Linux 2.6.25.20
[linux/fpc-iii.git] / sound / pci / pcxhr / pcxhr.c
blob9d5bb76229a8fc020eb0a9a869ed190b8e17ce87
1 /*
2 * Driver for Digigram pcxhr compatible soundcards
4 * main file with alsa callbacks
6 * Copyright (c) 2004 by Digigram <alsa@digigram.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/init.h>
25 #include <linux/interrupt.h>
26 #include <linux/slab.h>
27 #include <linux/pci.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/delay.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mutex.h>
33 #include <sound/core.h>
34 #include <sound/initval.h>
35 #include <sound/info.h>
36 #include <sound/control.h>
37 #include <sound/pcm.h>
38 #include <sound/pcm_params.h>
39 #include "pcxhr.h"
40 #include "pcxhr_mixer.h"
41 #include "pcxhr_hwdep.h"
42 #include "pcxhr_core.h"
44 #define DRIVER_NAME "pcxhr"
46 MODULE_AUTHOR("Markus Bollinger <bollinger@digigram.com>");
47 MODULE_DESCRIPTION("Digigram " DRIVER_NAME " " PCXHR_DRIVER_VERSION_STRING);
48 MODULE_LICENSE("GPL");
49 MODULE_SUPPORTED_DEVICE("{{Digigram," DRIVER_NAME "}}");
51 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
52 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
53 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */
54 static int mono[SNDRV_CARDS]; /* capture in mono only */
56 module_param_array(index, int, NULL, 0444);
57 MODULE_PARM_DESC(index, "Index value for Digigram " DRIVER_NAME " soundcard");
58 module_param_array(id, charp, NULL, 0444);
59 MODULE_PARM_DESC(id, "ID string for Digigram " DRIVER_NAME " soundcard");
60 module_param_array(enable, bool, NULL, 0444);
61 MODULE_PARM_DESC(enable, "Enable Digigram " DRIVER_NAME " soundcard");
62 module_param_array(mono, bool, NULL, 0444);
63 MODULE_PARM_DESC(mono, "Mono capture mode (default is stereo)");
65 enum {
66 PCI_ID_VX882HR,
67 PCI_ID_PCX882HR,
68 PCI_ID_VX881HR,
69 PCI_ID_PCX881HR,
70 PCI_ID_PCX1222HR,
71 PCI_ID_PCX1221HR,
72 PCI_ID_LAST
75 static struct pci_device_id pcxhr_ids[] = {
76 { 0x10b5, 0x9656, 0x1369, 0xb001, 0, 0, PCI_ID_VX882HR, }, /* VX882HR */
77 { 0x10b5, 0x9656, 0x1369, 0xb101, 0, 0, PCI_ID_PCX882HR, }, /* PCX882HR */
78 { 0x10b5, 0x9656, 0x1369, 0xb201, 0, 0, PCI_ID_VX881HR, }, /* VX881HR */
79 { 0x10b5, 0x9656, 0x1369, 0xb301, 0, 0, PCI_ID_PCX881HR, }, /* PCX881HR */
80 { 0x10b5, 0x9656, 0x1369, 0xb501, 0, 0, PCI_ID_PCX1222HR, }, /* PCX1222HR */
81 { 0x10b5, 0x9656, 0x1369, 0xb701, 0, 0, PCI_ID_PCX1221HR, }, /* PCX1221HR */
82 { 0, }
85 MODULE_DEVICE_TABLE(pci, pcxhr_ids);
87 struct board_parameters {
88 char* board_name;
89 short playback_chips;
90 short capture_chips;
91 short firmware_num;
93 static struct board_parameters pcxhr_board_params[] = {
94 [PCI_ID_VX882HR] = { "VX882HR", 4, 4, 41, },
95 [PCI_ID_PCX882HR] = { "PCX882HR", 4, 4, 41, },
96 [PCI_ID_VX881HR] = { "VX881HR", 4, 4, 41, },
97 [PCI_ID_PCX881HR] = { "PCX881HR", 4, 4, 41, },
98 [PCI_ID_PCX1222HR] = { "PCX1222HR", 6, 1, 42, },
99 [PCI_ID_PCX1221HR] = { "PCX1221HR", 6, 1, 42, },
103 static int pcxhr_pll_freq_register(unsigned int freq, unsigned int* pllreg,
104 unsigned int* realfreq)
106 unsigned int reg;
108 if (freq < 6900 || freq > 110250)
109 return -EINVAL;
110 reg = (28224000 * 10) / freq;
111 reg = (reg + 5) / 10;
112 if (reg < 0x200)
113 *pllreg = reg + 0x800;
114 else if (reg < 0x400)
115 *pllreg = reg & 0x1ff;
116 else if (reg < 0x800) {
117 *pllreg = ((reg >> 1) & 0x1ff) + 0x200;
118 reg &= ~1;
119 } else {
120 *pllreg = ((reg >> 2) & 0x1ff) + 0x400;
121 reg &= ~3;
123 if (realfreq)
124 *realfreq = ((28224000 * 10) / reg + 5) / 10;
125 return 0;
129 #define PCXHR_FREQ_REG_MASK 0x1f
130 #define PCXHR_FREQ_QUARTZ_48000 0x00
131 #define PCXHR_FREQ_QUARTZ_24000 0x01
132 #define PCXHR_FREQ_QUARTZ_12000 0x09
133 #define PCXHR_FREQ_QUARTZ_32000 0x08
134 #define PCXHR_FREQ_QUARTZ_16000 0x04
135 #define PCXHR_FREQ_QUARTZ_8000 0x0c
136 #define PCXHR_FREQ_QUARTZ_44100 0x02
137 #define PCXHR_FREQ_QUARTZ_22050 0x0a
138 #define PCXHR_FREQ_QUARTZ_11025 0x06
139 #define PCXHR_FREQ_PLL 0x05
140 #define PCXHR_FREQ_QUARTZ_192000 0x10
141 #define PCXHR_FREQ_QUARTZ_96000 0x18
142 #define PCXHR_FREQ_QUARTZ_176400 0x14
143 #define PCXHR_FREQ_QUARTZ_88200 0x1c
144 #define PCXHR_FREQ_QUARTZ_128000 0x12
145 #define PCXHR_FREQ_QUARTZ_64000 0x1a
147 #define PCXHR_FREQ_WORD_CLOCK 0x0f
148 #define PCXHR_FREQ_SYNC_AES 0x0e
149 #define PCXHR_FREQ_AES_1 0x07
150 #define PCXHR_FREQ_AES_2 0x0b
151 #define PCXHR_FREQ_AES_3 0x03
152 #define PCXHR_FREQ_AES_4 0x0d
154 #define PCXHR_MODIFY_CLOCK_S_BIT 0x04
156 #define PCXHR_IRQ_TIMER_FREQ 92000
157 #define PCXHR_IRQ_TIMER_PERIOD 48
159 static int pcxhr_get_clock_reg(struct pcxhr_mgr *mgr, unsigned int rate,
160 unsigned int *reg, unsigned int *freq)
162 unsigned int val, realfreq, pllreg;
163 struct pcxhr_rmh rmh;
164 int err;
166 realfreq = rate;
167 switch (mgr->use_clock_type) {
168 case PCXHR_CLOCK_TYPE_INTERNAL : /* clock by quartz or pll */
169 switch (rate) {
170 case 48000 : val = PCXHR_FREQ_QUARTZ_48000; break;
171 case 24000 : val = PCXHR_FREQ_QUARTZ_24000; break;
172 case 12000 : val = PCXHR_FREQ_QUARTZ_12000; break;
173 case 32000 : val = PCXHR_FREQ_QUARTZ_32000; break;
174 case 16000 : val = PCXHR_FREQ_QUARTZ_16000; break;
175 case 8000 : val = PCXHR_FREQ_QUARTZ_8000; break;
176 case 44100 : val = PCXHR_FREQ_QUARTZ_44100; break;
177 case 22050 : val = PCXHR_FREQ_QUARTZ_22050; break;
178 case 11025 : val = PCXHR_FREQ_QUARTZ_11025; break;
179 case 192000 : val = PCXHR_FREQ_QUARTZ_192000; break;
180 case 96000 : val = PCXHR_FREQ_QUARTZ_96000; break;
181 case 176400 : val = PCXHR_FREQ_QUARTZ_176400; break;
182 case 88200 : val = PCXHR_FREQ_QUARTZ_88200; break;
183 case 128000 : val = PCXHR_FREQ_QUARTZ_128000; break;
184 case 64000 : val = PCXHR_FREQ_QUARTZ_64000; break;
185 default :
186 val = PCXHR_FREQ_PLL;
187 /* get the value for the pll register */
188 err = pcxhr_pll_freq_register(rate, &pllreg, &realfreq);
189 if (err)
190 return err;
191 pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE);
192 rmh.cmd[0] |= IO_NUM_REG_GENCLK;
193 rmh.cmd[1] = pllreg & MASK_DSP_WORD;
194 rmh.cmd[2] = pllreg >> 24;
195 rmh.cmd_len = 3;
196 err = pcxhr_send_msg(mgr, &rmh);
197 if (err < 0) {
198 snd_printk(KERN_ERR
199 "error CMD_ACCESS_IO_WRITE for PLL register : %x!\n",
200 err );
201 return err;
204 break;
205 case PCXHR_CLOCK_TYPE_WORD_CLOCK : val = PCXHR_FREQ_WORD_CLOCK; break;
206 case PCXHR_CLOCK_TYPE_AES_SYNC : val = PCXHR_FREQ_SYNC_AES; break;
207 case PCXHR_CLOCK_TYPE_AES_1 : val = PCXHR_FREQ_AES_1; break;
208 case PCXHR_CLOCK_TYPE_AES_2 : val = PCXHR_FREQ_AES_2; break;
209 case PCXHR_CLOCK_TYPE_AES_3 : val = PCXHR_FREQ_AES_3; break;
210 case PCXHR_CLOCK_TYPE_AES_4 : val = PCXHR_FREQ_AES_4; break;
211 default : return -EINVAL;
213 *reg = val;
214 *freq = realfreq;
215 return 0;
219 int pcxhr_set_clock(struct pcxhr_mgr *mgr, unsigned int rate)
221 unsigned int val, realfreq, speed;
222 struct pcxhr_rmh rmh;
223 int err, changed;
225 if (rate == 0)
226 return 0; /* nothing to do */
228 err = pcxhr_get_clock_reg(mgr, rate, &val, &realfreq);
229 if (err)
230 return err;
232 /* codec speed modes */
233 if (rate < 55000)
234 speed = 0; /* single speed */
235 else if (rate < 100000)
236 speed = 1; /* dual speed */
237 else
238 speed = 2; /* quad speed */
239 if (mgr->codec_speed != speed) {
240 pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE); /* mute outputs */
241 rmh.cmd[0] |= IO_NUM_REG_MUTE_OUT;
242 err = pcxhr_send_msg(mgr, &rmh);
243 if (err)
244 return err;
246 pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE); /* set speed ratio */
247 rmh.cmd[0] |= IO_NUM_SPEED_RATIO;
248 rmh.cmd[1] = speed;
249 rmh.cmd_len = 2;
250 err = pcxhr_send_msg(mgr, &rmh);
251 if (err)
252 return err;
254 /* set the new frequency */
255 snd_printdd("clock register : set %x\n", val);
256 err = pcxhr_write_io_num_reg_cont(mgr, PCXHR_FREQ_REG_MASK, val, &changed);
257 if (err)
258 return err;
259 mgr->sample_rate_real = realfreq;
260 mgr->cur_clock_type = mgr->use_clock_type;
262 /* unmute after codec speed modes */
263 if (mgr->codec_speed != speed) {
264 pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_READ); /* unmute outputs */
265 rmh.cmd[0] |= IO_NUM_REG_MUTE_OUT;
266 err = pcxhr_send_msg(mgr, &rmh);
267 if (err)
268 return err;
269 mgr->codec_speed = speed; /* save new codec speed */
272 if (changed) {
273 pcxhr_init_rmh(&rmh, CMD_MODIFY_CLOCK);
274 rmh.cmd[0] |= PCXHR_MODIFY_CLOCK_S_BIT; /* resync fifos */
275 if (rate < PCXHR_IRQ_TIMER_FREQ)
276 rmh.cmd[1] = PCXHR_IRQ_TIMER_PERIOD;
277 else
278 rmh.cmd[1] = PCXHR_IRQ_TIMER_PERIOD * 2;
279 rmh.cmd[2] = rate;
280 rmh.cmd_len = 3;
281 err = pcxhr_send_msg(mgr, &rmh);
282 if (err)
283 return err;
285 snd_printdd("pcxhr_set_clock to %dHz (realfreq=%d)\n", rate, realfreq);
286 return 0;
290 int pcxhr_get_external_clock(struct pcxhr_mgr *mgr, enum pcxhr_clock_type clock_type,
291 int *sample_rate)
293 struct pcxhr_rmh rmh;
294 unsigned char reg;
295 int err, rate;
297 switch (clock_type) {
298 case PCXHR_CLOCK_TYPE_WORD_CLOCK : reg = REG_STATUS_WORD_CLOCK; break;
299 case PCXHR_CLOCK_TYPE_AES_SYNC : reg = REG_STATUS_AES_SYNC; break;
300 case PCXHR_CLOCK_TYPE_AES_1 : reg = REG_STATUS_AES_1; break;
301 case PCXHR_CLOCK_TYPE_AES_2 : reg = REG_STATUS_AES_2; break;
302 case PCXHR_CLOCK_TYPE_AES_3 : reg = REG_STATUS_AES_3; break;
303 case PCXHR_CLOCK_TYPE_AES_4 : reg = REG_STATUS_AES_4; break;
304 default : return -EINVAL;
306 pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_READ);
307 rmh.cmd_len = 2;
308 rmh.cmd[0] |= IO_NUM_REG_STATUS;
309 if (mgr->last_reg_stat != reg) {
310 rmh.cmd[1] = reg;
311 err = pcxhr_send_msg(mgr, &rmh);
312 if (err)
313 return err;
314 udelay(100); /* wait minimum 2 sample_frames at 32kHz ! */
315 mgr->last_reg_stat = reg;
317 rmh.cmd[1] = REG_STATUS_CURRENT;
318 err = pcxhr_send_msg(mgr, &rmh);
319 if (err)
320 return err;
321 switch (rmh.stat[1] & 0x0f) {
322 case REG_STATUS_SYNC_32000 : rate = 32000; break;
323 case REG_STATUS_SYNC_44100 : rate = 44100; break;
324 case REG_STATUS_SYNC_48000 : rate = 48000; break;
325 case REG_STATUS_SYNC_64000 : rate = 64000; break;
326 case REG_STATUS_SYNC_88200 : rate = 88200; break;
327 case REG_STATUS_SYNC_96000 : rate = 96000; break;
328 case REG_STATUS_SYNC_128000 : rate = 128000; break;
329 case REG_STATUS_SYNC_176400 : rate = 176400; break;
330 case REG_STATUS_SYNC_192000 : rate = 192000; break;
331 default: rate = 0;
333 snd_printdd("External clock is at %d Hz\n", rate);
334 *sample_rate = rate;
335 return 0;
340 * start or stop playback/capture substream
342 static int pcxhr_set_stream_state(struct pcxhr_stream *stream)
344 int err;
345 struct snd_pcxhr *chip;
346 struct pcxhr_rmh rmh;
347 int stream_mask, start;
349 if (stream->status == PCXHR_STREAM_STATUS_SCHEDULE_RUN)
350 start = 1;
351 else {
352 if (stream->status != PCXHR_STREAM_STATUS_SCHEDULE_STOP) {
353 snd_printk(KERN_ERR "ERROR pcxhr_set_stream_state CANNOT be stopped\n");
354 return -EINVAL;
356 start = 0;
358 if (!stream->substream)
359 return -EINVAL;
361 stream->timer_abs_periods = 0;
362 stream->timer_period_frag = 0; /* reset theoretical stream pos */
363 stream->timer_buf_periods = 0;
364 stream->timer_is_synced = 0;
366 stream_mask = stream->pipe->is_capture ? 1 : 1<<stream->substream->number;
368 pcxhr_init_rmh(&rmh, start ? CMD_START_STREAM : CMD_STOP_STREAM);
369 pcxhr_set_pipe_cmd_params(&rmh, stream->pipe->is_capture,
370 stream->pipe->first_audio, 0, stream_mask);
372 chip = snd_pcm_substream_chip(stream->substream);
374 err = pcxhr_send_msg(chip->mgr, &rmh);
375 if (err)
376 snd_printk(KERN_ERR "ERROR pcxhr_set_stream_state err=%x;\n", err);
377 stream->status = start ? PCXHR_STREAM_STATUS_STARTED : PCXHR_STREAM_STATUS_STOPPED;
378 return err;
381 #define HEADER_FMT_BASE_LIN 0xfed00000
382 #define HEADER_FMT_BASE_FLOAT 0xfad00000
383 #define HEADER_FMT_INTEL 0x00008000
384 #define HEADER_FMT_24BITS 0x00004000
385 #define HEADER_FMT_16BITS 0x00002000
386 #define HEADER_FMT_UPTO11 0x00000200
387 #define HEADER_FMT_UPTO32 0x00000100
388 #define HEADER_FMT_MONO 0x00000080
390 static int pcxhr_set_format(struct pcxhr_stream *stream)
392 int err, is_capture, sample_rate, stream_num;
393 struct snd_pcxhr *chip;
394 struct pcxhr_rmh rmh;
395 unsigned int header;
397 switch (stream->format) {
398 case SNDRV_PCM_FORMAT_U8:
399 header = HEADER_FMT_BASE_LIN;
400 break;
401 case SNDRV_PCM_FORMAT_S16_LE:
402 header = HEADER_FMT_BASE_LIN | HEADER_FMT_16BITS | HEADER_FMT_INTEL;
403 break;
404 case SNDRV_PCM_FORMAT_S16_BE:
405 header = HEADER_FMT_BASE_LIN | HEADER_FMT_16BITS;
406 break;
407 case SNDRV_PCM_FORMAT_S24_3LE:
408 header = HEADER_FMT_BASE_LIN | HEADER_FMT_24BITS | HEADER_FMT_INTEL;
409 break;
410 case SNDRV_PCM_FORMAT_S24_3BE:
411 header = HEADER_FMT_BASE_LIN | HEADER_FMT_24BITS;
412 break;
413 case SNDRV_PCM_FORMAT_FLOAT_LE:
414 header = HEADER_FMT_BASE_FLOAT | HEADER_FMT_INTEL;
415 break;
416 default:
417 snd_printk(KERN_ERR "error pcxhr_set_format() : unknown format\n");
418 return -EINVAL;
420 chip = snd_pcm_substream_chip(stream->substream);
422 sample_rate = chip->mgr->sample_rate;
423 if (sample_rate <= 32000 && sample_rate !=0) {
424 if (sample_rate <= 11025)
425 header |= HEADER_FMT_UPTO11;
426 else
427 header |= HEADER_FMT_UPTO32;
429 if (stream->channels == 1)
430 header |= HEADER_FMT_MONO;
432 is_capture = stream->pipe->is_capture;
433 stream_num = is_capture ? 0 : stream->substream->number;
435 pcxhr_init_rmh(&rmh, is_capture ? CMD_FORMAT_STREAM_IN : CMD_FORMAT_STREAM_OUT);
436 pcxhr_set_pipe_cmd_params(&rmh, is_capture, stream->pipe->first_audio, stream_num, 0);
437 if (is_capture)
438 rmh.cmd[0] |= 1<<12;
439 rmh.cmd[1] = 0;
440 rmh.cmd[2] = header >> 8;
441 rmh.cmd[3] = (header & 0xff) << 16;
442 rmh.cmd_len = 4;
443 err = pcxhr_send_msg(chip->mgr, &rmh);
444 if (err)
445 snd_printk(KERN_ERR "ERROR pcxhr_set_format err=%x;\n", err);
446 return err;
449 static int pcxhr_update_r_buffer(struct pcxhr_stream *stream)
451 int err, is_capture, stream_num;
452 struct pcxhr_rmh rmh;
453 struct snd_pcm_substream *subs = stream->substream;
454 struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
456 is_capture = (subs->stream == SNDRV_PCM_STREAM_CAPTURE);
457 stream_num = is_capture ? 0 : subs->number;
459 snd_printdd("pcxhr_update_r_buffer(pcm%c%d) : addr(%p) bytes(%zx) subs(%d)\n",
460 is_capture ? 'c' : 'p',
461 chip->chip_idx, (void*)subs->runtime->dma_addr,
462 subs->runtime->dma_bytes, subs->number);
464 pcxhr_init_rmh(&rmh, CMD_UPDATE_R_BUFFERS);
465 pcxhr_set_pipe_cmd_params(&rmh, is_capture, stream->pipe->first_audio, stream_num, 0);
467 snd_assert(subs->runtime->dma_bytes < 0x200000); /* max buffer size is 2 MByte */
468 rmh.cmd[1] = subs->runtime->dma_bytes * 8; /* size in bits */
469 rmh.cmd[2] = subs->runtime->dma_addr >> 24; /* most significant byte */
470 rmh.cmd[2] |= 1<<19; /* this is a circular buffer */
471 rmh.cmd[3] = subs->runtime->dma_addr & MASK_DSP_WORD; /* least 3 significant bytes */
472 rmh.cmd_len = 4;
473 err = pcxhr_send_msg(chip->mgr, &rmh);
474 if (err)
475 snd_printk(KERN_ERR "ERROR CMD_UPDATE_R_BUFFERS err=%x;\n", err);
476 return err;
480 #if 0
481 static int pcxhr_pipe_sample_count(struct pcxhr_stream *stream, snd_pcm_uframes_t *sample_count)
483 struct pcxhr_rmh rmh;
484 int err;
485 pcxhr_t *chip = snd_pcm_substream_chip(stream->substream);
486 pcxhr_init_rmh(&rmh, CMD_PIPE_SAMPLE_COUNT);
487 pcxhr_set_pipe_cmd_params(&rmh, stream->pipe->is_capture, 0, 0,
488 1<<stream->pipe->first_audio);
489 err = pcxhr_send_msg(chip->mgr, &rmh);
490 if (err == 0) {
491 *sample_count = ((snd_pcm_uframes_t)rmh.stat[0]) << 24;
492 *sample_count += (snd_pcm_uframes_t)rmh.stat[1];
494 snd_printdd("PIPE_SAMPLE_COUNT = %lx\n", *sample_count);
495 return err;
497 #endif
499 static inline int pcxhr_stream_scheduled_get_pipe(struct pcxhr_stream *stream,
500 struct pcxhr_pipe **pipe)
502 if (stream->status == PCXHR_STREAM_STATUS_SCHEDULE_RUN) {
503 *pipe = stream->pipe;
504 return 1;
506 return 0;
509 static void pcxhr_trigger_tasklet(unsigned long arg)
511 unsigned long flags;
512 int i, j, err;
513 struct pcxhr_pipe *pipe;
514 struct snd_pcxhr *chip;
515 struct pcxhr_mgr *mgr = (struct pcxhr_mgr*)(arg);
516 int capture_mask = 0;
517 int playback_mask = 0;
519 #ifdef CONFIG_SND_DEBUG_DETECT
520 struct timeval my_tv1, my_tv2;
521 do_gettimeofday(&my_tv1);
522 #endif
523 mutex_lock(&mgr->setup_mutex);
525 /* check the pipes concerned and build pipe_array */
526 for (i = 0; i < mgr->num_cards; i++) {
527 chip = mgr->chip[i];
528 for (j = 0; j < chip->nb_streams_capt; j++) {
529 if (pcxhr_stream_scheduled_get_pipe(&chip->capture_stream[j], &pipe))
530 capture_mask |= (1 << pipe->first_audio);
532 for (j = 0; j < chip->nb_streams_play; j++) {
533 if (pcxhr_stream_scheduled_get_pipe(&chip->playback_stream[j], &pipe)) {
534 playback_mask |= (1 << pipe->first_audio);
535 break; /* add only once, as all playback streams of
536 * one chip use the same pipe
541 if (capture_mask == 0 && playback_mask == 0) {
542 mutex_unlock(&mgr->setup_mutex);
543 snd_printk(KERN_ERR "pcxhr_trigger_tasklet : no pipes\n");
544 return;
547 snd_printdd("pcxhr_trigger_tasklet : playback_mask=%x capture_mask=%x\n",
548 playback_mask, capture_mask);
550 /* synchronous stop of all the pipes concerned */
551 err = pcxhr_set_pipe_state(mgr, playback_mask, capture_mask, 0);
552 if (err) {
553 mutex_unlock(&mgr->setup_mutex);
554 snd_printk(KERN_ERR "pcxhr_trigger_tasklet : error stop pipes (P%x C%x)\n",
555 playback_mask, capture_mask);
556 return;
559 /* unfortunately the dsp lost format and buffer info with the stop pipe */
560 for (i = 0; i < mgr->num_cards; i++) {
561 struct pcxhr_stream *stream;
562 chip = mgr->chip[i];
563 for (j = 0; j < chip->nb_streams_capt; j++) {
564 stream = &chip->capture_stream[j];
565 if (pcxhr_stream_scheduled_get_pipe(stream, &pipe)) {
566 err = pcxhr_set_format(stream);
567 err = pcxhr_update_r_buffer(stream);
570 for (j = 0; j < chip->nb_streams_play; j++) {
571 stream = &chip->playback_stream[j];
572 if (pcxhr_stream_scheduled_get_pipe(stream, &pipe)) {
573 err = pcxhr_set_format(stream);
574 err = pcxhr_update_r_buffer(stream);
578 /* start all the streams */
579 for (i = 0; i < mgr->num_cards; i++) {
580 struct pcxhr_stream *stream;
581 chip = mgr->chip[i];
582 for (j = 0; j < chip->nb_streams_capt; j++) {
583 stream = &chip->capture_stream[j];
584 if (pcxhr_stream_scheduled_get_pipe(stream, &pipe))
585 err = pcxhr_set_stream_state(stream);
587 for (j = 0; j < chip->nb_streams_play; j++) {
588 stream = &chip->playback_stream[j];
589 if (pcxhr_stream_scheduled_get_pipe(stream, &pipe))
590 err = pcxhr_set_stream_state(stream);
594 /* synchronous start of all the pipes concerned */
595 err = pcxhr_set_pipe_state(mgr, playback_mask, capture_mask, 1);
596 if (err) {
597 mutex_unlock(&mgr->setup_mutex);
598 snd_printk(KERN_ERR "pcxhr_trigger_tasklet : error start pipes (P%x C%x)\n",
599 playback_mask, capture_mask);
600 return;
603 /* put the streams into the running state now (increment pointer by interrupt) */
604 spin_lock_irqsave(&mgr->lock, flags);
605 for ( i =0; i < mgr->num_cards; i++) {
606 struct pcxhr_stream *stream;
607 chip = mgr->chip[i];
608 for(j = 0; j < chip->nb_streams_capt; j++) {
609 stream = &chip->capture_stream[j];
610 if(stream->status == PCXHR_STREAM_STATUS_STARTED)
611 stream->status = PCXHR_STREAM_STATUS_RUNNING;
613 for (j = 0; j < chip->nb_streams_play; j++) {
614 stream = &chip->playback_stream[j];
615 if (stream->status == PCXHR_STREAM_STATUS_STARTED) {
616 /* playback will already have advanced ! */
617 stream->timer_period_frag += PCXHR_GRANULARITY;
618 stream->status = PCXHR_STREAM_STATUS_RUNNING;
622 spin_unlock_irqrestore(&mgr->lock, flags);
624 mutex_unlock(&mgr->setup_mutex);
626 #ifdef CONFIG_SND_DEBUG_DETECT
627 do_gettimeofday(&my_tv2);
628 snd_printdd("***TRIGGER TASKLET*** TIME = %ld (err = %x)\n",
629 my_tv2.tv_usec - my_tv1.tv_usec, err);
630 #endif
635 * trigger callback
637 static int pcxhr_trigger(struct snd_pcm_substream *subs, int cmd)
639 struct pcxhr_stream *stream;
640 struct snd_pcm_substream *s;
642 switch (cmd) {
643 case SNDRV_PCM_TRIGGER_START:
644 snd_printdd("SNDRV_PCM_TRIGGER_START\n");
645 if (snd_pcm_stream_linked(subs)) {
646 struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
647 snd_pcm_group_for_each_entry(s, subs) {
648 if (snd_pcm_substream_chip(s) != chip)
649 continue;
650 stream = s->runtime->private_data;
651 stream->status =
652 PCXHR_STREAM_STATUS_SCHEDULE_RUN;
653 snd_pcm_trigger_done(s, subs);
655 tasklet_hi_schedule(&chip->mgr->trigger_taskq);
656 } else {
657 stream = subs->runtime->private_data;
658 snd_printdd("Only one Substream %c %d\n",
659 stream->pipe->is_capture ? 'C' : 'P',
660 stream->pipe->first_audio);
661 if (pcxhr_set_format(stream))
662 return -EINVAL;
663 if (pcxhr_update_r_buffer(stream))
664 return -EINVAL;
666 stream->status = PCXHR_STREAM_STATUS_SCHEDULE_RUN;
667 if (pcxhr_set_stream_state(stream))
668 return -EINVAL;
669 stream->status = PCXHR_STREAM_STATUS_RUNNING;
671 break;
672 case SNDRV_PCM_TRIGGER_STOP:
673 snd_printdd("SNDRV_PCM_TRIGGER_STOP\n");
674 snd_pcm_group_for_each_entry(s, subs) {
675 stream = s->runtime->private_data;
676 stream->status = PCXHR_STREAM_STATUS_SCHEDULE_STOP;
677 if (pcxhr_set_stream_state(stream))
678 return -EINVAL;
679 snd_pcm_trigger_done(s, subs);
681 break;
682 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
683 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
684 /* TODO */
685 default:
686 return -EINVAL;
688 return 0;
692 static int pcxhr_hardware_timer(struct pcxhr_mgr *mgr, int start)
694 struct pcxhr_rmh rmh;
695 int err;
697 pcxhr_init_rmh(&rmh, CMD_SET_TIMER_INTERRUPT);
698 if (start) {
699 mgr->dsp_time_last = PCXHR_DSP_TIME_INVALID; /* last dsp time invalid */
700 rmh.cmd[0] |= PCXHR_GRANULARITY;
702 err = pcxhr_send_msg(mgr, &rmh);
703 if (err < 0)
704 snd_printk(KERN_ERR "error pcxhr_hardware_timer err(%x)\n", err);
705 return err;
709 * prepare callback for all pcms
711 static int pcxhr_prepare(struct snd_pcm_substream *subs)
713 struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
714 struct pcxhr_mgr *mgr = chip->mgr;
716 struct pcxhr_stream *stream = (pcxhr_stream_t*)subs->runtime->private_data;
718 int err = 0;
720 snd_printdd("pcxhr_prepare : period_size(%lx) periods(%x) buffer_size(%lx)\n",
721 subs->runtime->period_size, subs->runtime->periods,
722 subs->runtime->buffer_size);
725 if(subs->runtime->period_size <= PCXHR_GRANULARITY) {
726 snd_printk(KERN_ERR "pcxhr_prepare : error period_size too small (%x)\n",
727 (unsigned int)subs->runtime->period_size);
728 return -EINVAL;
732 mutex_lock(&mgr->setup_mutex);
734 do {
735 /* if the stream was stopped before, format and buffer were reset */
737 if(stream->status == PCXHR_STREAM_STATUS_STOPPED) {
738 err = pcxhr_set_format(stream);
739 if(err) break;
740 err = pcxhr_update_r_buffer(stream);
741 if(err) break;
745 /* only the first stream can choose the sample rate */
746 /* the further opened streams will be limited to its frequency (see open) */
747 /* set the clock only once (first stream) */
748 if (mgr->sample_rate != subs->runtime->rate) {
749 err = pcxhr_set_clock(mgr, subs->runtime->rate);
750 if (err)
751 break;
752 if (mgr->sample_rate == 0)
753 /* start the DSP-timer */
754 err = pcxhr_hardware_timer(mgr, 1);
755 mgr->sample_rate = subs->runtime->rate;
757 } while(0); /* do only once (so we can use break instead of goto) */
759 mutex_unlock(&mgr->setup_mutex);
761 return err;
766 * HW_PARAMS callback for all pcms
768 static int pcxhr_hw_params(struct snd_pcm_substream *subs,
769 struct snd_pcm_hw_params *hw)
771 struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
772 struct pcxhr_mgr *mgr = chip->mgr;
773 struct pcxhr_stream *stream = subs->runtime->private_data;
774 snd_pcm_format_t format;
775 int err;
776 int channels;
778 /* set up channels */
779 channels = params_channels(hw);
781 /* set up format for the stream */
782 format = params_format(hw);
784 mutex_lock(&mgr->setup_mutex);
786 stream->channels = channels;
787 stream->format = format;
789 /* set the format to the board */
791 err = pcxhr_set_format(stream);
792 if(err) {
793 mutex_unlock(&mgr->setup_mutex);
794 return err;
797 /* allocate buffer */
798 err = snd_pcm_lib_malloc_pages(subs, params_buffer_bytes(hw));
801 if (err > 0) {
802 err = pcxhr_update_r_buffer(stream);
805 mutex_unlock(&mgr->setup_mutex);
807 return err;
810 static int pcxhr_hw_free(struct snd_pcm_substream *subs)
812 snd_pcm_lib_free_pages(subs);
813 return 0;
818 * CONFIGURATION SPACE for all pcms, mono pcm must update channels_max
820 static struct snd_pcm_hardware pcxhr_caps =
822 .info = ( SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
823 SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_SYNC_START |
824 0 /*SNDRV_PCM_INFO_PAUSE*/),
825 .formats = ( SNDRV_PCM_FMTBIT_U8 |
826 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE |
827 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_3BE |
828 SNDRV_PCM_FMTBIT_FLOAT_LE ),
829 .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_192000,
830 .rate_min = 8000,
831 .rate_max = 192000,
832 .channels_min = 1,
833 .channels_max = 2,
834 .buffer_bytes_max = (32*1024),
835 /* 1 byte == 1 frame U8 mono (PCXHR_GRANULARITY is frames!) */
836 .period_bytes_min = (2*PCXHR_GRANULARITY),
837 .period_bytes_max = (16*1024),
838 .periods_min = 2,
839 .periods_max = (32*1024/PCXHR_GRANULARITY),
843 static int pcxhr_open(struct snd_pcm_substream *subs)
845 struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
846 struct pcxhr_mgr *mgr = chip->mgr;
847 struct snd_pcm_runtime *runtime = subs->runtime;
848 struct pcxhr_stream *stream;
849 int is_capture;
851 mutex_lock(&mgr->setup_mutex);
853 /* copy the struct snd_pcm_hardware struct */
854 runtime->hw = pcxhr_caps;
856 if( subs->stream == SNDRV_PCM_STREAM_PLAYBACK ) {
857 snd_printdd("pcxhr_open playback chip%d subs%d\n",
858 chip->chip_idx, subs->number);
859 is_capture = 0;
860 stream = &chip->playback_stream[subs->number];
861 } else {
862 snd_printdd("pcxhr_open capture chip%d subs%d\n",
863 chip->chip_idx, subs->number);
864 is_capture = 1;
865 if (mgr->mono_capture)
866 runtime->hw.channels_max = 1;
867 else
868 runtime->hw.channels_min = 2;
869 stream = &chip->capture_stream[subs->number];
871 if (stream->status != PCXHR_STREAM_STATUS_FREE){
872 /* streams in use */
873 snd_printk(KERN_ERR "pcxhr_open chip%d subs%d in use\n",
874 chip->chip_idx, subs->number);
875 mutex_unlock(&mgr->setup_mutex);
876 return -EBUSY;
879 /* if a sample rate is already used or fixed by external clock,
880 * the stream cannot change
882 if (mgr->sample_rate)
883 runtime->hw.rate_min = runtime->hw.rate_max = mgr->sample_rate;
884 else {
885 if (mgr->use_clock_type != PCXHR_CLOCK_TYPE_INTERNAL) {
886 int external_rate;
887 if (pcxhr_get_external_clock(mgr, mgr->use_clock_type,
888 &external_rate) ||
889 external_rate == 0) {
890 /* cannot detect the external clock rate */
891 mutex_unlock(&mgr->setup_mutex);
892 return -EBUSY;
894 runtime->hw.rate_min = runtime->hw.rate_max = external_rate;
898 stream->status = PCXHR_STREAM_STATUS_OPEN;
899 stream->substream = subs;
900 stream->channels = 0; /* not configured yet */
902 runtime->private_data = stream;
904 snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 4);
905 snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 4);
907 snd_pcm_set_sync(subs);
909 mgr->ref_count_rate++;
911 mutex_unlock(&mgr->setup_mutex);
912 return 0;
916 static int pcxhr_close(struct snd_pcm_substream *subs)
918 struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
919 struct pcxhr_mgr *mgr = chip->mgr;
920 struct pcxhr_stream *stream = subs->runtime->private_data;
922 mutex_lock(&mgr->setup_mutex);
924 snd_printdd("pcxhr_close chip%d subs%d\n", chip->chip_idx, subs->number);
926 /* sample rate released */
927 if (--mgr->ref_count_rate == 0) {
928 mgr->sample_rate = 0; /* the sample rate is no more locked */
929 pcxhr_hardware_timer(mgr, 0); /* stop the DSP-timer */
932 stream->status = PCXHR_STREAM_STATUS_FREE;
933 stream->substream = NULL;
935 mutex_unlock(&mgr->setup_mutex);
937 return 0;
941 static snd_pcm_uframes_t pcxhr_stream_pointer(struct snd_pcm_substream *subs)
943 unsigned long flags;
944 u_int32_t timer_period_frag;
945 int timer_buf_periods;
946 struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
947 struct snd_pcm_runtime *runtime = subs->runtime;
948 struct pcxhr_stream *stream = runtime->private_data;
950 spin_lock_irqsave(&chip->mgr->lock, flags);
952 /* get the period fragment and the nb of periods in the buffer */
953 timer_period_frag = stream->timer_period_frag;
954 timer_buf_periods = stream->timer_buf_periods;
956 spin_unlock_irqrestore(&chip->mgr->lock, flags);
958 return (snd_pcm_uframes_t)((timer_buf_periods * runtime->period_size) +
959 timer_period_frag);
963 static struct snd_pcm_ops pcxhr_ops = {
964 .open = pcxhr_open,
965 .close = pcxhr_close,
966 .ioctl = snd_pcm_lib_ioctl,
967 .prepare = pcxhr_prepare,
968 .hw_params = pcxhr_hw_params,
969 .hw_free = pcxhr_hw_free,
970 .trigger = pcxhr_trigger,
971 .pointer = pcxhr_stream_pointer,
976 int pcxhr_create_pcm(struct snd_pcxhr *chip)
978 int err;
979 struct snd_pcm *pcm;
980 char name[32];
982 sprintf(name, "pcxhr %d", chip->chip_idx);
983 if ((err = snd_pcm_new(chip->card, name, 0,
984 chip->nb_streams_play,
985 chip->nb_streams_capt, &pcm)) < 0) {
986 snd_printk(KERN_ERR "cannot create pcm %s\n", name);
987 return err;
989 pcm->private_data = chip;
991 if (chip->nb_streams_play)
992 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &pcxhr_ops);
993 if (chip->nb_streams_capt)
994 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &pcxhr_ops);
996 pcm->info_flags = 0;
997 strcpy(pcm->name, name);
999 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1000 snd_dma_pci_data(chip->mgr->pci),
1001 32*1024, 32*1024);
1002 chip->pcm = pcm;
1003 return 0;
1006 static int pcxhr_chip_free(struct snd_pcxhr *chip)
1008 kfree(chip);
1009 return 0;
1012 static int pcxhr_chip_dev_free(struct snd_device *device)
1014 struct snd_pcxhr *chip = device->device_data;
1015 return pcxhr_chip_free(chip);
1021 static int __devinit pcxhr_create(struct pcxhr_mgr *mgr, struct snd_card *card, int idx)
1023 int err;
1024 struct snd_pcxhr *chip;
1025 static struct snd_device_ops ops = {
1026 .dev_free = pcxhr_chip_dev_free,
1029 mgr->chip[idx] = chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1030 if (! chip) {
1031 snd_printk(KERN_ERR "cannot allocate chip\n");
1032 return -ENOMEM;
1035 chip->card = card;
1036 chip->chip_idx = idx;
1037 chip->mgr = mgr;
1039 if (idx < mgr->playback_chips)
1040 /* stereo or mono streams */
1041 chip->nb_streams_play = PCXHR_PLAYBACK_STREAMS;
1043 if (idx < mgr->capture_chips) {
1044 if (mgr->mono_capture)
1045 chip->nb_streams_capt = 2; /* 2 mono streams (left+right) */
1046 else
1047 chip->nb_streams_capt = 1; /* or 1 stereo stream */
1050 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
1051 pcxhr_chip_free(chip);
1052 return err;
1055 snd_card_set_dev(card, &mgr->pci->dev);
1057 return 0;
1060 /* proc interface */
1061 static void pcxhr_proc_info(struct snd_info_entry *entry, struct snd_info_buffer *buffer)
1063 struct snd_pcxhr *chip = entry->private_data;
1064 struct pcxhr_mgr *mgr = chip->mgr;
1066 snd_iprintf(buffer, "\n%s\n", mgr->longname);
1068 /* stats available when embedded DSP is running */
1069 if (mgr->dsp_loaded & (1 << PCXHR_FIRMWARE_DSP_MAIN_INDEX)) {
1070 struct pcxhr_rmh rmh;
1071 short ver_maj = (mgr->dsp_version >> 16) & 0xff;
1072 short ver_min = (mgr->dsp_version >> 8) & 0xff;
1073 short ver_build = mgr->dsp_version & 0xff;
1074 snd_iprintf(buffer, "module version %s\n", PCXHR_DRIVER_VERSION_STRING);
1075 snd_iprintf(buffer, "dsp version %d.%d.%d\n", ver_maj, ver_min, ver_build);
1076 if (mgr->board_has_analog)
1077 snd_iprintf(buffer, "analog io available\n");
1078 else
1079 snd_iprintf(buffer, "digital only board\n");
1081 /* calc cpu load of the dsp */
1082 pcxhr_init_rmh(&rmh, CMD_GET_DSP_RESOURCES);
1083 if( ! pcxhr_send_msg(mgr, &rmh) ) {
1084 int cur = rmh.stat[0];
1085 int ref = rmh.stat[1];
1086 if (ref > 0) {
1087 if (mgr->sample_rate_real != 0 &&
1088 mgr->sample_rate_real != 48000) {
1089 ref = (ref * 48000) / mgr->sample_rate_real;
1090 if (mgr->sample_rate_real >= PCXHR_IRQ_TIMER_FREQ)
1091 ref *= 2;
1093 cur = 100 - (100 * cur) / ref;
1094 snd_iprintf(buffer, "cpu load %d%%\n", cur);
1095 snd_iprintf(buffer, "buffer pool %d/%d kWords\n",
1096 rmh.stat[2], rmh.stat[3]);
1099 snd_iprintf(buffer, "dma granularity : %d\n", PCXHR_GRANULARITY);
1100 snd_iprintf(buffer, "dsp time errors : %d\n", mgr->dsp_time_err);
1101 snd_iprintf(buffer, "dsp async pipe xrun errors : %d\n",
1102 mgr->async_err_pipe_xrun);
1103 snd_iprintf(buffer, "dsp async stream xrun errors : %d\n",
1104 mgr->async_err_stream_xrun);
1105 snd_iprintf(buffer, "dsp async last other error : %x\n",
1106 mgr->async_err_other_last);
1107 /* debug zone dsp */
1108 rmh.cmd[0] = 0x4200 + PCXHR_SIZE_MAX_STATUS;
1109 rmh.cmd_len = 1;
1110 rmh.stat_len = PCXHR_SIZE_MAX_STATUS;
1111 rmh.dsp_stat = 0;
1112 rmh.cmd_idx = CMD_LAST_INDEX;
1113 if( ! pcxhr_send_msg(mgr, &rmh) ) {
1114 int i;
1115 for (i = 0; i < rmh.stat_len; i++)
1116 snd_iprintf(buffer, "debug[%02d] = %06x\n", i, rmh.stat[i]);
1118 } else
1119 snd_iprintf(buffer, "no firmware loaded\n");
1120 snd_iprintf(buffer, "\n");
1122 static void pcxhr_proc_sync(struct snd_info_entry *entry, struct snd_info_buffer *buffer)
1124 struct snd_pcxhr *chip = entry->private_data;
1125 struct pcxhr_mgr *mgr = chip->mgr;
1126 static char *texts[7] = {
1127 "Internal", "Word", "AES Sync", "AES 1", "AES 2", "AES 3", "AES 4"
1130 snd_iprintf(buffer, "\n%s\n", mgr->longname);
1131 snd_iprintf(buffer, "Current Sample Clock\t: %s\n", texts[mgr->cur_clock_type]);
1132 snd_iprintf(buffer, "Current Sample Rate\t= %d\n", mgr->sample_rate_real);
1134 /* commands available when embedded DSP is running */
1135 if (mgr->dsp_loaded & (1 << PCXHR_FIRMWARE_DSP_MAIN_INDEX)) {
1136 int i, err, sample_rate;
1137 for (i = PCXHR_CLOCK_TYPE_WORD_CLOCK; i< (3 + mgr->capture_chips); i++) {
1138 err = pcxhr_get_external_clock(mgr, i, &sample_rate);
1139 if (err)
1140 break;
1141 snd_iprintf(buffer, "%s Clock\t\t= %d\n", texts[i], sample_rate);
1143 } else
1144 snd_iprintf(buffer, "no firmware loaded\n");
1145 snd_iprintf(buffer, "\n");
1148 static void __devinit pcxhr_proc_init(struct snd_pcxhr *chip)
1150 struct snd_info_entry *entry;
1152 if (! snd_card_proc_new(chip->card, "info", &entry))
1153 snd_info_set_text_ops(entry, chip, pcxhr_proc_info);
1154 if (! snd_card_proc_new(chip->card, "sync", &entry))
1155 snd_info_set_text_ops(entry, chip, pcxhr_proc_sync);
1157 /* end of proc interface */
1160 * release all the cards assigned to a manager instance
1162 static int pcxhr_free(struct pcxhr_mgr *mgr)
1164 unsigned int i;
1166 for (i = 0; i < mgr->num_cards; i++) {
1167 if (mgr->chip[i])
1168 snd_card_free(mgr->chip[i]->card);
1171 /* reset board if some firmware was loaded */
1172 if(mgr->dsp_loaded) {
1173 pcxhr_reset_board(mgr);
1174 snd_printdd("reset pcxhr !\n");
1177 /* release irq */
1178 if (mgr->irq >= 0)
1179 free_irq(mgr->irq, mgr);
1181 pci_release_regions(mgr->pci);
1183 /* free hostport purgebuffer */
1184 if (mgr->hostport.area) {
1185 snd_dma_free_pages(&mgr->hostport);
1186 mgr->hostport.area = NULL;
1189 kfree(mgr->prmh);
1191 pci_disable_device(mgr->pci);
1192 kfree(mgr);
1193 return 0;
1197 * probe function - creates the card manager
1199 static int __devinit pcxhr_probe(struct pci_dev *pci, const struct pci_device_id *pci_id)
1201 static int dev;
1202 struct pcxhr_mgr *mgr;
1203 unsigned int i;
1204 int err;
1205 size_t size;
1206 char *card_name;
1208 if (dev >= SNDRV_CARDS)
1209 return -ENODEV;
1210 if (! enable[dev]) {
1211 dev++;
1212 return -ENOENT;
1215 /* enable PCI device */
1216 if ((err = pci_enable_device(pci)) < 0)
1217 return err;
1218 pci_set_master(pci);
1220 /* check if we can restrict PCI DMA transfers to 32 bits */
1221 if (pci_set_dma_mask(pci, DMA_32BIT_MASK) < 0) {
1222 snd_printk(KERN_ERR "architecture does not support 32bit PCI busmaster DMA\n");
1223 pci_disable_device(pci);
1224 return -ENXIO;
1227 /* alloc card manager */
1228 mgr = kzalloc(sizeof(*mgr), GFP_KERNEL);
1229 if (! mgr) {
1230 pci_disable_device(pci);
1231 return -ENOMEM;
1234 snd_assert(pci_id->driver_data < PCI_ID_LAST, return -ENODEV);
1235 card_name = pcxhr_board_params[pci_id->driver_data].board_name;
1236 mgr->playback_chips = pcxhr_board_params[pci_id->driver_data].playback_chips;
1237 mgr->capture_chips = pcxhr_board_params[pci_id->driver_data].capture_chips;
1238 mgr->firmware_num = pcxhr_board_params[pci_id->driver_data].firmware_num;
1239 mgr->mono_capture = mono[dev];
1241 /* resource assignment */
1242 if ((err = pci_request_regions(pci, card_name)) < 0) {
1243 kfree(mgr);
1244 pci_disable_device(pci);
1245 return err;
1247 for (i = 0; i < 3; i++)
1248 mgr->port[i] = pci_resource_start(pci, i);
1250 mgr->pci = pci;
1251 mgr->irq = -1;
1253 if (request_irq(pci->irq, pcxhr_interrupt, IRQF_SHARED,
1254 card_name, mgr)) {
1255 snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
1256 pcxhr_free(mgr);
1257 return -EBUSY;
1259 mgr->irq = pci->irq;
1261 sprintf(mgr->shortname, "Digigram %s", card_name);
1262 sprintf(mgr->longname, "%s at 0x%lx & 0x%lx, 0x%lx irq %i", mgr->shortname,
1263 mgr->port[0], mgr->port[1], mgr->port[2], mgr->irq);
1265 /* ISR spinlock */
1266 spin_lock_init(&mgr->lock);
1267 spin_lock_init(&mgr->msg_lock);
1269 /* init setup mutex*/
1270 mutex_init(&mgr->setup_mutex);
1272 /* init taslket */
1273 tasklet_init(&mgr->msg_taskq, pcxhr_msg_tasklet, (unsigned long) mgr);
1274 tasklet_init(&mgr->trigger_taskq, pcxhr_trigger_tasklet, (unsigned long) mgr);
1275 mgr->prmh = kmalloc(sizeof(*mgr->prmh) +
1276 sizeof(u32) * (PCXHR_SIZE_MAX_LONG_STATUS - PCXHR_SIZE_MAX_STATUS),
1277 GFP_KERNEL);
1278 if (! mgr->prmh) {
1279 pcxhr_free(mgr);
1280 return -ENOMEM;
1283 for (i=0; i < PCXHR_MAX_CARDS; i++) {
1284 struct snd_card *card;
1285 char tmpid[16];
1286 int idx;
1288 if (i >= max(mgr->playback_chips, mgr->capture_chips))
1289 break;
1290 mgr->num_cards++;
1292 if (index[dev] < 0)
1293 idx = index[dev];
1294 else
1295 idx = index[dev] + i;
1297 snprintf(tmpid, sizeof(tmpid), "%s-%d", id[dev] ? id[dev] : card_name, i);
1298 card = snd_card_new(idx, tmpid, THIS_MODULE, 0);
1300 if (! card) {
1301 snd_printk(KERN_ERR "cannot allocate the card %d\n", i);
1302 pcxhr_free(mgr);
1303 return -ENOMEM;
1306 strcpy(card->driver, DRIVER_NAME);
1307 sprintf(card->shortname, "%s [PCM #%d]", mgr->shortname, i);
1308 sprintf(card->longname, "%s [PCM #%d]", mgr->longname, i);
1310 if ((err = pcxhr_create(mgr, card, i)) < 0) {
1311 pcxhr_free(mgr);
1312 return err;
1315 if (i == 0)
1316 /* init proc interface only for chip0 */
1317 pcxhr_proc_init(mgr->chip[i]);
1319 if ((err = snd_card_register(card)) < 0) {
1320 pcxhr_free(mgr);
1321 return err;
1325 /* create hostport purgebuffer */
1326 size = PAGE_ALIGN(sizeof(struct pcxhr_hostport));
1327 if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(pci),
1328 size, &mgr->hostport) < 0) {
1329 pcxhr_free(mgr);
1330 return -ENOMEM;
1332 /* init purgebuffer */
1333 memset(mgr->hostport.area, 0, size);
1335 /* create a DSP loader */
1336 err = pcxhr_setup_firmware(mgr);
1337 if (err < 0) {
1338 pcxhr_free(mgr);
1339 return err;
1342 pci_set_drvdata(pci, mgr);
1343 dev++;
1344 return 0;
1347 static void __devexit pcxhr_remove(struct pci_dev *pci)
1349 pcxhr_free(pci_get_drvdata(pci));
1350 pci_set_drvdata(pci, NULL);
1353 static struct pci_driver driver = {
1354 .name = "Digigram pcxhr",
1355 .id_table = pcxhr_ids,
1356 .probe = pcxhr_probe,
1357 .remove = __devexit_p(pcxhr_remove),
1360 static int __init pcxhr_module_init(void)
1362 return pci_register_driver(&driver);
1365 static void __exit pcxhr_module_exit(void)
1367 pci_unregister_driver(&driver);
1370 module_init(pcxhr_module_init)
1371 module_exit(pcxhr_module_exit)