1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1994-1999 Linus Torvalds
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/filemap.h>
49 * FIXME: remove all knowledge of the buffer layer from the core VM
51 #include <linux/buffer_head.h> /* for try_to_free_buffers */
56 * Shared mappings implemented 30.11.1994. It's not fully working yet,
59 * Shared mappings now work. 15.8.1995 Bruno.
61 * finished 'unifying' the page and buffer cache and SMP-threaded the
62 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
64 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
70 * ->i_mmap_rwsem (truncate_pagecache)
71 * ->private_lock (__free_pte->__set_page_dirty_buffers)
72 * ->swap_lock (exclusive_swap_page, others)
76 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
80 * ->page_table_lock or pte_lock (various, mainly in memory.c)
81 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
84 * ->lock_page (access_process_vm)
86 * ->i_mutex (generic_perform_write)
87 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
90 * sb_lock (fs/fs-writeback.c)
91 * ->i_pages lock (__sync_single_inode)
94 * ->anon_vma.lock (vma_adjust)
97 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
99 * ->page_table_lock or pte_lock
100 * ->swap_lock (try_to_unmap_one)
101 * ->private_lock (try_to_unmap_one)
102 * ->i_pages lock (try_to_unmap_one)
103 * ->pgdat->lru_lock (follow_page->mark_page_accessed)
104 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page)
105 * ->private_lock (page_remove_rmap->set_page_dirty)
106 * ->i_pages lock (page_remove_rmap->set_page_dirty)
107 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
108 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
109 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
110 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
111 * ->inode->i_lock (zap_pte_range->set_page_dirty)
112 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
115 * ->tasklist_lock (memory_failure, collect_procs_ao)
118 static void page_cache_delete(struct address_space
*mapping
,
119 struct page
*page
, void *shadow
)
121 XA_STATE(xas
, &mapping
->i_pages
, page
->index
);
124 mapping_set_update(&xas
, mapping
);
126 /* hugetlb pages are represented by a single entry in the xarray */
127 if (!PageHuge(page
)) {
128 xas_set_order(&xas
, page
->index
, compound_order(page
));
129 nr
= 1U << compound_order(page
);
132 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
133 VM_BUG_ON_PAGE(PageTail(page
), page
);
134 VM_BUG_ON_PAGE(nr
!= 1 && shadow
, page
);
136 xas_store(&xas
, shadow
);
137 xas_init_marks(&xas
);
139 page
->mapping
= NULL
;
140 /* Leave page->index set: truncation lookup relies upon it */
143 mapping
->nrexceptional
+= nr
;
145 * Make sure the nrexceptional update is committed before
146 * the nrpages update so that final truncate racing
147 * with reclaim does not see both counters 0 at the
148 * same time and miss a shadow entry.
152 mapping
->nrpages
-= nr
;
155 static void unaccount_page_cache_page(struct address_space
*mapping
,
161 * if we're uptodate, flush out into the cleancache, otherwise
162 * invalidate any existing cleancache entries. We can't leave
163 * stale data around in the cleancache once our page is gone
165 if (PageUptodate(page
) && PageMappedToDisk(page
))
166 cleancache_put_page(page
);
168 cleancache_invalidate_page(mapping
, page
);
170 VM_BUG_ON_PAGE(PageTail(page
), page
);
171 VM_BUG_ON_PAGE(page_mapped(page
), page
);
172 if (!IS_ENABLED(CONFIG_DEBUG_VM
) && unlikely(page_mapped(page
))) {
175 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
176 current
->comm
, page_to_pfn(page
));
177 dump_page(page
, "still mapped when deleted");
179 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
181 mapcount
= page_mapcount(page
);
182 if (mapping_exiting(mapping
) &&
183 page_count(page
) >= mapcount
+ 2) {
185 * All vmas have already been torn down, so it's
186 * a good bet that actually the page is unmapped,
187 * and we'd prefer not to leak it: if we're wrong,
188 * some other bad page check should catch it later.
190 page_mapcount_reset(page
);
191 page_ref_sub(page
, mapcount
);
195 /* hugetlb pages do not participate in page cache accounting. */
199 nr
= hpage_nr_pages(page
);
201 __mod_node_page_state(page_pgdat(page
), NR_FILE_PAGES
, -nr
);
202 if (PageSwapBacked(page
)) {
203 __mod_node_page_state(page_pgdat(page
), NR_SHMEM
, -nr
);
204 if (PageTransHuge(page
))
205 __dec_node_page_state(page
, NR_SHMEM_THPS
);
207 VM_BUG_ON_PAGE(PageTransHuge(page
), page
);
211 * At this point page must be either written or cleaned by
212 * truncate. Dirty page here signals a bug and loss of
215 * This fixes dirty accounting after removing the page entirely
216 * but leaves PageDirty set: it has no effect for truncated
217 * page and anyway will be cleared before returning page into
220 if (WARN_ON_ONCE(PageDirty(page
)))
221 account_page_cleaned(page
, mapping
, inode_to_wb(mapping
->host
));
225 * Delete a page from the page cache and free it. Caller has to make
226 * sure the page is locked and that nobody else uses it - or that usage
227 * is safe. The caller must hold the i_pages lock.
229 void __delete_from_page_cache(struct page
*page
, void *shadow
)
231 struct address_space
*mapping
= page
->mapping
;
233 trace_mm_filemap_delete_from_page_cache(page
);
235 unaccount_page_cache_page(mapping
, page
);
236 page_cache_delete(mapping
, page
, shadow
);
239 static void page_cache_free_page(struct address_space
*mapping
,
242 void (*freepage
)(struct page
*);
244 freepage
= mapping
->a_ops
->freepage
;
248 if (PageTransHuge(page
) && !PageHuge(page
)) {
249 page_ref_sub(page
, HPAGE_PMD_NR
);
250 VM_BUG_ON_PAGE(page_count(page
) <= 0, page
);
257 * delete_from_page_cache - delete page from page cache
258 * @page: the page which the kernel is trying to remove from page cache
260 * This must be called only on pages that have been verified to be in the page
261 * cache and locked. It will never put the page into the free list, the caller
262 * has a reference on the page.
264 void delete_from_page_cache(struct page
*page
)
266 struct address_space
*mapping
= page_mapping(page
);
269 BUG_ON(!PageLocked(page
));
270 xa_lock_irqsave(&mapping
->i_pages
, flags
);
271 __delete_from_page_cache(page
, NULL
);
272 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
274 page_cache_free_page(mapping
, page
);
276 EXPORT_SYMBOL(delete_from_page_cache
);
279 * page_cache_delete_batch - delete several pages from page cache
280 * @mapping: the mapping to which pages belong
281 * @pvec: pagevec with pages to delete
283 * The function walks over mapping->i_pages and removes pages passed in @pvec
284 * from the mapping. The function expects @pvec to be sorted by page index.
285 * It tolerates holes in @pvec (mapping entries at those indices are not
286 * modified). The function expects only THP head pages to be present in the
287 * @pvec and takes care to delete all corresponding tail pages from the
290 * The function expects the i_pages lock to be held.
292 static void page_cache_delete_batch(struct address_space
*mapping
,
293 struct pagevec
*pvec
)
295 XA_STATE(xas
, &mapping
->i_pages
, pvec
->pages
[0]->index
);
297 int i
= 0, tail_pages
= 0;
300 mapping_set_update(&xas
, mapping
);
301 xas_for_each(&xas
, page
, ULONG_MAX
) {
302 if (i
>= pagevec_count(pvec
) && !tail_pages
)
304 if (xa_is_value(page
))
308 * Some page got inserted in our range? Skip it. We
309 * have our pages locked so they are protected from
312 if (page
!= pvec
->pages
[i
]) {
313 VM_BUG_ON_PAGE(page
->index
>
314 pvec
->pages
[i
]->index
, page
);
317 WARN_ON_ONCE(!PageLocked(page
));
318 if (PageTransHuge(page
) && !PageHuge(page
))
319 tail_pages
= HPAGE_PMD_NR
- 1;
320 page
->mapping
= NULL
;
322 * Leave page->index set: truncation lookup relies
327 VM_BUG_ON_PAGE(page
->index
+ HPAGE_PMD_NR
- tail_pages
328 != pvec
->pages
[i
]->index
, page
);
331 xas_store(&xas
, NULL
);
334 mapping
->nrpages
-= total_pages
;
337 void delete_from_page_cache_batch(struct address_space
*mapping
,
338 struct pagevec
*pvec
)
343 if (!pagevec_count(pvec
))
346 xa_lock_irqsave(&mapping
->i_pages
, flags
);
347 for (i
= 0; i
< pagevec_count(pvec
); i
++) {
348 trace_mm_filemap_delete_from_page_cache(pvec
->pages
[i
]);
350 unaccount_page_cache_page(mapping
, pvec
->pages
[i
]);
352 page_cache_delete_batch(mapping
, pvec
);
353 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
355 for (i
= 0; i
< pagevec_count(pvec
); i
++)
356 page_cache_free_page(mapping
, pvec
->pages
[i
]);
359 int filemap_check_errors(struct address_space
*mapping
)
362 /* Check for outstanding write errors */
363 if (test_bit(AS_ENOSPC
, &mapping
->flags
) &&
364 test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
366 if (test_bit(AS_EIO
, &mapping
->flags
) &&
367 test_and_clear_bit(AS_EIO
, &mapping
->flags
))
371 EXPORT_SYMBOL(filemap_check_errors
);
373 static int filemap_check_and_keep_errors(struct address_space
*mapping
)
375 /* Check for outstanding write errors */
376 if (test_bit(AS_EIO
, &mapping
->flags
))
378 if (test_bit(AS_ENOSPC
, &mapping
->flags
))
384 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
385 * @mapping: address space structure to write
386 * @start: offset in bytes where the range starts
387 * @end: offset in bytes where the range ends (inclusive)
388 * @sync_mode: enable synchronous operation
390 * Start writeback against all of a mapping's dirty pages that lie
391 * within the byte offsets <start, end> inclusive.
393 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
394 * opposed to a regular memory cleansing writeback. The difference between
395 * these two operations is that if a dirty page/buffer is encountered, it must
396 * be waited upon, and not just skipped over.
398 * Return: %0 on success, negative error code otherwise.
400 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
401 loff_t end
, int sync_mode
)
404 struct writeback_control wbc
= {
405 .sync_mode
= sync_mode
,
406 .nr_to_write
= LONG_MAX
,
407 .range_start
= start
,
411 if (!mapping_cap_writeback_dirty(mapping
))
414 wbc_attach_fdatawrite_inode(&wbc
, mapping
->host
);
415 ret
= do_writepages(mapping
, &wbc
);
416 wbc_detach_inode(&wbc
);
420 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
423 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
426 int filemap_fdatawrite(struct address_space
*mapping
)
428 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
430 EXPORT_SYMBOL(filemap_fdatawrite
);
432 int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
435 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
437 EXPORT_SYMBOL(filemap_fdatawrite_range
);
440 * filemap_flush - mostly a non-blocking flush
441 * @mapping: target address_space
443 * This is a mostly non-blocking flush. Not suitable for data-integrity
444 * purposes - I/O may not be started against all dirty pages.
446 * Return: %0 on success, negative error code otherwise.
448 int filemap_flush(struct address_space
*mapping
)
450 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
452 EXPORT_SYMBOL(filemap_flush
);
455 * filemap_range_has_page - check if a page exists in range.
456 * @mapping: address space within which to check
457 * @start_byte: offset in bytes where the range starts
458 * @end_byte: offset in bytes where the range ends (inclusive)
460 * Find at least one page in the range supplied, usually used to check if
461 * direct writing in this range will trigger a writeback.
463 * Return: %true if at least one page exists in the specified range,
466 bool filemap_range_has_page(struct address_space
*mapping
,
467 loff_t start_byte
, loff_t end_byte
)
470 XA_STATE(xas
, &mapping
->i_pages
, start_byte
>> PAGE_SHIFT
);
471 pgoff_t max
= end_byte
>> PAGE_SHIFT
;
473 if (end_byte
< start_byte
)
478 page
= xas_find(&xas
, max
);
479 if (xas_retry(&xas
, page
))
481 /* Shadow entries don't count */
482 if (xa_is_value(page
))
485 * We don't need to try to pin this page; we're about to
486 * release the RCU lock anyway. It is enough to know that
487 * there was a page here recently.
495 EXPORT_SYMBOL(filemap_range_has_page
);
497 static void __filemap_fdatawait_range(struct address_space
*mapping
,
498 loff_t start_byte
, loff_t end_byte
)
500 pgoff_t index
= start_byte
>> PAGE_SHIFT
;
501 pgoff_t end
= end_byte
>> PAGE_SHIFT
;
505 if (end_byte
< start_byte
)
509 while (index
<= end
) {
512 nr_pages
= pagevec_lookup_range_tag(&pvec
, mapping
, &index
,
513 end
, PAGECACHE_TAG_WRITEBACK
);
517 for (i
= 0; i
< nr_pages
; i
++) {
518 struct page
*page
= pvec
.pages
[i
];
520 wait_on_page_writeback(page
);
521 ClearPageError(page
);
523 pagevec_release(&pvec
);
529 * filemap_fdatawait_range - wait for writeback to complete
530 * @mapping: address space structure to wait for
531 * @start_byte: offset in bytes where the range starts
532 * @end_byte: offset in bytes where the range ends (inclusive)
534 * Walk the list of under-writeback pages of the given address space
535 * in the given range and wait for all of them. Check error status of
536 * the address space and return it.
538 * Since the error status of the address space is cleared by this function,
539 * callers are responsible for checking the return value and handling and/or
540 * reporting the error.
542 * Return: error status of the address space.
544 int filemap_fdatawait_range(struct address_space
*mapping
, loff_t start_byte
,
547 __filemap_fdatawait_range(mapping
, start_byte
, end_byte
);
548 return filemap_check_errors(mapping
);
550 EXPORT_SYMBOL(filemap_fdatawait_range
);
553 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
554 * @mapping: address space structure to wait for
555 * @start_byte: offset in bytes where the range starts
556 * @end_byte: offset in bytes where the range ends (inclusive)
558 * Walk the list of under-writeback pages of the given address space in the
559 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
560 * this function does not clear error status of the address space.
562 * Use this function if callers don't handle errors themselves. Expected
563 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
566 int filemap_fdatawait_range_keep_errors(struct address_space
*mapping
,
567 loff_t start_byte
, loff_t end_byte
)
569 __filemap_fdatawait_range(mapping
, start_byte
, end_byte
);
570 return filemap_check_and_keep_errors(mapping
);
572 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors
);
575 * file_fdatawait_range - wait for writeback to complete
576 * @file: file pointing to address space structure to wait for
577 * @start_byte: offset in bytes where the range starts
578 * @end_byte: offset in bytes where the range ends (inclusive)
580 * Walk the list of under-writeback pages of the address space that file
581 * refers to, in the given range and wait for all of them. Check error
582 * status of the address space vs. the file->f_wb_err cursor and return it.
584 * Since the error status of the file is advanced by this function,
585 * callers are responsible for checking the return value and handling and/or
586 * reporting the error.
588 * Return: error status of the address space vs. the file->f_wb_err cursor.
590 int file_fdatawait_range(struct file
*file
, loff_t start_byte
, loff_t end_byte
)
592 struct address_space
*mapping
= file
->f_mapping
;
594 __filemap_fdatawait_range(mapping
, start_byte
, end_byte
);
595 return file_check_and_advance_wb_err(file
);
597 EXPORT_SYMBOL(file_fdatawait_range
);
600 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
601 * @mapping: address space structure to wait for
603 * Walk the list of under-writeback pages of the given address space
604 * and wait for all of them. Unlike filemap_fdatawait(), this function
605 * does not clear error status of the address space.
607 * Use this function if callers don't handle errors themselves. Expected
608 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
611 * Return: error status of the address space.
613 int filemap_fdatawait_keep_errors(struct address_space
*mapping
)
615 __filemap_fdatawait_range(mapping
, 0, LLONG_MAX
);
616 return filemap_check_and_keep_errors(mapping
);
618 EXPORT_SYMBOL(filemap_fdatawait_keep_errors
);
620 static bool mapping_needs_writeback(struct address_space
*mapping
)
622 return (!dax_mapping(mapping
) && mapping
->nrpages
) ||
623 (dax_mapping(mapping
) && mapping
->nrexceptional
);
626 int filemap_write_and_wait(struct address_space
*mapping
)
630 if (mapping_needs_writeback(mapping
)) {
631 err
= filemap_fdatawrite(mapping
);
633 * Even if the above returned error, the pages may be
634 * written partially (e.g. -ENOSPC), so we wait for it.
635 * But the -EIO is special case, it may indicate the worst
636 * thing (e.g. bug) happened, so we avoid waiting for it.
639 int err2
= filemap_fdatawait(mapping
);
643 /* Clear any previously stored errors */
644 filemap_check_errors(mapping
);
647 err
= filemap_check_errors(mapping
);
651 EXPORT_SYMBOL(filemap_write_and_wait
);
654 * filemap_write_and_wait_range - write out & wait on a file range
655 * @mapping: the address_space for the pages
656 * @lstart: offset in bytes where the range starts
657 * @lend: offset in bytes where the range ends (inclusive)
659 * Write out and wait upon file offsets lstart->lend, inclusive.
661 * Note that @lend is inclusive (describes the last byte to be written) so
662 * that this function can be used to write to the very end-of-file (end = -1).
664 * Return: error status of the address space.
666 int filemap_write_and_wait_range(struct address_space
*mapping
,
667 loff_t lstart
, loff_t lend
)
671 if (mapping_needs_writeback(mapping
)) {
672 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
674 /* See comment of filemap_write_and_wait() */
676 int err2
= filemap_fdatawait_range(mapping
,
681 /* Clear any previously stored errors */
682 filemap_check_errors(mapping
);
685 err
= filemap_check_errors(mapping
);
689 EXPORT_SYMBOL(filemap_write_and_wait_range
);
691 void __filemap_set_wb_err(struct address_space
*mapping
, int err
)
693 errseq_t eseq
= errseq_set(&mapping
->wb_err
, err
);
695 trace_filemap_set_wb_err(mapping
, eseq
);
697 EXPORT_SYMBOL(__filemap_set_wb_err
);
700 * file_check_and_advance_wb_err - report wb error (if any) that was previously
701 * and advance wb_err to current one
702 * @file: struct file on which the error is being reported
704 * When userland calls fsync (or something like nfsd does the equivalent), we
705 * want to report any writeback errors that occurred since the last fsync (or
706 * since the file was opened if there haven't been any).
708 * Grab the wb_err from the mapping. If it matches what we have in the file,
709 * then just quickly return 0. The file is all caught up.
711 * If it doesn't match, then take the mapping value, set the "seen" flag in
712 * it and try to swap it into place. If it works, or another task beat us
713 * to it with the new value, then update the f_wb_err and return the error
714 * portion. The error at this point must be reported via proper channels
715 * (a'la fsync, or NFS COMMIT operation, etc.).
717 * While we handle mapping->wb_err with atomic operations, the f_wb_err
718 * value is protected by the f_lock since we must ensure that it reflects
719 * the latest value swapped in for this file descriptor.
721 * Return: %0 on success, negative error code otherwise.
723 int file_check_and_advance_wb_err(struct file
*file
)
726 errseq_t old
= READ_ONCE(file
->f_wb_err
);
727 struct address_space
*mapping
= file
->f_mapping
;
729 /* Locklessly handle the common case where nothing has changed */
730 if (errseq_check(&mapping
->wb_err
, old
)) {
731 /* Something changed, must use slow path */
732 spin_lock(&file
->f_lock
);
733 old
= file
->f_wb_err
;
734 err
= errseq_check_and_advance(&mapping
->wb_err
,
736 trace_file_check_and_advance_wb_err(file
, old
);
737 spin_unlock(&file
->f_lock
);
741 * We're mostly using this function as a drop in replacement for
742 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
743 * that the legacy code would have had on these flags.
745 clear_bit(AS_EIO
, &mapping
->flags
);
746 clear_bit(AS_ENOSPC
, &mapping
->flags
);
749 EXPORT_SYMBOL(file_check_and_advance_wb_err
);
752 * file_write_and_wait_range - write out & wait on a file range
753 * @file: file pointing to address_space with pages
754 * @lstart: offset in bytes where the range starts
755 * @lend: offset in bytes where the range ends (inclusive)
757 * Write out and wait upon file offsets lstart->lend, inclusive.
759 * Note that @lend is inclusive (describes the last byte to be written) so
760 * that this function can be used to write to the very end-of-file (end = -1).
762 * After writing out and waiting on the data, we check and advance the
763 * f_wb_err cursor to the latest value, and return any errors detected there.
765 * Return: %0 on success, negative error code otherwise.
767 int file_write_and_wait_range(struct file
*file
, loff_t lstart
, loff_t lend
)
770 struct address_space
*mapping
= file
->f_mapping
;
772 if (mapping_needs_writeback(mapping
)) {
773 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
775 /* See comment of filemap_write_and_wait() */
777 __filemap_fdatawait_range(mapping
, lstart
, lend
);
779 err2
= file_check_and_advance_wb_err(file
);
784 EXPORT_SYMBOL(file_write_and_wait_range
);
787 * replace_page_cache_page - replace a pagecache page with a new one
788 * @old: page to be replaced
789 * @new: page to replace with
790 * @gfp_mask: allocation mode
792 * This function replaces a page in the pagecache with a new one. On
793 * success it acquires the pagecache reference for the new page and
794 * drops it for the old page. Both the old and new pages must be
795 * locked. This function does not add the new page to the LRU, the
796 * caller must do that.
798 * The remove + add is atomic. This function cannot fail.
802 int replace_page_cache_page(struct page
*old
, struct page
*new, gfp_t gfp_mask
)
804 struct address_space
*mapping
= old
->mapping
;
805 void (*freepage
)(struct page
*) = mapping
->a_ops
->freepage
;
806 pgoff_t offset
= old
->index
;
807 XA_STATE(xas
, &mapping
->i_pages
, offset
);
810 VM_BUG_ON_PAGE(!PageLocked(old
), old
);
811 VM_BUG_ON_PAGE(!PageLocked(new), new);
812 VM_BUG_ON_PAGE(new->mapping
, new);
815 new->mapping
= mapping
;
818 xas_lock_irqsave(&xas
, flags
);
819 xas_store(&xas
, new);
822 /* hugetlb pages do not participate in page cache accounting. */
824 __dec_node_page_state(new, NR_FILE_PAGES
);
826 __inc_node_page_state(new, NR_FILE_PAGES
);
827 if (PageSwapBacked(old
))
828 __dec_node_page_state(new, NR_SHMEM
);
829 if (PageSwapBacked(new))
830 __inc_node_page_state(new, NR_SHMEM
);
831 xas_unlock_irqrestore(&xas
, flags
);
832 mem_cgroup_migrate(old
, new);
839 EXPORT_SYMBOL_GPL(replace_page_cache_page
);
841 static int __add_to_page_cache_locked(struct page
*page
,
842 struct address_space
*mapping
,
843 pgoff_t offset
, gfp_t gfp_mask
,
846 XA_STATE(xas
, &mapping
->i_pages
, offset
);
847 int huge
= PageHuge(page
);
848 struct mem_cgroup
*memcg
;
852 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
853 VM_BUG_ON_PAGE(PageSwapBacked(page
), page
);
854 mapping_set_update(&xas
, mapping
);
857 error
= mem_cgroup_try_charge(page
, current
->mm
,
858 gfp_mask
, &memcg
, false);
864 page
->mapping
= mapping
;
865 page
->index
= offset
;
869 old
= xas_load(&xas
);
870 if (old
&& !xa_is_value(old
))
871 xas_set_err(&xas
, -EEXIST
);
872 xas_store(&xas
, page
);
876 if (xa_is_value(old
)) {
877 mapping
->nrexceptional
--;
883 /* hugetlb pages do not participate in page cache accounting */
885 __inc_node_page_state(page
, NR_FILE_PAGES
);
887 xas_unlock_irq(&xas
);
888 } while (xas_nomem(&xas
, gfp_mask
& GFP_RECLAIM_MASK
));
894 mem_cgroup_commit_charge(page
, memcg
, false, false);
895 trace_mm_filemap_add_to_page_cache(page
);
898 page
->mapping
= NULL
;
899 /* Leave page->index set: truncation relies upon it */
901 mem_cgroup_cancel_charge(page
, memcg
, false);
903 return xas_error(&xas
);
905 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked
, ERRNO
);
908 * add_to_page_cache_locked - add a locked page to the pagecache
910 * @mapping: the page's address_space
911 * @offset: page index
912 * @gfp_mask: page allocation mode
914 * This function is used to add a page to the pagecache. It must be locked.
915 * This function does not add the page to the LRU. The caller must do that.
917 * Return: %0 on success, negative error code otherwise.
919 int add_to_page_cache_locked(struct page
*page
, struct address_space
*mapping
,
920 pgoff_t offset
, gfp_t gfp_mask
)
922 return __add_to_page_cache_locked(page
, mapping
, offset
,
925 EXPORT_SYMBOL(add_to_page_cache_locked
);
927 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
928 pgoff_t offset
, gfp_t gfp_mask
)
933 __SetPageLocked(page
);
934 ret
= __add_to_page_cache_locked(page
, mapping
, offset
,
937 __ClearPageLocked(page
);
940 * The page might have been evicted from cache only
941 * recently, in which case it should be activated like
942 * any other repeatedly accessed page.
943 * The exception is pages getting rewritten; evicting other
944 * data from the working set, only to cache data that will
945 * get overwritten with something else, is a waste of memory.
947 WARN_ON_ONCE(PageActive(page
));
948 if (!(gfp_mask
& __GFP_WRITE
) && shadow
)
949 workingset_refault(page
, shadow
);
954 EXPORT_SYMBOL_GPL(add_to_page_cache_lru
);
957 struct page
*__page_cache_alloc(gfp_t gfp
)
962 if (cpuset_do_page_mem_spread()) {
963 unsigned int cpuset_mems_cookie
;
965 cpuset_mems_cookie
= read_mems_allowed_begin();
966 n
= cpuset_mem_spread_node();
967 page
= __alloc_pages_node(n
, gfp
, 0);
968 } while (!page
&& read_mems_allowed_retry(cpuset_mems_cookie
));
972 return alloc_pages(gfp
, 0);
974 EXPORT_SYMBOL(__page_cache_alloc
);
978 * In order to wait for pages to become available there must be
979 * waitqueues associated with pages. By using a hash table of
980 * waitqueues where the bucket discipline is to maintain all
981 * waiters on the same queue and wake all when any of the pages
982 * become available, and for the woken contexts to check to be
983 * sure the appropriate page became available, this saves space
984 * at a cost of "thundering herd" phenomena during rare hash
987 #define PAGE_WAIT_TABLE_BITS 8
988 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
989 static wait_queue_head_t page_wait_table
[PAGE_WAIT_TABLE_SIZE
] __cacheline_aligned
;
991 static wait_queue_head_t
*page_waitqueue(struct page
*page
)
993 return &page_wait_table
[hash_ptr(page
, PAGE_WAIT_TABLE_BITS
)];
996 void __init
pagecache_init(void)
1000 for (i
= 0; i
< PAGE_WAIT_TABLE_SIZE
; i
++)
1001 init_waitqueue_head(&page_wait_table
[i
]);
1003 page_writeback_init();
1006 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
1007 struct wait_page_key
{
1013 struct wait_page_queue
{
1016 wait_queue_entry_t wait
;
1019 static int wake_page_function(wait_queue_entry_t
*wait
, unsigned mode
, int sync
, void *arg
)
1021 struct wait_page_key
*key
= arg
;
1022 struct wait_page_queue
*wait_page
1023 = container_of(wait
, struct wait_page_queue
, wait
);
1025 if (wait_page
->page
!= key
->page
)
1027 key
->page_match
= 1;
1029 if (wait_page
->bit_nr
!= key
->bit_nr
)
1033 * Stop walking if it's locked.
1034 * Is this safe if put_and_wait_on_page_locked() is in use?
1035 * Yes: the waker must hold a reference to this page, and if PG_locked
1036 * has now already been set by another task, that task must also hold
1037 * a reference to the *same usage* of this page; so there is no need
1038 * to walk on to wake even the put_and_wait_on_page_locked() callers.
1040 if (test_bit(key
->bit_nr
, &key
->page
->flags
))
1043 return autoremove_wake_function(wait
, mode
, sync
, key
);
1046 static void wake_up_page_bit(struct page
*page
, int bit_nr
)
1048 wait_queue_head_t
*q
= page_waitqueue(page
);
1049 struct wait_page_key key
;
1050 unsigned long flags
;
1051 wait_queue_entry_t bookmark
;
1054 key
.bit_nr
= bit_nr
;
1058 bookmark
.private = NULL
;
1059 bookmark
.func
= NULL
;
1060 INIT_LIST_HEAD(&bookmark
.entry
);
1062 spin_lock_irqsave(&q
->lock
, flags
);
1063 __wake_up_locked_key_bookmark(q
, TASK_NORMAL
, &key
, &bookmark
);
1065 while (bookmark
.flags
& WQ_FLAG_BOOKMARK
) {
1067 * Take a breather from holding the lock,
1068 * allow pages that finish wake up asynchronously
1069 * to acquire the lock and remove themselves
1072 spin_unlock_irqrestore(&q
->lock
, flags
);
1074 spin_lock_irqsave(&q
->lock
, flags
);
1075 __wake_up_locked_key_bookmark(q
, TASK_NORMAL
, &key
, &bookmark
);
1079 * It is possible for other pages to have collided on the waitqueue
1080 * hash, so in that case check for a page match. That prevents a long-
1083 * It is still possible to miss a case here, when we woke page waiters
1084 * and removed them from the waitqueue, but there are still other
1087 if (!waitqueue_active(q
) || !key
.page_match
) {
1088 ClearPageWaiters(page
);
1090 * It's possible to miss clearing Waiters here, when we woke
1091 * our page waiters, but the hashed waitqueue has waiters for
1092 * other pages on it.
1094 * That's okay, it's a rare case. The next waker will clear it.
1097 spin_unlock_irqrestore(&q
->lock
, flags
);
1100 static void wake_up_page(struct page
*page
, int bit
)
1102 if (!PageWaiters(page
))
1104 wake_up_page_bit(page
, bit
);
1108 * A choice of three behaviors for wait_on_page_bit_common():
1111 EXCLUSIVE
, /* Hold ref to page and take the bit when woken, like
1112 * __lock_page() waiting on then setting PG_locked.
1114 SHARED
, /* Hold ref to page and check the bit when woken, like
1115 * wait_on_page_writeback() waiting on PG_writeback.
1117 DROP
, /* Drop ref to page before wait, no check when woken,
1118 * like put_and_wait_on_page_locked() on PG_locked.
1122 static inline int wait_on_page_bit_common(wait_queue_head_t
*q
,
1123 struct page
*page
, int bit_nr
, int state
, enum behavior behavior
)
1125 struct wait_page_queue wait_page
;
1126 wait_queue_entry_t
*wait
= &wait_page
.wait
;
1128 bool thrashing
= false;
1129 bool delayacct
= false;
1130 unsigned long pflags
;
1133 if (bit_nr
== PG_locked
&&
1134 !PageUptodate(page
) && PageWorkingset(page
)) {
1135 if (!PageSwapBacked(page
)) {
1136 delayacct_thrashing_start();
1139 psi_memstall_enter(&pflags
);
1144 wait
->flags
= behavior
== EXCLUSIVE
? WQ_FLAG_EXCLUSIVE
: 0;
1145 wait
->func
= wake_page_function
;
1146 wait_page
.page
= page
;
1147 wait_page
.bit_nr
= bit_nr
;
1150 spin_lock_irq(&q
->lock
);
1152 if (likely(list_empty(&wait
->entry
))) {
1153 __add_wait_queue_entry_tail(q
, wait
);
1154 SetPageWaiters(page
);
1157 set_current_state(state
);
1159 spin_unlock_irq(&q
->lock
);
1161 bit_is_set
= test_bit(bit_nr
, &page
->flags
);
1162 if (behavior
== DROP
)
1165 if (likely(bit_is_set
))
1168 if (behavior
== EXCLUSIVE
) {
1169 if (!test_and_set_bit_lock(bit_nr
, &page
->flags
))
1171 } else if (behavior
== SHARED
) {
1172 if (!test_bit(bit_nr
, &page
->flags
))
1176 if (signal_pending_state(state
, current
)) {
1181 if (behavior
== DROP
) {
1183 * We can no longer safely access page->flags:
1184 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1185 * there is a risk of waiting forever on a page reused
1186 * for something that keeps it locked indefinitely.
1187 * But best check for -EINTR above before breaking.
1193 finish_wait(q
, wait
);
1197 delayacct_thrashing_end();
1198 psi_memstall_leave(&pflags
);
1202 * A signal could leave PageWaiters set. Clearing it here if
1203 * !waitqueue_active would be possible (by open-coding finish_wait),
1204 * but still fail to catch it in the case of wait hash collision. We
1205 * already can fail to clear wait hash collision cases, so don't
1206 * bother with signals either.
1212 void wait_on_page_bit(struct page
*page
, int bit_nr
)
1214 wait_queue_head_t
*q
= page_waitqueue(page
);
1215 wait_on_page_bit_common(q
, page
, bit_nr
, TASK_UNINTERRUPTIBLE
, SHARED
);
1217 EXPORT_SYMBOL(wait_on_page_bit
);
1219 int wait_on_page_bit_killable(struct page
*page
, int bit_nr
)
1221 wait_queue_head_t
*q
= page_waitqueue(page
);
1222 return wait_on_page_bit_common(q
, page
, bit_nr
, TASK_KILLABLE
, SHARED
);
1224 EXPORT_SYMBOL(wait_on_page_bit_killable
);
1227 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1228 * @page: The page to wait for.
1230 * The caller should hold a reference on @page. They expect the page to
1231 * become unlocked relatively soon, but do not wish to hold up migration
1232 * (for example) by holding the reference while waiting for the page to
1233 * come unlocked. After this function returns, the caller should not
1234 * dereference @page.
1236 void put_and_wait_on_page_locked(struct page
*page
)
1238 wait_queue_head_t
*q
;
1240 page
= compound_head(page
);
1241 q
= page_waitqueue(page
);
1242 wait_on_page_bit_common(q
, page
, PG_locked
, TASK_UNINTERRUPTIBLE
, DROP
);
1246 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1247 * @page: Page defining the wait queue of interest
1248 * @waiter: Waiter to add to the queue
1250 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1252 void add_page_wait_queue(struct page
*page
, wait_queue_entry_t
*waiter
)
1254 wait_queue_head_t
*q
= page_waitqueue(page
);
1255 unsigned long flags
;
1257 spin_lock_irqsave(&q
->lock
, flags
);
1258 __add_wait_queue_entry_tail(q
, waiter
);
1259 SetPageWaiters(page
);
1260 spin_unlock_irqrestore(&q
->lock
, flags
);
1262 EXPORT_SYMBOL_GPL(add_page_wait_queue
);
1264 #ifndef clear_bit_unlock_is_negative_byte
1267 * PG_waiters is the high bit in the same byte as PG_lock.
1269 * On x86 (and on many other architectures), we can clear PG_lock and
1270 * test the sign bit at the same time. But if the architecture does
1271 * not support that special operation, we just do this all by hand
1274 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1275 * being cleared, but a memory barrier should be unneccssary since it is
1276 * in the same byte as PG_locked.
1278 static inline bool clear_bit_unlock_is_negative_byte(long nr
, volatile void *mem
)
1280 clear_bit_unlock(nr
, mem
);
1281 /* smp_mb__after_atomic(); */
1282 return test_bit(PG_waiters
, mem
);
1288 * unlock_page - unlock a locked page
1291 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1292 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1293 * mechanism between PageLocked pages and PageWriteback pages is shared.
1294 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1296 * Note that this depends on PG_waiters being the sign bit in the byte
1297 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1298 * clear the PG_locked bit and test PG_waiters at the same time fairly
1299 * portably (architectures that do LL/SC can test any bit, while x86 can
1300 * test the sign bit).
1302 void unlock_page(struct page
*page
)
1304 BUILD_BUG_ON(PG_waiters
!= 7);
1305 page
= compound_head(page
);
1306 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1307 if (clear_bit_unlock_is_negative_byte(PG_locked
, &page
->flags
))
1308 wake_up_page_bit(page
, PG_locked
);
1310 EXPORT_SYMBOL(unlock_page
);
1313 * end_page_writeback - end writeback against a page
1316 void end_page_writeback(struct page
*page
)
1319 * TestClearPageReclaim could be used here but it is an atomic
1320 * operation and overkill in this particular case. Failing to
1321 * shuffle a page marked for immediate reclaim is too mild to
1322 * justify taking an atomic operation penalty at the end of
1323 * ever page writeback.
1325 if (PageReclaim(page
)) {
1326 ClearPageReclaim(page
);
1327 rotate_reclaimable_page(page
);
1330 if (!test_clear_page_writeback(page
))
1333 smp_mb__after_atomic();
1334 wake_up_page(page
, PG_writeback
);
1336 EXPORT_SYMBOL(end_page_writeback
);
1339 * After completing I/O on a page, call this routine to update the page
1340 * flags appropriately
1342 void page_endio(struct page
*page
, bool is_write
, int err
)
1346 SetPageUptodate(page
);
1348 ClearPageUptodate(page
);
1354 struct address_space
*mapping
;
1357 mapping
= page_mapping(page
);
1359 mapping_set_error(mapping
, err
);
1361 end_page_writeback(page
);
1364 EXPORT_SYMBOL_GPL(page_endio
);
1367 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1368 * @__page: the page to lock
1370 void __lock_page(struct page
*__page
)
1372 struct page
*page
= compound_head(__page
);
1373 wait_queue_head_t
*q
= page_waitqueue(page
);
1374 wait_on_page_bit_common(q
, page
, PG_locked
, TASK_UNINTERRUPTIBLE
,
1377 EXPORT_SYMBOL(__lock_page
);
1379 int __lock_page_killable(struct page
*__page
)
1381 struct page
*page
= compound_head(__page
);
1382 wait_queue_head_t
*q
= page_waitqueue(page
);
1383 return wait_on_page_bit_common(q
, page
, PG_locked
, TASK_KILLABLE
,
1386 EXPORT_SYMBOL_GPL(__lock_page_killable
);
1390 * 1 - page is locked; mmap_sem is still held.
1391 * 0 - page is not locked.
1392 * mmap_sem has been released (up_read()), unless flags had both
1393 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1394 * which case mmap_sem is still held.
1396 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1397 * with the page locked and the mmap_sem unperturbed.
1399 int __lock_page_or_retry(struct page
*page
, struct mm_struct
*mm
,
1402 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
1404 * CAUTION! In this case, mmap_sem is not released
1405 * even though return 0.
1407 if (flags
& FAULT_FLAG_RETRY_NOWAIT
)
1410 up_read(&mm
->mmap_sem
);
1411 if (flags
& FAULT_FLAG_KILLABLE
)
1412 wait_on_page_locked_killable(page
);
1414 wait_on_page_locked(page
);
1417 if (flags
& FAULT_FLAG_KILLABLE
) {
1420 ret
= __lock_page_killable(page
);
1422 up_read(&mm
->mmap_sem
);
1432 * page_cache_next_miss() - Find the next gap in the page cache.
1433 * @mapping: Mapping.
1435 * @max_scan: Maximum range to search.
1437 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1438 * gap with the lowest index.
1440 * This function may be called under the rcu_read_lock. However, this will
1441 * not atomically search a snapshot of the cache at a single point in time.
1442 * For example, if a gap is created at index 5, then subsequently a gap is
1443 * created at index 10, page_cache_next_miss covering both indices may
1444 * return 10 if called under the rcu_read_lock.
1446 * Return: The index of the gap if found, otherwise an index outside the
1447 * range specified (in which case 'return - index >= max_scan' will be true).
1448 * In the rare case of index wrap-around, 0 will be returned.
1450 pgoff_t
page_cache_next_miss(struct address_space
*mapping
,
1451 pgoff_t index
, unsigned long max_scan
)
1453 XA_STATE(xas
, &mapping
->i_pages
, index
);
1455 while (max_scan
--) {
1456 void *entry
= xas_next(&xas
);
1457 if (!entry
|| xa_is_value(entry
))
1459 if (xas
.xa_index
== 0)
1463 return xas
.xa_index
;
1465 EXPORT_SYMBOL(page_cache_next_miss
);
1468 * page_cache_prev_miss() - Find the previous gap in the page cache.
1469 * @mapping: Mapping.
1471 * @max_scan: Maximum range to search.
1473 * Search the range [max(index - max_scan + 1, 0), index] for the
1474 * gap with the highest index.
1476 * This function may be called under the rcu_read_lock. However, this will
1477 * not atomically search a snapshot of the cache at a single point in time.
1478 * For example, if a gap is created at index 10, then subsequently a gap is
1479 * created at index 5, page_cache_prev_miss() covering both indices may
1480 * return 5 if called under the rcu_read_lock.
1482 * Return: The index of the gap if found, otherwise an index outside the
1483 * range specified (in which case 'index - return >= max_scan' will be true).
1484 * In the rare case of wrap-around, ULONG_MAX will be returned.
1486 pgoff_t
page_cache_prev_miss(struct address_space
*mapping
,
1487 pgoff_t index
, unsigned long max_scan
)
1489 XA_STATE(xas
, &mapping
->i_pages
, index
);
1491 while (max_scan
--) {
1492 void *entry
= xas_prev(&xas
);
1493 if (!entry
|| xa_is_value(entry
))
1495 if (xas
.xa_index
== ULONG_MAX
)
1499 return xas
.xa_index
;
1501 EXPORT_SYMBOL(page_cache_prev_miss
);
1504 * find_get_entry - find and get a page cache entry
1505 * @mapping: the address_space to search
1506 * @offset: the page cache index
1508 * Looks up the page cache slot at @mapping & @offset. If there is a
1509 * page cache page, it is returned with an increased refcount.
1511 * If the slot holds a shadow entry of a previously evicted page, or a
1512 * swap entry from shmem/tmpfs, it is returned.
1514 * Return: the found page or shadow entry, %NULL if nothing is found.
1516 struct page
*find_get_entry(struct address_space
*mapping
, pgoff_t offset
)
1518 XA_STATE(xas
, &mapping
->i_pages
, offset
);
1519 struct page
*head
, *page
;
1524 page
= xas_load(&xas
);
1525 if (xas_retry(&xas
, page
))
1528 * A shadow entry of a recently evicted page, or a swap entry from
1529 * shmem/tmpfs. Return it without attempting to raise page count.
1531 if (!page
|| xa_is_value(page
))
1534 head
= compound_head(page
);
1535 if (!page_cache_get_speculative(head
))
1538 /* The page was split under us? */
1539 if (compound_head(page
) != head
) {
1545 * Has the page moved?
1546 * This is part of the lockless pagecache protocol. See
1547 * include/linux/pagemap.h for details.
1549 if (unlikely(page
!= xas_reload(&xas
))) {
1558 EXPORT_SYMBOL(find_get_entry
);
1561 * find_lock_entry - locate, pin and lock a page cache entry
1562 * @mapping: the address_space to search
1563 * @offset: the page cache index
1565 * Looks up the page cache slot at @mapping & @offset. If there is a
1566 * page cache page, it is returned locked and with an increased
1569 * If the slot holds a shadow entry of a previously evicted page, or a
1570 * swap entry from shmem/tmpfs, it is returned.
1572 * find_lock_entry() may sleep.
1574 * Return: the found page or shadow entry, %NULL if nothing is found.
1576 struct page
*find_lock_entry(struct address_space
*mapping
, pgoff_t offset
)
1581 page
= find_get_entry(mapping
, offset
);
1582 if (page
&& !xa_is_value(page
)) {
1584 /* Has the page been truncated? */
1585 if (unlikely(page_mapping(page
) != mapping
)) {
1590 VM_BUG_ON_PAGE(page_to_pgoff(page
) != offset
, page
);
1594 EXPORT_SYMBOL(find_lock_entry
);
1597 * pagecache_get_page - find and get a page reference
1598 * @mapping: the address_space to search
1599 * @offset: the page index
1600 * @fgp_flags: PCG flags
1601 * @gfp_mask: gfp mask to use for the page cache data page allocation
1603 * Looks up the page cache slot at @mapping & @offset.
1605 * PCG flags modify how the page is returned.
1607 * @fgp_flags can be:
1609 * - FGP_ACCESSED: the page will be marked accessed
1610 * - FGP_LOCK: Page is return locked
1611 * - FGP_CREAT: If page is not present then a new page is allocated using
1612 * @gfp_mask and added to the page cache and the VM's LRU
1613 * list. The page is returned locked and with an increased
1615 * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do
1616 * its own locking dance if the page is already in cache, or unlock the page
1617 * before returning if we had to add the page to pagecache.
1619 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1620 * if the GFP flags specified for FGP_CREAT are atomic.
1622 * If there is a page cache page, it is returned with an increased refcount.
1624 * Return: the found page or %NULL otherwise.
1626 struct page
*pagecache_get_page(struct address_space
*mapping
, pgoff_t offset
,
1627 int fgp_flags
, gfp_t gfp_mask
)
1632 page
= find_get_entry(mapping
, offset
);
1633 if (xa_is_value(page
))
1638 if (fgp_flags
& FGP_LOCK
) {
1639 if (fgp_flags
& FGP_NOWAIT
) {
1640 if (!trylock_page(page
)) {
1648 /* Has the page been truncated? */
1649 if (unlikely(page
->mapping
!= mapping
)) {
1654 VM_BUG_ON_PAGE(page
->index
!= offset
, page
);
1657 if (fgp_flags
& FGP_ACCESSED
)
1658 mark_page_accessed(page
);
1661 if (!page
&& (fgp_flags
& FGP_CREAT
)) {
1663 if ((fgp_flags
& FGP_WRITE
) && mapping_cap_account_dirty(mapping
))
1664 gfp_mask
|= __GFP_WRITE
;
1665 if (fgp_flags
& FGP_NOFS
)
1666 gfp_mask
&= ~__GFP_FS
;
1668 page
= __page_cache_alloc(gfp_mask
);
1672 if (WARN_ON_ONCE(!(fgp_flags
& (FGP_LOCK
| FGP_FOR_MMAP
))))
1673 fgp_flags
|= FGP_LOCK
;
1675 /* Init accessed so avoid atomic mark_page_accessed later */
1676 if (fgp_flags
& FGP_ACCESSED
)
1677 __SetPageReferenced(page
);
1679 err
= add_to_page_cache_lru(page
, mapping
, offset
, gfp_mask
);
1680 if (unlikely(err
)) {
1688 * add_to_page_cache_lru locks the page, and for mmap we expect
1691 if (page
&& (fgp_flags
& FGP_FOR_MMAP
))
1697 EXPORT_SYMBOL(pagecache_get_page
);
1700 * find_get_entries - gang pagecache lookup
1701 * @mapping: The address_space to search
1702 * @start: The starting page cache index
1703 * @nr_entries: The maximum number of entries
1704 * @entries: Where the resulting entries are placed
1705 * @indices: The cache indices corresponding to the entries in @entries
1707 * find_get_entries() will search for and return a group of up to
1708 * @nr_entries entries in the mapping. The entries are placed at
1709 * @entries. find_get_entries() takes a reference against any actual
1712 * The search returns a group of mapping-contiguous page cache entries
1713 * with ascending indexes. There may be holes in the indices due to
1714 * not-present pages.
1716 * Any shadow entries of evicted pages, or swap entries from
1717 * shmem/tmpfs, are included in the returned array.
1719 * Return: the number of pages and shadow entries which were found.
1721 unsigned find_get_entries(struct address_space
*mapping
,
1722 pgoff_t start
, unsigned int nr_entries
,
1723 struct page
**entries
, pgoff_t
*indices
)
1725 XA_STATE(xas
, &mapping
->i_pages
, start
);
1727 unsigned int ret
= 0;
1733 xas_for_each(&xas
, page
, ULONG_MAX
) {
1735 if (xas_retry(&xas
, page
))
1738 * A shadow entry of a recently evicted page, a swap
1739 * entry from shmem/tmpfs or a DAX entry. Return it
1740 * without attempting to raise page count.
1742 if (xa_is_value(page
))
1745 head
= compound_head(page
);
1746 if (!page_cache_get_speculative(head
))
1749 /* The page was split under us? */
1750 if (compound_head(page
) != head
)
1753 /* Has the page moved? */
1754 if (unlikely(page
!= xas_reload(&xas
)))
1758 indices
[ret
] = xas
.xa_index
;
1759 entries
[ret
] = page
;
1760 if (++ret
== nr_entries
)
1773 * find_get_pages_range - gang pagecache lookup
1774 * @mapping: The address_space to search
1775 * @start: The starting page index
1776 * @end: The final page index (inclusive)
1777 * @nr_pages: The maximum number of pages
1778 * @pages: Where the resulting pages are placed
1780 * find_get_pages_range() will search for and return a group of up to @nr_pages
1781 * pages in the mapping starting at index @start and up to index @end
1782 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1783 * a reference against the returned pages.
1785 * The search returns a group of mapping-contiguous pages with ascending
1786 * indexes. There may be holes in the indices due to not-present pages.
1787 * We also update @start to index the next page for the traversal.
1789 * Return: the number of pages which were found. If this number is
1790 * smaller than @nr_pages, the end of specified range has been
1793 unsigned find_get_pages_range(struct address_space
*mapping
, pgoff_t
*start
,
1794 pgoff_t end
, unsigned int nr_pages
,
1795 struct page
**pages
)
1797 XA_STATE(xas
, &mapping
->i_pages
, *start
);
1801 if (unlikely(!nr_pages
))
1805 xas_for_each(&xas
, page
, end
) {
1807 if (xas_retry(&xas
, page
))
1809 /* Skip over shadow, swap and DAX entries */
1810 if (xa_is_value(page
))
1813 head
= compound_head(page
);
1814 if (!page_cache_get_speculative(head
))
1817 /* The page was split under us? */
1818 if (compound_head(page
) != head
)
1821 /* Has the page moved? */
1822 if (unlikely(page
!= xas_reload(&xas
)))
1826 if (++ret
== nr_pages
) {
1827 *start
= xas
.xa_index
+ 1;
1838 * We come here when there is no page beyond @end. We take care to not
1839 * overflow the index @start as it confuses some of the callers. This
1840 * breaks the iteration when there is a page at index -1 but that is
1841 * already broken anyway.
1843 if (end
== (pgoff_t
)-1)
1844 *start
= (pgoff_t
)-1;
1854 * find_get_pages_contig - gang contiguous pagecache lookup
1855 * @mapping: The address_space to search
1856 * @index: The starting page index
1857 * @nr_pages: The maximum number of pages
1858 * @pages: Where the resulting pages are placed
1860 * find_get_pages_contig() works exactly like find_get_pages(), except
1861 * that the returned number of pages are guaranteed to be contiguous.
1863 * Return: the number of pages which were found.
1865 unsigned find_get_pages_contig(struct address_space
*mapping
, pgoff_t index
,
1866 unsigned int nr_pages
, struct page
**pages
)
1868 XA_STATE(xas
, &mapping
->i_pages
, index
);
1870 unsigned int ret
= 0;
1872 if (unlikely(!nr_pages
))
1876 for (page
= xas_load(&xas
); page
; page
= xas_next(&xas
)) {
1878 if (xas_retry(&xas
, page
))
1881 * If the entry has been swapped out, we can stop looking.
1882 * No current caller is looking for DAX entries.
1884 if (xa_is_value(page
))
1887 head
= compound_head(page
);
1888 if (!page_cache_get_speculative(head
))
1891 /* The page was split under us? */
1892 if (compound_head(page
) != head
)
1895 /* Has the page moved? */
1896 if (unlikely(page
!= xas_reload(&xas
)))
1900 if (++ret
== nr_pages
)
1911 EXPORT_SYMBOL(find_get_pages_contig
);
1914 * find_get_pages_range_tag - find and return pages in given range matching @tag
1915 * @mapping: the address_space to search
1916 * @index: the starting page index
1917 * @end: The final page index (inclusive)
1918 * @tag: the tag index
1919 * @nr_pages: the maximum number of pages
1920 * @pages: where the resulting pages are placed
1922 * Like find_get_pages, except we only return pages which are tagged with
1923 * @tag. We update @index to index the next page for the traversal.
1925 * Return: the number of pages which were found.
1927 unsigned find_get_pages_range_tag(struct address_space
*mapping
, pgoff_t
*index
,
1928 pgoff_t end
, xa_mark_t tag
, unsigned int nr_pages
,
1929 struct page
**pages
)
1931 XA_STATE(xas
, &mapping
->i_pages
, *index
);
1935 if (unlikely(!nr_pages
))
1939 xas_for_each_marked(&xas
, page
, end
, tag
) {
1941 if (xas_retry(&xas
, page
))
1944 * Shadow entries should never be tagged, but this iteration
1945 * is lockless so there is a window for page reclaim to evict
1946 * a page we saw tagged. Skip over it.
1948 if (xa_is_value(page
))
1951 head
= compound_head(page
);
1952 if (!page_cache_get_speculative(head
))
1955 /* The page was split under us? */
1956 if (compound_head(page
) != head
)
1959 /* Has the page moved? */
1960 if (unlikely(page
!= xas_reload(&xas
)))
1964 if (++ret
== nr_pages
) {
1965 *index
= xas
.xa_index
+ 1;
1976 * We come here when we got to @end. We take care to not overflow the
1977 * index @index as it confuses some of the callers. This breaks the
1978 * iteration when there is a page at index -1 but that is already
1981 if (end
== (pgoff_t
)-1)
1982 *index
= (pgoff_t
)-1;
1990 EXPORT_SYMBOL(find_get_pages_range_tag
);
1993 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1994 * a _large_ part of the i/o request. Imagine the worst scenario:
1996 * ---R__________________________________________B__________
1997 * ^ reading here ^ bad block(assume 4k)
1999 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2000 * => failing the whole request => read(R) => read(R+1) =>
2001 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2002 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2003 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2005 * It is going insane. Fix it by quickly scaling down the readahead size.
2007 static void shrink_readahead_size_eio(struct file
*filp
,
2008 struct file_ra_state
*ra
)
2014 * generic_file_buffered_read - generic file read routine
2015 * @iocb: the iocb to read
2016 * @iter: data destination
2017 * @written: already copied
2019 * This is a generic file read routine, and uses the
2020 * mapping->a_ops->readpage() function for the actual low-level stuff.
2022 * This is really ugly. But the goto's actually try to clarify some
2023 * of the logic when it comes to error handling etc.
2026 * * total number of bytes copied, including those the were already @written
2027 * * negative error code if nothing was copied
2029 static ssize_t
generic_file_buffered_read(struct kiocb
*iocb
,
2030 struct iov_iter
*iter
, ssize_t written
)
2032 struct file
*filp
= iocb
->ki_filp
;
2033 struct address_space
*mapping
= filp
->f_mapping
;
2034 struct inode
*inode
= mapping
->host
;
2035 struct file_ra_state
*ra
= &filp
->f_ra
;
2036 loff_t
*ppos
= &iocb
->ki_pos
;
2040 unsigned long offset
; /* offset into pagecache page */
2041 unsigned int prev_offset
;
2044 if (unlikely(*ppos
>= inode
->i_sb
->s_maxbytes
))
2046 iov_iter_truncate(iter
, inode
->i_sb
->s_maxbytes
);
2048 index
= *ppos
>> PAGE_SHIFT
;
2049 prev_index
= ra
->prev_pos
>> PAGE_SHIFT
;
2050 prev_offset
= ra
->prev_pos
& (PAGE_SIZE
-1);
2051 last_index
= (*ppos
+ iter
->count
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
2052 offset
= *ppos
& ~PAGE_MASK
;
2058 unsigned long nr
, ret
;
2062 if (fatal_signal_pending(current
)) {
2067 page
= find_get_page(mapping
, index
);
2069 if (iocb
->ki_flags
& IOCB_NOWAIT
)
2071 page_cache_sync_readahead(mapping
,
2073 index
, last_index
- index
);
2074 page
= find_get_page(mapping
, index
);
2075 if (unlikely(page
== NULL
))
2076 goto no_cached_page
;
2078 if (PageReadahead(page
)) {
2079 page_cache_async_readahead(mapping
,
2081 index
, last_index
- index
);
2083 if (!PageUptodate(page
)) {
2084 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
2090 * See comment in do_read_cache_page on why
2091 * wait_on_page_locked is used to avoid unnecessarily
2092 * serialisations and why it's safe.
2094 error
= wait_on_page_locked_killable(page
);
2095 if (unlikely(error
))
2096 goto readpage_error
;
2097 if (PageUptodate(page
))
2100 if (inode
->i_blkbits
== PAGE_SHIFT
||
2101 !mapping
->a_ops
->is_partially_uptodate
)
2102 goto page_not_up_to_date
;
2103 /* pipes can't handle partially uptodate pages */
2104 if (unlikely(iov_iter_is_pipe(iter
)))
2105 goto page_not_up_to_date
;
2106 if (!trylock_page(page
))
2107 goto page_not_up_to_date
;
2108 /* Did it get truncated before we got the lock? */
2110 goto page_not_up_to_date_locked
;
2111 if (!mapping
->a_ops
->is_partially_uptodate(page
,
2112 offset
, iter
->count
))
2113 goto page_not_up_to_date_locked
;
2118 * i_size must be checked after we know the page is Uptodate.
2120 * Checking i_size after the check allows us to calculate
2121 * the correct value for "nr", which means the zero-filled
2122 * part of the page is not copied back to userspace (unless
2123 * another truncate extends the file - this is desired though).
2126 isize
= i_size_read(inode
);
2127 end_index
= (isize
- 1) >> PAGE_SHIFT
;
2128 if (unlikely(!isize
|| index
> end_index
)) {
2133 /* nr is the maximum number of bytes to copy from this page */
2135 if (index
== end_index
) {
2136 nr
= ((isize
- 1) & ~PAGE_MASK
) + 1;
2144 /* If users can be writing to this page using arbitrary
2145 * virtual addresses, take care about potential aliasing
2146 * before reading the page on the kernel side.
2148 if (mapping_writably_mapped(mapping
))
2149 flush_dcache_page(page
);
2152 * When a sequential read accesses a page several times,
2153 * only mark it as accessed the first time.
2155 if (prev_index
!= index
|| offset
!= prev_offset
)
2156 mark_page_accessed(page
);
2160 * Ok, we have the page, and it's up-to-date, so
2161 * now we can copy it to user space...
2164 ret
= copy_page_to_iter(page
, offset
, nr
, iter
);
2166 index
+= offset
>> PAGE_SHIFT
;
2167 offset
&= ~PAGE_MASK
;
2168 prev_offset
= offset
;
2172 if (!iov_iter_count(iter
))
2180 page_not_up_to_date
:
2181 /* Get exclusive access to the page ... */
2182 error
= lock_page_killable(page
);
2183 if (unlikely(error
))
2184 goto readpage_error
;
2186 page_not_up_to_date_locked
:
2187 /* Did it get truncated before we got the lock? */
2188 if (!page
->mapping
) {
2194 /* Did somebody else fill it already? */
2195 if (PageUptodate(page
)) {
2202 * A previous I/O error may have been due to temporary
2203 * failures, eg. multipath errors.
2204 * PG_error will be set again if readpage fails.
2206 ClearPageError(page
);
2207 /* Start the actual read. The read will unlock the page. */
2208 error
= mapping
->a_ops
->readpage(filp
, page
);
2210 if (unlikely(error
)) {
2211 if (error
== AOP_TRUNCATED_PAGE
) {
2216 goto readpage_error
;
2219 if (!PageUptodate(page
)) {
2220 error
= lock_page_killable(page
);
2221 if (unlikely(error
))
2222 goto readpage_error
;
2223 if (!PageUptodate(page
)) {
2224 if (page
->mapping
== NULL
) {
2226 * invalidate_mapping_pages got it
2233 shrink_readahead_size_eio(filp
, ra
);
2235 goto readpage_error
;
2243 /* UHHUH! A synchronous read error occurred. Report it */
2249 * Ok, it wasn't cached, so we need to create a new
2252 page
= page_cache_alloc(mapping
);
2257 error
= add_to_page_cache_lru(page
, mapping
, index
,
2258 mapping_gfp_constraint(mapping
, GFP_KERNEL
));
2261 if (error
== -EEXIST
) {
2273 ra
->prev_pos
= prev_index
;
2274 ra
->prev_pos
<<= PAGE_SHIFT
;
2275 ra
->prev_pos
|= prev_offset
;
2277 *ppos
= ((loff_t
)index
<< PAGE_SHIFT
) + offset
;
2278 file_accessed(filp
);
2279 return written
? written
: error
;
2283 * generic_file_read_iter - generic filesystem read routine
2284 * @iocb: kernel I/O control block
2285 * @iter: destination for the data read
2287 * This is the "read_iter()" routine for all filesystems
2288 * that can use the page cache directly.
2290 * * number of bytes copied, even for partial reads
2291 * * negative error code if nothing was read
2294 generic_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*iter
)
2296 size_t count
= iov_iter_count(iter
);
2300 goto out
; /* skip atime */
2302 if (iocb
->ki_flags
& IOCB_DIRECT
) {
2303 struct file
*file
= iocb
->ki_filp
;
2304 struct address_space
*mapping
= file
->f_mapping
;
2305 struct inode
*inode
= mapping
->host
;
2308 size
= i_size_read(inode
);
2309 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
2310 if (filemap_range_has_page(mapping
, iocb
->ki_pos
,
2311 iocb
->ki_pos
+ count
- 1))
2314 retval
= filemap_write_and_wait_range(mapping
,
2316 iocb
->ki_pos
+ count
- 1);
2321 file_accessed(file
);
2323 retval
= mapping
->a_ops
->direct_IO(iocb
, iter
);
2325 iocb
->ki_pos
+= retval
;
2328 iov_iter_revert(iter
, count
- iov_iter_count(iter
));
2331 * Btrfs can have a short DIO read if we encounter
2332 * compressed extents, so if there was an error, or if
2333 * we've already read everything we wanted to, or if
2334 * there was a short read because we hit EOF, go ahead
2335 * and return. Otherwise fallthrough to buffered io for
2336 * the rest of the read. Buffered reads will not work for
2337 * DAX files, so don't bother trying.
2339 if (retval
< 0 || !count
|| iocb
->ki_pos
>= size
||
2344 retval
= generic_file_buffered_read(iocb
, iter
, retval
);
2348 EXPORT_SYMBOL(generic_file_read_iter
);
2351 #define MMAP_LOTSAMISS (100)
2352 static struct file
*maybe_unlock_mmap_for_io(struct vm_fault
*vmf
,
2355 int flags
= vmf
->flags
;
2361 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
2362 * anything, so we only pin the file and drop the mmap_sem if only
2363 * FAULT_FLAG_ALLOW_RETRY is set.
2365 if ((flags
& (FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_RETRY_NOWAIT
)) ==
2366 FAULT_FLAG_ALLOW_RETRY
) {
2367 fpin
= get_file(vmf
->vma
->vm_file
);
2368 up_read(&vmf
->vma
->vm_mm
->mmap_sem
);
2374 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
2375 * @vmf - the vm_fault for this fault.
2376 * @page - the page to lock.
2377 * @fpin - the pointer to the file we may pin (or is already pinned).
2379 * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
2380 * It differs in that it actually returns the page locked if it returns 1 and 0
2381 * if it couldn't lock the page. If we did have to drop the mmap_sem then fpin
2382 * will point to the pinned file and needs to be fput()'ed at a later point.
2384 static int lock_page_maybe_drop_mmap(struct vm_fault
*vmf
, struct page
*page
,
2387 if (trylock_page(page
))
2391 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2392 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
2393 * is supposed to work. We have way too many special cases..
2395 if (vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)
2398 *fpin
= maybe_unlock_mmap_for_io(vmf
, *fpin
);
2399 if (vmf
->flags
& FAULT_FLAG_KILLABLE
) {
2400 if (__lock_page_killable(page
)) {
2402 * We didn't have the right flags to drop the mmap_sem,
2403 * but all fault_handlers only check for fatal signals
2404 * if we return VM_FAULT_RETRY, so we need to drop the
2405 * mmap_sem here and return 0 if we don't have a fpin.
2408 up_read(&vmf
->vma
->vm_mm
->mmap_sem
);
2418 * Synchronous readahead happens when we don't even find a page in the page
2419 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2420 * to drop the mmap sem we return the file that was pinned in order for us to do
2421 * that. If we didn't pin a file then we return NULL. The file that is
2422 * returned needs to be fput()'ed when we're done with it.
2424 static struct file
*do_sync_mmap_readahead(struct vm_fault
*vmf
)
2426 struct file
*file
= vmf
->vma
->vm_file
;
2427 struct file_ra_state
*ra
= &file
->f_ra
;
2428 struct address_space
*mapping
= file
->f_mapping
;
2429 struct file
*fpin
= NULL
;
2430 pgoff_t offset
= vmf
->pgoff
;
2432 /* If we don't want any read-ahead, don't bother */
2433 if (vmf
->vma
->vm_flags
& VM_RAND_READ
)
2438 if (vmf
->vma
->vm_flags
& VM_SEQ_READ
) {
2439 fpin
= maybe_unlock_mmap_for_io(vmf
, fpin
);
2440 page_cache_sync_readahead(mapping
, ra
, file
, offset
,
2445 /* Avoid banging the cache line if not needed */
2446 if (ra
->mmap_miss
< MMAP_LOTSAMISS
* 10)
2450 * Do we miss much more than hit in this file? If so,
2451 * stop bothering with read-ahead. It will only hurt.
2453 if (ra
->mmap_miss
> MMAP_LOTSAMISS
)
2459 fpin
= maybe_unlock_mmap_for_io(vmf
, fpin
);
2460 ra
->start
= max_t(long, 0, offset
- ra
->ra_pages
/ 2);
2461 ra
->size
= ra
->ra_pages
;
2462 ra
->async_size
= ra
->ra_pages
/ 4;
2463 ra_submit(ra
, mapping
, file
);
2468 * Asynchronous readahead happens when we find the page and PG_readahead,
2469 * so we want to possibly extend the readahead further. We return the file that
2470 * was pinned if we have to drop the mmap_sem in order to do IO.
2472 static struct file
*do_async_mmap_readahead(struct vm_fault
*vmf
,
2475 struct file
*file
= vmf
->vma
->vm_file
;
2476 struct file_ra_state
*ra
= &file
->f_ra
;
2477 struct address_space
*mapping
= file
->f_mapping
;
2478 struct file
*fpin
= NULL
;
2479 pgoff_t offset
= vmf
->pgoff
;
2481 /* If we don't want any read-ahead, don't bother */
2482 if (vmf
->vma
->vm_flags
& VM_RAND_READ
)
2484 if (ra
->mmap_miss
> 0)
2486 if (PageReadahead(page
)) {
2487 fpin
= maybe_unlock_mmap_for_io(vmf
, fpin
);
2488 page_cache_async_readahead(mapping
, ra
, file
,
2489 page
, offset
, ra
->ra_pages
);
2495 * filemap_fault - read in file data for page fault handling
2496 * @vmf: struct vm_fault containing details of the fault
2498 * filemap_fault() is invoked via the vma operations vector for a
2499 * mapped memory region to read in file data during a page fault.
2501 * The goto's are kind of ugly, but this streamlines the normal case of having
2502 * it in the page cache, and handles the special cases reasonably without
2503 * having a lot of duplicated code.
2505 * vma->vm_mm->mmap_sem must be held on entry.
2507 * If our return value has VM_FAULT_RETRY set, it's because the mmap_sem
2508 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2510 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2511 * has not been released.
2513 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2515 * Return: bitwise-OR of %VM_FAULT_ codes.
2517 vm_fault_t
filemap_fault(struct vm_fault
*vmf
)
2520 struct file
*file
= vmf
->vma
->vm_file
;
2521 struct file
*fpin
= NULL
;
2522 struct address_space
*mapping
= file
->f_mapping
;
2523 struct file_ra_state
*ra
= &file
->f_ra
;
2524 struct inode
*inode
= mapping
->host
;
2525 pgoff_t offset
= vmf
->pgoff
;
2530 max_off
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
2531 if (unlikely(offset
>= max_off
))
2532 return VM_FAULT_SIGBUS
;
2535 * Do we have something in the page cache already?
2537 page
= find_get_page(mapping
, offset
);
2538 if (likely(page
) && !(vmf
->flags
& FAULT_FLAG_TRIED
)) {
2540 * We found the page, so try async readahead before
2541 * waiting for the lock.
2543 fpin
= do_async_mmap_readahead(vmf
, page
);
2545 /* No page in the page cache at all */
2546 count_vm_event(PGMAJFAULT
);
2547 count_memcg_event_mm(vmf
->vma
->vm_mm
, PGMAJFAULT
);
2548 ret
= VM_FAULT_MAJOR
;
2549 fpin
= do_sync_mmap_readahead(vmf
);
2551 page
= pagecache_get_page(mapping
, offset
,
2552 FGP_CREAT
|FGP_FOR_MMAP
,
2557 return vmf_error(-ENOMEM
);
2561 if (!lock_page_maybe_drop_mmap(vmf
, page
, &fpin
))
2564 /* Did it get truncated? */
2565 if (unlikely(page
->mapping
!= mapping
)) {
2570 VM_BUG_ON_PAGE(page
->index
!= offset
, page
);
2573 * We have a locked page in the page cache, now we need to check
2574 * that it's up-to-date. If not, it is going to be due to an error.
2576 if (unlikely(!PageUptodate(page
)))
2577 goto page_not_uptodate
;
2580 * We've made it this far and we had to drop our mmap_sem, now is the
2581 * time to return to the upper layer and have it re-find the vma and
2590 * Found the page and have a reference on it.
2591 * We must recheck i_size under page lock.
2593 max_off
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
2594 if (unlikely(offset
>= max_off
)) {
2597 return VM_FAULT_SIGBUS
;
2601 return ret
| VM_FAULT_LOCKED
;
2605 * Umm, take care of errors if the page isn't up-to-date.
2606 * Try to re-read it _once_. We do this synchronously,
2607 * because there really aren't any performance issues here
2608 * and we need to check for errors.
2610 ClearPageError(page
);
2611 fpin
= maybe_unlock_mmap_for_io(vmf
, fpin
);
2612 error
= mapping
->a_ops
->readpage(file
, page
);
2614 wait_on_page_locked(page
);
2615 if (!PageUptodate(page
))
2622 if (!error
|| error
== AOP_TRUNCATED_PAGE
)
2625 /* Things didn't work out. Return zero to tell the mm layer so. */
2626 shrink_readahead_size_eio(file
, ra
);
2627 return VM_FAULT_SIGBUS
;
2631 * We dropped the mmap_sem, we need to return to the fault handler to
2632 * re-find the vma and come back and find our hopefully still populated
2639 return ret
| VM_FAULT_RETRY
;
2641 EXPORT_SYMBOL(filemap_fault
);
2643 void filemap_map_pages(struct vm_fault
*vmf
,
2644 pgoff_t start_pgoff
, pgoff_t end_pgoff
)
2646 struct file
*file
= vmf
->vma
->vm_file
;
2647 struct address_space
*mapping
= file
->f_mapping
;
2648 pgoff_t last_pgoff
= start_pgoff
;
2649 unsigned long max_idx
;
2650 XA_STATE(xas
, &mapping
->i_pages
, start_pgoff
);
2651 struct page
*head
, *page
;
2654 xas_for_each(&xas
, page
, end_pgoff
) {
2655 if (xas_retry(&xas
, page
))
2657 if (xa_is_value(page
))
2660 head
= compound_head(page
);
2663 * Check for a locked page first, as a speculative
2664 * reference may adversely influence page migration.
2666 if (PageLocked(head
))
2668 if (!page_cache_get_speculative(head
))
2671 /* The page was split under us? */
2672 if (compound_head(page
) != head
)
2675 /* Has the page moved? */
2676 if (unlikely(page
!= xas_reload(&xas
)))
2679 if (!PageUptodate(page
) ||
2680 PageReadahead(page
) ||
2683 if (!trylock_page(page
))
2686 if (page
->mapping
!= mapping
|| !PageUptodate(page
))
2689 max_idx
= DIV_ROUND_UP(i_size_read(mapping
->host
), PAGE_SIZE
);
2690 if (page
->index
>= max_idx
)
2693 if (file
->f_ra
.mmap_miss
> 0)
2694 file
->f_ra
.mmap_miss
--;
2696 vmf
->address
+= (xas
.xa_index
- last_pgoff
) << PAGE_SHIFT
;
2698 vmf
->pte
+= xas
.xa_index
- last_pgoff
;
2699 last_pgoff
= xas
.xa_index
;
2700 if (alloc_set_pte(vmf
, NULL
, page
))
2709 /* Huge page is mapped? No need to proceed. */
2710 if (pmd_trans_huge(*vmf
->pmd
))
2715 EXPORT_SYMBOL(filemap_map_pages
);
2717 vm_fault_t
filemap_page_mkwrite(struct vm_fault
*vmf
)
2719 struct page
*page
= vmf
->page
;
2720 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
2721 vm_fault_t ret
= VM_FAULT_LOCKED
;
2723 sb_start_pagefault(inode
->i_sb
);
2724 file_update_time(vmf
->vma
->vm_file
);
2726 if (page
->mapping
!= inode
->i_mapping
) {
2728 ret
= VM_FAULT_NOPAGE
;
2732 * We mark the page dirty already here so that when freeze is in
2733 * progress, we are guaranteed that writeback during freezing will
2734 * see the dirty page and writeprotect it again.
2736 set_page_dirty(page
);
2737 wait_for_stable_page(page
);
2739 sb_end_pagefault(inode
->i_sb
);
2743 const struct vm_operations_struct generic_file_vm_ops
= {
2744 .fault
= filemap_fault
,
2745 .map_pages
= filemap_map_pages
,
2746 .page_mkwrite
= filemap_page_mkwrite
,
2749 /* This is used for a general mmap of a disk file */
2751 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
2753 struct address_space
*mapping
= file
->f_mapping
;
2755 if (!mapping
->a_ops
->readpage
)
2757 file_accessed(file
);
2758 vma
->vm_ops
= &generic_file_vm_ops
;
2763 * This is for filesystems which do not implement ->writepage.
2765 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2767 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
2769 return generic_file_mmap(file
, vma
);
2772 vm_fault_t
filemap_page_mkwrite(struct vm_fault
*vmf
)
2774 return VM_FAULT_SIGBUS
;
2776 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
2780 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
2784 #endif /* CONFIG_MMU */
2786 EXPORT_SYMBOL(filemap_page_mkwrite
);
2787 EXPORT_SYMBOL(generic_file_mmap
);
2788 EXPORT_SYMBOL(generic_file_readonly_mmap
);
2790 static struct page
*wait_on_page_read(struct page
*page
)
2792 if (!IS_ERR(page
)) {
2793 wait_on_page_locked(page
);
2794 if (!PageUptodate(page
)) {
2796 page
= ERR_PTR(-EIO
);
2802 static struct page
*do_read_cache_page(struct address_space
*mapping
,
2804 int (*filler
)(void *, struct page
*),
2811 page
= find_get_page(mapping
, index
);
2813 page
= __page_cache_alloc(gfp
);
2815 return ERR_PTR(-ENOMEM
);
2816 err
= add_to_page_cache_lru(page
, mapping
, index
, gfp
);
2817 if (unlikely(err
)) {
2821 /* Presumably ENOMEM for xarray node */
2822 return ERR_PTR(err
);
2827 err
= filler(data
, page
);
2829 err
= mapping
->a_ops
->readpage(data
, page
);
2833 return ERR_PTR(err
);
2836 page
= wait_on_page_read(page
);
2841 if (PageUptodate(page
))
2845 * Page is not up to date and may be locked due one of the following
2846 * case a: Page is being filled and the page lock is held
2847 * case b: Read/write error clearing the page uptodate status
2848 * case c: Truncation in progress (page locked)
2849 * case d: Reclaim in progress
2851 * Case a, the page will be up to date when the page is unlocked.
2852 * There is no need to serialise on the page lock here as the page
2853 * is pinned so the lock gives no additional protection. Even if the
2854 * the page is truncated, the data is still valid if PageUptodate as
2855 * it's a race vs truncate race.
2856 * Case b, the page will not be up to date
2857 * Case c, the page may be truncated but in itself, the data may still
2858 * be valid after IO completes as it's a read vs truncate race. The
2859 * operation must restart if the page is not uptodate on unlock but
2860 * otherwise serialising on page lock to stabilise the mapping gives
2861 * no additional guarantees to the caller as the page lock is
2862 * released before return.
2863 * Case d, similar to truncation. If reclaim holds the page lock, it
2864 * will be a race with remove_mapping that determines if the mapping
2865 * is valid on unlock but otherwise the data is valid and there is
2866 * no need to serialise with page lock.
2868 * As the page lock gives no additional guarantee, we optimistically
2869 * wait on the page to be unlocked and check if it's up to date and
2870 * use the page if it is. Otherwise, the page lock is required to
2871 * distinguish between the different cases. The motivation is that we
2872 * avoid spurious serialisations and wakeups when multiple processes
2873 * wait on the same page for IO to complete.
2875 wait_on_page_locked(page
);
2876 if (PageUptodate(page
))
2879 /* Distinguish between all the cases under the safety of the lock */
2882 /* Case c or d, restart the operation */
2883 if (!page
->mapping
) {
2889 /* Someone else locked and filled the page in a very small window */
2890 if (PageUptodate(page
)) {
2897 mark_page_accessed(page
);
2902 * read_cache_page - read into page cache, fill it if needed
2903 * @mapping: the page's address_space
2904 * @index: the page index
2905 * @filler: function to perform the read
2906 * @data: first arg to filler(data, page) function, often left as NULL
2908 * Read into the page cache. If a page already exists, and PageUptodate() is
2909 * not set, try to fill the page and wait for it to become unlocked.
2911 * If the page does not get brought uptodate, return -EIO.
2913 * Return: up to date page on success, ERR_PTR() on failure.
2915 struct page
*read_cache_page(struct address_space
*mapping
,
2917 int (*filler
)(void *, struct page
*),
2920 return do_read_cache_page(mapping
, index
, filler
, data
,
2921 mapping_gfp_mask(mapping
));
2923 EXPORT_SYMBOL(read_cache_page
);
2926 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2927 * @mapping: the page's address_space
2928 * @index: the page index
2929 * @gfp: the page allocator flags to use if allocating
2931 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2932 * any new page allocations done using the specified allocation flags.
2934 * If the page does not get brought uptodate, return -EIO.
2936 * Return: up to date page on success, ERR_PTR() on failure.
2938 struct page
*read_cache_page_gfp(struct address_space
*mapping
,
2942 return do_read_cache_page(mapping
, index
, NULL
, NULL
, gfp
);
2944 EXPORT_SYMBOL(read_cache_page_gfp
);
2947 * Don't operate on ranges the page cache doesn't support, and don't exceed the
2948 * LFS limits. If pos is under the limit it becomes a short access. If it
2949 * exceeds the limit we return -EFBIG.
2951 static int generic_write_check_limits(struct file
*file
, loff_t pos
,
2954 struct inode
*inode
= file
->f_mapping
->host
;
2955 loff_t max_size
= inode
->i_sb
->s_maxbytes
;
2956 loff_t limit
= rlimit(RLIMIT_FSIZE
);
2958 if (limit
!= RLIM_INFINITY
) {
2960 send_sig(SIGXFSZ
, current
, 0);
2963 *count
= min(*count
, limit
- pos
);
2966 if (!(file
->f_flags
& O_LARGEFILE
))
2967 max_size
= MAX_NON_LFS
;
2969 if (unlikely(pos
>= max_size
))
2972 *count
= min(*count
, max_size
- pos
);
2978 * Performs necessary checks before doing a write
2980 * Can adjust writing position or amount of bytes to write.
2981 * Returns appropriate error code that caller should return or
2982 * zero in case that write should be allowed.
2984 inline ssize_t
generic_write_checks(struct kiocb
*iocb
, struct iov_iter
*from
)
2986 struct file
*file
= iocb
->ki_filp
;
2987 struct inode
*inode
= file
->f_mapping
->host
;
2991 if (IS_SWAPFILE(inode
))
2994 if (!iov_iter_count(from
))
2997 /* FIXME: this is for backwards compatibility with 2.4 */
2998 if (iocb
->ki_flags
& IOCB_APPEND
)
2999 iocb
->ki_pos
= i_size_read(inode
);
3001 if ((iocb
->ki_flags
& IOCB_NOWAIT
) && !(iocb
->ki_flags
& IOCB_DIRECT
))
3004 count
= iov_iter_count(from
);
3005 ret
= generic_write_check_limits(file
, iocb
->ki_pos
, &count
);
3009 iov_iter_truncate(from
, count
);
3010 return iov_iter_count(from
);
3012 EXPORT_SYMBOL(generic_write_checks
);
3015 * Performs necessary checks before doing a clone.
3017 * Can adjust amount of bytes to clone via @req_count argument.
3018 * Returns appropriate error code that caller should return or
3019 * zero in case the clone should be allowed.
3021 int generic_remap_checks(struct file
*file_in
, loff_t pos_in
,
3022 struct file
*file_out
, loff_t pos_out
,
3023 loff_t
*req_count
, unsigned int remap_flags
)
3025 struct inode
*inode_in
= file_in
->f_mapping
->host
;
3026 struct inode
*inode_out
= file_out
->f_mapping
->host
;
3027 uint64_t count
= *req_count
;
3029 loff_t size_in
, size_out
;
3030 loff_t bs
= inode_out
->i_sb
->s_blocksize
;
3033 /* The start of both ranges must be aligned to an fs block. */
3034 if (!IS_ALIGNED(pos_in
, bs
) || !IS_ALIGNED(pos_out
, bs
))
3037 /* Ensure offsets don't wrap. */
3038 if (pos_in
+ count
< pos_in
|| pos_out
+ count
< pos_out
)
3041 size_in
= i_size_read(inode_in
);
3042 size_out
= i_size_read(inode_out
);
3044 /* Dedupe requires both ranges to be within EOF. */
3045 if ((remap_flags
& REMAP_FILE_DEDUP
) &&
3046 (pos_in
>= size_in
|| pos_in
+ count
> size_in
||
3047 pos_out
>= size_out
|| pos_out
+ count
> size_out
))
3050 /* Ensure the infile range is within the infile. */
3051 if (pos_in
>= size_in
)
3053 count
= min(count
, size_in
- (uint64_t)pos_in
);
3055 ret
= generic_write_check_limits(file_out
, pos_out
, &count
);
3060 * If the user wanted us to link to the infile's EOF, round up to the
3061 * next block boundary for this check.
3063 * Otherwise, make sure the count is also block-aligned, having
3064 * already confirmed the starting offsets' block alignment.
3066 if (pos_in
+ count
== size_in
) {
3067 bcount
= ALIGN(size_in
, bs
) - pos_in
;
3069 if (!IS_ALIGNED(count
, bs
))
3070 count
= ALIGN_DOWN(count
, bs
);
3074 /* Don't allow overlapped cloning within the same file. */
3075 if (inode_in
== inode_out
&&
3076 pos_out
+ bcount
> pos_in
&&
3077 pos_out
< pos_in
+ bcount
)
3081 * We shortened the request but the caller can't deal with that, so
3082 * bounce the request back to userspace.
3084 if (*req_count
!= count
&& !(remap_flags
& REMAP_FILE_CAN_SHORTEN
))
3093 * Performs common checks before doing a file copy/clone
3094 * from @file_in to @file_out.
3096 int generic_file_rw_checks(struct file
*file_in
, struct file
*file_out
)
3098 struct inode
*inode_in
= file_inode(file_in
);
3099 struct inode
*inode_out
= file_inode(file_out
);
3101 /* Don't copy dirs, pipes, sockets... */
3102 if (S_ISDIR(inode_in
->i_mode
) || S_ISDIR(inode_out
->i_mode
))
3104 if (!S_ISREG(inode_in
->i_mode
) || !S_ISREG(inode_out
->i_mode
))
3107 if (!(file_in
->f_mode
& FMODE_READ
) ||
3108 !(file_out
->f_mode
& FMODE_WRITE
) ||
3109 (file_out
->f_flags
& O_APPEND
))
3116 * Performs necessary checks before doing a file copy
3118 * Can adjust amount of bytes to copy via @req_count argument.
3119 * Returns appropriate error code that caller should return or
3120 * zero in case the copy should be allowed.
3122 int generic_copy_file_checks(struct file
*file_in
, loff_t pos_in
,
3123 struct file
*file_out
, loff_t pos_out
,
3124 size_t *req_count
, unsigned int flags
)
3126 struct inode
*inode_in
= file_inode(file_in
);
3127 struct inode
*inode_out
= file_inode(file_out
);
3128 uint64_t count
= *req_count
;
3132 ret
= generic_file_rw_checks(file_in
, file_out
);
3136 /* Don't touch certain kinds of inodes */
3137 if (IS_IMMUTABLE(inode_out
))
3140 if (IS_SWAPFILE(inode_in
) || IS_SWAPFILE(inode_out
))
3143 /* Ensure offsets don't wrap. */
3144 if (pos_in
+ count
< pos_in
|| pos_out
+ count
< pos_out
)
3147 /* Shorten the copy to EOF */
3148 size_in
= i_size_read(inode_in
);
3149 if (pos_in
>= size_in
)
3152 count
= min(count
, size_in
- (uint64_t)pos_in
);
3154 ret
= generic_write_check_limits(file_out
, pos_out
, &count
);
3158 /* Don't allow overlapped copying within the same file. */
3159 if (inode_in
== inode_out
&&
3160 pos_out
+ count
> pos_in
&&
3161 pos_out
< pos_in
+ count
)
3168 int pagecache_write_begin(struct file
*file
, struct address_space
*mapping
,
3169 loff_t pos
, unsigned len
, unsigned flags
,
3170 struct page
**pagep
, void **fsdata
)
3172 const struct address_space_operations
*aops
= mapping
->a_ops
;
3174 return aops
->write_begin(file
, mapping
, pos
, len
, flags
,
3177 EXPORT_SYMBOL(pagecache_write_begin
);
3179 int pagecache_write_end(struct file
*file
, struct address_space
*mapping
,
3180 loff_t pos
, unsigned len
, unsigned copied
,
3181 struct page
*page
, void *fsdata
)
3183 const struct address_space_operations
*aops
= mapping
->a_ops
;
3185 return aops
->write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
3187 EXPORT_SYMBOL(pagecache_write_end
);
3190 generic_file_direct_write(struct kiocb
*iocb
, struct iov_iter
*from
)
3192 struct file
*file
= iocb
->ki_filp
;
3193 struct address_space
*mapping
= file
->f_mapping
;
3194 struct inode
*inode
= mapping
->host
;
3195 loff_t pos
= iocb
->ki_pos
;
3200 write_len
= iov_iter_count(from
);
3201 end
= (pos
+ write_len
- 1) >> PAGE_SHIFT
;
3203 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
3204 /* If there are pages to writeback, return */
3205 if (filemap_range_has_page(inode
->i_mapping
, pos
,
3206 pos
+ write_len
- 1))
3209 written
= filemap_write_and_wait_range(mapping
, pos
,
3210 pos
+ write_len
- 1);
3216 * After a write we want buffered reads to be sure to go to disk to get
3217 * the new data. We invalidate clean cached page from the region we're
3218 * about to write. We do this *before* the write so that we can return
3219 * without clobbering -EIOCBQUEUED from ->direct_IO().
3221 written
= invalidate_inode_pages2_range(mapping
,
3222 pos
>> PAGE_SHIFT
, end
);
3224 * If a page can not be invalidated, return 0 to fall back
3225 * to buffered write.
3228 if (written
== -EBUSY
)
3233 written
= mapping
->a_ops
->direct_IO(iocb
, from
);
3236 * Finally, try again to invalidate clean pages which might have been
3237 * cached by non-direct readahead, or faulted in by get_user_pages()
3238 * if the source of the write was an mmap'ed region of the file
3239 * we're writing. Either one is a pretty crazy thing to do,
3240 * so we don't support it 100%. If this invalidation
3241 * fails, tough, the write still worked...
3243 * Most of the time we do not need this since dio_complete() will do
3244 * the invalidation for us. However there are some file systems that
3245 * do not end up with dio_complete() being called, so let's not break
3246 * them by removing it completely
3248 if (mapping
->nrpages
)
3249 invalidate_inode_pages2_range(mapping
,
3250 pos
>> PAGE_SHIFT
, end
);
3254 write_len
-= written
;
3255 if (pos
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
3256 i_size_write(inode
, pos
);
3257 mark_inode_dirty(inode
);
3261 iov_iter_revert(from
, write_len
- iov_iter_count(from
));
3265 EXPORT_SYMBOL(generic_file_direct_write
);
3268 * Find or create a page at the given pagecache position. Return the locked
3269 * page. This function is specifically for buffered writes.
3271 struct page
*grab_cache_page_write_begin(struct address_space
*mapping
,
3272 pgoff_t index
, unsigned flags
)
3275 int fgp_flags
= FGP_LOCK
|FGP_WRITE
|FGP_CREAT
;
3277 if (flags
& AOP_FLAG_NOFS
)
3278 fgp_flags
|= FGP_NOFS
;
3280 page
= pagecache_get_page(mapping
, index
, fgp_flags
,
3281 mapping_gfp_mask(mapping
));
3283 wait_for_stable_page(page
);
3287 EXPORT_SYMBOL(grab_cache_page_write_begin
);
3289 ssize_t
generic_perform_write(struct file
*file
,
3290 struct iov_iter
*i
, loff_t pos
)
3292 struct address_space
*mapping
= file
->f_mapping
;
3293 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
3295 ssize_t written
= 0;
3296 unsigned int flags
= 0;
3300 unsigned long offset
; /* Offset into pagecache page */
3301 unsigned long bytes
; /* Bytes to write to page */
3302 size_t copied
; /* Bytes copied from user */
3305 offset
= (pos
& (PAGE_SIZE
- 1));
3306 bytes
= min_t(unsigned long, PAGE_SIZE
- offset
,
3311 * Bring in the user page that we will copy from _first_.
3312 * Otherwise there's a nasty deadlock on copying from the
3313 * same page as we're writing to, without it being marked
3316 * Not only is this an optimisation, but it is also required
3317 * to check that the address is actually valid, when atomic
3318 * usercopies are used, below.
3320 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
3325 if (fatal_signal_pending(current
)) {
3330 status
= a_ops
->write_begin(file
, mapping
, pos
, bytes
, flags
,
3332 if (unlikely(status
< 0))
3335 if (mapping_writably_mapped(mapping
))
3336 flush_dcache_page(page
);
3338 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
3339 flush_dcache_page(page
);
3341 status
= a_ops
->write_end(file
, mapping
, pos
, bytes
, copied
,
3343 if (unlikely(status
< 0))
3349 iov_iter_advance(i
, copied
);
3350 if (unlikely(copied
== 0)) {
3352 * If we were unable to copy any data at all, we must
3353 * fall back to a single segment length write.
3355 * If we didn't fallback here, we could livelock
3356 * because not all segments in the iov can be copied at
3357 * once without a pagefault.
3359 bytes
= min_t(unsigned long, PAGE_SIZE
- offset
,
3360 iov_iter_single_seg_count(i
));
3366 balance_dirty_pages_ratelimited(mapping
);
3367 } while (iov_iter_count(i
));
3369 return written
? written
: status
;
3371 EXPORT_SYMBOL(generic_perform_write
);
3374 * __generic_file_write_iter - write data to a file
3375 * @iocb: IO state structure (file, offset, etc.)
3376 * @from: iov_iter with data to write
3378 * This function does all the work needed for actually writing data to a
3379 * file. It does all basic checks, removes SUID from the file, updates
3380 * modification times and calls proper subroutines depending on whether we
3381 * do direct IO or a standard buffered write.
3383 * It expects i_mutex to be grabbed unless we work on a block device or similar
3384 * object which does not need locking at all.
3386 * This function does *not* take care of syncing data in case of O_SYNC write.
3387 * A caller has to handle it. This is mainly due to the fact that we want to
3388 * avoid syncing under i_mutex.
3391 * * number of bytes written, even for truncated writes
3392 * * negative error code if no data has been written at all
3394 ssize_t
__generic_file_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
3396 struct file
*file
= iocb
->ki_filp
;
3397 struct address_space
* mapping
= file
->f_mapping
;
3398 struct inode
*inode
= mapping
->host
;
3399 ssize_t written
= 0;
3403 /* We can write back this queue in page reclaim */
3404 current
->backing_dev_info
= inode_to_bdi(inode
);
3405 err
= file_remove_privs(file
);
3409 err
= file_update_time(file
);
3413 if (iocb
->ki_flags
& IOCB_DIRECT
) {
3414 loff_t pos
, endbyte
;
3416 written
= generic_file_direct_write(iocb
, from
);
3418 * If the write stopped short of completing, fall back to
3419 * buffered writes. Some filesystems do this for writes to
3420 * holes, for example. For DAX files, a buffered write will
3421 * not succeed (even if it did, DAX does not handle dirty
3422 * page-cache pages correctly).
3424 if (written
< 0 || !iov_iter_count(from
) || IS_DAX(inode
))
3427 status
= generic_perform_write(file
, from
, pos
= iocb
->ki_pos
);
3429 * If generic_perform_write() returned a synchronous error
3430 * then we want to return the number of bytes which were
3431 * direct-written, or the error code if that was zero. Note
3432 * that this differs from normal direct-io semantics, which
3433 * will return -EFOO even if some bytes were written.
3435 if (unlikely(status
< 0)) {
3440 * We need to ensure that the page cache pages are written to
3441 * disk and invalidated to preserve the expected O_DIRECT
3444 endbyte
= pos
+ status
- 1;
3445 err
= filemap_write_and_wait_range(mapping
, pos
, endbyte
);
3447 iocb
->ki_pos
= endbyte
+ 1;
3449 invalidate_mapping_pages(mapping
,
3451 endbyte
>> PAGE_SHIFT
);
3454 * We don't know how much we wrote, so just return
3455 * the number of bytes which were direct-written
3459 written
= generic_perform_write(file
, from
, iocb
->ki_pos
);
3460 if (likely(written
> 0))
3461 iocb
->ki_pos
+= written
;
3464 current
->backing_dev_info
= NULL
;
3465 return written
? written
: err
;
3467 EXPORT_SYMBOL(__generic_file_write_iter
);
3470 * generic_file_write_iter - write data to a file
3471 * @iocb: IO state structure
3472 * @from: iov_iter with data to write
3474 * This is a wrapper around __generic_file_write_iter() to be used by most
3475 * filesystems. It takes care of syncing the file in case of O_SYNC file
3476 * and acquires i_mutex as needed.
3478 * * negative error code if no data has been written at all of
3479 * vfs_fsync_range() failed for a synchronous write
3480 * * number of bytes written, even for truncated writes
3482 ssize_t
generic_file_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
3484 struct file
*file
= iocb
->ki_filp
;
3485 struct inode
*inode
= file
->f_mapping
->host
;
3489 ret
= generic_write_checks(iocb
, from
);
3491 ret
= __generic_file_write_iter(iocb
, from
);
3492 inode_unlock(inode
);
3495 ret
= generic_write_sync(iocb
, ret
);
3498 EXPORT_SYMBOL(generic_file_write_iter
);
3501 * try_to_release_page() - release old fs-specific metadata on a page
3503 * @page: the page which the kernel is trying to free
3504 * @gfp_mask: memory allocation flags (and I/O mode)
3506 * The address_space is to try to release any data against the page
3507 * (presumably at page->private).
3509 * This may also be called if PG_fscache is set on a page, indicating that the
3510 * page is known to the local caching routines.
3512 * The @gfp_mask argument specifies whether I/O may be performed to release
3513 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3515 * Return: %1 if the release was successful, otherwise return zero.
3517 int try_to_release_page(struct page
*page
, gfp_t gfp_mask
)
3519 struct address_space
* const mapping
= page
->mapping
;
3521 BUG_ON(!PageLocked(page
));
3522 if (PageWriteback(page
))
3525 if (mapping
&& mapping
->a_ops
->releasepage
)
3526 return mapping
->a_ops
->releasepage(page
, gfp_mask
);
3527 return try_to_free_buffers(page
);
3530 EXPORT_SYMBOL(try_to_release_page
);