2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
96 #include <net/compat.h>
98 #include <net/cls_cgroup.h>
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly
;
113 unsigned int sysctl_net_busy_poll __read_mostly
;
116 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
);
117 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
);
118 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
120 static int sock_close(struct inode
*inode
, struct file
*file
);
121 static unsigned int sock_poll(struct file
*file
,
122 struct poll_table_struct
*wait
);
123 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
125 static long compat_sock_ioctl(struct file
*file
,
126 unsigned int cmd
, unsigned long arg
);
128 static int sock_fasync(int fd
, struct file
*filp
, int on
);
129 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
130 int offset
, size_t size
, loff_t
*ppos
, int more
);
131 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
132 struct pipe_inode_info
*pipe
, size_t len
,
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
140 static const struct file_operations socket_file_ops
= {
141 .owner
= THIS_MODULE
,
143 .read_iter
= sock_read_iter
,
144 .write_iter
= sock_write_iter
,
146 .unlocked_ioctl
= sock_ioctl
,
148 .compat_ioctl
= compat_sock_ioctl
,
151 .release
= sock_close
,
152 .fasync
= sock_fasync
,
153 .sendpage
= sock_sendpage
,
154 .splice_write
= generic_splice_sendpage
,
155 .splice_read
= sock_splice_read
,
159 * The protocol list. Each protocol is registered in here.
162 static DEFINE_SPINLOCK(net_family_lock
);
163 static const struct net_proto_family __rcu
*net_families
[NPROTO
] __read_mostly
;
166 * Statistics counters of the socket lists
169 static DEFINE_PER_CPU(int, sockets_in_use
);
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
188 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, struct sockaddr_storage
*kaddr
)
190 if (ulen
< 0 || ulen
> sizeof(struct sockaddr_storage
))
194 if (copy_from_user(kaddr
, uaddr
, ulen
))
196 return audit_sockaddr(ulen
, kaddr
);
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
216 static int move_addr_to_user(struct sockaddr_storage
*kaddr
, int klen
,
217 void __user
*uaddr
, int __user
*ulen
)
222 BUG_ON(klen
> sizeof(struct sockaddr_storage
));
223 err
= get_user(len
, ulen
);
231 if (audit_sockaddr(klen
, kaddr
))
233 if (copy_to_user(uaddr
, kaddr
, len
))
237 * "fromlen shall refer to the value before truncation.."
240 return __put_user(klen
, ulen
);
243 static struct kmem_cache
*sock_inode_cachep __read_mostly
;
245 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
247 struct socket_alloc
*ei
;
248 struct socket_wq
*wq
;
250 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
253 wq
= kmalloc(sizeof(*wq
), GFP_KERNEL
);
255 kmem_cache_free(sock_inode_cachep
, ei
);
258 init_waitqueue_head(&wq
->wait
);
259 wq
->fasync_list
= NULL
;
261 RCU_INIT_POINTER(ei
->socket
.wq
, wq
);
263 ei
->socket
.state
= SS_UNCONNECTED
;
264 ei
->socket
.flags
= 0;
265 ei
->socket
.ops
= NULL
;
266 ei
->socket
.sk
= NULL
;
267 ei
->socket
.file
= NULL
;
269 return &ei
->vfs_inode
;
272 static void sock_destroy_inode(struct inode
*inode
)
274 struct socket_alloc
*ei
;
275 struct socket_wq
*wq
;
277 ei
= container_of(inode
, struct socket_alloc
, vfs_inode
);
278 wq
= rcu_dereference_protected(ei
->socket
.wq
, 1);
280 kmem_cache_free(sock_inode_cachep
, ei
);
283 static void init_once(void *foo
)
285 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
287 inode_init_once(&ei
->vfs_inode
);
290 static int init_inodecache(void)
292 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc
),
295 (SLAB_HWCACHE_ALIGN
|
296 SLAB_RECLAIM_ACCOUNT
|
297 SLAB_MEM_SPREAD
| SLAB_ACCOUNT
),
299 if (sock_inode_cachep
== NULL
)
304 static const struct super_operations sockfs_ops
= {
305 .alloc_inode
= sock_alloc_inode
,
306 .destroy_inode
= sock_destroy_inode
,
307 .statfs
= simple_statfs
,
311 * sockfs_dname() is called from d_path().
313 static char *sockfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
315 return dynamic_dname(dentry
, buffer
, buflen
, "socket:[%lu]",
316 d_inode(dentry
)->i_ino
);
319 static const struct dentry_operations sockfs_dentry_operations
= {
320 .d_dname
= sockfs_dname
,
323 static int sockfs_xattr_get(const struct xattr_handler
*handler
,
324 struct dentry
*dentry
, struct inode
*inode
,
325 const char *suffix
, void *value
, size_t size
)
328 if (dentry
->d_name
.len
+ 1 > size
)
330 memcpy(value
, dentry
->d_name
.name
, dentry
->d_name
.len
+ 1);
332 return dentry
->d_name
.len
+ 1;
335 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
336 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
337 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
339 static const struct xattr_handler sockfs_xattr_handler
= {
340 .name
= XATTR_NAME_SOCKPROTONAME
,
341 .get
= sockfs_xattr_get
,
344 static int sockfs_security_xattr_set(const struct xattr_handler
*handler
,
345 struct dentry
*dentry
, struct inode
*inode
,
346 const char *suffix
, const void *value
,
347 size_t size
, int flags
)
349 /* Handled by LSM. */
353 static const struct xattr_handler sockfs_security_xattr_handler
= {
354 .prefix
= XATTR_SECURITY_PREFIX
,
355 .set
= sockfs_security_xattr_set
,
358 static const struct xattr_handler
*sockfs_xattr_handlers
[] = {
359 &sockfs_xattr_handler
,
360 &sockfs_security_xattr_handler
,
364 static struct dentry
*sockfs_mount(struct file_system_type
*fs_type
,
365 int flags
, const char *dev_name
, void *data
)
367 return mount_pseudo_xattr(fs_type
, "socket:", &sockfs_ops
,
368 sockfs_xattr_handlers
,
369 &sockfs_dentry_operations
, SOCKFS_MAGIC
);
372 static struct vfsmount
*sock_mnt __read_mostly
;
374 static struct file_system_type sock_fs_type
= {
376 .mount
= sockfs_mount
,
377 .kill_sb
= kill_anon_super
,
381 * Obtains the first available file descriptor and sets it up for use.
383 * These functions create file structures and maps them to fd space
384 * of the current process. On success it returns file descriptor
385 * and file struct implicitly stored in sock->file.
386 * Note that another thread may close file descriptor before we return
387 * from this function. We use the fact that now we do not refer
388 * to socket after mapping. If one day we will need it, this
389 * function will increment ref. count on file by 1.
391 * In any case returned fd MAY BE not valid!
392 * This race condition is unavoidable
393 * with shared fd spaces, we cannot solve it inside kernel,
394 * but we take care of internal coherence yet.
397 struct file
*sock_alloc_file(struct socket
*sock
, int flags
, const char *dname
)
399 struct qstr name
= { .name
= "" };
405 name
.len
= strlen(name
.name
);
406 } else if (sock
->sk
) {
407 name
.name
= sock
->sk
->sk_prot_creator
->name
;
408 name
.len
= strlen(name
.name
);
410 path
.dentry
= d_alloc_pseudo(sock_mnt
->mnt_sb
, &name
);
411 if (unlikely(!path
.dentry
))
412 return ERR_PTR(-ENOMEM
);
413 path
.mnt
= mntget(sock_mnt
);
415 d_instantiate(path
.dentry
, SOCK_INODE(sock
));
417 file
= alloc_file(&path
, FMODE_READ
| FMODE_WRITE
,
420 /* drop dentry, keep inode */
421 ihold(d_inode(path
.dentry
));
427 file
->f_flags
= O_RDWR
| (flags
& O_NONBLOCK
);
428 file
->private_data
= sock
;
431 EXPORT_SYMBOL(sock_alloc_file
);
433 static int sock_map_fd(struct socket
*sock
, int flags
)
435 struct file
*newfile
;
436 int fd
= get_unused_fd_flags(flags
);
437 if (unlikely(fd
< 0))
440 newfile
= sock_alloc_file(sock
, flags
, NULL
);
441 if (likely(!IS_ERR(newfile
))) {
442 fd_install(fd
, newfile
);
447 return PTR_ERR(newfile
);
450 struct socket
*sock_from_file(struct file
*file
, int *err
)
452 if (file
->f_op
== &socket_file_ops
)
453 return file
->private_data
; /* set in sock_map_fd */
458 EXPORT_SYMBOL(sock_from_file
);
461 * sockfd_lookup - Go from a file number to its socket slot
463 * @err: pointer to an error code return
465 * The file handle passed in is locked and the socket it is bound
466 * too is returned. If an error occurs the err pointer is overwritten
467 * with a negative errno code and NULL is returned. The function checks
468 * for both invalid handles and passing a handle which is not a socket.
470 * On a success the socket object pointer is returned.
473 struct socket
*sockfd_lookup(int fd
, int *err
)
484 sock
= sock_from_file(file
, err
);
489 EXPORT_SYMBOL(sockfd_lookup
);
491 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
493 struct fd f
= fdget(fd
);
498 sock
= sock_from_file(f
.file
, err
);
500 *fput_needed
= f
.flags
;
508 static ssize_t
sockfs_listxattr(struct dentry
*dentry
, char *buffer
,
514 len
= security_inode_listsecurity(d_inode(dentry
), buffer
, size
);
524 len
= (XATTR_NAME_SOCKPROTONAME_LEN
+ 1);
529 memcpy(buffer
, XATTR_NAME_SOCKPROTONAME
, len
);
536 static const struct inode_operations sockfs_inode_ops
= {
537 .listxattr
= sockfs_listxattr
,
541 * sock_alloc - allocate a socket
543 * Allocate a new inode and socket object. The two are bound together
544 * and initialised. The socket is then returned. If we are out of inodes
548 struct socket
*sock_alloc(void)
553 inode
= new_inode_pseudo(sock_mnt
->mnt_sb
);
557 sock
= SOCKET_I(inode
);
559 kmemcheck_annotate_bitfield(sock
, type
);
560 inode
->i_ino
= get_next_ino();
561 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
562 inode
->i_uid
= current_fsuid();
563 inode
->i_gid
= current_fsgid();
564 inode
->i_op
= &sockfs_inode_ops
;
566 this_cpu_add(sockets_in_use
, 1);
569 EXPORT_SYMBOL(sock_alloc
);
572 * sock_release - close a socket
573 * @sock: socket to close
575 * The socket is released from the protocol stack if it has a release
576 * callback, and the inode is then released if the socket is bound to
577 * an inode not a file.
580 void sock_release(struct socket
*sock
)
583 struct module
*owner
= sock
->ops
->owner
;
585 sock
->ops
->release(sock
);
590 if (rcu_dereference_protected(sock
->wq
, 1)->fasync_list
)
591 pr_err("%s: fasync list not empty!\n", __func__
);
593 this_cpu_sub(sockets_in_use
, 1);
595 iput(SOCK_INODE(sock
));
600 EXPORT_SYMBOL(sock_release
);
602 void __sock_tx_timestamp(__u16 tsflags
, __u8
*tx_flags
)
604 u8 flags
= *tx_flags
;
606 if (tsflags
& SOF_TIMESTAMPING_TX_HARDWARE
)
607 flags
|= SKBTX_HW_TSTAMP
;
609 if (tsflags
& SOF_TIMESTAMPING_TX_SOFTWARE
)
610 flags
|= SKBTX_SW_TSTAMP
;
612 if (tsflags
& SOF_TIMESTAMPING_TX_SCHED
)
613 flags
|= SKBTX_SCHED_TSTAMP
;
617 EXPORT_SYMBOL(__sock_tx_timestamp
);
619 static inline int sock_sendmsg_nosec(struct socket
*sock
, struct msghdr
*msg
)
621 int ret
= sock
->ops
->sendmsg(sock
, msg
, msg_data_left(msg
));
622 BUG_ON(ret
== -EIOCBQUEUED
);
626 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
)
628 int err
= security_socket_sendmsg(sock
, msg
,
631 return err
?: sock_sendmsg_nosec(sock
, msg
);
633 EXPORT_SYMBOL(sock_sendmsg
);
635 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
636 struct kvec
*vec
, size_t num
, size_t size
)
638 iov_iter_kvec(&msg
->msg_iter
, WRITE
| ITER_KVEC
, vec
, num
, size
);
639 return sock_sendmsg(sock
, msg
);
641 EXPORT_SYMBOL(kernel_sendmsg
);
644 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
646 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
649 int need_software_tstamp
= sock_flag(sk
, SOCK_RCVTSTAMP
);
650 struct scm_timestamping tss
;
652 struct skb_shared_hwtstamps
*shhwtstamps
=
655 /* Race occurred between timestamp enabling and packet
656 receiving. Fill in the current time for now. */
657 if (need_software_tstamp
&& skb
->tstamp
.tv64
== 0)
658 __net_timestamp(skb
);
660 if (need_software_tstamp
) {
661 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
663 skb_get_timestamp(skb
, &tv
);
664 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMP
,
668 skb_get_timestampns(skb
, &ts
);
669 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPNS
,
674 memset(&tss
, 0, sizeof(tss
));
675 if ((sk
->sk_tsflags
& SOF_TIMESTAMPING_SOFTWARE
) &&
676 ktime_to_timespec_cond(skb
->tstamp
, tss
.ts
+ 0))
679 (sk
->sk_tsflags
& SOF_TIMESTAMPING_RAW_HARDWARE
) &&
680 ktime_to_timespec_cond(shhwtstamps
->hwtstamp
, tss
.ts
+ 2))
683 put_cmsg(msg
, SOL_SOCKET
,
684 SCM_TIMESTAMPING
, sizeof(tss
), &tss
);
686 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
688 void __sock_recv_wifi_status(struct msghdr
*msg
, struct sock
*sk
,
693 if (!sock_flag(sk
, SOCK_WIFI_STATUS
))
695 if (!skb
->wifi_acked_valid
)
698 ack
= skb
->wifi_acked
;
700 put_cmsg(msg
, SOL_SOCKET
, SCM_WIFI_STATUS
, sizeof(ack
), &ack
);
702 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status
);
704 static inline void sock_recv_drops(struct msghdr
*msg
, struct sock
*sk
,
707 if (sock_flag(sk
, SOCK_RXQ_OVFL
) && skb
&& SOCK_SKB_CB(skb
)->dropcount
)
708 put_cmsg(msg
, SOL_SOCKET
, SO_RXQ_OVFL
,
709 sizeof(__u32
), &SOCK_SKB_CB(skb
)->dropcount
);
712 void __sock_recv_ts_and_drops(struct msghdr
*msg
, struct sock
*sk
,
715 sock_recv_timestamp(msg
, sk
, skb
);
716 sock_recv_drops(msg
, sk
, skb
);
718 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops
);
720 static inline int sock_recvmsg_nosec(struct socket
*sock
, struct msghdr
*msg
,
723 return sock
->ops
->recvmsg(sock
, msg
, msg_data_left(msg
), flags
);
726 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
, int flags
)
728 int err
= security_socket_recvmsg(sock
, msg
, msg_data_left(msg
), flags
);
730 return err
?: sock_recvmsg_nosec(sock
, msg
, flags
);
732 EXPORT_SYMBOL(sock_recvmsg
);
735 * kernel_recvmsg - Receive a message from a socket (kernel space)
736 * @sock: The socket to receive the message from
737 * @msg: Received message
738 * @vec: Input s/g array for message data
739 * @num: Size of input s/g array
740 * @size: Number of bytes to read
741 * @flags: Message flags (MSG_DONTWAIT, etc...)
743 * On return the msg structure contains the scatter/gather array passed in the
744 * vec argument. The array is modified so that it consists of the unfilled
745 * portion of the original array.
747 * The returned value is the total number of bytes received, or an error.
749 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
750 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
752 mm_segment_t oldfs
= get_fs();
755 iov_iter_kvec(&msg
->msg_iter
, READ
| ITER_KVEC
, vec
, num
, size
);
757 result
= sock_recvmsg(sock
, msg
, flags
);
761 EXPORT_SYMBOL(kernel_recvmsg
);
763 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
764 int offset
, size_t size
, loff_t
*ppos
, int more
)
769 sock
= file
->private_data
;
771 flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
772 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
775 return kernel_sendpage(sock
, page
, offset
, size
, flags
);
778 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
779 struct pipe_inode_info
*pipe
, size_t len
,
782 struct socket
*sock
= file
->private_data
;
784 if (unlikely(!sock
->ops
->splice_read
))
787 return sock
->ops
->splice_read(sock
, ppos
, pipe
, len
, flags
);
790 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
792 struct file
*file
= iocb
->ki_filp
;
793 struct socket
*sock
= file
->private_data
;
794 struct msghdr msg
= {.msg_iter
= *to
,
798 if (file
->f_flags
& O_NONBLOCK
)
799 msg
.msg_flags
= MSG_DONTWAIT
;
801 if (iocb
->ki_pos
!= 0)
804 if (!iov_iter_count(to
)) /* Match SYS5 behaviour */
807 res
= sock_recvmsg(sock
, &msg
, msg
.msg_flags
);
812 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
814 struct file
*file
= iocb
->ki_filp
;
815 struct socket
*sock
= file
->private_data
;
816 struct msghdr msg
= {.msg_iter
= *from
,
820 if (iocb
->ki_pos
!= 0)
823 if (file
->f_flags
& O_NONBLOCK
)
824 msg
.msg_flags
= MSG_DONTWAIT
;
826 if (sock
->type
== SOCK_SEQPACKET
)
827 msg
.msg_flags
|= MSG_EOR
;
829 res
= sock_sendmsg(sock
, &msg
);
830 *from
= msg
.msg_iter
;
835 * Atomic setting of ioctl hooks to avoid race
836 * with module unload.
839 static DEFINE_MUTEX(br_ioctl_mutex
);
840 static int (*br_ioctl_hook
) (struct net
*, unsigned int cmd
, void __user
*arg
);
842 void brioctl_set(int (*hook
) (struct net
*, unsigned int, void __user
*))
844 mutex_lock(&br_ioctl_mutex
);
845 br_ioctl_hook
= hook
;
846 mutex_unlock(&br_ioctl_mutex
);
848 EXPORT_SYMBOL(brioctl_set
);
850 static DEFINE_MUTEX(vlan_ioctl_mutex
);
851 static int (*vlan_ioctl_hook
) (struct net
*, void __user
*arg
);
853 void vlan_ioctl_set(int (*hook
) (struct net
*, void __user
*))
855 mutex_lock(&vlan_ioctl_mutex
);
856 vlan_ioctl_hook
= hook
;
857 mutex_unlock(&vlan_ioctl_mutex
);
859 EXPORT_SYMBOL(vlan_ioctl_set
);
861 static DEFINE_MUTEX(dlci_ioctl_mutex
);
862 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
864 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
866 mutex_lock(&dlci_ioctl_mutex
);
867 dlci_ioctl_hook
= hook
;
868 mutex_unlock(&dlci_ioctl_mutex
);
870 EXPORT_SYMBOL(dlci_ioctl_set
);
872 static long sock_do_ioctl(struct net
*net
, struct socket
*sock
,
873 unsigned int cmd
, unsigned long arg
)
876 void __user
*argp
= (void __user
*)arg
;
878 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
881 * If this ioctl is unknown try to hand it down
884 if (err
== -ENOIOCTLCMD
)
885 err
= dev_ioctl(net
, cmd
, argp
);
891 * With an ioctl, arg may well be a user mode pointer, but we don't know
892 * what to do with it - that's up to the protocol still.
895 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
899 void __user
*argp
= (void __user
*)arg
;
903 sock
= file
->private_data
;
906 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15)) {
907 err
= dev_ioctl(net
, cmd
, argp
);
909 #ifdef CONFIG_WEXT_CORE
910 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
911 err
= dev_ioctl(net
, cmd
, argp
);
918 if (get_user(pid
, (int __user
*)argp
))
920 f_setown(sock
->file
, pid
, 1);
925 err
= put_user(f_getown(sock
->file
),
934 request_module("bridge");
936 mutex_lock(&br_ioctl_mutex
);
938 err
= br_ioctl_hook(net
, cmd
, argp
);
939 mutex_unlock(&br_ioctl_mutex
);
944 if (!vlan_ioctl_hook
)
945 request_module("8021q");
947 mutex_lock(&vlan_ioctl_mutex
);
949 err
= vlan_ioctl_hook(net
, argp
);
950 mutex_unlock(&vlan_ioctl_mutex
);
955 if (!dlci_ioctl_hook
)
956 request_module("dlci");
958 mutex_lock(&dlci_ioctl_mutex
);
960 err
= dlci_ioctl_hook(cmd
, argp
);
961 mutex_unlock(&dlci_ioctl_mutex
);
964 err
= sock_do_ioctl(net
, sock
, cmd
, arg
);
970 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
973 struct socket
*sock
= NULL
;
975 err
= security_socket_create(family
, type
, protocol
, 1);
986 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
998 EXPORT_SYMBOL(sock_create_lite
);
1000 /* No kernel lock held - perfect */
1001 static unsigned int sock_poll(struct file
*file
, poll_table
*wait
)
1003 unsigned int busy_flag
= 0;
1004 struct socket
*sock
;
1007 * We can't return errors to poll, so it's either yes or no.
1009 sock
= file
->private_data
;
1011 if (sk_can_busy_loop(sock
->sk
)) {
1012 /* this socket can poll_ll so tell the system call */
1013 busy_flag
= POLL_BUSY_LOOP
;
1015 /* once, only if requested by syscall */
1016 if (wait
&& (wait
->_key
& POLL_BUSY_LOOP
))
1017 sk_busy_loop(sock
->sk
, 1);
1020 return busy_flag
| sock
->ops
->poll(file
, sock
, wait
);
1023 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1025 struct socket
*sock
= file
->private_data
;
1027 return sock
->ops
->mmap(file
, sock
, vma
);
1030 static int sock_close(struct inode
*inode
, struct file
*filp
)
1032 sock_release(SOCKET_I(inode
));
1037 * Update the socket async list
1039 * Fasync_list locking strategy.
1041 * 1. fasync_list is modified only under process context socket lock
1042 * i.e. under semaphore.
1043 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1044 * or under socket lock
1047 static int sock_fasync(int fd
, struct file
*filp
, int on
)
1049 struct socket
*sock
= filp
->private_data
;
1050 struct sock
*sk
= sock
->sk
;
1051 struct socket_wq
*wq
;
1057 wq
= rcu_dereference_protected(sock
->wq
, lockdep_sock_is_held(sk
));
1058 fasync_helper(fd
, filp
, on
, &wq
->fasync_list
);
1060 if (!wq
->fasync_list
)
1061 sock_reset_flag(sk
, SOCK_FASYNC
);
1063 sock_set_flag(sk
, SOCK_FASYNC
);
1069 /* This function may be called only under rcu_lock */
1071 int sock_wake_async(struct socket_wq
*wq
, int how
, int band
)
1073 if (!wq
|| !wq
->fasync_list
)
1077 case SOCK_WAKE_WAITD
:
1078 if (test_bit(SOCKWQ_ASYNC_WAITDATA
, &wq
->flags
))
1081 case SOCK_WAKE_SPACE
:
1082 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE
, &wq
->flags
))
1087 kill_fasync(&wq
->fasync_list
, SIGIO
, band
);
1090 kill_fasync(&wq
->fasync_list
, SIGURG
, band
);
1095 EXPORT_SYMBOL(sock_wake_async
);
1097 int __sock_create(struct net
*net
, int family
, int type
, int protocol
,
1098 struct socket
**res
, int kern
)
1101 struct socket
*sock
;
1102 const struct net_proto_family
*pf
;
1105 * Check protocol is in range
1107 if (family
< 0 || family
>= NPROTO
)
1108 return -EAFNOSUPPORT
;
1109 if (type
< 0 || type
>= SOCK_MAX
)
1114 This uglymoron is moved from INET layer to here to avoid
1115 deadlock in module load.
1117 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1118 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1123 err
= security_socket_create(family
, type
, protocol
, kern
);
1128 * Allocate the socket and allow the family to set things up. if
1129 * the protocol is 0, the family is instructed to select an appropriate
1132 sock
= sock_alloc();
1134 net_warn_ratelimited("socket: no more sockets\n");
1135 return -ENFILE
; /* Not exactly a match, but its the
1136 closest posix thing */
1141 #ifdef CONFIG_MODULES
1142 /* Attempt to load a protocol module if the find failed.
1144 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1145 * requested real, full-featured networking support upon configuration.
1146 * Otherwise module support will break!
1148 if (rcu_access_pointer(net_families
[family
]) == NULL
)
1149 request_module("net-pf-%d", family
);
1153 pf
= rcu_dereference(net_families
[family
]);
1154 err
= -EAFNOSUPPORT
;
1159 * We will call the ->create function, that possibly is in a loadable
1160 * module, so we have to bump that loadable module refcnt first.
1162 if (!try_module_get(pf
->owner
))
1165 /* Now protected by module ref count */
1168 err
= pf
->create(net
, sock
, protocol
, kern
);
1170 goto out_module_put
;
1173 * Now to bump the refcnt of the [loadable] module that owns this
1174 * socket at sock_release time we decrement its refcnt.
1176 if (!try_module_get(sock
->ops
->owner
))
1177 goto out_module_busy
;
1180 * Now that we're done with the ->create function, the [loadable]
1181 * module can have its refcnt decremented
1183 module_put(pf
->owner
);
1184 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1186 goto out_sock_release
;
1192 err
= -EAFNOSUPPORT
;
1195 module_put(pf
->owner
);
1202 goto out_sock_release
;
1204 EXPORT_SYMBOL(__sock_create
);
1206 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1208 return __sock_create(current
->nsproxy
->net_ns
, family
, type
, protocol
, res
, 0);
1210 EXPORT_SYMBOL(sock_create
);
1212 int sock_create_kern(struct net
*net
, int family
, int type
, int protocol
, struct socket
**res
)
1214 return __sock_create(net
, family
, type
, protocol
, res
, 1);
1216 EXPORT_SYMBOL(sock_create_kern
);
1218 SYSCALL_DEFINE3(socket
, int, family
, int, type
, int, protocol
)
1221 struct socket
*sock
;
1224 /* Check the SOCK_* constants for consistency. */
1225 BUILD_BUG_ON(SOCK_CLOEXEC
!= O_CLOEXEC
);
1226 BUILD_BUG_ON((SOCK_MAX
| SOCK_TYPE_MASK
) != SOCK_TYPE_MASK
);
1227 BUILD_BUG_ON(SOCK_CLOEXEC
& SOCK_TYPE_MASK
);
1228 BUILD_BUG_ON(SOCK_NONBLOCK
& SOCK_TYPE_MASK
);
1230 flags
= type
& ~SOCK_TYPE_MASK
;
1231 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1233 type
&= SOCK_TYPE_MASK
;
1235 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1236 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1238 retval
= sock_create(family
, type
, protocol
, &sock
);
1242 retval
= sock_map_fd(sock
, flags
& (O_CLOEXEC
| O_NONBLOCK
));
1247 /* It may be already another descriptor 8) Not kernel problem. */
1256 * Create a pair of connected sockets.
1259 SYSCALL_DEFINE4(socketpair
, int, family
, int, type
, int, protocol
,
1260 int __user
*, usockvec
)
1262 struct socket
*sock1
, *sock2
;
1264 struct file
*newfile1
, *newfile2
;
1267 flags
= type
& ~SOCK_TYPE_MASK
;
1268 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1270 type
&= SOCK_TYPE_MASK
;
1272 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1273 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1276 * Obtain the first socket and check if the underlying protocol
1277 * supports the socketpair call.
1280 err
= sock_create(family
, type
, protocol
, &sock1
);
1284 err
= sock_create(family
, type
, protocol
, &sock2
);
1288 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1290 goto out_release_both
;
1292 fd1
= get_unused_fd_flags(flags
);
1293 if (unlikely(fd1
< 0)) {
1295 goto out_release_both
;
1298 fd2
= get_unused_fd_flags(flags
);
1299 if (unlikely(fd2
< 0)) {
1301 goto out_put_unused_1
;
1304 newfile1
= sock_alloc_file(sock1
, flags
, NULL
);
1305 if (IS_ERR(newfile1
)) {
1306 err
= PTR_ERR(newfile1
);
1307 goto out_put_unused_both
;
1310 newfile2
= sock_alloc_file(sock2
, flags
, NULL
);
1311 if (IS_ERR(newfile2
)) {
1312 err
= PTR_ERR(newfile2
);
1316 err
= put_user(fd1
, &usockvec
[0]);
1320 err
= put_user(fd2
, &usockvec
[1]);
1324 audit_fd_pair(fd1
, fd2
);
1326 fd_install(fd1
, newfile1
);
1327 fd_install(fd2
, newfile2
);
1328 /* fd1 and fd2 may be already another descriptors.
1329 * Not kernel problem.
1345 sock_release(sock2
);
1348 out_put_unused_both
:
1353 sock_release(sock2
);
1355 sock_release(sock1
);
1361 * Bind a name to a socket. Nothing much to do here since it's
1362 * the protocol's responsibility to handle the local address.
1364 * We move the socket address to kernel space before we call
1365 * the protocol layer (having also checked the address is ok).
1368 SYSCALL_DEFINE3(bind
, int, fd
, struct sockaddr __user
*, umyaddr
, int, addrlen
)
1370 struct socket
*sock
;
1371 struct sockaddr_storage address
;
1372 int err
, fput_needed
;
1374 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1376 err
= move_addr_to_kernel(umyaddr
, addrlen
, &address
);
1378 err
= security_socket_bind(sock
,
1379 (struct sockaddr
*)&address
,
1382 err
= sock
->ops
->bind(sock
,
1386 fput_light(sock
->file
, fput_needed
);
1392 * Perform a listen. Basically, we allow the protocol to do anything
1393 * necessary for a listen, and if that works, we mark the socket as
1394 * ready for listening.
1397 SYSCALL_DEFINE2(listen
, int, fd
, int, backlog
)
1399 struct socket
*sock
;
1400 int err
, fput_needed
;
1403 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1405 somaxconn
= sock_net(sock
->sk
)->core
.sysctl_somaxconn
;
1406 if ((unsigned int)backlog
> somaxconn
)
1407 backlog
= somaxconn
;
1409 err
= security_socket_listen(sock
, backlog
);
1411 err
= sock
->ops
->listen(sock
, backlog
);
1413 fput_light(sock
->file
, fput_needed
);
1419 * For accept, we attempt to create a new socket, set up the link
1420 * with the client, wake up the client, then return the new
1421 * connected fd. We collect the address of the connector in kernel
1422 * space and move it to user at the very end. This is unclean because
1423 * we open the socket then return an error.
1425 * 1003.1g adds the ability to recvmsg() to query connection pending
1426 * status to recvmsg. We need to add that support in a way thats
1427 * clean when we restucture accept also.
1430 SYSCALL_DEFINE4(accept4
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1431 int __user
*, upeer_addrlen
, int, flags
)
1433 struct socket
*sock
, *newsock
;
1434 struct file
*newfile
;
1435 int err
, len
, newfd
, fput_needed
;
1436 struct sockaddr_storage address
;
1438 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1441 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1442 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1444 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1449 newsock
= sock_alloc();
1453 newsock
->type
= sock
->type
;
1454 newsock
->ops
= sock
->ops
;
1457 * We don't need try_module_get here, as the listening socket (sock)
1458 * has the protocol module (sock->ops->owner) held.
1460 __module_get(newsock
->ops
->owner
);
1462 newfd
= get_unused_fd_flags(flags
);
1463 if (unlikely(newfd
< 0)) {
1465 sock_release(newsock
);
1468 newfile
= sock_alloc_file(newsock
, flags
, sock
->sk
->sk_prot_creator
->name
);
1469 if (IS_ERR(newfile
)) {
1470 err
= PTR_ERR(newfile
);
1471 put_unused_fd(newfd
);
1472 sock_release(newsock
);
1476 err
= security_socket_accept(sock
, newsock
);
1480 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
);
1484 if (upeer_sockaddr
) {
1485 if (newsock
->ops
->getname(newsock
, (struct sockaddr
*)&address
,
1487 err
= -ECONNABORTED
;
1490 err
= move_addr_to_user(&address
,
1491 len
, upeer_sockaddr
, upeer_addrlen
);
1496 /* File flags are not inherited via accept() unlike another OSes. */
1498 fd_install(newfd
, newfile
);
1502 fput_light(sock
->file
, fput_needed
);
1507 put_unused_fd(newfd
);
1511 SYSCALL_DEFINE3(accept
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1512 int __user
*, upeer_addrlen
)
1514 return sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, 0);
1518 * Attempt to connect to a socket with the server address. The address
1519 * is in user space so we verify it is OK and move it to kernel space.
1521 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1524 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1525 * other SEQPACKET protocols that take time to connect() as it doesn't
1526 * include the -EINPROGRESS status for such sockets.
1529 SYSCALL_DEFINE3(connect
, int, fd
, struct sockaddr __user
*, uservaddr
,
1532 struct socket
*sock
;
1533 struct sockaddr_storage address
;
1534 int err
, fput_needed
;
1536 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1539 err
= move_addr_to_kernel(uservaddr
, addrlen
, &address
);
1544 security_socket_connect(sock
, (struct sockaddr
*)&address
, addrlen
);
1548 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)&address
, addrlen
,
1549 sock
->file
->f_flags
);
1551 fput_light(sock
->file
, fput_needed
);
1557 * Get the local address ('name') of a socket object. Move the obtained
1558 * name to user space.
1561 SYSCALL_DEFINE3(getsockname
, int, fd
, struct sockaddr __user
*, usockaddr
,
1562 int __user
*, usockaddr_len
)
1564 struct socket
*sock
;
1565 struct sockaddr_storage address
;
1566 int len
, err
, fput_needed
;
1568 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1572 err
= security_socket_getsockname(sock
);
1576 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
, 0);
1579 err
= move_addr_to_user(&address
, len
, usockaddr
, usockaddr_len
);
1582 fput_light(sock
->file
, fput_needed
);
1588 * Get the remote address ('name') of a socket object. Move the obtained
1589 * name to user space.
1592 SYSCALL_DEFINE3(getpeername
, int, fd
, struct sockaddr __user
*, usockaddr
,
1593 int __user
*, usockaddr_len
)
1595 struct socket
*sock
;
1596 struct sockaddr_storage address
;
1597 int len
, err
, fput_needed
;
1599 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1601 err
= security_socket_getpeername(sock
);
1603 fput_light(sock
->file
, fput_needed
);
1608 sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
,
1611 err
= move_addr_to_user(&address
, len
, usockaddr
,
1613 fput_light(sock
->file
, fput_needed
);
1619 * Send a datagram to a given address. We move the address into kernel
1620 * space and check the user space data area is readable before invoking
1624 SYSCALL_DEFINE6(sendto
, int, fd
, void __user
*, buff
, size_t, len
,
1625 unsigned int, flags
, struct sockaddr __user
*, addr
,
1628 struct socket
*sock
;
1629 struct sockaddr_storage address
;
1635 err
= import_single_range(WRITE
, buff
, len
, &iov
, &msg
.msg_iter
);
1638 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1642 msg
.msg_name
= NULL
;
1643 msg
.msg_control
= NULL
;
1644 msg
.msg_controllen
= 0;
1645 msg
.msg_namelen
= 0;
1647 err
= move_addr_to_kernel(addr
, addr_len
, &address
);
1650 msg
.msg_name
= (struct sockaddr
*)&address
;
1651 msg
.msg_namelen
= addr_len
;
1653 if (sock
->file
->f_flags
& O_NONBLOCK
)
1654 flags
|= MSG_DONTWAIT
;
1655 msg
.msg_flags
= flags
;
1656 err
= sock_sendmsg(sock
, &msg
);
1659 fput_light(sock
->file
, fput_needed
);
1665 * Send a datagram down a socket.
1668 SYSCALL_DEFINE4(send
, int, fd
, void __user
*, buff
, size_t, len
,
1669 unsigned int, flags
)
1671 return sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1675 * Receive a frame from the socket and optionally record the address of the
1676 * sender. We verify the buffers are writable and if needed move the
1677 * sender address from kernel to user space.
1680 SYSCALL_DEFINE6(recvfrom
, int, fd
, void __user
*, ubuf
, size_t, size
,
1681 unsigned int, flags
, struct sockaddr __user
*, addr
,
1682 int __user
*, addr_len
)
1684 struct socket
*sock
;
1687 struct sockaddr_storage address
;
1691 err
= import_single_range(READ
, ubuf
, size
, &iov
, &msg
.msg_iter
);
1694 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1698 msg
.msg_control
= NULL
;
1699 msg
.msg_controllen
= 0;
1700 /* Save some cycles and don't copy the address if not needed */
1701 msg
.msg_name
= addr
? (struct sockaddr
*)&address
: NULL
;
1702 /* We assume all kernel code knows the size of sockaddr_storage */
1703 msg
.msg_namelen
= 0;
1704 msg
.msg_iocb
= NULL
;
1706 if (sock
->file
->f_flags
& O_NONBLOCK
)
1707 flags
|= MSG_DONTWAIT
;
1708 err
= sock_recvmsg(sock
, &msg
, flags
);
1710 if (err
>= 0 && addr
!= NULL
) {
1711 err2
= move_addr_to_user(&address
,
1712 msg
.msg_namelen
, addr
, addr_len
);
1717 fput_light(sock
->file
, fput_needed
);
1723 * Receive a datagram from a socket.
1726 SYSCALL_DEFINE4(recv
, int, fd
, void __user
*, ubuf
, size_t, size
,
1727 unsigned int, flags
)
1729 return sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
1733 * Set a socket option. Because we don't know the option lengths we have
1734 * to pass the user mode parameter for the protocols to sort out.
1737 SYSCALL_DEFINE5(setsockopt
, int, fd
, int, level
, int, optname
,
1738 char __user
*, optval
, int, optlen
)
1740 int err
, fput_needed
;
1741 struct socket
*sock
;
1746 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1748 err
= security_socket_setsockopt(sock
, level
, optname
);
1752 if (level
== SOL_SOCKET
)
1754 sock_setsockopt(sock
, level
, optname
, optval
,
1758 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
1761 fput_light(sock
->file
, fput_needed
);
1767 * Get a socket option. Because we don't know the option lengths we have
1768 * to pass a user mode parameter for the protocols to sort out.
1771 SYSCALL_DEFINE5(getsockopt
, int, fd
, int, level
, int, optname
,
1772 char __user
*, optval
, int __user
*, optlen
)
1774 int err
, fput_needed
;
1775 struct socket
*sock
;
1777 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1779 err
= security_socket_getsockopt(sock
, level
, optname
);
1783 if (level
== SOL_SOCKET
)
1785 sock_getsockopt(sock
, level
, optname
, optval
,
1789 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
1792 fput_light(sock
->file
, fput_needed
);
1798 * Shutdown a socket.
1801 SYSCALL_DEFINE2(shutdown
, int, fd
, int, how
)
1803 int err
, fput_needed
;
1804 struct socket
*sock
;
1806 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1808 err
= security_socket_shutdown(sock
, how
);
1810 err
= sock
->ops
->shutdown(sock
, how
);
1811 fput_light(sock
->file
, fput_needed
);
1816 /* A couple of helpful macros for getting the address of the 32/64 bit
1817 * fields which are the same type (int / unsigned) on our platforms.
1819 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1820 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1821 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1823 struct used_address
{
1824 struct sockaddr_storage name
;
1825 unsigned int name_len
;
1828 static int copy_msghdr_from_user(struct msghdr
*kmsg
,
1829 struct user_msghdr __user
*umsg
,
1830 struct sockaddr __user
**save_addr
,
1833 struct sockaddr __user
*uaddr
;
1834 struct iovec __user
*uiov
;
1838 if (!access_ok(VERIFY_READ
, umsg
, sizeof(*umsg
)) ||
1839 __get_user(uaddr
, &umsg
->msg_name
) ||
1840 __get_user(kmsg
->msg_namelen
, &umsg
->msg_namelen
) ||
1841 __get_user(uiov
, &umsg
->msg_iov
) ||
1842 __get_user(nr_segs
, &umsg
->msg_iovlen
) ||
1843 __get_user(kmsg
->msg_control
, &umsg
->msg_control
) ||
1844 __get_user(kmsg
->msg_controllen
, &umsg
->msg_controllen
) ||
1845 __get_user(kmsg
->msg_flags
, &umsg
->msg_flags
))
1849 kmsg
->msg_namelen
= 0;
1851 if (kmsg
->msg_namelen
< 0)
1854 if (kmsg
->msg_namelen
> sizeof(struct sockaddr_storage
))
1855 kmsg
->msg_namelen
= sizeof(struct sockaddr_storage
);
1860 if (uaddr
&& kmsg
->msg_namelen
) {
1862 err
= move_addr_to_kernel(uaddr
, kmsg
->msg_namelen
,
1868 kmsg
->msg_name
= NULL
;
1869 kmsg
->msg_namelen
= 0;
1872 if (nr_segs
> UIO_MAXIOV
)
1875 kmsg
->msg_iocb
= NULL
;
1877 return import_iovec(save_addr
? READ
: WRITE
, uiov
, nr_segs
,
1878 UIO_FASTIOV
, iov
, &kmsg
->msg_iter
);
1881 static int ___sys_sendmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
1882 struct msghdr
*msg_sys
, unsigned int flags
,
1883 struct used_address
*used_address
,
1884 unsigned int allowed_msghdr_flags
)
1886 struct compat_msghdr __user
*msg_compat
=
1887 (struct compat_msghdr __user
*)msg
;
1888 struct sockaddr_storage address
;
1889 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
1890 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
1891 __attribute__ ((aligned(sizeof(__kernel_size_t
))));
1892 /* 20 is size of ipv6_pktinfo */
1893 unsigned char *ctl_buf
= ctl
;
1897 msg_sys
->msg_name
= &address
;
1899 if (MSG_CMSG_COMPAT
& flags
)
1900 err
= get_compat_msghdr(msg_sys
, msg_compat
, NULL
, &iov
);
1902 err
= copy_msghdr_from_user(msg_sys
, msg
, NULL
, &iov
);
1908 if (msg_sys
->msg_controllen
> INT_MAX
)
1910 flags
|= (msg_sys
->msg_flags
& allowed_msghdr_flags
);
1911 ctl_len
= msg_sys
->msg_controllen
;
1912 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
1914 cmsghdr_from_user_compat_to_kern(msg_sys
, sock
->sk
, ctl
,
1918 ctl_buf
= msg_sys
->msg_control
;
1919 ctl_len
= msg_sys
->msg_controllen
;
1920 } else if (ctl_len
) {
1921 if (ctl_len
> sizeof(ctl
)) {
1922 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
1923 if (ctl_buf
== NULL
)
1928 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1929 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1930 * checking falls down on this.
1932 if (copy_from_user(ctl_buf
,
1933 (void __user __force
*)msg_sys
->msg_control
,
1936 msg_sys
->msg_control
= ctl_buf
;
1938 msg_sys
->msg_flags
= flags
;
1940 if (sock
->file
->f_flags
& O_NONBLOCK
)
1941 msg_sys
->msg_flags
|= MSG_DONTWAIT
;
1943 * If this is sendmmsg() and current destination address is same as
1944 * previously succeeded address, omit asking LSM's decision.
1945 * used_address->name_len is initialized to UINT_MAX so that the first
1946 * destination address never matches.
1948 if (used_address
&& msg_sys
->msg_name
&&
1949 used_address
->name_len
== msg_sys
->msg_namelen
&&
1950 !memcmp(&used_address
->name
, msg_sys
->msg_name
,
1951 used_address
->name_len
)) {
1952 err
= sock_sendmsg_nosec(sock
, msg_sys
);
1955 err
= sock_sendmsg(sock
, msg_sys
);
1957 * If this is sendmmsg() and sending to current destination address was
1958 * successful, remember it.
1960 if (used_address
&& err
>= 0) {
1961 used_address
->name_len
= msg_sys
->msg_namelen
;
1962 if (msg_sys
->msg_name
)
1963 memcpy(&used_address
->name
, msg_sys
->msg_name
,
1964 used_address
->name_len
);
1969 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
1976 * BSD sendmsg interface
1979 long __sys_sendmsg(int fd
, struct user_msghdr __user
*msg
, unsigned flags
)
1981 int fput_needed
, err
;
1982 struct msghdr msg_sys
;
1983 struct socket
*sock
;
1985 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1989 err
= ___sys_sendmsg(sock
, msg
, &msg_sys
, flags
, NULL
, 0);
1991 fput_light(sock
->file
, fput_needed
);
1996 SYSCALL_DEFINE3(sendmsg
, int, fd
, struct user_msghdr __user
*, msg
, unsigned int, flags
)
1998 if (flags
& MSG_CMSG_COMPAT
)
2000 return __sys_sendmsg(fd
, msg
, flags
);
2004 * Linux sendmmsg interface
2007 int __sys_sendmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2010 int fput_needed
, err
, datagrams
;
2011 struct socket
*sock
;
2012 struct mmsghdr __user
*entry
;
2013 struct compat_mmsghdr __user
*compat_entry
;
2014 struct msghdr msg_sys
;
2015 struct used_address used_address
;
2016 unsigned int oflags
= flags
;
2018 if (vlen
> UIO_MAXIOV
)
2023 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2027 used_address
.name_len
= UINT_MAX
;
2029 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2033 while (datagrams
< vlen
) {
2034 if (datagrams
== vlen
- 1)
2037 if (MSG_CMSG_COMPAT
& flags
) {
2038 err
= ___sys_sendmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2039 &msg_sys
, flags
, &used_address
, MSG_EOR
);
2042 err
= __put_user(err
, &compat_entry
->msg_len
);
2045 err
= ___sys_sendmsg(sock
,
2046 (struct user_msghdr __user
*)entry
,
2047 &msg_sys
, flags
, &used_address
, MSG_EOR
);
2050 err
= put_user(err
, &entry
->msg_len
);
2057 if (msg_data_left(&msg_sys
))
2062 fput_light(sock
->file
, fput_needed
);
2064 /* We only return an error if no datagrams were able to be sent */
2071 SYSCALL_DEFINE4(sendmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2072 unsigned int, vlen
, unsigned int, flags
)
2074 if (flags
& MSG_CMSG_COMPAT
)
2076 return __sys_sendmmsg(fd
, mmsg
, vlen
, flags
);
2079 static int ___sys_recvmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
2080 struct msghdr
*msg_sys
, unsigned int flags
, int nosec
)
2082 struct compat_msghdr __user
*msg_compat
=
2083 (struct compat_msghdr __user
*)msg
;
2084 struct iovec iovstack
[UIO_FASTIOV
];
2085 struct iovec
*iov
= iovstack
;
2086 unsigned long cmsg_ptr
;
2090 /* kernel mode address */
2091 struct sockaddr_storage addr
;
2093 /* user mode address pointers */
2094 struct sockaddr __user
*uaddr
;
2095 int __user
*uaddr_len
= COMPAT_NAMELEN(msg
);
2097 msg_sys
->msg_name
= &addr
;
2099 if (MSG_CMSG_COMPAT
& flags
)
2100 err
= get_compat_msghdr(msg_sys
, msg_compat
, &uaddr
, &iov
);
2102 err
= copy_msghdr_from_user(msg_sys
, msg
, &uaddr
, &iov
);
2106 cmsg_ptr
= (unsigned long)msg_sys
->msg_control
;
2107 msg_sys
->msg_flags
= flags
& (MSG_CMSG_CLOEXEC
|MSG_CMSG_COMPAT
);
2109 /* We assume all kernel code knows the size of sockaddr_storage */
2110 msg_sys
->msg_namelen
= 0;
2112 if (sock
->file
->f_flags
& O_NONBLOCK
)
2113 flags
|= MSG_DONTWAIT
;
2114 err
= (nosec
? sock_recvmsg_nosec
: sock_recvmsg
)(sock
, msg_sys
, flags
);
2119 if (uaddr
!= NULL
) {
2120 err
= move_addr_to_user(&addr
,
2121 msg_sys
->msg_namelen
, uaddr
,
2126 err
= __put_user((msg_sys
->msg_flags
& ~MSG_CMSG_COMPAT
),
2130 if (MSG_CMSG_COMPAT
& flags
)
2131 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2132 &msg_compat
->msg_controllen
);
2134 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2135 &msg
->msg_controllen
);
2146 * BSD recvmsg interface
2149 long __sys_recvmsg(int fd
, struct user_msghdr __user
*msg
, unsigned flags
)
2151 int fput_needed
, err
;
2152 struct msghdr msg_sys
;
2153 struct socket
*sock
;
2155 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2159 err
= ___sys_recvmsg(sock
, msg
, &msg_sys
, flags
, 0);
2161 fput_light(sock
->file
, fput_needed
);
2166 SYSCALL_DEFINE3(recvmsg
, int, fd
, struct user_msghdr __user
*, msg
,
2167 unsigned int, flags
)
2169 if (flags
& MSG_CMSG_COMPAT
)
2171 return __sys_recvmsg(fd
, msg
, flags
);
2175 * Linux recvmmsg interface
2178 int __sys_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2179 unsigned int flags
, struct timespec
*timeout
)
2181 int fput_needed
, err
, datagrams
;
2182 struct socket
*sock
;
2183 struct mmsghdr __user
*entry
;
2184 struct compat_mmsghdr __user
*compat_entry
;
2185 struct msghdr msg_sys
;
2186 struct timespec64 end_time
;
2187 struct timespec64 timeout64
;
2190 poll_select_set_timeout(&end_time
, timeout
->tv_sec
,
2196 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2200 err
= sock_error(sock
->sk
);
2207 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2209 while (datagrams
< vlen
) {
2211 * No need to ask LSM for more than the first datagram.
2213 if (MSG_CMSG_COMPAT
& flags
) {
2214 err
= ___sys_recvmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2215 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2219 err
= __put_user(err
, &compat_entry
->msg_len
);
2222 err
= ___sys_recvmsg(sock
,
2223 (struct user_msghdr __user
*)entry
,
2224 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2228 err
= put_user(err
, &entry
->msg_len
);
2236 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2237 if (flags
& MSG_WAITFORONE
)
2238 flags
|= MSG_DONTWAIT
;
2241 ktime_get_ts64(&timeout64
);
2242 *timeout
= timespec64_to_timespec(
2243 timespec64_sub(end_time
, timeout64
));
2244 if (timeout
->tv_sec
< 0) {
2245 timeout
->tv_sec
= timeout
->tv_nsec
= 0;
2249 /* Timeout, return less than vlen datagrams */
2250 if (timeout
->tv_nsec
== 0 && timeout
->tv_sec
== 0)
2254 /* Out of band data, return right away */
2255 if (msg_sys
.msg_flags
& MSG_OOB
)
2263 if (datagrams
== 0) {
2269 * We may return less entries than requested (vlen) if the
2270 * sock is non block and there aren't enough datagrams...
2272 if (err
!= -EAGAIN
) {
2274 * ... or if recvmsg returns an error after we
2275 * received some datagrams, where we record the
2276 * error to return on the next call or if the
2277 * app asks about it using getsockopt(SO_ERROR).
2279 sock
->sk
->sk_err
= -err
;
2282 fput_light(sock
->file
, fput_needed
);
2287 SYSCALL_DEFINE5(recvmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2288 unsigned int, vlen
, unsigned int, flags
,
2289 struct timespec __user
*, timeout
)
2292 struct timespec timeout_sys
;
2294 if (flags
& MSG_CMSG_COMPAT
)
2298 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
);
2300 if (copy_from_user(&timeout_sys
, timeout
, sizeof(timeout_sys
)))
2303 datagrams
= __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, &timeout_sys
);
2305 if (datagrams
> 0 &&
2306 copy_to_user(timeout
, &timeout_sys
, sizeof(timeout_sys
)))
2307 datagrams
= -EFAULT
;
2312 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2313 /* Argument list sizes for sys_socketcall */
2314 #define AL(x) ((x) * sizeof(unsigned long))
2315 static const unsigned char nargs
[21] = {
2316 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2317 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2318 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2325 * System call vectors.
2327 * Argument checking cleaned up. Saved 20% in size.
2328 * This function doesn't need to set the kernel lock because
2329 * it is set by the callees.
2332 SYSCALL_DEFINE2(socketcall
, int, call
, unsigned long __user
*, args
)
2334 unsigned long a
[AUDITSC_ARGS
];
2335 unsigned long a0
, a1
;
2339 if (call
< 1 || call
> SYS_SENDMMSG
)
2343 if (len
> sizeof(a
))
2346 /* copy_from_user should be SMP safe. */
2347 if (copy_from_user(a
, args
, len
))
2350 err
= audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
2359 err
= sys_socket(a0
, a1
, a
[2]);
2362 err
= sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2365 err
= sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2368 err
= sys_listen(a0
, a1
);
2371 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2372 (int __user
*)a
[2], 0);
2374 case SYS_GETSOCKNAME
:
2376 sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2377 (int __user
*)a
[2]);
2379 case SYS_GETPEERNAME
:
2381 sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2382 (int __user
*)a
[2]);
2384 case SYS_SOCKETPAIR
:
2385 err
= sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2388 err
= sys_send(a0
, (void __user
*)a1
, a
[2], a
[3]);
2391 err
= sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2392 (struct sockaddr __user
*)a
[4], a
[5]);
2395 err
= sys_recv(a0
, (void __user
*)a1
, a
[2], a
[3]);
2398 err
= sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2399 (struct sockaddr __user
*)a
[4],
2400 (int __user
*)a
[5]);
2403 err
= sys_shutdown(a0
, a1
);
2405 case SYS_SETSOCKOPT
:
2406 err
= sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3], a
[4]);
2408 case SYS_GETSOCKOPT
:
2410 sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2411 (int __user
*)a
[4]);
2414 err
= sys_sendmsg(a0
, (struct user_msghdr __user
*)a1
, a
[2]);
2417 err
= sys_sendmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2], a
[3]);
2420 err
= sys_recvmsg(a0
, (struct user_msghdr __user
*)a1
, a
[2]);
2423 err
= sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2], a
[3],
2424 (struct timespec __user
*)a
[4]);
2427 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2428 (int __user
*)a
[2], a
[3]);
2437 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2440 * sock_register - add a socket protocol handler
2441 * @ops: description of protocol
2443 * This function is called by a protocol handler that wants to
2444 * advertise its address family, and have it linked into the
2445 * socket interface. The value ops->family corresponds to the
2446 * socket system call protocol family.
2448 int sock_register(const struct net_proto_family
*ops
)
2452 if (ops
->family
>= NPROTO
) {
2453 pr_crit("protocol %d >= NPROTO(%d)\n", ops
->family
, NPROTO
);
2457 spin_lock(&net_family_lock
);
2458 if (rcu_dereference_protected(net_families
[ops
->family
],
2459 lockdep_is_held(&net_family_lock
)))
2462 rcu_assign_pointer(net_families
[ops
->family
], ops
);
2465 spin_unlock(&net_family_lock
);
2467 pr_info("NET: Registered protocol family %d\n", ops
->family
);
2470 EXPORT_SYMBOL(sock_register
);
2473 * sock_unregister - remove a protocol handler
2474 * @family: protocol family to remove
2476 * This function is called by a protocol handler that wants to
2477 * remove its address family, and have it unlinked from the
2478 * new socket creation.
2480 * If protocol handler is a module, then it can use module reference
2481 * counts to protect against new references. If protocol handler is not
2482 * a module then it needs to provide its own protection in
2483 * the ops->create routine.
2485 void sock_unregister(int family
)
2487 BUG_ON(family
< 0 || family
>= NPROTO
);
2489 spin_lock(&net_family_lock
);
2490 RCU_INIT_POINTER(net_families
[family
], NULL
);
2491 spin_unlock(&net_family_lock
);
2495 pr_info("NET: Unregistered protocol family %d\n", family
);
2497 EXPORT_SYMBOL(sock_unregister
);
2499 static int __init
sock_init(void)
2503 * Initialize the network sysctl infrastructure.
2505 err
= net_sysctl_init();
2510 * Initialize skbuff SLAB cache
2515 * Initialize the protocols module.
2520 err
= register_filesystem(&sock_fs_type
);
2523 sock_mnt
= kern_mount(&sock_fs_type
);
2524 if (IS_ERR(sock_mnt
)) {
2525 err
= PTR_ERR(sock_mnt
);
2529 /* The real protocol initialization is performed in later initcalls.
2532 #ifdef CONFIG_NETFILTER
2533 err
= netfilter_init();
2538 ptp_classifier_init();
2544 unregister_filesystem(&sock_fs_type
);
2549 core_initcall(sock_init
); /* early initcall */
2551 static int __init
jit_init(void)
2553 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
2558 pure_initcall(jit_init
);
2560 #ifdef CONFIG_PROC_FS
2561 void socket_seq_show(struct seq_file
*seq
)
2566 for_each_possible_cpu(cpu
)
2567 counter
+= per_cpu(sockets_in_use
, cpu
);
2569 /* It can be negative, by the way. 8) */
2573 seq_printf(seq
, "sockets: used %d\n", counter
);
2575 #endif /* CONFIG_PROC_FS */
2577 #ifdef CONFIG_COMPAT
2578 static int do_siocgstamp(struct net
*net
, struct socket
*sock
,
2579 unsigned int cmd
, void __user
*up
)
2581 mm_segment_t old_fs
= get_fs();
2586 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&ktv
);
2589 err
= compat_put_timeval(&ktv
, up
);
2594 static int do_siocgstampns(struct net
*net
, struct socket
*sock
,
2595 unsigned int cmd
, void __user
*up
)
2597 mm_segment_t old_fs
= get_fs();
2598 struct timespec kts
;
2602 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&kts
);
2605 err
= compat_put_timespec(&kts
, up
);
2610 static int dev_ifname32(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2612 struct ifreq __user
*uifr
;
2615 uifr
= compat_alloc_user_space(sizeof(struct ifreq
));
2616 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2619 err
= dev_ioctl(net
, SIOCGIFNAME
, uifr
);
2623 if (copy_in_user(uifr32
, uifr
, sizeof(struct compat_ifreq
)))
2629 static int dev_ifconf(struct net
*net
, struct compat_ifconf __user
*uifc32
)
2631 struct compat_ifconf ifc32
;
2633 struct ifconf __user
*uifc
;
2634 struct compat_ifreq __user
*ifr32
;
2635 struct ifreq __user
*ifr
;
2639 if (copy_from_user(&ifc32
, uifc32
, sizeof(struct compat_ifconf
)))
2642 memset(&ifc
, 0, sizeof(ifc
));
2643 if (ifc32
.ifcbuf
== 0) {
2647 uifc
= compat_alloc_user_space(sizeof(struct ifconf
));
2649 size_t len
= ((ifc32
.ifc_len
/ sizeof(struct compat_ifreq
)) + 1) *
2650 sizeof(struct ifreq
);
2651 uifc
= compat_alloc_user_space(sizeof(struct ifconf
) + len
);
2653 ifr
= ifc
.ifc_req
= (void __user
*)(uifc
+ 1);
2654 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2655 for (i
= 0; i
< ifc32
.ifc_len
; i
+= sizeof(struct compat_ifreq
)) {
2656 if (copy_in_user(ifr
, ifr32
, sizeof(struct compat_ifreq
)))
2662 if (copy_to_user(uifc
, &ifc
, sizeof(struct ifconf
)))
2665 err
= dev_ioctl(net
, SIOCGIFCONF
, uifc
);
2669 if (copy_from_user(&ifc
, uifc
, sizeof(struct ifconf
)))
2673 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2675 i
+ sizeof(struct compat_ifreq
) <= ifc32
.ifc_len
&& j
< ifc
.ifc_len
;
2676 i
+= sizeof(struct compat_ifreq
), j
+= sizeof(struct ifreq
)) {
2677 if (copy_in_user(ifr32
, ifr
, sizeof(struct compat_ifreq
)))
2683 if (ifc32
.ifcbuf
== 0) {
2684 /* Translate from 64-bit structure multiple to
2688 i
= ((i
/ sizeof(struct ifreq
)) * sizeof(struct compat_ifreq
));
2693 if (copy_to_user(uifc32
, &ifc32
, sizeof(struct compat_ifconf
)))
2699 static int ethtool_ioctl(struct net
*net
, struct compat_ifreq __user
*ifr32
)
2701 struct compat_ethtool_rxnfc __user
*compat_rxnfc
;
2702 bool convert_in
= false, convert_out
= false;
2703 size_t buf_size
= ALIGN(sizeof(struct ifreq
), 8);
2704 struct ethtool_rxnfc __user
*rxnfc
;
2705 struct ifreq __user
*ifr
;
2706 u32 rule_cnt
= 0, actual_rule_cnt
;
2711 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
2714 compat_rxnfc
= compat_ptr(data
);
2716 if (get_user(ethcmd
, &compat_rxnfc
->cmd
))
2719 /* Most ethtool structures are defined without padding.
2720 * Unfortunately struct ethtool_rxnfc is an exception.
2725 case ETHTOOL_GRXCLSRLALL
:
2726 /* Buffer size is variable */
2727 if (get_user(rule_cnt
, &compat_rxnfc
->rule_cnt
))
2729 if (rule_cnt
> KMALLOC_MAX_SIZE
/ sizeof(u32
))
2731 buf_size
+= rule_cnt
* sizeof(u32
);
2733 case ETHTOOL_GRXRINGS
:
2734 case ETHTOOL_GRXCLSRLCNT
:
2735 case ETHTOOL_GRXCLSRULE
:
2736 case ETHTOOL_SRXCLSRLINS
:
2739 case ETHTOOL_SRXCLSRLDEL
:
2740 buf_size
+= sizeof(struct ethtool_rxnfc
);
2745 ifr
= compat_alloc_user_space(buf_size
);
2746 rxnfc
= (void __user
*)ifr
+ ALIGN(sizeof(struct ifreq
), 8);
2748 if (copy_in_user(&ifr
->ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
2751 if (put_user(convert_in
? rxnfc
: compat_ptr(data
),
2752 &ifr
->ifr_ifru
.ifru_data
))
2756 /* We expect there to be holes between fs.m_ext and
2757 * fs.ring_cookie and at the end of fs, but nowhere else.
2759 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc
, fs
.m_ext
) +
2760 sizeof(compat_rxnfc
->fs
.m_ext
) !=
2761 offsetof(struct ethtool_rxnfc
, fs
.m_ext
) +
2762 sizeof(rxnfc
->fs
.m_ext
));
2764 offsetof(struct compat_ethtool_rxnfc
, fs
.location
) -
2765 offsetof(struct compat_ethtool_rxnfc
, fs
.ring_cookie
) !=
2766 offsetof(struct ethtool_rxnfc
, fs
.location
) -
2767 offsetof(struct ethtool_rxnfc
, fs
.ring_cookie
));
2769 if (copy_in_user(rxnfc
, compat_rxnfc
,
2770 (void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
2771 (void __user
*)rxnfc
) ||
2772 copy_in_user(&rxnfc
->fs
.ring_cookie
,
2773 &compat_rxnfc
->fs
.ring_cookie
,
2774 (void __user
*)(&rxnfc
->fs
.location
+ 1) -
2775 (void __user
*)&rxnfc
->fs
.ring_cookie
) ||
2776 copy_in_user(&rxnfc
->rule_cnt
, &compat_rxnfc
->rule_cnt
,
2777 sizeof(rxnfc
->rule_cnt
)))
2781 ret
= dev_ioctl(net
, SIOCETHTOOL
, ifr
);
2786 if (copy_in_user(compat_rxnfc
, rxnfc
,
2787 (const void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
2788 (const void __user
*)rxnfc
) ||
2789 copy_in_user(&compat_rxnfc
->fs
.ring_cookie
,
2790 &rxnfc
->fs
.ring_cookie
,
2791 (const void __user
*)(&rxnfc
->fs
.location
+ 1) -
2792 (const void __user
*)&rxnfc
->fs
.ring_cookie
) ||
2793 copy_in_user(&compat_rxnfc
->rule_cnt
, &rxnfc
->rule_cnt
,
2794 sizeof(rxnfc
->rule_cnt
)))
2797 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
2798 /* As an optimisation, we only copy the actual
2799 * number of rules that the underlying
2800 * function returned. Since Mallory might
2801 * change the rule count in user memory, we
2802 * check that it is less than the rule count
2803 * originally given (as the user buffer size),
2804 * which has been range-checked.
2806 if (get_user(actual_rule_cnt
, &rxnfc
->rule_cnt
))
2808 if (actual_rule_cnt
< rule_cnt
)
2809 rule_cnt
= actual_rule_cnt
;
2810 if (copy_in_user(&compat_rxnfc
->rule_locs
[0],
2811 &rxnfc
->rule_locs
[0],
2812 rule_cnt
* sizeof(u32
)))
2820 static int compat_siocwandev(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2823 compat_uptr_t uptr32
;
2824 struct ifreq __user
*uifr
;
2826 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2827 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2830 if (get_user(uptr32
, &uifr32
->ifr_settings
.ifs_ifsu
))
2833 uptr
= compat_ptr(uptr32
);
2835 if (put_user(uptr
, &uifr
->ifr_settings
.ifs_ifsu
.raw_hdlc
))
2838 return dev_ioctl(net
, SIOCWANDEV
, uifr
);
2841 static int bond_ioctl(struct net
*net
, unsigned int cmd
,
2842 struct compat_ifreq __user
*ifr32
)
2845 mm_segment_t old_fs
;
2849 case SIOCBONDENSLAVE
:
2850 case SIOCBONDRELEASE
:
2851 case SIOCBONDSETHWADDR
:
2852 case SIOCBONDCHANGEACTIVE
:
2853 if (copy_from_user(&kifr
, ifr32
, sizeof(struct compat_ifreq
)))
2858 err
= dev_ioctl(net
, cmd
,
2859 (struct ifreq __user __force
*) &kifr
);
2864 return -ENOIOCTLCMD
;
2868 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2869 static int compat_ifr_data_ioctl(struct net
*net
, unsigned int cmd
,
2870 struct compat_ifreq __user
*u_ifreq32
)
2872 struct ifreq __user
*u_ifreq64
;
2873 char tmp_buf
[IFNAMSIZ
];
2874 void __user
*data64
;
2877 if (copy_from_user(&tmp_buf
[0], &(u_ifreq32
->ifr_ifrn
.ifrn_name
[0]),
2880 if (get_user(data32
, &u_ifreq32
->ifr_ifru
.ifru_data
))
2882 data64
= compat_ptr(data32
);
2884 u_ifreq64
= compat_alloc_user_space(sizeof(*u_ifreq64
));
2886 if (copy_to_user(&u_ifreq64
->ifr_ifrn
.ifrn_name
[0], &tmp_buf
[0],
2889 if (put_user(data64
, &u_ifreq64
->ifr_ifru
.ifru_data
))
2892 return dev_ioctl(net
, cmd
, u_ifreq64
);
2895 static int dev_ifsioc(struct net
*net
, struct socket
*sock
,
2896 unsigned int cmd
, struct compat_ifreq __user
*uifr32
)
2898 struct ifreq __user
*uifr
;
2901 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2902 if (copy_in_user(uifr
, uifr32
, sizeof(*uifr32
)))
2905 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)uifr
);
2916 case SIOCGIFBRDADDR
:
2917 case SIOCGIFDSTADDR
:
2918 case SIOCGIFNETMASK
:
2923 if (copy_in_user(uifr32
, uifr
, sizeof(*uifr32
)))
2931 static int compat_sioc_ifmap(struct net
*net
, unsigned int cmd
,
2932 struct compat_ifreq __user
*uifr32
)
2935 struct compat_ifmap __user
*uifmap32
;
2936 mm_segment_t old_fs
;
2939 uifmap32
= &uifr32
->ifr_ifru
.ifru_map
;
2940 err
= copy_from_user(&ifr
, uifr32
, sizeof(ifr
.ifr_name
));
2941 err
|= get_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
2942 err
|= get_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
2943 err
|= get_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
2944 err
|= get_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
2945 err
|= get_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
2946 err
|= get_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
2952 err
= dev_ioctl(net
, cmd
, (void __user __force
*)&ifr
);
2955 if (cmd
== SIOCGIFMAP
&& !err
) {
2956 err
= copy_to_user(uifr32
, &ifr
, sizeof(ifr
.ifr_name
));
2957 err
|= put_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
2958 err
|= put_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
2959 err
|= put_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
2960 err
|= put_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
2961 err
|= put_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
2962 err
|= put_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
2971 struct sockaddr rt_dst
; /* target address */
2972 struct sockaddr rt_gateway
; /* gateway addr (RTF_GATEWAY) */
2973 struct sockaddr rt_genmask
; /* target network mask (IP) */
2974 unsigned short rt_flags
;
2977 unsigned char rt_tos
;
2978 unsigned char rt_class
;
2980 short rt_metric
; /* +1 for binary compatibility! */
2981 /* char * */ u32 rt_dev
; /* forcing the device at add */
2982 u32 rt_mtu
; /* per route MTU/Window */
2983 u32 rt_window
; /* Window clamping */
2984 unsigned short rt_irtt
; /* Initial RTT */
2987 struct in6_rtmsg32
{
2988 struct in6_addr rtmsg_dst
;
2989 struct in6_addr rtmsg_src
;
2990 struct in6_addr rtmsg_gateway
;
3000 static int routing_ioctl(struct net
*net
, struct socket
*sock
,
3001 unsigned int cmd
, void __user
*argp
)
3005 struct in6_rtmsg r6
;
3009 mm_segment_t old_fs
= get_fs();
3011 if (sock
&& sock
->sk
&& sock
->sk
->sk_family
== AF_INET6
) { /* ipv6 */
3012 struct in6_rtmsg32 __user
*ur6
= argp
;
3013 ret
= copy_from_user(&r6
.rtmsg_dst
, &(ur6
->rtmsg_dst
),
3014 3 * sizeof(struct in6_addr
));
3015 ret
|= get_user(r6
.rtmsg_type
, &(ur6
->rtmsg_type
));
3016 ret
|= get_user(r6
.rtmsg_dst_len
, &(ur6
->rtmsg_dst_len
));
3017 ret
|= get_user(r6
.rtmsg_src_len
, &(ur6
->rtmsg_src_len
));
3018 ret
|= get_user(r6
.rtmsg_metric
, &(ur6
->rtmsg_metric
));
3019 ret
|= get_user(r6
.rtmsg_info
, &(ur6
->rtmsg_info
));
3020 ret
|= get_user(r6
.rtmsg_flags
, &(ur6
->rtmsg_flags
));
3021 ret
|= get_user(r6
.rtmsg_ifindex
, &(ur6
->rtmsg_ifindex
));
3025 struct rtentry32 __user
*ur4
= argp
;
3026 ret
= copy_from_user(&r4
.rt_dst
, &(ur4
->rt_dst
),
3027 3 * sizeof(struct sockaddr
));
3028 ret
|= get_user(r4
.rt_flags
, &(ur4
->rt_flags
));
3029 ret
|= get_user(r4
.rt_metric
, &(ur4
->rt_metric
));
3030 ret
|= get_user(r4
.rt_mtu
, &(ur4
->rt_mtu
));
3031 ret
|= get_user(r4
.rt_window
, &(ur4
->rt_window
));
3032 ret
|= get_user(r4
.rt_irtt
, &(ur4
->rt_irtt
));
3033 ret
|= get_user(rtdev
, &(ur4
->rt_dev
));
3035 ret
|= copy_from_user(devname
, compat_ptr(rtdev
), 15);
3036 r4
.rt_dev
= (char __user __force
*)devname
;
3050 ret
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long) r
);
3057 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3058 * for some operations; this forces use of the newer bridge-utils that
3059 * use compatible ioctls
3061 static int old_bridge_ioctl(compat_ulong_t __user
*argp
)
3065 if (get_user(tmp
, argp
))
3067 if (tmp
== BRCTL_GET_VERSION
)
3068 return BRCTL_VERSION
+ 1;
3072 static int compat_sock_ioctl_trans(struct file
*file
, struct socket
*sock
,
3073 unsigned int cmd
, unsigned long arg
)
3075 void __user
*argp
= compat_ptr(arg
);
3076 struct sock
*sk
= sock
->sk
;
3077 struct net
*net
= sock_net(sk
);
3079 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))
3080 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3085 return old_bridge_ioctl(argp
);
3087 return dev_ifname32(net
, argp
);
3089 return dev_ifconf(net
, argp
);
3091 return ethtool_ioctl(net
, argp
);
3093 return compat_siocwandev(net
, argp
);
3096 return compat_sioc_ifmap(net
, cmd
, argp
);
3097 case SIOCBONDENSLAVE
:
3098 case SIOCBONDRELEASE
:
3099 case SIOCBONDSETHWADDR
:
3100 case SIOCBONDCHANGEACTIVE
:
3101 return bond_ioctl(net
, cmd
, argp
);
3104 return routing_ioctl(net
, sock
, cmd
, argp
);
3106 return do_siocgstamp(net
, sock
, cmd
, argp
);
3108 return do_siocgstampns(net
, sock
, cmd
, argp
);
3109 case SIOCBONDSLAVEINFOQUERY
:
3110 case SIOCBONDINFOQUERY
:
3113 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3125 return sock_ioctl(file
, cmd
, arg
);
3142 case SIOCSIFHWBROADCAST
:
3144 case SIOCGIFBRDADDR
:
3145 case SIOCSIFBRDADDR
:
3146 case SIOCGIFDSTADDR
:
3147 case SIOCSIFDSTADDR
:
3148 case SIOCGIFNETMASK
:
3149 case SIOCSIFNETMASK
:
3160 return dev_ifsioc(net
, sock
, cmd
, argp
);
3166 return sock_do_ioctl(net
, sock
, cmd
, arg
);
3169 return -ENOIOCTLCMD
;
3172 static long compat_sock_ioctl(struct file
*file
, unsigned int cmd
,
3175 struct socket
*sock
= file
->private_data
;
3176 int ret
= -ENOIOCTLCMD
;
3183 if (sock
->ops
->compat_ioctl
)
3184 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
3186 if (ret
== -ENOIOCTLCMD
&&
3187 (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
))
3188 ret
= compat_wext_handle_ioctl(net
, cmd
, arg
);
3190 if (ret
== -ENOIOCTLCMD
)
3191 ret
= compat_sock_ioctl_trans(file
, sock
, cmd
, arg
);
3197 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
3199 return sock
->ops
->bind(sock
, addr
, addrlen
);
3201 EXPORT_SYMBOL(kernel_bind
);
3203 int kernel_listen(struct socket
*sock
, int backlog
)
3205 return sock
->ops
->listen(sock
, backlog
);
3207 EXPORT_SYMBOL(kernel_listen
);
3209 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
3211 struct sock
*sk
= sock
->sk
;
3214 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
3219 err
= sock
->ops
->accept(sock
, *newsock
, flags
);
3221 sock_release(*newsock
);
3226 (*newsock
)->ops
= sock
->ops
;
3227 __module_get((*newsock
)->ops
->owner
);
3232 EXPORT_SYMBOL(kernel_accept
);
3234 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
3237 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
3239 EXPORT_SYMBOL(kernel_connect
);
3241 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
,
3244 return sock
->ops
->getname(sock
, addr
, addrlen
, 0);
3246 EXPORT_SYMBOL(kernel_getsockname
);
3248 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
,
3251 return sock
->ops
->getname(sock
, addr
, addrlen
, 1);
3253 EXPORT_SYMBOL(kernel_getpeername
);
3255 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
3256 char *optval
, int *optlen
)
3258 mm_segment_t oldfs
= get_fs();
3259 char __user
*uoptval
;
3260 int __user
*uoptlen
;
3263 uoptval
= (char __user __force
*) optval
;
3264 uoptlen
= (int __user __force
*) optlen
;
3267 if (level
== SOL_SOCKET
)
3268 err
= sock_getsockopt(sock
, level
, optname
, uoptval
, uoptlen
);
3270 err
= sock
->ops
->getsockopt(sock
, level
, optname
, uoptval
,
3275 EXPORT_SYMBOL(kernel_getsockopt
);
3277 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
3278 char *optval
, unsigned int optlen
)
3280 mm_segment_t oldfs
= get_fs();
3281 char __user
*uoptval
;
3284 uoptval
= (char __user __force
*) optval
;
3287 if (level
== SOL_SOCKET
)
3288 err
= sock_setsockopt(sock
, level
, optname
, uoptval
, optlen
);
3290 err
= sock
->ops
->setsockopt(sock
, level
, optname
, uoptval
,
3295 EXPORT_SYMBOL(kernel_setsockopt
);
3297 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
3298 size_t size
, int flags
)
3300 if (sock
->ops
->sendpage
)
3301 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
3303 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
3305 EXPORT_SYMBOL(kernel_sendpage
);
3307 int kernel_sock_ioctl(struct socket
*sock
, int cmd
, unsigned long arg
)
3309 mm_segment_t oldfs
= get_fs();
3313 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
3318 EXPORT_SYMBOL(kernel_sock_ioctl
);
3320 int kernel_sock_shutdown(struct socket
*sock
, enum sock_shutdown_cmd how
)
3322 return sock
->ops
->shutdown(sock
, how
);
3324 EXPORT_SYMBOL(kernel_sock_shutdown
);