1 // SPDX-License-Identifier: GPL-2.0-only
3 * Simple NUMA memory policy for the Linux kernel.
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
57 fix mmap readahead to honour policy and enable policy for any page cache
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
62 handle mremap for shared memory (currently ignored for the policy)
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 #include <linux/mempolicy.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
106 #include "internal.h"
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
112 static struct kmem_cache
*policy_cache
;
113 static struct kmem_cache
*sn_cache
;
115 /* Highest zone. An specific allocation for a zone below that is not
117 enum zone_type policy_zone
= 0;
120 * run-time system-wide default policy => local allocation
122 static struct mempolicy default_policy
= {
123 .refcnt
= ATOMIC_INIT(1), /* never free it */
124 .mode
= MPOL_PREFERRED
,
125 .flags
= MPOL_F_LOCAL
,
128 static struct mempolicy preferred_node_policy
[MAX_NUMNODES
];
130 struct mempolicy
*get_task_policy(struct task_struct
*p
)
132 struct mempolicy
*pol
= p
->mempolicy
;
138 node
= numa_node_id();
139 if (node
!= NUMA_NO_NODE
) {
140 pol
= &preferred_node_policy
[node
];
141 /* preferred_node_policy is not initialised early in boot */
146 return &default_policy
;
149 static const struct mempolicy_operations
{
150 int (*create
)(struct mempolicy
*pol
, const nodemask_t
*nodes
);
151 void (*rebind
)(struct mempolicy
*pol
, const nodemask_t
*nodes
);
152 } mpol_ops
[MPOL_MAX
];
154 static inline int mpol_store_user_nodemask(const struct mempolicy
*pol
)
156 return pol
->flags
& MPOL_MODE_FLAGS
;
159 static void mpol_relative_nodemask(nodemask_t
*ret
, const nodemask_t
*orig
,
160 const nodemask_t
*rel
)
163 nodes_fold(tmp
, *orig
, nodes_weight(*rel
));
164 nodes_onto(*ret
, tmp
, *rel
);
167 static int mpol_new_interleave(struct mempolicy
*pol
, const nodemask_t
*nodes
)
169 if (nodes_empty(*nodes
))
171 pol
->v
.nodes
= *nodes
;
175 static int mpol_new_preferred(struct mempolicy
*pol
, const nodemask_t
*nodes
)
178 pol
->flags
|= MPOL_F_LOCAL
; /* local allocation */
179 else if (nodes_empty(*nodes
))
180 return -EINVAL
; /* no allowed nodes */
182 pol
->v
.preferred_node
= first_node(*nodes
);
186 static int mpol_new_bind(struct mempolicy
*pol
, const nodemask_t
*nodes
)
188 if (nodes_empty(*nodes
))
190 pol
->v
.nodes
= *nodes
;
195 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
196 * any, for the new policy. mpol_new() has already validated the nodes
197 * parameter with respect to the policy mode and flags. But, we need to
198 * handle an empty nodemask with MPOL_PREFERRED here.
200 * Must be called holding task's alloc_lock to protect task's mems_allowed
201 * and mempolicy. May also be called holding the mmap_semaphore for write.
203 static int mpol_set_nodemask(struct mempolicy
*pol
,
204 const nodemask_t
*nodes
, struct nodemask_scratch
*nsc
)
208 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
212 nodes_and(nsc
->mask1
,
213 cpuset_current_mems_allowed
, node_states
[N_MEMORY
]);
216 if (pol
->mode
== MPOL_PREFERRED
&& nodes_empty(*nodes
))
217 nodes
= NULL
; /* explicit local allocation */
219 if (pol
->flags
& MPOL_F_RELATIVE_NODES
)
220 mpol_relative_nodemask(&nsc
->mask2
, nodes
, &nsc
->mask1
);
222 nodes_and(nsc
->mask2
, *nodes
, nsc
->mask1
);
224 if (mpol_store_user_nodemask(pol
))
225 pol
->w
.user_nodemask
= *nodes
;
227 pol
->w
.cpuset_mems_allowed
=
228 cpuset_current_mems_allowed
;
232 ret
= mpol_ops
[pol
->mode
].create(pol
, &nsc
->mask2
);
234 ret
= mpol_ops
[pol
->mode
].create(pol
, NULL
);
239 * This function just creates a new policy, does some check and simple
240 * initialization. You must invoke mpol_set_nodemask() to set nodes.
242 static struct mempolicy
*mpol_new(unsigned short mode
, unsigned short flags
,
245 struct mempolicy
*policy
;
247 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
248 mode
, flags
, nodes
? nodes_addr(*nodes
)[0] : NUMA_NO_NODE
);
250 if (mode
== MPOL_DEFAULT
) {
251 if (nodes
&& !nodes_empty(*nodes
))
252 return ERR_PTR(-EINVAL
);
258 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
259 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
260 * All other modes require a valid pointer to a non-empty nodemask.
262 if (mode
== MPOL_PREFERRED
) {
263 if (nodes_empty(*nodes
)) {
264 if (((flags
& MPOL_F_STATIC_NODES
) ||
265 (flags
& MPOL_F_RELATIVE_NODES
)))
266 return ERR_PTR(-EINVAL
);
268 } else if (mode
== MPOL_LOCAL
) {
269 if (!nodes_empty(*nodes
) ||
270 (flags
& MPOL_F_STATIC_NODES
) ||
271 (flags
& MPOL_F_RELATIVE_NODES
))
272 return ERR_PTR(-EINVAL
);
273 mode
= MPOL_PREFERRED
;
274 } else if (nodes_empty(*nodes
))
275 return ERR_PTR(-EINVAL
);
276 policy
= kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
278 return ERR_PTR(-ENOMEM
);
279 atomic_set(&policy
->refcnt
, 1);
281 policy
->flags
= flags
;
286 /* Slow path of a mpol destructor. */
287 void __mpol_put(struct mempolicy
*p
)
289 if (!atomic_dec_and_test(&p
->refcnt
))
291 kmem_cache_free(policy_cache
, p
);
294 static void mpol_rebind_default(struct mempolicy
*pol
, const nodemask_t
*nodes
)
298 static void mpol_rebind_nodemask(struct mempolicy
*pol
, const nodemask_t
*nodes
)
302 if (pol
->flags
& MPOL_F_STATIC_NODES
)
303 nodes_and(tmp
, pol
->w
.user_nodemask
, *nodes
);
304 else if (pol
->flags
& MPOL_F_RELATIVE_NODES
)
305 mpol_relative_nodemask(&tmp
, &pol
->w
.user_nodemask
, nodes
);
307 nodes_remap(tmp
, pol
->v
.nodes
,pol
->w
.cpuset_mems_allowed
,
309 pol
->w
.cpuset_mems_allowed
= *nodes
;
312 if (nodes_empty(tmp
))
318 static void mpol_rebind_preferred(struct mempolicy
*pol
,
319 const nodemask_t
*nodes
)
323 if (pol
->flags
& MPOL_F_STATIC_NODES
) {
324 int node
= first_node(pol
->w
.user_nodemask
);
326 if (node_isset(node
, *nodes
)) {
327 pol
->v
.preferred_node
= node
;
328 pol
->flags
&= ~MPOL_F_LOCAL
;
330 pol
->flags
|= MPOL_F_LOCAL
;
331 } else if (pol
->flags
& MPOL_F_RELATIVE_NODES
) {
332 mpol_relative_nodemask(&tmp
, &pol
->w
.user_nodemask
, nodes
);
333 pol
->v
.preferred_node
= first_node(tmp
);
334 } else if (!(pol
->flags
& MPOL_F_LOCAL
)) {
335 pol
->v
.preferred_node
= node_remap(pol
->v
.preferred_node
,
336 pol
->w
.cpuset_mems_allowed
,
338 pol
->w
.cpuset_mems_allowed
= *nodes
;
343 * mpol_rebind_policy - Migrate a policy to a different set of nodes
345 * Per-vma policies are protected by mmap_sem. Allocations using per-task
346 * policies are protected by task->mems_allowed_seq to prevent a premature
347 * OOM/allocation failure due to parallel nodemask modification.
349 static void mpol_rebind_policy(struct mempolicy
*pol
, const nodemask_t
*newmask
)
353 if (!mpol_store_user_nodemask(pol
) && !(pol
->flags
& MPOL_F_LOCAL
) &&
354 nodes_equal(pol
->w
.cpuset_mems_allowed
, *newmask
))
357 mpol_ops
[pol
->mode
].rebind(pol
, newmask
);
361 * Wrapper for mpol_rebind_policy() that just requires task
362 * pointer, and updates task mempolicy.
364 * Called with task's alloc_lock held.
367 void mpol_rebind_task(struct task_struct
*tsk
, const nodemask_t
*new)
369 mpol_rebind_policy(tsk
->mempolicy
, new);
373 * Rebind each vma in mm to new nodemask.
375 * Call holding a reference to mm. Takes mm->mmap_sem during call.
378 void mpol_rebind_mm(struct mm_struct
*mm
, nodemask_t
*new)
380 struct vm_area_struct
*vma
;
382 down_write(&mm
->mmap_sem
);
383 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
)
384 mpol_rebind_policy(vma
->vm_policy
, new);
385 up_write(&mm
->mmap_sem
);
388 static const struct mempolicy_operations mpol_ops
[MPOL_MAX
] = {
390 .rebind
= mpol_rebind_default
,
392 [MPOL_INTERLEAVE
] = {
393 .create
= mpol_new_interleave
,
394 .rebind
= mpol_rebind_nodemask
,
397 .create
= mpol_new_preferred
,
398 .rebind
= mpol_rebind_preferred
,
401 .create
= mpol_new_bind
,
402 .rebind
= mpol_rebind_nodemask
,
406 static int migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
407 unsigned long flags
);
410 struct list_head
*pagelist
;
413 struct vm_area_struct
*prev
;
417 * Check if the page's nid is in qp->nmask.
419 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
420 * in the invert of qp->nmask.
422 static inline bool queue_pages_required(struct page
*page
,
423 struct queue_pages
*qp
)
425 int nid
= page_to_nid(page
);
426 unsigned long flags
= qp
->flags
;
428 return node_isset(nid
, *qp
->nmask
) == !(flags
& MPOL_MF_INVERT
);
432 * queue_pages_pmd() has four possible return values:
433 * 0 - pages are placed on the right node or queued successfully.
434 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
437 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
438 * existing page was already on a node that does not follow the
441 static int queue_pages_pmd(pmd_t
*pmd
, spinlock_t
*ptl
, unsigned long addr
,
442 unsigned long end
, struct mm_walk
*walk
)
446 struct queue_pages
*qp
= walk
->private;
449 if (unlikely(is_pmd_migration_entry(*pmd
))) {
453 page
= pmd_page(*pmd
);
454 if (is_huge_zero_page(page
)) {
456 __split_huge_pmd(walk
->vma
, pmd
, addr
, false, NULL
);
460 if (!queue_pages_required(page
, qp
))
464 /* go to thp migration */
465 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) {
466 if (!vma_migratable(walk
->vma
) ||
467 migrate_page_add(page
, qp
->pagelist
, flags
)) {
480 * Scan through pages checking if pages follow certain conditions,
481 * and move them to the pagelist if they do.
483 * queue_pages_pte_range() has three possible return values:
484 * 0 - pages are placed on the right node or queued successfully.
485 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
487 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
488 * on a node that does not follow the policy.
490 static int queue_pages_pte_range(pmd_t
*pmd
, unsigned long addr
,
491 unsigned long end
, struct mm_walk
*walk
)
493 struct vm_area_struct
*vma
= walk
->vma
;
495 struct queue_pages
*qp
= walk
->private;
496 unsigned long flags
= qp
->flags
;
498 bool has_unmovable
= false;
502 ptl
= pmd_trans_huge_lock(pmd
, vma
);
504 ret
= queue_pages_pmd(pmd
, ptl
, addr
, end
, walk
);
508 /* THP was split, fall through to pte walk */
510 if (pmd_trans_unstable(pmd
))
513 pte
= pte_offset_map_lock(walk
->mm
, pmd
, addr
, &ptl
);
514 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
) {
515 if (!pte_present(*pte
))
517 page
= vm_normal_page(vma
, addr
, *pte
);
521 * vm_normal_page() filters out zero pages, but there might
522 * still be PageReserved pages to skip, perhaps in a VDSO.
524 if (PageReserved(page
))
526 if (!queue_pages_required(page
, qp
))
528 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) {
529 /* MPOL_MF_STRICT must be specified if we get here */
530 if (!vma_migratable(vma
)) {
531 has_unmovable
= true;
536 * Do not abort immediately since there may be
537 * temporary off LRU pages in the range. Still
538 * need migrate other LRU pages.
540 if (migrate_page_add(page
, qp
->pagelist
, flags
))
541 has_unmovable
= true;
545 pte_unmap_unlock(pte
- 1, ptl
);
551 return addr
!= end
? -EIO
: 0;
554 static int queue_pages_hugetlb(pte_t
*pte
, unsigned long hmask
,
555 unsigned long addr
, unsigned long end
,
556 struct mm_walk
*walk
)
558 #ifdef CONFIG_HUGETLB_PAGE
559 struct queue_pages
*qp
= walk
->private;
560 unsigned long flags
= qp
->flags
;
565 ptl
= huge_pte_lock(hstate_vma(walk
->vma
), walk
->mm
, pte
);
566 entry
= huge_ptep_get(pte
);
567 if (!pte_present(entry
))
569 page
= pte_page(entry
);
570 if (!queue_pages_required(page
, qp
))
572 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
573 if (flags
& (MPOL_MF_MOVE_ALL
) ||
574 (flags
& MPOL_MF_MOVE
&& page_mapcount(page
) == 1))
575 isolate_huge_page(page
, qp
->pagelist
);
584 #ifdef CONFIG_NUMA_BALANCING
586 * This is used to mark a range of virtual addresses to be inaccessible.
587 * These are later cleared by a NUMA hinting fault. Depending on these
588 * faults, pages may be migrated for better NUMA placement.
590 * This is assuming that NUMA faults are handled using PROT_NONE. If
591 * an architecture makes a different choice, it will need further
592 * changes to the core.
594 unsigned long change_prot_numa(struct vm_area_struct
*vma
,
595 unsigned long addr
, unsigned long end
)
599 nr_updated
= change_protection(vma
, addr
, end
, PAGE_NONE
, 0, 1);
601 count_vm_numa_events(NUMA_PTE_UPDATES
, nr_updated
);
606 static unsigned long change_prot_numa(struct vm_area_struct
*vma
,
607 unsigned long addr
, unsigned long end
)
611 #endif /* CONFIG_NUMA_BALANCING */
613 static int queue_pages_test_walk(unsigned long start
, unsigned long end
,
614 struct mm_walk
*walk
)
616 struct vm_area_struct
*vma
= walk
->vma
;
617 struct queue_pages
*qp
= walk
->private;
618 unsigned long endvma
= vma
->vm_end
;
619 unsigned long flags
= qp
->flags
;
622 * Need check MPOL_MF_STRICT to return -EIO if possible
623 * regardless of vma_migratable
625 if (!vma_migratable(vma
) &&
626 !(flags
& MPOL_MF_STRICT
))
631 if (vma
->vm_start
> start
)
632 start
= vma
->vm_start
;
634 if (!(flags
& MPOL_MF_DISCONTIG_OK
)) {
635 if (!vma
->vm_next
&& vma
->vm_end
< end
)
637 if (qp
->prev
&& qp
->prev
->vm_end
< vma
->vm_start
)
643 if (flags
& MPOL_MF_LAZY
) {
644 /* Similar to task_numa_work, skip inaccessible VMAs */
645 if (!is_vm_hugetlb_page(vma
) &&
646 (vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
)) &&
647 !(vma
->vm_flags
& VM_MIXEDMAP
))
648 change_prot_numa(vma
, start
, endvma
);
652 /* queue pages from current vma */
653 if (flags
& MPOL_MF_VALID
)
659 * Walk through page tables and collect pages to be migrated.
661 * If pages found in a given range are on a set of nodes (determined by
662 * @nodes and @flags,) it's isolated and queued to the pagelist which is
663 * passed via @private.
665 * queue_pages_range() has three possible return values:
666 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
668 * 0 - queue pages successfully or no misplaced page.
669 * -EIO - there is misplaced page and only MPOL_MF_STRICT was specified.
672 queue_pages_range(struct mm_struct
*mm
, unsigned long start
, unsigned long end
,
673 nodemask_t
*nodes
, unsigned long flags
,
674 struct list_head
*pagelist
)
676 struct queue_pages qp
= {
677 .pagelist
= pagelist
,
682 struct mm_walk queue_pages_walk
= {
683 .hugetlb_entry
= queue_pages_hugetlb
,
684 .pmd_entry
= queue_pages_pte_range
,
685 .test_walk
= queue_pages_test_walk
,
690 return walk_page_range(start
, end
, &queue_pages_walk
);
694 * Apply policy to a single VMA
695 * This must be called with the mmap_sem held for writing.
697 static int vma_replace_policy(struct vm_area_struct
*vma
,
698 struct mempolicy
*pol
)
701 struct mempolicy
*old
;
702 struct mempolicy
*new;
704 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
705 vma
->vm_start
, vma
->vm_end
, vma
->vm_pgoff
,
706 vma
->vm_ops
, vma
->vm_file
,
707 vma
->vm_ops
? vma
->vm_ops
->set_policy
: NULL
);
713 if (vma
->vm_ops
&& vma
->vm_ops
->set_policy
) {
714 err
= vma
->vm_ops
->set_policy(vma
, new);
719 old
= vma
->vm_policy
;
720 vma
->vm_policy
= new; /* protected by mmap_sem */
729 /* Step 2: apply policy to a range and do splits. */
730 static int mbind_range(struct mm_struct
*mm
, unsigned long start
,
731 unsigned long end
, struct mempolicy
*new_pol
)
733 struct vm_area_struct
*next
;
734 struct vm_area_struct
*prev
;
735 struct vm_area_struct
*vma
;
738 unsigned long vmstart
;
741 vma
= find_vma(mm
, start
);
742 if (!vma
|| vma
->vm_start
> start
)
746 if (start
> vma
->vm_start
)
749 for (; vma
&& vma
->vm_start
< end
; prev
= vma
, vma
= next
) {
751 vmstart
= max(start
, vma
->vm_start
);
752 vmend
= min(end
, vma
->vm_end
);
754 if (mpol_equal(vma_policy(vma
), new_pol
))
757 pgoff
= vma
->vm_pgoff
+
758 ((vmstart
- vma
->vm_start
) >> PAGE_SHIFT
);
759 prev
= vma_merge(mm
, prev
, vmstart
, vmend
, vma
->vm_flags
,
760 vma
->anon_vma
, vma
->vm_file
, pgoff
,
761 new_pol
, vma
->vm_userfaultfd_ctx
);
765 if (mpol_equal(vma_policy(vma
), new_pol
))
767 /* vma_merge() joined vma && vma->next, case 8 */
770 if (vma
->vm_start
!= vmstart
) {
771 err
= split_vma(vma
->vm_mm
, vma
, vmstart
, 1);
775 if (vma
->vm_end
!= vmend
) {
776 err
= split_vma(vma
->vm_mm
, vma
, vmend
, 0);
781 err
= vma_replace_policy(vma
, new_pol
);
790 /* Set the process memory policy */
791 static long do_set_mempolicy(unsigned short mode
, unsigned short flags
,
794 struct mempolicy
*new, *old
;
795 NODEMASK_SCRATCH(scratch
);
801 new = mpol_new(mode
, flags
, nodes
);
808 ret
= mpol_set_nodemask(new, nodes
, scratch
);
810 task_unlock(current
);
814 old
= current
->mempolicy
;
815 current
->mempolicy
= new;
816 if (new && new->mode
== MPOL_INTERLEAVE
)
817 current
->il_prev
= MAX_NUMNODES
-1;
818 task_unlock(current
);
822 NODEMASK_SCRATCH_FREE(scratch
);
827 * Return nodemask for policy for get_mempolicy() query
829 * Called with task's alloc_lock held
831 static void get_policy_nodemask(struct mempolicy
*p
, nodemask_t
*nodes
)
834 if (p
== &default_policy
)
840 case MPOL_INTERLEAVE
:
844 if (!(p
->flags
& MPOL_F_LOCAL
))
845 node_set(p
->v
.preferred_node
, *nodes
);
846 /* else return empty node mask for local allocation */
853 static int lookup_node(struct mm_struct
*mm
, unsigned long addr
)
859 err
= get_user_pages_locked(addr
& PAGE_MASK
, 1, 0, &p
, &locked
);
861 err
= page_to_nid(p
);
865 up_read(&mm
->mmap_sem
);
869 /* Retrieve NUMA policy */
870 static long do_get_mempolicy(int *policy
, nodemask_t
*nmask
,
871 unsigned long addr
, unsigned long flags
)
874 struct mm_struct
*mm
= current
->mm
;
875 struct vm_area_struct
*vma
= NULL
;
876 struct mempolicy
*pol
= current
->mempolicy
, *pol_refcount
= NULL
;
879 ~(unsigned long)(MPOL_F_NODE
|MPOL_F_ADDR
|MPOL_F_MEMS_ALLOWED
))
882 if (flags
& MPOL_F_MEMS_ALLOWED
) {
883 if (flags
& (MPOL_F_NODE
|MPOL_F_ADDR
))
885 *policy
= 0; /* just so it's initialized */
887 *nmask
= cpuset_current_mems_allowed
;
888 task_unlock(current
);
892 if (flags
& MPOL_F_ADDR
) {
894 * Do NOT fall back to task policy if the
895 * vma/shared policy at addr is NULL. We
896 * want to return MPOL_DEFAULT in this case.
898 down_read(&mm
->mmap_sem
);
899 vma
= find_vma_intersection(mm
, addr
, addr
+1);
901 up_read(&mm
->mmap_sem
);
904 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
)
905 pol
= vma
->vm_ops
->get_policy(vma
, addr
);
907 pol
= vma
->vm_policy
;
912 pol
= &default_policy
; /* indicates default behavior */
914 if (flags
& MPOL_F_NODE
) {
915 if (flags
& MPOL_F_ADDR
) {
917 * Take a refcount on the mpol, lookup_node()
918 * wil drop the mmap_sem, so after calling
919 * lookup_node() only "pol" remains valid, "vma"
925 err
= lookup_node(mm
, addr
);
929 } else if (pol
== current
->mempolicy
&&
930 pol
->mode
== MPOL_INTERLEAVE
) {
931 *policy
= next_node_in(current
->il_prev
, pol
->v
.nodes
);
937 *policy
= pol
== &default_policy
? MPOL_DEFAULT
:
940 * Internal mempolicy flags must be masked off before exposing
941 * the policy to userspace.
943 *policy
|= (pol
->flags
& MPOL_MODE_FLAGS
);
948 if (mpol_store_user_nodemask(pol
)) {
949 *nmask
= pol
->w
.user_nodemask
;
952 get_policy_nodemask(pol
, nmask
);
953 task_unlock(current
);
960 up_read(&mm
->mmap_sem
);
962 mpol_put(pol_refcount
);
966 #ifdef CONFIG_MIGRATION
968 * page migration, thp tail pages can be passed.
970 static int migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
973 struct page
*head
= compound_head(page
);
975 * Avoid migrating a page that is shared with others.
977 if ((flags
& MPOL_MF_MOVE_ALL
) || page_mapcount(head
) == 1) {
978 if (!isolate_lru_page(head
)) {
979 list_add_tail(&head
->lru
, pagelist
);
980 mod_node_page_state(page_pgdat(head
),
981 NR_ISOLATED_ANON
+ page_is_file_cache(head
),
982 hpage_nr_pages(head
));
983 } else if (flags
& MPOL_MF_STRICT
) {
985 * Non-movable page may reach here. And, there may be
986 * temporary off LRU pages or non-LRU movable pages.
987 * Treat them as unmovable pages since they can't be
988 * isolated, so they can't be moved at the moment. It
989 * should return -EIO for this case too.
998 /* page allocation callback for NUMA node migration */
999 struct page
*alloc_new_node_page(struct page
*page
, unsigned long node
)
1002 return alloc_huge_page_node(page_hstate(compound_head(page
)),
1004 else if (PageTransHuge(page
)) {
1007 thp
= alloc_pages_node(node
,
1008 (GFP_TRANSHUGE
| __GFP_THISNODE
),
1012 prep_transhuge_page(thp
);
1015 return __alloc_pages_node(node
, GFP_HIGHUSER_MOVABLE
|
1020 * Migrate pages from one node to a target node.
1021 * Returns error or the number of pages not migrated.
1023 static int migrate_to_node(struct mm_struct
*mm
, int source
, int dest
,
1027 LIST_HEAD(pagelist
);
1031 node_set(source
, nmask
);
1034 * This does not "check" the range but isolates all pages that
1035 * need migration. Between passing in the full user address
1036 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1038 VM_BUG_ON(!(flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)));
1039 queue_pages_range(mm
, mm
->mmap
->vm_start
, mm
->task_size
, &nmask
,
1040 flags
| MPOL_MF_DISCONTIG_OK
, &pagelist
);
1042 if (!list_empty(&pagelist
)) {
1043 err
= migrate_pages(&pagelist
, alloc_new_node_page
, NULL
, dest
,
1044 MIGRATE_SYNC
, MR_SYSCALL
);
1046 putback_movable_pages(&pagelist
);
1053 * Move pages between the two nodesets so as to preserve the physical
1054 * layout as much as possible.
1056 * Returns the number of page that could not be moved.
1058 int do_migrate_pages(struct mm_struct
*mm
, const nodemask_t
*from
,
1059 const nodemask_t
*to
, int flags
)
1065 err
= migrate_prep();
1069 down_read(&mm
->mmap_sem
);
1072 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1073 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1074 * bit in 'tmp', and return that <source, dest> pair for migration.
1075 * The pair of nodemasks 'to' and 'from' define the map.
1077 * If no pair of bits is found that way, fallback to picking some
1078 * pair of 'source' and 'dest' bits that are not the same. If the
1079 * 'source' and 'dest' bits are the same, this represents a node
1080 * that will be migrating to itself, so no pages need move.
1082 * If no bits are left in 'tmp', or if all remaining bits left
1083 * in 'tmp' correspond to the same bit in 'to', return false
1084 * (nothing left to migrate).
1086 * This lets us pick a pair of nodes to migrate between, such that
1087 * if possible the dest node is not already occupied by some other
1088 * source node, minimizing the risk of overloading the memory on a
1089 * node that would happen if we migrated incoming memory to a node
1090 * before migrating outgoing memory source that same node.
1092 * A single scan of tmp is sufficient. As we go, we remember the
1093 * most recent <s, d> pair that moved (s != d). If we find a pair
1094 * that not only moved, but what's better, moved to an empty slot
1095 * (d is not set in tmp), then we break out then, with that pair.
1096 * Otherwise when we finish scanning from_tmp, we at least have the
1097 * most recent <s, d> pair that moved. If we get all the way through
1098 * the scan of tmp without finding any node that moved, much less
1099 * moved to an empty node, then there is nothing left worth migrating.
1103 while (!nodes_empty(tmp
)) {
1105 int source
= NUMA_NO_NODE
;
1108 for_each_node_mask(s
, tmp
) {
1111 * do_migrate_pages() tries to maintain the relative
1112 * node relationship of the pages established between
1113 * threads and memory areas.
1115 * However if the number of source nodes is not equal to
1116 * the number of destination nodes we can not preserve
1117 * this node relative relationship. In that case, skip
1118 * copying memory from a node that is in the destination
1121 * Example: [2,3,4] -> [3,4,5] moves everything.
1122 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1125 if ((nodes_weight(*from
) != nodes_weight(*to
)) &&
1126 (node_isset(s
, *to
)))
1129 d
= node_remap(s
, *from
, *to
);
1133 source
= s
; /* Node moved. Memorize */
1136 /* dest not in remaining from nodes? */
1137 if (!node_isset(dest
, tmp
))
1140 if (source
== NUMA_NO_NODE
)
1143 node_clear(source
, tmp
);
1144 err
= migrate_to_node(mm
, source
, dest
, flags
);
1150 up_read(&mm
->mmap_sem
);
1158 * Allocate a new page for page migration based on vma policy.
1159 * Start by assuming the page is mapped by the same vma as contains @start.
1160 * Search forward from there, if not. N.B., this assumes that the
1161 * list of pages handed to migrate_pages()--which is how we get here--
1162 * is in virtual address order.
1164 static struct page
*new_page(struct page
*page
, unsigned long start
)
1166 struct vm_area_struct
*vma
;
1167 unsigned long uninitialized_var(address
);
1169 vma
= find_vma(current
->mm
, start
);
1171 address
= page_address_in_vma(page
, vma
);
1172 if (address
!= -EFAULT
)
1177 if (PageHuge(page
)) {
1178 return alloc_huge_page_vma(page_hstate(compound_head(page
)),
1180 } else if (PageTransHuge(page
)) {
1183 thp
= alloc_pages_vma(GFP_TRANSHUGE
, HPAGE_PMD_ORDER
, vma
,
1184 address
, numa_node_id());
1187 prep_transhuge_page(thp
);
1191 * if !vma, alloc_page_vma() will use task or system default policy
1193 return alloc_page_vma(GFP_HIGHUSER_MOVABLE
| __GFP_RETRY_MAYFAIL
,
1198 static int migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
1199 unsigned long flags
)
1204 int do_migrate_pages(struct mm_struct
*mm
, const nodemask_t
*from
,
1205 const nodemask_t
*to
, int flags
)
1210 static struct page
*new_page(struct page
*page
, unsigned long start
)
1216 static long do_mbind(unsigned long start
, unsigned long len
,
1217 unsigned short mode
, unsigned short mode_flags
,
1218 nodemask_t
*nmask
, unsigned long flags
)
1220 struct mm_struct
*mm
= current
->mm
;
1221 struct mempolicy
*new;
1225 LIST_HEAD(pagelist
);
1227 if (flags
& ~(unsigned long)MPOL_MF_VALID
)
1229 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1232 if (start
& ~PAGE_MASK
)
1235 if (mode
== MPOL_DEFAULT
)
1236 flags
&= ~MPOL_MF_STRICT
;
1238 len
= (len
+ PAGE_SIZE
- 1) & PAGE_MASK
;
1246 new = mpol_new(mode
, mode_flags
, nmask
);
1248 return PTR_ERR(new);
1250 if (flags
& MPOL_MF_LAZY
)
1251 new->flags
|= MPOL_F_MOF
;
1254 * If we are using the default policy then operation
1255 * on discontinuous address spaces is okay after all
1258 flags
|= MPOL_MF_DISCONTIG_OK
;
1260 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1261 start
, start
+ len
, mode
, mode_flags
,
1262 nmask
? nodes_addr(*nmask
)[0] : NUMA_NO_NODE
);
1264 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) {
1266 err
= migrate_prep();
1271 NODEMASK_SCRATCH(scratch
);
1273 down_write(&mm
->mmap_sem
);
1275 err
= mpol_set_nodemask(new, nmask
, scratch
);
1276 task_unlock(current
);
1278 up_write(&mm
->mmap_sem
);
1281 NODEMASK_SCRATCH_FREE(scratch
);
1286 ret
= queue_pages_range(mm
, start
, end
, nmask
,
1287 flags
| MPOL_MF_INVERT
, &pagelist
);
1294 err
= mbind_range(mm
, start
, end
, new);
1299 if (!list_empty(&pagelist
)) {
1300 WARN_ON_ONCE(flags
& MPOL_MF_LAZY
);
1301 nr_failed
= migrate_pages(&pagelist
, new_page
, NULL
,
1302 start
, MIGRATE_SYNC
, MR_MEMPOLICY_MBIND
);
1304 putback_movable_pages(&pagelist
);
1307 if ((ret
> 0) || (nr_failed
&& (flags
& MPOL_MF_STRICT
)))
1310 putback_movable_pages(&pagelist
);
1313 up_write(&mm
->mmap_sem
);
1320 * User space interface with variable sized bitmaps for nodelists.
1323 /* Copy a node mask from user space. */
1324 static int get_nodes(nodemask_t
*nodes
, const unsigned long __user
*nmask
,
1325 unsigned long maxnode
)
1329 unsigned long nlongs
;
1330 unsigned long endmask
;
1333 nodes_clear(*nodes
);
1334 if (maxnode
== 0 || !nmask
)
1336 if (maxnode
> PAGE_SIZE
*BITS_PER_BYTE
)
1339 nlongs
= BITS_TO_LONGS(maxnode
);
1340 if ((maxnode
% BITS_PER_LONG
) == 0)
1343 endmask
= (1UL << (maxnode
% BITS_PER_LONG
)) - 1;
1346 * When the user specified more nodes than supported just check
1347 * if the non supported part is all zero.
1349 * If maxnode have more longs than MAX_NUMNODES, check
1350 * the bits in that area first. And then go through to
1351 * check the rest bits which equal or bigger than MAX_NUMNODES.
1352 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1354 if (nlongs
> BITS_TO_LONGS(MAX_NUMNODES
)) {
1355 for (k
= BITS_TO_LONGS(MAX_NUMNODES
); k
< nlongs
; k
++) {
1356 if (get_user(t
, nmask
+ k
))
1358 if (k
== nlongs
- 1) {
1364 nlongs
= BITS_TO_LONGS(MAX_NUMNODES
);
1368 if (maxnode
> MAX_NUMNODES
&& MAX_NUMNODES
% BITS_PER_LONG
!= 0) {
1369 unsigned long valid_mask
= endmask
;
1371 valid_mask
&= ~((1UL << (MAX_NUMNODES
% BITS_PER_LONG
)) - 1);
1372 if (get_user(t
, nmask
+ nlongs
- 1))
1378 if (copy_from_user(nodes_addr(*nodes
), nmask
, nlongs
*sizeof(unsigned long)))
1380 nodes_addr(*nodes
)[nlongs
-1] &= endmask
;
1384 /* Copy a kernel node mask to user space */
1385 static int copy_nodes_to_user(unsigned long __user
*mask
, unsigned long maxnode
,
1388 unsigned long copy
= ALIGN(maxnode
-1, 64) / 8;
1389 unsigned int nbytes
= BITS_TO_LONGS(nr_node_ids
) * sizeof(long);
1391 if (copy
> nbytes
) {
1392 if (copy
> PAGE_SIZE
)
1394 if (clear_user((char __user
*)mask
+ nbytes
, copy
- nbytes
))
1398 return copy_to_user(mask
, nodes_addr(*nodes
), copy
) ? -EFAULT
: 0;
1401 static long kernel_mbind(unsigned long start
, unsigned long len
,
1402 unsigned long mode
, const unsigned long __user
*nmask
,
1403 unsigned long maxnode
, unsigned int flags
)
1407 unsigned short mode_flags
;
1409 mode_flags
= mode
& MPOL_MODE_FLAGS
;
1410 mode
&= ~MPOL_MODE_FLAGS
;
1411 if (mode
>= MPOL_MAX
)
1413 if ((mode_flags
& MPOL_F_STATIC_NODES
) &&
1414 (mode_flags
& MPOL_F_RELATIVE_NODES
))
1416 err
= get_nodes(&nodes
, nmask
, maxnode
);
1419 return do_mbind(start
, len
, mode
, mode_flags
, &nodes
, flags
);
1422 SYSCALL_DEFINE6(mbind
, unsigned long, start
, unsigned long, len
,
1423 unsigned long, mode
, const unsigned long __user
*, nmask
,
1424 unsigned long, maxnode
, unsigned int, flags
)
1426 return kernel_mbind(start
, len
, mode
, nmask
, maxnode
, flags
);
1429 /* Set the process memory policy */
1430 static long kernel_set_mempolicy(int mode
, const unsigned long __user
*nmask
,
1431 unsigned long maxnode
)
1435 unsigned short flags
;
1437 flags
= mode
& MPOL_MODE_FLAGS
;
1438 mode
&= ~MPOL_MODE_FLAGS
;
1439 if ((unsigned int)mode
>= MPOL_MAX
)
1441 if ((flags
& MPOL_F_STATIC_NODES
) && (flags
& MPOL_F_RELATIVE_NODES
))
1443 err
= get_nodes(&nodes
, nmask
, maxnode
);
1446 return do_set_mempolicy(mode
, flags
, &nodes
);
1449 SYSCALL_DEFINE3(set_mempolicy
, int, mode
, const unsigned long __user
*, nmask
,
1450 unsigned long, maxnode
)
1452 return kernel_set_mempolicy(mode
, nmask
, maxnode
);
1455 static int kernel_migrate_pages(pid_t pid
, unsigned long maxnode
,
1456 const unsigned long __user
*old_nodes
,
1457 const unsigned long __user
*new_nodes
)
1459 struct mm_struct
*mm
= NULL
;
1460 struct task_struct
*task
;
1461 nodemask_t task_nodes
;
1465 NODEMASK_SCRATCH(scratch
);
1470 old
= &scratch
->mask1
;
1471 new = &scratch
->mask2
;
1473 err
= get_nodes(old
, old_nodes
, maxnode
);
1477 err
= get_nodes(new, new_nodes
, maxnode
);
1481 /* Find the mm_struct */
1483 task
= pid
? find_task_by_vpid(pid
) : current
;
1489 get_task_struct(task
);
1494 * Check if this process has the right to modify the specified process.
1495 * Use the regular "ptrace_may_access()" checks.
1497 if (!ptrace_may_access(task
, PTRACE_MODE_READ_REALCREDS
)) {
1504 task_nodes
= cpuset_mems_allowed(task
);
1505 /* Is the user allowed to access the target nodes? */
1506 if (!nodes_subset(*new, task_nodes
) && !capable(CAP_SYS_NICE
)) {
1511 task_nodes
= cpuset_mems_allowed(current
);
1512 nodes_and(*new, *new, task_nodes
);
1513 if (nodes_empty(*new))
1516 nodes_and(*new, *new, node_states
[N_MEMORY
]);
1517 if (nodes_empty(*new))
1520 err
= security_task_movememory(task
);
1524 mm
= get_task_mm(task
);
1525 put_task_struct(task
);
1532 err
= do_migrate_pages(mm
, old
, new,
1533 capable(CAP_SYS_NICE
) ? MPOL_MF_MOVE_ALL
: MPOL_MF_MOVE
);
1537 NODEMASK_SCRATCH_FREE(scratch
);
1542 put_task_struct(task
);
1547 SYSCALL_DEFINE4(migrate_pages
, pid_t
, pid
, unsigned long, maxnode
,
1548 const unsigned long __user
*, old_nodes
,
1549 const unsigned long __user
*, new_nodes
)
1551 return kernel_migrate_pages(pid
, maxnode
, old_nodes
, new_nodes
);
1555 /* Retrieve NUMA policy */
1556 static int kernel_get_mempolicy(int __user
*policy
,
1557 unsigned long __user
*nmask
,
1558 unsigned long maxnode
,
1560 unsigned long flags
)
1563 int uninitialized_var(pval
);
1566 if (nmask
!= NULL
&& maxnode
< nr_node_ids
)
1569 err
= do_get_mempolicy(&pval
, &nodes
, addr
, flags
);
1574 if (policy
&& put_user(pval
, policy
))
1578 err
= copy_nodes_to_user(nmask
, maxnode
, &nodes
);
1583 SYSCALL_DEFINE5(get_mempolicy
, int __user
*, policy
,
1584 unsigned long __user
*, nmask
, unsigned long, maxnode
,
1585 unsigned long, addr
, unsigned long, flags
)
1587 return kernel_get_mempolicy(policy
, nmask
, maxnode
, addr
, flags
);
1590 #ifdef CONFIG_COMPAT
1592 COMPAT_SYSCALL_DEFINE5(get_mempolicy
, int __user
*, policy
,
1593 compat_ulong_t __user
*, nmask
,
1594 compat_ulong_t
, maxnode
,
1595 compat_ulong_t
, addr
, compat_ulong_t
, flags
)
1598 unsigned long __user
*nm
= NULL
;
1599 unsigned long nr_bits
, alloc_size
;
1600 DECLARE_BITMAP(bm
, MAX_NUMNODES
);
1602 nr_bits
= min_t(unsigned long, maxnode
-1, nr_node_ids
);
1603 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1606 nm
= compat_alloc_user_space(alloc_size
);
1608 err
= kernel_get_mempolicy(policy
, nm
, nr_bits
+1, addr
, flags
);
1610 if (!err
&& nmask
) {
1611 unsigned long copy_size
;
1612 copy_size
= min_t(unsigned long, sizeof(bm
), alloc_size
);
1613 err
= copy_from_user(bm
, nm
, copy_size
);
1614 /* ensure entire bitmap is zeroed */
1615 err
|= clear_user(nmask
, ALIGN(maxnode
-1, 8) / 8);
1616 err
|= compat_put_bitmap(nmask
, bm
, nr_bits
);
1622 COMPAT_SYSCALL_DEFINE3(set_mempolicy
, int, mode
, compat_ulong_t __user
*, nmask
,
1623 compat_ulong_t
, maxnode
)
1625 unsigned long __user
*nm
= NULL
;
1626 unsigned long nr_bits
, alloc_size
;
1627 DECLARE_BITMAP(bm
, MAX_NUMNODES
);
1629 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1630 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1633 if (compat_get_bitmap(bm
, nmask
, nr_bits
))
1635 nm
= compat_alloc_user_space(alloc_size
);
1636 if (copy_to_user(nm
, bm
, alloc_size
))
1640 return kernel_set_mempolicy(mode
, nm
, nr_bits
+1);
1643 COMPAT_SYSCALL_DEFINE6(mbind
, compat_ulong_t
, start
, compat_ulong_t
, len
,
1644 compat_ulong_t
, mode
, compat_ulong_t __user
*, nmask
,
1645 compat_ulong_t
, maxnode
, compat_ulong_t
, flags
)
1647 unsigned long __user
*nm
= NULL
;
1648 unsigned long nr_bits
, alloc_size
;
1651 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1652 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1655 if (compat_get_bitmap(nodes_addr(bm
), nmask
, nr_bits
))
1657 nm
= compat_alloc_user_space(alloc_size
);
1658 if (copy_to_user(nm
, nodes_addr(bm
), alloc_size
))
1662 return kernel_mbind(start
, len
, mode
, nm
, nr_bits
+1, flags
);
1665 COMPAT_SYSCALL_DEFINE4(migrate_pages
, compat_pid_t
, pid
,
1666 compat_ulong_t
, maxnode
,
1667 const compat_ulong_t __user
*, old_nodes
,
1668 const compat_ulong_t __user
*, new_nodes
)
1670 unsigned long __user
*old
= NULL
;
1671 unsigned long __user
*new = NULL
;
1672 nodemask_t tmp_mask
;
1673 unsigned long nr_bits
;
1676 nr_bits
= min_t(unsigned long, maxnode
- 1, MAX_NUMNODES
);
1677 size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1679 if (compat_get_bitmap(nodes_addr(tmp_mask
), old_nodes
, nr_bits
))
1681 old
= compat_alloc_user_space(new_nodes
? size
* 2 : size
);
1683 new = old
+ size
/ sizeof(unsigned long);
1684 if (copy_to_user(old
, nodes_addr(tmp_mask
), size
))
1688 if (compat_get_bitmap(nodes_addr(tmp_mask
), new_nodes
, nr_bits
))
1691 new = compat_alloc_user_space(size
);
1692 if (copy_to_user(new, nodes_addr(tmp_mask
), size
))
1695 return kernel_migrate_pages(pid
, nr_bits
+ 1, old
, new);
1698 #endif /* CONFIG_COMPAT */
1700 struct mempolicy
*__get_vma_policy(struct vm_area_struct
*vma
,
1703 struct mempolicy
*pol
= NULL
;
1706 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
) {
1707 pol
= vma
->vm_ops
->get_policy(vma
, addr
);
1708 } else if (vma
->vm_policy
) {
1709 pol
= vma
->vm_policy
;
1712 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1713 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1714 * count on these policies which will be dropped by
1715 * mpol_cond_put() later
1717 if (mpol_needs_cond_ref(pol
))
1726 * get_vma_policy(@vma, @addr)
1727 * @vma: virtual memory area whose policy is sought
1728 * @addr: address in @vma for shared policy lookup
1730 * Returns effective policy for a VMA at specified address.
1731 * Falls back to current->mempolicy or system default policy, as necessary.
1732 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1733 * count--added by the get_policy() vm_op, as appropriate--to protect against
1734 * freeing by another task. It is the caller's responsibility to free the
1735 * extra reference for shared policies.
1737 struct mempolicy
*get_vma_policy(struct vm_area_struct
*vma
,
1740 struct mempolicy
*pol
= __get_vma_policy(vma
, addr
);
1743 pol
= get_task_policy(current
);
1748 bool vma_policy_mof(struct vm_area_struct
*vma
)
1750 struct mempolicy
*pol
;
1752 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
) {
1755 pol
= vma
->vm_ops
->get_policy(vma
, vma
->vm_start
);
1756 if (pol
&& (pol
->flags
& MPOL_F_MOF
))
1763 pol
= vma
->vm_policy
;
1765 pol
= get_task_policy(current
);
1767 return pol
->flags
& MPOL_F_MOF
;
1770 static int apply_policy_zone(struct mempolicy
*policy
, enum zone_type zone
)
1772 enum zone_type dynamic_policy_zone
= policy_zone
;
1774 BUG_ON(dynamic_policy_zone
== ZONE_MOVABLE
);
1777 * if policy->v.nodes has movable memory only,
1778 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1780 * policy->v.nodes is intersect with node_states[N_MEMORY].
1781 * so if the following test faile, it implies
1782 * policy->v.nodes has movable memory only.
1784 if (!nodes_intersects(policy
->v
.nodes
, node_states
[N_HIGH_MEMORY
]))
1785 dynamic_policy_zone
= ZONE_MOVABLE
;
1787 return zone
>= dynamic_policy_zone
;
1791 * Return a nodemask representing a mempolicy for filtering nodes for
1794 static nodemask_t
*policy_nodemask(gfp_t gfp
, struct mempolicy
*policy
)
1796 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1797 if (unlikely(policy
->mode
== MPOL_BIND
) &&
1798 apply_policy_zone(policy
, gfp_zone(gfp
)) &&
1799 cpuset_nodemask_valid_mems_allowed(&policy
->v
.nodes
))
1800 return &policy
->v
.nodes
;
1805 /* Return the node id preferred by the given mempolicy, or the given id */
1806 static int policy_node(gfp_t gfp
, struct mempolicy
*policy
,
1809 if (policy
->mode
== MPOL_PREFERRED
&& !(policy
->flags
& MPOL_F_LOCAL
))
1810 nd
= policy
->v
.preferred_node
;
1813 * __GFP_THISNODE shouldn't even be used with the bind policy
1814 * because we might easily break the expectation to stay on the
1815 * requested node and not break the policy.
1817 WARN_ON_ONCE(policy
->mode
== MPOL_BIND
&& (gfp
& __GFP_THISNODE
));
1823 /* Do dynamic interleaving for a process */
1824 static unsigned interleave_nodes(struct mempolicy
*policy
)
1827 struct task_struct
*me
= current
;
1829 next
= next_node_in(me
->il_prev
, policy
->v
.nodes
);
1830 if (next
< MAX_NUMNODES
)
1836 * Depending on the memory policy provide a node from which to allocate the
1839 unsigned int mempolicy_slab_node(void)
1841 struct mempolicy
*policy
;
1842 int node
= numa_mem_id();
1847 policy
= current
->mempolicy
;
1848 if (!policy
|| policy
->flags
& MPOL_F_LOCAL
)
1851 switch (policy
->mode
) {
1852 case MPOL_PREFERRED
:
1854 * handled MPOL_F_LOCAL above
1856 return policy
->v
.preferred_node
;
1858 case MPOL_INTERLEAVE
:
1859 return interleave_nodes(policy
);
1865 * Follow bind policy behavior and start allocation at the
1868 struct zonelist
*zonelist
;
1869 enum zone_type highest_zoneidx
= gfp_zone(GFP_KERNEL
);
1870 zonelist
= &NODE_DATA(node
)->node_zonelists
[ZONELIST_FALLBACK
];
1871 z
= first_zones_zonelist(zonelist
, highest_zoneidx
,
1873 return z
->zone
? zone_to_nid(z
->zone
) : node
;
1882 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1883 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1884 * number of present nodes.
1886 static unsigned offset_il_node(struct mempolicy
*pol
, unsigned long n
)
1888 unsigned nnodes
= nodes_weight(pol
->v
.nodes
);
1894 return numa_node_id();
1895 target
= (unsigned int)n
% nnodes
;
1896 nid
= first_node(pol
->v
.nodes
);
1897 for (i
= 0; i
< target
; i
++)
1898 nid
= next_node(nid
, pol
->v
.nodes
);
1902 /* Determine a node number for interleave */
1903 static inline unsigned interleave_nid(struct mempolicy
*pol
,
1904 struct vm_area_struct
*vma
, unsigned long addr
, int shift
)
1910 * for small pages, there is no difference between
1911 * shift and PAGE_SHIFT, so the bit-shift is safe.
1912 * for huge pages, since vm_pgoff is in units of small
1913 * pages, we need to shift off the always 0 bits to get
1916 BUG_ON(shift
< PAGE_SHIFT
);
1917 off
= vma
->vm_pgoff
>> (shift
- PAGE_SHIFT
);
1918 off
+= (addr
- vma
->vm_start
) >> shift
;
1919 return offset_il_node(pol
, off
);
1921 return interleave_nodes(pol
);
1924 #ifdef CONFIG_HUGETLBFS
1926 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1927 * @vma: virtual memory area whose policy is sought
1928 * @addr: address in @vma for shared policy lookup and interleave policy
1929 * @gfp_flags: for requested zone
1930 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1931 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1933 * Returns a nid suitable for a huge page allocation and a pointer
1934 * to the struct mempolicy for conditional unref after allocation.
1935 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1936 * @nodemask for filtering the zonelist.
1938 * Must be protected by read_mems_allowed_begin()
1940 int huge_node(struct vm_area_struct
*vma
, unsigned long addr
, gfp_t gfp_flags
,
1941 struct mempolicy
**mpol
, nodemask_t
**nodemask
)
1945 *mpol
= get_vma_policy(vma
, addr
);
1946 *nodemask
= NULL
; /* assume !MPOL_BIND */
1948 if (unlikely((*mpol
)->mode
== MPOL_INTERLEAVE
)) {
1949 nid
= interleave_nid(*mpol
, vma
, addr
,
1950 huge_page_shift(hstate_vma(vma
)));
1952 nid
= policy_node(gfp_flags
, *mpol
, numa_node_id());
1953 if ((*mpol
)->mode
== MPOL_BIND
)
1954 *nodemask
= &(*mpol
)->v
.nodes
;
1960 * init_nodemask_of_mempolicy
1962 * If the current task's mempolicy is "default" [NULL], return 'false'
1963 * to indicate default policy. Otherwise, extract the policy nodemask
1964 * for 'bind' or 'interleave' policy into the argument nodemask, or
1965 * initialize the argument nodemask to contain the single node for
1966 * 'preferred' or 'local' policy and return 'true' to indicate presence
1967 * of non-default mempolicy.
1969 * We don't bother with reference counting the mempolicy [mpol_get/put]
1970 * because the current task is examining it's own mempolicy and a task's
1971 * mempolicy is only ever changed by the task itself.
1973 * N.B., it is the caller's responsibility to free a returned nodemask.
1975 bool init_nodemask_of_mempolicy(nodemask_t
*mask
)
1977 struct mempolicy
*mempolicy
;
1980 if (!(mask
&& current
->mempolicy
))
1984 mempolicy
= current
->mempolicy
;
1985 switch (mempolicy
->mode
) {
1986 case MPOL_PREFERRED
:
1987 if (mempolicy
->flags
& MPOL_F_LOCAL
)
1988 nid
= numa_node_id();
1990 nid
= mempolicy
->v
.preferred_node
;
1991 init_nodemask_of_node(mask
, nid
);
1996 case MPOL_INTERLEAVE
:
1997 *mask
= mempolicy
->v
.nodes
;
2003 task_unlock(current
);
2010 * mempolicy_nodemask_intersects
2012 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
2013 * policy. Otherwise, check for intersection between mask and the policy
2014 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
2015 * policy, always return true since it may allocate elsewhere on fallback.
2017 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2019 bool mempolicy_nodemask_intersects(struct task_struct
*tsk
,
2020 const nodemask_t
*mask
)
2022 struct mempolicy
*mempolicy
;
2028 mempolicy
= tsk
->mempolicy
;
2032 switch (mempolicy
->mode
) {
2033 case MPOL_PREFERRED
:
2035 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2036 * allocate from, they may fallback to other nodes when oom.
2037 * Thus, it's possible for tsk to have allocated memory from
2042 case MPOL_INTERLEAVE
:
2043 ret
= nodes_intersects(mempolicy
->v
.nodes
, *mask
);
2053 /* Allocate a page in interleaved policy.
2054 Own path because it needs to do special accounting. */
2055 static struct page
*alloc_page_interleave(gfp_t gfp
, unsigned order
,
2060 page
= __alloc_pages(gfp
, order
, nid
);
2061 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2062 if (!static_branch_likely(&vm_numa_stat_key
))
2064 if (page
&& page_to_nid(page
) == nid
) {
2066 __inc_numa_state(page_zone(page
), NUMA_INTERLEAVE_HIT
);
2073 * alloc_pages_vma - Allocate a page for a VMA.
2076 * %GFP_USER user allocation.
2077 * %GFP_KERNEL kernel allocations,
2078 * %GFP_HIGHMEM highmem/user allocations,
2079 * %GFP_FS allocation should not call back into a file system.
2080 * %GFP_ATOMIC don't sleep.
2082 * @order:Order of the GFP allocation.
2083 * @vma: Pointer to VMA or NULL if not available.
2084 * @addr: Virtual Address of the allocation. Must be inside the VMA.
2085 * @node: Which node to prefer for allocation (modulo policy).
2087 * This function allocates a page from the kernel page pool and applies
2088 * a NUMA policy associated with the VMA or the current process.
2089 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
2090 * mm_struct of the VMA to prevent it from going away. Should be used for
2091 * all allocations for pages that will be mapped into user space. Returns
2092 * NULL when no page can be allocated.
2095 alloc_pages_vma(gfp_t gfp
, int order
, struct vm_area_struct
*vma
,
2096 unsigned long addr
, int node
)
2098 struct mempolicy
*pol
;
2103 pol
= get_vma_policy(vma
, addr
);
2105 if (pol
->mode
== MPOL_INTERLEAVE
) {
2108 nid
= interleave_nid(pol
, vma
, addr
, PAGE_SHIFT
+ order
);
2110 page
= alloc_page_interleave(gfp
, order
, nid
);
2114 nmask
= policy_nodemask(gfp
, pol
);
2115 preferred_nid
= policy_node(gfp
, pol
, node
);
2116 page
= __alloc_pages_nodemask(gfp
, order
, preferred_nid
, nmask
);
2121 EXPORT_SYMBOL(alloc_pages_vma
);
2124 * alloc_pages_current - Allocate pages.
2127 * %GFP_USER user allocation,
2128 * %GFP_KERNEL kernel allocation,
2129 * %GFP_HIGHMEM highmem allocation,
2130 * %GFP_FS don't call back into a file system.
2131 * %GFP_ATOMIC don't sleep.
2132 * @order: Power of two of allocation size in pages. 0 is a single page.
2134 * Allocate a page from the kernel page pool. When not in
2135 * interrupt context and apply the current process NUMA policy.
2136 * Returns NULL when no page can be allocated.
2138 struct page
*alloc_pages_current(gfp_t gfp
, unsigned order
)
2140 struct mempolicy
*pol
= &default_policy
;
2143 if (!in_interrupt() && !(gfp
& __GFP_THISNODE
))
2144 pol
= get_task_policy(current
);
2147 * No reference counting needed for current->mempolicy
2148 * nor system default_policy
2150 if (pol
->mode
== MPOL_INTERLEAVE
)
2151 page
= alloc_page_interleave(gfp
, order
, interleave_nodes(pol
));
2153 page
= __alloc_pages_nodemask(gfp
, order
,
2154 policy_node(gfp
, pol
, numa_node_id()),
2155 policy_nodemask(gfp
, pol
));
2159 EXPORT_SYMBOL(alloc_pages_current
);
2161 int vma_dup_policy(struct vm_area_struct
*src
, struct vm_area_struct
*dst
)
2163 struct mempolicy
*pol
= mpol_dup(vma_policy(src
));
2166 return PTR_ERR(pol
);
2167 dst
->vm_policy
= pol
;
2172 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2173 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2174 * with the mems_allowed returned by cpuset_mems_allowed(). This
2175 * keeps mempolicies cpuset relative after its cpuset moves. See
2176 * further kernel/cpuset.c update_nodemask().
2178 * current's mempolicy may be rebinded by the other task(the task that changes
2179 * cpuset's mems), so we needn't do rebind work for current task.
2182 /* Slow path of a mempolicy duplicate */
2183 struct mempolicy
*__mpol_dup(struct mempolicy
*old
)
2185 struct mempolicy
*new = kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
2188 return ERR_PTR(-ENOMEM
);
2190 /* task's mempolicy is protected by alloc_lock */
2191 if (old
== current
->mempolicy
) {
2194 task_unlock(current
);
2198 if (current_cpuset_is_being_rebound()) {
2199 nodemask_t mems
= cpuset_mems_allowed(current
);
2200 mpol_rebind_policy(new, &mems
);
2202 atomic_set(&new->refcnt
, 1);
2206 /* Slow path of a mempolicy comparison */
2207 bool __mpol_equal(struct mempolicy
*a
, struct mempolicy
*b
)
2211 if (a
->mode
!= b
->mode
)
2213 if (a
->flags
!= b
->flags
)
2215 if (mpol_store_user_nodemask(a
))
2216 if (!nodes_equal(a
->w
.user_nodemask
, b
->w
.user_nodemask
))
2222 case MPOL_INTERLEAVE
:
2223 return !!nodes_equal(a
->v
.nodes
, b
->v
.nodes
);
2224 case MPOL_PREFERRED
:
2225 /* a's ->flags is the same as b's */
2226 if (a
->flags
& MPOL_F_LOCAL
)
2228 return a
->v
.preferred_node
== b
->v
.preferred_node
;
2236 * Shared memory backing store policy support.
2238 * Remember policies even when nobody has shared memory mapped.
2239 * The policies are kept in Red-Black tree linked from the inode.
2240 * They are protected by the sp->lock rwlock, which should be held
2241 * for any accesses to the tree.
2245 * lookup first element intersecting start-end. Caller holds sp->lock for
2246 * reading or for writing
2248 static struct sp_node
*
2249 sp_lookup(struct shared_policy
*sp
, unsigned long start
, unsigned long end
)
2251 struct rb_node
*n
= sp
->root
.rb_node
;
2254 struct sp_node
*p
= rb_entry(n
, struct sp_node
, nd
);
2256 if (start
>= p
->end
)
2258 else if (end
<= p
->start
)
2266 struct sp_node
*w
= NULL
;
2267 struct rb_node
*prev
= rb_prev(n
);
2270 w
= rb_entry(prev
, struct sp_node
, nd
);
2271 if (w
->end
<= start
)
2275 return rb_entry(n
, struct sp_node
, nd
);
2279 * Insert a new shared policy into the list. Caller holds sp->lock for
2282 static void sp_insert(struct shared_policy
*sp
, struct sp_node
*new)
2284 struct rb_node
**p
= &sp
->root
.rb_node
;
2285 struct rb_node
*parent
= NULL
;
2290 nd
= rb_entry(parent
, struct sp_node
, nd
);
2291 if (new->start
< nd
->start
)
2293 else if (new->end
> nd
->end
)
2294 p
= &(*p
)->rb_right
;
2298 rb_link_node(&new->nd
, parent
, p
);
2299 rb_insert_color(&new->nd
, &sp
->root
);
2300 pr_debug("inserting %lx-%lx: %d\n", new->start
, new->end
,
2301 new->policy
? new->policy
->mode
: 0);
2304 /* Find shared policy intersecting idx */
2306 mpol_shared_policy_lookup(struct shared_policy
*sp
, unsigned long idx
)
2308 struct mempolicy
*pol
= NULL
;
2311 if (!sp
->root
.rb_node
)
2313 read_lock(&sp
->lock
);
2314 sn
= sp_lookup(sp
, idx
, idx
+1);
2316 mpol_get(sn
->policy
);
2319 read_unlock(&sp
->lock
);
2323 static void sp_free(struct sp_node
*n
)
2325 mpol_put(n
->policy
);
2326 kmem_cache_free(sn_cache
, n
);
2330 * mpol_misplaced - check whether current page node is valid in policy
2332 * @page: page to be checked
2333 * @vma: vm area where page mapped
2334 * @addr: virtual address where page mapped
2336 * Lookup current policy node id for vma,addr and "compare to" page's
2340 * -1 - not misplaced, page is in the right node
2341 * node - node id where the page should be
2343 * Policy determination "mimics" alloc_page_vma().
2344 * Called from fault path where we know the vma and faulting address.
2346 int mpol_misplaced(struct page
*page
, struct vm_area_struct
*vma
, unsigned long addr
)
2348 struct mempolicy
*pol
;
2350 int curnid
= page_to_nid(page
);
2351 unsigned long pgoff
;
2352 int thiscpu
= raw_smp_processor_id();
2353 int thisnid
= cpu_to_node(thiscpu
);
2354 int polnid
= NUMA_NO_NODE
;
2357 pol
= get_vma_policy(vma
, addr
);
2358 if (!(pol
->flags
& MPOL_F_MOF
))
2361 switch (pol
->mode
) {
2362 case MPOL_INTERLEAVE
:
2363 pgoff
= vma
->vm_pgoff
;
2364 pgoff
+= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
2365 polnid
= offset_il_node(pol
, pgoff
);
2368 case MPOL_PREFERRED
:
2369 if (pol
->flags
& MPOL_F_LOCAL
)
2370 polnid
= numa_node_id();
2372 polnid
= pol
->v
.preferred_node
;
2378 * allows binding to multiple nodes.
2379 * use current page if in policy nodemask,
2380 * else select nearest allowed node, if any.
2381 * If no allowed nodes, use current [!misplaced].
2383 if (node_isset(curnid
, pol
->v
.nodes
))
2385 z
= first_zones_zonelist(
2386 node_zonelist(numa_node_id(), GFP_HIGHUSER
),
2387 gfp_zone(GFP_HIGHUSER
),
2389 polnid
= zone_to_nid(z
->zone
);
2396 /* Migrate the page towards the node whose CPU is referencing it */
2397 if (pol
->flags
& MPOL_F_MORON
) {
2400 if (!should_numa_migrate_memory(current
, page
, curnid
, thiscpu
))
2404 if (curnid
!= polnid
)
2413 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2414 * dropped after task->mempolicy is set to NULL so that any allocation done as
2415 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2418 void mpol_put_task_policy(struct task_struct
*task
)
2420 struct mempolicy
*pol
;
2423 pol
= task
->mempolicy
;
2424 task
->mempolicy
= NULL
;
2429 static void sp_delete(struct shared_policy
*sp
, struct sp_node
*n
)
2431 pr_debug("deleting %lx-l%lx\n", n
->start
, n
->end
);
2432 rb_erase(&n
->nd
, &sp
->root
);
2436 static void sp_node_init(struct sp_node
*node
, unsigned long start
,
2437 unsigned long end
, struct mempolicy
*pol
)
2439 node
->start
= start
;
2444 static struct sp_node
*sp_alloc(unsigned long start
, unsigned long end
,
2445 struct mempolicy
*pol
)
2448 struct mempolicy
*newpol
;
2450 n
= kmem_cache_alloc(sn_cache
, GFP_KERNEL
);
2454 newpol
= mpol_dup(pol
);
2455 if (IS_ERR(newpol
)) {
2456 kmem_cache_free(sn_cache
, n
);
2459 newpol
->flags
|= MPOL_F_SHARED
;
2460 sp_node_init(n
, start
, end
, newpol
);
2465 /* Replace a policy range. */
2466 static int shared_policy_replace(struct shared_policy
*sp
, unsigned long start
,
2467 unsigned long end
, struct sp_node
*new)
2470 struct sp_node
*n_new
= NULL
;
2471 struct mempolicy
*mpol_new
= NULL
;
2475 write_lock(&sp
->lock
);
2476 n
= sp_lookup(sp
, start
, end
);
2477 /* Take care of old policies in the same range. */
2478 while (n
&& n
->start
< end
) {
2479 struct rb_node
*next
= rb_next(&n
->nd
);
2480 if (n
->start
>= start
) {
2486 /* Old policy spanning whole new range. */
2491 *mpol_new
= *n
->policy
;
2492 atomic_set(&mpol_new
->refcnt
, 1);
2493 sp_node_init(n_new
, end
, n
->end
, mpol_new
);
2495 sp_insert(sp
, n_new
);
2504 n
= rb_entry(next
, struct sp_node
, nd
);
2508 write_unlock(&sp
->lock
);
2515 kmem_cache_free(sn_cache
, n_new
);
2520 write_unlock(&sp
->lock
);
2522 n_new
= kmem_cache_alloc(sn_cache
, GFP_KERNEL
);
2525 mpol_new
= kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
2532 * mpol_shared_policy_init - initialize shared policy for inode
2533 * @sp: pointer to inode shared policy
2534 * @mpol: struct mempolicy to install
2536 * Install non-NULL @mpol in inode's shared policy rb-tree.
2537 * On entry, the current task has a reference on a non-NULL @mpol.
2538 * This must be released on exit.
2539 * This is called at get_inode() calls and we can use GFP_KERNEL.
2541 void mpol_shared_policy_init(struct shared_policy
*sp
, struct mempolicy
*mpol
)
2545 sp
->root
= RB_ROOT
; /* empty tree == default mempolicy */
2546 rwlock_init(&sp
->lock
);
2549 struct vm_area_struct pvma
;
2550 struct mempolicy
*new;
2551 NODEMASK_SCRATCH(scratch
);
2555 /* contextualize the tmpfs mount point mempolicy */
2556 new = mpol_new(mpol
->mode
, mpol
->flags
, &mpol
->w
.user_nodemask
);
2558 goto free_scratch
; /* no valid nodemask intersection */
2561 ret
= mpol_set_nodemask(new, &mpol
->w
.user_nodemask
, scratch
);
2562 task_unlock(current
);
2566 /* Create pseudo-vma that contains just the policy */
2567 vma_init(&pvma
, NULL
);
2568 pvma
.vm_end
= TASK_SIZE
; /* policy covers entire file */
2569 mpol_set_shared_policy(sp
, &pvma
, new); /* adds ref */
2572 mpol_put(new); /* drop initial ref */
2574 NODEMASK_SCRATCH_FREE(scratch
);
2576 mpol_put(mpol
); /* drop our incoming ref on sb mpol */
2580 int mpol_set_shared_policy(struct shared_policy
*info
,
2581 struct vm_area_struct
*vma
, struct mempolicy
*npol
)
2584 struct sp_node
*new = NULL
;
2585 unsigned long sz
= vma_pages(vma
);
2587 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2589 sz
, npol
? npol
->mode
: -1,
2590 npol
? npol
->flags
: -1,
2591 npol
? nodes_addr(npol
->v
.nodes
)[0] : NUMA_NO_NODE
);
2594 new = sp_alloc(vma
->vm_pgoff
, vma
->vm_pgoff
+ sz
, npol
);
2598 err
= shared_policy_replace(info
, vma
->vm_pgoff
, vma
->vm_pgoff
+sz
, new);
2604 /* Free a backing policy store on inode delete. */
2605 void mpol_free_shared_policy(struct shared_policy
*p
)
2608 struct rb_node
*next
;
2610 if (!p
->root
.rb_node
)
2612 write_lock(&p
->lock
);
2613 next
= rb_first(&p
->root
);
2615 n
= rb_entry(next
, struct sp_node
, nd
);
2616 next
= rb_next(&n
->nd
);
2619 write_unlock(&p
->lock
);
2622 #ifdef CONFIG_NUMA_BALANCING
2623 static int __initdata numabalancing_override
;
2625 static void __init
check_numabalancing_enable(void)
2627 bool numabalancing_default
= false;
2629 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED
))
2630 numabalancing_default
= true;
2632 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2633 if (numabalancing_override
)
2634 set_numabalancing_state(numabalancing_override
== 1);
2636 if (num_online_nodes() > 1 && !numabalancing_override
) {
2637 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2638 numabalancing_default
? "Enabling" : "Disabling");
2639 set_numabalancing_state(numabalancing_default
);
2643 static int __init
setup_numabalancing(char *str
)
2649 if (!strcmp(str
, "enable")) {
2650 numabalancing_override
= 1;
2652 } else if (!strcmp(str
, "disable")) {
2653 numabalancing_override
= -1;
2658 pr_warn("Unable to parse numa_balancing=\n");
2662 __setup("numa_balancing=", setup_numabalancing
);
2664 static inline void __init
check_numabalancing_enable(void)
2667 #endif /* CONFIG_NUMA_BALANCING */
2669 /* assumes fs == KERNEL_DS */
2670 void __init
numa_policy_init(void)
2672 nodemask_t interleave_nodes
;
2673 unsigned long largest
= 0;
2674 int nid
, prefer
= 0;
2676 policy_cache
= kmem_cache_create("numa_policy",
2677 sizeof(struct mempolicy
),
2678 0, SLAB_PANIC
, NULL
);
2680 sn_cache
= kmem_cache_create("shared_policy_node",
2681 sizeof(struct sp_node
),
2682 0, SLAB_PANIC
, NULL
);
2684 for_each_node(nid
) {
2685 preferred_node_policy
[nid
] = (struct mempolicy
) {
2686 .refcnt
= ATOMIC_INIT(1),
2687 .mode
= MPOL_PREFERRED
,
2688 .flags
= MPOL_F_MOF
| MPOL_F_MORON
,
2689 .v
= { .preferred_node
= nid
, },
2694 * Set interleaving policy for system init. Interleaving is only
2695 * enabled across suitably sized nodes (default is >= 16MB), or
2696 * fall back to the largest node if they're all smaller.
2698 nodes_clear(interleave_nodes
);
2699 for_each_node_state(nid
, N_MEMORY
) {
2700 unsigned long total_pages
= node_present_pages(nid
);
2702 /* Preserve the largest node */
2703 if (largest
< total_pages
) {
2704 largest
= total_pages
;
2708 /* Interleave this node? */
2709 if ((total_pages
<< PAGE_SHIFT
) >= (16 << 20))
2710 node_set(nid
, interleave_nodes
);
2713 /* All too small, use the largest */
2714 if (unlikely(nodes_empty(interleave_nodes
)))
2715 node_set(prefer
, interleave_nodes
);
2717 if (do_set_mempolicy(MPOL_INTERLEAVE
, 0, &interleave_nodes
))
2718 pr_err("%s: interleaving failed\n", __func__
);
2720 check_numabalancing_enable();
2723 /* Reset policy of current process to default */
2724 void numa_default_policy(void)
2726 do_set_mempolicy(MPOL_DEFAULT
, 0, NULL
);
2730 * Parse and format mempolicy from/to strings
2734 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2736 static const char * const policy_modes
[] =
2738 [MPOL_DEFAULT
] = "default",
2739 [MPOL_PREFERRED
] = "prefer",
2740 [MPOL_BIND
] = "bind",
2741 [MPOL_INTERLEAVE
] = "interleave",
2742 [MPOL_LOCAL
] = "local",
2748 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2749 * @str: string containing mempolicy to parse
2750 * @mpol: pointer to struct mempolicy pointer, returned on success.
2753 * <mode>[=<flags>][:<nodelist>]
2755 * On success, returns 0, else 1
2757 int mpol_parse_str(char *str
, struct mempolicy
**mpol
)
2759 struct mempolicy
*new = NULL
;
2760 unsigned short mode_flags
;
2762 char *nodelist
= strchr(str
, ':');
2763 char *flags
= strchr(str
, '=');
2767 /* NUL-terminate mode or flags string */
2769 if (nodelist_parse(nodelist
, nodes
))
2771 if (!nodes_subset(nodes
, node_states
[N_MEMORY
]))
2777 *flags
++ = '\0'; /* terminate mode string */
2779 mode
= match_string(policy_modes
, MPOL_MAX
, str
);
2784 case MPOL_PREFERRED
:
2786 * Insist on a nodelist of one node only
2789 char *rest
= nodelist
;
2790 while (isdigit(*rest
))
2796 case MPOL_INTERLEAVE
:
2798 * Default to online nodes with memory if no nodelist
2801 nodes
= node_states
[N_MEMORY
];
2805 * Don't allow a nodelist; mpol_new() checks flags
2809 mode
= MPOL_PREFERRED
;
2813 * Insist on a empty nodelist
2820 * Insist on a nodelist
2829 * Currently, we only support two mutually exclusive
2832 if (!strcmp(flags
, "static"))
2833 mode_flags
|= MPOL_F_STATIC_NODES
;
2834 else if (!strcmp(flags
, "relative"))
2835 mode_flags
|= MPOL_F_RELATIVE_NODES
;
2840 new = mpol_new(mode
, mode_flags
, &nodes
);
2845 * Save nodes for mpol_to_str() to show the tmpfs mount options
2846 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2848 if (mode
!= MPOL_PREFERRED
)
2849 new->v
.nodes
= nodes
;
2851 new->v
.preferred_node
= first_node(nodes
);
2853 new->flags
|= MPOL_F_LOCAL
;
2856 * Save nodes for contextualization: this will be used to "clone"
2857 * the mempolicy in a specific context [cpuset] at a later time.
2859 new->w
.user_nodemask
= nodes
;
2864 /* Restore string for error message */
2873 #endif /* CONFIG_TMPFS */
2876 * mpol_to_str - format a mempolicy structure for printing
2877 * @buffer: to contain formatted mempolicy string
2878 * @maxlen: length of @buffer
2879 * @pol: pointer to mempolicy to be formatted
2881 * Convert @pol into a string. If @buffer is too short, truncate the string.
2882 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2883 * longest flag, "relative", and to display at least a few node ids.
2885 void mpol_to_str(char *buffer
, int maxlen
, struct mempolicy
*pol
)
2888 nodemask_t nodes
= NODE_MASK_NONE
;
2889 unsigned short mode
= MPOL_DEFAULT
;
2890 unsigned short flags
= 0;
2892 if (pol
&& pol
!= &default_policy
&& !(pol
->flags
& MPOL_F_MORON
)) {
2900 case MPOL_PREFERRED
:
2901 if (flags
& MPOL_F_LOCAL
)
2904 node_set(pol
->v
.preferred_node
, nodes
);
2907 case MPOL_INTERLEAVE
:
2908 nodes
= pol
->v
.nodes
;
2912 snprintf(p
, maxlen
, "unknown");
2916 p
+= snprintf(p
, maxlen
, "%s", policy_modes
[mode
]);
2918 if (flags
& MPOL_MODE_FLAGS
) {
2919 p
+= snprintf(p
, buffer
+ maxlen
- p
, "=");
2922 * Currently, the only defined flags are mutually exclusive
2924 if (flags
& MPOL_F_STATIC_NODES
)
2925 p
+= snprintf(p
, buffer
+ maxlen
- p
, "static");
2926 else if (flags
& MPOL_F_RELATIVE_NODES
)
2927 p
+= snprintf(p
, buffer
+ maxlen
- p
, "relative");
2930 if (!nodes_empty(nodes
))
2931 p
+= scnprintf(p
, buffer
+ maxlen
- p
, ":%*pbl",
2932 nodemask_pr_args(&nodes
));