1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2009 Red Hat, Inc.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
38 #include <asm/pgalloc.h>
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
49 unsigned long transparent_hugepage_flags __read_mostly
=
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 (1<<TRANSPARENT_HUGEPAGE_FLAG
)|
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
)|
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
60 static struct shrinker deferred_split_shrinker
;
62 static atomic_t huge_zero_refcount
;
63 struct page
*huge_zero_page __read_mostly
;
65 bool transparent_hugepage_enabled(struct vm_area_struct
*vma
)
67 /* The addr is used to check if the vma size fits */
68 unsigned long addr
= (vma
->vm_end
& HPAGE_PMD_MASK
) - HPAGE_PMD_SIZE
;
70 if (!transhuge_vma_suitable(vma
, addr
))
72 if (vma_is_anonymous(vma
))
73 return __transparent_hugepage_enabled(vma
);
74 if (vma_is_shmem(vma
))
75 return shmem_huge_enabled(vma
);
80 static struct page
*get_huge_zero_page(void)
82 struct page
*zero_page
;
84 if (likely(atomic_inc_not_zero(&huge_zero_refcount
)))
85 return READ_ONCE(huge_zero_page
);
87 zero_page
= alloc_pages((GFP_TRANSHUGE
| __GFP_ZERO
) & ~__GFP_MOVABLE
,
90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED
);
93 count_vm_event(THP_ZERO_PAGE_ALLOC
);
95 if (cmpxchg(&huge_zero_page
, NULL
, zero_page
)) {
97 __free_pages(zero_page
, compound_order(zero_page
));
101 /* We take additional reference here. It will be put back by shrinker */
102 atomic_set(&huge_zero_refcount
, 2);
104 return READ_ONCE(huge_zero_page
);
107 static void put_huge_zero_page(void)
110 * Counter should never go to zero here. Only shrinker can put
113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount
));
116 struct page
*mm_get_huge_zero_page(struct mm_struct
*mm
)
118 if (test_bit(MMF_HUGE_ZERO_PAGE
, &mm
->flags
))
119 return READ_ONCE(huge_zero_page
);
121 if (!get_huge_zero_page())
124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE
, &mm
->flags
))
125 put_huge_zero_page();
127 return READ_ONCE(huge_zero_page
);
130 void mm_put_huge_zero_page(struct mm_struct
*mm
)
132 if (test_bit(MMF_HUGE_ZERO_PAGE
, &mm
->flags
))
133 put_huge_zero_page();
136 static unsigned long shrink_huge_zero_page_count(struct shrinker
*shrink
,
137 struct shrink_control
*sc
)
139 /* we can free zero page only if last reference remains */
140 return atomic_read(&huge_zero_refcount
) == 1 ? HPAGE_PMD_NR
: 0;
143 static unsigned long shrink_huge_zero_page_scan(struct shrinker
*shrink
,
144 struct shrink_control
*sc
)
146 if (atomic_cmpxchg(&huge_zero_refcount
, 1, 0) == 1) {
147 struct page
*zero_page
= xchg(&huge_zero_page
, NULL
);
148 BUG_ON(zero_page
== NULL
);
149 __free_pages(zero_page
, compound_order(zero_page
));
156 static struct shrinker huge_zero_page_shrinker
= {
157 .count_objects
= shrink_huge_zero_page_count
,
158 .scan_objects
= shrink_huge_zero_page_scan
,
159 .seeks
= DEFAULT_SEEKS
,
163 static ssize_t
enabled_show(struct kobject
*kobj
,
164 struct kobj_attribute
*attr
, char *buf
)
166 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
))
167 return sprintf(buf
, "[always] madvise never\n");
168 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
))
169 return sprintf(buf
, "always [madvise] never\n");
171 return sprintf(buf
, "always madvise [never]\n");
174 static ssize_t
enabled_store(struct kobject
*kobj
,
175 struct kobj_attribute
*attr
,
176 const char *buf
, size_t count
)
180 if (!memcmp("always", buf
,
181 min(sizeof("always")-1, count
))) {
182 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
183 set_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
);
184 } else if (!memcmp("madvise", buf
,
185 min(sizeof("madvise")-1, count
))) {
186 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
);
187 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
188 } else if (!memcmp("never", buf
,
189 min(sizeof("never")-1, count
))) {
190 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
);
191 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
196 int err
= start_stop_khugepaged();
202 static struct kobj_attribute enabled_attr
=
203 __ATTR(enabled
, 0644, enabled_show
, enabled_store
);
205 ssize_t
single_hugepage_flag_show(struct kobject
*kobj
,
206 struct kobj_attribute
*attr
, char *buf
,
207 enum transparent_hugepage_flag flag
)
209 return sprintf(buf
, "%d\n",
210 !!test_bit(flag
, &transparent_hugepage_flags
));
213 ssize_t
single_hugepage_flag_store(struct kobject
*kobj
,
214 struct kobj_attribute
*attr
,
215 const char *buf
, size_t count
,
216 enum transparent_hugepage_flag flag
)
221 ret
= kstrtoul(buf
, 10, &value
);
228 set_bit(flag
, &transparent_hugepage_flags
);
230 clear_bit(flag
, &transparent_hugepage_flags
);
235 static ssize_t
defrag_show(struct kobject
*kobj
,
236 struct kobj_attribute
*attr
, char *buf
)
238 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
))
239 return sprintf(buf
, "[always] defer defer+madvise madvise never\n");
240 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
))
241 return sprintf(buf
, "always [defer] defer+madvise madvise never\n");
242 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
))
243 return sprintf(buf
, "always defer [defer+madvise] madvise never\n");
244 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
))
245 return sprintf(buf
, "always defer defer+madvise [madvise] never\n");
246 return sprintf(buf
, "always defer defer+madvise madvise [never]\n");
249 static ssize_t
defrag_store(struct kobject
*kobj
,
250 struct kobj_attribute
*attr
,
251 const char *buf
, size_t count
)
253 if (!memcmp("always", buf
,
254 min(sizeof("always")-1, count
))) {
255 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
258 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
259 } else if (!memcmp("defer+madvise", buf
,
260 min(sizeof("defer+madvise")-1, count
))) {
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
264 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
265 } else if (!memcmp("defer", buf
,
266 min(sizeof("defer")-1, count
))) {
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
269 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
270 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
271 } else if (!memcmp("madvise", buf
,
272 min(sizeof("madvise")-1, count
))) {
273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
275 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
276 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
277 } else if (!memcmp("never", buf
,
278 min(sizeof("never")-1, count
))) {
279 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
280 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
281 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
282 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
288 static struct kobj_attribute defrag_attr
=
289 __ATTR(defrag
, 0644, defrag_show
, defrag_store
);
291 static ssize_t
use_zero_page_show(struct kobject
*kobj
,
292 struct kobj_attribute
*attr
, char *buf
)
294 return single_hugepage_flag_show(kobj
, attr
, buf
,
295 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
297 static ssize_t
use_zero_page_store(struct kobject
*kobj
,
298 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
300 return single_hugepage_flag_store(kobj
, attr
, buf
, count
,
301 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
303 static struct kobj_attribute use_zero_page_attr
=
304 __ATTR(use_zero_page
, 0644, use_zero_page_show
, use_zero_page_store
);
306 static ssize_t
hpage_pmd_size_show(struct kobject
*kobj
,
307 struct kobj_attribute
*attr
, char *buf
)
309 return sprintf(buf
, "%lu\n", HPAGE_PMD_SIZE
);
311 static struct kobj_attribute hpage_pmd_size_attr
=
312 __ATTR_RO(hpage_pmd_size
);
314 #ifdef CONFIG_DEBUG_VM
315 static ssize_t
debug_cow_show(struct kobject
*kobj
,
316 struct kobj_attribute
*attr
, char *buf
)
318 return single_hugepage_flag_show(kobj
, attr
, buf
,
319 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
321 static ssize_t
debug_cow_store(struct kobject
*kobj
,
322 struct kobj_attribute
*attr
,
323 const char *buf
, size_t count
)
325 return single_hugepage_flag_store(kobj
, attr
, buf
, count
,
326 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
328 static struct kobj_attribute debug_cow_attr
=
329 __ATTR(debug_cow
, 0644, debug_cow_show
, debug_cow_store
);
330 #endif /* CONFIG_DEBUG_VM */
332 static struct attribute
*hugepage_attr
[] = {
335 &use_zero_page_attr
.attr
,
336 &hpage_pmd_size_attr
.attr
,
337 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
338 &shmem_enabled_attr
.attr
,
340 #ifdef CONFIG_DEBUG_VM
341 &debug_cow_attr
.attr
,
346 static const struct attribute_group hugepage_attr_group
= {
347 .attrs
= hugepage_attr
,
350 static int __init
hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
354 *hugepage_kobj
= kobject_create_and_add("transparent_hugepage", mm_kobj
);
355 if (unlikely(!*hugepage_kobj
)) {
356 pr_err("failed to create transparent hugepage kobject\n");
360 err
= sysfs_create_group(*hugepage_kobj
, &hugepage_attr_group
);
362 pr_err("failed to register transparent hugepage group\n");
366 err
= sysfs_create_group(*hugepage_kobj
, &khugepaged_attr_group
);
368 pr_err("failed to register transparent hugepage group\n");
369 goto remove_hp_group
;
375 sysfs_remove_group(*hugepage_kobj
, &hugepage_attr_group
);
377 kobject_put(*hugepage_kobj
);
381 static void __init
hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
383 sysfs_remove_group(hugepage_kobj
, &khugepaged_attr_group
);
384 sysfs_remove_group(hugepage_kobj
, &hugepage_attr_group
);
385 kobject_put(hugepage_kobj
);
388 static inline int hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
393 static inline void hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
396 #endif /* CONFIG_SYSFS */
398 static int __init
hugepage_init(void)
401 struct kobject
*hugepage_kobj
;
403 if (!has_transparent_hugepage()) {
404 transparent_hugepage_flags
= 0;
409 * hugepages can't be allocated by the buddy allocator
411 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER
>= MAX_ORDER
);
413 * we use page->mapping and page->index in second tail page
414 * as list_head: assuming THP order >= 2
416 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER
< 2);
418 err
= hugepage_init_sysfs(&hugepage_kobj
);
422 err
= khugepaged_init();
426 err
= register_shrinker(&huge_zero_page_shrinker
);
428 goto err_hzp_shrinker
;
429 err
= register_shrinker(&deferred_split_shrinker
);
431 goto err_split_shrinker
;
434 * By default disable transparent hugepages on smaller systems,
435 * where the extra memory used could hurt more than TLB overhead
436 * is likely to save. The admin can still enable it through /sys.
438 if (totalram_pages() < (512 << (20 - PAGE_SHIFT
))) {
439 transparent_hugepage_flags
= 0;
443 err
= start_stop_khugepaged();
449 unregister_shrinker(&deferred_split_shrinker
);
451 unregister_shrinker(&huge_zero_page_shrinker
);
453 khugepaged_destroy();
455 hugepage_exit_sysfs(hugepage_kobj
);
459 subsys_initcall(hugepage_init
);
461 static int __init
setup_transparent_hugepage(char *str
)
466 if (!strcmp(str
, "always")) {
467 set_bit(TRANSPARENT_HUGEPAGE_FLAG
,
468 &transparent_hugepage_flags
);
469 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
470 &transparent_hugepage_flags
);
472 } else if (!strcmp(str
, "madvise")) {
473 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
474 &transparent_hugepage_flags
);
475 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
476 &transparent_hugepage_flags
);
478 } else if (!strcmp(str
, "never")) {
479 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
480 &transparent_hugepage_flags
);
481 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
482 &transparent_hugepage_flags
);
487 pr_warn("transparent_hugepage= cannot parse, ignored\n");
490 __setup("transparent_hugepage=", setup_transparent_hugepage
);
492 pmd_t
maybe_pmd_mkwrite(pmd_t pmd
, struct vm_area_struct
*vma
)
494 if (likely(vma
->vm_flags
& VM_WRITE
))
495 pmd
= pmd_mkwrite(pmd
);
499 static inline struct list_head
*page_deferred_list(struct page
*page
)
501 /* ->lru in the tail pages is occupied by compound_head. */
502 return &page
[2].deferred_list
;
505 void prep_transhuge_page(struct page
*page
)
508 * we use page->mapping and page->indexlru in second tail page
509 * as list_head: assuming THP order >= 2
512 INIT_LIST_HEAD(page_deferred_list(page
));
513 set_compound_page_dtor(page
, TRANSHUGE_PAGE_DTOR
);
516 static unsigned long __thp_get_unmapped_area(struct file
*filp
, unsigned long len
,
517 loff_t off
, unsigned long flags
, unsigned long size
)
520 loff_t off_end
= off
+ len
;
521 loff_t off_align
= round_up(off
, size
);
522 unsigned long len_pad
;
524 if (off_end
<= off_align
|| (off_end
- off_align
) < size
)
527 len_pad
= len
+ size
;
528 if (len_pad
< len
|| (off
+ len_pad
) < off
)
531 addr
= current
->mm
->get_unmapped_area(filp
, 0, len_pad
,
532 off
>> PAGE_SHIFT
, flags
);
533 if (IS_ERR_VALUE(addr
))
536 addr
+= (off
- addr
) & (size
- 1);
540 unsigned long thp_get_unmapped_area(struct file
*filp
, unsigned long addr
,
541 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
543 loff_t off
= (loff_t
)pgoff
<< PAGE_SHIFT
;
547 if (!IS_DAX(filp
->f_mapping
->host
) || !IS_ENABLED(CONFIG_FS_DAX_PMD
))
550 addr
= __thp_get_unmapped_area(filp
, len
, off
, flags
, PMD_SIZE
);
555 return current
->mm
->get_unmapped_area(filp
, addr
, len
, pgoff
, flags
);
557 EXPORT_SYMBOL_GPL(thp_get_unmapped_area
);
559 static vm_fault_t
__do_huge_pmd_anonymous_page(struct vm_fault
*vmf
,
560 struct page
*page
, gfp_t gfp
)
562 struct vm_area_struct
*vma
= vmf
->vma
;
563 struct mem_cgroup
*memcg
;
565 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
568 VM_BUG_ON_PAGE(!PageCompound(page
), page
);
570 if (mem_cgroup_try_charge_delay(page
, vma
->vm_mm
, gfp
, &memcg
, true)) {
572 count_vm_event(THP_FAULT_FALLBACK
);
573 return VM_FAULT_FALLBACK
;
576 pgtable
= pte_alloc_one(vma
->vm_mm
);
577 if (unlikely(!pgtable
)) {
582 clear_huge_page(page
, vmf
->address
, HPAGE_PMD_NR
);
584 * The memory barrier inside __SetPageUptodate makes sure that
585 * clear_huge_page writes become visible before the set_pmd_at()
588 __SetPageUptodate(page
);
590 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
591 if (unlikely(!pmd_none(*vmf
->pmd
))) {
596 ret
= check_stable_address_space(vma
->vm_mm
);
600 /* Deliver the page fault to userland */
601 if (userfaultfd_missing(vma
)) {
604 spin_unlock(vmf
->ptl
);
605 mem_cgroup_cancel_charge(page
, memcg
, true);
607 pte_free(vma
->vm_mm
, pgtable
);
608 ret2
= handle_userfault(vmf
, VM_UFFD_MISSING
);
609 VM_BUG_ON(ret2
& VM_FAULT_FALLBACK
);
613 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
614 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
615 page_add_new_anon_rmap(page
, vma
, haddr
, true);
616 mem_cgroup_commit_charge(page
, memcg
, false, true);
617 lru_cache_add_active_or_unevictable(page
, vma
);
618 pgtable_trans_huge_deposit(vma
->vm_mm
, vmf
->pmd
, pgtable
);
619 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
620 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
621 mm_inc_nr_ptes(vma
->vm_mm
);
622 spin_unlock(vmf
->ptl
);
623 count_vm_event(THP_FAULT_ALLOC
);
624 count_memcg_events(memcg
, THP_FAULT_ALLOC
, 1);
629 spin_unlock(vmf
->ptl
);
632 pte_free(vma
->vm_mm
, pgtable
);
633 mem_cgroup_cancel_charge(page
, memcg
, true);
640 * always: directly stall for all thp allocations
641 * defer: wake kswapd and fail if not immediately available
642 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
643 * fail if not immediately available
644 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
646 * never: never stall for any thp allocation
648 static inline gfp_t
alloc_hugepage_direct_gfpmask(struct vm_area_struct
*vma
, unsigned long addr
)
650 const bool vma_madvised
= !!(vma
->vm_flags
& VM_HUGEPAGE
);
654 struct mempolicy
*pol
;
656 * __GFP_THISNODE is used only when __GFP_DIRECT_RECLAIM is not
657 * specified, to express a general desire to stay on the current
658 * node for optimistic allocation attempts. If the defrag mode
659 * and/or madvise hint requires the direct reclaim then we prefer
660 * to fallback to other node rather than node reclaim because that
661 * can lead to excessive reclaim even though there is free memory
662 * on other nodes. We expect that NUMA preferences are specified
663 * by memory policies.
665 pol
= get_vma_policy(vma
, addr
);
666 if (pol
->mode
!= MPOL_BIND
)
667 this_node
= __GFP_THISNODE
;
671 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
))
672 return GFP_TRANSHUGE
| (vma_madvised
? 0 : __GFP_NORETRY
);
673 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
))
674 return GFP_TRANSHUGE_LIGHT
| __GFP_KSWAPD_RECLAIM
| this_node
;
675 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
))
676 return GFP_TRANSHUGE_LIGHT
| (vma_madvised
? __GFP_DIRECT_RECLAIM
:
677 __GFP_KSWAPD_RECLAIM
| this_node
);
678 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
))
679 return GFP_TRANSHUGE_LIGHT
| (vma_madvised
? __GFP_DIRECT_RECLAIM
:
681 return GFP_TRANSHUGE_LIGHT
| this_node
;
684 /* Caller must hold page table lock. */
685 static bool set_huge_zero_page(pgtable_t pgtable
, struct mm_struct
*mm
,
686 struct vm_area_struct
*vma
, unsigned long haddr
, pmd_t
*pmd
,
687 struct page
*zero_page
)
692 entry
= mk_pmd(zero_page
, vma
->vm_page_prot
);
693 entry
= pmd_mkhuge(entry
);
695 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
696 set_pmd_at(mm
, haddr
, pmd
, entry
);
701 vm_fault_t
do_huge_pmd_anonymous_page(struct vm_fault
*vmf
)
703 struct vm_area_struct
*vma
= vmf
->vma
;
706 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
708 if (!transhuge_vma_suitable(vma
, haddr
))
709 return VM_FAULT_FALLBACK
;
710 if (unlikely(anon_vma_prepare(vma
)))
712 if (unlikely(khugepaged_enter(vma
, vma
->vm_flags
)))
714 if (!(vmf
->flags
& FAULT_FLAG_WRITE
) &&
715 !mm_forbids_zeropage(vma
->vm_mm
) &&
716 transparent_hugepage_use_zero_page()) {
718 struct page
*zero_page
;
721 pgtable
= pte_alloc_one(vma
->vm_mm
);
722 if (unlikely(!pgtable
))
724 zero_page
= mm_get_huge_zero_page(vma
->vm_mm
);
725 if (unlikely(!zero_page
)) {
726 pte_free(vma
->vm_mm
, pgtable
);
727 count_vm_event(THP_FAULT_FALLBACK
);
728 return VM_FAULT_FALLBACK
;
730 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
733 if (pmd_none(*vmf
->pmd
)) {
734 ret
= check_stable_address_space(vma
->vm_mm
);
736 spin_unlock(vmf
->ptl
);
737 } else if (userfaultfd_missing(vma
)) {
738 spin_unlock(vmf
->ptl
);
739 ret
= handle_userfault(vmf
, VM_UFFD_MISSING
);
740 VM_BUG_ON(ret
& VM_FAULT_FALLBACK
);
742 set_huge_zero_page(pgtable
, vma
->vm_mm
, vma
,
743 haddr
, vmf
->pmd
, zero_page
);
744 spin_unlock(vmf
->ptl
);
748 spin_unlock(vmf
->ptl
);
750 pte_free(vma
->vm_mm
, pgtable
);
753 gfp
= alloc_hugepage_direct_gfpmask(vma
, haddr
);
754 page
= alloc_pages_vma(gfp
, HPAGE_PMD_ORDER
, vma
, haddr
, numa_node_id());
755 if (unlikely(!page
)) {
756 count_vm_event(THP_FAULT_FALLBACK
);
757 return VM_FAULT_FALLBACK
;
759 prep_transhuge_page(page
);
760 return __do_huge_pmd_anonymous_page(vmf
, page
, gfp
);
763 static void insert_pfn_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
764 pmd_t
*pmd
, pfn_t pfn
, pgprot_t prot
, bool write
,
767 struct mm_struct
*mm
= vma
->vm_mm
;
771 ptl
= pmd_lock(mm
, pmd
);
772 if (!pmd_none(*pmd
)) {
774 if (pmd_pfn(*pmd
) != pfn_t_to_pfn(pfn
)) {
775 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd
));
778 entry
= pmd_mkyoung(*pmd
);
779 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
780 if (pmdp_set_access_flags(vma
, addr
, pmd
, entry
, 1))
781 update_mmu_cache_pmd(vma
, addr
, pmd
);
787 entry
= pmd_mkhuge(pfn_t_pmd(pfn
, prot
));
788 if (pfn_t_devmap(pfn
))
789 entry
= pmd_mkdevmap(entry
);
791 entry
= pmd_mkyoung(pmd_mkdirty(entry
));
792 entry
= maybe_pmd_mkwrite(entry
, vma
);
796 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
801 set_pmd_at(mm
, addr
, pmd
, entry
);
802 update_mmu_cache_pmd(vma
, addr
, pmd
);
807 pte_free(mm
, pgtable
);
810 vm_fault_t
vmf_insert_pfn_pmd(struct vm_fault
*vmf
, pfn_t pfn
, bool write
)
812 unsigned long addr
= vmf
->address
& PMD_MASK
;
813 struct vm_area_struct
*vma
= vmf
->vma
;
814 pgprot_t pgprot
= vma
->vm_page_prot
;
815 pgtable_t pgtable
= NULL
;
818 * If we had pmd_special, we could avoid all these restrictions,
819 * but we need to be consistent with PTEs and architectures that
820 * can't support a 'special' bit.
822 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) &&
824 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
825 (VM_PFNMAP
|VM_MIXEDMAP
));
826 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
828 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
829 return VM_FAULT_SIGBUS
;
831 if (arch_needs_pgtable_deposit()) {
832 pgtable
= pte_alloc_one(vma
->vm_mm
);
837 track_pfn_insert(vma
, &pgprot
, pfn
);
839 insert_pfn_pmd(vma
, addr
, vmf
->pmd
, pfn
, pgprot
, write
, pgtable
);
840 return VM_FAULT_NOPAGE
;
842 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd
);
844 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
845 static pud_t
maybe_pud_mkwrite(pud_t pud
, struct vm_area_struct
*vma
)
847 if (likely(vma
->vm_flags
& VM_WRITE
))
848 pud
= pud_mkwrite(pud
);
852 static void insert_pfn_pud(struct vm_area_struct
*vma
, unsigned long addr
,
853 pud_t
*pud
, pfn_t pfn
, pgprot_t prot
, bool write
)
855 struct mm_struct
*mm
= vma
->vm_mm
;
859 ptl
= pud_lock(mm
, pud
);
860 if (!pud_none(*pud
)) {
862 if (pud_pfn(*pud
) != pfn_t_to_pfn(pfn
)) {
863 WARN_ON_ONCE(!is_huge_zero_pud(*pud
));
866 entry
= pud_mkyoung(*pud
);
867 entry
= maybe_pud_mkwrite(pud_mkdirty(entry
), vma
);
868 if (pudp_set_access_flags(vma
, addr
, pud
, entry
, 1))
869 update_mmu_cache_pud(vma
, addr
, pud
);
874 entry
= pud_mkhuge(pfn_t_pud(pfn
, prot
));
875 if (pfn_t_devmap(pfn
))
876 entry
= pud_mkdevmap(entry
);
878 entry
= pud_mkyoung(pud_mkdirty(entry
));
879 entry
= maybe_pud_mkwrite(entry
, vma
);
881 set_pud_at(mm
, addr
, pud
, entry
);
882 update_mmu_cache_pud(vma
, addr
, pud
);
888 vm_fault_t
vmf_insert_pfn_pud(struct vm_fault
*vmf
, pfn_t pfn
, bool write
)
890 unsigned long addr
= vmf
->address
& PUD_MASK
;
891 struct vm_area_struct
*vma
= vmf
->vma
;
892 pgprot_t pgprot
= vma
->vm_page_prot
;
895 * If we had pud_special, we could avoid all these restrictions,
896 * but we need to be consistent with PTEs and architectures that
897 * can't support a 'special' bit.
899 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) &&
901 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
902 (VM_PFNMAP
|VM_MIXEDMAP
));
903 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
905 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
906 return VM_FAULT_SIGBUS
;
908 track_pfn_insert(vma
, &pgprot
, pfn
);
910 insert_pfn_pud(vma
, addr
, vmf
->pud
, pfn
, pgprot
, write
);
911 return VM_FAULT_NOPAGE
;
913 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud
);
914 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
916 static void touch_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
917 pmd_t
*pmd
, int flags
)
921 _pmd
= pmd_mkyoung(*pmd
);
922 if (flags
& FOLL_WRITE
)
923 _pmd
= pmd_mkdirty(_pmd
);
924 if (pmdp_set_access_flags(vma
, addr
& HPAGE_PMD_MASK
,
925 pmd
, _pmd
, flags
& FOLL_WRITE
))
926 update_mmu_cache_pmd(vma
, addr
, pmd
);
929 struct page
*follow_devmap_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
930 pmd_t
*pmd
, int flags
, struct dev_pagemap
**pgmap
)
932 unsigned long pfn
= pmd_pfn(*pmd
);
933 struct mm_struct
*mm
= vma
->vm_mm
;
936 assert_spin_locked(pmd_lockptr(mm
, pmd
));
939 * When we COW a devmap PMD entry, we split it into PTEs, so we should
940 * not be in this function with `flags & FOLL_COW` set.
942 WARN_ONCE(flags
& FOLL_COW
, "mm: In follow_devmap_pmd with FOLL_COW set");
944 if (flags
& FOLL_WRITE
&& !pmd_write(*pmd
))
947 if (pmd_present(*pmd
) && pmd_devmap(*pmd
))
952 if (flags
& FOLL_TOUCH
)
953 touch_pmd(vma
, addr
, pmd
, flags
);
956 * device mapped pages can only be returned if the
957 * caller will manage the page reference count.
959 if (!(flags
& FOLL_GET
))
960 return ERR_PTR(-EEXIST
);
962 pfn
+= (addr
& ~PMD_MASK
) >> PAGE_SHIFT
;
963 *pgmap
= get_dev_pagemap(pfn
, *pgmap
);
965 return ERR_PTR(-EFAULT
);
966 page
= pfn_to_page(pfn
);
972 int copy_huge_pmd(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
973 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, unsigned long addr
,
974 struct vm_area_struct
*vma
)
976 spinlock_t
*dst_ptl
, *src_ptl
;
977 struct page
*src_page
;
979 pgtable_t pgtable
= NULL
;
982 /* Skip if can be re-fill on fault */
983 if (!vma_is_anonymous(vma
))
986 pgtable
= pte_alloc_one(dst_mm
);
987 if (unlikely(!pgtable
))
990 dst_ptl
= pmd_lock(dst_mm
, dst_pmd
);
991 src_ptl
= pmd_lockptr(src_mm
, src_pmd
);
992 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
997 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
998 if (unlikely(is_swap_pmd(pmd
))) {
999 swp_entry_t entry
= pmd_to_swp_entry(pmd
);
1001 VM_BUG_ON(!is_pmd_migration_entry(pmd
));
1002 if (is_write_migration_entry(entry
)) {
1003 make_migration_entry_read(&entry
);
1004 pmd
= swp_entry_to_pmd(entry
);
1005 if (pmd_swp_soft_dirty(*src_pmd
))
1006 pmd
= pmd_swp_mksoft_dirty(pmd
);
1007 set_pmd_at(src_mm
, addr
, src_pmd
, pmd
);
1009 add_mm_counter(dst_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
1010 mm_inc_nr_ptes(dst_mm
);
1011 pgtable_trans_huge_deposit(dst_mm
, dst_pmd
, pgtable
);
1012 set_pmd_at(dst_mm
, addr
, dst_pmd
, pmd
);
1018 if (unlikely(!pmd_trans_huge(pmd
))) {
1019 pte_free(dst_mm
, pgtable
);
1023 * When page table lock is held, the huge zero pmd should not be
1024 * under splitting since we don't split the page itself, only pmd to
1027 if (is_huge_zero_pmd(pmd
)) {
1028 struct page
*zero_page
;
1030 * get_huge_zero_page() will never allocate a new page here,
1031 * since we already have a zero page to copy. It just takes a
1034 zero_page
= mm_get_huge_zero_page(dst_mm
);
1035 set_huge_zero_page(pgtable
, dst_mm
, vma
, addr
, dst_pmd
,
1041 src_page
= pmd_page(pmd
);
1042 VM_BUG_ON_PAGE(!PageHead(src_page
), src_page
);
1044 page_dup_rmap(src_page
, true);
1045 add_mm_counter(dst_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
1046 mm_inc_nr_ptes(dst_mm
);
1047 pgtable_trans_huge_deposit(dst_mm
, dst_pmd
, pgtable
);
1049 pmdp_set_wrprotect(src_mm
, addr
, src_pmd
);
1050 pmd
= pmd_mkold(pmd_wrprotect(pmd
));
1051 set_pmd_at(dst_mm
, addr
, dst_pmd
, pmd
);
1055 spin_unlock(src_ptl
);
1056 spin_unlock(dst_ptl
);
1061 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1062 static void touch_pud(struct vm_area_struct
*vma
, unsigned long addr
,
1063 pud_t
*pud
, int flags
)
1067 _pud
= pud_mkyoung(*pud
);
1068 if (flags
& FOLL_WRITE
)
1069 _pud
= pud_mkdirty(_pud
);
1070 if (pudp_set_access_flags(vma
, addr
& HPAGE_PUD_MASK
,
1071 pud
, _pud
, flags
& FOLL_WRITE
))
1072 update_mmu_cache_pud(vma
, addr
, pud
);
1075 struct page
*follow_devmap_pud(struct vm_area_struct
*vma
, unsigned long addr
,
1076 pud_t
*pud
, int flags
, struct dev_pagemap
**pgmap
)
1078 unsigned long pfn
= pud_pfn(*pud
);
1079 struct mm_struct
*mm
= vma
->vm_mm
;
1082 assert_spin_locked(pud_lockptr(mm
, pud
));
1084 if (flags
& FOLL_WRITE
&& !pud_write(*pud
))
1087 if (pud_present(*pud
) && pud_devmap(*pud
))
1092 if (flags
& FOLL_TOUCH
)
1093 touch_pud(vma
, addr
, pud
, flags
);
1096 * device mapped pages can only be returned if the
1097 * caller will manage the page reference count.
1099 if (!(flags
& FOLL_GET
))
1100 return ERR_PTR(-EEXIST
);
1102 pfn
+= (addr
& ~PUD_MASK
) >> PAGE_SHIFT
;
1103 *pgmap
= get_dev_pagemap(pfn
, *pgmap
);
1105 return ERR_PTR(-EFAULT
);
1106 page
= pfn_to_page(pfn
);
1112 int copy_huge_pud(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1113 pud_t
*dst_pud
, pud_t
*src_pud
, unsigned long addr
,
1114 struct vm_area_struct
*vma
)
1116 spinlock_t
*dst_ptl
, *src_ptl
;
1120 dst_ptl
= pud_lock(dst_mm
, dst_pud
);
1121 src_ptl
= pud_lockptr(src_mm
, src_pud
);
1122 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
1126 if (unlikely(!pud_trans_huge(pud
) && !pud_devmap(pud
)))
1130 * When page table lock is held, the huge zero pud should not be
1131 * under splitting since we don't split the page itself, only pud to
1134 if (is_huge_zero_pud(pud
)) {
1135 /* No huge zero pud yet */
1138 pudp_set_wrprotect(src_mm
, addr
, src_pud
);
1139 pud
= pud_mkold(pud_wrprotect(pud
));
1140 set_pud_at(dst_mm
, addr
, dst_pud
, pud
);
1144 spin_unlock(src_ptl
);
1145 spin_unlock(dst_ptl
);
1149 void huge_pud_set_accessed(struct vm_fault
*vmf
, pud_t orig_pud
)
1152 unsigned long haddr
;
1153 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1155 vmf
->ptl
= pud_lock(vmf
->vma
->vm_mm
, vmf
->pud
);
1156 if (unlikely(!pud_same(*vmf
->pud
, orig_pud
)))
1159 entry
= pud_mkyoung(orig_pud
);
1161 entry
= pud_mkdirty(entry
);
1162 haddr
= vmf
->address
& HPAGE_PUD_MASK
;
1163 if (pudp_set_access_flags(vmf
->vma
, haddr
, vmf
->pud
, entry
, write
))
1164 update_mmu_cache_pud(vmf
->vma
, vmf
->address
, vmf
->pud
);
1167 spin_unlock(vmf
->ptl
);
1169 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1171 void huge_pmd_set_accessed(struct vm_fault
*vmf
, pmd_t orig_pmd
)
1174 unsigned long haddr
;
1175 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1177 vmf
->ptl
= pmd_lock(vmf
->vma
->vm_mm
, vmf
->pmd
);
1178 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
)))
1181 entry
= pmd_mkyoung(orig_pmd
);
1183 entry
= pmd_mkdirty(entry
);
1184 haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1185 if (pmdp_set_access_flags(vmf
->vma
, haddr
, vmf
->pmd
, entry
, write
))
1186 update_mmu_cache_pmd(vmf
->vma
, vmf
->address
, vmf
->pmd
);
1189 spin_unlock(vmf
->ptl
);
1192 static vm_fault_t
do_huge_pmd_wp_page_fallback(struct vm_fault
*vmf
,
1193 pmd_t orig_pmd
, struct page
*page
)
1195 struct vm_area_struct
*vma
= vmf
->vma
;
1196 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1197 struct mem_cgroup
*memcg
;
1202 struct page
**pages
;
1203 struct mmu_notifier_range range
;
1205 pages
= kmalloc_array(HPAGE_PMD_NR
, sizeof(struct page
*),
1207 if (unlikely(!pages
)) {
1208 ret
|= VM_FAULT_OOM
;
1212 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1213 pages
[i
] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE
, vma
,
1214 vmf
->address
, page_to_nid(page
));
1215 if (unlikely(!pages
[i
] ||
1216 mem_cgroup_try_charge_delay(pages
[i
], vma
->vm_mm
,
1217 GFP_KERNEL
, &memcg
, false))) {
1221 memcg
= (void *)page_private(pages
[i
]);
1222 set_page_private(pages
[i
], 0);
1223 mem_cgroup_cancel_charge(pages
[i
], memcg
,
1228 ret
|= VM_FAULT_OOM
;
1231 set_page_private(pages
[i
], (unsigned long)memcg
);
1234 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1235 copy_user_highpage(pages
[i
], page
+ i
,
1236 haddr
+ PAGE_SIZE
* i
, vma
);
1237 __SetPageUptodate(pages
[i
]);
1241 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, vma
->vm_mm
,
1242 haddr
, haddr
+ HPAGE_PMD_SIZE
);
1243 mmu_notifier_invalidate_range_start(&range
);
1245 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
1246 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
)))
1247 goto out_free_pages
;
1248 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1251 * Leave pmd empty until pte is filled note we must notify here as
1252 * concurrent CPU thread might write to new page before the call to
1253 * mmu_notifier_invalidate_range_end() happens which can lead to a
1254 * device seeing memory write in different order than CPU.
1256 * See Documentation/vm/mmu_notifier.rst
1258 pmdp_huge_clear_flush_notify(vma
, haddr
, vmf
->pmd
);
1260 pgtable
= pgtable_trans_huge_withdraw(vma
->vm_mm
, vmf
->pmd
);
1261 pmd_populate(vma
->vm_mm
, &_pmd
, pgtable
);
1263 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
1265 entry
= mk_pte(pages
[i
], vma
->vm_page_prot
);
1266 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1267 memcg
= (void *)page_private(pages
[i
]);
1268 set_page_private(pages
[i
], 0);
1269 page_add_new_anon_rmap(pages
[i
], vmf
->vma
, haddr
, false);
1270 mem_cgroup_commit_charge(pages
[i
], memcg
, false, false);
1271 lru_cache_add_active_or_unevictable(pages
[i
], vma
);
1272 vmf
->pte
= pte_offset_map(&_pmd
, haddr
);
1273 VM_BUG_ON(!pte_none(*vmf
->pte
));
1274 set_pte_at(vma
->vm_mm
, haddr
, vmf
->pte
, entry
);
1275 pte_unmap(vmf
->pte
);
1279 smp_wmb(); /* make pte visible before pmd */
1280 pmd_populate(vma
->vm_mm
, vmf
->pmd
, pgtable
);
1281 page_remove_rmap(page
, true);
1282 spin_unlock(vmf
->ptl
);
1285 * No need to double call mmu_notifier->invalidate_range() callback as
1286 * the above pmdp_huge_clear_flush_notify() did already call it.
1288 mmu_notifier_invalidate_range_only_end(&range
);
1290 ret
|= VM_FAULT_WRITE
;
1297 spin_unlock(vmf
->ptl
);
1298 mmu_notifier_invalidate_range_end(&range
);
1299 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1300 memcg
= (void *)page_private(pages
[i
]);
1301 set_page_private(pages
[i
], 0);
1302 mem_cgroup_cancel_charge(pages
[i
], memcg
, false);
1309 vm_fault_t
do_huge_pmd_wp_page(struct vm_fault
*vmf
, pmd_t orig_pmd
)
1311 struct vm_area_struct
*vma
= vmf
->vma
;
1312 struct page
*page
= NULL
, *new_page
;
1313 struct mem_cgroup
*memcg
;
1314 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1315 struct mmu_notifier_range range
;
1316 gfp_t huge_gfp
; /* for allocation and charge */
1319 vmf
->ptl
= pmd_lockptr(vma
->vm_mm
, vmf
->pmd
);
1320 VM_BUG_ON_VMA(!vma
->anon_vma
, vma
);
1321 if (is_huge_zero_pmd(orig_pmd
))
1323 spin_lock(vmf
->ptl
);
1324 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
)))
1327 page
= pmd_page(orig_pmd
);
1328 VM_BUG_ON_PAGE(!PageCompound(page
) || !PageHead(page
), page
);
1330 * We can only reuse the page if nobody else maps the huge page or it's
1333 if (!trylock_page(page
)) {
1335 spin_unlock(vmf
->ptl
);
1337 spin_lock(vmf
->ptl
);
1338 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
))) {
1345 if (reuse_swap_page(page
, NULL
)) {
1347 entry
= pmd_mkyoung(orig_pmd
);
1348 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1349 if (pmdp_set_access_flags(vma
, haddr
, vmf
->pmd
, entry
, 1))
1350 update_mmu_cache_pmd(vma
, vmf
->address
, vmf
->pmd
);
1351 ret
|= VM_FAULT_WRITE
;
1357 spin_unlock(vmf
->ptl
);
1359 if (__transparent_hugepage_enabled(vma
) &&
1360 !transparent_hugepage_debug_cow()) {
1361 huge_gfp
= alloc_hugepage_direct_gfpmask(vma
, haddr
);
1362 new_page
= alloc_pages_vma(huge_gfp
, HPAGE_PMD_ORDER
, vma
,
1363 haddr
, numa_node_id());
1367 if (likely(new_page
)) {
1368 prep_transhuge_page(new_page
);
1371 split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
);
1372 ret
|= VM_FAULT_FALLBACK
;
1374 ret
= do_huge_pmd_wp_page_fallback(vmf
, orig_pmd
, page
);
1375 if (ret
& VM_FAULT_OOM
) {
1376 split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
);
1377 ret
|= VM_FAULT_FALLBACK
;
1381 count_vm_event(THP_FAULT_FALLBACK
);
1385 if (unlikely(mem_cgroup_try_charge_delay(new_page
, vma
->vm_mm
,
1386 huge_gfp
, &memcg
, true))) {
1388 split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
);
1391 ret
|= VM_FAULT_FALLBACK
;
1392 count_vm_event(THP_FAULT_FALLBACK
);
1396 count_vm_event(THP_FAULT_ALLOC
);
1397 count_memcg_events(memcg
, THP_FAULT_ALLOC
, 1);
1400 clear_huge_page(new_page
, vmf
->address
, HPAGE_PMD_NR
);
1402 copy_user_huge_page(new_page
, page
, vmf
->address
,
1404 __SetPageUptodate(new_page
);
1406 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, vma
->vm_mm
,
1407 haddr
, haddr
+ HPAGE_PMD_SIZE
);
1408 mmu_notifier_invalidate_range_start(&range
);
1410 spin_lock(vmf
->ptl
);
1413 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
))) {
1414 spin_unlock(vmf
->ptl
);
1415 mem_cgroup_cancel_charge(new_page
, memcg
, true);
1420 entry
= mk_huge_pmd(new_page
, vma
->vm_page_prot
);
1421 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1422 pmdp_huge_clear_flush_notify(vma
, haddr
, vmf
->pmd
);
1423 page_add_new_anon_rmap(new_page
, vma
, haddr
, true);
1424 mem_cgroup_commit_charge(new_page
, memcg
, false, true);
1425 lru_cache_add_active_or_unevictable(new_page
, vma
);
1426 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
1427 update_mmu_cache_pmd(vma
, vmf
->address
, vmf
->pmd
);
1429 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
1431 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1432 page_remove_rmap(page
, true);
1435 ret
|= VM_FAULT_WRITE
;
1437 spin_unlock(vmf
->ptl
);
1440 * No need to double call mmu_notifier->invalidate_range() callback as
1441 * the above pmdp_huge_clear_flush_notify() did already call it.
1443 mmu_notifier_invalidate_range_only_end(&range
);
1447 spin_unlock(vmf
->ptl
);
1452 * FOLL_FORCE can write to even unwritable pmd's, but only
1453 * after we've gone through a COW cycle and they are dirty.
1455 static inline bool can_follow_write_pmd(pmd_t pmd
, unsigned int flags
)
1457 return pmd_write(pmd
) ||
1458 ((flags
& FOLL_FORCE
) && (flags
& FOLL_COW
) && pmd_dirty(pmd
));
1461 struct page
*follow_trans_huge_pmd(struct vm_area_struct
*vma
,
1466 struct mm_struct
*mm
= vma
->vm_mm
;
1467 struct page
*page
= NULL
;
1469 assert_spin_locked(pmd_lockptr(mm
, pmd
));
1471 if (flags
& FOLL_WRITE
&& !can_follow_write_pmd(*pmd
, flags
))
1474 /* Avoid dumping huge zero page */
1475 if ((flags
& FOLL_DUMP
) && is_huge_zero_pmd(*pmd
))
1476 return ERR_PTR(-EFAULT
);
1478 /* Full NUMA hinting faults to serialise migration in fault paths */
1479 if ((flags
& FOLL_NUMA
) && pmd_protnone(*pmd
))
1482 page
= pmd_page(*pmd
);
1483 VM_BUG_ON_PAGE(!PageHead(page
) && !is_zone_device_page(page
), page
);
1484 if (flags
& FOLL_TOUCH
)
1485 touch_pmd(vma
, addr
, pmd
, flags
);
1486 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
1488 * We don't mlock() pte-mapped THPs. This way we can avoid
1489 * leaking mlocked pages into non-VM_LOCKED VMAs.
1493 * In most cases the pmd is the only mapping of the page as we
1494 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1495 * writable private mappings in populate_vma_page_range().
1497 * The only scenario when we have the page shared here is if we
1498 * mlocking read-only mapping shared over fork(). We skip
1499 * mlocking such pages.
1503 * We can expect PageDoubleMap() to be stable under page lock:
1504 * for file pages we set it in page_add_file_rmap(), which
1505 * requires page to be locked.
1508 if (PageAnon(page
) && compound_mapcount(page
) != 1)
1510 if (PageDoubleMap(page
) || !page
->mapping
)
1512 if (!trylock_page(page
))
1515 if (page
->mapping
&& !PageDoubleMap(page
))
1516 mlock_vma_page(page
);
1520 page
+= (addr
& ~HPAGE_PMD_MASK
) >> PAGE_SHIFT
;
1521 VM_BUG_ON_PAGE(!PageCompound(page
) && !is_zone_device_page(page
), page
);
1522 if (flags
& FOLL_GET
)
1529 /* NUMA hinting page fault entry point for trans huge pmds */
1530 vm_fault_t
do_huge_pmd_numa_page(struct vm_fault
*vmf
, pmd_t pmd
)
1532 struct vm_area_struct
*vma
= vmf
->vma
;
1533 struct anon_vma
*anon_vma
= NULL
;
1535 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1536 int page_nid
= NUMA_NO_NODE
, this_nid
= numa_node_id();
1537 int target_nid
, last_cpupid
= -1;
1539 bool migrated
= false;
1543 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
1544 if (unlikely(!pmd_same(pmd
, *vmf
->pmd
)))
1548 * If there are potential migrations, wait for completion and retry
1549 * without disrupting NUMA hinting information. Do not relock and
1550 * check_same as the page may no longer be mapped.
1552 if (unlikely(pmd_trans_migrating(*vmf
->pmd
))) {
1553 page
= pmd_page(*vmf
->pmd
);
1554 if (!get_page_unless_zero(page
))
1556 spin_unlock(vmf
->ptl
);
1557 put_and_wait_on_page_locked(page
);
1561 page
= pmd_page(pmd
);
1562 BUG_ON(is_huge_zero_page(page
));
1563 page_nid
= page_to_nid(page
);
1564 last_cpupid
= page_cpupid_last(page
);
1565 count_vm_numa_event(NUMA_HINT_FAULTS
);
1566 if (page_nid
== this_nid
) {
1567 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
1568 flags
|= TNF_FAULT_LOCAL
;
1571 /* See similar comment in do_numa_page for explanation */
1572 if (!pmd_savedwrite(pmd
))
1573 flags
|= TNF_NO_GROUP
;
1576 * Acquire the page lock to serialise THP migrations but avoid dropping
1577 * page_table_lock if at all possible
1579 page_locked
= trylock_page(page
);
1580 target_nid
= mpol_misplaced(page
, vma
, haddr
);
1581 if (target_nid
== NUMA_NO_NODE
) {
1582 /* If the page was locked, there are no parallel migrations */
1587 /* Migration could have started since the pmd_trans_migrating check */
1589 page_nid
= NUMA_NO_NODE
;
1590 if (!get_page_unless_zero(page
))
1592 spin_unlock(vmf
->ptl
);
1593 put_and_wait_on_page_locked(page
);
1598 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1599 * to serialises splits
1602 spin_unlock(vmf
->ptl
);
1603 anon_vma
= page_lock_anon_vma_read(page
);
1605 /* Confirm the PMD did not change while page_table_lock was released */
1606 spin_lock(vmf
->ptl
);
1607 if (unlikely(!pmd_same(pmd
, *vmf
->pmd
))) {
1610 page_nid
= NUMA_NO_NODE
;
1614 /* Bail if we fail to protect against THP splits for any reason */
1615 if (unlikely(!anon_vma
)) {
1617 page_nid
= NUMA_NO_NODE
;
1622 * Since we took the NUMA fault, we must have observed the !accessible
1623 * bit. Make sure all other CPUs agree with that, to avoid them
1624 * modifying the page we're about to migrate.
1626 * Must be done under PTL such that we'll observe the relevant
1627 * inc_tlb_flush_pending().
1629 * We are not sure a pending tlb flush here is for a huge page
1630 * mapping or not. Hence use the tlb range variant
1632 if (mm_tlb_flush_pending(vma
->vm_mm
)) {
1633 flush_tlb_range(vma
, haddr
, haddr
+ HPAGE_PMD_SIZE
);
1635 * change_huge_pmd() released the pmd lock before
1636 * invalidating the secondary MMUs sharing the primary
1637 * MMU pagetables (with ->invalidate_range()). The
1638 * mmu_notifier_invalidate_range_end() (which
1639 * internally calls ->invalidate_range()) in
1640 * change_pmd_range() will run after us, so we can't
1641 * rely on it here and we need an explicit invalidate.
1643 mmu_notifier_invalidate_range(vma
->vm_mm
, haddr
,
1644 haddr
+ HPAGE_PMD_SIZE
);
1648 * Migrate the THP to the requested node, returns with page unlocked
1649 * and access rights restored.
1651 spin_unlock(vmf
->ptl
);
1653 migrated
= migrate_misplaced_transhuge_page(vma
->vm_mm
, vma
,
1654 vmf
->pmd
, pmd
, vmf
->address
, page
, target_nid
);
1656 flags
|= TNF_MIGRATED
;
1657 page_nid
= target_nid
;
1659 flags
|= TNF_MIGRATE_FAIL
;
1663 BUG_ON(!PageLocked(page
));
1664 was_writable
= pmd_savedwrite(pmd
);
1665 pmd
= pmd_modify(pmd
, vma
->vm_page_prot
);
1666 pmd
= pmd_mkyoung(pmd
);
1668 pmd
= pmd_mkwrite(pmd
);
1669 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, pmd
);
1670 update_mmu_cache_pmd(vma
, vmf
->address
, vmf
->pmd
);
1673 spin_unlock(vmf
->ptl
);
1677 page_unlock_anon_vma_read(anon_vma
);
1679 if (page_nid
!= NUMA_NO_NODE
)
1680 task_numa_fault(last_cpupid
, page_nid
, HPAGE_PMD_NR
,
1687 * Return true if we do MADV_FREE successfully on entire pmd page.
1688 * Otherwise, return false.
1690 bool madvise_free_huge_pmd(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1691 pmd_t
*pmd
, unsigned long addr
, unsigned long next
)
1696 struct mm_struct
*mm
= tlb
->mm
;
1699 tlb_change_page_size(tlb
, HPAGE_PMD_SIZE
);
1701 ptl
= pmd_trans_huge_lock(pmd
, vma
);
1706 if (is_huge_zero_pmd(orig_pmd
))
1709 if (unlikely(!pmd_present(orig_pmd
))) {
1710 VM_BUG_ON(thp_migration_supported() &&
1711 !is_pmd_migration_entry(orig_pmd
));
1715 page
= pmd_page(orig_pmd
);
1717 * If other processes are mapping this page, we couldn't discard
1718 * the page unless they all do MADV_FREE so let's skip the page.
1720 if (page_mapcount(page
) != 1)
1723 if (!trylock_page(page
))
1727 * If user want to discard part-pages of THP, split it so MADV_FREE
1728 * will deactivate only them.
1730 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1733 split_huge_page(page
);
1739 if (PageDirty(page
))
1740 ClearPageDirty(page
);
1743 if (pmd_young(orig_pmd
) || pmd_dirty(orig_pmd
)) {
1744 pmdp_invalidate(vma
, addr
, pmd
);
1745 orig_pmd
= pmd_mkold(orig_pmd
);
1746 orig_pmd
= pmd_mkclean(orig_pmd
);
1748 set_pmd_at(mm
, addr
, pmd
, orig_pmd
);
1749 tlb_remove_pmd_tlb_entry(tlb
, pmd
, addr
);
1752 mark_page_lazyfree(page
);
1760 static inline void zap_deposited_table(struct mm_struct
*mm
, pmd_t
*pmd
)
1764 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
1765 pte_free(mm
, pgtable
);
1769 int zap_huge_pmd(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1770 pmd_t
*pmd
, unsigned long addr
)
1775 tlb_change_page_size(tlb
, HPAGE_PMD_SIZE
);
1777 ptl
= __pmd_trans_huge_lock(pmd
, vma
);
1781 * For architectures like ppc64 we look at deposited pgtable
1782 * when calling pmdp_huge_get_and_clear. So do the
1783 * pgtable_trans_huge_withdraw after finishing pmdp related
1786 orig_pmd
= pmdp_huge_get_and_clear_full(tlb
->mm
, addr
, pmd
,
1788 tlb_remove_pmd_tlb_entry(tlb
, pmd
, addr
);
1789 if (vma_is_dax(vma
)) {
1790 if (arch_needs_pgtable_deposit())
1791 zap_deposited_table(tlb
->mm
, pmd
);
1793 if (is_huge_zero_pmd(orig_pmd
))
1794 tlb_remove_page_size(tlb
, pmd_page(orig_pmd
), HPAGE_PMD_SIZE
);
1795 } else if (is_huge_zero_pmd(orig_pmd
)) {
1796 zap_deposited_table(tlb
->mm
, pmd
);
1798 tlb_remove_page_size(tlb
, pmd_page(orig_pmd
), HPAGE_PMD_SIZE
);
1800 struct page
*page
= NULL
;
1801 int flush_needed
= 1;
1803 if (pmd_present(orig_pmd
)) {
1804 page
= pmd_page(orig_pmd
);
1805 page_remove_rmap(page
, true);
1806 VM_BUG_ON_PAGE(page_mapcount(page
) < 0, page
);
1807 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1808 } else if (thp_migration_supported()) {
1811 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd
));
1812 entry
= pmd_to_swp_entry(orig_pmd
);
1813 page
= pfn_to_page(swp_offset(entry
));
1816 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1818 if (PageAnon(page
)) {
1819 zap_deposited_table(tlb
->mm
, pmd
);
1820 add_mm_counter(tlb
->mm
, MM_ANONPAGES
, -HPAGE_PMD_NR
);
1822 if (arch_needs_pgtable_deposit())
1823 zap_deposited_table(tlb
->mm
, pmd
);
1824 add_mm_counter(tlb
->mm
, mm_counter_file(page
), -HPAGE_PMD_NR
);
1829 tlb_remove_page_size(tlb
, page
, HPAGE_PMD_SIZE
);
1834 #ifndef pmd_move_must_withdraw
1835 static inline int pmd_move_must_withdraw(spinlock_t
*new_pmd_ptl
,
1836 spinlock_t
*old_pmd_ptl
,
1837 struct vm_area_struct
*vma
)
1840 * With split pmd lock we also need to move preallocated
1841 * PTE page table if new_pmd is on different PMD page table.
1843 * We also don't deposit and withdraw tables for file pages.
1845 return (new_pmd_ptl
!= old_pmd_ptl
) && vma_is_anonymous(vma
);
1849 static pmd_t
move_soft_dirty_pmd(pmd_t pmd
)
1851 #ifdef CONFIG_MEM_SOFT_DIRTY
1852 if (unlikely(is_pmd_migration_entry(pmd
)))
1853 pmd
= pmd_swp_mksoft_dirty(pmd
);
1854 else if (pmd_present(pmd
))
1855 pmd
= pmd_mksoft_dirty(pmd
);
1860 bool move_huge_pmd(struct vm_area_struct
*vma
, unsigned long old_addr
,
1861 unsigned long new_addr
, unsigned long old_end
,
1862 pmd_t
*old_pmd
, pmd_t
*new_pmd
)
1864 spinlock_t
*old_ptl
, *new_ptl
;
1866 struct mm_struct
*mm
= vma
->vm_mm
;
1867 bool force_flush
= false;
1869 if ((old_addr
& ~HPAGE_PMD_MASK
) ||
1870 (new_addr
& ~HPAGE_PMD_MASK
) ||
1871 old_end
- old_addr
< HPAGE_PMD_SIZE
)
1875 * The destination pmd shouldn't be established, free_pgtables()
1876 * should have release it.
1878 if (WARN_ON(!pmd_none(*new_pmd
))) {
1879 VM_BUG_ON(pmd_trans_huge(*new_pmd
));
1884 * We don't have to worry about the ordering of src and dst
1885 * ptlocks because exclusive mmap_sem prevents deadlock.
1887 old_ptl
= __pmd_trans_huge_lock(old_pmd
, vma
);
1889 new_ptl
= pmd_lockptr(mm
, new_pmd
);
1890 if (new_ptl
!= old_ptl
)
1891 spin_lock_nested(new_ptl
, SINGLE_DEPTH_NESTING
);
1892 pmd
= pmdp_huge_get_and_clear(mm
, old_addr
, old_pmd
);
1893 if (pmd_present(pmd
))
1895 VM_BUG_ON(!pmd_none(*new_pmd
));
1897 if (pmd_move_must_withdraw(new_ptl
, old_ptl
, vma
)) {
1899 pgtable
= pgtable_trans_huge_withdraw(mm
, old_pmd
);
1900 pgtable_trans_huge_deposit(mm
, new_pmd
, pgtable
);
1902 pmd
= move_soft_dirty_pmd(pmd
);
1903 set_pmd_at(mm
, new_addr
, new_pmd
, pmd
);
1905 flush_tlb_range(vma
, old_addr
, old_addr
+ PMD_SIZE
);
1906 if (new_ptl
!= old_ptl
)
1907 spin_unlock(new_ptl
);
1908 spin_unlock(old_ptl
);
1916 * - 0 if PMD could not be locked
1917 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1918 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1920 int change_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1921 unsigned long addr
, pgprot_t newprot
, int prot_numa
)
1923 struct mm_struct
*mm
= vma
->vm_mm
;
1926 bool preserve_write
;
1929 ptl
= __pmd_trans_huge_lock(pmd
, vma
);
1933 preserve_write
= prot_numa
&& pmd_write(*pmd
);
1936 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1937 if (is_swap_pmd(*pmd
)) {
1938 swp_entry_t entry
= pmd_to_swp_entry(*pmd
);
1940 VM_BUG_ON(!is_pmd_migration_entry(*pmd
));
1941 if (is_write_migration_entry(entry
)) {
1944 * A protection check is difficult so
1945 * just be safe and disable write
1947 make_migration_entry_read(&entry
);
1948 newpmd
= swp_entry_to_pmd(entry
);
1949 if (pmd_swp_soft_dirty(*pmd
))
1950 newpmd
= pmd_swp_mksoft_dirty(newpmd
);
1951 set_pmd_at(mm
, addr
, pmd
, newpmd
);
1958 * Avoid trapping faults against the zero page. The read-only
1959 * data is likely to be read-cached on the local CPU and
1960 * local/remote hits to the zero page are not interesting.
1962 if (prot_numa
&& is_huge_zero_pmd(*pmd
))
1965 if (prot_numa
&& pmd_protnone(*pmd
))
1969 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1970 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1971 * which is also under down_read(mmap_sem):
1974 * change_huge_pmd(prot_numa=1)
1975 * pmdp_huge_get_and_clear_notify()
1976 * madvise_dontneed()
1978 * pmd_trans_huge(*pmd) == 0 (without ptl)
1981 * // pmd is re-established
1983 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1984 * which may break userspace.
1986 * pmdp_invalidate() is required to make sure we don't miss
1987 * dirty/young flags set by hardware.
1989 entry
= pmdp_invalidate(vma
, addr
, pmd
);
1991 entry
= pmd_modify(entry
, newprot
);
1993 entry
= pmd_mk_savedwrite(entry
);
1995 set_pmd_at(mm
, addr
, pmd
, entry
);
1996 BUG_ON(vma_is_anonymous(vma
) && !preserve_write
&& pmd_write(entry
));
2003 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2005 * Note that if it returns page table lock pointer, this routine returns without
2006 * unlocking page table lock. So callers must unlock it.
2008 spinlock_t
*__pmd_trans_huge_lock(pmd_t
*pmd
, struct vm_area_struct
*vma
)
2011 ptl
= pmd_lock(vma
->vm_mm
, pmd
);
2012 if (likely(is_swap_pmd(*pmd
) || pmd_trans_huge(*pmd
) ||
2020 * Returns true if a given pud maps a thp, false otherwise.
2022 * Note that if it returns true, this routine returns without unlocking page
2023 * table lock. So callers must unlock it.
2025 spinlock_t
*__pud_trans_huge_lock(pud_t
*pud
, struct vm_area_struct
*vma
)
2029 ptl
= pud_lock(vma
->vm_mm
, pud
);
2030 if (likely(pud_trans_huge(*pud
) || pud_devmap(*pud
)))
2036 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2037 int zap_huge_pud(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
2038 pud_t
*pud
, unsigned long addr
)
2042 ptl
= __pud_trans_huge_lock(pud
, vma
);
2046 * For architectures like ppc64 we look at deposited pgtable
2047 * when calling pudp_huge_get_and_clear. So do the
2048 * pgtable_trans_huge_withdraw after finishing pudp related
2051 pudp_huge_get_and_clear_full(tlb
->mm
, addr
, pud
, tlb
->fullmm
);
2052 tlb_remove_pud_tlb_entry(tlb
, pud
, addr
);
2053 if (vma_is_dax(vma
)) {
2055 /* No zero page support yet */
2057 /* No support for anonymous PUD pages yet */
2063 static void __split_huge_pud_locked(struct vm_area_struct
*vma
, pud_t
*pud
,
2064 unsigned long haddr
)
2066 VM_BUG_ON(haddr
& ~HPAGE_PUD_MASK
);
2067 VM_BUG_ON_VMA(vma
->vm_start
> haddr
, vma
);
2068 VM_BUG_ON_VMA(vma
->vm_end
< haddr
+ HPAGE_PUD_SIZE
, vma
);
2069 VM_BUG_ON(!pud_trans_huge(*pud
) && !pud_devmap(*pud
));
2071 count_vm_event(THP_SPLIT_PUD
);
2073 pudp_huge_clear_flush_notify(vma
, haddr
, pud
);
2076 void __split_huge_pud(struct vm_area_struct
*vma
, pud_t
*pud
,
2077 unsigned long address
)
2080 struct mmu_notifier_range range
;
2082 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, vma
->vm_mm
,
2083 address
& HPAGE_PUD_MASK
,
2084 (address
& HPAGE_PUD_MASK
) + HPAGE_PUD_SIZE
);
2085 mmu_notifier_invalidate_range_start(&range
);
2086 ptl
= pud_lock(vma
->vm_mm
, pud
);
2087 if (unlikely(!pud_trans_huge(*pud
) && !pud_devmap(*pud
)))
2089 __split_huge_pud_locked(vma
, pud
, range
.start
);
2094 * No need to double call mmu_notifier->invalidate_range() callback as
2095 * the above pudp_huge_clear_flush_notify() did already call it.
2097 mmu_notifier_invalidate_range_only_end(&range
);
2099 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2101 static void __split_huge_zero_page_pmd(struct vm_area_struct
*vma
,
2102 unsigned long haddr
, pmd_t
*pmd
)
2104 struct mm_struct
*mm
= vma
->vm_mm
;
2110 * Leave pmd empty until pte is filled note that it is fine to delay
2111 * notification until mmu_notifier_invalidate_range_end() as we are
2112 * replacing a zero pmd write protected page with a zero pte write
2115 * See Documentation/vm/mmu_notifier.rst
2117 pmdp_huge_clear_flush(vma
, haddr
, pmd
);
2119 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
2120 pmd_populate(mm
, &_pmd
, pgtable
);
2122 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
2124 entry
= pfn_pte(my_zero_pfn(haddr
), vma
->vm_page_prot
);
2125 entry
= pte_mkspecial(entry
);
2126 pte
= pte_offset_map(&_pmd
, haddr
);
2127 VM_BUG_ON(!pte_none(*pte
));
2128 set_pte_at(mm
, haddr
, pte
, entry
);
2131 smp_wmb(); /* make pte visible before pmd */
2132 pmd_populate(mm
, pmd
, pgtable
);
2135 static void __split_huge_pmd_locked(struct vm_area_struct
*vma
, pmd_t
*pmd
,
2136 unsigned long haddr
, bool freeze
)
2138 struct mm_struct
*mm
= vma
->vm_mm
;
2141 pmd_t old_pmd
, _pmd
;
2142 bool young
, write
, soft_dirty
, pmd_migration
= false;
2146 VM_BUG_ON(haddr
& ~HPAGE_PMD_MASK
);
2147 VM_BUG_ON_VMA(vma
->vm_start
> haddr
, vma
);
2148 VM_BUG_ON_VMA(vma
->vm_end
< haddr
+ HPAGE_PMD_SIZE
, vma
);
2149 VM_BUG_ON(!is_pmd_migration_entry(*pmd
) && !pmd_trans_huge(*pmd
)
2150 && !pmd_devmap(*pmd
));
2152 count_vm_event(THP_SPLIT_PMD
);
2154 if (!vma_is_anonymous(vma
)) {
2155 _pmd
= pmdp_huge_clear_flush_notify(vma
, haddr
, pmd
);
2157 * We are going to unmap this huge page. So
2158 * just go ahead and zap it
2160 if (arch_needs_pgtable_deposit())
2161 zap_deposited_table(mm
, pmd
);
2162 if (vma_is_dax(vma
))
2164 page
= pmd_page(_pmd
);
2165 if (!PageDirty(page
) && pmd_dirty(_pmd
))
2166 set_page_dirty(page
);
2167 if (!PageReferenced(page
) && pmd_young(_pmd
))
2168 SetPageReferenced(page
);
2169 page_remove_rmap(page
, true);
2171 add_mm_counter(mm
, mm_counter_file(page
), -HPAGE_PMD_NR
);
2173 } else if (is_huge_zero_pmd(*pmd
)) {
2175 * FIXME: Do we want to invalidate secondary mmu by calling
2176 * mmu_notifier_invalidate_range() see comments below inside
2177 * __split_huge_pmd() ?
2179 * We are going from a zero huge page write protected to zero
2180 * small page also write protected so it does not seems useful
2181 * to invalidate secondary mmu at this time.
2183 return __split_huge_zero_page_pmd(vma
, haddr
, pmd
);
2187 * Up to this point the pmd is present and huge and userland has the
2188 * whole access to the hugepage during the split (which happens in
2189 * place). If we overwrite the pmd with the not-huge version pointing
2190 * to the pte here (which of course we could if all CPUs were bug
2191 * free), userland could trigger a small page size TLB miss on the
2192 * small sized TLB while the hugepage TLB entry is still established in
2193 * the huge TLB. Some CPU doesn't like that.
2194 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2195 * 383 on page 93. Intel should be safe but is also warns that it's
2196 * only safe if the permission and cache attributes of the two entries
2197 * loaded in the two TLB is identical (which should be the case here).
2198 * But it is generally safer to never allow small and huge TLB entries
2199 * for the same virtual address to be loaded simultaneously. So instead
2200 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2201 * current pmd notpresent (atomically because here the pmd_trans_huge
2202 * must remain set at all times on the pmd until the split is complete
2203 * for this pmd), then we flush the SMP TLB and finally we write the
2204 * non-huge version of the pmd entry with pmd_populate.
2206 old_pmd
= pmdp_invalidate(vma
, haddr
, pmd
);
2208 pmd_migration
= is_pmd_migration_entry(old_pmd
);
2209 if (unlikely(pmd_migration
)) {
2212 entry
= pmd_to_swp_entry(old_pmd
);
2213 page
= pfn_to_page(swp_offset(entry
));
2214 write
= is_write_migration_entry(entry
);
2216 soft_dirty
= pmd_swp_soft_dirty(old_pmd
);
2218 page
= pmd_page(old_pmd
);
2219 if (pmd_dirty(old_pmd
))
2221 write
= pmd_write(old_pmd
);
2222 young
= pmd_young(old_pmd
);
2223 soft_dirty
= pmd_soft_dirty(old_pmd
);
2225 VM_BUG_ON_PAGE(!page_count(page
), page
);
2226 page_ref_add(page
, HPAGE_PMD_NR
- 1);
2229 * Withdraw the table only after we mark the pmd entry invalid.
2230 * This's critical for some architectures (Power).
2232 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
2233 pmd_populate(mm
, &_pmd
, pgtable
);
2235 for (i
= 0, addr
= haddr
; i
< HPAGE_PMD_NR
; i
++, addr
+= PAGE_SIZE
) {
2238 * Note that NUMA hinting access restrictions are not
2239 * transferred to avoid any possibility of altering
2240 * permissions across VMAs.
2242 if (freeze
|| pmd_migration
) {
2243 swp_entry_t swp_entry
;
2244 swp_entry
= make_migration_entry(page
+ i
, write
);
2245 entry
= swp_entry_to_pte(swp_entry
);
2247 entry
= pte_swp_mksoft_dirty(entry
);
2249 entry
= mk_pte(page
+ i
, READ_ONCE(vma
->vm_page_prot
));
2250 entry
= maybe_mkwrite(entry
, vma
);
2252 entry
= pte_wrprotect(entry
);
2254 entry
= pte_mkold(entry
);
2256 entry
= pte_mksoft_dirty(entry
);
2258 pte
= pte_offset_map(&_pmd
, addr
);
2259 BUG_ON(!pte_none(*pte
));
2260 set_pte_at(mm
, addr
, pte
, entry
);
2261 atomic_inc(&page
[i
]._mapcount
);
2266 * Set PG_double_map before dropping compound_mapcount to avoid
2267 * false-negative page_mapped().
2269 if (compound_mapcount(page
) > 1 && !TestSetPageDoubleMap(page
)) {
2270 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2271 atomic_inc(&page
[i
]._mapcount
);
2274 if (atomic_add_negative(-1, compound_mapcount_ptr(page
))) {
2275 /* Last compound_mapcount is gone. */
2276 __dec_node_page_state(page
, NR_ANON_THPS
);
2277 if (TestClearPageDoubleMap(page
)) {
2278 /* No need in mapcount reference anymore */
2279 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2280 atomic_dec(&page
[i
]._mapcount
);
2284 smp_wmb(); /* make pte visible before pmd */
2285 pmd_populate(mm
, pmd
, pgtable
);
2288 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2289 page_remove_rmap(page
+ i
, false);
2295 void __split_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
2296 unsigned long address
, bool freeze
, struct page
*page
)
2299 struct mmu_notifier_range range
;
2301 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, vma
->vm_mm
,
2302 address
& HPAGE_PMD_MASK
,
2303 (address
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
);
2304 mmu_notifier_invalidate_range_start(&range
);
2305 ptl
= pmd_lock(vma
->vm_mm
, pmd
);
2308 * If caller asks to setup a migration entries, we need a page to check
2309 * pmd against. Otherwise we can end up replacing wrong page.
2311 VM_BUG_ON(freeze
&& !page
);
2312 if (page
&& page
!= pmd_page(*pmd
))
2315 if (pmd_trans_huge(*pmd
)) {
2316 page
= pmd_page(*pmd
);
2317 if (PageMlocked(page
))
2318 clear_page_mlock(page
);
2319 } else if (!(pmd_devmap(*pmd
) || is_pmd_migration_entry(*pmd
)))
2321 __split_huge_pmd_locked(vma
, pmd
, range
.start
, freeze
);
2325 * No need to double call mmu_notifier->invalidate_range() callback.
2326 * They are 3 cases to consider inside __split_huge_pmd_locked():
2327 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2328 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2329 * fault will trigger a flush_notify before pointing to a new page
2330 * (it is fine if the secondary mmu keeps pointing to the old zero
2331 * page in the meantime)
2332 * 3) Split a huge pmd into pte pointing to the same page. No need
2333 * to invalidate secondary tlb entry they are all still valid.
2334 * any further changes to individual pte will notify. So no need
2335 * to call mmu_notifier->invalidate_range()
2337 mmu_notifier_invalidate_range_only_end(&range
);
2340 void split_huge_pmd_address(struct vm_area_struct
*vma
, unsigned long address
,
2341 bool freeze
, struct page
*page
)
2348 pgd
= pgd_offset(vma
->vm_mm
, address
);
2349 if (!pgd_present(*pgd
))
2352 p4d
= p4d_offset(pgd
, address
);
2353 if (!p4d_present(*p4d
))
2356 pud
= pud_offset(p4d
, address
);
2357 if (!pud_present(*pud
))
2360 pmd
= pmd_offset(pud
, address
);
2362 __split_huge_pmd(vma
, pmd
, address
, freeze
, page
);
2365 void vma_adjust_trans_huge(struct vm_area_struct
*vma
,
2366 unsigned long start
,
2371 * If the new start address isn't hpage aligned and it could
2372 * previously contain an hugepage: check if we need to split
2375 if (start
& ~HPAGE_PMD_MASK
&&
2376 (start
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2377 (start
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2378 split_huge_pmd_address(vma
, start
, false, NULL
);
2381 * If the new end address isn't hpage aligned and it could
2382 * previously contain an hugepage: check if we need to split
2385 if (end
& ~HPAGE_PMD_MASK
&&
2386 (end
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2387 (end
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2388 split_huge_pmd_address(vma
, end
, false, NULL
);
2391 * If we're also updating the vma->vm_next->vm_start, if the new
2392 * vm_next->vm_start isn't page aligned and it could previously
2393 * contain an hugepage: check if we need to split an huge pmd.
2395 if (adjust_next
> 0) {
2396 struct vm_area_struct
*next
= vma
->vm_next
;
2397 unsigned long nstart
= next
->vm_start
;
2398 nstart
+= adjust_next
<< PAGE_SHIFT
;
2399 if (nstart
& ~HPAGE_PMD_MASK
&&
2400 (nstart
& HPAGE_PMD_MASK
) >= next
->vm_start
&&
2401 (nstart
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= next
->vm_end
)
2402 split_huge_pmd_address(next
, nstart
, false, NULL
);
2406 static void unmap_page(struct page
*page
)
2408 enum ttu_flags ttu_flags
= TTU_IGNORE_MLOCK
| TTU_IGNORE_ACCESS
|
2409 TTU_RMAP_LOCKED
| TTU_SPLIT_HUGE_PMD
;
2412 VM_BUG_ON_PAGE(!PageHead(page
), page
);
2415 ttu_flags
|= TTU_SPLIT_FREEZE
;
2417 unmap_success
= try_to_unmap(page
, ttu_flags
);
2418 VM_BUG_ON_PAGE(!unmap_success
, page
);
2421 static void remap_page(struct page
*page
)
2424 if (PageTransHuge(page
)) {
2425 remove_migration_ptes(page
, page
, true);
2427 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2428 remove_migration_ptes(page
+ i
, page
+ i
, true);
2432 static void __split_huge_page_tail(struct page
*head
, int tail
,
2433 struct lruvec
*lruvec
, struct list_head
*list
)
2435 struct page
*page_tail
= head
+ tail
;
2437 VM_BUG_ON_PAGE(atomic_read(&page_tail
->_mapcount
) != -1, page_tail
);
2440 * Clone page flags before unfreezing refcount.
2442 * After successful get_page_unless_zero() might follow flags change,
2443 * for exmaple lock_page() which set PG_waiters.
2445 page_tail
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
2446 page_tail
->flags
|= (head
->flags
&
2447 ((1L << PG_referenced
) |
2448 (1L << PG_swapbacked
) |
2449 (1L << PG_swapcache
) |
2450 (1L << PG_mlocked
) |
2451 (1L << PG_uptodate
) |
2453 (1L << PG_workingset
) |
2455 (1L << PG_unevictable
) |
2458 /* ->mapping in first tail page is compound_mapcount */
2459 VM_BUG_ON_PAGE(tail
> 2 && page_tail
->mapping
!= TAIL_MAPPING
,
2461 page_tail
->mapping
= head
->mapping
;
2462 page_tail
->index
= head
->index
+ tail
;
2464 /* Page flags must be visible before we make the page non-compound. */
2468 * Clear PageTail before unfreezing page refcount.
2470 * After successful get_page_unless_zero() might follow put_page()
2471 * which needs correct compound_head().
2473 clear_compound_head(page_tail
);
2475 /* Finally unfreeze refcount. Additional reference from page cache. */
2476 page_ref_unfreeze(page_tail
, 1 + (!PageAnon(head
) ||
2477 PageSwapCache(head
)));
2479 if (page_is_young(head
))
2480 set_page_young(page_tail
);
2481 if (page_is_idle(head
))
2482 set_page_idle(page_tail
);
2484 page_cpupid_xchg_last(page_tail
, page_cpupid_last(head
));
2487 * always add to the tail because some iterators expect new
2488 * pages to show after the currently processed elements - e.g.
2491 lru_add_page_tail(head
, page_tail
, lruvec
, list
);
2494 static void __split_huge_page(struct page
*page
, struct list_head
*list
,
2495 pgoff_t end
, unsigned long flags
)
2497 struct page
*head
= compound_head(page
);
2498 pg_data_t
*pgdat
= page_pgdat(head
);
2499 struct lruvec
*lruvec
;
2502 lruvec
= mem_cgroup_page_lruvec(head
, pgdat
);
2504 /* complete memcg works before add pages to LRU */
2505 mem_cgroup_split_huge_fixup(head
);
2507 for (i
= HPAGE_PMD_NR
- 1; i
>= 1; i
--) {
2508 __split_huge_page_tail(head
, i
, lruvec
, list
);
2509 /* Some pages can be beyond i_size: drop them from page cache */
2510 if (head
[i
].index
>= end
) {
2511 ClearPageDirty(head
+ i
);
2512 __delete_from_page_cache(head
+ i
, NULL
);
2513 if (IS_ENABLED(CONFIG_SHMEM
) && PageSwapBacked(head
))
2514 shmem_uncharge(head
->mapping
->host
, 1);
2519 ClearPageCompound(head
);
2521 split_page_owner(head
, HPAGE_PMD_ORDER
);
2523 /* See comment in __split_huge_page_tail() */
2524 if (PageAnon(head
)) {
2525 /* Additional pin to swap cache */
2526 if (PageSwapCache(head
))
2527 page_ref_add(head
, 2);
2531 /* Additional pin to page cache */
2532 page_ref_add(head
, 2);
2533 xa_unlock(&head
->mapping
->i_pages
);
2536 spin_unlock_irqrestore(&pgdat
->lru_lock
, flags
);
2540 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2541 struct page
*subpage
= head
+ i
;
2542 if (subpage
== page
)
2544 unlock_page(subpage
);
2547 * Subpages may be freed if there wasn't any mapping
2548 * like if add_to_swap() is running on a lru page that
2549 * had its mapping zapped. And freeing these pages
2550 * requires taking the lru_lock so we do the put_page
2551 * of the tail pages after the split is complete.
2557 int total_mapcount(struct page
*page
)
2559 int i
, compound
, ret
;
2561 VM_BUG_ON_PAGE(PageTail(page
), page
);
2563 if (likely(!PageCompound(page
)))
2564 return atomic_read(&page
->_mapcount
) + 1;
2566 compound
= compound_mapcount(page
);
2570 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2571 ret
+= atomic_read(&page
[i
]._mapcount
) + 1;
2572 /* File pages has compound_mapcount included in _mapcount */
2573 if (!PageAnon(page
))
2574 return ret
- compound
* HPAGE_PMD_NR
;
2575 if (PageDoubleMap(page
))
2576 ret
-= HPAGE_PMD_NR
;
2581 * This calculates accurately how many mappings a transparent hugepage
2582 * has (unlike page_mapcount() which isn't fully accurate). This full
2583 * accuracy is primarily needed to know if copy-on-write faults can
2584 * reuse the page and change the mapping to read-write instead of
2585 * copying them. At the same time this returns the total_mapcount too.
2587 * The function returns the highest mapcount any one of the subpages
2588 * has. If the return value is one, even if different processes are
2589 * mapping different subpages of the transparent hugepage, they can
2590 * all reuse it, because each process is reusing a different subpage.
2592 * The total_mapcount is instead counting all virtual mappings of the
2593 * subpages. If the total_mapcount is equal to "one", it tells the
2594 * caller all mappings belong to the same "mm" and in turn the
2595 * anon_vma of the transparent hugepage can become the vma->anon_vma
2596 * local one as no other process may be mapping any of the subpages.
2598 * It would be more accurate to replace page_mapcount() with
2599 * page_trans_huge_mapcount(), however we only use
2600 * page_trans_huge_mapcount() in the copy-on-write faults where we
2601 * need full accuracy to avoid breaking page pinning, because
2602 * page_trans_huge_mapcount() is slower than page_mapcount().
2604 int page_trans_huge_mapcount(struct page
*page
, int *total_mapcount
)
2606 int i
, ret
, _total_mapcount
, mapcount
;
2608 /* hugetlbfs shouldn't call it */
2609 VM_BUG_ON_PAGE(PageHuge(page
), page
);
2611 if (likely(!PageTransCompound(page
))) {
2612 mapcount
= atomic_read(&page
->_mapcount
) + 1;
2614 *total_mapcount
= mapcount
;
2618 page
= compound_head(page
);
2620 _total_mapcount
= ret
= 0;
2621 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2622 mapcount
= atomic_read(&page
[i
]._mapcount
) + 1;
2623 ret
= max(ret
, mapcount
);
2624 _total_mapcount
+= mapcount
;
2626 if (PageDoubleMap(page
)) {
2628 _total_mapcount
-= HPAGE_PMD_NR
;
2630 mapcount
= compound_mapcount(page
);
2632 _total_mapcount
+= mapcount
;
2634 *total_mapcount
= _total_mapcount
;
2638 /* Racy check whether the huge page can be split */
2639 bool can_split_huge_page(struct page
*page
, int *pextra_pins
)
2643 /* Additional pins from page cache */
2645 extra_pins
= PageSwapCache(page
) ? HPAGE_PMD_NR
: 0;
2647 extra_pins
= HPAGE_PMD_NR
;
2649 *pextra_pins
= extra_pins
;
2650 return total_mapcount(page
) == page_count(page
) - extra_pins
- 1;
2654 * This function splits huge page into normal pages. @page can point to any
2655 * subpage of huge page to split. Split doesn't change the position of @page.
2657 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2658 * The huge page must be locked.
2660 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2662 * Both head page and tail pages will inherit mapping, flags, and so on from
2665 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2666 * they are not mapped.
2668 * Returns 0 if the hugepage is split successfully.
2669 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2672 int split_huge_page_to_list(struct page
*page
, struct list_head
*list
)
2674 struct page
*head
= compound_head(page
);
2675 struct pglist_data
*pgdata
= NODE_DATA(page_to_nid(head
));
2676 struct anon_vma
*anon_vma
= NULL
;
2677 struct address_space
*mapping
= NULL
;
2678 int count
, mapcount
, extra_pins
, ret
;
2680 unsigned long flags
;
2683 VM_BUG_ON_PAGE(is_huge_zero_page(page
), page
);
2684 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2685 VM_BUG_ON_PAGE(!PageCompound(page
), page
);
2687 if (PageWriteback(page
))
2690 if (PageAnon(head
)) {
2692 * The caller does not necessarily hold an mmap_sem that would
2693 * prevent the anon_vma disappearing so we first we take a
2694 * reference to it and then lock the anon_vma for write. This
2695 * is similar to page_lock_anon_vma_read except the write lock
2696 * is taken to serialise against parallel split or collapse
2699 anon_vma
= page_get_anon_vma(head
);
2706 anon_vma_lock_write(anon_vma
);
2708 mapping
= head
->mapping
;
2717 i_mmap_lock_read(mapping
);
2720 *__split_huge_page() may need to trim off pages beyond EOF:
2721 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2722 * which cannot be nested inside the page tree lock. So note
2723 * end now: i_size itself may be changed at any moment, but
2724 * head page lock is good enough to serialize the trimming.
2726 end
= DIV_ROUND_UP(i_size_read(mapping
->host
), PAGE_SIZE
);
2730 * Racy check if we can split the page, before unmap_page() will
2733 if (!can_split_huge_page(head
, &extra_pins
)) {
2738 mlocked
= PageMlocked(page
);
2740 VM_BUG_ON_PAGE(compound_mapcount(head
), head
);
2742 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2746 /* prevent PageLRU to go away from under us, and freeze lru stats */
2747 spin_lock_irqsave(&pgdata
->lru_lock
, flags
);
2750 XA_STATE(xas
, &mapping
->i_pages
, page_index(head
));
2753 * Check if the head page is present in page cache.
2754 * We assume all tail are present too, if head is there.
2756 xa_lock(&mapping
->i_pages
);
2757 if (xas_load(&xas
) != head
)
2761 /* Prevent deferred_split_scan() touching ->_refcount */
2762 spin_lock(&pgdata
->split_queue_lock
);
2763 count
= page_count(head
);
2764 mapcount
= total_mapcount(head
);
2765 if (!mapcount
&& page_ref_freeze(head
, 1 + extra_pins
)) {
2766 if (!list_empty(page_deferred_list(head
))) {
2767 pgdata
->split_queue_len
--;
2768 list_del(page_deferred_list(head
));
2771 __dec_node_page_state(page
, NR_SHMEM_THPS
);
2772 spin_unlock(&pgdata
->split_queue_lock
);
2773 __split_huge_page(page
, list
, end
, flags
);
2774 if (PageSwapCache(head
)) {
2775 swp_entry_t entry
= { .val
= page_private(head
) };
2777 ret
= split_swap_cluster(entry
);
2781 if (IS_ENABLED(CONFIG_DEBUG_VM
) && mapcount
) {
2782 pr_alert("total_mapcount: %u, page_count(): %u\n",
2785 dump_page(head
, NULL
);
2786 dump_page(page
, "total_mapcount(head) > 0");
2789 spin_unlock(&pgdata
->split_queue_lock
);
2791 xa_unlock(&mapping
->i_pages
);
2792 spin_unlock_irqrestore(&pgdata
->lru_lock
, flags
);
2799 anon_vma_unlock_write(anon_vma
);
2800 put_anon_vma(anon_vma
);
2803 i_mmap_unlock_read(mapping
);
2805 count_vm_event(!ret
? THP_SPLIT_PAGE
: THP_SPLIT_PAGE_FAILED
);
2809 void free_transhuge_page(struct page
*page
)
2811 struct pglist_data
*pgdata
= NODE_DATA(page_to_nid(page
));
2812 unsigned long flags
;
2814 spin_lock_irqsave(&pgdata
->split_queue_lock
, flags
);
2815 if (!list_empty(page_deferred_list(page
))) {
2816 pgdata
->split_queue_len
--;
2817 list_del(page_deferred_list(page
));
2819 spin_unlock_irqrestore(&pgdata
->split_queue_lock
, flags
);
2820 free_compound_page(page
);
2823 void deferred_split_huge_page(struct page
*page
)
2825 struct pglist_data
*pgdata
= NODE_DATA(page_to_nid(page
));
2826 unsigned long flags
;
2828 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
2830 spin_lock_irqsave(&pgdata
->split_queue_lock
, flags
);
2831 if (list_empty(page_deferred_list(page
))) {
2832 count_vm_event(THP_DEFERRED_SPLIT_PAGE
);
2833 list_add_tail(page_deferred_list(page
), &pgdata
->split_queue
);
2834 pgdata
->split_queue_len
++;
2836 spin_unlock_irqrestore(&pgdata
->split_queue_lock
, flags
);
2839 static unsigned long deferred_split_count(struct shrinker
*shrink
,
2840 struct shrink_control
*sc
)
2842 struct pglist_data
*pgdata
= NODE_DATA(sc
->nid
);
2843 return READ_ONCE(pgdata
->split_queue_len
);
2846 static unsigned long deferred_split_scan(struct shrinker
*shrink
,
2847 struct shrink_control
*sc
)
2849 struct pglist_data
*pgdata
= NODE_DATA(sc
->nid
);
2850 unsigned long flags
;
2851 LIST_HEAD(list
), *pos
, *next
;
2855 spin_lock_irqsave(&pgdata
->split_queue_lock
, flags
);
2856 /* Take pin on all head pages to avoid freeing them under us */
2857 list_for_each_safe(pos
, next
, &pgdata
->split_queue
) {
2858 page
= list_entry((void *)pos
, struct page
, mapping
);
2859 page
= compound_head(page
);
2860 if (get_page_unless_zero(page
)) {
2861 list_move(page_deferred_list(page
), &list
);
2863 /* We lost race with put_compound_page() */
2864 list_del_init(page_deferred_list(page
));
2865 pgdata
->split_queue_len
--;
2867 if (!--sc
->nr_to_scan
)
2870 spin_unlock_irqrestore(&pgdata
->split_queue_lock
, flags
);
2872 list_for_each_safe(pos
, next
, &list
) {
2873 page
= list_entry((void *)pos
, struct page
, mapping
);
2874 if (!trylock_page(page
))
2876 /* split_huge_page() removes page from list on success */
2877 if (!split_huge_page(page
))
2884 spin_lock_irqsave(&pgdata
->split_queue_lock
, flags
);
2885 list_splice_tail(&list
, &pgdata
->split_queue
);
2886 spin_unlock_irqrestore(&pgdata
->split_queue_lock
, flags
);
2889 * Stop shrinker if we didn't split any page, but the queue is empty.
2890 * This can happen if pages were freed under us.
2892 if (!split
&& list_empty(&pgdata
->split_queue
))
2897 static struct shrinker deferred_split_shrinker
= {
2898 .count_objects
= deferred_split_count
,
2899 .scan_objects
= deferred_split_scan
,
2900 .seeks
= DEFAULT_SEEKS
,
2901 .flags
= SHRINKER_NUMA_AWARE
,
2904 #ifdef CONFIG_DEBUG_FS
2905 static int split_huge_pages_set(void *data
, u64 val
)
2909 unsigned long pfn
, max_zone_pfn
;
2910 unsigned long total
= 0, split
= 0;
2915 for_each_populated_zone(zone
) {
2916 max_zone_pfn
= zone_end_pfn(zone
);
2917 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++) {
2918 if (!pfn_valid(pfn
))
2921 page
= pfn_to_page(pfn
);
2922 if (!get_page_unless_zero(page
))
2925 if (zone
!= page_zone(page
))
2928 if (!PageHead(page
) || PageHuge(page
) || !PageLRU(page
))
2933 if (!split_huge_page(page
))
2941 pr_info("%lu of %lu THP split\n", split
, total
);
2945 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops
, NULL
, split_huge_pages_set
,
2948 static int __init
split_huge_pages_debugfs(void)
2950 debugfs_create_file("split_huge_pages", 0200, NULL
, NULL
,
2951 &split_huge_pages_fops
);
2954 late_initcall(split_huge_pages_debugfs
);
2957 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2958 void set_pmd_migration_entry(struct page_vma_mapped_walk
*pvmw
,
2961 struct vm_area_struct
*vma
= pvmw
->vma
;
2962 struct mm_struct
*mm
= vma
->vm_mm
;
2963 unsigned long address
= pvmw
->address
;
2968 if (!(pvmw
->pmd
&& !pvmw
->pte
))
2971 flush_cache_range(vma
, address
, address
+ HPAGE_PMD_SIZE
);
2972 pmdval
= *pvmw
->pmd
;
2973 pmdp_invalidate(vma
, address
, pvmw
->pmd
);
2974 if (pmd_dirty(pmdval
))
2975 set_page_dirty(page
);
2976 entry
= make_migration_entry(page
, pmd_write(pmdval
));
2977 pmdswp
= swp_entry_to_pmd(entry
);
2978 if (pmd_soft_dirty(pmdval
))
2979 pmdswp
= pmd_swp_mksoft_dirty(pmdswp
);
2980 set_pmd_at(mm
, address
, pvmw
->pmd
, pmdswp
);
2981 page_remove_rmap(page
, true);
2985 void remove_migration_pmd(struct page_vma_mapped_walk
*pvmw
, struct page
*new)
2987 struct vm_area_struct
*vma
= pvmw
->vma
;
2988 struct mm_struct
*mm
= vma
->vm_mm
;
2989 unsigned long address
= pvmw
->address
;
2990 unsigned long mmun_start
= address
& HPAGE_PMD_MASK
;
2994 if (!(pvmw
->pmd
&& !pvmw
->pte
))
2997 entry
= pmd_to_swp_entry(*pvmw
->pmd
);
2999 pmde
= pmd_mkold(mk_huge_pmd(new, vma
->vm_page_prot
));
3000 if (pmd_swp_soft_dirty(*pvmw
->pmd
))
3001 pmde
= pmd_mksoft_dirty(pmde
);
3002 if (is_write_migration_entry(entry
))
3003 pmde
= maybe_pmd_mkwrite(pmde
, vma
);
3005 flush_cache_range(vma
, mmun_start
, mmun_start
+ HPAGE_PMD_SIZE
);
3007 page_add_anon_rmap(new, vma
, mmun_start
, true);
3009 page_add_file_rmap(new, true);
3010 set_pmd_at(mm
, mmun_start
, pvmw
->pmd
, pmde
);
3011 if ((vma
->vm_flags
& VM_LOCKED
) && !PageDoubleMap(new))
3012 mlock_vma_page(new);
3013 update_mmu_cache_pmd(vma
, address
, pvmw
->pmd
);