powerpc/64s: Fix unrecoverable SLB crashes due to preemption check
[linux/fpc-iii.git] / crypto / async_tx / async_raid6_recov.c
blobf249142ceac4f1eb672b9b9048ac285b70f47cb3
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Asynchronous RAID-6 recovery calculations ASYNC_TX API.
4 * Copyright(c) 2009 Intel Corporation
6 * based on raid6recov.c:
7 * Copyright 2002 H. Peter Anvin
8 */
9 #include <linux/kernel.h>
10 #include <linux/interrupt.h>
11 #include <linux/module.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/raid/pq.h>
14 #include <linux/async_tx.h>
15 #include <linux/dmaengine.h>
17 static struct dma_async_tx_descriptor *
18 async_sum_product(struct page *dest, struct page **srcs, unsigned char *coef,
19 size_t len, struct async_submit_ctl *submit)
21 struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
22 &dest, 1, srcs, 2, len);
23 struct dma_device *dma = chan ? chan->device : NULL;
24 struct dmaengine_unmap_data *unmap = NULL;
25 const u8 *amul, *bmul;
26 u8 ax, bx;
27 u8 *a, *b, *c;
29 if (dma)
30 unmap = dmaengine_get_unmap_data(dma->dev, 3, GFP_NOWAIT);
32 if (unmap) {
33 struct device *dev = dma->dev;
34 dma_addr_t pq[2];
35 struct dma_async_tx_descriptor *tx;
36 enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
38 if (submit->flags & ASYNC_TX_FENCE)
39 dma_flags |= DMA_PREP_FENCE;
40 unmap->addr[0] = dma_map_page(dev, srcs[0], 0, len, DMA_TO_DEVICE);
41 unmap->addr[1] = dma_map_page(dev, srcs[1], 0, len, DMA_TO_DEVICE);
42 unmap->to_cnt = 2;
44 unmap->addr[2] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL);
45 unmap->bidi_cnt = 1;
46 /* engine only looks at Q, but expects it to follow P */
47 pq[1] = unmap->addr[2];
49 unmap->len = len;
50 tx = dma->device_prep_dma_pq(chan, pq, unmap->addr, 2, coef,
51 len, dma_flags);
52 if (tx) {
53 dma_set_unmap(tx, unmap);
54 async_tx_submit(chan, tx, submit);
55 dmaengine_unmap_put(unmap);
56 return tx;
59 /* could not get a descriptor, unmap and fall through to
60 * the synchronous path
62 dmaengine_unmap_put(unmap);
65 /* run the operation synchronously */
66 async_tx_quiesce(&submit->depend_tx);
67 amul = raid6_gfmul[coef[0]];
68 bmul = raid6_gfmul[coef[1]];
69 a = page_address(srcs[0]);
70 b = page_address(srcs[1]);
71 c = page_address(dest);
73 while (len--) {
74 ax = amul[*a++];
75 bx = bmul[*b++];
76 *c++ = ax ^ bx;
79 return NULL;
82 static struct dma_async_tx_descriptor *
83 async_mult(struct page *dest, struct page *src, u8 coef, size_t len,
84 struct async_submit_ctl *submit)
86 struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
87 &dest, 1, &src, 1, len);
88 struct dma_device *dma = chan ? chan->device : NULL;
89 struct dmaengine_unmap_data *unmap = NULL;
90 const u8 *qmul; /* Q multiplier table */
91 u8 *d, *s;
93 if (dma)
94 unmap = dmaengine_get_unmap_data(dma->dev, 3, GFP_NOWAIT);
96 if (unmap) {
97 dma_addr_t dma_dest[2];
98 struct device *dev = dma->dev;
99 struct dma_async_tx_descriptor *tx;
100 enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
102 if (submit->flags & ASYNC_TX_FENCE)
103 dma_flags |= DMA_PREP_FENCE;
104 unmap->addr[0] = dma_map_page(dev, src, 0, len, DMA_TO_DEVICE);
105 unmap->to_cnt++;
106 unmap->addr[1] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL);
107 dma_dest[1] = unmap->addr[1];
108 unmap->bidi_cnt++;
109 unmap->len = len;
111 /* this looks funny, but the engine looks for Q at
112 * dma_dest[1] and ignores dma_dest[0] as a dest
113 * due to DMA_PREP_PQ_DISABLE_P
115 tx = dma->device_prep_dma_pq(chan, dma_dest, unmap->addr,
116 1, &coef, len, dma_flags);
118 if (tx) {
119 dma_set_unmap(tx, unmap);
120 dmaengine_unmap_put(unmap);
121 async_tx_submit(chan, tx, submit);
122 return tx;
125 /* could not get a descriptor, unmap and fall through to
126 * the synchronous path
128 dmaengine_unmap_put(unmap);
131 /* no channel available, or failed to allocate a descriptor, so
132 * perform the operation synchronously
134 async_tx_quiesce(&submit->depend_tx);
135 qmul = raid6_gfmul[coef];
136 d = page_address(dest);
137 s = page_address(src);
139 while (len--)
140 *d++ = qmul[*s++];
142 return NULL;
145 static struct dma_async_tx_descriptor *
146 __2data_recov_4(int disks, size_t bytes, int faila, int failb,
147 struct page **blocks, struct async_submit_ctl *submit)
149 struct dma_async_tx_descriptor *tx = NULL;
150 struct page *p, *q, *a, *b;
151 struct page *srcs[2];
152 unsigned char coef[2];
153 enum async_tx_flags flags = submit->flags;
154 dma_async_tx_callback cb_fn = submit->cb_fn;
155 void *cb_param = submit->cb_param;
156 void *scribble = submit->scribble;
158 p = blocks[disks-2];
159 q = blocks[disks-1];
161 a = blocks[faila];
162 b = blocks[failb];
164 /* in the 4 disk case P + Pxy == P and Q + Qxy == Q */
165 /* Dx = A*(P+Pxy) + B*(Q+Qxy) */
166 srcs[0] = p;
167 srcs[1] = q;
168 coef[0] = raid6_gfexi[failb-faila];
169 coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
170 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
171 tx = async_sum_product(b, srcs, coef, bytes, submit);
173 /* Dy = P+Pxy+Dx */
174 srcs[0] = p;
175 srcs[1] = b;
176 init_async_submit(submit, flags | ASYNC_TX_XOR_ZERO_DST, tx, cb_fn,
177 cb_param, scribble);
178 tx = async_xor(a, srcs, 0, 2, bytes, submit);
180 return tx;
184 static struct dma_async_tx_descriptor *
185 __2data_recov_5(int disks, size_t bytes, int faila, int failb,
186 struct page **blocks, struct async_submit_ctl *submit)
188 struct dma_async_tx_descriptor *tx = NULL;
189 struct page *p, *q, *g, *dp, *dq;
190 struct page *srcs[2];
191 unsigned char coef[2];
192 enum async_tx_flags flags = submit->flags;
193 dma_async_tx_callback cb_fn = submit->cb_fn;
194 void *cb_param = submit->cb_param;
195 void *scribble = submit->scribble;
196 int good_srcs, good, i;
198 good_srcs = 0;
199 good = -1;
200 for (i = 0; i < disks-2; i++) {
201 if (blocks[i] == NULL)
202 continue;
203 if (i == faila || i == failb)
204 continue;
205 good = i;
206 good_srcs++;
208 BUG_ON(good_srcs > 1);
210 p = blocks[disks-2];
211 q = blocks[disks-1];
212 g = blocks[good];
214 /* Compute syndrome with zero for the missing data pages
215 * Use the dead data pages as temporary storage for delta p and
216 * delta q
218 dp = blocks[faila];
219 dq = blocks[failb];
221 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
222 tx = async_memcpy(dp, g, 0, 0, bytes, submit);
223 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
224 tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit);
226 /* compute P + Pxy */
227 srcs[0] = dp;
228 srcs[1] = p;
229 init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
230 NULL, NULL, scribble);
231 tx = async_xor(dp, srcs, 0, 2, bytes, submit);
233 /* compute Q + Qxy */
234 srcs[0] = dq;
235 srcs[1] = q;
236 init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
237 NULL, NULL, scribble);
238 tx = async_xor(dq, srcs, 0, 2, bytes, submit);
240 /* Dx = A*(P+Pxy) + B*(Q+Qxy) */
241 srcs[0] = dp;
242 srcs[1] = dq;
243 coef[0] = raid6_gfexi[failb-faila];
244 coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
245 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
246 tx = async_sum_product(dq, srcs, coef, bytes, submit);
248 /* Dy = P+Pxy+Dx */
249 srcs[0] = dp;
250 srcs[1] = dq;
251 init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
252 cb_param, scribble);
253 tx = async_xor(dp, srcs, 0, 2, bytes, submit);
255 return tx;
258 static struct dma_async_tx_descriptor *
259 __2data_recov_n(int disks, size_t bytes, int faila, int failb,
260 struct page **blocks, struct async_submit_ctl *submit)
262 struct dma_async_tx_descriptor *tx = NULL;
263 struct page *p, *q, *dp, *dq;
264 struct page *srcs[2];
265 unsigned char coef[2];
266 enum async_tx_flags flags = submit->flags;
267 dma_async_tx_callback cb_fn = submit->cb_fn;
268 void *cb_param = submit->cb_param;
269 void *scribble = submit->scribble;
271 p = blocks[disks-2];
272 q = blocks[disks-1];
274 /* Compute syndrome with zero for the missing data pages
275 * Use the dead data pages as temporary storage for
276 * delta p and delta q
278 dp = blocks[faila];
279 blocks[faila] = NULL;
280 blocks[disks-2] = dp;
281 dq = blocks[failb];
282 blocks[failb] = NULL;
283 blocks[disks-1] = dq;
285 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
286 tx = async_gen_syndrome(blocks, 0, disks, bytes, submit);
288 /* Restore pointer table */
289 blocks[faila] = dp;
290 blocks[failb] = dq;
291 blocks[disks-2] = p;
292 blocks[disks-1] = q;
294 /* compute P + Pxy */
295 srcs[0] = dp;
296 srcs[1] = p;
297 init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
298 NULL, NULL, scribble);
299 tx = async_xor(dp, srcs, 0, 2, bytes, submit);
301 /* compute Q + Qxy */
302 srcs[0] = dq;
303 srcs[1] = q;
304 init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
305 NULL, NULL, scribble);
306 tx = async_xor(dq, srcs, 0, 2, bytes, submit);
308 /* Dx = A*(P+Pxy) + B*(Q+Qxy) */
309 srcs[0] = dp;
310 srcs[1] = dq;
311 coef[0] = raid6_gfexi[failb-faila];
312 coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
313 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
314 tx = async_sum_product(dq, srcs, coef, bytes, submit);
316 /* Dy = P+Pxy+Dx */
317 srcs[0] = dp;
318 srcs[1] = dq;
319 init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
320 cb_param, scribble);
321 tx = async_xor(dp, srcs, 0, 2, bytes, submit);
323 return tx;
327 * async_raid6_2data_recov - asynchronously calculate two missing data blocks
328 * @disks: number of disks in the RAID-6 array
329 * @bytes: block size
330 * @faila: first failed drive index
331 * @failb: second failed drive index
332 * @blocks: array of source pointers where the last two entries are p and q
333 * @submit: submission/completion modifiers
335 struct dma_async_tx_descriptor *
336 async_raid6_2data_recov(int disks, size_t bytes, int faila, int failb,
337 struct page **blocks, struct async_submit_ctl *submit)
339 void *scribble = submit->scribble;
340 int non_zero_srcs, i;
342 BUG_ON(faila == failb);
343 if (failb < faila)
344 swap(faila, failb);
346 pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
348 /* if a dma resource is not available or a scribble buffer is not
349 * available punt to the synchronous path. In the 'dma not
350 * available' case be sure to use the scribble buffer to
351 * preserve the content of 'blocks' as the caller intended.
353 if (!async_dma_find_channel(DMA_PQ) || !scribble) {
354 void **ptrs = scribble ? scribble : (void **) blocks;
356 async_tx_quiesce(&submit->depend_tx);
357 for (i = 0; i < disks; i++)
358 if (blocks[i] == NULL)
359 ptrs[i] = (void *) raid6_empty_zero_page;
360 else
361 ptrs[i] = page_address(blocks[i]);
363 raid6_2data_recov(disks, bytes, faila, failb, ptrs);
365 async_tx_sync_epilog(submit);
367 return NULL;
370 non_zero_srcs = 0;
371 for (i = 0; i < disks-2 && non_zero_srcs < 4; i++)
372 if (blocks[i])
373 non_zero_srcs++;
374 switch (non_zero_srcs) {
375 case 0:
376 case 1:
377 /* There must be at least 2 sources - the failed devices. */
378 BUG();
380 case 2:
381 /* dma devices do not uniformly understand a zero source pq
382 * operation (in contrast to the synchronous case), so
383 * explicitly handle the special case of a 4 disk array with
384 * both data disks missing.
386 return __2data_recov_4(disks, bytes, faila, failb, blocks, submit);
387 case 3:
388 /* dma devices do not uniformly understand a single
389 * source pq operation (in contrast to the synchronous
390 * case), so explicitly handle the special case of a 5 disk
391 * array with 2 of 3 data disks missing.
393 return __2data_recov_5(disks, bytes, faila, failb, blocks, submit);
394 default:
395 return __2data_recov_n(disks, bytes, faila, failb, blocks, submit);
398 EXPORT_SYMBOL_GPL(async_raid6_2data_recov);
401 * async_raid6_datap_recov - asynchronously calculate a data and the 'p' block
402 * @disks: number of disks in the RAID-6 array
403 * @bytes: block size
404 * @faila: failed drive index
405 * @blocks: array of source pointers where the last two entries are p and q
406 * @submit: submission/completion modifiers
408 struct dma_async_tx_descriptor *
409 async_raid6_datap_recov(int disks, size_t bytes, int faila,
410 struct page **blocks, struct async_submit_ctl *submit)
412 struct dma_async_tx_descriptor *tx = NULL;
413 struct page *p, *q, *dq;
414 u8 coef;
415 enum async_tx_flags flags = submit->flags;
416 dma_async_tx_callback cb_fn = submit->cb_fn;
417 void *cb_param = submit->cb_param;
418 void *scribble = submit->scribble;
419 int good_srcs, good, i;
420 struct page *srcs[2];
422 pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
424 /* if a dma resource is not available or a scribble buffer is not
425 * available punt to the synchronous path. In the 'dma not
426 * available' case be sure to use the scribble buffer to
427 * preserve the content of 'blocks' as the caller intended.
429 if (!async_dma_find_channel(DMA_PQ) || !scribble) {
430 void **ptrs = scribble ? scribble : (void **) blocks;
432 async_tx_quiesce(&submit->depend_tx);
433 for (i = 0; i < disks; i++)
434 if (blocks[i] == NULL)
435 ptrs[i] = (void*)raid6_empty_zero_page;
436 else
437 ptrs[i] = page_address(blocks[i]);
439 raid6_datap_recov(disks, bytes, faila, ptrs);
441 async_tx_sync_epilog(submit);
443 return NULL;
446 good_srcs = 0;
447 good = -1;
448 for (i = 0; i < disks-2; i++) {
449 if (i == faila)
450 continue;
451 if (blocks[i]) {
452 good = i;
453 good_srcs++;
454 if (good_srcs > 1)
455 break;
458 BUG_ON(good_srcs == 0);
460 p = blocks[disks-2];
461 q = blocks[disks-1];
463 /* Compute syndrome with zero for the missing data page
464 * Use the dead data page as temporary storage for delta q
466 dq = blocks[faila];
467 blocks[faila] = NULL;
468 blocks[disks-1] = dq;
470 /* in the 4-disk case we only need to perform a single source
471 * multiplication with the one good data block.
473 if (good_srcs == 1) {
474 struct page *g = blocks[good];
476 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
477 scribble);
478 tx = async_memcpy(p, g, 0, 0, bytes, submit);
480 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
481 scribble);
482 tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit);
483 } else {
484 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
485 scribble);
486 tx = async_gen_syndrome(blocks, 0, disks, bytes, submit);
489 /* Restore pointer table */
490 blocks[faila] = dq;
491 blocks[disks-1] = q;
493 /* calculate g^{-faila} */
494 coef = raid6_gfinv[raid6_gfexp[faila]];
496 srcs[0] = dq;
497 srcs[1] = q;
498 init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
499 NULL, NULL, scribble);
500 tx = async_xor(dq, srcs, 0, 2, bytes, submit);
502 init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
503 tx = async_mult(dq, dq, coef, bytes, submit);
505 srcs[0] = p;
506 srcs[1] = dq;
507 init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
508 cb_param, scribble);
509 tx = async_xor(p, srcs, 0, 2, bytes, submit);
511 return tx;
513 EXPORT_SYMBOL_GPL(async_raid6_datap_recov);
515 MODULE_AUTHOR("Dan Williams <dan.j.williams@intel.com>");
516 MODULE_DESCRIPTION("asynchronous RAID-6 recovery api");
517 MODULE_LICENSE("GPL");