1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Asynchronous RAID-6 recovery calculations ASYNC_TX API.
4 * Copyright(c) 2009 Intel Corporation
6 * based on raid6recov.c:
7 * Copyright 2002 H. Peter Anvin
9 #include <linux/kernel.h>
10 #include <linux/interrupt.h>
11 #include <linux/module.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/raid/pq.h>
14 #include <linux/async_tx.h>
15 #include <linux/dmaengine.h>
17 static struct dma_async_tx_descriptor
*
18 async_sum_product(struct page
*dest
, struct page
**srcs
, unsigned char *coef
,
19 size_t len
, struct async_submit_ctl
*submit
)
21 struct dma_chan
*chan
= async_tx_find_channel(submit
, DMA_PQ
,
22 &dest
, 1, srcs
, 2, len
);
23 struct dma_device
*dma
= chan
? chan
->device
: NULL
;
24 struct dmaengine_unmap_data
*unmap
= NULL
;
25 const u8
*amul
, *bmul
;
30 unmap
= dmaengine_get_unmap_data(dma
->dev
, 3, GFP_NOWAIT
);
33 struct device
*dev
= dma
->dev
;
35 struct dma_async_tx_descriptor
*tx
;
36 enum dma_ctrl_flags dma_flags
= DMA_PREP_PQ_DISABLE_P
;
38 if (submit
->flags
& ASYNC_TX_FENCE
)
39 dma_flags
|= DMA_PREP_FENCE
;
40 unmap
->addr
[0] = dma_map_page(dev
, srcs
[0], 0, len
, DMA_TO_DEVICE
);
41 unmap
->addr
[1] = dma_map_page(dev
, srcs
[1], 0, len
, DMA_TO_DEVICE
);
44 unmap
->addr
[2] = dma_map_page(dev
, dest
, 0, len
, DMA_BIDIRECTIONAL
);
46 /* engine only looks at Q, but expects it to follow P */
47 pq
[1] = unmap
->addr
[2];
50 tx
= dma
->device_prep_dma_pq(chan
, pq
, unmap
->addr
, 2, coef
,
53 dma_set_unmap(tx
, unmap
);
54 async_tx_submit(chan
, tx
, submit
);
55 dmaengine_unmap_put(unmap
);
59 /* could not get a descriptor, unmap and fall through to
60 * the synchronous path
62 dmaengine_unmap_put(unmap
);
65 /* run the operation synchronously */
66 async_tx_quiesce(&submit
->depend_tx
);
67 amul
= raid6_gfmul
[coef
[0]];
68 bmul
= raid6_gfmul
[coef
[1]];
69 a
= page_address(srcs
[0]);
70 b
= page_address(srcs
[1]);
71 c
= page_address(dest
);
82 static struct dma_async_tx_descriptor
*
83 async_mult(struct page
*dest
, struct page
*src
, u8 coef
, size_t len
,
84 struct async_submit_ctl
*submit
)
86 struct dma_chan
*chan
= async_tx_find_channel(submit
, DMA_PQ
,
87 &dest
, 1, &src
, 1, len
);
88 struct dma_device
*dma
= chan
? chan
->device
: NULL
;
89 struct dmaengine_unmap_data
*unmap
= NULL
;
90 const u8
*qmul
; /* Q multiplier table */
94 unmap
= dmaengine_get_unmap_data(dma
->dev
, 3, GFP_NOWAIT
);
97 dma_addr_t dma_dest
[2];
98 struct device
*dev
= dma
->dev
;
99 struct dma_async_tx_descriptor
*tx
;
100 enum dma_ctrl_flags dma_flags
= DMA_PREP_PQ_DISABLE_P
;
102 if (submit
->flags
& ASYNC_TX_FENCE
)
103 dma_flags
|= DMA_PREP_FENCE
;
104 unmap
->addr
[0] = dma_map_page(dev
, src
, 0, len
, DMA_TO_DEVICE
);
106 unmap
->addr
[1] = dma_map_page(dev
, dest
, 0, len
, DMA_BIDIRECTIONAL
);
107 dma_dest
[1] = unmap
->addr
[1];
111 /* this looks funny, but the engine looks for Q at
112 * dma_dest[1] and ignores dma_dest[0] as a dest
113 * due to DMA_PREP_PQ_DISABLE_P
115 tx
= dma
->device_prep_dma_pq(chan
, dma_dest
, unmap
->addr
,
116 1, &coef
, len
, dma_flags
);
119 dma_set_unmap(tx
, unmap
);
120 dmaengine_unmap_put(unmap
);
121 async_tx_submit(chan
, tx
, submit
);
125 /* could not get a descriptor, unmap and fall through to
126 * the synchronous path
128 dmaengine_unmap_put(unmap
);
131 /* no channel available, or failed to allocate a descriptor, so
132 * perform the operation synchronously
134 async_tx_quiesce(&submit
->depend_tx
);
135 qmul
= raid6_gfmul
[coef
];
136 d
= page_address(dest
);
137 s
= page_address(src
);
145 static struct dma_async_tx_descriptor
*
146 __2data_recov_4(int disks
, size_t bytes
, int faila
, int failb
,
147 struct page
**blocks
, struct async_submit_ctl
*submit
)
149 struct dma_async_tx_descriptor
*tx
= NULL
;
150 struct page
*p
, *q
, *a
, *b
;
151 struct page
*srcs
[2];
152 unsigned char coef
[2];
153 enum async_tx_flags flags
= submit
->flags
;
154 dma_async_tx_callback cb_fn
= submit
->cb_fn
;
155 void *cb_param
= submit
->cb_param
;
156 void *scribble
= submit
->scribble
;
164 /* in the 4 disk case P + Pxy == P and Q + Qxy == Q */
165 /* Dx = A*(P+Pxy) + B*(Q+Qxy) */
168 coef
[0] = raid6_gfexi
[failb
-faila
];
169 coef
[1] = raid6_gfinv
[raid6_gfexp
[faila
]^raid6_gfexp
[failb
]];
170 init_async_submit(submit
, ASYNC_TX_FENCE
, tx
, NULL
, NULL
, scribble
);
171 tx
= async_sum_product(b
, srcs
, coef
, bytes
, submit
);
176 init_async_submit(submit
, flags
| ASYNC_TX_XOR_ZERO_DST
, tx
, cb_fn
,
178 tx
= async_xor(a
, srcs
, 0, 2, bytes
, submit
);
184 static struct dma_async_tx_descriptor
*
185 __2data_recov_5(int disks
, size_t bytes
, int faila
, int failb
,
186 struct page
**blocks
, struct async_submit_ctl
*submit
)
188 struct dma_async_tx_descriptor
*tx
= NULL
;
189 struct page
*p
, *q
, *g
, *dp
, *dq
;
190 struct page
*srcs
[2];
191 unsigned char coef
[2];
192 enum async_tx_flags flags
= submit
->flags
;
193 dma_async_tx_callback cb_fn
= submit
->cb_fn
;
194 void *cb_param
= submit
->cb_param
;
195 void *scribble
= submit
->scribble
;
196 int good_srcs
, good
, i
;
200 for (i
= 0; i
< disks
-2; i
++) {
201 if (blocks
[i
] == NULL
)
203 if (i
== faila
|| i
== failb
)
208 BUG_ON(good_srcs
> 1);
214 /* Compute syndrome with zero for the missing data pages
215 * Use the dead data pages as temporary storage for delta p and
221 init_async_submit(submit
, ASYNC_TX_FENCE
, tx
, NULL
, NULL
, scribble
);
222 tx
= async_memcpy(dp
, g
, 0, 0, bytes
, submit
);
223 init_async_submit(submit
, ASYNC_TX_FENCE
, tx
, NULL
, NULL
, scribble
);
224 tx
= async_mult(dq
, g
, raid6_gfexp
[good
], bytes
, submit
);
226 /* compute P + Pxy */
229 init_async_submit(submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_DROP_DST
, tx
,
230 NULL
, NULL
, scribble
);
231 tx
= async_xor(dp
, srcs
, 0, 2, bytes
, submit
);
233 /* compute Q + Qxy */
236 init_async_submit(submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_DROP_DST
, tx
,
237 NULL
, NULL
, scribble
);
238 tx
= async_xor(dq
, srcs
, 0, 2, bytes
, submit
);
240 /* Dx = A*(P+Pxy) + B*(Q+Qxy) */
243 coef
[0] = raid6_gfexi
[failb
-faila
];
244 coef
[1] = raid6_gfinv
[raid6_gfexp
[faila
]^raid6_gfexp
[failb
]];
245 init_async_submit(submit
, ASYNC_TX_FENCE
, tx
, NULL
, NULL
, scribble
);
246 tx
= async_sum_product(dq
, srcs
, coef
, bytes
, submit
);
251 init_async_submit(submit
, flags
| ASYNC_TX_XOR_DROP_DST
, tx
, cb_fn
,
253 tx
= async_xor(dp
, srcs
, 0, 2, bytes
, submit
);
258 static struct dma_async_tx_descriptor
*
259 __2data_recov_n(int disks
, size_t bytes
, int faila
, int failb
,
260 struct page
**blocks
, struct async_submit_ctl
*submit
)
262 struct dma_async_tx_descriptor
*tx
= NULL
;
263 struct page
*p
, *q
, *dp
, *dq
;
264 struct page
*srcs
[2];
265 unsigned char coef
[2];
266 enum async_tx_flags flags
= submit
->flags
;
267 dma_async_tx_callback cb_fn
= submit
->cb_fn
;
268 void *cb_param
= submit
->cb_param
;
269 void *scribble
= submit
->scribble
;
274 /* Compute syndrome with zero for the missing data pages
275 * Use the dead data pages as temporary storage for
276 * delta p and delta q
279 blocks
[faila
] = NULL
;
280 blocks
[disks
-2] = dp
;
282 blocks
[failb
] = NULL
;
283 blocks
[disks
-1] = dq
;
285 init_async_submit(submit
, ASYNC_TX_FENCE
, tx
, NULL
, NULL
, scribble
);
286 tx
= async_gen_syndrome(blocks
, 0, disks
, bytes
, submit
);
288 /* Restore pointer table */
294 /* compute P + Pxy */
297 init_async_submit(submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_DROP_DST
, tx
,
298 NULL
, NULL
, scribble
);
299 tx
= async_xor(dp
, srcs
, 0, 2, bytes
, submit
);
301 /* compute Q + Qxy */
304 init_async_submit(submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_DROP_DST
, tx
,
305 NULL
, NULL
, scribble
);
306 tx
= async_xor(dq
, srcs
, 0, 2, bytes
, submit
);
308 /* Dx = A*(P+Pxy) + B*(Q+Qxy) */
311 coef
[0] = raid6_gfexi
[failb
-faila
];
312 coef
[1] = raid6_gfinv
[raid6_gfexp
[faila
]^raid6_gfexp
[failb
]];
313 init_async_submit(submit
, ASYNC_TX_FENCE
, tx
, NULL
, NULL
, scribble
);
314 tx
= async_sum_product(dq
, srcs
, coef
, bytes
, submit
);
319 init_async_submit(submit
, flags
| ASYNC_TX_XOR_DROP_DST
, tx
, cb_fn
,
321 tx
= async_xor(dp
, srcs
, 0, 2, bytes
, submit
);
327 * async_raid6_2data_recov - asynchronously calculate two missing data blocks
328 * @disks: number of disks in the RAID-6 array
330 * @faila: first failed drive index
331 * @failb: second failed drive index
332 * @blocks: array of source pointers where the last two entries are p and q
333 * @submit: submission/completion modifiers
335 struct dma_async_tx_descriptor
*
336 async_raid6_2data_recov(int disks
, size_t bytes
, int faila
, int failb
,
337 struct page
**blocks
, struct async_submit_ctl
*submit
)
339 void *scribble
= submit
->scribble
;
340 int non_zero_srcs
, i
;
342 BUG_ON(faila
== failb
);
346 pr_debug("%s: disks: %d len: %zu\n", __func__
, disks
, bytes
);
348 /* if a dma resource is not available or a scribble buffer is not
349 * available punt to the synchronous path. In the 'dma not
350 * available' case be sure to use the scribble buffer to
351 * preserve the content of 'blocks' as the caller intended.
353 if (!async_dma_find_channel(DMA_PQ
) || !scribble
) {
354 void **ptrs
= scribble
? scribble
: (void **) blocks
;
356 async_tx_quiesce(&submit
->depend_tx
);
357 for (i
= 0; i
< disks
; i
++)
358 if (blocks
[i
] == NULL
)
359 ptrs
[i
] = (void *) raid6_empty_zero_page
;
361 ptrs
[i
] = page_address(blocks
[i
]);
363 raid6_2data_recov(disks
, bytes
, faila
, failb
, ptrs
);
365 async_tx_sync_epilog(submit
);
371 for (i
= 0; i
< disks
-2 && non_zero_srcs
< 4; i
++)
374 switch (non_zero_srcs
) {
377 /* There must be at least 2 sources - the failed devices. */
381 /* dma devices do not uniformly understand a zero source pq
382 * operation (in contrast to the synchronous case), so
383 * explicitly handle the special case of a 4 disk array with
384 * both data disks missing.
386 return __2data_recov_4(disks
, bytes
, faila
, failb
, blocks
, submit
);
388 /* dma devices do not uniformly understand a single
389 * source pq operation (in contrast to the synchronous
390 * case), so explicitly handle the special case of a 5 disk
391 * array with 2 of 3 data disks missing.
393 return __2data_recov_5(disks
, bytes
, faila
, failb
, blocks
, submit
);
395 return __2data_recov_n(disks
, bytes
, faila
, failb
, blocks
, submit
);
398 EXPORT_SYMBOL_GPL(async_raid6_2data_recov
);
401 * async_raid6_datap_recov - asynchronously calculate a data and the 'p' block
402 * @disks: number of disks in the RAID-6 array
404 * @faila: failed drive index
405 * @blocks: array of source pointers where the last two entries are p and q
406 * @submit: submission/completion modifiers
408 struct dma_async_tx_descriptor
*
409 async_raid6_datap_recov(int disks
, size_t bytes
, int faila
,
410 struct page
**blocks
, struct async_submit_ctl
*submit
)
412 struct dma_async_tx_descriptor
*tx
= NULL
;
413 struct page
*p
, *q
, *dq
;
415 enum async_tx_flags flags
= submit
->flags
;
416 dma_async_tx_callback cb_fn
= submit
->cb_fn
;
417 void *cb_param
= submit
->cb_param
;
418 void *scribble
= submit
->scribble
;
419 int good_srcs
, good
, i
;
420 struct page
*srcs
[2];
422 pr_debug("%s: disks: %d len: %zu\n", __func__
, disks
, bytes
);
424 /* if a dma resource is not available or a scribble buffer is not
425 * available punt to the synchronous path. In the 'dma not
426 * available' case be sure to use the scribble buffer to
427 * preserve the content of 'blocks' as the caller intended.
429 if (!async_dma_find_channel(DMA_PQ
) || !scribble
) {
430 void **ptrs
= scribble
? scribble
: (void **) blocks
;
432 async_tx_quiesce(&submit
->depend_tx
);
433 for (i
= 0; i
< disks
; i
++)
434 if (blocks
[i
] == NULL
)
435 ptrs
[i
] = (void*)raid6_empty_zero_page
;
437 ptrs
[i
] = page_address(blocks
[i
]);
439 raid6_datap_recov(disks
, bytes
, faila
, ptrs
);
441 async_tx_sync_epilog(submit
);
448 for (i
= 0; i
< disks
-2; i
++) {
458 BUG_ON(good_srcs
== 0);
463 /* Compute syndrome with zero for the missing data page
464 * Use the dead data page as temporary storage for delta q
467 blocks
[faila
] = NULL
;
468 blocks
[disks
-1] = dq
;
470 /* in the 4-disk case we only need to perform a single source
471 * multiplication with the one good data block.
473 if (good_srcs
== 1) {
474 struct page
*g
= blocks
[good
];
476 init_async_submit(submit
, ASYNC_TX_FENCE
, tx
, NULL
, NULL
,
478 tx
= async_memcpy(p
, g
, 0, 0, bytes
, submit
);
480 init_async_submit(submit
, ASYNC_TX_FENCE
, tx
, NULL
, NULL
,
482 tx
= async_mult(dq
, g
, raid6_gfexp
[good
], bytes
, submit
);
484 init_async_submit(submit
, ASYNC_TX_FENCE
, tx
, NULL
, NULL
,
486 tx
= async_gen_syndrome(blocks
, 0, disks
, bytes
, submit
);
489 /* Restore pointer table */
493 /* calculate g^{-faila} */
494 coef
= raid6_gfinv
[raid6_gfexp
[faila
]];
498 init_async_submit(submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_DROP_DST
, tx
,
499 NULL
, NULL
, scribble
);
500 tx
= async_xor(dq
, srcs
, 0, 2, bytes
, submit
);
502 init_async_submit(submit
, ASYNC_TX_FENCE
, tx
, NULL
, NULL
, scribble
);
503 tx
= async_mult(dq
, dq
, coef
, bytes
, submit
);
507 init_async_submit(submit
, flags
| ASYNC_TX_XOR_DROP_DST
, tx
, cb_fn
,
509 tx
= async_xor(p
, srcs
, 0, 2, bytes
, submit
);
513 EXPORT_SYMBOL_GPL(async_raid6_datap_recov
);
515 MODULE_AUTHOR("Dan Williams <dan.j.williams@intel.com>");
516 MODULE_DESCRIPTION("asynchronous RAID-6 recovery api");
517 MODULE_LICENSE("GPL");