Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[linux/fpc-iii.git] / mm / filemap.c
blob40667c2f338372e229ec7f51f6eb165d02c858a7
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/filemap.c
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
8 /*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include "internal.h"
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/filemap.h>
49 * FIXME: remove all knowledge of the buffer layer from the core VM
51 #include <linux/buffer_head.h> /* for try_to_free_buffers */
53 #include <asm/mman.h>
56 * Shared mappings implemented 30.11.1994. It's not fully working yet,
57 * though.
59 * Shared mappings now work. 15.8.1995 Bruno.
61 * finished 'unifying' the page and buffer cache and SMP-threaded the
62 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
64 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
68 * Lock ordering:
70 * ->i_mmap_rwsem (truncate_pagecache)
71 * ->private_lock (__free_pte->__set_page_dirty_buffers)
72 * ->swap_lock (exclusive_swap_page, others)
73 * ->i_pages lock
75 * ->i_mutex
76 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
78 * ->mmap_sem
79 * ->i_mmap_rwsem
80 * ->page_table_lock or pte_lock (various, mainly in memory.c)
81 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
83 * ->mmap_sem
84 * ->lock_page (access_process_vm)
86 * ->i_mutex (generic_perform_write)
87 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
89 * bdi->wb.list_lock
90 * sb_lock (fs/fs-writeback.c)
91 * ->i_pages lock (__sync_single_inode)
93 * ->i_mmap_rwsem
94 * ->anon_vma.lock (vma_adjust)
96 * ->anon_vma.lock
97 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
99 * ->page_table_lock or pte_lock
100 * ->swap_lock (try_to_unmap_one)
101 * ->private_lock (try_to_unmap_one)
102 * ->i_pages lock (try_to_unmap_one)
103 * ->pgdat->lru_lock (follow_page->mark_page_accessed)
104 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page)
105 * ->private_lock (page_remove_rmap->set_page_dirty)
106 * ->i_pages lock (page_remove_rmap->set_page_dirty)
107 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
108 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
109 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
110 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
111 * ->inode->i_lock (zap_pte_range->set_page_dirty)
112 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
114 * ->i_mmap_rwsem
115 * ->tasklist_lock (memory_failure, collect_procs_ao)
118 static void page_cache_delete(struct address_space *mapping,
119 struct page *page, void *shadow)
121 XA_STATE(xas, &mapping->i_pages, page->index);
122 unsigned int nr = 1;
124 mapping_set_update(&xas, mapping);
126 /* hugetlb pages are represented by a single entry in the xarray */
127 if (!PageHuge(page)) {
128 xas_set_order(&xas, page->index, compound_order(page));
129 nr = 1U << compound_order(page);
132 VM_BUG_ON_PAGE(!PageLocked(page), page);
133 VM_BUG_ON_PAGE(PageTail(page), page);
134 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
136 xas_store(&xas, shadow);
137 xas_init_marks(&xas);
139 page->mapping = NULL;
140 /* Leave page->index set: truncation lookup relies upon it */
142 if (shadow) {
143 mapping->nrexceptional += nr;
145 * Make sure the nrexceptional update is committed before
146 * the nrpages update so that final truncate racing
147 * with reclaim does not see both counters 0 at the
148 * same time and miss a shadow entry.
150 smp_wmb();
152 mapping->nrpages -= nr;
155 static void unaccount_page_cache_page(struct address_space *mapping,
156 struct page *page)
158 int nr;
161 * if we're uptodate, flush out into the cleancache, otherwise
162 * invalidate any existing cleancache entries. We can't leave
163 * stale data around in the cleancache once our page is gone
165 if (PageUptodate(page) && PageMappedToDisk(page))
166 cleancache_put_page(page);
167 else
168 cleancache_invalidate_page(mapping, page);
170 VM_BUG_ON_PAGE(PageTail(page), page);
171 VM_BUG_ON_PAGE(page_mapped(page), page);
172 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
173 int mapcount;
175 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
176 current->comm, page_to_pfn(page));
177 dump_page(page, "still mapped when deleted");
178 dump_stack();
179 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
181 mapcount = page_mapcount(page);
182 if (mapping_exiting(mapping) &&
183 page_count(page) >= mapcount + 2) {
185 * All vmas have already been torn down, so it's
186 * a good bet that actually the page is unmapped,
187 * and we'd prefer not to leak it: if we're wrong,
188 * some other bad page check should catch it later.
190 page_mapcount_reset(page);
191 page_ref_sub(page, mapcount);
195 /* hugetlb pages do not participate in page cache accounting. */
196 if (PageHuge(page))
197 return;
199 nr = hpage_nr_pages(page);
201 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
202 if (PageSwapBacked(page)) {
203 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
204 if (PageTransHuge(page))
205 __dec_node_page_state(page, NR_SHMEM_THPS);
206 } else {
207 VM_BUG_ON_PAGE(PageTransHuge(page), page);
211 * At this point page must be either written or cleaned by
212 * truncate. Dirty page here signals a bug and loss of
213 * unwritten data.
215 * This fixes dirty accounting after removing the page entirely
216 * but leaves PageDirty set: it has no effect for truncated
217 * page and anyway will be cleared before returning page into
218 * buddy allocator.
220 if (WARN_ON_ONCE(PageDirty(page)))
221 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
225 * Delete a page from the page cache and free it. Caller has to make
226 * sure the page is locked and that nobody else uses it - or that usage
227 * is safe. The caller must hold the i_pages lock.
229 void __delete_from_page_cache(struct page *page, void *shadow)
231 struct address_space *mapping = page->mapping;
233 trace_mm_filemap_delete_from_page_cache(page);
235 unaccount_page_cache_page(mapping, page);
236 page_cache_delete(mapping, page, shadow);
239 static void page_cache_free_page(struct address_space *mapping,
240 struct page *page)
242 void (*freepage)(struct page *);
244 freepage = mapping->a_ops->freepage;
245 if (freepage)
246 freepage(page);
248 if (PageTransHuge(page) && !PageHuge(page)) {
249 page_ref_sub(page, HPAGE_PMD_NR);
250 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
251 } else {
252 put_page(page);
257 * delete_from_page_cache - delete page from page cache
258 * @page: the page which the kernel is trying to remove from page cache
260 * This must be called only on pages that have been verified to be in the page
261 * cache and locked. It will never put the page into the free list, the caller
262 * has a reference on the page.
264 void delete_from_page_cache(struct page *page)
266 struct address_space *mapping = page_mapping(page);
267 unsigned long flags;
269 BUG_ON(!PageLocked(page));
270 xa_lock_irqsave(&mapping->i_pages, flags);
271 __delete_from_page_cache(page, NULL);
272 xa_unlock_irqrestore(&mapping->i_pages, flags);
274 page_cache_free_page(mapping, page);
276 EXPORT_SYMBOL(delete_from_page_cache);
279 * page_cache_delete_batch - delete several pages from page cache
280 * @mapping: the mapping to which pages belong
281 * @pvec: pagevec with pages to delete
283 * The function walks over mapping->i_pages and removes pages passed in @pvec
284 * from the mapping. The function expects @pvec to be sorted by page index.
285 * It tolerates holes in @pvec (mapping entries at those indices are not
286 * modified). The function expects only THP head pages to be present in the
287 * @pvec and takes care to delete all corresponding tail pages from the
288 * mapping as well.
290 * The function expects the i_pages lock to be held.
292 static void page_cache_delete_batch(struct address_space *mapping,
293 struct pagevec *pvec)
295 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
296 int total_pages = 0;
297 int i = 0, tail_pages = 0;
298 struct page *page;
300 mapping_set_update(&xas, mapping);
301 xas_for_each(&xas, page, ULONG_MAX) {
302 if (i >= pagevec_count(pvec) && !tail_pages)
303 break;
304 if (xa_is_value(page))
305 continue;
306 if (!tail_pages) {
308 * Some page got inserted in our range? Skip it. We
309 * have our pages locked so they are protected from
310 * being removed.
312 if (page != pvec->pages[i]) {
313 VM_BUG_ON_PAGE(page->index >
314 pvec->pages[i]->index, page);
315 continue;
317 WARN_ON_ONCE(!PageLocked(page));
318 if (PageTransHuge(page) && !PageHuge(page))
319 tail_pages = HPAGE_PMD_NR - 1;
320 page->mapping = NULL;
322 * Leave page->index set: truncation lookup relies
323 * upon it
325 i++;
326 } else {
327 VM_BUG_ON_PAGE(page->index + HPAGE_PMD_NR - tail_pages
328 != pvec->pages[i]->index, page);
329 tail_pages--;
331 xas_store(&xas, NULL);
332 total_pages++;
334 mapping->nrpages -= total_pages;
337 void delete_from_page_cache_batch(struct address_space *mapping,
338 struct pagevec *pvec)
340 int i;
341 unsigned long flags;
343 if (!pagevec_count(pvec))
344 return;
346 xa_lock_irqsave(&mapping->i_pages, flags);
347 for (i = 0; i < pagevec_count(pvec); i++) {
348 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
350 unaccount_page_cache_page(mapping, pvec->pages[i]);
352 page_cache_delete_batch(mapping, pvec);
353 xa_unlock_irqrestore(&mapping->i_pages, flags);
355 for (i = 0; i < pagevec_count(pvec); i++)
356 page_cache_free_page(mapping, pvec->pages[i]);
359 int filemap_check_errors(struct address_space *mapping)
361 int ret = 0;
362 /* Check for outstanding write errors */
363 if (test_bit(AS_ENOSPC, &mapping->flags) &&
364 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
365 ret = -ENOSPC;
366 if (test_bit(AS_EIO, &mapping->flags) &&
367 test_and_clear_bit(AS_EIO, &mapping->flags))
368 ret = -EIO;
369 return ret;
371 EXPORT_SYMBOL(filemap_check_errors);
373 static int filemap_check_and_keep_errors(struct address_space *mapping)
375 /* Check for outstanding write errors */
376 if (test_bit(AS_EIO, &mapping->flags))
377 return -EIO;
378 if (test_bit(AS_ENOSPC, &mapping->flags))
379 return -ENOSPC;
380 return 0;
384 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
385 * @mapping: address space structure to write
386 * @start: offset in bytes where the range starts
387 * @end: offset in bytes where the range ends (inclusive)
388 * @sync_mode: enable synchronous operation
390 * Start writeback against all of a mapping's dirty pages that lie
391 * within the byte offsets <start, end> inclusive.
393 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
394 * opposed to a regular memory cleansing writeback. The difference between
395 * these two operations is that if a dirty page/buffer is encountered, it must
396 * be waited upon, and not just skipped over.
398 * Return: %0 on success, negative error code otherwise.
400 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
401 loff_t end, int sync_mode)
403 int ret;
404 struct writeback_control wbc = {
405 .sync_mode = sync_mode,
406 .nr_to_write = LONG_MAX,
407 .range_start = start,
408 .range_end = end,
411 if (!mapping_cap_writeback_dirty(mapping))
412 return 0;
414 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
415 ret = do_writepages(mapping, &wbc);
416 wbc_detach_inode(&wbc);
417 return ret;
420 static inline int __filemap_fdatawrite(struct address_space *mapping,
421 int sync_mode)
423 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
426 int filemap_fdatawrite(struct address_space *mapping)
428 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
430 EXPORT_SYMBOL(filemap_fdatawrite);
432 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
433 loff_t end)
435 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
437 EXPORT_SYMBOL(filemap_fdatawrite_range);
440 * filemap_flush - mostly a non-blocking flush
441 * @mapping: target address_space
443 * This is a mostly non-blocking flush. Not suitable for data-integrity
444 * purposes - I/O may not be started against all dirty pages.
446 * Return: %0 on success, negative error code otherwise.
448 int filemap_flush(struct address_space *mapping)
450 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
452 EXPORT_SYMBOL(filemap_flush);
455 * filemap_range_has_page - check if a page exists in range.
456 * @mapping: address space within which to check
457 * @start_byte: offset in bytes where the range starts
458 * @end_byte: offset in bytes where the range ends (inclusive)
460 * Find at least one page in the range supplied, usually used to check if
461 * direct writing in this range will trigger a writeback.
463 * Return: %true if at least one page exists in the specified range,
464 * %false otherwise.
466 bool filemap_range_has_page(struct address_space *mapping,
467 loff_t start_byte, loff_t end_byte)
469 struct page *page;
470 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
471 pgoff_t max = end_byte >> PAGE_SHIFT;
473 if (end_byte < start_byte)
474 return false;
476 rcu_read_lock();
477 for (;;) {
478 page = xas_find(&xas, max);
479 if (xas_retry(&xas, page))
480 continue;
481 /* Shadow entries don't count */
482 if (xa_is_value(page))
483 continue;
485 * We don't need to try to pin this page; we're about to
486 * release the RCU lock anyway. It is enough to know that
487 * there was a page here recently.
489 break;
491 rcu_read_unlock();
493 return page != NULL;
495 EXPORT_SYMBOL(filemap_range_has_page);
497 static void __filemap_fdatawait_range(struct address_space *mapping,
498 loff_t start_byte, loff_t end_byte)
500 pgoff_t index = start_byte >> PAGE_SHIFT;
501 pgoff_t end = end_byte >> PAGE_SHIFT;
502 struct pagevec pvec;
503 int nr_pages;
505 if (end_byte < start_byte)
506 return;
508 pagevec_init(&pvec);
509 while (index <= end) {
510 unsigned i;
512 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
513 end, PAGECACHE_TAG_WRITEBACK);
514 if (!nr_pages)
515 break;
517 for (i = 0; i < nr_pages; i++) {
518 struct page *page = pvec.pages[i];
520 wait_on_page_writeback(page);
521 ClearPageError(page);
523 pagevec_release(&pvec);
524 cond_resched();
529 * filemap_fdatawait_range - wait for writeback to complete
530 * @mapping: address space structure to wait for
531 * @start_byte: offset in bytes where the range starts
532 * @end_byte: offset in bytes where the range ends (inclusive)
534 * Walk the list of under-writeback pages of the given address space
535 * in the given range and wait for all of them. Check error status of
536 * the address space and return it.
538 * Since the error status of the address space is cleared by this function,
539 * callers are responsible for checking the return value and handling and/or
540 * reporting the error.
542 * Return: error status of the address space.
544 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
545 loff_t end_byte)
547 __filemap_fdatawait_range(mapping, start_byte, end_byte);
548 return filemap_check_errors(mapping);
550 EXPORT_SYMBOL(filemap_fdatawait_range);
553 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
554 * @mapping: address space structure to wait for
555 * @start_byte: offset in bytes where the range starts
556 * @end_byte: offset in bytes where the range ends (inclusive)
558 * Walk the list of under-writeback pages of the given address space in the
559 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
560 * this function does not clear error status of the address space.
562 * Use this function if callers don't handle errors themselves. Expected
563 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
564 * fsfreeze(8)
566 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
567 loff_t start_byte, loff_t end_byte)
569 __filemap_fdatawait_range(mapping, start_byte, end_byte);
570 return filemap_check_and_keep_errors(mapping);
572 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
575 * file_fdatawait_range - wait for writeback to complete
576 * @file: file pointing to address space structure to wait for
577 * @start_byte: offset in bytes where the range starts
578 * @end_byte: offset in bytes where the range ends (inclusive)
580 * Walk the list of under-writeback pages of the address space that file
581 * refers to, in the given range and wait for all of them. Check error
582 * status of the address space vs. the file->f_wb_err cursor and return it.
584 * Since the error status of the file is advanced by this function,
585 * callers are responsible for checking the return value and handling and/or
586 * reporting the error.
588 * Return: error status of the address space vs. the file->f_wb_err cursor.
590 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
592 struct address_space *mapping = file->f_mapping;
594 __filemap_fdatawait_range(mapping, start_byte, end_byte);
595 return file_check_and_advance_wb_err(file);
597 EXPORT_SYMBOL(file_fdatawait_range);
600 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
601 * @mapping: address space structure to wait for
603 * Walk the list of under-writeback pages of the given address space
604 * and wait for all of them. Unlike filemap_fdatawait(), this function
605 * does not clear error status of the address space.
607 * Use this function if callers don't handle errors themselves. Expected
608 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
609 * fsfreeze(8)
611 * Return: error status of the address space.
613 int filemap_fdatawait_keep_errors(struct address_space *mapping)
615 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
616 return filemap_check_and_keep_errors(mapping);
618 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
620 static bool mapping_needs_writeback(struct address_space *mapping)
622 return (!dax_mapping(mapping) && mapping->nrpages) ||
623 (dax_mapping(mapping) && mapping->nrexceptional);
626 int filemap_write_and_wait(struct address_space *mapping)
628 int err = 0;
630 if (mapping_needs_writeback(mapping)) {
631 err = filemap_fdatawrite(mapping);
633 * Even if the above returned error, the pages may be
634 * written partially (e.g. -ENOSPC), so we wait for it.
635 * But the -EIO is special case, it may indicate the worst
636 * thing (e.g. bug) happened, so we avoid waiting for it.
638 if (err != -EIO) {
639 int err2 = filemap_fdatawait(mapping);
640 if (!err)
641 err = err2;
642 } else {
643 /* Clear any previously stored errors */
644 filemap_check_errors(mapping);
646 } else {
647 err = filemap_check_errors(mapping);
649 return err;
651 EXPORT_SYMBOL(filemap_write_and_wait);
654 * filemap_write_and_wait_range - write out & wait on a file range
655 * @mapping: the address_space for the pages
656 * @lstart: offset in bytes where the range starts
657 * @lend: offset in bytes where the range ends (inclusive)
659 * Write out and wait upon file offsets lstart->lend, inclusive.
661 * Note that @lend is inclusive (describes the last byte to be written) so
662 * that this function can be used to write to the very end-of-file (end = -1).
664 * Return: error status of the address space.
666 int filemap_write_and_wait_range(struct address_space *mapping,
667 loff_t lstart, loff_t lend)
669 int err = 0;
671 if (mapping_needs_writeback(mapping)) {
672 err = __filemap_fdatawrite_range(mapping, lstart, lend,
673 WB_SYNC_ALL);
674 /* See comment of filemap_write_and_wait() */
675 if (err != -EIO) {
676 int err2 = filemap_fdatawait_range(mapping,
677 lstart, lend);
678 if (!err)
679 err = err2;
680 } else {
681 /* Clear any previously stored errors */
682 filemap_check_errors(mapping);
684 } else {
685 err = filemap_check_errors(mapping);
687 return err;
689 EXPORT_SYMBOL(filemap_write_and_wait_range);
691 void __filemap_set_wb_err(struct address_space *mapping, int err)
693 errseq_t eseq = errseq_set(&mapping->wb_err, err);
695 trace_filemap_set_wb_err(mapping, eseq);
697 EXPORT_SYMBOL(__filemap_set_wb_err);
700 * file_check_and_advance_wb_err - report wb error (if any) that was previously
701 * and advance wb_err to current one
702 * @file: struct file on which the error is being reported
704 * When userland calls fsync (or something like nfsd does the equivalent), we
705 * want to report any writeback errors that occurred since the last fsync (or
706 * since the file was opened if there haven't been any).
708 * Grab the wb_err from the mapping. If it matches what we have in the file,
709 * then just quickly return 0. The file is all caught up.
711 * If it doesn't match, then take the mapping value, set the "seen" flag in
712 * it and try to swap it into place. If it works, or another task beat us
713 * to it with the new value, then update the f_wb_err and return the error
714 * portion. The error at this point must be reported via proper channels
715 * (a'la fsync, or NFS COMMIT operation, etc.).
717 * While we handle mapping->wb_err with atomic operations, the f_wb_err
718 * value is protected by the f_lock since we must ensure that it reflects
719 * the latest value swapped in for this file descriptor.
721 * Return: %0 on success, negative error code otherwise.
723 int file_check_and_advance_wb_err(struct file *file)
725 int err = 0;
726 errseq_t old = READ_ONCE(file->f_wb_err);
727 struct address_space *mapping = file->f_mapping;
729 /* Locklessly handle the common case where nothing has changed */
730 if (errseq_check(&mapping->wb_err, old)) {
731 /* Something changed, must use slow path */
732 spin_lock(&file->f_lock);
733 old = file->f_wb_err;
734 err = errseq_check_and_advance(&mapping->wb_err,
735 &file->f_wb_err);
736 trace_file_check_and_advance_wb_err(file, old);
737 spin_unlock(&file->f_lock);
741 * We're mostly using this function as a drop in replacement for
742 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
743 * that the legacy code would have had on these flags.
745 clear_bit(AS_EIO, &mapping->flags);
746 clear_bit(AS_ENOSPC, &mapping->flags);
747 return err;
749 EXPORT_SYMBOL(file_check_and_advance_wb_err);
752 * file_write_and_wait_range - write out & wait on a file range
753 * @file: file pointing to address_space with pages
754 * @lstart: offset in bytes where the range starts
755 * @lend: offset in bytes where the range ends (inclusive)
757 * Write out and wait upon file offsets lstart->lend, inclusive.
759 * Note that @lend is inclusive (describes the last byte to be written) so
760 * that this function can be used to write to the very end-of-file (end = -1).
762 * After writing out and waiting on the data, we check and advance the
763 * f_wb_err cursor to the latest value, and return any errors detected there.
765 * Return: %0 on success, negative error code otherwise.
767 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
769 int err = 0, err2;
770 struct address_space *mapping = file->f_mapping;
772 if (mapping_needs_writeback(mapping)) {
773 err = __filemap_fdatawrite_range(mapping, lstart, lend,
774 WB_SYNC_ALL);
775 /* See comment of filemap_write_and_wait() */
776 if (err != -EIO)
777 __filemap_fdatawait_range(mapping, lstart, lend);
779 err2 = file_check_and_advance_wb_err(file);
780 if (!err)
781 err = err2;
782 return err;
784 EXPORT_SYMBOL(file_write_and_wait_range);
787 * replace_page_cache_page - replace a pagecache page with a new one
788 * @old: page to be replaced
789 * @new: page to replace with
790 * @gfp_mask: allocation mode
792 * This function replaces a page in the pagecache with a new one. On
793 * success it acquires the pagecache reference for the new page and
794 * drops it for the old page. Both the old and new pages must be
795 * locked. This function does not add the new page to the LRU, the
796 * caller must do that.
798 * The remove + add is atomic. This function cannot fail.
800 * Return: %0
802 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
804 struct address_space *mapping = old->mapping;
805 void (*freepage)(struct page *) = mapping->a_ops->freepage;
806 pgoff_t offset = old->index;
807 XA_STATE(xas, &mapping->i_pages, offset);
808 unsigned long flags;
810 VM_BUG_ON_PAGE(!PageLocked(old), old);
811 VM_BUG_ON_PAGE(!PageLocked(new), new);
812 VM_BUG_ON_PAGE(new->mapping, new);
814 get_page(new);
815 new->mapping = mapping;
816 new->index = offset;
818 xas_lock_irqsave(&xas, flags);
819 xas_store(&xas, new);
821 old->mapping = NULL;
822 /* hugetlb pages do not participate in page cache accounting. */
823 if (!PageHuge(old))
824 __dec_node_page_state(new, NR_FILE_PAGES);
825 if (!PageHuge(new))
826 __inc_node_page_state(new, NR_FILE_PAGES);
827 if (PageSwapBacked(old))
828 __dec_node_page_state(new, NR_SHMEM);
829 if (PageSwapBacked(new))
830 __inc_node_page_state(new, NR_SHMEM);
831 xas_unlock_irqrestore(&xas, flags);
832 mem_cgroup_migrate(old, new);
833 if (freepage)
834 freepage(old);
835 put_page(old);
837 return 0;
839 EXPORT_SYMBOL_GPL(replace_page_cache_page);
841 static int __add_to_page_cache_locked(struct page *page,
842 struct address_space *mapping,
843 pgoff_t offset, gfp_t gfp_mask,
844 void **shadowp)
846 XA_STATE(xas, &mapping->i_pages, offset);
847 int huge = PageHuge(page);
848 struct mem_cgroup *memcg;
849 int error;
850 void *old;
852 VM_BUG_ON_PAGE(!PageLocked(page), page);
853 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
854 mapping_set_update(&xas, mapping);
856 if (!huge) {
857 error = mem_cgroup_try_charge(page, current->mm,
858 gfp_mask, &memcg, false);
859 if (error)
860 return error;
863 get_page(page);
864 page->mapping = mapping;
865 page->index = offset;
867 do {
868 xas_lock_irq(&xas);
869 old = xas_load(&xas);
870 if (old && !xa_is_value(old))
871 xas_set_err(&xas, -EEXIST);
872 xas_store(&xas, page);
873 if (xas_error(&xas))
874 goto unlock;
876 if (xa_is_value(old)) {
877 mapping->nrexceptional--;
878 if (shadowp)
879 *shadowp = old;
881 mapping->nrpages++;
883 /* hugetlb pages do not participate in page cache accounting */
884 if (!huge)
885 __inc_node_page_state(page, NR_FILE_PAGES);
886 unlock:
887 xas_unlock_irq(&xas);
888 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
890 if (xas_error(&xas))
891 goto error;
893 if (!huge)
894 mem_cgroup_commit_charge(page, memcg, false, false);
895 trace_mm_filemap_add_to_page_cache(page);
896 return 0;
897 error:
898 page->mapping = NULL;
899 /* Leave page->index set: truncation relies upon it */
900 if (!huge)
901 mem_cgroup_cancel_charge(page, memcg, false);
902 put_page(page);
903 return xas_error(&xas);
905 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
908 * add_to_page_cache_locked - add a locked page to the pagecache
909 * @page: page to add
910 * @mapping: the page's address_space
911 * @offset: page index
912 * @gfp_mask: page allocation mode
914 * This function is used to add a page to the pagecache. It must be locked.
915 * This function does not add the page to the LRU. The caller must do that.
917 * Return: %0 on success, negative error code otherwise.
919 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
920 pgoff_t offset, gfp_t gfp_mask)
922 return __add_to_page_cache_locked(page, mapping, offset,
923 gfp_mask, NULL);
925 EXPORT_SYMBOL(add_to_page_cache_locked);
927 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
928 pgoff_t offset, gfp_t gfp_mask)
930 void *shadow = NULL;
931 int ret;
933 __SetPageLocked(page);
934 ret = __add_to_page_cache_locked(page, mapping, offset,
935 gfp_mask, &shadow);
936 if (unlikely(ret))
937 __ClearPageLocked(page);
938 else {
940 * The page might have been evicted from cache only
941 * recently, in which case it should be activated like
942 * any other repeatedly accessed page.
943 * The exception is pages getting rewritten; evicting other
944 * data from the working set, only to cache data that will
945 * get overwritten with something else, is a waste of memory.
947 WARN_ON_ONCE(PageActive(page));
948 if (!(gfp_mask & __GFP_WRITE) && shadow)
949 workingset_refault(page, shadow);
950 lru_cache_add(page);
952 return ret;
954 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
956 #ifdef CONFIG_NUMA
957 struct page *__page_cache_alloc(gfp_t gfp)
959 int n;
960 struct page *page;
962 if (cpuset_do_page_mem_spread()) {
963 unsigned int cpuset_mems_cookie;
964 do {
965 cpuset_mems_cookie = read_mems_allowed_begin();
966 n = cpuset_mem_spread_node();
967 page = __alloc_pages_node(n, gfp, 0);
968 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
970 return page;
972 return alloc_pages(gfp, 0);
974 EXPORT_SYMBOL(__page_cache_alloc);
975 #endif
978 * In order to wait for pages to become available there must be
979 * waitqueues associated with pages. By using a hash table of
980 * waitqueues where the bucket discipline is to maintain all
981 * waiters on the same queue and wake all when any of the pages
982 * become available, and for the woken contexts to check to be
983 * sure the appropriate page became available, this saves space
984 * at a cost of "thundering herd" phenomena during rare hash
985 * collisions.
987 #define PAGE_WAIT_TABLE_BITS 8
988 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
989 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
991 static wait_queue_head_t *page_waitqueue(struct page *page)
993 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
996 void __init pagecache_init(void)
998 int i;
1000 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1001 init_waitqueue_head(&page_wait_table[i]);
1003 page_writeback_init();
1006 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
1007 struct wait_page_key {
1008 struct page *page;
1009 int bit_nr;
1010 int page_match;
1013 struct wait_page_queue {
1014 struct page *page;
1015 int bit_nr;
1016 wait_queue_entry_t wait;
1019 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1021 struct wait_page_key *key = arg;
1022 struct wait_page_queue *wait_page
1023 = container_of(wait, struct wait_page_queue, wait);
1025 if (wait_page->page != key->page)
1026 return 0;
1027 key->page_match = 1;
1029 if (wait_page->bit_nr != key->bit_nr)
1030 return 0;
1033 * Stop walking if it's locked.
1034 * Is this safe if put_and_wait_on_page_locked() is in use?
1035 * Yes: the waker must hold a reference to this page, and if PG_locked
1036 * has now already been set by another task, that task must also hold
1037 * a reference to the *same usage* of this page; so there is no need
1038 * to walk on to wake even the put_and_wait_on_page_locked() callers.
1040 if (test_bit(key->bit_nr, &key->page->flags))
1041 return -1;
1043 return autoremove_wake_function(wait, mode, sync, key);
1046 static void wake_up_page_bit(struct page *page, int bit_nr)
1048 wait_queue_head_t *q = page_waitqueue(page);
1049 struct wait_page_key key;
1050 unsigned long flags;
1051 wait_queue_entry_t bookmark;
1053 key.page = page;
1054 key.bit_nr = bit_nr;
1055 key.page_match = 0;
1057 bookmark.flags = 0;
1058 bookmark.private = NULL;
1059 bookmark.func = NULL;
1060 INIT_LIST_HEAD(&bookmark.entry);
1062 spin_lock_irqsave(&q->lock, flags);
1063 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1065 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1067 * Take a breather from holding the lock,
1068 * allow pages that finish wake up asynchronously
1069 * to acquire the lock and remove themselves
1070 * from wait queue
1072 spin_unlock_irqrestore(&q->lock, flags);
1073 cpu_relax();
1074 spin_lock_irqsave(&q->lock, flags);
1075 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1079 * It is possible for other pages to have collided on the waitqueue
1080 * hash, so in that case check for a page match. That prevents a long-
1081 * term waiter
1083 * It is still possible to miss a case here, when we woke page waiters
1084 * and removed them from the waitqueue, but there are still other
1085 * page waiters.
1087 if (!waitqueue_active(q) || !key.page_match) {
1088 ClearPageWaiters(page);
1090 * It's possible to miss clearing Waiters here, when we woke
1091 * our page waiters, but the hashed waitqueue has waiters for
1092 * other pages on it.
1094 * That's okay, it's a rare case. The next waker will clear it.
1097 spin_unlock_irqrestore(&q->lock, flags);
1100 static void wake_up_page(struct page *page, int bit)
1102 if (!PageWaiters(page))
1103 return;
1104 wake_up_page_bit(page, bit);
1108 * A choice of three behaviors for wait_on_page_bit_common():
1110 enum behavior {
1111 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1112 * __lock_page() waiting on then setting PG_locked.
1114 SHARED, /* Hold ref to page and check the bit when woken, like
1115 * wait_on_page_writeback() waiting on PG_writeback.
1117 DROP, /* Drop ref to page before wait, no check when woken,
1118 * like put_and_wait_on_page_locked() on PG_locked.
1122 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1123 struct page *page, int bit_nr, int state, enum behavior behavior)
1125 struct wait_page_queue wait_page;
1126 wait_queue_entry_t *wait = &wait_page.wait;
1127 bool bit_is_set;
1128 bool thrashing = false;
1129 bool delayacct = false;
1130 unsigned long pflags;
1131 int ret = 0;
1133 if (bit_nr == PG_locked &&
1134 !PageUptodate(page) && PageWorkingset(page)) {
1135 if (!PageSwapBacked(page)) {
1136 delayacct_thrashing_start();
1137 delayacct = true;
1139 psi_memstall_enter(&pflags);
1140 thrashing = true;
1143 init_wait(wait);
1144 wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1145 wait->func = wake_page_function;
1146 wait_page.page = page;
1147 wait_page.bit_nr = bit_nr;
1149 for (;;) {
1150 spin_lock_irq(&q->lock);
1152 if (likely(list_empty(&wait->entry))) {
1153 __add_wait_queue_entry_tail(q, wait);
1154 SetPageWaiters(page);
1157 set_current_state(state);
1159 spin_unlock_irq(&q->lock);
1161 bit_is_set = test_bit(bit_nr, &page->flags);
1162 if (behavior == DROP)
1163 put_page(page);
1165 if (likely(bit_is_set))
1166 io_schedule();
1168 if (behavior == EXCLUSIVE) {
1169 if (!test_and_set_bit_lock(bit_nr, &page->flags))
1170 break;
1171 } else if (behavior == SHARED) {
1172 if (!test_bit(bit_nr, &page->flags))
1173 break;
1176 if (signal_pending_state(state, current)) {
1177 ret = -EINTR;
1178 break;
1181 if (behavior == DROP) {
1183 * We can no longer safely access page->flags:
1184 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1185 * there is a risk of waiting forever on a page reused
1186 * for something that keeps it locked indefinitely.
1187 * But best check for -EINTR above before breaking.
1189 break;
1193 finish_wait(q, wait);
1195 if (thrashing) {
1196 if (delayacct)
1197 delayacct_thrashing_end();
1198 psi_memstall_leave(&pflags);
1202 * A signal could leave PageWaiters set. Clearing it here if
1203 * !waitqueue_active would be possible (by open-coding finish_wait),
1204 * but still fail to catch it in the case of wait hash collision. We
1205 * already can fail to clear wait hash collision cases, so don't
1206 * bother with signals either.
1209 return ret;
1212 void wait_on_page_bit(struct page *page, int bit_nr)
1214 wait_queue_head_t *q = page_waitqueue(page);
1215 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1217 EXPORT_SYMBOL(wait_on_page_bit);
1219 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1221 wait_queue_head_t *q = page_waitqueue(page);
1222 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1224 EXPORT_SYMBOL(wait_on_page_bit_killable);
1227 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1228 * @page: The page to wait for.
1230 * The caller should hold a reference on @page. They expect the page to
1231 * become unlocked relatively soon, but do not wish to hold up migration
1232 * (for example) by holding the reference while waiting for the page to
1233 * come unlocked. After this function returns, the caller should not
1234 * dereference @page.
1236 void put_and_wait_on_page_locked(struct page *page)
1238 wait_queue_head_t *q;
1240 page = compound_head(page);
1241 q = page_waitqueue(page);
1242 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1246 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1247 * @page: Page defining the wait queue of interest
1248 * @waiter: Waiter to add to the queue
1250 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1252 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1254 wait_queue_head_t *q = page_waitqueue(page);
1255 unsigned long flags;
1257 spin_lock_irqsave(&q->lock, flags);
1258 __add_wait_queue_entry_tail(q, waiter);
1259 SetPageWaiters(page);
1260 spin_unlock_irqrestore(&q->lock, flags);
1262 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1264 #ifndef clear_bit_unlock_is_negative_byte
1267 * PG_waiters is the high bit in the same byte as PG_lock.
1269 * On x86 (and on many other architectures), we can clear PG_lock and
1270 * test the sign bit at the same time. But if the architecture does
1271 * not support that special operation, we just do this all by hand
1272 * instead.
1274 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1275 * being cleared, but a memory barrier should be unneccssary since it is
1276 * in the same byte as PG_locked.
1278 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1280 clear_bit_unlock(nr, mem);
1281 /* smp_mb__after_atomic(); */
1282 return test_bit(PG_waiters, mem);
1285 #endif
1288 * unlock_page - unlock a locked page
1289 * @page: the page
1291 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1292 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1293 * mechanism between PageLocked pages and PageWriteback pages is shared.
1294 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1296 * Note that this depends on PG_waiters being the sign bit in the byte
1297 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1298 * clear the PG_locked bit and test PG_waiters at the same time fairly
1299 * portably (architectures that do LL/SC can test any bit, while x86 can
1300 * test the sign bit).
1302 void unlock_page(struct page *page)
1304 BUILD_BUG_ON(PG_waiters != 7);
1305 page = compound_head(page);
1306 VM_BUG_ON_PAGE(!PageLocked(page), page);
1307 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1308 wake_up_page_bit(page, PG_locked);
1310 EXPORT_SYMBOL(unlock_page);
1313 * end_page_writeback - end writeback against a page
1314 * @page: the page
1316 void end_page_writeback(struct page *page)
1319 * TestClearPageReclaim could be used here but it is an atomic
1320 * operation and overkill in this particular case. Failing to
1321 * shuffle a page marked for immediate reclaim is too mild to
1322 * justify taking an atomic operation penalty at the end of
1323 * ever page writeback.
1325 if (PageReclaim(page)) {
1326 ClearPageReclaim(page);
1327 rotate_reclaimable_page(page);
1330 if (!test_clear_page_writeback(page))
1331 BUG();
1333 smp_mb__after_atomic();
1334 wake_up_page(page, PG_writeback);
1336 EXPORT_SYMBOL(end_page_writeback);
1339 * After completing I/O on a page, call this routine to update the page
1340 * flags appropriately
1342 void page_endio(struct page *page, bool is_write, int err)
1344 if (!is_write) {
1345 if (!err) {
1346 SetPageUptodate(page);
1347 } else {
1348 ClearPageUptodate(page);
1349 SetPageError(page);
1351 unlock_page(page);
1352 } else {
1353 if (err) {
1354 struct address_space *mapping;
1356 SetPageError(page);
1357 mapping = page_mapping(page);
1358 if (mapping)
1359 mapping_set_error(mapping, err);
1361 end_page_writeback(page);
1364 EXPORT_SYMBOL_GPL(page_endio);
1367 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1368 * @__page: the page to lock
1370 void __lock_page(struct page *__page)
1372 struct page *page = compound_head(__page);
1373 wait_queue_head_t *q = page_waitqueue(page);
1374 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1375 EXCLUSIVE);
1377 EXPORT_SYMBOL(__lock_page);
1379 int __lock_page_killable(struct page *__page)
1381 struct page *page = compound_head(__page);
1382 wait_queue_head_t *q = page_waitqueue(page);
1383 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1384 EXCLUSIVE);
1386 EXPORT_SYMBOL_GPL(__lock_page_killable);
1389 * Return values:
1390 * 1 - page is locked; mmap_sem is still held.
1391 * 0 - page is not locked.
1392 * mmap_sem has been released (up_read()), unless flags had both
1393 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1394 * which case mmap_sem is still held.
1396 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1397 * with the page locked and the mmap_sem unperturbed.
1399 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1400 unsigned int flags)
1402 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1404 * CAUTION! In this case, mmap_sem is not released
1405 * even though return 0.
1407 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1408 return 0;
1410 up_read(&mm->mmap_sem);
1411 if (flags & FAULT_FLAG_KILLABLE)
1412 wait_on_page_locked_killable(page);
1413 else
1414 wait_on_page_locked(page);
1415 return 0;
1416 } else {
1417 if (flags & FAULT_FLAG_KILLABLE) {
1418 int ret;
1420 ret = __lock_page_killable(page);
1421 if (ret) {
1422 up_read(&mm->mmap_sem);
1423 return 0;
1425 } else
1426 __lock_page(page);
1427 return 1;
1432 * page_cache_next_miss() - Find the next gap in the page cache.
1433 * @mapping: Mapping.
1434 * @index: Index.
1435 * @max_scan: Maximum range to search.
1437 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1438 * gap with the lowest index.
1440 * This function may be called under the rcu_read_lock. However, this will
1441 * not atomically search a snapshot of the cache at a single point in time.
1442 * For example, if a gap is created at index 5, then subsequently a gap is
1443 * created at index 10, page_cache_next_miss covering both indices may
1444 * return 10 if called under the rcu_read_lock.
1446 * Return: The index of the gap if found, otherwise an index outside the
1447 * range specified (in which case 'return - index >= max_scan' will be true).
1448 * In the rare case of index wrap-around, 0 will be returned.
1450 pgoff_t page_cache_next_miss(struct address_space *mapping,
1451 pgoff_t index, unsigned long max_scan)
1453 XA_STATE(xas, &mapping->i_pages, index);
1455 while (max_scan--) {
1456 void *entry = xas_next(&xas);
1457 if (!entry || xa_is_value(entry))
1458 break;
1459 if (xas.xa_index == 0)
1460 break;
1463 return xas.xa_index;
1465 EXPORT_SYMBOL(page_cache_next_miss);
1468 * page_cache_prev_miss() - Find the previous gap in the page cache.
1469 * @mapping: Mapping.
1470 * @index: Index.
1471 * @max_scan: Maximum range to search.
1473 * Search the range [max(index - max_scan + 1, 0), index] for the
1474 * gap with the highest index.
1476 * This function may be called under the rcu_read_lock. However, this will
1477 * not atomically search a snapshot of the cache at a single point in time.
1478 * For example, if a gap is created at index 10, then subsequently a gap is
1479 * created at index 5, page_cache_prev_miss() covering both indices may
1480 * return 5 if called under the rcu_read_lock.
1482 * Return: The index of the gap if found, otherwise an index outside the
1483 * range specified (in which case 'index - return >= max_scan' will be true).
1484 * In the rare case of wrap-around, ULONG_MAX will be returned.
1486 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1487 pgoff_t index, unsigned long max_scan)
1489 XA_STATE(xas, &mapping->i_pages, index);
1491 while (max_scan--) {
1492 void *entry = xas_prev(&xas);
1493 if (!entry || xa_is_value(entry))
1494 break;
1495 if (xas.xa_index == ULONG_MAX)
1496 break;
1499 return xas.xa_index;
1501 EXPORT_SYMBOL(page_cache_prev_miss);
1504 * find_get_entry - find and get a page cache entry
1505 * @mapping: the address_space to search
1506 * @offset: the page cache index
1508 * Looks up the page cache slot at @mapping & @offset. If there is a
1509 * page cache page, it is returned with an increased refcount.
1511 * If the slot holds a shadow entry of a previously evicted page, or a
1512 * swap entry from shmem/tmpfs, it is returned.
1514 * Return: the found page or shadow entry, %NULL if nothing is found.
1516 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1518 XA_STATE(xas, &mapping->i_pages, offset);
1519 struct page *head, *page;
1521 rcu_read_lock();
1522 repeat:
1523 xas_reset(&xas);
1524 page = xas_load(&xas);
1525 if (xas_retry(&xas, page))
1526 goto repeat;
1528 * A shadow entry of a recently evicted page, or a swap entry from
1529 * shmem/tmpfs. Return it without attempting to raise page count.
1531 if (!page || xa_is_value(page))
1532 goto out;
1534 head = compound_head(page);
1535 if (!page_cache_get_speculative(head))
1536 goto repeat;
1538 /* The page was split under us? */
1539 if (compound_head(page) != head) {
1540 put_page(head);
1541 goto repeat;
1545 * Has the page moved?
1546 * This is part of the lockless pagecache protocol. See
1547 * include/linux/pagemap.h for details.
1549 if (unlikely(page != xas_reload(&xas))) {
1550 put_page(head);
1551 goto repeat;
1553 out:
1554 rcu_read_unlock();
1556 return page;
1558 EXPORT_SYMBOL(find_get_entry);
1561 * find_lock_entry - locate, pin and lock a page cache entry
1562 * @mapping: the address_space to search
1563 * @offset: the page cache index
1565 * Looks up the page cache slot at @mapping & @offset. If there is a
1566 * page cache page, it is returned locked and with an increased
1567 * refcount.
1569 * If the slot holds a shadow entry of a previously evicted page, or a
1570 * swap entry from shmem/tmpfs, it is returned.
1572 * find_lock_entry() may sleep.
1574 * Return: the found page or shadow entry, %NULL if nothing is found.
1576 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1578 struct page *page;
1580 repeat:
1581 page = find_get_entry(mapping, offset);
1582 if (page && !xa_is_value(page)) {
1583 lock_page(page);
1584 /* Has the page been truncated? */
1585 if (unlikely(page_mapping(page) != mapping)) {
1586 unlock_page(page);
1587 put_page(page);
1588 goto repeat;
1590 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1592 return page;
1594 EXPORT_SYMBOL(find_lock_entry);
1597 * pagecache_get_page - find and get a page reference
1598 * @mapping: the address_space to search
1599 * @offset: the page index
1600 * @fgp_flags: PCG flags
1601 * @gfp_mask: gfp mask to use for the page cache data page allocation
1603 * Looks up the page cache slot at @mapping & @offset.
1605 * PCG flags modify how the page is returned.
1607 * @fgp_flags can be:
1609 * - FGP_ACCESSED: the page will be marked accessed
1610 * - FGP_LOCK: Page is return locked
1611 * - FGP_CREAT: If page is not present then a new page is allocated using
1612 * @gfp_mask and added to the page cache and the VM's LRU
1613 * list. The page is returned locked and with an increased
1614 * refcount.
1615 * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do
1616 * its own locking dance if the page is already in cache, or unlock the page
1617 * before returning if we had to add the page to pagecache.
1619 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1620 * if the GFP flags specified for FGP_CREAT are atomic.
1622 * If there is a page cache page, it is returned with an increased refcount.
1624 * Return: the found page or %NULL otherwise.
1626 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1627 int fgp_flags, gfp_t gfp_mask)
1629 struct page *page;
1631 repeat:
1632 page = find_get_entry(mapping, offset);
1633 if (xa_is_value(page))
1634 page = NULL;
1635 if (!page)
1636 goto no_page;
1638 if (fgp_flags & FGP_LOCK) {
1639 if (fgp_flags & FGP_NOWAIT) {
1640 if (!trylock_page(page)) {
1641 put_page(page);
1642 return NULL;
1644 } else {
1645 lock_page(page);
1648 /* Has the page been truncated? */
1649 if (unlikely(page->mapping != mapping)) {
1650 unlock_page(page);
1651 put_page(page);
1652 goto repeat;
1654 VM_BUG_ON_PAGE(page->index != offset, page);
1657 if (fgp_flags & FGP_ACCESSED)
1658 mark_page_accessed(page);
1660 no_page:
1661 if (!page && (fgp_flags & FGP_CREAT)) {
1662 int err;
1663 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1664 gfp_mask |= __GFP_WRITE;
1665 if (fgp_flags & FGP_NOFS)
1666 gfp_mask &= ~__GFP_FS;
1668 page = __page_cache_alloc(gfp_mask);
1669 if (!page)
1670 return NULL;
1672 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1673 fgp_flags |= FGP_LOCK;
1675 /* Init accessed so avoid atomic mark_page_accessed later */
1676 if (fgp_flags & FGP_ACCESSED)
1677 __SetPageReferenced(page);
1679 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1680 if (unlikely(err)) {
1681 put_page(page);
1682 page = NULL;
1683 if (err == -EEXIST)
1684 goto repeat;
1688 * add_to_page_cache_lru locks the page, and for mmap we expect
1689 * an unlocked page.
1691 if (page && (fgp_flags & FGP_FOR_MMAP))
1692 unlock_page(page);
1695 return page;
1697 EXPORT_SYMBOL(pagecache_get_page);
1700 * find_get_entries - gang pagecache lookup
1701 * @mapping: The address_space to search
1702 * @start: The starting page cache index
1703 * @nr_entries: The maximum number of entries
1704 * @entries: Where the resulting entries are placed
1705 * @indices: The cache indices corresponding to the entries in @entries
1707 * find_get_entries() will search for and return a group of up to
1708 * @nr_entries entries in the mapping. The entries are placed at
1709 * @entries. find_get_entries() takes a reference against any actual
1710 * pages it returns.
1712 * The search returns a group of mapping-contiguous page cache entries
1713 * with ascending indexes. There may be holes in the indices due to
1714 * not-present pages.
1716 * Any shadow entries of evicted pages, or swap entries from
1717 * shmem/tmpfs, are included in the returned array.
1719 * Return: the number of pages and shadow entries which were found.
1721 unsigned find_get_entries(struct address_space *mapping,
1722 pgoff_t start, unsigned int nr_entries,
1723 struct page **entries, pgoff_t *indices)
1725 XA_STATE(xas, &mapping->i_pages, start);
1726 struct page *page;
1727 unsigned int ret = 0;
1729 if (!nr_entries)
1730 return 0;
1732 rcu_read_lock();
1733 xas_for_each(&xas, page, ULONG_MAX) {
1734 struct page *head;
1735 if (xas_retry(&xas, page))
1736 continue;
1738 * A shadow entry of a recently evicted page, a swap
1739 * entry from shmem/tmpfs or a DAX entry. Return it
1740 * without attempting to raise page count.
1742 if (xa_is_value(page))
1743 goto export;
1745 head = compound_head(page);
1746 if (!page_cache_get_speculative(head))
1747 goto retry;
1749 /* The page was split under us? */
1750 if (compound_head(page) != head)
1751 goto put_page;
1753 /* Has the page moved? */
1754 if (unlikely(page != xas_reload(&xas)))
1755 goto put_page;
1757 export:
1758 indices[ret] = xas.xa_index;
1759 entries[ret] = page;
1760 if (++ret == nr_entries)
1761 break;
1762 continue;
1763 put_page:
1764 put_page(head);
1765 retry:
1766 xas_reset(&xas);
1768 rcu_read_unlock();
1769 return ret;
1773 * find_get_pages_range - gang pagecache lookup
1774 * @mapping: The address_space to search
1775 * @start: The starting page index
1776 * @end: The final page index (inclusive)
1777 * @nr_pages: The maximum number of pages
1778 * @pages: Where the resulting pages are placed
1780 * find_get_pages_range() will search for and return a group of up to @nr_pages
1781 * pages in the mapping starting at index @start and up to index @end
1782 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1783 * a reference against the returned pages.
1785 * The search returns a group of mapping-contiguous pages with ascending
1786 * indexes. There may be holes in the indices due to not-present pages.
1787 * We also update @start to index the next page for the traversal.
1789 * Return: the number of pages which were found. If this number is
1790 * smaller than @nr_pages, the end of specified range has been
1791 * reached.
1793 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1794 pgoff_t end, unsigned int nr_pages,
1795 struct page **pages)
1797 XA_STATE(xas, &mapping->i_pages, *start);
1798 struct page *page;
1799 unsigned ret = 0;
1801 if (unlikely(!nr_pages))
1802 return 0;
1804 rcu_read_lock();
1805 xas_for_each(&xas, page, end) {
1806 struct page *head;
1807 if (xas_retry(&xas, page))
1808 continue;
1809 /* Skip over shadow, swap and DAX entries */
1810 if (xa_is_value(page))
1811 continue;
1813 head = compound_head(page);
1814 if (!page_cache_get_speculative(head))
1815 goto retry;
1817 /* The page was split under us? */
1818 if (compound_head(page) != head)
1819 goto put_page;
1821 /* Has the page moved? */
1822 if (unlikely(page != xas_reload(&xas)))
1823 goto put_page;
1825 pages[ret] = page;
1826 if (++ret == nr_pages) {
1827 *start = xas.xa_index + 1;
1828 goto out;
1830 continue;
1831 put_page:
1832 put_page(head);
1833 retry:
1834 xas_reset(&xas);
1838 * We come here when there is no page beyond @end. We take care to not
1839 * overflow the index @start as it confuses some of the callers. This
1840 * breaks the iteration when there is a page at index -1 but that is
1841 * already broken anyway.
1843 if (end == (pgoff_t)-1)
1844 *start = (pgoff_t)-1;
1845 else
1846 *start = end + 1;
1847 out:
1848 rcu_read_unlock();
1850 return ret;
1854 * find_get_pages_contig - gang contiguous pagecache lookup
1855 * @mapping: The address_space to search
1856 * @index: The starting page index
1857 * @nr_pages: The maximum number of pages
1858 * @pages: Where the resulting pages are placed
1860 * find_get_pages_contig() works exactly like find_get_pages(), except
1861 * that the returned number of pages are guaranteed to be contiguous.
1863 * Return: the number of pages which were found.
1865 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1866 unsigned int nr_pages, struct page **pages)
1868 XA_STATE(xas, &mapping->i_pages, index);
1869 struct page *page;
1870 unsigned int ret = 0;
1872 if (unlikely(!nr_pages))
1873 return 0;
1875 rcu_read_lock();
1876 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1877 struct page *head;
1878 if (xas_retry(&xas, page))
1879 continue;
1881 * If the entry has been swapped out, we can stop looking.
1882 * No current caller is looking for DAX entries.
1884 if (xa_is_value(page))
1885 break;
1887 head = compound_head(page);
1888 if (!page_cache_get_speculative(head))
1889 goto retry;
1891 /* The page was split under us? */
1892 if (compound_head(page) != head)
1893 goto put_page;
1895 /* Has the page moved? */
1896 if (unlikely(page != xas_reload(&xas)))
1897 goto put_page;
1899 pages[ret] = page;
1900 if (++ret == nr_pages)
1901 break;
1902 continue;
1903 put_page:
1904 put_page(head);
1905 retry:
1906 xas_reset(&xas);
1908 rcu_read_unlock();
1909 return ret;
1911 EXPORT_SYMBOL(find_get_pages_contig);
1914 * find_get_pages_range_tag - find and return pages in given range matching @tag
1915 * @mapping: the address_space to search
1916 * @index: the starting page index
1917 * @end: The final page index (inclusive)
1918 * @tag: the tag index
1919 * @nr_pages: the maximum number of pages
1920 * @pages: where the resulting pages are placed
1922 * Like find_get_pages, except we only return pages which are tagged with
1923 * @tag. We update @index to index the next page for the traversal.
1925 * Return: the number of pages which were found.
1927 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1928 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1929 struct page **pages)
1931 XA_STATE(xas, &mapping->i_pages, *index);
1932 struct page *page;
1933 unsigned ret = 0;
1935 if (unlikely(!nr_pages))
1936 return 0;
1938 rcu_read_lock();
1939 xas_for_each_marked(&xas, page, end, tag) {
1940 struct page *head;
1941 if (xas_retry(&xas, page))
1942 continue;
1944 * Shadow entries should never be tagged, but this iteration
1945 * is lockless so there is a window for page reclaim to evict
1946 * a page we saw tagged. Skip over it.
1948 if (xa_is_value(page))
1949 continue;
1951 head = compound_head(page);
1952 if (!page_cache_get_speculative(head))
1953 goto retry;
1955 /* The page was split under us? */
1956 if (compound_head(page) != head)
1957 goto put_page;
1959 /* Has the page moved? */
1960 if (unlikely(page != xas_reload(&xas)))
1961 goto put_page;
1963 pages[ret] = page;
1964 if (++ret == nr_pages) {
1965 *index = xas.xa_index + 1;
1966 goto out;
1968 continue;
1969 put_page:
1970 put_page(head);
1971 retry:
1972 xas_reset(&xas);
1976 * We come here when we got to @end. We take care to not overflow the
1977 * index @index as it confuses some of the callers. This breaks the
1978 * iteration when there is a page at index -1 but that is already
1979 * broken anyway.
1981 if (end == (pgoff_t)-1)
1982 *index = (pgoff_t)-1;
1983 else
1984 *index = end + 1;
1985 out:
1986 rcu_read_unlock();
1988 return ret;
1990 EXPORT_SYMBOL(find_get_pages_range_tag);
1993 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1994 * a _large_ part of the i/o request. Imagine the worst scenario:
1996 * ---R__________________________________________B__________
1997 * ^ reading here ^ bad block(assume 4k)
1999 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2000 * => failing the whole request => read(R) => read(R+1) =>
2001 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2002 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2003 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2005 * It is going insane. Fix it by quickly scaling down the readahead size.
2007 static void shrink_readahead_size_eio(struct file *filp,
2008 struct file_ra_state *ra)
2010 ra->ra_pages /= 4;
2014 * generic_file_buffered_read - generic file read routine
2015 * @iocb: the iocb to read
2016 * @iter: data destination
2017 * @written: already copied
2019 * This is a generic file read routine, and uses the
2020 * mapping->a_ops->readpage() function for the actual low-level stuff.
2022 * This is really ugly. But the goto's actually try to clarify some
2023 * of the logic when it comes to error handling etc.
2025 * Return:
2026 * * total number of bytes copied, including those the were already @written
2027 * * negative error code if nothing was copied
2029 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2030 struct iov_iter *iter, ssize_t written)
2032 struct file *filp = iocb->ki_filp;
2033 struct address_space *mapping = filp->f_mapping;
2034 struct inode *inode = mapping->host;
2035 struct file_ra_state *ra = &filp->f_ra;
2036 loff_t *ppos = &iocb->ki_pos;
2037 pgoff_t index;
2038 pgoff_t last_index;
2039 pgoff_t prev_index;
2040 unsigned long offset; /* offset into pagecache page */
2041 unsigned int prev_offset;
2042 int error = 0;
2044 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2045 return 0;
2046 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2048 index = *ppos >> PAGE_SHIFT;
2049 prev_index = ra->prev_pos >> PAGE_SHIFT;
2050 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2051 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2052 offset = *ppos & ~PAGE_MASK;
2054 for (;;) {
2055 struct page *page;
2056 pgoff_t end_index;
2057 loff_t isize;
2058 unsigned long nr, ret;
2060 cond_resched();
2061 find_page:
2062 if (fatal_signal_pending(current)) {
2063 error = -EINTR;
2064 goto out;
2067 page = find_get_page(mapping, index);
2068 if (!page) {
2069 if (iocb->ki_flags & IOCB_NOWAIT)
2070 goto would_block;
2071 page_cache_sync_readahead(mapping,
2072 ra, filp,
2073 index, last_index - index);
2074 page = find_get_page(mapping, index);
2075 if (unlikely(page == NULL))
2076 goto no_cached_page;
2078 if (PageReadahead(page)) {
2079 page_cache_async_readahead(mapping,
2080 ra, filp, page,
2081 index, last_index - index);
2083 if (!PageUptodate(page)) {
2084 if (iocb->ki_flags & IOCB_NOWAIT) {
2085 put_page(page);
2086 goto would_block;
2090 * See comment in do_read_cache_page on why
2091 * wait_on_page_locked is used to avoid unnecessarily
2092 * serialisations and why it's safe.
2094 error = wait_on_page_locked_killable(page);
2095 if (unlikely(error))
2096 goto readpage_error;
2097 if (PageUptodate(page))
2098 goto page_ok;
2100 if (inode->i_blkbits == PAGE_SHIFT ||
2101 !mapping->a_ops->is_partially_uptodate)
2102 goto page_not_up_to_date;
2103 /* pipes can't handle partially uptodate pages */
2104 if (unlikely(iov_iter_is_pipe(iter)))
2105 goto page_not_up_to_date;
2106 if (!trylock_page(page))
2107 goto page_not_up_to_date;
2108 /* Did it get truncated before we got the lock? */
2109 if (!page->mapping)
2110 goto page_not_up_to_date_locked;
2111 if (!mapping->a_ops->is_partially_uptodate(page,
2112 offset, iter->count))
2113 goto page_not_up_to_date_locked;
2114 unlock_page(page);
2116 page_ok:
2118 * i_size must be checked after we know the page is Uptodate.
2120 * Checking i_size after the check allows us to calculate
2121 * the correct value for "nr", which means the zero-filled
2122 * part of the page is not copied back to userspace (unless
2123 * another truncate extends the file - this is desired though).
2126 isize = i_size_read(inode);
2127 end_index = (isize - 1) >> PAGE_SHIFT;
2128 if (unlikely(!isize || index > end_index)) {
2129 put_page(page);
2130 goto out;
2133 /* nr is the maximum number of bytes to copy from this page */
2134 nr = PAGE_SIZE;
2135 if (index == end_index) {
2136 nr = ((isize - 1) & ~PAGE_MASK) + 1;
2137 if (nr <= offset) {
2138 put_page(page);
2139 goto out;
2142 nr = nr - offset;
2144 /* If users can be writing to this page using arbitrary
2145 * virtual addresses, take care about potential aliasing
2146 * before reading the page on the kernel side.
2148 if (mapping_writably_mapped(mapping))
2149 flush_dcache_page(page);
2152 * When a sequential read accesses a page several times,
2153 * only mark it as accessed the first time.
2155 if (prev_index != index || offset != prev_offset)
2156 mark_page_accessed(page);
2157 prev_index = index;
2160 * Ok, we have the page, and it's up-to-date, so
2161 * now we can copy it to user space...
2164 ret = copy_page_to_iter(page, offset, nr, iter);
2165 offset += ret;
2166 index += offset >> PAGE_SHIFT;
2167 offset &= ~PAGE_MASK;
2168 prev_offset = offset;
2170 put_page(page);
2171 written += ret;
2172 if (!iov_iter_count(iter))
2173 goto out;
2174 if (ret < nr) {
2175 error = -EFAULT;
2176 goto out;
2178 continue;
2180 page_not_up_to_date:
2181 /* Get exclusive access to the page ... */
2182 error = lock_page_killable(page);
2183 if (unlikely(error))
2184 goto readpage_error;
2186 page_not_up_to_date_locked:
2187 /* Did it get truncated before we got the lock? */
2188 if (!page->mapping) {
2189 unlock_page(page);
2190 put_page(page);
2191 continue;
2194 /* Did somebody else fill it already? */
2195 if (PageUptodate(page)) {
2196 unlock_page(page);
2197 goto page_ok;
2200 readpage:
2202 * A previous I/O error may have been due to temporary
2203 * failures, eg. multipath errors.
2204 * PG_error will be set again if readpage fails.
2206 ClearPageError(page);
2207 /* Start the actual read. The read will unlock the page. */
2208 error = mapping->a_ops->readpage(filp, page);
2210 if (unlikely(error)) {
2211 if (error == AOP_TRUNCATED_PAGE) {
2212 put_page(page);
2213 error = 0;
2214 goto find_page;
2216 goto readpage_error;
2219 if (!PageUptodate(page)) {
2220 error = lock_page_killable(page);
2221 if (unlikely(error))
2222 goto readpage_error;
2223 if (!PageUptodate(page)) {
2224 if (page->mapping == NULL) {
2226 * invalidate_mapping_pages got it
2228 unlock_page(page);
2229 put_page(page);
2230 goto find_page;
2232 unlock_page(page);
2233 shrink_readahead_size_eio(filp, ra);
2234 error = -EIO;
2235 goto readpage_error;
2237 unlock_page(page);
2240 goto page_ok;
2242 readpage_error:
2243 /* UHHUH! A synchronous read error occurred. Report it */
2244 put_page(page);
2245 goto out;
2247 no_cached_page:
2249 * Ok, it wasn't cached, so we need to create a new
2250 * page..
2252 page = page_cache_alloc(mapping);
2253 if (!page) {
2254 error = -ENOMEM;
2255 goto out;
2257 error = add_to_page_cache_lru(page, mapping, index,
2258 mapping_gfp_constraint(mapping, GFP_KERNEL));
2259 if (error) {
2260 put_page(page);
2261 if (error == -EEXIST) {
2262 error = 0;
2263 goto find_page;
2265 goto out;
2267 goto readpage;
2270 would_block:
2271 error = -EAGAIN;
2272 out:
2273 ra->prev_pos = prev_index;
2274 ra->prev_pos <<= PAGE_SHIFT;
2275 ra->prev_pos |= prev_offset;
2277 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2278 file_accessed(filp);
2279 return written ? written : error;
2283 * generic_file_read_iter - generic filesystem read routine
2284 * @iocb: kernel I/O control block
2285 * @iter: destination for the data read
2287 * This is the "read_iter()" routine for all filesystems
2288 * that can use the page cache directly.
2289 * Return:
2290 * * number of bytes copied, even for partial reads
2291 * * negative error code if nothing was read
2293 ssize_t
2294 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2296 size_t count = iov_iter_count(iter);
2297 ssize_t retval = 0;
2299 if (!count)
2300 goto out; /* skip atime */
2302 if (iocb->ki_flags & IOCB_DIRECT) {
2303 struct file *file = iocb->ki_filp;
2304 struct address_space *mapping = file->f_mapping;
2305 struct inode *inode = mapping->host;
2306 loff_t size;
2308 size = i_size_read(inode);
2309 if (iocb->ki_flags & IOCB_NOWAIT) {
2310 if (filemap_range_has_page(mapping, iocb->ki_pos,
2311 iocb->ki_pos + count - 1))
2312 return -EAGAIN;
2313 } else {
2314 retval = filemap_write_and_wait_range(mapping,
2315 iocb->ki_pos,
2316 iocb->ki_pos + count - 1);
2317 if (retval < 0)
2318 goto out;
2321 file_accessed(file);
2323 retval = mapping->a_ops->direct_IO(iocb, iter);
2324 if (retval >= 0) {
2325 iocb->ki_pos += retval;
2326 count -= retval;
2328 iov_iter_revert(iter, count - iov_iter_count(iter));
2331 * Btrfs can have a short DIO read if we encounter
2332 * compressed extents, so if there was an error, or if
2333 * we've already read everything we wanted to, or if
2334 * there was a short read because we hit EOF, go ahead
2335 * and return. Otherwise fallthrough to buffered io for
2336 * the rest of the read. Buffered reads will not work for
2337 * DAX files, so don't bother trying.
2339 if (retval < 0 || !count || iocb->ki_pos >= size ||
2340 IS_DAX(inode))
2341 goto out;
2344 retval = generic_file_buffered_read(iocb, iter, retval);
2345 out:
2346 return retval;
2348 EXPORT_SYMBOL(generic_file_read_iter);
2350 #ifdef CONFIG_MMU
2351 #define MMAP_LOTSAMISS (100)
2352 static struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
2353 struct file *fpin)
2355 int flags = vmf->flags;
2357 if (fpin)
2358 return fpin;
2361 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
2362 * anything, so we only pin the file and drop the mmap_sem if only
2363 * FAULT_FLAG_ALLOW_RETRY is set.
2365 if ((flags & (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT)) ==
2366 FAULT_FLAG_ALLOW_RETRY) {
2367 fpin = get_file(vmf->vma->vm_file);
2368 up_read(&vmf->vma->vm_mm->mmap_sem);
2370 return fpin;
2374 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
2375 * @vmf - the vm_fault for this fault.
2376 * @page - the page to lock.
2377 * @fpin - the pointer to the file we may pin (or is already pinned).
2379 * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
2380 * It differs in that it actually returns the page locked if it returns 1 and 0
2381 * if it couldn't lock the page. If we did have to drop the mmap_sem then fpin
2382 * will point to the pinned file and needs to be fput()'ed at a later point.
2384 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2385 struct file **fpin)
2387 if (trylock_page(page))
2388 return 1;
2391 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2392 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
2393 * is supposed to work. We have way too many special cases..
2395 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2396 return 0;
2398 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2399 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2400 if (__lock_page_killable(page)) {
2402 * We didn't have the right flags to drop the mmap_sem,
2403 * but all fault_handlers only check for fatal signals
2404 * if we return VM_FAULT_RETRY, so we need to drop the
2405 * mmap_sem here and return 0 if we don't have a fpin.
2407 if (*fpin == NULL)
2408 up_read(&vmf->vma->vm_mm->mmap_sem);
2409 return 0;
2411 } else
2412 __lock_page(page);
2413 return 1;
2418 * Synchronous readahead happens when we don't even find a page in the page
2419 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2420 * to drop the mmap sem we return the file that was pinned in order for us to do
2421 * that. If we didn't pin a file then we return NULL. The file that is
2422 * returned needs to be fput()'ed when we're done with it.
2424 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2426 struct file *file = vmf->vma->vm_file;
2427 struct file_ra_state *ra = &file->f_ra;
2428 struct address_space *mapping = file->f_mapping;
2429 struct file *fpin = NULL;
2430 pgoff_t offset = vmf->pgoff;
2432 /* If we don't want any read-ahead, don't bother */
2433 if (vmf->vma->vm_flags & VM_RAND_READ)
2434 return fpin;
2435 if (!ra->ra_pages)
2436 return fpin;
2438 if (vmf->vma->vm_flags & VM_SEQ_READ) {
2439 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2440 page_cache_sync_readahead(mapping, ra, file, offset,
2441 ra->ra_pages);
2442 return fpin;
2445 /* Avoid banging the cache line if not needed */
2446 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2447 ra->mmap_miss++;
2450 * Do we miss much more than hit in this file? If so,
2451 * stop bothering with read-ahead. It will only hurt.
2453 if (ra->mmap_miss > MMAP_LOTSAMISS)
2454 return fpin;
2457 * mmap read-around
2459 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2460 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2461 ra->size = ra->ra_pages;
2462 ra->async_size = ra->ra_pages / 4;
2463 ra_submit(ra, mapping, file);
2464 return fpin;
2468 * Asynchronous readahead happens when we find the page and PG_readahead,
2469 * so we want to possibly extend the readahead further. We return the file that
2470 * was pinned if we have to drop the mmap_sem in order to do IO.
2472 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2473 struct page *page)
2475 struct file *file = vmf->vma->vm_file;
2476 struct file_ra_state *ra = &file->f_ra;
2477 struct address_space *mapping = file->f_mapping;
2478 struct file *fpin = NULL;
2479 pgoff_t offset = vmf->pgoff;
2481 /* If we don't want any read-ahead, don't bother */
2482 if (vmf->vma->vm_flags & VM_RAND_READ)
2483 return fpin;
2484 if (ra->mmap_miss > 0)
2485 ra->mmap_miss--;
2486 if (PageReadahead(page)) {
2487 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2488 page_cache_async_readahead(mapping, ra, file,
2489 page, offset, ra->ra_pages);
2491 return fpin;
2495 * filemap_fault - read in file data for page fault handling
2496 * @vmf: struct vm_fault containing details of the fault
2498 * filemap_fault() is invoked via the vma operations vector for a
2499 * mapped memory region to read in file data during a page fault.
2501 * The goto's are kind of ugly, but this streamlines the normal case of having
2502 * it in the page cache, and handles the special cases reasonably without
2503 * having a lot of duplicated code.
2505 * vma->vm_mm->mmap_sem must be held on entry.
2507 * If our return value has VM_FAULT_RETRY set, it's because the mmap_sem
2508 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2510 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2511 * has not been released.
2513 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2515 * Return: bitwise-OR of %VM_FAULT_ codes.
2517 vm_fault_t filemap_fault(struct vm_fault *vmf)
2519 int error;
2520 struct file *file = vmf->vma->vm_file;
2521 struct file *fpin = NULL;
2522 struct address_space *mapping = file->f_mapping;
2523 struct file_ra_state *ra = &file->f_ra;
2524 struct inode *inode = mapping->host;
2525 pgoff_t offset = vmf->pgoff;
2526 pgoff_t max_off;
2527 struct page *page;
2528 vm_fault_t ret = 0;
2530 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2531 if (unlikely(offset >= max_off))
2532 return VM_FAULT_SIGBUS;
2535 * Do we have something in the page cache already?
2537 page = find_get_page(mapping, offset);
2538 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2540 * We found the page, so try async readahead before
2541 * waiting for the lock.
2543 fpin = do_async_mmap_readahead(vmf, page);
2544 } else if (!page) {
2545 /* No page in the page cache at all */
2546 count_vm_event(PGMAJFAULT);
2547 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2548 ret = VM_FAULT_MAJOR;
2549 fpin = do_sync_mmap_readahead(vmf);
2550 retry_find:
2551 page = pagecache_get_page(mapping, offset,
2552 FGP_CREAT|FGP_FOR_MMAP,
2553 vmf->gfp_mask);
2554 if (!page) {
2555 if (fpin)
2556 goto out_retry;
2557 return vmf_error(-ENOMEM);
2561 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2562 goto out_retry;
2564 /* Did it get truncated? */
2565 if (unlikely(page->mapping != mapping)) {
2566 unlock_page(page);
2567 put_page(page);
2568 goto retry_find;
2570 VM_BUG_ON_PAGE(page->index != offset, page);
2573 * We have a locked page in the page cache, now we need to check
2574 * that it's up-to-date. If not, it is going to be due to an error.
2576 if (unlikely(!PageUptodate(page)))
2577 goto page_not_uptodate;
2580 * We've made it this far and we had to drop our mmap_sem, now is the
2581 * time to return to the upper layer and have it re-find the vma and
2582 * redo the fault.
2584 if (fpin) {
2585 unlock_page(page);
2586 goto out_retry;
2590 * Found the page and have a reference on it.
2591 * We must recheck i_size under page lock.
2593 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2594 if (unlikely(offset >= max_off)) {
2595 unlock_page(page);
2596 put_page(page);
2597 return VM_FAULT_SIGBUS;
2600 vmf->page = page;
2601 return ret | VM_FAULT_LOCKED;
2603 page_not_uptodate:
2605 * Umm, take care of errors if the page isn't up-to-date.
2606 * Try to re-read it _once_. We do this synchronously,
2607 * because there really aren't any performance issues here
2608 * and we need to check for errors.
2610 ClearPageError(page);
2611 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2612 error = mapping->a_ops->readpage(file, page);
2613 if (!error) {
2614 wait_on_page_locked(page);
2615 if (!PageUptodate(page))
2616 error = -EIO;
2618 if (fpin)
2619 goto out_retry;
2620 put_page(page);
2622 if (!error || error == AOP_TRUNCATED_PAGE)
2623 goto retry_find;
2625 /* Things didn't work out. Return zero to tell the mm layer so. */
2626 shrink_readahead_size_eio(file, ra);
2627 return VM_FAULT_SIGBUS;
2629 out_retry:
2631 * We dropped the mmap_sem, we need to return to the fault handler to
2632 * re-find the vma and come back and find our hopefully still populated
2633 * page.
2635 if (page)
2636 put_page(page);
2637 if (fpin)
2638 fput(fpin);
2639 return ret | VM_FAULT_RETRY;
2641 EXPORT_SYMBOL(filemap_fault);
2643 void filemap_map_pages(struct vm_fault *vmf,
2644 pgoff_t start_pgoff, pgoff_t end_pgoff)
2646 struct file *file = vmf->vma->vm_file;
2647 struct address_space *mapping = file->f_mapping;
2648 pgoff_t last_pgoff = start_pgoff;
2649 unsigned long max_idx;
2650 XA_STATE(xas, &mapping->i_pages, start_pgoff);
2651 struct page *head, *page;
2653 rcu_read_lock();
2654 xas_for_each(&xas, page, end_pgoff) {
2655 if (xas_retry(&xas, page))
2656 continue;
2657 if (xa_is_value(page))
2658 goto next;
2660 head = compound_head(page);
2663 * Check for a locked page first, as a speculative
2664 * reference may adversely influence page migration.
2666 if (PageLocked(head))
2667 goto next;
2668 if (!page_cache_get_speculative(head))
2669 goto next;
2671 /* The page was split under us? */
2672 if (compound_head(page) != head)
2673 goto skip;
2675 /* Has the page moved? */
2676 if (unlikely(page != xas_reload(&xas)))
2677 goto skip;
2679 if (!PageUptodate(page) ||
2680 PageReadahead(page) ||
2681 PageHWPoison(page))
2682 goto skip;
2683 if (!trylock_page(page))
2684 goto skip;
2686 if (page->mapping != mapping || !PageUptodate(page))
2687 goto unlock;
2689 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2690 if (page->index >= max_idx)
2691 goto unlock;
2693 if (file->f_ra.mmap_miss > 0)
2694 file->f_ra.mmap_miss--;
2696 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2697 if (vmf->pte)
2698 vmf->pte += xas.xa_index - last_pgoff;
2699 last_pgoff = xas.xa_index;
2700 if (alloc_set_pte(vmf, NULL, page))
2701 goto unlock;
2702 unlock_page(page);
2703 goto next;
2704 unlock:
2705 unlock_page(page);
2706 skip:
2707 put_page(page);
2708 next:
2709 /* Huge page is mapped? No need to proceed. */
2710 if (pmd_trans_huge(*vmf->pmd))
2711 break;
2713 rcu_read_unlock();
2715 EXPORT_SYMBOL(filemap_map_pages);
2717 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2719 struct page *page = vmf->page;
2720 struct inode *inode = file_inode(vmf->vma->vm_file);
2721 vm_fault_t ret = VM_FAULT_LOCKED;
2723 sb_start_pagefault(inode->i_sb);
2724 file_update_time(vmf->vma->vm_file);
2725 lock_page(page);
2726 if (page->mapping != inode->i_mapping) {
2727 unlock_page(page);
2728 ret = VM_FAULT_NOPAGE;
2729 goto out;
2732 * We mark the page dirty already here so that when freeze is in
2733 * progress, we are guaranteed that writeback during freezing will
2734 * see the dirty page and writeprotect it again.
2736 set_page_dirty(page);
2737 wait_for_stable_page(page);
2738 out:
2739 sb_end_pagefault(inode->i_sb);
2740 return ret;
2743 const struct vm_operations_struct generic_file_vm_ops = {
2744 .fault = filemap_fault,
2745 .map_pages = filemap_map_pages,
2746 .page_mkwrite = filemap_page_mkwrite,
2749 /* This is used for a general mmap of a disk file */
2751 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2753 struct address_space *mapping = file->f_mapping;
2755 if (!mapping->a_ops->readpage)
2756 return -ENOEXEC;
2757 file_accessed(file);
2758 vma->vm_ops = &generic_file_vm_ops;
2759 return 0;
2763 * This is for filesystems which do not implement ->writepage.
2765 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2767 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2768 return -EINVAL;
2769 return generic_file_mmap(file, vma);
2771 #else
2772 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2774 return VM_FAULT_SIGBUS;
2776 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2778 return -ENOSYS;
2780 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2782 return -ENOSYS;
2784 #endif /* CONFIG_MMU */
2786 EXPORT_SYMBOL(filemap_page_mkwrite);
2787 EXPORT_SYMBOL(generic_file_mmap);
2788 EXPORT_SYMBOL(generic_file_readonly_mmap);
2790 static struct page *wait_on_page_read(struct page *page)
2792 if (!IS_ERR(page)) {
2793 wait_on_page_locked(page);
2794 if (!PageUptodate(page)) {
2795 put_page(page);
2796 page = ERR_PTR(-EIO);
2799 return page;
2802 static struct page *do_read_cache_page(struct address_space *mapping,
2803 pgoff_t index,
2804 int (*filler)(void *, struct page *),
2805 void *data,
2806 gfp_t gfp)
2808 struct page *page;
2809 int err;
2810 repeat:
2811 page = find_get_page(mapping, index);
2812 if (!page) {
2813 page = __page_cache_alloc(gfp);
2814 if (!page)
2815 return ERR_PTR(-ENOMEM);
2816 err = add_to_page_cache_lru(page, mapping, index, gfp);
2817 if (unlikely(err)) {
2818 put_page(page);
2819 if (err == -EEXIST)
2820 goto repeat;
2821 /* Presumably ENOMEM for xarray node */
2822 return ERR_PTR(err);
2825 filler:
2826 if (filler)
2827 err = filler(data, page);
2828 else
2829 err = mapping->a_ops->readpage(data, page);
2831 if (err < 0) {
2832 put_page(page);
2833 return ERR_PTR(err);
2836 page = wait_on_page_read(page);
2837 if (IS_ERR(page))
2838 return page;
2839 goto out;
2841 if (PageUptodate(page))
2842 goto out;
2845 * Page is not up to date and may be locked due one of the following
2846 * case a: Page is being filled and the page lock is held
2847 * case b: Read/write error clearing the page uptodate status
2848 * case c: Truncation in progress (page locked)
2849 * case d: Reclaim in progress
2851 * Case a, the page will be up to date when the page is unlocked.
2852 * There is no need to serialise on the page lock here as the page
2853 * is pinned so the lock gives no additional protection. Even if the
2854 * the page is truncated, the data is still valid if PageUptodate as
2855 * it's a race vs truncate race.
2856 * Case b, the page will not be up to date
2857 * Case c, the page may be truncated but in itself, the data may still
2858 * be valid after IO completes as it's a read vs truncate race. The
2859 * operation must restart if the page is not uptodate on unlock but
2860 * otherwise serialising on page lock to stabilise the mapping gives
2861 * no additional guarantees to the caller as the page lock is
2862 * released before return.
2863 * Case d, similar to truncation. If reclaim holds the page lock, it
2864 * will be a race with remove_mapping that determines if the mapping
2865 * is valid on unlock but otherwise the data is valid and there is
2866 * no need to serialise with page lock.
2868 * As the page lock gives no additional guarantee, we optimistically
2869 * wait on the page to be unlocked and check if it's up to date and
2870 * use the page if it is. Otherwise, the page lock is required to
2871 * distinguish between the different cases. The motivation is that we
2872 * avoid spurious serialisations and wakeups when multiple processes
2873 * wait on the same page for IO to complete.
2875 wait_on_page_locked(page);
2876 if (PageUptodate(page))
2877 goto out;
2879 /* Distinguish between all the cases under the safety of the lock */
2880 lock_page(page);
2882 /* Case c or d, restart the operation */
2883 if (!page->mapping) {
2884 unlock_page(page);
2885 put_page(page);
2886 goto repeat;
2889 /* Someone else locked and filled the page in a very small window */
2890 if (PageUptodate(page)) {
2891 unlock_page(page);
2892 goto out;
2894 goto filler;
2896 out:
2897 mark_page_accessed(page);
2898 return page;
2902 * read_cache_page - read into page cache, fill it if needed
2903 * @mapping: the page's address_space
2904 * @index: the page index
2905 * @filler: function to perform the read
2906 * @data: first arg to filler(data, page) function, often left as NULL
2908 * Read into the page cache. If a page already exists, and PageUptodate() is
2909 * not set, try to fill the page and wait for it to become unlocked.
2911 * If the page does not get brought uptodate, return -EIO.
2913 * Return: up to date page on success, ERR_PTR() on failure.
2915 struct page *read_cache_page(struct address_space *mapping,
2916 pgoff_t index,
2917 int (*filler)(void *, struct page *),
2918 void *data)
2920 return do_read_cache_page(mapping, index, filler, data,
2921 mapping_gfp_mask(mapping));
2923 EXPORT_SYMBOL(read_cache_page);
2926 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2927 * @mapping: the page's address_space
2928 * @index: the page index
2929 * @gfp: the page allocator flags to use if allocating
2931 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2932 * any new page allocations done using the specified allocation flags.
2934 * If the page does not get brought uptodate, return -EIO.
2936 * Return: up to date page on success, ERR_PTR() on failure.
2938 struct page *read_cache_page_gfp(struct address_space *mapping,
2939 pgoff_t index,
2940 gfp_t gfp)
2942 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
2944 EXPORT_SYMBOL(read_cache_page_gfp);
2947 * Don't operate on ranges the page cache doesn't support, and don't exceed the
2948 * LFS limits. If pos is under the limit it becomes a short access. If it
2949 * exceeds the limit we return -EFBIG.
2951 static int generic_write_check_limits(struct file *file, loff_t pos,
2952 loff_t *count)
2954 struct inode *inode = file->f_mapping->host;
2955 loff_t max_size = inode->i_sb->s_maxbytes;
2956 loff_t limit = rlimit(RLIMIT_FSIZE);
2958 if (limit != RLIM_INFINITY) {
2959 if (pos >= limit) {
2960 send_sig(SIGXFSZ, current, 0);
2961 return -EFBIG;
2963 *count = min(*count, limit - pos);
2966 if (!(file->f_flags & O_LARGEFILE))
2967 max_size = MAX_NON_LFS;
2969 if (unlikely(pos >= max_size))
2970 return -EFBIG;
2972 *count = min(*count, max_size - pos);
2974 return 0;
2978 * Performs necessary checks before doing a write
2980 * Can adjust writing position or amount of bytes to write.
2981 * Returns appropriate error code that caller should return or
2982 * zero in case that write should be allowed.
2984 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2986 struct file *file = iocb->ki_filp;
2987 struct inode *inode = file->f_mapping->host;
2988 loff_t count;
2989 int ret;
2991 if (IS_SWAPFILE(inode))
2992 return -ETXTBSY;
2994 if (!iov_iter_count(from))
2995 return 0;
2997 /* FIXME: this is for backwards compatibility with 2.4 */
2998 if (iocb->ki_flags & IOCB_APPEND)
2999 iocb->ki_pos = i_size_read(inode);
3001 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
3002 return -EINVAL;
3004 count = iov_iter_count(from);
3005 ret = generic_write_check_limits(file, iocb->ki_pos, &count);
3006 if (ret)
3007 return ret;
3009 iov_iter_truncate(from, count);
3010 return iov_iter_count(from);
3012 EXPORT_SYMBOL(generic_write_checks);
3015 * Performs necessary checks before doing a clone.
3017 * Can adjust amount of bytes to clone via @req_count argument.
3018 * Returns appropriate error code that caller should return or
3019 * zero in case the clone should be allowed.
3021 int generic_remap_checks(struct file *file_in, loff_t pos_in,
3022 struct file *file_out, loff_t pos_out,
3023 loff_t *req_count, unsigned int remap_flags)
3025 struct inode *inode_in = file_in->f_mapping->host;
3026 struct inode *inode_out = file_out->f_mapping->host;
3027 uint64_t count = *req_count;
3028 uint64_t bcount;
3029 loff_t size_in, size_out;
3030 loff_t bs = inode_out->i_sb->s_blocksize;
3031 int ret;
3033 /* The start of both ranges must be aligned to an fs block. */
3034 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
3035 return -EINVAL;
3037 /* Ensure offsets don't wrap. */
3038 if (pos_in + count < pos_in || pos_out + count < pos_out)
3039 return -EINVAL;
3041 size_in = i_size_read(inode_in);
3042 size_out = i_size_read(inode_out);
3044 /* Dedupe requires both ranges to be within EOF. */
3045 if ((remap_flags & REMAP_FILE_DEDUP) &&
3046 (pos_in >= size_in || pos_in + count > size_in ||
3047 pos_out >= size_out || pos_out + count > size_out))
3048 return -EINVAL;
3050 /* Ensure the infile range is within the infile. */
3051 if (pos_in >= size_in)
3052 return -EINVAL;
3053 count = min(count, size_in - (uint64_t)pos_in);
3055 ret = generic_write_check_limits(file_out, pos_out, &count);
3056 if (ret)
3057 return ret;
3060 * If the user wanted us to link to the infile's EOF, round up to the
3061 * next block boundary for this check.
3063 * Otherwise, make sure the count is also block-aligned, having
3064 * already confirmed the starting offsets' block alignment.
3066 if (pos_in + count == size_in) {
3067 bcount = ALIGN(size_in, bs) - pos_in;
3068 } else {
3069 if (!IS_ALIGNED(count, bs))
3070 count = ALIGN_DOWN(count, bs);
3071 bcount = count;
3074 /* Don't allow overlapped cloning within the same file. */
3075 if (inode_in == inode_out &&
3076 pos_out + bcount > pos_in &&
3077 pos_out < pos_in + bcount)
3078 return -EINVAL;
3081 * We shortened the request but the caller can't deal with that, so
3082 * bounce the request back to userspace.
3084 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3085 return -EINVAL;
3087 *req_count = count;
3088 return 0;
3093 * Performs common checks before doing a file copy/clone
3094 * from @file_in to @file_out.
3096 int generic_file_rw_checks(struct file *file_in, struct file *file_out)
3098 struct inode *inode_in = file_inode(file_in);
3099 struct inode *inode_out = file_inode(file_out);
3101 /* Don't copy dirs, pipes, sockets... */
3102 if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
3103 return -EISDIR;
3104 if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
3105 return -EINVAL;
3107 if (!(file_in->f_mode & FMODE_READ) ||
3108 !(file_out->f_mode & FMODE_WRITE) ||
3109 (file_out->f_flags & O_APPEND))
3110 return -EBADF;
3112 return 0;
3116 * Performs necessary checks before doing a file copy
3118 * Can adjust amount of bytes to copy via @req_count argument.
3119 * Returns appropriate error code that caller should return or
3120 * zero in case the copy should be allowed.
3122 int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
3123 struct file *file_out, loff_t pos_out,
3124 size_t *req_count, unsigned int flags)
3126 struct inode *inode_in = file_inode(file_in);
3127 struct inode *inode_out = file_inode(file_out);
3128 uint64_t count = *req_count;
3129 loff_t size_in;
3130 int ret;
3132 ret = generic_file_rw_checks(file_in, file_out);
3133 if (ret)
3134 return ret;
3136 /* Don't touch certain kinds of inodes */
3137 if (IS_IMMUTABLE(inode_out))
3138 return -EPERM;
3140 if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
3141 return -ETXTBSY;
3143 /* Ensure offsets don't wrap. */
3144 if (pos_in + count < pos_in || pos_out + count < pos_out)
3145 return -EOVERFLOW;
3147 /* Shorten the copy to EOF */
3148 size_in = i_size_read(inode_in);
3149 if (pos_in >= size_in)
3150 count = 0;
3151 else
3152 count = min(count, size_in - (uint64_t)pos_in);
3154 ret = generic_write_check_limits(file_out, pos_out, &count);
3155 if (ret)
3156 return ret;
3158 /* Don't allow overlapped copying within the same file. */
3159 if (inode_in == inode_out &&
3160 pos_out + count > pos_in &&
3161 pos_out < pos_in + count)
3162 return -EINVAL;
3164 *req_count = count;
3165 return 0;
3168 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3169 loff_t pos, unsigned len, unsigned flags,
3170 struct page **pagep, void **fsdata)
3172 const struct address_space_operations *aops = mapping->a_ops;
3174 return aops->write_begin(file, mapping, pos, len, flags,
3175 pagep, fsdata);
3177 EXPORT_SYMBOL(pagecache_write_begin);
3179 int pagecache_write_end(struct file *file, struct address_space *mapping,
3180 loff_t pos, unsigned len, unsigned copied,
3181 struct page *page, void *fsdata)
3183 const struct address_space_operations *aops = mapping->a_ops;
3185 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3187 EXPORT_SYMBOL(pagecache_write_end);
3189 ssize_t
3190 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3192 struct file *file = iocb->ki_filp;
3193 struct address_space *mapping = file->f_mapping;
3194 struct inode *inode = mapping->host;
3195 loff_t pos = iocb->ki_pos;
3196 ssize_t written;
3197 size_t write_len;
3198 pgoff_t end;
3200 write_len = iov_iter_count(from);
3201 end = (pos + write_len - 1) >> PAGE_SHIFT;
3203 if (iocb->ki_flags & IOCB_NOWAIT) {
3204 /* If there are pages to writeback, return */
3205 if (filemap_range_has_page(inode->i_mapping, pos,
3206 pos + write_len - 1))
3207 return -EAGAIN;
3208 } else {
3209 written = filemap_write_and_wait_range(mapping, pos,
3210 pos + write_len - 1);
3211 if (written)
3212 goto out;
3216 * After a write we want buffered reads to be sure to go to disk to get
3217 * the new data. We invalidate clean cached page from the region we're
3218 * about to write. We do this *before* the write so that we can return
3219 * without clobbering -EIOCBQUEUED from ->direct_IO().
3221 written = invalidate_inode_pages2_range(mapping,
3222 pos >> PAGE_SHIFT, end);
3224 * If a page can not be invalidated, return 0 to fall back
3225 * to buffered write.
3227 if (written) {
3228 if (written == -EBUSY)
3229 return 0;
3230 goto out;
3233 written = mapping->a_ops->direct_IO(iocb, from);
3236 * Finally, try again to invalidate clean pages which might have been
3237 * cached by non-direct readahead, or faulted in by get_user_pages()
3238 * if the source of the write was an mmap'ed region of the file
3239 * we're writing. Either one is a pretty crazy thing to do,
3240 * so we don't support it 100%. If this invalidation
3241 * fails, tough, the write still worked...
3243 * Most of the time we do not need this since dio_complete() will do
3244 * the invalidation for us. However there are some file systems that
3245 * do not end up with dio_complete() being called, so let's not break
3246 * them by removing it completely
3248 if (mapping->nrpages)
3249 invalidate_inode_pages2_range(mapping,
3250 pos >> PAGE_SHIFT, end);
3252 if (written > 0) {
3253 pos += written;
3254 write_len -= written;
3255 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3256 i_size_write(inode, pos);
3257 mark_inode_dirty(inode);
3259 iocb->ki_pos = pos;
3261 iov_iter_revert(from, write_len - iov_iter_count(from));
3262 out:
3263 return written;
3265 EXPORT_SYMBOL(generic_file_direct_write);
3268 * Find or create a page at the given pagecache position. Return the locked
3269 * page. This function is specifically for buffered writes.
3271 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3272 pgoff_t index, unsigned flags)
3274 struct page *page;
3275 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3277 if (flags & AOP_FLAG_NOFS)
3278 fgp_flags |= FGP_NOFS;
3280 page = pagecache_get_page(mapping, index, fgp_flags,
3281 mapping_gfp_mask(mapping));
3282 if (page)
3283 wait_for_stable_page(page);
3285 return page;
3287 EXPORT_SYMBOL(grab_cache_page_write_begin);
3289 ssize_t generic_perform_write(struct file *file,
3290 struct iov_iter *i, loff_t pos)
3292 struct address_space *mapping = file->f_mapping;
3293 const struct address_space_operations *a_ops = mapping->a_ops;
3294 long status = 0;
3295 ssize_t written = 0;
3296 unsigned int flags = 0;
3298 do {
3299 struct page *page;
3300 unsigned long offset; /* Offset into pagecache page */
3301 unsigned long bytes; /* Bytes to write to page */
3302 size_t copied; /* Bytes copied from user */
3303 void *fsdata;
3305 offset = (pos & (PAGE_SIZE - 1));
3306 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3307 iov_iter_count(i));
3309 again:
3311 * Bring in the user page that we will copy from _first_.
3312 * Otherwise there's a nasty deadlock on copying from the
3313 * same page as we're writing to, without it being marked
3314 * up-to-date.
3316 * Not only is this an optimisation, but it is also required
3317 * to check that the address is actually valid, when atomic
3318 * usercopies are used, below.
3320 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3321 status = -EFAULT;
3322 break;
3325 if (fatal_signal_pending(current)) {
3326 status = -EINTR;
3327 break;
3330 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3331 &page, &fsdata);
3332 if (unlikely(status < 0))
3333 break;
3335 if (mapping_writably_mapped(mapping))
3336 flush_dcache_page(page);
3338 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3339 flush_dcache_page(page);
3341 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3342 page, fsdata);
3343 if (unlikely(status < 0))
3344 break;
3345 copied = status;
3347 cond_resched();
3349 iov_iter_advance(i, copied);
3350 if (unlikely(copied == 0)) {
3352 * If we were unable to copy any data at all, we must
3353 * fall back to a single segment length write.
3355 * If we didn't fallback here, we could livelock
3356 * because not all segments in the iov can be copied at
3357 * once without a pagefault.
3359 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3360 iov_iter_single_seg_count(i));
3361 goto again;
3363 pos += copied;
3364 written += copied;
3366 balance_dirty_pages_ratelimited(mapping);
3367 } while (iov_iter_count(i));
3369 return written ? written : status;
3371 EXPORT_SYMBOL(generic_perform_write);
3374 * __generic_file_write_iter - write data to a file
3375 * @iocb: IO state structure (file, offset, etc.)
3376 * @from: iov_iter with data to write
3378 * This function does all the work needed for actually writing data to a
3379 * file. It does all basic checks, removes SUID from the file, updates
3380 * modification times and calls proper subroutines depending on whether we
3381 * do direct IO or a standard buffered write.
3383 * It expects i_mutex to be grabbed unless we work on a block device or similar
3384 * object which does not need locking at all.
3386 * This function does *not* take care of syncing data in case of O_SYNC write.
3387 * A caller has to handle it. This is mainly due to the fact that we want to
3388 * avoid syncing under i_mutex.
3390 * Return:
3391 * * number of bytes written, even for truncated writes
3392 * * negative error code if no data has been written at all
3394 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3396 struct file *file = iocb->ki_filp;
3397 struct address_space * mapping = file->f_mapping;
3398 struct inode *inode = mapping->host;
3399 ssize_t written = 0;
3400 ssize_t err;
3401 ssize_t status;
3403 /* We can write back this queue in page reclaim */
3404 current->backing_dev_info = inode_to_bdi(inode);
3405 err = file_remove_privs(file);
3406 if (err)
3407 goto out;
3409 err = file_update_time(file);
3410 if (err)
3411 goto out;
3413 if (iocb->ki_flags & IOCB_DIRECT) {
3414 loff_t pos, endbyte;
3416 written = generic_file_direct_write(iocb, from);
3418 * If the write stopped short of completing, fall back to
3419 * buffered writes. Some filesystems do this for writes to
3420 * holes, for example. For DAX files, a buffered write will
3421 * not succeed (even if it did, DAX does not handle dirty
3422 * page-cache pages correctly).
3424 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3425 goto out;
3427 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3429 * If generic_perform_write() returned a synchronous error
3430 * then we want to return the number of bytes which were
3431 * direct-written, or the error code if that was zero. Note
3432 * that this differs from normal direct-io semantics, which
3433 * will return -EFOO even if some bytes were written.
3435 if (unlikely(status < 0)) {
3436 err = status;
3437 goto out;
3440 * We need to ensure that the page cache pages are written to
3441 * disk and invalidated to preserve the expected O_DIRECT
3442 * semantics.
3444 endbyte = pos + status - 1;
3445 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3446 if (err == 0) {
3447 iocb->ki_pos = endbyte + 1;
3448 written += status;
3449 invalidate_mapping_pages(mapping,
3450 pos >> PAGE_SHIFT,
3451 endbyte >> PAGE_SHIFT);
3452 } else {
3454 * We don't know how much we wrote, so just return
3455 * the number of bytes which were direct-written
3458 } else {
3459 written = generic_perform_write(file, from, iocb->ki_pos);
3460 if (likely(written > 0))
3461 iocb->ki_pos += written;
3463 out:
3464 current->backing_dev_info = NULL;
3465 return written ? written : err;
3467 EXPORT_SYMBOL(__generic_file_write_iter);
3470 * generic_file_write_iter - write data to a file
3471 * @iocb: IO state structure
3472 * @from: iov_iter with data to write
3474 * This is a wrapper around __generic_file_write_iter() to be used by most
3475 * filesystems. It takes care of syncing the file in case of O_SYNC file
3476 * and acquires i_mutex as needed.
3477 * Return:
3478 * * negative error code if no data has been written at all of
3479 * vfs_fsync_range() failed for a synchronous write
3480 * * number of bytes written, even for truncated writes
3482 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3484 struct file *file = iocb->ki_filp;
3485 struct inode *inode = file->f_mapping->host;
3486 ssize_t ret;
3488 inode_lock(inode);
3489 ret = generic_write_checks(iocb, from);
3490 if (ret > 0)
3491 ret = __generic_file_write_iter(iocb, from);
3492 inode_unlock(inode);
3494 if (ret > 0)
3495 ret = generic_write_sync(iocb, ret);
3496 return ret;
3498 EXPORT_SYMBOL(generic_file_write_iter);
3501 * try_to_release_page() - release old fs-specific metadata on a page
3503 * @page: the page which the kernel is trying to free
3504 * @gfp_mask: memory allocation flags (and I/O mode)
3506 * The address_space is to try to release any data against the page
3507 * (presumably at page->private).
3509 * This may also be called if PG_fscache is set on a page, indicating that the
3510 * page is known to the local caching routines.
3512 * The @gfp_mask argument specifies whether I/O may be performed to release
3513 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3515 * Return: %1 if the release was successful, otherwise return zero.
3517 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3519 struct address_space * const mapping = page->mapping;
3521 BUG_ON(!PageLocked(page));
3522 if (PageWriteback(page))
3523 return 0;
3525 if (mapping && mapping->a_ops->releasepage)
3526 return mapping->a_ops->releasepage(page, gfp_mask);
3527 return try_to_free_buffers(page);
3530 EXPORT_SYMBOL(try_to_release_page);