Revert "ip6_vti: adjust vti mtu according to mtu of lower device"
[linux/fpc-iii.git] / net / socket.c
blobbd3b33988ee015d5bfed69813d04b41f61120417
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
145 .poll = sock_poll,
146 .unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 .compat_ioctl = compat_sock_ioctl,
149 #endif
150 .mmap = sock_mmap,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
159 * The protocol list. Each protocol is registered in here.
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
166 * Statistics counters of the socket lists
169 static DEFINE_PER_CPU(int, sockets_in_use);
172 * Support routines.
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 return -EINVAL;
192 if (ulen == 0)
193 return 0;
194 if (copy_from_user(kaddr, uaddr, ulen))
195 return -EFAULT;
196 return audit_sockaddr(ulen, kaddr);
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
210 * accessible.
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 void __user *uaddr, int __user *ulen)
219 int err;
220 int len;
222 BUG_ON(klen > sizeof(struct sockaddr_storage));
223 err = get_user(len, ulen);
224 if (err)
225 return err;
226 if (len > klen)
227 len = klen;
228 if (len < 0)
229 return -EINVAL;
230 if (len) {
231 if (audit_sockaddr(klen, kaddr))
232 return -ENOMEM;
233 if (copy_to_user(uaddr, kaddr, len))
234 return -EFAULT;
237 * "fromlen shall refer to the value before truncation.."
238 * 1003.1g
240 return __put_user(klen, ulen);
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
245 static struct inode *sock_alloc_inode(struct super_block *sb)
247 struct socket_alloc *ei;
248 struct socket_wq *wq;
250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 if (!ei)
252 return NULL;
253 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 if (!wq) {
255 kmem_cache_free(sock_inode_cachep, ei);
256 return NULL;
258 init_waitqueue_head(&wq->wait);
259 wq->fasync_list = NULL;
260 wq->flags = 0;
261 RCU_INIT_POINTER(ei->socket.wq, wq);
263 ei->socket.state = SS_UNCONNECTED;
264 ei->socket.flags = 0;
265 ei->socket.ops = NULL;
266 ei->socket.sk = NULL;
267 ei->socket.file = NULL;
269 return &ei->vfs_inode;
272 static void sock_destroy_inode(struct inode *inode)
274 struct socket_alloc *ei;
275 struct socket_wq *wq;
277 ei = container_of(inode, struct socket_alloc, vfs_inode);
278 wq = rcu_dereference_protected(ei->socket.wq, 1);
279 kfree_rcu(wq, rcu);
280 kmem_cache_free(sock_inode_cachep, ei);
283 static void init_once(void *foo)
285 struct socket_alloc *ei = (struct socket_alloc *)foo;
287 inode_init_once(&ei->vfs_inode);
290 static int init_inodecache(void)
292 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc),
295 (SLAB_HWCACHE_ALIGN |
296 SLAB_RECLAIM_ACCOUNT |
297 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298 init_once);
299 if (sock_inode_cachep == NULL)
300 return -ENOMEM;
301 return 0;
304 static const struct super_operations sockfs_ops = {
305 .alloc_inode = sock_alloc_inode,
306 .destroy_inode = sock_destroy_inode,
307 .statfs = simple_statfs,
311 * sockfs_dname() is called from d_path().
313 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
315 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
316 d_inode(dentry)->i_ino);
319 static const struct dentry_operations sockfs_dentry_operations = {
320 .d_dname = sockfs_dname,
323 static int sockfs_xattr_get(const struct xattr_handler *handler,
324 struct dentry *dentry, struct inode *inode,
325 const char *suffix, void *value, size_t size)
327 if (value) {
328 if (dentry->d_name.len + 1 > size)
329 return -ERANGE;
330 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
332 return dentry->d_name.len + 1;
335 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
336 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
337 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
339 static const struct xattr_handler sockfs_xattr_handler = {
340 .name = XATTR_NAME_SOCKPROTONAME,
341 .get = sockfs_xattr_get,
344 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
345 struct dentry *dentry, struct inode *inode,
346 const char *suffix, const void *value,
347 size_t size, int flags)
349 /* Handled by LSM. */
350 return -EAGAIN;
353 static const struct xattr_handler sockfs_security_xattr_handler = {
354 .prefix = XATTR_SECURITY_PREFIX,
355 .set = sockfs_security_xattr_set,
358 static const struct xattr_handler *sockfs_xattr_handlers[] = {
359 &sockfs_xattr_handler,
360 &sockfs_security_xattr_handler,
361 NULL
364 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
365 int flags, const char *dev_name, void *data)
367 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
368 sockfs_xattr_handlers,
369 &sockfs_dentry_operations, SOCKFS_MAGIC);
372 static struct vfsmount *sock_mnt __read_mostly;
374 static struct file_system_type sock_fs_type = {
375 .name = "sockfs",
376 .mount = sockfs_mount,
377 .kill_sb = kill_anon_super,
381 * Obtains the first available file descriptor and sets it up for use.
383 * These functions create file structures and maps them to fd space
384 * of the current process. On success it returns file descriptor
385 * and file struct implicitly stored in sock->file.
386 * Note that another thread may close file descriptor before we return
387 * from this function. We use the fact that now we do not refer
388 * to socket after mapping. If one day we will need it, this
389 * function will increment ref. count on file by 1.
391 * In any case returned fd MAY BE not valid!
392 * This race condition is unavoidable
393 * with shared fd spaces, we cannot solve it inside kernel,
394 * but we take care of internal coherence yet.
397 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
399 struct qstr name = { .name = "" };
400 struct path path;
401 struct file *file;
403 if (dname) {
404 name.name = dname;
405 name.len = strlen(name.name);
406 } else if (sock->sk) {
407 name.name = sock->sk->sk_prot_creator->name;
408 name.len = strlen(name.name);
410 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
411 if (unlikely(!path.dentry))
412 return ERR_PTR(-ENOMEM);
413 path.mnt = mntget(sock_mnt);
415 d_instantiate(path.dentry, SOCK_INODE(sock));
417 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
418 &socket_file_ops);
419 if (IS_ERR(file)) {
420 /* drop dentry, keep inode */
421 ihold(d_inode(path.dentry));
422 path_put(&path);
423 return file;
426 sock->file = file;
427 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
428 file->private_data = sock;
429 return file;
431 EXPORT_SYMBOL(sock_alloc_file);
433 static int sock_map_fd(struct socket *sock, int flags)
435 struct file *newfile;
436 int fd = get_unused_fd_flags(flags);
437 if (unlikely(fd < 0))
438 return fd;
440 newfile = sock_alloc_file(sock, flags, NULL);
441 if (likely(!IS_ERR(newfile))) {
442 fd_install(fd, newfile);
443 return fd;
446 put_unused_fd(fd);
447 return PTR_ERR(newfile);
450 struct socket *sock_from_file(struct file *file, int *err)
452 if (file->f_op == &socket_file_ops)
453 return file->private_data; /* set in sock_map_fd */
455 *err = -ENOTSOCK;
456 return NULL;
458 EXPORT_SYMBOL(sock_from_file);
461 * sockfd_lookup - Go from a file number to its socket slot
462 * @fd: file handle
463 * @err: pointer to an error code return
465 * The file handle passed in is locked and the socket it is bound
466 * too is returned. If an error occurs the err pointer is overwritten
467 * with a negative errno code and NULL is returned. The function checks
468 * for both invalid handles and passing a handle which is not a socket.
470 * On a success the socket object pointer is returned.
473 struct socket *sockfd_lookup(int fd, int *err)
475 struct file *file;
476 struct socket *sock;
478 file = fget(fd);
479 if (!file) {
480 *err = -EBADF;
481 return NULL;
484 sock = sock_from_file(file, err);
485 if (!sock)
486 fput(file);
487 return sock;
489 EXPORT_SYMBOL(sockfd_lookup);
491 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
493 struct fd f = fdget(fd);
494 struct socket *sock;
496 *err = -EBADF;
497 if (f.file) {
498 sock = sock_from_file(f.file, err);
499 if (likely(sock)) {
500 *fput_needed = f.flags;
501 return sock;
503 fdput(f);
505 return NULL;
508 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
509 size_t size)
511 ssize_t len;
512 ssize_t used = 0;
514 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
515 if (len < 0)
516 return len;
517 used += len;
518 if (buffer) {
519 if (size < used)
520 return -ERANGE;
521 buffer += len;
524 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
525 used += len;
526 if (buffer) {
527 if (size < used)
528 return -ERANGE;
529 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
530 buffer += len;
533 return used;
536 static const struct inode_operations sockfs_inode_ops = {
537 .listxattr = sockfs_listxattr,
541 * sock_alloc - allocate a socket
543 * Allocate a new inode and socket object. The two are bound together
544 * and initialised. The socket is then returned. If we are out of inodes
545 * NULL is returned.
548 struct socket *sock_alloc(void)
550 struct inode *inode;
551 struct socket *sock;
553 inode = new_inode_pseudo(sock_mnt->mnt_sb);
554 if (!inode)
555 return NULL;
557 sock = SOCKET_I(inode);
559 kmemcheck_annotate_bitfield(sock, type);
560 inode->i_ino = get_next_ino();
561 inode->i_mode = S_IFSOCK | S_IRWXUGO;
562 inode->i_uid = current_fsuid();
563 inode->i_gid = current_fsgid();
564 inode->i_op = &sockfs_inode_ops;
566 this_cpu_add(sockets_in_use, 1);
567 return sock;
569 EXPORT_SYMBOL(sock_alloc);
572 * sock_release - close a socket
573 * @sock: socket to close
575 * The socket is released from the protocol stack if it has a release
576 * callback, and the inode is then released if the socket is bound to
577 * an inode not a file.
580 void sock_release(struct socket *sock)
582 if (sock->ops) {
583 struct module *owner = sock->ops->owner;
585 sock->ops->release(sock);
586 sock->ops = NULL;
587 module_put(owner);
590 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
591 pr_err("%s: fasync list not empty!\n", __func__);
593 this_cpu_sub(sockets_in_use, 1);
594 if (!sock->file) {
595 iput(SOCK_INODE(sock));
596 return;
598 sock->file = NULL;
600 EXPORT_SYMBOL(sock_release);
602 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
604 u8 flags = *tx_flags;
606 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
607 flags |= SKBTX_HW_TSTAMP;
609 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
610 flags |= SKBTX_SW_TSTAMP;
612 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
613 flags |= SKBTX_SCHED_TSTAMP;
615 *tx_flags = flags;
617 EXPORT_SYMBOL(__sock_tx_timestamp);
619 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
621 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
622 BUG_ON(ret == -EIOCBQUEUED);
623 return ret;
626 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
628 int err = security_socket_sendmsg(sock, msg,
629 msg_data_left(msg));
631 return err ?: sock_sendmsg_nosec(sock, msg);
633 EXPORT_SYMBOL(sock_sendmsg);
635 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
636 struct kvec *vec, size_t num, size_t size)
638 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
639 return sock_sendmsg(sock, msg);
641 EXPORT_SYMBOL(kernel_sendmsg);
644 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
646 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
647 struct sk_buff *skb)
649 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
650 struct scm_timestamping tss;
651 int empty = 1;
652 struct skb_shared_hwtstamps *shhwtstamps =
653 skb_hwtstamps(skb);
655 /* Race occurred between timestamp enabling and packet
656 receiving. Fill in the current time for now. */
657 if (need_software_tstamp && skb->tstamp.tv64 == 0)
658 __net_timestamp(skb);
660 if (need_software_tstamp) {
661 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
662 struct timeval tv;
663 skb_get_timestamp(skb, &tv);
664 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
665 sizeof(tv), &tv);
666 } else {
667 struct timespec ts;
668 skb_get_timestampns(skb, &ts);
669 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
670 sizeof(ts), &ts);
674 memset(&tss, 0, sizeof(tss));
675 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
676 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
677 empty = 0;
678 if (shhwtstamps &&
679 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
680 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
681 empty = 0;
682 if (!empty)
683 put_cmsg(msg, SOL_SOCKET,
684 SCM_TIMESTAMPING, sizeof(tss), &tss);
686 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
688 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
689 struct sk_buff *skb)
691 int ack;
693 if (!sock_flag(sk, SOCK_WIFI_STATUS))
694 return;
695 if (!skb->wifi_acked_valid)
696 return;
698 ack = skb->wifi_acked;
700 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
702 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
704 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
705 struct sk_buff *skb)
707 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
708 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
709 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
712 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
713 struct sk_buff *skb)
715 sock_recv_timestamp(msg, sk, skb);
716 sock_recv_drops(msg, sk, skb);
718 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
720 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
721 int flags)
723 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
726 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
728 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
730 return err ?: sock_recvmsg_nosec(sock, msg, flags);
732 EXPORT_SYMBOL(sock_recvmsg);
735 * kernel_recvmsg - Receive a message from a socket (kernel space)
736 * @sock: The socket to receive the message from
737 * @msg: Received message
738 * @vec: Input s/g array for message data
739 * @num: Size of input s/g array
740 * @size: Number of bytes to read
741 * @flags: Message flags (MSG_DONTWAIT, etc...)
743 * On return the msg structure contains the scatter/gather array passed in the
744 * vec argument. The array is modified so that it consists of the unfilled
745 * portion of the original array.
747 * The returned value is the total number of bytes received, or an error.
749 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
750 struct kvec *vec, size_t num, size_t size, int flags)
752 mm_segment_t oldfs = get_fs();
753 int result;
755 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
756 set_fs(KERNEL_DS);
757 result = sock_recvmsg(sock, msg, flags);
758 set_fs(oldfs);
759 return result;
761 EXPORT_SYMBOL(kernel_recvmsg);
763 static ssize_t sock_sendpage(struct file *file, struct page *page,
764 int offset, size_t size, loff_t *ppos, int more)
766 struct socket *sock;
767 int flags;
769 sock = file->private_data;
771 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
772 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
773 flags |= more;
775 return kernel_sendpage(sock, page, offset, size, flags);
778 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
779 struct pipe_inode_info *pipe, size_t len,
780 unsigned int flags)
782 struct socket *sock = file->private_data;
784 if (unlikely(!sock->ops->splice_read))
785 return -EINVAL;
787 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
790 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
792 struct file *file = iocb->ki_filp;
793 struct socket *sock = file->private_data;
794 struct msghdr msg = {.msg_iter = *to,
795 .msg_iocb = iocb};
796 ssize_t res;
798 if (file->f_flags & O_NONBLOCK)
799 msg.msg_flags = MSG_DONTWAIT;
801 if (iocb->ki_pos != 0)
802 return -ESPIPE;
804 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
805 return 0;
807 res = sock_recvmsg(sock, &msg, msg.msg_flags);
808 *to = msg.msg_iter;
809 return res;
812 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
814 struct file *file = iocb->ki_filp;
815 struct socket *sock = file->private_data;
816 struct msghdr msg = {.msg_iter = *from,
817 .msg_iocb = iocb};
818 ssize_t res;
820 if (iocb->ki_pos != 0)
821 return -ESPIPE;
823 if (file->f_flags & O_NONBLOCK)
824 msg.msg_flags = MSG_DONTWAIT;
826 if (sock->type == SOCK_SEQPACKET)
827 msg.msg_flags |= MSG_EOR;
829 res = sock_sendmsg(sock, &msg);
830 *from = msg.msg_iter;
831 return res;
835 * Atomic setting of ioctl hooks to avoid race
836 * with module unload.
839 static DEFINE_MUTEX(br_ioctl_mutex);
840 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
842 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
844 mutex_lock(&br_ioctl_mutex);
845 br_ioctl_hook = hook;
846 mutex_unlock(&br_ioctl_mutex);
848 EXPORT_SYMBOL(brioctl_set);
850 static DEFINE_MUTEX(vlan_ioctl_mutex);
851 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
853 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
855 mutex_lock(&vlan_ioctl_mutex);
856 vlan_ioctl_hook = hook;
857 mutex_unlock(&vlan_ioctl_mutex);
859 EXPORT_SYMBOL(vlan_ioctl_set);
861 static DEFINE_MUTEX(dlci_ioctl_mutex);
862 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
864 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
866 mutex_lock(&dlci_ioctl_mutex);
867 dlci_ioctl_hook = hook;
868 mutex_unlock(&dlci_ioctl_mutex);
870 EXPORT_SYMBOL(dlci_ioctl_set);
872 static long sock_do_ioctl(struct net *net, struct socket *sock,
873 unsigned int cmd, unsigned long arg)
875 int err;
876 void __user *argp = (void __user *)arg;
878 err = sock->ops->ioctl(sock, cmd, arg);
881 * If this ioctl is unknown try to hand it down
882 * to the NIC driver.
884 if (err == -ENOIOCTLCMD)
885 err = dev_ioctl(net, cmd, argp);
887 return err;
891 * With an ioctl, arg may well be a user mode pointer, but we don't know
892 * what to do with it - that's up to the protocol still.
895 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
897 struct socket *sock;
898 struct sock *sk;
899 void __user *argp = (void __user *)arg;
900 int pid, err;
901 struct net *net;
903 sock = file->private_data;
904 sk = sock->sk;
905 net = sock_net(sk);
906 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
907 err = dev_ioctl(net, cmd, argp);
908 } else
909 #ifdef CONFIG_WEXT_CORE
910 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
911 err = dev_ioctl(net, cmd, argp);
912 } else
913 #endif
914 switch (cmd) {
915 case FIOSETOWN:
916 case SIOCSPGRP:
917 err = -EFAULT;
918 if (get_user(pid, (int __user *)argp))
919 break;
920 f_setown(sock->file, pid, 1);
921 err = 0;
922 break;
923 case FIOGETOWN:
924 case SIOCGPGRP:
925 err = put_user(f_getown(sock->file),
926 (int __user *)argp);
927 break;
928 case SIOCGIFBR:
929 case SIOCSIFBR:
930 case SIOCBRADDBR:
931 case SIOCBRDELBR:
932 err = -ENOPKG;
933 if (!br_ioctl_hook)
934 request_module("bridge");
936 mutex_lock(&br_ioctl_mutex);
937 if (br_ioctl_hook)
938 err = br_ioctl_hook(net, cmd, argp);
939 mutex_unlock(&br_ioctl_mutex);
940 break;
941 case SIOCGIFVLAN:
942 case SIOCSIFVLAN:
943 err = -ENOPKG;
944 if (!vlan_ioctl_hook)
945 request_module("8021q");
947 mutex_lock(&vlan_ioctl_mutex);
948 if (vlan_ioctl_hook)
949 err = vlan_ioctl_hook(net, argp);
950 mutex_unlock(&vlan_ioctl_mutex);
951 break;
952 case SIOCADDDLCI:
953 case SIOCDELDLCI:
954 err = -ENOPKG;
955 if (!dlci_ioctl_hook)
956 request_module("dlci");
958 mutex_lock(&dlci_ioctl_mutex);
959 if (dlci_ioctl_hook)
960 err = dlci_ioctl_hook(cmd, argp);
961 mutex_unlock(&dlci_ioctl_mutex);
962 break;
963 default:
964 err = sock_do_ioctl(net, sock, cmd, arg);
965 break;
967 return err;
970 int sock_create_lite(int family, int type, int protocol, struct socket **res)
972 int err;
973 struct socket *sock = NULL;
975 err = security_socket_create(family, type, protocol, 1);
976 if (err)
977 goto out;
979 sock = sock_alloc();
980 if (!sock) {
981 err = -ENOMEM;
982 goto out;
985 sock->type = type;
986 err = security_socket_post_create(sock, family, type, protocol, 1);
987 if (err)
988 goto out_release;
990 out:
991 *res = sock;
992 return err;
993 out_release:
994 sock_release(sock);
995 sock = NULL;
996 goto out;
998 EXPORT_SYMBOL(sock_create_lite);
1000 /* No kernel lock held - perfect */
1001 static unsigned int sock_poll(struct file *file, poll_table *wait)
1003 unsigned int busy_flag = 0;
1004 struct socket *sock;
1007 * We can't return errors to poll, so it's either yes or no.
1009 sock = file->private_data;
1011 if (sk_can_busy_loop(sock->sk)) {
1012 /* this socket can poll_ll so tell the system call */
1013 busy_flag = POLL_BUSY_LOOP;
1015 /* once, only if requested by syscall */
1016 if (wait && (wait->_key & POLL_BUSY_LOOP))
1017 sk_busy_loop(sock->sk, 1);
1020 return busy_flag | sock->ops->poll(file, sock, wait);
1023 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1025 struct socket *sock = file->private_data;
1027 return sock->ops->mmap(file, sock, vma);
1030 static int sock_close(struct inode *inode, struct file *filp)
1032 sock_release(SOCKET_I(inode));
1033 return 0;
1037 * Update the socket async list
1039 * Fasync_list locking strategy.
1041 * 1. fasync_list is modified only under process context socket lock
1042 * i.e. under semaphore.
1043 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1044 * or under socket lock
1047 static int sock_fasync(int fd, struct file *filp, int on)
1049 struct socket *sock = filp->private_data;
1050 struct sock *sk = sock->sk;
1051 struct socket_wq *wq;
1053 if (sk == NULL)
1054 return -EINVAL;
1056 lock_sock(sk);
1057 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1058 fasync_helper(fd, filp, on, &wq->fasync_list);
1060 if (!wq->fasync_list)
1061 sock_reset_flag(sk, SOCK_FASYNC);
1062 else
1063 sock_set_flag(sk, SOCK_FASYNC);
1065 release_sock(sk);
1066 return 0;
1069 /* This function may be called only under rcu_lock */
1071 int sock_wake_async(struct socket_wq *wq, int how, int band)
1073 if (!wq || !wq->fasync_list)
1074 return -1;
1076 switch (how) {
1077 case SOCK_WAKE_WAITD:
1078 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1079 break;
1080 goto call_kill;
1081 case SOCK_WAKE_SPACE:
1082 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1083 break;
1084 /* fall through */
1085 case SOCK_WAKE_IO:
1086 call_kill:
1087 kill_fasync(&wq->fasync_list, SIGIO, band);
1088 break;
1089 case SOCK_WAKE_URG:
1090 kill_fasync(&wq->fasync_list, SIGURG, band);
1093 return 0;
1095 EXPORT_SYMBOL(sock_wake_async);
1097 int __sock_create(struct net *net, int family, int type, int protocol,
1098 struct socket **res, int kern)
1100 int err;
1101 struct socket *sock;
1102 const struct net_proto_family *pf;
1105 * Check protocol is in range
1107 if (family < 0 || family >= NPROTO)
1108 return -EAFNOSUPPORT;
1109 if (type < 0 || type >= SOCK_MAX)
1110 return -EINVAL;
1112 /* Compatibility.
1114 This uglymoron is moved from INET layer to here to avoid
1115 deadlock in module load.
1117 if (family == PF_INET && type == SOCK_PACKET) {
1118 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1119 current->comm);
1120 family = PF_PACKET;
1123 err = security_socket_create(family, type, protocol, kern);
1124 if (err)
1125 return err;
1128 * Allocate the socket and allow the family to set things up. if
1129 * the protocol is 0, the family is instructed to select an appropriate
1130 * default.
1132 sock = sock_alloc();
1133 if (!sock) {
1134 net_warn_ratelimited("socket: no more sockets\n");
1135 return -ENFILE; /* Not exactly a match, but its the
1136 closest posix thing */
1139 sock->type = type;
1141 #ifdef CONFIG_MODULES
1142 /* Attempt to load a protocol module if the find failed.
1144 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1145 * requested real, full-featured networking support upon configuration.
1146 * Otherwise module support will break!
1148 if (rcu_access_pointer(net_families[family]) == NULL)
1149 request_module("net-pf-%d", family);
1150 #endif
1152 rcu_read_lock();
1153 pf = rcu_dereference(net_families[family]);
1154 err = -EAFNOSUPPORT;
1155 if (!pf)
1156 goto out_release;
1159 * We will call the ->create function, that possibly is in a loadable
1160 * module, so we have to bump that loadable module refcnt first.
1162 if (!try_module_get(pf->owner))
1163 goto out_release;
1165 /* Now protected by module ref count */
1166 rcu_read_unlock();
1168 err = pf->create(net, sock, protocol, kern);
1169 if (err < 0)
1170 goto out_module_put;
1173 * Now to bump the refcnt of the [loadable] module that owns this
1174 * socket at sock_release time we decrement its refcnt.
1176 if (!try_module_get(sock->ops->owner))
1177 goto out_module_busy;
1180 * Now that we're done with the ->create function, the [loadable]
1181 * module can have its refcnt decremented
1183 module_put(pf->owner);
1184 err = security_socket_post_create(sock, family, type, protocol, kern);
1185 if (err)
1186 goto out_sock_release;
1187 *res = sock;
1189 return 0;
1191 out_module_busy:
1192 err = -EAFNOSUPPORT;
1193 out_module_put:
1194 sock->ops = NULL;
1195 module_put(pf->owner);
1196 out_sock_release:
1197 sock_release(sock);
1198 return err;
1200 out_release:
1201 rcu_read_unlock();
1202 goto out_sock_release;
1204 EXPORT_SYMBOL(__sock_create);
1206 int sock_create(int family, int type, int protocol, struct socket **res)
1208 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1210 EXPORT_SYMBOL(sock_create);
1212 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1214 return __sock_create(net, family, type, protocol, res, 1);
1216 EXPORT_SYMBOL(sock_create_kern);
1218 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1220 int retval;
1221 struct socket *sock;
1222 int flags;
1224 /* Check the SOCK_* constants for consistency. */
1225 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1226 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1227 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1228 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1230 flags = type & ~SOCK_TYPE_MASK;
1231 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1232 return -EINVAL;
1233 type &= SOCK_TYPE_MASK;
1235 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1236 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1238 retval = sock_create(family, type, protocol, &sock);
1239 if (retval < 0)
1240 goto out;
1242 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1243 if (retval < 0)
1244 goto out_release;
1246 out:
1247 /* It may be already another descriptor 8) Not kernel problem. */
1248 return retval;
1250 out_release:
1251 sock_release(sock);
1252 return retval;
1256 * Create a pair of connected sockets.
1259 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1260 int __user *, usockvec)
1262 struct socket *sock1, *sock2;
1263 int fd1, fd2, err;
1264 struct file *newfile1, *newfile2;
1265 int flags;
1267 flags = type & ~SOCK_TYPE_MASK;
1268 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1269 return -EINVAL;
1270 type &= SOCK_TYPE_MASK;
1272 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1273 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1276 * Obtain the first socket and check if the underlying protocol
1277 * supports the socketpair call.
1280 err = sock_create(family, type, protocol, &sock1);
1281 if (err < 0)
1282 goto out;
1284 err = sock_create(family, type, protocol, &sock2);
1285 if (err < 0)
1286 goto out_release_1;
1288 err = sock1->ops->socketpair(sock1, sock2);
1289 if (err < 0)
1290 goto out_release_both;
1292 fd1 = get_unused_fd_flags(flags);
1293 if (unlikely(fd1 < 0)) {
1294 err = fd1;
1295 goto out_release_both;
1298 fd2 = get_unused_fd_flags(flags);
1299 if (unlikely(fd2 < 0)) {
1300 err = fd2;
1301 goto out_put_unused_1;
1304 newfile1 = sock_alloc_file(sock1, flags, NULL);
1305 if (IS_ERR(newfile1)) {
1306 err = PTR_ERR(newfile1);
1307 goto out_put_unused_both;
1310 newfile2 = sock_alloc_file(sock2, flags, NULL);
1311 if (IS_ERR(newfile2)) {
1312 err = PTR_ERR(newfile2);
1313 goto out_fput_1;
1316 err = put_user(fd1, &usockvec[0]);
1317 if (err)
1318 goto out_fput_both;
1320 err = put_user(fd2, &usockvec[1]);
1321 if (err)
1322 goto out_fput_both;
1324 audit_fd_pair(fd1, fd2);
1326 fd_install(fd1, newfile1);
1327 fd_install(fd2, newfile2);
1328 /* fd1 and fd2 may be already another descriptors.
1329 * Not kernel problem.
1332 return 0;
1334 out_fput_both:
1335 fput(newfile2);
1336 fput(newfile1);
1337 put_unused_fd(fd2);
1338 put_unused_fd(fd1);
1339 goto out;
1341 out_fput_1:
1342 fput(newfile1);
1343 put_unused_fd(fd2);
1344 put_unused_fd(fd1);
1345 sock_release(sock2);
1346 goto out;
1348 out_put_unused_both:
1349 put_unused_fd(fd2);
1350 out_put_unused_1:
1351 put_unused_fd(fd1);
1352 out_release_both:
1353 sock_release(sock2);
1354 out_release_1:
1355 sock_release(sock1);
1356 out:
1357 return err;
1361 * Bind a name to a socket. Nothing much to do here since it's
1362 * the protocol's responsibility to handle the local address.
1364 * We move the socket address to kernel space before we call
1365 * the protocol layer (having also checked the address is ok).
1368 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1370 struct socket *sock;
1371 struct sockaddr_storage address;
1372 int err, fput_needed;
1374 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1375 if (sock) {
1376 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1377 if (err >= 0) {
1378 err = security_socket_bind(sock,
1379 (struct sockaddr *)&address,
1380 addrlen);
1381 if (!err)
1382 err = sock->ops->bind(sock,
1383 (struct sockaddr *)
1384 &address, addrlen);
1386 fput_light(sock->file, fput_needed);
1388 return err;
1392 * Perform a listen. Basically, we allow the protocol to do anything
1393 * necessary for a listen, and if that works, we mark the socket as
1394 * ready for listening.
1397 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1399 struct socket *sock;
1400 int err, fput_needed;
1401 int somaxconn;
1403 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1404 if (sock) {
1405 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1406 if ((unsigned int)backlog > somaxconn)
1407 backlog = somaxconn;
1409 err = security_socket_listen(sock, backlog);
1410 if (!err)
1411 err = sock->ops->listen(sock, backlog);
1413 fput_light(sock->file, fput_needed);
1415 return err;
1419 * For accept, we attempt to create a new socket, set up the link
1420 * with the client, wake up the client, then return the new
1421 * connected fd. We collect the address of the connector in kernel
1422 * space and move it to user at the very end. This is unclean because
1423 * we open the socket then return an error.
1425 * 1003.1g adds the ability to recvmsg() to query connection pending
1426 * status to recvmsg. We need to add that support in a way thats
1427 * clean when we restucture accept also.
1430 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1431 int __user *, upeer_addrlen, int, flags)
1433 struct socket *sock, *newsock;
1434 struct file *newfile;
1435 int err, len, newfd, fput_needed;
1436 struct sockaddr_storage address;
1438 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1439 return -EINVAL;
1441 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1442 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1444 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1445 if (!sock)
1446 goto out;
1448 err = -ENFILE;
1449 newsock = sock_alloc();
1450 if (!newsock)
1451 goto out_put;
1453 newsock->type = sock->type;
1454 newsock->ops = sock->ops;
1457 * We don't need try_module_get here, as the listening socket (sock)
1458 * has the protocol module (sock->ops->owner) held.
1460 __module_get(newsock->ops->owner);
1462 newfd = get_unused_fd_flags(flags);
1463 if (unlikely(newfd < 0)) {
1464 err = newfd;
1465 sock_release(newsock);
1466 goto out_put;
1468 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1469 if (IS_ERR(newfile)) {
1470 err = PTR_ERR(newfile);
1471 put_unused_fd(newfd);
1472 sock_release(newsock);
1473 goto out_put;
1476 err = security_socket_accept(sock, newsock);
1477 if (err)
1478 goto out_fd;
1480 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1481 if (err < 0)
1482 goto out_fd;
1484 if (upeer_sockaddr) {
1485 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1486 &len, 2) < 0) {
1487 err = -ECONNABORTED;
1488 goto out_fd;
1490 err = move_addr_to_user(&address,
1491 len, upeer_sockaddr, upeer_addrlen);
1492 if (err < 0)
1493 goto out_fd;
1496 /* File flags are not inherited via accept() unlike another OSes. */
1498 fd_install(newfd, newfile);
1499 err = newfd;
1501 out_put:
1502 fput_light(sock->file, fput_needed);
1503 out:
1504 return err;
1505 out_fd:
1506 fput(newfile);
1507 put_unused_fd(newfd);
1508 goto out_put;
1511 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1512 int __user *, upeer_addrlen)
1514 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1518 * Attempt to connect to a socket with the server address. The address
1519 * is in user space so we verify it is OK and move it to kernel space.
1521 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1522 * break bindings
1524 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1525 * other SEQPACKET protocols that take time to connect() as it doesn't
1526 * include the -EINPROGRESS status for such sockets.
1529 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1530 int, addrlen)
1532 struct socket *sock;
1533 struct sockaddr_storage address;
1534 int err, fput_needed;
1536 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1537 if (!sock)
1538 goto out;
1539 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1540 if (err < 0)
1541 goto out_put;
1543 err =
1544 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1545 if (err)
1546 goto out_put;
1548 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1549 sock->file->f_flags);
1550 out_put:
1551 fput_light(sock->file, fput_needed);
1552 out:
1553 return err;
1557 * Get the local address ('name') of a socket object. Move the obtained
1558 * name to user space.
1561 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1562 int __user *, usockaddr_len)
1564 struct socket *sock;
1565 struct sockaddr_storage address;
1566 int len, err, fput_needed;
1568 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1569 if (!sock)
1570 goto out;
1572 err = security_socket_getsockname(sock);
1573 if (err)
1574 goto out_put;
1576 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1577 if (err)
1578 goto out_put;
1579 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1581 out_put:
1582 fput_light(sock->file, fput_needed);
1583 out:
1584 return err;
1588 * Get the remote address ('name') of a socket object. Move the obtained
1589 * name to user space.
1592 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1593 int __user *, usockaddr_len)
1595 struct socket *sock;
1596 struct sockaddr_storage address;
1597 int len, err, fput_needed;
1599 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1600 if (sock != NULL) {
1601 err = security_socket_getpeername(sock);
1602 if (err) {
1603 fput_light(sock->file, fput_needed);
1604 return err;
1607 err =
1608 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1610 if (!err)
1611 err = move_addr_to_user(&address, len, usockaddr,
1612 usockaddr_len);
1613 fput_light(sock->file, fput_needed);
1615 return err;
1619 * Send a datagram to a given address. We move the address into kernel
1620 * space and check the user space data area is readable before invoking
1621 * the protocol.
1624 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1625 unsigned int, flags, struct sockaddr __user *, addr,
1626 int, addr_len)
1628 struct socket *sock;
1629 struct sockaddr_storage address;
1630 int err;
1631 struct msghdr msg;
1632 struct iovec iov;
1633 int fput_needed;
1635 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1636 if (unlikely(err))
1637 return err;
1638 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1639 if (!sock)
1640 goto out;
1642 msg.msg_name = NULL;
1643 msg.msg_control = NULL;
1644 msg.msg_controllen = 0;
1645 msg.msg_namelen = 0;
1646 if (addr) {
1647 err = move_addr_to_kernel(addr, addr_len, &address);
1648 if (err < 0)
1649 goto out_put;
1650 msg.msg_name = (struct sockaddr *)&address;
1651 msg.msg_namelen = addr_len;
1653 if (sock->file->f_flags & O_NONBLOCK)
1654 flags |= MSG_DONTWAIT;
1655 msg.msg_flags = flags;
1656 err = sock_sendmsg(sock, &msg);
1658 out_put:
1659 fput_light(sock->file, fput_needed);
1660 out:
1661 return err;
1665 * Send a datagram down a socket.
1668 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1669 unsigned int, flags)
1671 return sys_sendto(fd, buff, len, flags, NULL, 0);
1675 * Receive a frame from the socket and optionally record the address of the
1676 * sender. We verify the buffers are writable and if needed move the
1677 * sender address from kernel to user space.
1680 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1681 unsigned int, flags, struct sockaddr __user *, addr,
1682 int __user *, addr_len)
1684 struct socket *sock;
1685 struct iovec iov;
1686 struct msghdr msg;
1687 struct sockaddr_storage address;
1688 int err, err2;
1689 int fput_needed;
1691 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1692 if (unlikely(err))
1693 return err;
1694 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1695 if (!sock)
1696 goto out;
1698 msg.msg_control = NULL;
1699 msg.msg_controllen = 0;
1700 /* Save some cycles and don't copy the address if not needed */
1701 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1702 /* We assume all kernel code knows the size of sockaddr_storage */
1703 msg.msg_namelen = 0;
1704 msg.msg_iocb = NULL;
1705 msg.msg_flags = 0;
1706 if (sock->file->f_flags & O_NONBLOCK)
1707 flags |= MSG_DONTWAIT;
1708 err = sock_recvmsg(sock, &msg, flags);
1710 if (err >= 0 && addr != NULL) {
1711 err2 = move_addr_to_user(&address,
1712 msg.msg_namelen, addr, addr_len);
1713 if (err2 < 0)
1714 err = err2;
1717 fput_light(sock->file, fput_needed);
1718 out:
1719 return err;
1723 * Receive a datagram from a socket.
1726 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1727 unsigned int, flags)
1729 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1733 * Set a socket option. Because we don't know the option lengths we have
1734 * to pass the user mode parameter for the protocols to sort out.
1737 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1738 char __user *, optval, int, optlen)
1740 int err, fput_needed;
1741 struct socket *sock;
1743 if (optlen < 0)
1744 return -EINVAL;
1746 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1747 if (sock != NULL) {
1748 err = security_socket_setsockopt(sock, level, optname);
1749 if (err)
1750 goto out_put;
1752 if (level == SOL_SOCKET)
1753 err =
1754 sock_setsockopt(sock, level, optname, optval,
1755 optlen);
1756 else
1757 err =
1758 sock->ops->setsockopt(sock, level, optname, optval,
1759 optlen);
1760 out_put:
1761 fput_light(sock->file, fput_needed);
1763 return err;
1767 * Get a socket option. Because we don't know the option lengths we have
1768 * to pass a user mode parameter for the protocols to sort out.
1771 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1772 char __user *, optval, int __user *, optlen)
1774 int err, fput_needed;
1775 struct socket *sock;
1777 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1778 if (sock != NULL) {
1779 err = security_socket_getsockopt(sock, level, optname);
1780 if (err)
1781 goto out_put;
1783 if (level == SOL_SOCKET)
1784 err =
1785 sock_getsockopt(sock, level, optname, optval,
1786 optlen);
1787 else
1788 err =
1789 sock->ops->getsockopt(sock, level, optname, optval,
1790 optlen);
1791 out_put:
1792 fput_light(sock->file, fput_needed);
1794 return err;
1798 * Shutdown a socket.
1801 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1803 int err, fput_needed;
1804 struct socket *sock;
1806 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1807 if (sock != NULL) {
1808 err = security_socket_shutdown(sock, how);
1809 if (!err)
1810 err = sock->ops->shutdown(sock, how);
1811 fput_light(sock->file, fput_needed);
1813 return err;
1816 /* A couple of helpful macros for getting the address of the 32/64 bit
1817 * fields which are the same type (int / unsigned) on our platforms.
1819 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1820 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1821 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1823 struct used_address {
1824 struct sockaddr_storage name;
1825 unsigned int name_len;
1828 static int copy_msghdr_from_user(struct msghdr *kmsg,
1829 struct user_msghdr __user *umsg,
1830 struct sockaddr __user **save_addr,
1831 struct iovec **iov)
1833 struct sockaddr __user *uaddr;
1834 struct iovec __user *uiov;
1835 size_t nr_segs;
1836 ssize_t err;
1838 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1839 __get_user(uaddr, &umsg->msg_name) ||
1840 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1841 __get_user(uiov, &umsg->msg_iov) ||
1842 __get_user(nr_segs, &umsg->msg_iovlen) ||
1843 __get_user(kmsg->msg_control, &umsg->msg_control) ||
1844 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1845 __get_user(kmsg->msg_flags, &umsg->msg_flags))
1846 return -EFAULT;
1848 if (!uaddr)
1849 kmsg->msg_namelen = 0;
1851 if (kmsg->msg_namelen < 0)
1852 return -EINVAL;
1854 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1855 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1857 if (save_addr)
1858 *save_addr = uaddr;
1860 if (uaddr && kmsg->msg_namelen) {
1861 if (!save_addr) {
1862 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1863 kmsg->msg_name);
1864 if (err < 0)
1865 return err;
1867 } else {
1868 kmsg->msg_name = NULL;
1869 kmsg->msg_namelen = 0;
1872 if (nr_segs > UIO_MAXIOV)
1873 return -EMSGSIZE;
1875 kmsg->msg_iocb = NULL;
1877 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1878 UIO_FASTIOV, iov, &kmsg->msg_iter);
1881 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1882 struct msghdr *msg_sys, unsigned int flags,
1883 struct used_address *used_address,
1884 unsigned int allowed_msghdr_flags)
1886 struct compat_msghdr __user *msg_compat =
1887 (struct compat_msghdr __user *)msg;
1888 struct sockaddr_storage address;
1889 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1890 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1891 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1892 /* 20 is size of ipv6_pktinfo */
1893 unsigned char *ctl_buf = ctl;
1894 int ctl_len;
1895 ssize_t err;
1897 msg_sys->msg_name = &address;
1899 if (MSG_CMSG_COMPAT & flags)
1900 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1901 else
1902 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1903 if (err < 0)
1904 return err;
1906 err = -ENOBUFS;
1908 if (msg_sys->msg_controllen > INT_MAX)
1909 goto out_freeiov;
1910 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1911 ctl_len = msg_sys->msg_controllen;
1912 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1913 err =
1914 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1915 sizeof(ctl));
1916 if (err)
1917 goto out_freeiov;
1918 ctl_buf = msg_sys->msg_control;
1919 ctl_len = msg_sys->msg_controllen;
1920 } else if (ctl_len) {
1921 if (ctl_len > sizeof(ctl)) {
1922 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1923 if (ctl_buf == NULL)
1924 goto out_freeiov;
1926 err = -EFAULT;
1928 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1929 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1930 * checking falls down on this.
1932 if (copy_from_user(ctl_buf,
1933 (void __user __force *)msg_sys->msg_control,
1934 ctl_len))
1935 goto out_freectl;
1936 msg_sys->msg_control = ctl_buf;
1938 msg_sys->msg_flags = flags;
1940 if (sock->file->f_flags & O_NONBLOCK)
1941 msg_sys->msg_flags |= MSG_DONTWAIT;
1943 * If this is sendmmsg() and current destination address is same as
1944 * previously succeeded address, omit asking LSM's decision.
1945 * used_address->name_len is initialized to UINT_MAX so that the first
1946 * destination address never matches.
1948 if (used_address && msg_sys->msg_name &&
1949 used_address->name_len == msg_sys->msg_namelen &&
1950 !memcmp(&used_address->name, msg_sys->msg_name,
1951 used_address->name_len)) {
1952 err = sock_sendmsg_nosec(sock, msg_sys);
1953 goto out_freectl;
1955 err = sock_sendmsg(sock, msg_sys);
1957 * If this is sendmmsg() and sending to current destination address was
1958 * successful, remember it.
1960 if (used_address && err >= 0) {
1961 used_address->name_len = msg_sys->msg_namelen;
1962 if (msg_sys->msg_name)
1963 memcpy(&used_address->name, msg_sys->msg_name,
1964 used_address->name_len);
1967 out_freectl:
1968 if (ctl_buf != ctl)
1969 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1970 out_freeiov:
1971 kfree(iov);
1972 return err;
1976 * BSD sendmsg interface
1979 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
1981 int fput_needed, err;
1982 struct msghdr msg_sys;
1983 struct socket *sock;
1985 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1986 if (!sock)
1987 goto out;
1989 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
1991 fput_light(sock->file, fput_needed);
1992 out:
1993 return err;
1996 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
1998 if (flags & MSG_CMSG_COMPAT)
1999 return -EINVAL;
2000 return __sys_sendmsg(fd, msg, flags);
2004 * Linux sendmmsg interface
2007 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2008 unsigned int flags)
2010 int fput_needed, err, datagrams;
2011 struct socket *sock;
2012 struct mmsghdr __user *entry;
2013 struct compat_mmsghdr __user *compat_entry;
2014 struct msghdr msg_sys;
2015 struct used_address used_address;
2016 unsigned int oflags = flags;
2018 if (vlen > UIO_MAXIOV)
2019 vlen = UIO_MAXIOV;
2021 datagrams = 0;
2023 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2024 if (!sock)
2025 return err;
2027 used_address.name_len = UINT_MAX;
2028 entry = mmsg;
2029 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2030 err = 0;
2031 flags |= MSG_BATCH;
2033 while (datagrams < vlen) {
2034 if (datagrams == vlen - 1)
2035 flags = oflags;
2037 if (MSG_CMSG_COMPAT & flags) {
2038 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2039 &msg_sys, flags, &used_address, MSG_EOR);
2040 if (err < 0)
2041 break;
2042 err = __put_user(err, &compat_entry->msg_len);
2043 ++compat_entry;
2044 } else {
2045 err = ___sys_sendmsg(sock,
2046 (struct user_msghdr __user *)entry,
2047 &msg_sys, flags, &used_address, MSG_EOR);
2048 if (err < 0)
2049 break;
2050 err = put_user(err, &entry->msg_len);
2051 ++entry;
2054 if (err)
2055 break;
2056 ++datagrams;
2057 if (msg_data_left(&msg_sys))
2058 break;
2059 cond_resched();
2062 fput_light(sock->file, fput_needed);
2064 /* We only return an error if no datagrams were able to be sent */
2065 if (datagrams != 0)
2066 return datagrams;
2068 return err;
2071 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2072 unsigned int, vlen, unsigned int, flags)
2074 if (flags & MSG_CMSG_COMPAT)
2075 return -EINVAL;
2076 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2079 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2080 struct msghdr *msg_sys, unsigned int flags, int nosec)
2082 struct compat_msghdr __user *msg_compat =
2083 (struct compat_msghdr __user *)msg;
2084 struct iovec iovstack[UIO_FASTIOV];
2085 struct iovec *iov = iovstack;
2086 unsigned long cmsg_ptr;
2087 int len;
2088 ssize_t err;
2090 /* kernel mode address */
2091 struct sockaddr_storage addr;
2093 /* user mode address pointers */
2094 struct sockaddr __user *uaddr;
2095 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2097 msg_sys->msg_name = &addr;
2099 if (MSG_CMSG_COMPAT & flags)
2100 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2101 else
2102 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2103 if (err < 0)
2104 return err;
2106 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2107 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2109 /* We assume all kernel code knows the size of sockaddr_storage */
2110 msg_sys->msg_namelen = 0;
2112 if (sock->file->f_flags & O_NONBLOCK)
2113 flags |= MSG_DONTWAIT;
2114 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2115 if (err < 0)
2116 goto out_freeiov;
2117 len = err;
2119 if (uaddr != NULL) {
2120 err = move_addr_to_user(&addr,
2121 msg_sys->msg_namelen, uaddr,
2122 uaddr_len);
2123 if (err < 0)
2124 goto out_freeiov;
2126 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2127 COMPAT_FLAGS(msg));
2128 if (err)
2129 goto out_freeiov;
2130 if (MSG_CMSG_COMPAT & flags)
2131 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2132 &msg_compat->msg_controllen);
2133 else
2134 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2135 &msg->msg_controllen);
2136 if (err)
2137 goto out_freeiov;
2138 err = len;
2140 out_freeiov:
2141 kfree(iov);
2142 return err;
2146 * BSD recvmsg interface
2149 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2151 int fput_needed, err;
2152 struct msghdr msg_sys;
2153 struct socket *sock;
2155 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2156 if (!sock)
2157 goto out;
2159 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2161 fput_light(sock->file, fput_needed);
2162 out:
2163 return err;
2166 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2167 unsigned int, flags)
2169 if (flags & MSG_CMSG_COMPAT)
2170 return -EINVAL;
2171 return __sys_recvmsg(fd, msg, flags);
2175 * Linux recvmmsg interface
2178 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2179 unsigned int flags, struct timespec *timeout)
2181 int fput_needed, err, datagrams;
2182 struct socket *sock;
2183 struct mmsghdr __user *entry;
2184 struct compat_mmsghdr __user *compat_entry;
2185 struct msghdr msg_sys;
2186 struct timespec64 end_time;
2187 struct timespec64 timeout64;
2189 if (timeout &&
2190 poll_select_set_timeout(&end_time, timeout->tv_sec,
2191 timeout->tv_nsec))
2192 return -EINVAL;
2194 datagrams = 0;
2196 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2197 if (!sock)
2198 return err;
2200 err = sock_error(sock->sk);
2201 if (err) {
2202 datagrams = err;
2203 goto out_put;
2206 entry = mmsg;
2207 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2209 while (datagrams < vlen) {
2211 * No need to ask LSM for more than the first datagram.
2213 if (MSG_CMSG_COMPAT & flags) {
2214 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2215 &msg_sys, flags & ~MSG_WAITFORONE,
2216 datagrams);
2217 if (err < 0)
2218 break;
2219 err = __put_user(err, &compat_entry->msg_len);
2220 ++compat_entry;
2221 } else {
2222 err = ___sys_recvmsg(sock,
2223 (struct user_msghdr __user *)entry,
2224 &msg_sys, flags & ~MSG_WAITFORONE,
2225 datagrams);
2226 if (err < 0)
2227 break;
2228 err = put_user(err, &entry->msg_len);
2229 ++entry;
2232 if (err)
2233 break;
2234 ++datagrams;
2236 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2237 if (flags & MSG_WAITFORONE)
2238 flags |= MSG_DONTWAIT;
2240 if (timeout) {
2241 ktime_get_ts64(&timeout64);
2242 *timeout = timespec64_to_timespec(
2243 timespec64_sub(end_time, timeout64));
2244 if (timeout->tv_sec < 0) {
2245 timeout->tv_sec = timeout->tv_nsec = 0;
2246 break;
2249 /* Timeout, return less than vlen datagrams */
2250 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2251 break;
2254 /* Out of band data, return right away */
2255 if (msg_sys.msg_flags & MSG_OOB)
2256 break;
2257 cond_resched();
2260 if (err == 0)
2261 goto out_put;
2263 if (datagrams == 0) {
2264 datagrams = err;
2265 goto out_put;
2269 * We may return less entries than requested (vlen) if the
2270 * sock is non block and there aren't enough datagrams...
2272 if (err != -EAGAIN) {
2274 * ... or if recvmsg returns an error after we
2275 * received some datagrams, where we record the
2276 * error to return on the next call or if the
2277 * app asks about it using getsockopt(SO_ERROR).
2279 sock->sk->sk_err = -err;
2281 out_put:
2282 fput_light(sock->file, fput_needed);
2284 return datagrams;
2287 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2288 unsigned int, vlen, unsigned int, flags,
2289 struct timespec __user *, timeout)
2291 int datagrams;
2292 struct timespec timeout_sys;
2294 if (flags & MSG_CMSG_COMPAT)
2295 return -EINVAL;
2297 if (!timeout)
2298 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2300 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2301 return -EFAULT;
2303 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2305 if (datagrams > 0 &&
2306 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2307 datagrams = -EFAULT;
2309 return datagrams;
2312 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2313 /* Argument list sizes for sys_socketcall */
2314 #define AL(x) ((x) * sizeof(unsigned long))
2315 static const unsigned char nargs[21] = {
2316 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2317 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2318 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2319 AL(4), AL(5), AL(4)
2322 #undef AL
2325 * System call vectors.
2327 * Argument checking cleaned up. Saved 20% in size.
2328 * This function doesn't need to set the kernel lock because
2329 * it is set by the callees.
2332 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2334 unsigned long a[AUDITSC_ARGS];
2335 unsigned long a0, a1;
2336 int err;
2337 unsigned int len;
2339 if (call < 1 || call > SYS_SENDMMSG)
2340 return -EINVAL;
2342 len = nargs[call];
2343 if (len > sizeof(a))
2344 return -EINVAL;
2346 /* copy_from_user should be SMP safe. */
2347 if (copy_from_user(a, args, len))
2348 return -EFAULT;
2350 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2351 if (err)
2352 return err;
2354 a0 = a[0];
2355 a1 = a[1];
2357 switch (call) {
2358 case SYS_SOCKET:
2359 err = sys_socket(a0, a1, a[2]);
2360 break;
2361 case SYS_BIND:
2362 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2363 break;
2364 case SYS_CONNECT:
2365 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2366 break;
2367 case SYS_LISTEN:
2368 err = sys_listen(a0, a1);
2369 break;
2370 case SYS_ACCEPT:
2371 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2372 (int __user *)a[2], 0);
2373 break;
2374 case SYS_GETSOCKNAME:
2375 err =
2376 sys_getsockname(a0, (struct sockaddr __user *)a1,
2377 (int __user *)a[2]);
2378 break;
2379 case SYS_GETPEERNAME:
2380 err =
2381 sys_getpeername(a0, (struct sockaddr __user *)a1,
2382 (int __user *)a[2]);
2383 break;
2384 case SYS_SOCKETPAIR:
2385 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2386 break;
2387 case SYS_SEND:
2388 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2389 break;
2390 case SYS_SENDTO:
2391 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2392 (struct sockaddr __user *)a[4], a[5]);
2393 break;
2394 case SYS_RECV:
2395 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2396 break;
2397 case SYS_RECVFROM:
2398 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2399 (struct sockaddr __user *)a[4],
2400 (int __user *)a[5]);
2401 break;
2402 case SYS_SHUTDOWN:
2403 err = sys_shutdown(a0, a1);
2404 break;
2405 case SYS_SETSOCKOPT:
2406 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2407 break;
2408 case SYS_GETSOCKOPT:
2409 err =
2410 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2411 (int __user *)a[4]);
2412 break;
2413 case SYS_SENDMSG:
2414 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2415 break;
2416 case SYS_SENDMMSG:
2417 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2418 break;
2419 case SYS_RECVMSG:
2420 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2421 break;
2422 case SYS_RECVMMSG:
2423 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2424 (struct timespec __user *)a[4]);
2425 break;
2426 case SYS_ACCEPT4:
2427 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2428 (int __user *)a[2], a[3]);
2429 break;
2430 default:
2431 err = -EINVAL;
2432 break;
2434 return err;
2437 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2440 * sock_register - add a socket protocol handler
2441 * @ops: description of protocol
2443 * This function is called by a protocol handler that wants to
2444 * advertise its address family, and have it linked into the
2445 * socket interface. The value ops->family corresponds to the
2446 * socket system call protocol family.
2448 int sock_register(const struct net_proto_family *ops)
2450 int err;
2452 if (ops->family >= NPROTO) {
2453 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2454 return -ENOBUFS;
2457 spin_lock(&net_family_lock);
2458 if (rcu_dereference_protected(net_families[ops->family],
2459 lockdep_is_held(&net_family_lock)))
2460 err = -EEXIST;
2461 else {
2462 rcu_assign_pointer(net_families[ops->family], ops);
2463 err = 0;
2465 spin_unlock(&net_family_lock);
2467 pr_info("NET: Registered protocol family %d\n", ops->family);
2468 return err;
2470 EXPORT_SYMBOL(sock_register);
2473 * sock_unregister - remove a protocol handler
2474 * @family: protocol family to remove
2476 * This function is called by a protocol handler that wants to
2477 * remove its address family, and have it unlinked from the
2478 * new socket creation.
2480 * If protocol handler is a module, then it can use module reference
2481 * counts to protect against new references. If protocol handler is not
2482 * a module then it needs to provide its own protection in
2483 * the ops->create routine.
2485 void sock_unregister(int family)
2487 BUG_ON(family < 0 || family >= NPROTO);
2489 spin_lock(&net_family_lock);
2490 RCU_INIT_POINTER(net_families[family], NULL);
2491 spin_unlock(&net_family_lock);
2493 synchronize_rcu();
2495 pr_info("NET: Unregistered protocol family %d\n", family);
2497 EXPORT_SYMBOL(sock_unregister);
2499 static int __init sock_init(void)
2501 int err;
2503 * Initialize the network sysctl infrastructure.
2505 err = net_sysctl_init();
2506 if (err)
2507 goto out;
2510 * Initialize skbuff SLAB cache
2512 skb_init();
2515 * Initialize the protocols module.
2518 init_inodecache();
2520 err = register_filesystem(&sock_fs_type);
2521 if (err)
2522 goto out_fs;
2523 sock_mnt = kern_mount(&sock_fs_type);
2524 if (IS_ERR(sock_mnt)) {
2525 err = PTR_ERR(sock_mnt);
2526 goto out_mount;
2529 /* The real protocol initialization is performed in later initcalls.
2532 #ifdef CONFIG_NETFILTER
2533 err = netfilter_init();
2534 if (err)
2535 goto out;
2536 #endif
2538 ptp_classifier_init();
2540 out:
2541 return err;
2543 out_mount:
2544 unregister_filesystem(&sock_fs_type);
2545 out_fs:
2546 goto out;
2549 core_initcall(sock_init); /* early initcall */
2551 static int __init jit_init(void)
2553 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
2554 bpf_jit_enable = 1;
2555 #endif
2556 return 0;
2558 pure_initcall(jit_init);
2560 #ifdef CONFIG_PROC_FS
2561 void socket_seq_show(struct seq_file *seq)
2563 int cpu;
2564 int counter = 0;
2566 for_each_possible_cpu(cpu)
2567 counter += per_cpu(sockets_in_use, cpu);
2569 /* It can be negative, by the way. 8) */
2570 if (counter < 0)
2571 counter = 0;
2573 seq_printf(seq, "sockets: used %d\n", counter);
2575 #endif /* CONFIG_PROC_FS */
2577 #ifdef CONFIG_COMPAT
2578 static int do_siocgstamp(struct net *net, struct socket *sock,
2579 unsigned int cmd, void __user *up)
2581 mm_segment_t old_fs = get_fs();
2582 struct timeval ktv;
2583 int err;
2585 set_fs(KERNEL_DS);
2586 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2587 set_fs(old_fs);
2588 if (!err)
2589 err = compat_put_timeval(&ktv, up);
2591 return err;
2594 static int do_siocgstampns(struct net *net, struct socket *sock,
2595 unsigned int cmd, void __user *up)
2597 mm_segment_t old_fs = get_fs();
2598 struct timespec kts;
2599 int err;
2601 set_fs(KERNEL_DS);
2602 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2603 set_fs(old_fs);
2604 if (!err)
2605 err = compat_put_timespec(&kts, up);
2607 return err;
2610 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2612 struct ifreq __user *uifr;
2613 int err;
2615 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2616 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2617 return -EFAULT;
2619 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2620 if (err)
2621 return err;
2623 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2624 return -EFAULT;
2626 return 0;
2629 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2631 struct compat_ifconf ifc32;
2632 struct ifconf ifc;
2633 struct ifconf __user *uifc;
2634 struct compat_ifreq __user *ifr32;
2635 struct ifreq __user *ifr;
2636 unsigned int i, j;
2637 int err;
2639 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2640 return -EFAULT;
2642 memset(&ifc, 0, sizeof(ifc));
2643 if (ifc32.ifcbuf == 0) {
2644 ifc32.ifc_len = 0;
2645 ifc.ifc_len = 0;
2646 ifc.ifc_req = NULL;
2647 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2648 } else {
2649 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2650 sizeof(struct ifreq);
2651 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2652 ifc.ifc_len = len;
2653 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2654 ifr32 = compat_ptr(ifc32.ifcbuf);
2655 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2656 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2657 return -EFAULT;
2658 ifr++;
2659 ifr32++;
2662 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2663 return -EFAULT;
2665 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2666 if (err)
2667 return err;
2669 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2670 return -EFAULT;
2672 ifr = ifc.ifc_req;
2673 ifr32 = compat_ptr(ifc32.ifcbuf);
2674 for (i = 0, j = 0;
2675 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2676 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2677 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2678 return -EFAULT;
2679 ifr32++;
2680 ifr++;
2683 if (ifc32.ifcbuf == 0) {
2684 /* Translate from 64-bit structure multiple to
2685 * a 32-bit one.
2687 i = ifc.ifc_len;
2688 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2689 ifc32.ifc_len = i;
2690 } else {
2691 ifc32.ifc_len = i;
2693 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2694 return -EFAULT;
2696 return 0;
2699 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2701 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2702 bool convert_in = false, convert_out = false;
2703 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2704 struct ethtool_rxnfc __user *rxnfc;
2705 struct ifreq __user *ifr;
2706 u32 rule_cnt = 0, actual_rule_cnt;
2707 u32 ethcmd;
2708 u32 data;
2709 int ret;
2711 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2712 return -EFAULT;
2714 compat_rxnfc = compat_ptr(data);
2716 if (get_user(ethcmd, &compat_rxnfc->cmd))
2717 return -EFAULT;
2719 /* Most ethtool structures are defined without padding.
2720 * Unfortunately struct ethtool_rxnfc is an exception.
2722 switch (ethcmd) {
2723 default:
2724 break;
2725 case ETHTOOL_GRXCLSRLALL:
2726 /* Buffer size is variable */
2727 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2728 return -EFAULT;
2729 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2730 return -ENOMEM;
2731 buf_size += rule_cnt * sizeof(u32);
2732 /* fall through */
2733 case ETHTOOL_GRXRINGS:
2734 case ETHTOOL_GRXCLSRLCNT:
2735 case ETHTOOL_GRXCLSRULE:
2736 case ETHTOOL_SRXCLSRLINS:
2737 convert_out = true;
2738 /* fall through */
2739 case ETHTOOL_SRXCLSRLDEL:
2740 buf_size += sizeof(struct ethtool_rxnfc);
2741 convert_in = true;
2742 break;
2745 ifr = compat_alloc_user_space(buf_size);
2746 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2748 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2749 return -EFAULT;
2751 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2752 &ifr->ifr_ifru.ifru_data))
2753 return -EFAULT;
2755 if (convert_in) {
2756 /* We expect there to be holes between fs.m_ext and
2757 * fs.ring_cookie and at the end of fs, but nowhere else.
2759 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2760 sizeof(compat_rxnfc->fs.m_ext) !=
2761 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2762 sizeof(rxnfc->fs.m_ext));
2763 BUILD_BUG_ON(
2764 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2765 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2766 offsetof(struct ethtool_rxnfc, fs.location) -
2767 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2769 if (copy_in_user(rxnfc, compat_rxnfc,
2770 (void __user *)(&rxnfc->fs.m_ext + 1) -
2771 (void __user *)rxnfc) ||
2772 copy_in_user(&rxnfc->fs.ring_cookie,
2773 &compat_rxnfc->fs.ring_cookie,
2774 (void __user *)(&rxnfc->fs.location + 1) -
2775 (void __user *)&rxnfc->fs.ring_cookie) ||
2776 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2777 sizeof(rxnfc->rule_cnt)))
2778 return -EFAULT;
2781 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2782 if (ret)
2783 return ret;
2785 if (convert_out) {
2786 if (copy_in_user(compat_rxnfc, rxnfc,
2787 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2788 (const void __user *)rxnfc) ||
2789 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2790 &rxnfc->fs.ring_cookie,
2791 (const void __user *)(&rxnfc->fs.location + 1) -
2792 (const void __user *)&rxnfc->fs.ring_cookie) ||
2793 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2794 sizeof(rxnfc->rule_cnt)))
2795 return -EFAULT;
2797 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2798 /* As an optimisation, we only copy the actual
2799 * number of rules that the underlying
2800 * function returned. Since Mallory might
2801 * change the rule count in user memory, we
2802 * check that it is less than the rule count
2803 * originally given (as the user buffer size),
2804 * which has been range-checked.
2806 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2807 return -EFAULT;
2808 if (actual_rule_cnt < rule_cnt)
2809 rule_cnt = actual_rule_cnt;
2810 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2811 &rxnfc->rule_locs[0],
2812 rule_cnt * sizeof(u32)))
2813 return -EFAULT;
2817 return 0;
2820 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2822 void __user *uptr;
2823 compat_uptr_t uptr32;
2824 struct ifreq __user *uifr;
2826 uifr = compat_alloc_user_space(sizeof(*uifr));
2827 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2828 return -EFAULT;
2830 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2831 return -EFAULT;
2833 uptr = compat_ptr(uptr32);
2835 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2836 return -EFAULT;
2838 return dev_ioctl(net, SIOCWANDEV, uifr);
2841 static int bond_ioctl(struct net *net, unsigned int cmd,
2842 struct compat_ifreq __user *ifr32)
2844 struct ifreq kifr;
2845 mm_segment_t old_fs;
2846 int err;
2848 switch (cmd) {
2849 case SIOCBONDENSLAVE:
2850 case SIOCBONDRELEASE:
2851 case SIOCBONDSETHWADDR:
2852 case SIOCBONDCHANGEACTIVE:
2853 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2854 return -EFAULT;
2856 old_fs = get_fs();
2857 set_fs(KERNEL_DS);
2858 err = dev_ioctl(net, cmd,
2859 (struct ifreq __user __force *) &kifr);
2860 set_fs(old_fs);
2862 return err;
2863 default:
2864 return -ENOIOCTLCMD;
2868 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2869 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2870 struct compat_ifreq __user *u_ifreq32)
2872 struct ifreq __user *u_ifreq64;
2873 char tmp_buf[IFNAMSIZ];
2874 void __user *data64;
2875 u32 data32;
2877 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2878 IFNAMSIZ))
2879 return -EFAULT;
2880 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2881 return -EFAULT;
2882 data64 = compat_ptr(data32);
2884 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2886 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2887 IFNAMSIZ))
2888 return -EFAULT;
2889 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2890 return -EFAULT;
2892 return dev_ioctl(net, cmd, u_ifreq64);
2895 static int dev_ifsioc(struct net *net, struct socket *sock,
2896 unsigned int cmd, struct compat_ifreq __user *uifr32)
2898 struct ifreq __user *uifr;
2899 int err;
2901 uifr = compat_alloc_user_space(sizeof(*uifr));
2902 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2903 return -EFAULT;
2905 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2907 if (!err) {
2908 switch (cmd) {
2909 case SIOCGIFFLAGS:
2910 case SIOCGIFMETRIC:
2911 case SIOCGIFMTU:
2912 case SIOCGIFMEM:
2913 case SIOCGIFHWADDR:
2914 case SIOCGIFINDEX:
2915 case SIOCGIFADDR:
2916 case SIOCGIFBRDADDR:
2917 case SIOCGIFDSTADDR:
2918 case SIOCGIFNETMASK:
2919 case SIOCGIFPFLAGS:
2920 case SIOCGIFTXQLEN:
2921 case SIOCGMIIPHY:
2922 case SIOCGMIIREG:
2923 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2924 err = -EFAULT;
2925 break;
2928 return err;
2931 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2932 struct compat_ifreq __user *uifr32)
2934 struct ifreq ifr;
2935 struct compat_ifmap __user *uifmap32;
2936 mm_segment_t old_fs;
2937 int err;
2939 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2940 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2941 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2942 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2943 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2944 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2945 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2946 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2947 if (err)
2948 return -EFAULT;
2950 old_fs = get_fs();
2951 set_fs(KERNEL_DS);
2952 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
2953 set_fs(old_fs);
2955 if (cmd == SIOCGIFMAP && !err) {
2956 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2957 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2958 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2959 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2960 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2961 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2962 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2963 if (err)
2964 err = -EFAULT;
2966 return err;
2969 struct rtentry32 {
2970 u32 rt_pad1;
2971 struct sockaddr rt_dst; /* target address */
2972 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
2973 struct sockaddr rt_genmask; /* target network mask (IP) */
2974 unsigned short rt_flags;
2975 short rt_pad2;
2976 u32 rt_pad3;
2977 unsigned char rt_tos;
2978 unsigned char rt_class;
2979 short rt_pad4;
2980 short rt_metric; /* +1 for binary compatibility! */
2981 /* char * */ u32 rt_dev; /* forcing the device at add */
2982 u32 rt_mtu; /* per route MTU/Window */
2983 u32 rt_window; /* Window clamping */
2984 unsigned short rt_irtt; /* Initial RTT */
2987 struct in6_rtmsg32 {
2988 struct in6_addr rtmsg_dst;
2989 struct in6_addr rtmsg_src;
2990 struct in6_addr rtmsg_gateway;
2991 u32 rtmsg_type;
2992 u16 rtmsg_dst_len;
2993 u16 rtmsg_src_len;
2994 u32 rtmsg_metric;
2995 u32 rtmsg_info;
2996 u32 rtmsg_flags;
2997 s32 rtmsg_ifindex;
3000 static int routing_ioctl(struct net *net, struct socket *sock,
3001 unsigned int cmd, void __user *argp)
3003 int ret;
3004 void *r = NULL;
3005 struct in6_rtmsg r6;
3006 struct rtentry r4;
3007 char devname[16];
3008 u32 rtdev;
3009 mm_segment_t old_fs = get_fs();
3011 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3012 struct in6_rtmsg32 __user *ur6 = argp;
3013 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3014 3 * sizeof(struct in6_addr));
3015 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3016 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3017 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3018 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3019 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3020 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3021 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3023 r = (void *) &r6;
3024 } else { /* ipv4 */
3025 struct rtentry32 __user *ur4 = argp;
3026 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3027 3 * sizeof(struct sockaddr));
3028 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3029 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3030 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3031 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3032 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3033 ret |= get_user(rtdev, &(ur4->rt_dev));
3034 if (rtdev) {
3035 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3036 r4.rt_dev = (char __user __force *)devname;
3037 devname[15] = 0;
3038 } else
3039 r4.rt_dev = NULL;
3041 r = (void *) &r4;
3044 if (ret) {
3045 ret = -EFAULT;
3046 goto out;
3049 set_fs(KERNEL_DS);
3050 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3051 set_fs(old_fs);
3053 out:
3054 return ret;
3057 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3058 * for some operations; this forces use of the newer bridge-utils that
3059 * use compatible ioctls
3061 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3063 compat_ulong_t tmp;
3065 if (get_user(tmp, argp))
3066 return -EFAULT;
3067 if (tmp == BRCTL_GET_VERSION)
3068 return BRCTL_VERSION + 1;
3069 return -EINVAL;
3072 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3073 unsigned int cmd, unsigned long arg)
3075 void __user *argp = compat_ptr(arg);
3076 struct sock *sk = sock->sk;
3077 struct net *net = sock_net(sk);
3079 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3080 return compat_ifr_data_ioctl(net, cmd, argp);
3082 switch (cmd) {
3083 case SIOCSIFBR:
3084 case SIOCGIFBR:
3085 return old_bridge_ioctl(argp);
3086 case SIOCGIFNAME:
3087 return dev_ifname32(net, argp);
3088 case SIOCGIFCONF:
3089 return dev_ifconf(net, argp);
3090 case SIOCETHTOOL:
3091 return ethtool_ioctl(net, argp);
3092 case SIOCWANDEV:
3093 return compat_siocwandev(net, argp);
3094 case SIOCGIFMAP:
3095 case SIOCSIFMAP:
3096 return compat_sioc_ifmap(net, cmd, argp);
3097 case SIOCBONDENSLAVE:
3098 case SIOCBONDRELEASE:
3099 case SIOCBONDSETHWADDR:
3100 case SIOCBONDCHANGEACTIVE:
3101 return bond_ioctl(net, cmd, argp);
3102 case SIOCADDRT:
3103 case SIOCDELRT:
3104 return routing_ioctl(net, sock, cmd, argp);
3105 case SIOCGSTAMP:
3106 return do_siocgstamp(net, sock, cmd, argp);
3107 case SIOCGSTAMPNS:
3108 return do_siocgstampns(net, sock, cmd, argp);
3109 case SIOCBONDSLAVEINFOQUERY:
3110 case SIOCBONDINFOQUERY:
3111 case SIOCSHWTSTAMP:
3112 case SIOCGHWTSTAMP:
3113 return compat_ifr_data_ioctl(net, cmd, argp);
3115 case FIOSETOWN:
3116 case SIOCSPGRP:
3117 case FIOGETOWN:
3118 case SIOCGPGRP:
3119 case SIOCBRADDBR:
3120 case SIOCBRDELBR:
3121 case SIOCGIFVLAN:
3122 case SIOCSIFVLAN:
3123 case SIOCADDDLCI:
3124 case SIOCDELDLCI:
3125 return sock_ioctl(file, cmd, arg);
3127 case SIOCGIFFLAGS:
3128 case SIOCSIFFLAGS:
3129 case SIOCGIFMETRIC:
3130 case SIOCSIFMETRIC:
3131 case SIOCGIFMTU:
3132 case SIOCSIFMTU:
3133 case SIOCGIFMEM:
3134 case SIOCSIFMEM:
3135 case SIOCGIFHWADDR:
3136 case SIOCSIFHWADDR:
3137 case SIOCADDMULTI:
3138 case SIOCDELMULTI:
3139 case SIOCGIFINDEX:
3140 case SIOCGIFADDR:
3141 case SIOCSIFADDR:
3142 case SIOCSIFHWBROADCAST:
3143 case SIOCDIFADDR:
3144 case SIOCGIFBRDADDR:
3145 case SIOCSIFBRDADDR:
3146 case SIOCGIFDSTADDR:
3147 case SIOCSIFDSTADDR:
3148 case SIOCGIFNETMASK:
3149 case SIOCSIFNETMASK:
3150 case SIOCSIFPFLAGS:
3151 case SIOCGIFPFLAGS:
3152 case SIOCGIFTXQLEN:
3153 case SIOCSIFTXQLEN:
3154 case SIOCBRADDIF:
3155 case SIOCBRDELIF:
3156 case SIOCSIFNAME:
3157 case SIOCGMIIPHY:
3158 case SIOCGMIIREG:
3159 case SIOCSMIIREG:
3160 return dev_ifsioc(net, sock, cmd, argp);
3162 case SIOCSARP:
3163 case SIOCGARP:
3164 case SIOCDARP:
3165 case SIOCATMARK:
3166 return sock_do_ioctl(net, sock, cmd, arg);
3169 return -ENOIOCTLCMD;
3172 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3173 unsigned long arg)
3175 struct socket *sock = file->private_data;
3176 int ret = -ENOIOCTLCMD;
3177 struct sock *sk;
3178 struct net *net;
3180 sk = sock->sk;
3181 net = sock_net(sk);
3183 if (sock->ops->compat_ioctl)
3184 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3186 if (ret == -ENOIOCTLCMD &&
3187 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3188 ret = compat_wext_handle_ioctl(net, cmd, arg);
3190 if (ret == -ENOIOCTLCMD)
3191 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3193 return ret;
3195 #endif
3197 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3199 return sock->ops->bind(sock, addr, addrlen);
3201 EXPORT_SYMBOL(kernel_bind);
3203 int kernel_listen(struct socket *sock, int backlog)
3205 return sock->ops->listen(sock, backlog);
3207 EXPORT_SYMBOL(kernel_listen);
3209 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3211 struct sock *sk = sock->sk;
3212 int err;
3214 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3215 newsock);
3216 if (err < 0)
3217 goto done;
3219 err = sock->ops->accept(sock, *newsock, flags);
3220 if (err < 0) {
3221 sock_release(*newsock);
3222 *newsock = NULL;
3223 goto done;
3226 (*newsock)->ops = sock->ops;
3227 __module_get((*newsock)->ops->owner);
3229 done:
3230 return err;
3232 EXPORT_SYMBOL(kernel_accept);
3234 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3235 int flags)
3237 return sock->ops->connect(sock, addr, addrlen, flags);
3239 EXPORT_SYMBOL(kernel_connect);
3241 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3242 int *addrlen)
3244 return sock->ops->getname(sock, addr, addrlen, 0);
3246 EXPORT_SYMBOL(kernel_getsockname);
3248 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3249 int *addrlen)
3251 return sock->ops->getname(sock, addr, addrlen, 1);
3253 EXPORT_SYMBOL(kernel_getpeername);
3255 int kernel_getsockopt(struct socket *sock, int level, int optname,
3256 char *optval, int *optlen)
3258 mm_segment_t oldfs = get_fs();
3259 char __user *uoptval;
3260 int __user *uoptlen;
3261 int err;
3263 uoptval = (char __user __force *) optval;
3264 uoptlen = (int __user __force *) optlen;
3266 set_fs(KERNEL_DS);
3267 if (level == SOL_SOCKET)
3268 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3269 else
3270 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3271 uoptlen);
3272 set_fs(oldfs);
3273 return err;
3275 EXPORT_SYMBOL(kernel_getsockopt);
3277 int kernel_setsockopt(struct socket *sock, int level, int optname,
3278 char *optval, unsigned int optlen)
3280 mm_segment_t oldfs = get_fs();
3281 char __user *uoptval;
3282 int err;
3284 uoptval = (char __user __force *) optval;
3286 set_fs(KERNEL_DS);
3287 if (level == SOL_SOCKET)
3288 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3289 else
3290 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3291 optlen);
3292 set_fs(oldfs);
3293 return err;
3295 EXPORT_SYMBOL(kernel_setsockopt);
3297 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3298 size_t size, int flags)
3300 if (sock->ops->sendpage)
3301 return sock->ops->sendpage(sock, page, offset, size, flags);
3303 return sock_no_sendpage(sock, page, offset, size, flags);
3305 EXPORT_SYMBOL(kernel_sendpage);
3307 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3309 mm_segment_t oldfs = get_fs();
3310 int err;
3312 set_fs(KERNEL_DS);
3313 err = sock->ops->ioctl(sock, cmd, arg);
3314 set_fs(oldfs);
3316 return err;
3318 EXPORT_SYMBOL(kernel_sock_ioctl);
3320 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3322 return sock->ops->shutdown(sock, how);
3324 EXPORT_SYMBOL(kernel_sock_shutdown);