ACPI: EC: Rework flushing of pending work
[linux/fpc-iii.git] / Documentation / media / v4l-drivers / ipu3.rst
blobc9f780404eee2f08738bdb42d82065eebc5b6029
1 .. SPDX-License-Identifier: GPL-2.0
3 .. include:: <isonum.txt>
5 ===============================================================
6 Intel Image Processing Unit 3 (IPU3) Imaging Unit (ImgU) driver
7 ===============================================================
9 Copyright |copy| 2018 Intel Corporation
11 Introduction
12 ============
14 This file documents the Intel IPU3 (3rd generation Image Processing Unit)
15 Imaging Unit drivers located under drivers/media/pci/intel/ipu3 (CIO2) as well
16 as under drivers/staging/media/ipu3 (ImgU).
18 The Intel IPU3 found in certain Kaby Lake (as well as certain Sky Lake)
19 platforms (U/Y processor lines) is made up of two parts namely the Imaging Unit
20 (ImgU) and the CIO2 device (MIPI CSI2 receiver).
22 The CIO2 device receives the raw Bayer data from the sensors and outputs the
23 frames in a format that is specific to the IPU3 (for consumption by the IPU3
24 ImgU). The CIO2 driver is available as drivers/media/pci/intel/ipu3/ipu3-cio2*
25 and is enabled through the CONFIG_VIDEO_IPU3_CIO2 config option.
27 The Imaging Unit (ImgU) is responsible for processing images captured
28 by the IPU3 CIO2 device. The ImgU driver sources can be found under
29 drivers/staging/media/ipu3 directory. The driver is enabled through the
30 CONFIG_VIDEO_IPU3_IMGU config option.
32 The two driver modules are named ipu3_csi2 and ipu3_imgu, respectively.
34 The drivers has been tested on Kaby Lake platforms (U/Y processor lines).
36 Both of the drivers implement V4L2, Media Controller and V4L2 sub-device
37 interfaces. The IPU3 CIO2 driver supports camera sensors connected to the CIO2
38 MIPI CSI-2 interfaces through V4L2 sub-device sensor drivers.
40 CIO2
41 ====
43 The CIO2 is represented as a single V4L2 subdev, which provides a V4L2 subdev
44 interface to the user space. There is a video node for each CSI-2 receiver,
45 with a single media controller interface for the entire device.
47 The CIO2 contains four independent capture channel, each with its own MIPI CSI-2
48 receiver and DMA engine. Each channel is modelled as a V4L2 sub-device exposed
49 to userspace as a V4L2 sub-device node and has two pads:
51 .. tabularcolumns:: |p{0.8cm}|p{4.0cm}|p{4.0cm}|
53 .. flat-table::
55     * - pad
56       - direction
57       - purpose
59     * - 0
60       - sink
61       - MIPI CSI-2 input, connected to the sensor subdev
63     * - 1
64       - source
65       - Raw video capture, connected to the V4L2 video interface
67 The V4L2 video interfaces model the DMA engines. They are exposed to userspace
68 as V4L2 video device nodes.
70 Capturing frames in raw Bayer format
71 ------------------------------------
73 CIO2 MIPI CSI2 receiver is used to capture frames (in packed raw Bayer format)
74 from the raw sensors connected to the CSI2 ports. The captured frames are used
75 as input to the ImgU driver.
77 Image processing using IPU3 ImgU requires tools such as raw2pnm [#f1]_, and
78 yavta [#f2]_ due to the following unique requirements and / or features specific
79 to IPU3.
81 -- The IPU3 CSI2 receiver outputs the captured frames from the sensor in packed
82 raw Bayer format that is specific to IPU3.
84 -- Multiple video nodes have to be operated simultaneously.
86 Let us take the example of ov5670 sensor connected to CSI2 port 0, for a
87 2592x1944 image capture.
89 Using the media contorller APIs, the ov5670 sensor is configured to send
90 frames in packed raw Bayer format to IPU3 CSI2 receiver.
92 # This example assumes /dev/media0 as the CIO2 media device
94 export MDEV=/dev/media0
96 # and that ov5670 sensor is connected to i2c bus 10 with address 0x36
98 export SDEV=$(media-ctl -d $MDEV -e "ov5670 10-0036")
100 # Establish the link for the media devices using media-ctl [#f3]_
101 media-ctl -d $MDEV -l "ov5670:0 -> ipu3-csi2 0:0[1]"
103 # Set the format for the media devices
104 media-ctl -d $MDEV -V "ov5670:0 [fmt:SGRBG10/2592x1944]"
106 media-ctl -d $MDEV -V "ipu3-csi2 0:0 [fmt:SGRBG10/2592x1944]"
108 media-ctl -d $MDEV -V "ipu3-csi2 0:1 [fmt:SGRBG10/2592x1944]"
110 Once the media pipeline is configured, desired sensor specific settings
111 (such as exposure and gain settings) can be set, using the yavta tool.
115 yavta -w 0x009e0903 444 $SDEV
117 yavta -w 0x009e0913 1024 $SDEV
119 yavta -w 0x009e0911 2046 $SDEV
121 Once the desired sensor settings are set, frame captures can be done as below.
125 yavta --data-prefix -u -c10 -n5 -I -s2592x1944 --file=/tmp/frame-#.bin \
126       -f IPU3_SGRBG10 $(media-ctl -d $MDEV -e "ipu3-cio2 0")
128 With the above command, 10 frames are captured at 2592x1944 resolution, with
129 sGRBG10 format and output as IPU3_SGRBG10 format.
131 The captured frames are available as /tmp/frame-#.bin files.
133 ImgU
134 ====
136 The ImgU is represented as two V4L2 subdevs, each of which provides a V4L2
137 subdev interface to the user space.
139 Each V4L2 subdev represents a pipe, which can support a maximum of 2 streams.
140 This helps to support advanced camera features like Continuous View Finder (CVF)
141 and Snapshot During Video(SDV).
143 The ImgU contains two independent pipes, each modelled as a V4L2 sub-device
144 exposed to userspace as a V4L2 sub-device node.
146 Each pipe has two sink pads and three source pads for the following purpose:
148 .. tabularcolumns:: |p{0.8cm}|p{4.0cm}|p{4.0cm}|
150 .. flat-table::
152     * - pad
153       - direction
154       - purpose
156     * - 0
157       - sink
158       - Input raw video stream
160     * - 1
161       - sink
162       - Processing parameters
164     * - 2
165       - source
166       - Output processed video stream
168     * - 3
169       - source
170       - Output viewfinder video stream
172     * - 4
173       - source
174       - 3A statistics
176 Each pad is connected to a corresponding V4L2 video interface, exposed to 
177 userspace as a V4L2 video device node.
179 Device operation
180 ----------------
182 With ImgU, once the input video node ("ipu3-imgu 0/1":0, in
183 <entity>:<pad-number> format) is queued with buffer (in packed raw Bayer
184 format), ImgU starts processing the buffer and produces the video output in YUV
185 format and statistics output on respective output nodes. The driver is expected
186 to have buffers ready for all of parameter, output and statistics nodes, when
187 input video node is queued with buffer.
189 At a minimum, all of input, main output, 3A statistics and viewfinder
190 video nodes should be enabled for IPU3 to start image processing.
192 Each ImgU V4L2 subdev has the following set of video nodes.
194 input, output and viewfinder video nodes
195 ----------------------------------------
197 The frames (in packed raw Bayer format specific to the IPU3) received by the
198 input video node is processed by the IPU3 Imaging Unit and are output to 2 video
199 nodes, with each targeting a different purpose (main output and viewfinder
200 output).
202 Details onand the Bayer format specific to the IPU3 can be found in
203 :ref:`v4l2-pix-fmt-ipu3-sbggr10`.
205 The driver supports V4L2 Video Capture Interface as defined at :ref:`devices`.
207 Only the multi-planar API is supported. More details can be found at
208 :ref:`planar-apis`.
210 Parameters video node
211 ---------------------
213 The parameters video node receives the ImgU algorithm parameters that are used
214 to configure how the ImgU algorithms process the image.
216 Details on processing parameters specific to the IPU3 can be found in
217 :ref:`v4l2-meta-fmt-params`.
219 3A statistics video node
220 ------------------------
222 3A statistics video node is used by the ImgU driver to output the 3A (auto
223 focus, auto exposure and auto white balance) statistics for the frames that are
224 being processed by the ImgU to user space applications. User space applications
225 can use this statistics data to compute the desired algorithm parameters for
226 the ImgU.
228 Configuring the Intel IPU3
229 ==========================
231 The IPU3 ImgU pipelines can be configured using the Media Controller, defined at
232 :ref:`media_controller`.
234 Firmware binary selection
235 -------------------------
237 The firmware binary is selected using the V4L2_CID_INTEL_IPU3_MODE, currently
238 defined in drivers/staging/media/ipu3/include/intel-ipu3.h . "VIDEO" and "STILL"
239 modes are available.
241 Processing the image in raw Bayer format
242 ----------------------------------------
244 Configuring ImgU V4L2 subdev for image processing
245 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
247 The ImgU V4L2 subdevs have to be configured with media controller APIs to have
248 all the video nodes setup correctly.
250 Let us take "ipu3-imgu 0" subdev as an example.
252 media-ctl -d $MDEV -r
254 media-ctl -d $MDEV -l "ipu3-imgu 0 input":0 -> "ipu3-imgu 0":0[1]
256 media-ctl -d $MDEV -l "ipu3-imgu 0":2 -> "ipu3-imgu 0 output":0[1]
258 media-ctl -d $MDEV -l "ipu3-imgu 0":3 -> "ipu3-imgu 0 viewfinder":0[1]
260 media-ctl -d $MDEV -l "ipu3-imgu 0":4 -> "ipu3-imgu 0 3a stat":0[1]
262 Also the pipe mode of the corresponding V4L2 subdev should be set as desired
263 (e.g 0 for video mode or 1 for still mode) through the control id 0x009819a1 as
264 below.
266 yavta -w "0x009819A1 1" /dev/v4l-subdev7
268 RAW Bayer frames go through the following ImgU pipeline HW blocks to have the
269 processed image output to the DDR memory.
271 RAW Bayer frame -> Input Feeder -> Bayer Down Scaling (BDS) -> Geometric
272 Distortion Correction (GDC) -> DDR
274 The ImgU V4L2 subdev has to be configured with the supported resolutions in all
275 the above HW blocks, for a given input resolution.
277 For a given supported resolution for an input frame, the Input Feeder, Bayer
278 Down Scaling and GDC blocks should be configured with the supported resolutions.
279 This information can be obtained by looking at the following IPU3 ImgU
280 configuration table.
282 https://chromium.googlesource.com/chromiumos/overlays/board-overlays/+/master
284 Under baseboard-poppy/media-libs/cros-camera-hal-configs-poppy/files/gcss
285 directory, graph_settings_ov5670.xml can be used as an example.
287 The following steps prepare the ImgU pipeline for the image processing.
289 1. The ImgU V4L2 subdev data format should be set by using the
290 VIDIOC_SUBDEV_S_FMT on pad 0, using the GDC width and height obtained above.
292 2. The ImgU V4L2 subdev cropping should be set by using the
293 VIDIOC_SUBDEV_S_SELECTION on pad 0, with V4L2_SEL_TGT_CROP as the target,
294 using the input feeder height and width.
296 3. The ImgU V4L2 subdev composing should be set by using the
297 VIDIOC_SUBDEV_S_SELECTION on pad 0, with V4L2_SEL_TGT_COMPOSE as the target,
298 using the BDS height and width.
300 For the ov5670 example, for an input frame with a resolution of 2592x1944
301 (which is input to the ImgU subdev pad 0), the corresponding resolutions
302 for input feeder, BDS and GDC are 2592x1944, 2592x1944 and 2560x1920
303 respectively.
305 Once this is done, the received raw Bayer frames can be input to the ImgU
306 V4L2 subdev as below, using the open source application v4l2n [#f1]_.
308 For an image captured with 2592x1944 [#f4]_ resolution, with desired output
309 resolution as 2560x1920 and viewfinder resolution as 2560x1920, the following
310 v4l2n command can be used. This helps process the raw Bayer frames and produces
311 the desired results for the main output image and the viewfinder output, in NV12
312 format.
314 v4l2n --pipe=4 --load=/tmp/frame-#.bin --open=/dev/video4
315 --fmt=type:VIDEO_OUTPUT_MPLANE,width=2592,height=1944,pixelformat=0X47337069
316 --reqbufs=type:VIDEO_OUTPUT_MPLANE,count:1 --pipe=1 --output=/tmp/frames.out
317 --open=/dev/video5
318 --fmt=type:VIDEO_CAPTURE_MPLANE,width=2560,height=1920,pixelformat=NV12
319 --reqbufs=type:VIDEO_CAPTURE_MPLANE,count:1 --pipe=2 --output=/tmp/frames.vf
320 --open=/dev/video6
321 --fmt=type:VIDEO_CAPTURE_MPLANE,width=2560,height=1920,pixelformat=NV12
322 --reqbufs=type:VIDEO_CAPTURE_MPLANE,count:1 --pipe=3 --open=/dev/video7
323 --output=/tmp/frames.3A --fmt=type:META_CAPTURE,?
324 --reqbufs=count:1,type:META_CAPTURE --pipe=1,2,3,4 --stream=5
326 where /dev/video4, /dev/video5, /dev/video6 and /dev/video7 devices point to
327 input, output, viewfinder and 3A statistics video nodes respectively.
329 Converting the raw Bayer image into YUV domain
330 ----------------------------------------------
332 The processed images after the above step, can be converted to YUV domain
333 as below.
335 Main output frames
336 ~~~~~~~~~~~~~~~~~~
338 raw2pnm -x2560 -y1920 -fNV12 /tmp/frames.out /tmp/frames.out.ppm
340 where 2560x1920 is output resolution, NV12 is the video format, followed
341 by input frame and output PNM file.
343 Viewfinder output frames
344 ~~~~~~~~~~~~~~~~~~~~~~~~
346 raw2pnm -x2560 -y1920 -fNV12 /tmp/frames.vf /tmp/frames.vf.ppm
348 where 2560x1920 is output resolution, NV12 is the video format, followed
349 by input frame and output PNM file.
351 Example user space code for IPU3
352 ================================
354 User space code that configures and uses IPU3 is available here.
356 https://chromium.googlesource.com/chromiumos/platform/arc-camera/+/master/
358 The source can be located under hal/intel directory.
360 Overview of IPU3 pipeline
361 =========================
363 IPU3 pipeline has a number of image processing stages, each of which takes a
364 set of parameters as input. The major stages of pipelines are shown here:
366 .. kernel-render:: DOT
367    :alt: IPU3 ImgU Pipeline
368    :caption: IPU3 ImgU Pipeline Diagram
370    digraph "IPU3 ImgU" {
371        node [shape=box]
372        splines="ortho"
373        rankdir="LR"
375        a [label="Raw pixels"]
376        b [label="Bayer Downscaling"]
377        c [label="Optical Black Correction"]
378        d [label="Linearization"]
379        e [label="Lens Shading Correction"]
380        f [label="White Balance / Exposure / Focus Apply"]
381        g [label="Bayer Noise Reduction"]
382        h [label="ANR"]
383        i [label="Demosaicing"]
384        j [label="Color Correction Matrix"]
385        k [label="Gamma correction"]
386        l [label="Color Space Conversion"]
387        m [label="Chroma Down Scaling"]
388        n [label="Chromatic Noise Reduction"]
389        o [label="Total Color Correction"]
390        p [label="XNR3"]
391        q [label="TNR"]
392        r [label="DDR"]
394        { rank=same; a -> b -> c -> d -> e -> f }
395        { rank=same; g -> h -> i -> j -> k -> l }
396        { rank=same; m -> n -> o -> p -> q -> r }
398        a -> g -> m [style=invis, weight=10]
400        f -> g
401        l -> m
402    }
404 The table below presents a description of the above algorithms.
406 ======================== =======================================================
407 Name                     Description
408 ======================== =======================================================
409 Optical Black Correction Optical Black Correction block subtracts a pre-defined
410                          value from the respective pixel values to obtain better
411                          image quality.
412                          Defined in :c:type:`ipu3_uapi_obgrid_param`.
413 Linearization            This algo block uses linearization parameters to
414                          address non-linearity sensor effects. The Lookup table
415                          table is defined in
416                          :c:type:`ipu3_uapi_isp_lin_vmem_params`.
417 SHD                      Lens shading correction is used to correct spatial
418                          non-uniformity of the pixel response due to optical
419                          lens shading. This is done by applying a different gain
420                          for each pixel. The gain, black level etc are
421                          configured in :c:type:`ipu3_uapi_shd_config_static`.
422 BNR                      Bayer noise reduction block removes image noise by
423                          applying a bilateral filter.
424                          See :c:type:`ipu3_uapi_bnr_static_config` for details.
425 ANR                      Advanced Noise Reduction is a block based algorithm
426                          that performs noise reduction in the Bayer domain. The
427                          convolution matrix etc can be found in
428                          :c:type:`ipu3_uapi_anr_config`.
429 DM                       Demosaicing converts raw sensor data in Bayer format
430                          into RGB (Red, Green, Blue) presentation. Then add
431                          outputs of estimation of Y channel for following stream
432                          processing by Firmware. The struct is defined as
433                          :c:type:`ipu3_uapi_dm_config`.
434 Color Correction         Color Correction algo transforms sensor specific color
435                          space to the standard "sRGB" color space. This is done
436                          by applying 3x3 matrix defined in
437                          :c:type:`ipu3_uapi_ccm_mat_config`.
438 Gamma correction         Gamma correction :c:type:`ipu3_uapi_gamma_config` is a
439                          basic non-linear tone mapping correction that is
440                          applied per pixel for each pixel component.
441 CSC                      Color space conversion transforms each pixel from the
442                          RGB primary presentation to YUV (Y: brightness,
443                          UV: Luminance) presentation. This is done by applying
444                          a 3x3 matrix defined in
445                          :c:type:`ipu3_uapi_csc_mat_config`
446 CDS                      Chroma down sampling
447                          After the CSC is performed, the Chroma Down Sampling
448                          is applied for a UV plane down sampling by a factor
449                          of 2 in each direction for YUV 4:2:0 using a 4x2
450                          configurable filter :c:type:`ipu3_uapi_cds_params`.
451 CHNR                     Chroma noise reduction
452                          This block processes only the chrominance pixels and
453                          performs noise reduction by cleaning the high
454                          frequency noise.
455                          See struct :c:type:`ipu3_uapi_yuvp1_chnr_config`.
456 TCC                      Total color correction as defined in struct
457                          :c:type:`ipu3_uapi_yuvp2_tcc_static_config`.
458 XNR3                     eXtreme Noise Reduction V3 is the third revision of
459                          noise reduction algorithm used to improve image
460                          quality. This removes the low frequency noise in the
461                          captured image. Two related structs are  being defined,
462                          :c:type:`ipu3_uapi_isp_xnr3_params` for ISP data memory
463                          and :c:type:`ipu3_uapi_isp_xnr3_vmem_params` for vector
464                          memory.
465 TNR                      Temporal Noise Reduction block compares successive
466                          frames in time to remove anomalies / noise in pixel
467                          values. :c:type:`ipu3_uapi_isp_tnr3_vmem_params` and
468                          :c:type:`ipu3_uapi_isp_tnr3_params` are defined for ISP
469                          vector and data memory respectively.
470 ======================== =======================================================
472 Other often encountered acronyms not listed in above table:
474         ACC
475                 Accelerator cluster
476         AWB_FR
477                 Auto white balance filter response statistics
478         BDS
479                 Bayer downscaler parameters
480         CCM
481                 Color correction matrix coefficients
482         IEFd
483                 Image enhancement filter directed
484         Obgrid
485                 Optical black level compensation
486         OSYS
487                 Output system configuration
488         ROI
489                 Region of interest
490         YDS
491                 Y down sampling
492         YTM
493                 Y-tone mapping
495 A few stages of the pipeline will be executed by firmware running on the ISP
496 processor, while many others will use a set of fixed hardware blocks also
497 called accelerator cluster (ACC) to crunch pixel data and produce statistics.
499 ACC parameters of individual algorithms, as defined by
500 :c:type:`ipu3_uapi_acc_param`, can be chosen to be applied by the user
501 space through struct :c:type:`ipu3_uapi_flags` embedded in
502 :c:type:`ipu3_uapi_params` structure. For parameters that are configured as
503 not enabled by the user space, the corresponding structs are ignored by the
504 driver, in which case the existing configuration of the algorithm will be
505 preserved.
507 References
508 ==========
510 .. [#f5] drivers/staging/media/ipu3/include/intel-ipu3.h
512 .. [#f1] https://github.com/intel/nvt
514 .. [#f2] http://git.ideasonboard.org/yavta.git
516 .. [#f3] http://git.ideasonboard.org/?p=media-ctl.git;a=summary
518 .. [#f4] ImgU limitation requires an additional 16x16 for all input resolutions