pcm_hardware snd_cmipci_playback =
1474 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1475 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1476 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1477 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1478 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1479 .rate_min = 5512,
1480 .rate_max = 48000,
1481 .channels_min = 1,
1482 .channels_max = 2,
1483 .buffer_bytes_max = (128*1024),
1484 .period_bytes_min = 64,
1485 .period_bytes_max = (128*1024),
1486 .periods_min = 2,
1487 .periods_max = 1024,
1488 .fifo_size = 0,
1491 /* capture on channel B */
1492 static struct snd_pcm_hardware snd_cmipci_capture =
1494 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1495 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1496 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1497 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1498 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1499 .rate_min = 5512,
1500 .rate_max = 48000,
1501 .channels_min = 1,
1502 .channels_max = 2,
1503 .buffer_bytes_max = (128*1024),
1504 .period_bytes_min = 64,
1505 .period_bytes_max = (128*1024),
1506 .periods_min = 2,
1507 .periods_max = 1024,
1508 .fifo_size = 0,
1511 /* playback on channel B - stereo 16bit only? */
1512 static struct snd_pcm_hardware snd_cmipci_playback2 =
1514 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1515 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1516 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1517 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1518 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1519 .rate_min = 5512,
1520 .rate_max = 48000,
1521 .channels_min = 2,
1522 .channels_max = 2,
1523 .buffer_bytes_max = (128*1024),
1524 .period_bytes_min = 64,
1525 .period_bytes_max = (128*1024),
1526 .periods_min = 2,
1527 .periods_max = 1024,
1528 .fifo_size = 0,
1531 /* spdif playback on channel A */
1532 static struct snd_pcm_hardware snd_cmipci_playback_spdif =
1534 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1535 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1536 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1537 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1538 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1539 .rate_min = 44100,
1540 .rate_max = 48000,
1541 .channels_min = 2,
1542 .channels_max = 2,
1543 .buffer_bytes_max = (128*1024),
1544 .period_bytes_min = 64,
1545 .period_bytes_max = (128*1024),
1546 .periods_min = 2,
1547 .periods_max = 1024,
1548 .fifo_size = 0,
1551 /* spdif playback on channel A (32bit, IEC958 subframes) */
1552 static struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1554 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1555 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1556 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1557 .formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1558 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1559 .rate_min = 44100,
1560 .rate_max = 48000,
1561 .channels_min = 2,
1562 .channels_max = 2,
1563 .buffer_bytes_max = (128*1024),
1564 .period_bytes_min = 64,
1565 .period_bytes_max = (128*1024),
1566 .periods_min = 2,
1567 .periods_max = 1024,
1568 .fifo_size = 0,
1571 /* spdif capture on channel B */
1572 static struct snd_pcm_hardware snd_cmipci_capture_spdif =
1574 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1575 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1576 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1577 .formats = SNDRV_PCM_FMTBIT_S16_LE |
1578 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1579 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1580 .rate_min = 44100,
1581 .rate_max = 48000,
1582 .channels_min = 2,
1583 .channels_max = 2,
1584 .buffer_bytes_max = (128*1024),
1585 .period_bytes_min = 64,
1586 .period_bytes_max = (128*1024),
1587 .periods_min = 2,
1588 .periods_max = 1024,
1589 .fifo_size = 0,
1592 static unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
1593 32000, 44100, 48000, 88200, 96000, 128000 };
1594 static struct snd_pcm_hw_constraint_list hw_constraints_rates = {
1595 .count = ARRAY_SIZE(rate_constraints),
1596 .list = rate_constraints,
1597 .mask = 0,
1601 * check device open/close
1603 static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1605 int ch = mode & CM_OPEN_CH_MASK;
1607 /* FIXME: a file should wait until the device becomes free
1608 * when it's opened on blocking mode. however, since the current
1609 * pcm framework doesn't pass file pointer before actually opened,
1610 * we can't know whether blocking mode or not in open callback..
1612 mutex_lock(&cm->open_mutex);
1613 if (cm->opened[ch]) {
1614 mutex_unlock(&cm->open_mutex);
1615 return -EBUSY;
1617 cm->opened[ch] = mode;
1618 cm->channel[ch].substream = subs;
1619 if (! (mode & CM_OPEN_DAC)) {
1620 /* disable dual DAC mode */
1621 cm->channel[ch].is_dac = 0;
1622 spin_lock_irq(&cm->reg_lock);
1623 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1624 spin_unlock_irq(&cm->reg_lock);
1626 mutex_unlock(&cm->open_mutex);
1627 return 0;
1630 static void close_device_check(struct cmipci *cm, int mode)
1632 int ch = mode & CM_OPEN_CH_MASK;
1634 mutex_lock(&cm->open_mutex);
1635 if (cm->opened[ch] == mode) {
1636 if (cm->channel[ch].substream) {
1637 snd_cmipci_ch_reset(cm, ch);
1638 cm->channel[ch].running = 0;
1639 cm->channel[ch].substream = NULL;
1641 cm->opened[ch] = 0;
1642 if (! cm->channel[ch].is_dac) {
1643 /* enable dual DAC mode again */
1644 cm->channel[ch].is_dac = 1;
1645 spin_lock_irq(&cm->reg_lock);
1646 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1647 spin_unlock_irq(&cm->reg_lock);
1650 mutex_unlock(&cm->open_mutex);
1656 static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1658 struct cmipci *cm = snd_pcm_substream_chip(substream);
1659 struct snd_pcm_runtime *runtime = substream->runtime;
1660 int err;
1662 if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
1663 return err;
1664 runtime->hw = snd_cmipci_playback;
1665 if (cm->chip_version == 68) {
1666 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1667 SNDRV_PCM_RATE_96000;
1668 runtime->hw.rate_max = 96000;
1669 } else if (cm->chip_version == 55) {
1670 err = snd_pcm_hw_constraint_list(runtime, 0,
1671 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1672 if (err < 0)
1673 return err;
1674 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1675 runtime->hw.rate_max = 128000;
1677 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1678 cm->dig_pcm_status = cm->dig_status;
1679 return 0;
1682 static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1684 struct cmipci *cm = snd_pcm_substream_chip(substream);
1685 struct snd_pcm_runtime *runtime = substream->runtime;
1686 int err;
1688 if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
1689 return err;
1690 runtime->hw = snd_cmipci_capture;
1691 if (cm->chip_version == 68) { // 8768 only supports 44k/48k recording
1692 runtime->hw.rate_min = 41000;
1693 runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1694 } else if (cm->chip_version == 55) {
1695 err = snd_pcm_hw_constraint_list(runtime, 0,
1696 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1697 if (err < 0)
1698 return err;
1699 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1700 runtime->hw.rate_max = 128000;
1702 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1703 return 0;
1706 static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1708 struct cmipci *cm = snd_pcm_substream_chip(substream);
1709 struct snd_pcm_runtime *runtime = substream->runtime;
1710 int err;
1712 if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
1713 return err;
1714 runtime->hw = snd_cmipci_playback2;
1715 mutex_lock(&cm->open_mutex);
1716 if (! cm->opened[CM_CH_PLAY]) {
1717 if (cm->can_multi_ch) {
1718 runtime->hw.channels_max = cm->max_channels;
1719 if (cm->max_channels == 4)
1720 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1721 else if (cm->max_channels == 6)
1722 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1723 else if (cm->max_channels == 8)
1724 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1727 mutex_unlock(&cm->open_mutex);
1728 if (cm->chip_version == 68) {
1729 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1730 SNDRV_PCM_RATE_96000;
1731 runtime->hw.rate_max = 96000;
1732 } else if (cm->chip_version == 55) {
1733 err = snd_pcm_hw_constraint_list(runtime, 0,
1734 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1735 if (err < 0)
1736 return err;
1737 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1738 runtime->hw.rate_max = 128000;
1740 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1741 return 0;
1744 static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1746 struct cmipci *cm = snd_pcm_substream_chip(substream);
1747 struct snd_pcm_runtime *runtime = substream->runtime;
1748 int err;
1750 if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
1751 return err;
1752 if (cm->can_ac3_hw) {
1753 runtime->hw = snd_cmipci_playback_spdif;
1754 if (cm->chip_version >= 37) {
1755 runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1756 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1758 if (cm->can_96k) {
1759 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1760 SNDRV_PCM_RATE_96000;
1761 runtime->hw.rate_max = 96000;
1763 } else {
1764 runtime->hw = snd_cmipci_playback_iec958_subframe;
1766 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1767 cm->dig_pcm_status = cm->dig_status;
1768 return 0;
1771 static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1773 struct cmipci *cm = snd_pcm_substream_chip(substream);
1774 struct snd_pcm_runtime *runtime = substream->runtime;
1775 int err;
1777 if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
1778 return err;
1779 runtime->hw = snd_cmipci_capture_spdif;
1780 if (cm->can_96k && !(cm->chip_version == 68)) {
1781 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1782 SNDRV_PCM_RATE_96000;
1783 runtime->hw.rate_max = 96000;
1785 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1786 return 0;
1793 static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1795 struct cmipci *cm = snd_pcm_substream_chip(substream);
1796 close_device_check(cm, CM_OPEN_PLAYBACK);
1797 return 0;
1800 static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1802 struct cmipci *cm = snd_pcm_substream_chip(substream);
1803 close_device_check(cm, CM_OPEN_CAPTURE);
1804 return 0;
1807 static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1809 struct cmipci *cm = snd_pcm_substream_chip(substream);
1810 close_device_check(cm, CM_OPEN_PLAYBACK2);
1811 close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1812 return 0;
1815 static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1817 struct cmipci *cm = snd_pcm_substream_chip(substream);
1818 close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1819 return 0;
1822 static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1824 struct cmipci *cm = snd_pcm_substream_chip(substream);
1825 close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1826 return 0;
1833 static struct snd_pcm_ops snd_cmipci_playback_ops = {
1834 .open = snd_cmipci_playback_open,
1835 .close = snd_cmipci_playback_close,
1836 .ioctl = snd_pcm_lib_ioctl,
1837 .hw_params = snd_cmipci_hw_params,
1838 .hw_free = snd_cmipci_playback_hw_free,
1839 .prepare = snd_cmipci_playback_prepare,
1840 .trigger = snd_cmipci_playback_trigger,
1841 .pointer = snd_cmipci_playback_pointer,
1844 static struct snd_pcm_ops snd_cmipci_capture_ops = {
1845 .open = snd_cmipci_capture_open,
1846 .close = snd_cmipci_capture_close,
1847 .ioctl = snd_pcm_lib_ioctl,
1848 .hw_params = snd_cmipci_hw_params,
1849 .hw_free = snd_cmipci_hw_free,
1850 .prepare = snd_cmipci_capture_prepare,
1851 .trigger = snd_cmipci_capture_trigger,
1852 .pointer = snd_cmipci_capture_pointer,
1855 static struct snd_pcm_ops snd_cmipci_playback2_ops = {
1856 .open = snd_cmipci_playback2_open,
1857 .close = snd_cmipci_playback2_close,
1858 .ioctl = snd_pcm_lib_ioctl,
1859 .hw_params = snd_cmipci_playback2_hw_params,
1860 .hw_free = snd_cmipci_playback2_hw_free,
1861 .prepare = snd_cmipci_capture_prepare, /* channel B */
1862 .trigger = snd_cmipci_capture_trigger, /* channel B */
1863 .pointer = snd_cmipci_capture_pointer, /* channel B */
1866 static struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1867 .open = snd_cmipci_playback_spdif_open,
1868 .close = snd_cmipci_playback_spdif_close,
1869 .ioctl = snd_pcm_lib_ioctl,
1870 .hw_params = snd_cmipci_hw_params,
1871 .hw_free = snd_cmipci_playback_hw_free,
1872 .prepare = snd_cmipci_playback_spdif_prepare, /* set up rate */
1873 .trigger = snd_cmipci_playback_trigger,
1874 .pointer = snd_cmipci_playback_pointer,
1877 static struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1878 .open = snd_cmipci_capture_spdif_open,
1879 .close = snd_cmipci_capture_spdif_close,
1880 .ioctl = snd_pcm_lib_ioctl,
1881 .hw_params = snd_cmipci_hw_params,
1882 .hw_free = snd_cmipci_capture_spdif_hw_free,
1883 .prepare = snd_cmipci_capture_spdif_prepare,
1884 .trigger = snd_cmipci_capture_trigger,
1885 .pointer = snd_cmipci_capture_pointer,
1892 static int __devinit snd_cmipci_pcm_new(struct cmipci *cm, int device)
1894 struct snd_pcm *pcm;
1895 int err;
1897 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1898 if (err < 0)
1899 return err;
1901 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1902 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1904 pcm->private_data = cm;
1905 pcm->info_flags = 0;
1906 strcpy(pcm->name, "C-Media PCI DAC/ADC");
1907 cm->pcm = pcm;
1909 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1910 snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1912 return 0;
1915 static int __devinit snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1917 struct snd_pcm *pcm;
1918 int err;
1920 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1921 if (err < 0)
1922 return err;
1924 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1926 pcm->private_data = cm;
1927 pcm->info_flags = 0;
1928 strcpy(pcm->name, "C-Media PCI 2nd DAC");
1929 cm->pcm2 = pcm;
1931 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1932 snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1934 return 0;
1937 static int __devinit snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1939 struct snd_pcm *pcm;
1940 int err;
1942 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1943 if (err < 0)
1944 return err;
1946 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1947 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1949 pcm->private_data = cm;
1950 pcm->info_flags = 0;
1951 strcpy(pcm->name, "C-Media PCI IEC958");
1952 cm->pcm_spdif = pcm;
1954 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1955 snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1957 return 0;
1961 * mixer interface:
1962 * - CM8338/8738 has a compatible mixer interface with SB16, but
1963 * lack of some elements like tone control, i/o gain and AGC.
1964 * - Access to native registers:
1965 * - A 3D switch
1966 * - Output mute switches
1969 static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1971 outb(idx, s->iobase + CM_REG_SB16_ADDR);
1972 outb(data, s->iobase + CM_REG_SB16_DATA);
1975 static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1977 unsigned char v;
1979 outb(idx, s->iobase + CM_REG_SB16_ADDR);
1980 v = inb(s->iobase + CM_REG_SB16_DATA);
1981 return v;
1985 * general mixer element
1987 struct cmipci_sb_reg {
1988 unsigned int left_reg, right_reg;
1989 unsigned int left_shift, right_shift;
1990 unsigned int mask;
1991 unsigned int invert: 1;
1992 unsigned int stereo: 1;
1995 #define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1996 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1998 #define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
1999 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2000 .info = snd_cmipci_info_volume, \
2001 .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
2002 .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
2005 #define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
2006 #define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
2007 #define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
2008 #define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
2010 static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
2012 r->left_reg = val & 0xff;
2013 r->right_reg = (val >> 8) & 0xff;
2014 r->left_shift = (val >> 16) & 0x07;
2015 r->right_shift = (val >> 19) & 0x07;
2016 r->invert = (val >> 22) & 1;
2017 r->stereo = (val >> 23) & 1;
2018 r->mask = (val >> 24) & 0xff;
2021 static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
2022 struct snd_ctl_elem_info *uinfo)
2024 struct cmipci_sb_reg reg;
2026 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2027 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2028 uinfo->count = reg.stereo + 1;
2029 uinfo->value.integer.min = 0;
2030 uinfo->value.integer.max = reg.mask;
2031 return 0;
2034 static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2035 struct snd_ctl_elem_value *ucontrol)
2037 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2038 struct cmipci_sb_reg reg;
2039 int val;
2041 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2042 spin_lock_irq(&cm->reg_lock);
2043 val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2044 if (reg.invert)
2045 val = reg.mask - val;
2046 ucontrol->value.integer.value[0] = val;
2047 if (reg.stereo) {
2048 val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2049 if (reg.invert)
2050 val = reg.mask - val;
2051 ucontrol->value.integer.value[1] = val;
2053 spin_unlock_irq(&cm->reg_lock);
2054 return 0;
2057 static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2058 struct snd_ctl_elem_value *ucontrol)
2060 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2061 struct cmipci_sb_reg reg;
2062 int change;
2063 int left, right, oleft, oright;
2065 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2066 left = ucontrol->value.integer.value[0] & reg.mask;
2067 if (reg.invert)
2068 left = reg.mask - left;
2069 left <<= reg.left_shift;
2070 if (reg.stereo) {
2071 right = ucontrol->value.integer.value[1] & reg.mask;
2072 if (reg.invert)
2073 right = reg.mask - right;
2074 right <<= reg.right_shift;
2075 } else
2076 right = 0;
2077 spin_lock_irq(&cm->reg_lock);
2078 oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2079 left |= oleft & ~(reg.mask << reg.left_shift);
2080 change = left != oleft;
2081 if (reg.stereo) {
2082 if (reg.left_reg != reg.right_reg) {
2083 snd_cmipci_mixer_write(cm, reg.left_reg, left);
2084 oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2085 } else
2086 oright = left;
2087 right |= oright & ~(reg.mask << reg.right_shift);
2088 change |= right != oright;
2089 snd_cmipci_mixer_write(cm, reg.right_reg, right);
2090 } else
2091 snd_cmipci_mixer_write(cm, reg.left_reg, left);
2092 spin_unlock_irq(&cm->reg_lock);
2093 return change;
2097 * input route (left,right) -> (left,right)
2099 #define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2100 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2101 .info = snd_cmipci_info_input_sw, \
2102 .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2103 .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2106 static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2107 struct snd_ctl_elem_info *uinfo)
2109 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2110 uinfo->count = 4;
2111 uinfo->value.integer.min = 0;
2112 uinfo->value.integer.max = 1;
2113 return 0;
2116 static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2117 struct snd_ctl_elem_value *ucontrol)
2119 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2120 struct cmipci_sb_reg reg;
2121 int val1, val2;
2123 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2124 spin_lock_irq(&cm->reg_lock);
2125 val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2126 val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2127 spin_unlock_irq(&cm->reg_lock);
2128 ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2129 ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2130 ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2131 ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2132 return 0;
2135 static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2136 struct snd_ctl_elem_value *ucontrol)
2138 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2139 struct cmipci_sb_reg reg;
2140 int change;
2141 int val1, val2, oval1, oval2;
2143 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2144 spin_lock_irq(&cm->reg_lock);
2145 oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2146 oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2147 val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2148 val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2149 val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2150 val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2151 val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2152 val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2153 change = val1 != oval1 || val2 != oval2;
2154 snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2155 snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2156 spin_unlock_irq(&cm->reg_lock);
2157 return change;
2161 * native mixer switches/volumes
2164 #define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2165 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2166 .info = snd_cmipci_info_native_mixer, \
2167 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2168 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2171 #define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2172 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2173 .info = snd_cmipci_info_native_mixer, \
2174 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2175 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2178 #define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2179 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2180 .info = snd_cmipci_info_native_mixer, \
2181 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2182 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2185 #define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2186 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2187 .info = snd_cmipci_info_native_mixer, \
2188 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2189 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2192 static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2193 struct snd_ctl_elem_info *uinfo)
2195 struct cmipci_sb_reg reg;
2197 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2198 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2199 uinfo->count = reg.stereo + 1;
2200 uinfo->value.integer.min = 0;
2201 uinfo->value.integer.max = reg.mask;
2202 return 0;
2206 static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2207 struct snd_ctl_elem_value *ucontrol)
2209 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2210 struct cmipci_sb_reg reg;
2211 unsigned char oreg, val;
2213 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2214 spin_lock_irq(&cm->reg_lock);
2215 oreg = inb(cm->iobase + reg.left_reg);
2216 val = (oreg >> reg.left_shift) & reg.mask;
2217 if (reg.invert)
2218 val = reg.mask - val;
2219 ucontrol->value.integer.value[0] = val;
2220 if (reg.stereo) {
2221 val = (oreg >> reg.right_shift) & reg.mask;
2222 if (reg.invert)
2223 val = reg.mask - val;
2224 ucontrol->value.integer.value[1] = val;
2226 spin_unlock_irq(&cm->reg_lock);
2227 return 0;
2230 static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2231 struct snd_ctl_elem_value *ucontrol)
2233 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2234 struct cmipci_sb_reg reg;
2235 unsigned char oreg, nreg, val;
2237 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2238 spin_lock_irq(&cm->reg_lock);
2239 oreg = inb(cm->iobase + reg.left_reg);
2240 val = ucontrol->value.integer.value[0] & reg.mask;
2241 if (reg.invert)
2242 val = reg.mask - val;
2243 nreg = oreg & ~(reg.mask << reg.left_shift);
2244 nreg |= (val << reg.left_shift);
2245 if (reg.stereo) {
2246 val = ucontrol->value.integer.value[1] & reg.mask;
2247 if (reg.invert)
2248 val = reg.mask - val;
2249 nreg &= ~(reg.mask << reg.right_shift);
2250 nreg |= (val << reg.right_shift);
2252 outb(nreg, cm->iobase + reg.left_reg);
2253 spin_unlock_irq(&cm->reg_lock);
2254 return (nreg != oreg);
2258 * special case - check mixer sensitivity
2260 static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2261 struct snd_ctl_elem_value *ucontrol)
2263 //struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2264 return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2267 static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2268 struct snd_ctl_elem_value *ucontrol)
2270 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2271 if (cm->mixer_insensitive) {
2272 /* ignored */
2273 return 0;
2275 return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2279 static struct snd_kcontrol_new snd_cmipci_mixers[] __devinitdata = {
2280 CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2281 CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2282 CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2283 //CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2284 { /* switch with sensitivity */
2285 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2286 .name = "PCM Playback Switch",
2287 .info = snd_cmipci_info_native_mixer,
2288 .get = snd_cmipci_get_native_mixer_sensitive,
2289 .put = snd_cmipci_put_native_mixer_sensitive,
2290 .private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2292 CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2293 CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2294 CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2295 CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2296 CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2297 CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2298 CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2299 CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2300 CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2301 CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2302 CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2303 CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2304 CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2305 CMIPCI_SB_VOL_MONO("PC Speaker Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2306 CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2307 CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2308 CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2309 CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2310 CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2311 CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2312 CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2313 CMIPCI_DOUBLE("PC Speaker Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2314 CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2318 * other switches
2321 struct cmipci_switch_args {
2322 int reg; /* register index */
2323 unsigned int mask; /* mask bits */
2324 unsigned int mask_on; /* mask bits to turn on */
2325 unsigned int is_byte: 1; /* byte access? */
2326 unsigned int ac3_sensitive: 1; /* access forbidden during
2327 * non-audio operation?
2331 #define snd_cmipci_uswitch_info snd_ctl_boolean_mono_info
2333 static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2334 struct snd_ctl_elem_value *ucontrol,
2335 struct cmipci_switch_args *args)
2337 unsigned int val;
2338 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2340 spin_lock_irq(&cm->reg_lock);
2341 if (args->ac3_sensitive && cm->mixer_insensitive) {
2342 ucontrol->value.integer.value[0] = 0;
2343 spin_unlock_irq(&cm->reg_lock);
2344 return 0;
2346 if (args->is_byte)
2347 val = inb(cm->iobase + args->reg);
2348 else
2349 val = snd_cmipci_read(cm, args->reg);
2350 ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2351 spin_unlock_irq(&cm->reg_lock);
2352 return 0;
2355 static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2356 struct snd_ctl_elem_value *ucontrol)
2358 struct cmipci_switch_args *args;
2359 args = (struct cmipci_switch_args *)kcontrol->private_value;
2360 snd_assert(args != NULL, return -EINVAL);
2361 return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2364 static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2365 struct snd_ctl_elem_value *ucontrol,
2366 struct cmipci_switch_args *args)
2368 unsigned int val;
2369 int change;
2370 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2372 spin_lock_irq(&cm->reg_lock);
2373 if (args->ac3_sensitive && cm->mixer_insensitive) {
2374 /* ignored */
2375 spin_unlock_irq(&cm->reg_lock);
2376 return 0;
2378 if (args->is_byte)
2379 val = inb(cm->iobase + args->reg);
2380 else
2381 val = snd_cmipci_read(cm, args->reg);
2382 change = (val & args->mask) != (ucontrol->value.integer.value[0] ?
2383 args->mask_on : (args->mask & ~args->mask_on));
2384 if (change) {
2385 val &= ~args->mask;
2386 if (ucontrol->value.integer.value[0])
2387 val |= args->mask_on;
2388 else
2389 val |= (args->mask & ~args->mask_on);
2390 if (args->is_byte)
2391 outb((unsigned char)val, cm->iobase + args->reg);
2392 else
2393 snd_cmipci_write(cm, args->reg, val);
2395 spin_unlock_irq(&cm->reg_lock);
2396 return change;
2399 static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2400 struct snd_ctl_elem_value *ucontrol)
2402 struct cmipci_switch_args *args;
2403 args = (struct cmipci_switch_args *)kcontrol->private_value;
2404 snd_assert(args != NULL, return -EINVAL);
2405 return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2408 #define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2409 static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2410 .reg = xreg, \
2411 .mask = xmask, \
2412 .mask_on = xmask_on, \
2413 .is_byte = xis_byte, \
2414 .ac3_sensitive = xac3, \
2417 #define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2418 DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2420 #if 0 /* these will be controlled in pcm device */
2421 DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2422 DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2423 #endif
2424 DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2425 DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2426 DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2427 DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2428 DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2429 DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2430 DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2431 DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2432 // DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2433 DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2434 DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2435 /* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2436 DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2437 DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2438 #if CM_CH_PLAY == 1
2439 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2440 #else
2441 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2442 #endif
2443 DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2444 // DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2445 // DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2446 // DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2447 DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2449 #define DEFINE_SWITCH(sname, stype, sarg) \
2450 { .name = sname, \
2451 .iface = stype, \
2452 .info = snd_cmipci_uswitch_info, \
2453 .get = snd_cmipci_uswitch_get, \
2454 .put = snd_cmipci_uswitch_put, \
2455 .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2458 #define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2459 #define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2463 * callbacks for spdif output switch
2464 * needs toggle two registers..
2466 static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2467 struct snd_ctl_elem_value *ucontrol)
2469 int changed;
2470 changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2471 changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2472 return changed;
2475 static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2476 struct snd_ctl_elem_value *ucontrol)
2478 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2479 int changed;
2480 changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2481 changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2482 if (changed) {
2483 if (ucontrol->value.integer.value[0]) {
2484 if (chip->spdif_playback_avail)
2485 snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2486 } else {
2487 if (chip->spdif_playback_avail)
2488 snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2491 chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2492 return changed;
2496 static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2497 struct snd_ctl_elem_info *uinfo)
2499 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2500 static char *texts[3] = { "Line-In", "Rear Output", "Bass Output" };
2501 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2502 uinfo->count = 1;
2503 uinfo->value.enumerated.items = cm->chip_version >= 39 ? 3 : 2;
2504 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2505 uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
2506 strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
2507 return 0;
2510 static inline unsigned int get_line_in_mode(struct cmipci *cm)
2512 unsigned int val;
2513 if (cm->chip_version >= 39) {
2514 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2515 if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2516 return 2;
2518 val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2519 if (val & CM_REAR2LIN)
2520 return 1;
2521 return 0;
2524 static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2525 struct snd_ctl_elem_value *ucontrol)
2527 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2529 spin_lock_irq(&cm->reg_lock);
2530 ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2531 spin_unlock_irq(&cm->reg_lock);
2532 return 0;
2535 static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2536 struct snd_ctl_elem_value *ucontrol)
2538 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2539 int change;
2541 spin_lock_irq(&cm->reg_lock);
2542 if (ucontrol->value.enumerated.item[0] == 2)
2543 change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2544 else
2545 change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2546 if (ucontrol->value.enumerated.item[0] == 1)
2547 change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2548 else
2549 change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2550 spin_unlock_irq(&cm->reg_lock);
2551 return change;
2554 static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2555 struct snd_ctl_elem_info *uinfo)
2557 static char *texts[2] = { "Mic-In", "Center/LFE Output" };
2558 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2559 uinfo->count = 1;
2560 uinfo->value.enumerated.items = 2;
2561 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2562 uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
2563 strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
2564 return 0;
2567 static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2568 struct snd_ctl_elem_value *ucontrol)
2570 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2571 /* same bit as spdi_phase */
2572 spin_lock_irq(&cm->reg_lock);
2573 ucontrol->value.enumerated.item[0] =
2574 (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2575 spin_unlock_irq(&cm->reg_lock);
2576 return 0;
2579 static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2580 struct snd_ctl_elem_value *ucontrol)
2582 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2583 int change;
2585 spin_lock_irq(&cm->reg_lock);
2586 if (ucontrol->value.enumerated.item[0])
2587 change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2588 else
2589 change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2590 spin_unlock_irq(&cm->reg_lock);
2591 return change;
2594 /* both for CM8338/8738 */
2595 static struct snd_kcontrol_new snd_cmipci_mixer_switches[] __devinitdata = {
2596 DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2598 .name = "Line-In Mode",
2599 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2600 .info = snd_cmipci_line_in_mode_info,
2601 .get = snd_cmipci_line_in_mode_get,
2602 .put = snd_cmipci_line_in_mode_put,
2606 /* for non-multichannel chips */
2607 static struct snd_kcontrol_new snd_cmipci_nomulti_switch __devinitdata =
2608 DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2610 /* only for CM8738 */
2611 static struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] __devinitdata = {
2612 #if 0 /* controlled in pcm device */
2613 DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2614 DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2615 DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2616 #endif
2617 // DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2618 { .name = "IEC958 Output Switch",
2619 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2620 .info = snd_cmipci_uswitch_info,
2621 .get = snd_cmipci_spdout_enable_get,
2622 .put = snd_cmipci_spdout_enable_put,
2624 DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2625 DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2626 DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2627 // DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2628 DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2629 DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2632 /* only for model 033/037 */
2633 static struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] __devinitdata = {
2634 DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2635 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2636 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2639 /* only for model 039 or later */
2640 static struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] __devinitdata = {
2641 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2642 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2644 .name = "Mic-In Mode",
2645 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2646 .info = snd_cmipci_mic_in_mode_info,
2647 .get = snd_cmipci_mic_in_mode_get,
2648 .put = snd_cmipci_mic_in_mode_put,
2652 /* card control switches */
2653 static struct snd_kcontrol_new snd_cmipci_modem_switch __devinitdata =
2654 DEFINE_CARD_SWITCH("Modem", modem);
2657 static int __devinit snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2659 struct snd_card *card;
2660 struct snd_kcontrol_new *sw;
2661 struct snd_kcontrol *kctl;
2662 unsigned int idx;
2663 int err;
2665 snd_assert(cm != NULL && cm->card != NULL, return -EINVAL);
2667 card = cm->card;
2669 strcpy(card->mixername, "CMedia PCI");
2671 spin_lock_irq(&cm->reg_lock);
2672 snd_cmipci_mixer_write(cm, 0x00, 0x00); /* mixer reset */
2673 spin_unlock_irq(&cm->reg_lock);
2675 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2676 if (cm->chip_version == 68) { // 8768 has no PCM volume
2677 if (!strcmp(snd_cmipci_mixers[idx].name,
2678 "PCM Playback Volume"))
2679 continue;
2681 if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
2682 return err;
2685 /* mixer switches */
2686 sw = snd_cmipci_mixer_switches;
2687 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2688 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2689 if (err < 0)
2690 return err;
2692 if (! cm->can_multi_ch) {
2693 err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2694 if (err < 0)
2695 return err;
2697 if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2698 cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2699 sw = snd_cmipci_8738_mixer_switches;
2700 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2701 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2702 if (err < 0)
2703 return err;
2705 if (cm->can_ac3_hw) {
2706 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
2707 return err;
2708 kctl->id.device = pcm_spdif_device;
2709 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
2710 return err;
2711 kctl->id.device = pcm_spdif_device;
2712 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
2713 return err;
2714 kctl->id.device = pcm_spdif_device;
2716 if (cm->chip_version <= 37) {
2717 sw = snd_cmipci_old_mixer_switches;
2718 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2719 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2720 if (err < 0)
2721 return err;
2725 if (cm->chip_version >= 39) {
2726 sw = snd_cmipci_extra_mixer_switches;
2727 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2728 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2729 if (err < 0)
2730 return err;
2734 /* card switches */
2736 * newer chips don't have the register bits to force modem link
2737 * detection; the bit that was FLINKON now mutes CH1
2739 if (cm->chip_version < 39) {
2740 err = snd_ctl_add(cm->card,
2741 snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2742 if (err < 0)
2743 return err;
2746 for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2747 struct snd_ctl_elem_id id;
2748 struct snd_kcontrol *ctl;
2749 memset(&id, 0, sizeof(id));
2750 id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2751 strcpy(id.name, cm_saved_mixer[idx].name);
2752 if ((ctl = snd_ctl_find_id(cm->card, &id)) != NULL)
2753 cm->mixer_res_ctl[idx] = ctl;
2756 return 0;
2761 * proc interface
2764 #ifdef CONFIG_PROC_FS
2765 static void snd_cmipci_proc_read(struct snd_info_entry *entry,
2766 struct snd_info_buffer *buffer)
2768 struct cmipci *cm = entry->private_data;
2769 int i, v;
2771 snd_iprintf(buffer, "%s\n", cm->card->longname);
2772 for (i = 0; i < 0x94; i++) {
2773 if (i == 0x28)
2774 i = 0x90;
2775 v = inb(cm->iobase + i);
2776 if (i % 4 == 0)
2777 snd_iprintf(buffer, "\n%02x:", i);
2778 snd_iprintf(buffer, " %02x", v);
2780 snd_iprintf(buffer, "\n");
2783 static void __devinit snd_cmipci_proc_init(struct cmipci *cm)
2785 struct snd_info_entry *entry;
2787 if (! snd_card_proc_new(cm->card, "cmipci", &entry))
2788 snd_info_set_text_ops(entry, cm, snd_cmipci_proc_read);
2790 #else /* !CONFIG_PROC_FS */
2791 static inline void snd_cmipci_proc_init(struct cmipci *cm) {}
2792 #endif
2795 static struct pci_device_id snd_cmipci_ids[] = {
2796 {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2797 {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2798 {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2799 {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2800 {PCI_VENDOR_ID_AL, PCI_DEVICE_ID_CMEDIA_CM8738, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2801 {0,},
2806 * check chip version and capabilities
2807 * driver name is modified according to the chip model
2809 static void __devinit query_chip(struct cmipci *cm)
2811 unsigned int detect;
2813 /* check reg 0Ch, bit 24-31 */
2814 detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2815 if (! detect) {
2816 /* check reg 08h, bit 24-28 */
2817 detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2818 switch (detect) {
2819 case 0:
2820 cm->chip_version = 33;
2821 if (cm->do_soft_ac3)
2822 cm->can_ac3_sw = 1;
2823 else
2824 cm->can_ac3_hw = 1;
2825 break;
2826 case CM_CHIP_037:
2827 cm->chip_version = 37;
2828 cm->can_ac3_hw = 1;
2829 break;
2830 default:
2831 cm->chip_version = 39;
2832 cm->can_ac3_hw = 1;
2833 break;
2835 cm->max_channels = 2;
2836 } else {
2837 if (detect & CM_CHIP_039) {
2838 cm->chip_version = 39;
2839 if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2840 cm->max_channels = 6;
2841 else
2842 cm->max_channels = 4;
2843 } else if (detect & CM_CHIP_8768) {
2844 cm->chip_version = 68;
2845 cm->max_channels = 8;
2846 cm->can_96k = 1;
2847 } else {
2848 cm->chip_version = 55;
2849 cm->max_channels = 6;
2850 cm->can_96k = 1;
2852 cm->can_ac3_hw = 1;
2853 cm->can_multi_ch = 1;
2857 #ifdef SUPPORT_JOYSTICK
2858 static int __devinit snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2860 static int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2861 struct gameport *gp;
2862 struct resource *r = NULL;
2863 int i, io_port = 0;
2865 if (joystick_port[dev] == 0)
2866 return -ENODEV;
2868 if (joystick_port[dev] == 1) { /* auto-detect */
2869 for (i = 0; ports[i]; i++) {
2870 io_port = ports[i];
2871 r = request_region(io_port, 1, "CMIPCI gameport");
2872 if (r)
2873 break;
2875 } else {
2876 io_port = joystick_port[dev];
2877 r = request_region(io_port, 1, "CMIPCI gameport");
2880 if (!r) {
2881 printk(KERN_WARNING "cmipci: cannot reserve joystick ports\n");
2882 return -EBUSY;
2885 cm->gameport = gp = gameport_allocate_port();
2886 if (!gp) {
2887 printk(KERN_ERR "cmipci: cannot allocate memory for gameport\n");
2888 release_and_free_resource(r);
2889 return -ENOMEM;
2891 gameport_set_name(gp, "C-Media Gameport");
2892 gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2893 gameport_set_dev_parent(gp, &cm->pci->dev);
2894 gp->io = io_port;
2895 gameport_set_port_data(gp, r);
2897 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2899 gameport_register_port(cm->gameport);
2901 return 0;
2904 static void snd_cmipci_free_gameport(struct cmipci *cm)
2906 if (cm->gameport) {
2907 struct resource *r = gameport_get_port_data(cm->gameport);
2909 gameport_unregister_port(cm->gameport);
2910 cm->gameport = NULL;
2912 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2913 release_and_free_resource(r);
2916 #else
2917 static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2918 static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2919 #endif
2921 static int snd_cmipci_free(struct cmipci *cm)
2923 if (cm->irq >= 0) {
2924 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2925 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2926 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */
2927 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2928 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2929 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2930 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2932 /* reset mixer */
2933 snd_cmipci_mixer_write(cm, 0, 0);
2935 synchronize_irq(cm->irq);
2937 free_irq(cm->irq, cm);
2940 snd_cmipci_free_gameport(cm);
2941 pci_release_regions(cm->pci);
2942 pci_disable_device(cm->pci);
2943 kfree(cm);
2944 return 0;
2947 static int snd_cmipci_dev_free(struct snd_device *device)
2949 struct cmipci *cm = device->device_data;
2950 return snd_cmipci_free(cm);
2953 static int __devinit snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2955 long iosynth;
2956 unsigned int val;
2957 struct snd_opl3 *opl3;
2958 int err;
2960 if (!fm_port)
2961 goto disable_fm;
2963 if (cm->chip_version >= 39) {
2964 /* first try FM regs in PCI port range */
2965 iosynth = cm->iobase + CM_REG_FM_PCI;
2966 err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2967 OPL3_HW_OPL3, 1, &opl3);
2968 } else {
2969 err = -EIO;
2971 if (err < 0) {
2972 /* then try legacy ports */
2973 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2974 iosynth = fm_port;
2975 switch (iosynth) {
2976 case 0x3E8: val |= CM_FMSEL_3E8; break;
2977 case 0x3E0: val |= CM_FMSEL_3E0; break;
2978 case 0x3C8: val |= CM_FMSEL_3C8; break;
2979 case 0x388: val |= CM_FMSEL_388; break;
2980 default:
2981 goto disable_fm;
2983 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2984 /* enable FM */
2985 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2987 if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2988 OPL3_HW_OPL3, 0, &opl3) < 0) {
2989 printk(KERN_ERR "cmipci: no OPL device at %#lx, "
2990 "skipping...\n", iosynth);
2991 goto disable_fm;
2994 if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
2995 printk(KERN_ERR "cmipci: cannot create OPL3 hwdep\n");
2996 return err;
2998 return 0;
3000 disable_fm:
3001 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
3002 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
3003 return 0;
3006 static int __devinit snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
3007 int dev, struct cmipci **rcmipci)
3009 struct cmipci *cm;
3010 int err;
3011 static struct snd_device_ops ops = {
3012 .dev_free = snd_cmipci_dev_free,
3014 unsigned int val;
3015 long iomidi;
3016 int integrated_midi = 0;
3017 char modelstr[16];
3018 int pcm_index, pcm_spdif_index;
3019 static struct pci_device_id intel_82437vx[] = {
3020 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
3021 { },
3024 *rcmipci = NULL;
3026 if ((err = pci_enable_device(pci)) < 0)
3027 return err;
3029 cm = kzalloc(sizeof(*cm), GFP_KERNEL);
3030 if (cm == NULL) {
3031 pci_disable_device(pci);
3032 return -ENOMEM;
3035 spin_lock_init(&cm->reg_lock);
3036 mutex_init(&cm->open_mutex);
3037 cm->device = pci->device;
3038 cm->card = card;
3039 cm->pci = pci;
3040 cm->irq = -1;
3041 cm->channel[0].ch = 0;
3042 cm->channel[1].ch = 1;
3043 cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
3045 if ((err = pci_request_regions(pci, card->driver)) < 0) {
3046 kfree(cm);
3047 pci_disable_device(pci);
3048 return err;
3050 cm->iobase = pci_resource_start(pci, 0);
3052 if (request_irq(pci->irq, snd_cmipci_interrupt,
3053 IRQF_SHARED, card->driver, cm)) {
3054 snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
3055 snd_cmipci_free(cm);
3056 return -EBUSY;
3058 cm->irq = pci->irq;
3060 pci_set_master(cm->pci);
3063 * check chip version, max channels and capabilities
3066 cm->chip_version = 0;
3067 cm->max_channels = 2;
3068 cm->do_soft_ac3 = soft_ac3[dev];
3070 if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3071 pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3072 query_chip(cm);
3073 /* added -MCx suffix for chip supporting multi-channels */
3074 if (cm->can_multi_ch)
3075 sprintf(cm->card->driver + strlen(cm->card->driver),
3076 "-MC%d", cm->max_channels);
3077 else if (cm->can_ac3_sw)
3078 strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3080 cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3081 cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3083 #if CM_CH_PLAY == 1
3084 cm->ctrl = CM_CHADC0; /* default FUNCNTRL0 */
3085 #else
3086 cm->ctrl = CM_CHADC1; /* default FUNCNTRL0 */
3087 #endif
3089 /* initialize codec registers */
3090 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3091 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3092 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */
3093 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3094 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3095 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
3096 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3098 snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3099 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3100 #if CM_CH_PLAY == 1
3101 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3102 #else
3103 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3104 #endif
3105 if (cm->chip_version) {
3106 snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3107 snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3109 /* Set Bus Master Request */
3110 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3112 /* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3113 switch (pci->device) {
3114 case PCI_DEVICE_ID_CMEDIA_CM8738:
3115 case PCI_DEVICE_ID_CMEDIA_CM8738B:
3116 if (!pci_dev_present(intel_82437vx))
3117 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3118 break;
3119 default:
3120 break;
3123 if (cm->chip_version < 68) {
3124 val = pci->device < 0x110 ? 8338 : 8738;
3125 } else {
3126 switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3127 case 0:
3128 val = 8769;
3129 break;
3130 case 2:
3131 val = 8762;
3132 break;
3133 default:
3134 switch ((pci->subsystem_vendor << 16) |
3135 pci->subsystem_device) {
3136 case 0x13f69761:
3137 case 0x584d3741:
3138 case 0x584d3751:
3139 case 0x584d3761:
3140 case 0x584d3771:
3141 case 0x72848384:
3142 val = 8770;
3143 break;
3144 default:
3145 val = 8768;
3146 break;
3150 sprintf(card->shortname, "C-Media CMI%d", val);
3151 if (cm->chip_version < 68)
3152 sprintf(modelstr, " (model %d)", cm->chip_version);
3153 else
3154 modelstr[0] = '\0';
3155 sprintf(card->longname, "%s%s at %#lx, irq %i",
3156 card->shortname, modelstr, cm->iobase, cm->irq);
3158 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
3159 snd_cmipci_free(cm);
3160 return err;
3163 if (cm->chip_version >= 39) {
3164 val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3165 if (val != 0x00 && val != 0xff) {
3166 iomidi = cm->iobase + CM_REG_MPU_PCI;
3167 integrated_midi = 1;
3170 if (!integrated_midi) {
3171 val = 0;
3172 iomidi = mpu_port[dev];
3173 switch (iomidi) {
3174 case 0x320: val = CM_VMPU_320; break;
3175 case 0x310: val = CM_VMPU_310; break;
3176 case 0x300: val = CM_VMPU_300; break;
3177 case 0x330: val = CM_VMPU_330; break;
3178 default:
3179 iomidi = 0; break;
3181 if (iomidi > 0) {
3182 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3183 /* enable UART */
3184 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3185 if (inb(iomidi + 1) == 0xff) {
3186 snd_printk(KERN_ERR "cannot enable MPU-401 port"
3187 " at %#lx\n", iomidi);
3188 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3189 CM_UART_EN);
3190 iomidi = 0;
3195 if (cm->chip_version < 68) {
3196 err = snd_cmipci_create_fm(cm, fm_port[dev]);
3197 if (err < 0)
3198 return err;
3201 /* reset mixer */
3202 snd_cmipci_mixer_write(cm, 0, 0);
3204 snd_cmipci_proc_init(cm);
3206 /* create pcm devices */
3207 pcm_index = pcm_spdif_index = 0;
3208 if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
3209 return err;
3210 pcm_index++;
3211 if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
3212 return err;
3213 pcm_index++;
3214 if (cm->can_ac3_hw || cm->can_ac3_sw) {
3215 pcm_spdif_index = pcm_index;
3216 if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
3217 return err;
3220 /* create mixer interface & switches */
3221 if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
3222 return err;
3224 if (iomidi > 0) {
3225 if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3226 iomidi,
3227 (integrated_midi ?
3228 MPU401_INFO_INTEGRATED : 0),
3229 cm->irq, 0, &cm->rmidi)) < 0) {
3230 printk(KERN_ERR "cmipci: no UART401 device at 0x%lx\n", iomidi);
3234 #ifdef USE_VAR48KRATE
3235 for (val = 0; val < ARRAY_SIZE(rates); val++)
3236 snd_cmipci_set_pll(cm, rates[val], val);
3239 * (Re-)Enable external switch spdo_48k
3241 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3242 #endif /* USE_VAR48KRATE */
3244 if (snd_cmipci_create_gameport(cm, dev) < 0)
3245 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3247 snd_card_set_dev(card, &pci->dev);
3249 *rcmipci = cm;
3250 return 0;
3256 MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3258 static int __devinit snd_cmipci_probe(struct pci_dev *pci,
3259 const struct pci_device_id *pci_id)
3261 static int dev;
3262 struct snd_card *card;
3263 struct cmipci *cm;
3264 int err;
3266 if (dev >= SNDRV_CARDS)
3267 return -ENODEV;
3268 if (! enable[dev]) {
3269 dev++;
3270 return -ENOENT;
3273 card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
3274 if (card == NULL)
3275 return -ENOMEM;
3277 switch (pci->device) {
3278 case PCI_DEVICE_ID_CMEDIA_CM8738:
3279 case PCI_DEVICE_ID_CMEDIA_CM8738B:
3280 strcpy(card->driver, "CMI8738");
3281 break;
3282 case PCI_DEVICE_ID_CMEDIA_CM8338A:
3283 case PCI_DEVICE_ID_CMEDIA_CM8338B:
3284 strcpy(card->driver, "CMI8338");
3285 break;
3286 default:
3287 strcpy(card->driver, "CMIPCI");
3288 break;
3291 if ((err = snd_cmipci_create(card, pci, dev, &cm)) < 0) {
3292 snd_card_free(card);
3293 return err;
3295 card->private_data = cm;
3297 if ((err = snd_card_register(card)) < 0) {
3298 snd_card_free(card);
3299 return err;
3301 pci_set_drvdata(pci, card);
3302 dev++;
3303 return 0;
3307 static void __devexit snd_cmipci_remove(struct pci_dev *pci)
3309 snd_card_free(pci_get_drvdata(pci));
3310 pci_set_drvdata(pci, NULL);
3314 #ifdef CONFIG_PM
3316 * power management
3318 static unsigned char saved_regs[] = {
3319 CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3320 CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL,
3321 CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3322 CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3323 CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3326 static unsigned char saved_mixers[] = {
3327 SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3328 SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3329 SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3330 SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3331 SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3332 SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3333 CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3334 SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3337 static int snd_cmipci_suspend(struct pci_dev *pci, pm_message_t state)
3339 struct snd_card *card = pci_get_drvdata(pci);
3340 struct cmipci *cm = card->private_data;
3341 int i;
3343 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3345 snd_pcm_suspend_all(cm->pcm);
3346 snd_pcm_suspend_all(cm->pcm2);
3347 snd_pcm_suspend_all(cm->pcm_spdif);
3349 /* save registers */
3350 for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3351 cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3352 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3353 cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3355 /* disable ints */
3356 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3358 pci_disable_device(pci);
3359 pci_save_state(pci);
3360 pci_set_power_state(pci, pci_choose_state(pci, state));
3361 return 0;
3364 static int snd_cmipci_resume(struct pci_dev *pci)
3366 struct snd_card *card = pci_get_drvdata(pci);
3367 struct cmipci *cm = card->private_data;
3368 int i;
3370 pci_set_power_state(pci, PCI_D0);
3371 pci_restore_state(pci);
3372 if (pci_enable_device(pci) < 0) {
3373 printk(KERN_ERR "cmipci: pci_enable_device failed, "
3374 "disabling device\n");
3375 snd_card_disconnect(card);
3376 return -EIO;
3378 pci_set_master(pci);
3380 /* reset / initialize to a sane state */
3381 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3382 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3383 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3384 snd_cmipci_mixer_write(cm, 0, 0);
3386 /* restore registers */
3387 for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3388 snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3389 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3390 snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3392 snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3393 return 0;
3395 #endif /* CONFIG_PM */
3397 static struct pci_driver driver = {
3398 .name = "C-Media PCI",
3399 .id_table = snd_cmipci_ids,
3400 .probe = snd_cmipci_probe,
3401 .remove = __devexit_p(snd_cmipci_remove),
3402 #ifdef CONFIG_PM
3403 .suspend = snd_cmipci_suspend,
3404 .resume = snd_cmipci_resume,
3405 #endif
3408 static int __init alsa_card_cmipci_init(void)
3410 return pci_register_driver(&driver);
3413 static void __exit alsa_card_cmipci_exit(void)
3415 pci_unregister_driver(&driver);
3418 module_init(alsa_card_cmipci_init)
3419 module_exit(alsa_card_cmipci_exit)