1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/seq_buf.h>
66 #include <linux/uaccess.h>
68 #include <trace/events/vmscan.h>
70 struct cgroup_subsys memory_cgrp_subsys __read_mostly
;
71 EXPORT_SYMBOL(memory_cgrp_subsys
);
73 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
75 #define MEM_CGROUP_RECLAIM_RETRIES 5
77 /* Socket memory accounting disabled? */
78 static bool cgroup_memory_nosocket
;
80 /* Kernel memory accounting disabled? */
81 static bool cgroup_memory_nokmem
;
83 /* Whether the swap controller is active */
84 #ifdef CONFIG_MEMCG_SWAP
85 int do_swap_account __read_mostly
;
87 #define do_swap_account 0
90 #ifdef CONFIG_CGROUP_WRITEBACK
91 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq
);
94 /* Whether legacy memory+swap accounting is active */
95 static bool do_memsw_account(void)
97 return !cgroup_subsys_on_dfl(memory_cgrp_subsys
) && do_swap_account
;
100 static const char *const mem_cgroup_lru_names
[] = {
108 #define THRESHOLDS_EVENTS_TARGET 128
109 #define SOFTLIMIT_EVENTS_TARGET 1024
110 #define NUMAINFO_EVENTS_TARGET 1024
113 * Cgroups above their limits are maintained in a RB-Tree, independent of
114 * their hierarchy representation
117 struct mem_cgroup_tree_per_node
{
118 struct rb_root rb_root
;
119 struct rb_node
*rb_rightmost
;
123 struct mem_cgroup_tree
{
124 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
127 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
130 struct mem_cgroup_eventfd_list
{
131 struct list_head list
;
132 struct eventfd_ctx
*eventfd
;
136 * cgroup_event represents events which userspace want to receive.
138 struct mem_cgroup_event
{
140 * memcg which the event belongs to.
142 struct mem_cgroup
*memcg
;
144 * eventfd to signal userspace about the event.
146 struct eventfd_ctx
*eventfd
;
148 * Each of these stored in a list by the cgroup.
150 struct list_head list
;
152 * register_event() callback will be used to add new userspace
153 * waiter for changes related to this event. Use eventfd_signal()
154 * on eventfd to send notification to userspace.
156 int (*register_event
)(struct mem_cgroup
*memcg
,
157 struct eventfd_ctx
*eventfd
, const char *args
);
159 * unregister_event() callback will be called when userspace closes
160 * the eventfd or on cgroup removing. This callback must be set,
161 * if you want provide notification functionality.
163 void (*unregister_event
)(struct mem_cgroup
*memcg
,
164 struct eventfd_ctx
*eventfd
);
166 * All fields below needed to unregister event when
167 * userspace closes eventfd.
170 wait_queue_head_t
*wqh
;
171 wait_queue_entry_t wait
;
172 struct work_struct remove
;
175 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
176 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
178 /* Stuffs for move charges at task migration. */
180 * Types of charges to be moved.
182 #define MOVE_ANON 0x1U
183 #define MOVE_FILE 0x2U
184 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
186 /* "mc" and its members are protected by cgroup_mutex */
187 static struct move_charge_struct
{
188 spinlock_t lock
; /* for from, to */
189 struct mm_struct
*mm
;
190 struct mem_cgroup
*from
;
191 struct mem_cgroup
*to
;
193 unsigned long precharge
;
194 unsigned long moved_charge
;
195 unsigned long moved_swap
;
196 struct task_struct
*moving_task
; /* a task moving charges */
197 wait_queue_head_t waitq
; /* a waitq for other context */
199 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
200 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
204 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
205 * limit reclaim to prevent infinite loops, if they ever occur.
207 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
208 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
211 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
212 MEM_CGROUP_CHARGE_TYPE_ANON
,
213 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
214 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
218 /* for encoding cft->private value on file */
227 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
228 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
229 #define MEMFILE_ATTR(val) ((val) & 0xffff)
230 /* Used for OOM nofiier */
231 #define OOM_CONTROL (0)
234 * Iteration constructs for visiting all cgroups (under a tree). If
235 * loops are exited prematurely (break), mem_cgroup_iter_break() must
236 * be used for reference counting.
238 #define for_each_mem_cgroup_tree(iter, root) \
239 for (iter = mem_cgroup_iter(root, NULL, NULL); \
241 iter = mem_cgroup_iter(root, iter, NULL))
243 #define for_each_mem_cgroup(iter) \
244 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
246 iter = mem_cgroup_iter(NULL, iter, NULL))
248 static inline bool should_force_charge(void)
250 return tsk_is_oom_victim(current
) || fatal_signal_pending(current
) ||
251 (current
->flags
& PF_EXITING
);
254 /* Some nice accessors for the vmpressure. */
255 struct vmpressure
*memcg_to_vmpressure(struct mem_cgroup
*memcg
)
258 memcg
= root_mem_cgroup
;
259 return &memcg
->vmpressure
;
262 struct cgroup_subsys_state
*vmpressure_to_css(struct vmpressure
*vmpr
)
264 return &container_of(vmpr
, struct mem_cgroup
, vmpressure
)->css
;
267 #ifdef CONFIG_MEMCG_KMEM
269 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
270 * The main reason for not using cgroup id for this:
271 * this works better in sparse environments, where we have a lot of memcgs,
272 * but only a few kmem-limited. Or also, if we have, for instance, 200
273 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
274 * 200 entry array for that.
276 * The current size of the caches array is stored in memcg_nr_cache_ids. It
277 * will double each time we have to increase it.
279 static DEFINE_IDA(memcg_cache_ida
);
280 int memcg_nr_cache_ids
;
282 /* Protects memcg_nr_cache_ids */
283 static DECLARE_RWSEM(memcg_cache_ids_sem
);
285 void memcg_get_cache_ids(void)
287 down_read(&memcg_cache_ids_sem
);
290 void memcg_put_cache_ids(void)
292 up_read(&memcg_cache_ids_sem
);
296 * MIN_SIZE is different than 1, because we would like to avoid going through
297 * the alloc/free process all the time. In a small machine, 4 kmem-limited
298 * cgroups is a reasonable guess. In the future, it could be a parameter or
299 * tunable, but that is strictly not necessary.
301 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
302 * this constant directly from cgroup, but it is understandable that this is
303 * better kept as an internal representation in cgroup.c. In any case, the
304 * cgrp_id space is not getting any smaller, and we don't have to necessarily
305 * increase ours as well if it increases.
307 #define MEMCG_CACHES_MIN_SIZE 4
308 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
311 * A lot of the calls to the cache allocation functions are expected to be
312 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
313 * conditional to this static branch, we'll have to allow modules that does
314 * kmem_cache_alloc and the such to see this symbol as well
316 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key
);
317 EXPORT_SYMBOL(memcg_kmem_enabled_key
);
319 struct workqueue_struct
*memcg_kmem_cache_wq
;
321 static int memcg_shrinker_map_size
;
322 static DEFINE_MUTEX(memcg_shrinker_map_mutex
);
324 static void memcg_free_shrinker_map_rcu(struct rcu_head
*head
)
326 kvfree(container_of(head
, struct memcg_shrinker_map
, rcu
));
329 static int memcg_expand_one_shrinker_map(struct mem_cgroup
*memcg
,
330 int size
, int old_size
)
332 struct memcg_shrinker_map
*new, *old
;
335 lockdep_assert_held(&memcg_shrinker_map_mutex
);
338 old
= rcu_dereference_protected(
339 mem_cgroup_nodeinfo(memcg
, nid
)->shrinker_map
, true);
340 /* Not yet online memcg */
344 new = kvmalloc(sizeof(*new) + size
, GFP_KERNEL
);
348 /* Set all old bits, clear all new bits */
349 memset(new->map
, (int)0xff, old_size
);
350 memset((void *)new->map
+ old_size
, 0, size
- old_size
);
352 rcu_assign_pointer(memcg
->nodeinfo
[nid
]->shrinker_map
, new);
353 call_rcu(&old
->rcu
, memcg_free_shrinker_map_rcu
);
359 static void memcg_free_shrinker_maps(struct mem_cgroup
*memcg
)
361 struct mem_cgroup_per_node
*pn
;
362 struct memcg_shrinker_map
*map
;
365 if (mem_cgroup_is_root(memcg
))
369 pn
= mem_cgroup_nodeinfo(memcg
, nid
);
370 map
= rcu_dereference_protected(pn
->shrinker_map
, true);
373 rcu_assign_pointer(pn
->shrinker_map
, NULL
);
377 static int memcg_alloc_shrinker_maps(struct mem_cgroup
*memcg
)
379 struct memcg_shrinker_map
*map
;
380 int nid
, size
, ret
= 0;
382 if (mem_cgroup_is_root(memcg
))
385 mutex_lock(&memcg_shrinker_map_mutex
);
386 size
= memcg_shrinker_map_size
;
388 map
= kvzalloc(sizeof(*map
) + size
, GFP_KERNEL
);
390 memcg_free_shrinker_maps(memcg
);
394 rcu_assign_pointer(memcg
->nodeinfo
[nid
]->shrinker_map
, map
);
396 mutex_unlock(&memcg_shrinker_map_mutex
);
401 int memcg_expand_shrinker_maps(int new_id
)
403 int size
, old_size
, ret
= 0;
404 struct mem_cgroup
*memcg
;
406 size
= DIV_ROUND_UP(new_id
+ 1, BITS_PER_LONG
) * sizeof(unsigned long);
407 old_size
= memcg_shrinker_map_size
;
408 if (size
<= old_size
)
411 mutex_lock(&memcg_shrinker_map_mutex
);
412 if (!root_mem_cgroup
)
415 for_each_mem_cgroup(memcg
) {
416 if (mem_cgroup_is_root(memcg
))
418 ret
= memcg_expand_one_shrinker_map(memcg
, size
, old_size
);
424 memcg_shrinker_map_size
= size
;
425 mutex_unlock(&memcg_shrinker_map_mutex
);
429 void memcg_set_shrinker_bit(struct mem_cgroup
*memcg
, int nid
, int shrinker_id
)
431 if (shrinker_id
>= 0 && memcg
&& !mem_cgroup_is_root(memcg
)) {
432 struct memcg_shrinker_map
*map
;
435 map
= rcu_dereference(memcg
->nodeinfo
[nid
]->shrinker_map
);
436 /* Pairs with smp mb in shrink_slab() */
437 smp_mb__before_atomic();
438 set_bit(shrinker_id
, map
->map
);
443 #else /* CONFIG_MEMCG_KMEM */
444 static int memcg_alloc_shrinker_maps(struct mem_cgroup
*memcg
)
448 static void memcg_free_shrinker_maps(struct mem_cgroup
*memcg
) { }
449 #endif /* CONFIG_MEMCG_KMEM */
452 * mem_cgroup_css_from_page - css of the memcg associated with a page
453 * @page: page of interest
455 * If memcg is bound to the default hierarchy, css of the memcg associated
456 * with @page is returned. The returned css remains associated with @page
457 * until it is released.
459 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
462 struct cgroup_subsys_state
*mem_cgroup_css_from_page(struct page
*page
)
464 struct mem_cgroup
*memcg
;
466 memcg
= page
->mem_cgroup
;
468 if (!memcg
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
469 memcg
= root_mem_cgroup
;
475 * page_cgroup_ino - return inode number of the memcg a page is charged to
478 * Look up the closest online ancestor of the memory cgroup @page is charged to
479 * and return its inode number or 0 if @page is not charged to any cgroup. It
480 * is safe to call this function without holding a reference to @page.
482 * Note, this function is inherently racy, because there is nothing to prevent
483 * the cgroup inode from getting torn down and potentially reallocated a moment
484 * after page_cgroup_ino() returns, so it only should be used by callers that
485 * do not care (such as procfs interfaces).
487 ino_t
page_cgroup_ino(struct page
*page
)
489 struct mem_cgroup
*memcg
;
490 unsigned long ino
= 0;
493 if (PageHead(page
) && PageSlab(page
))
494 memcg
= memcg_from_slab_page(page
);
496 memcg
= READ_ONCE(page
->mem_cgroup
);
497 while (memcg
&& !(memcg
->css
.flags
& CSS_ONLINE
))
498 memcg
= parent_mem_cgroup(memcg
);
500 ino
= cgroup_ino(memcg
->css
.cgroup
);
505 static struct mem_cgroup_per_node
*
506 mem_cgroup_page_nodeinfo(struct mem_cgroup
*memcg
, struct page
*page
)
508 int nid
= page_to_nid(page
);
510 return memcg
->nodeinfo
[nid
];
513 static struct mem_cgroup_tree_per_node
*
514 soft_limit_tree_node(int nid
)
516 return soft_limit_tree
.rb_tree_per_node
[nid
];
519 static struct mem_cgroup_tree_per_node
*
520 soft_limit_tree_from_page(struct page
*page
)
522 int nid
= page_to_nid(page
);
524 return soft_limit_tree
.rb_tree_per_node
[nid
];
527 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node
*mz
,
528 struct mem_cgroup_tree_per_node
*mctz
,
529 unsigned long new_usage_in_excess
)
531 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
532 struct rb_node
*parent
= NULL
;
533 struct mem_cgroup_per_node
*mz_node
;
534 bool rightmost
= true;
539 mz
->usage_in_excess
= new_usage_in_excess
;
540 if (!mz
->usage_in_excess
)
544 mz_node
= rb_entry(parent
, struct mem_cgroup_per_node
,
546 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
) {
552 * We can't avoid mem cgroups that are over their soft
553 * limit by the same amount
555 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
560 mctz
->rb_rightmost
= &mz
->tree_node
;
562 rb_link_node(&mz
->tree_node
, parent
, p
);
563 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
567 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node
*mz
,
568 struct mem_cgroup_tree_per_node
*mctz
)
573 if (&mz
->tree_node
== mctz
->rb_rightmost
)
574 mctz
->rb_rightmost
= rb_prev(&mz
->tree_node
);
576 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
580 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node
*mz
,
581 struct mem_cgroup_tree_per_node
*mctz
)
585 spin_lock_irqsave(&mctz
->lock
, flags
);
586 __mem_cgroup_remove_exceeded(mz
, mctz
);
587 spin_unlock_irqrestore(&mctz
->lock
, flags
);
590 static unsigned long soft_limit_excess(struct mem_cgroup
*memcg
)
592 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
593 unsigned long soft_limit
= READ_ONCE(memcg
->soft_limit
);
594 unsigned long excess
= 0;
596 if (nr_pages
> soft_limit
)
597 excess
= nr_pages
- soft_limit
;
602 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
604 unsigned long excess
;
605 struct mem_cgroup_per_node
*mz
;
606 struct mem_cgroup_tree_per_node
*mctz
;
608 mctz
= soft_limit_tree_from_page(page
);
612 * Necessary to update all ancestors when hierarchy is used.
613 * because their event counter is not touched.
615 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
616 mz
= mem_cgroup_page_nodeinfo(memcg
, page
);
617 excess
= soft_limit_excess(memcg
);
619 * We have to update the tree if mz is on RB-tree or
620 * mem is over its softlimit.
622 if (excess
|| mz
->on_tree
) {
625 spin_lock_irqsave(&mctz
->lock
, flags
);
626 /* if on-tree, remove it */
628 __mem_cgroup_remove_exceeded(mz
, mctz
);
630 * Insert again. mz->usage_in_excess will be updated.
631 * If excess is 0, no tree ops.
633 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
634 spin_unlock_irqrestore(&mctz
->lock
, flags
);
639 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
641 struct mem_cgroup_tree_per_node
*mctz
;
642 struct mem_cgroup_per_node
*mz
;
646 mz
= mem_cgroup_nodeinfo(memcg
, nid
);
647 mctz
= soft_limit_tree_node(nid
);
649 mem_cgroup_remove_exceeded(mz
, mctz
);
653 static struct mem_cgroup_per_node
*
654 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node
*mctz
)
656 struct mem_cgroup_per_node
*mz
;
660 if (!mctz
->rb_rightmost
)
661 goto done
; /* Nothing to reclaim from */
663 mz
= rb_entry(mctz
->rb_rightmost
,
664 struct mem_cgroup_per_node
, tree_node
);
666 * Remove the node now but someone else can add it back,
667 * we will to add it back at the end of reclaim to its correct
668 * position in the tree.
670 __mem_cgroup_remove_exceeded(mz
, mctz
);
671 if (!soft_limit_excess(mz
->memcg
) ||
672 !css_tryget_online(&mz
->memcg
->css
))
678 static struct mem_cgroup_per_node
*
679 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node
*mctz
)
681 struct mem_cgroup_per_node
*mz
;
683 spin_lock_irq(&mctz
->lock
);
684 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
685 spin_unlock_irq(&mctz
->lock
);
690 * __mod_memcg_state - update cgroup memory statistics
691 * @memcg: the memory cgroup
692 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
693 * @val: delta to add to the counter, can be negative
695 void __mod_memcg_state(struct mem_cgroup
*memcg
, int idx
, int val
)
699 if (mem_cgroup_disabled())
702 x
= val
+ __this_cpu_read(memcg
->vmstats_percpu
->stat
[idx
]);
703 if (unlikely(abs(x
) > MEMCG_CHARGE_BATCH
)) {
704 struct mem_cgroup
*mi
;
707 * Batch local counters to keep them in sync with
708 * the hierarchical ones.
710 __this_cpu_add(memcg
->vmstats_local
->stat
[idx
], x
);
711 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
))
712 atomic_long_add(x
, &mi
->vmstats
[idx
]);
715 __this_cpu_write(memcg
->vmstats_percpu
->stat
[idx
], x
);
718 static struct mem_cgroup_per_node
*
719 parent_nodeinfo(struct mem_cgroup_per_node
*pn
, int nid
)
721 struct mem_cgroup
*parent
;
723 parent
= parent_mem_cgroup(pn
->memcg
);
726 return mem_cgroup_nodeinfo(parent
, nid
);
730 * __mod_lruvec_state - update lruvec memory statistics
731 * @lruvec: the lruvec
732 * @idx: the stat item
733 * @val: delta to add to the counter, can be negative
735 * The lruvec is the intersection of the NUMA node and a cgroup. This
736 * function updates the all three counters that are affected by a
737 * change of state at this level: per-node, per-cgroup, per-lruvec.
739 void __mod_lruvec_state(struct lruvec
*lruvec
, enum node_stat_item idx
,
742 pg_data_t
*pgdat
= lruvec_pgdat(lruvec
);
743 struct mem_cgroup_per_node
*pn
;
744 struct mem_cgroup
*memcg
;
748 __mod_node_page_state(pgdat
, idx
, val
);
750 if (mem_cgroup_disabled())
753 pn
= container_of(lruvec
, struct mem_cgroup_per_node
, lruvec
);
757 __mod_memcg_state(memcg
, idx
, val
);
760 __this_cpu_add(pn
->lruvec_stat_local
->count
[idx
], val
);
762 x
= val
+ __this_cpu_read(pn
->lruvec_stat_cpu
->count
[idx
]);
763 if (unlikely(abs(x
) > MEMCG_CHARGE_BATCH
)) {
764 struct mem_cgroup_per_node
*pi
;
766 for (pi
= pn
; pi
; pi
= parent_nodeinfo(pi
, pgdat
->node_id
))
767 atomic_long_add(x
, &pi
->lruvec_stat
[idx
]);
770 __this_cpu_write(pn
->lruvec_stat_cpu
->count
[idx
], x
);
773 void __mod_lruvec_slab_state(void *p
, enum node_stat_item idx
, int val
)
775 struct page
*page
= virt_to_head_page(p
);
776 pg_data_t
*pgdat
= page_pgdat(page
);
777 struct mem_cgroup
*memcg
;
778 struct lruvec
*lruvec
;
781 memcg
= memcg_from_slab_page(page
);
783 /* Untracked pages have no memcg, no lruvec. Update only the node */
784 if (!memcg
|| memcg
== root_mem_cgroup
) {
785 __mod_node_page_state(pgdat
, idx
, val
);
787 lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
788 __mod_lruvec_state(lruvec
, idx
, val
);
794 * __count_memcg_events - account VM events in a cgroup
795 * @memcg: the memory cgroup
796 * @idx: the event item
797 * @count: the number of events that occured
799 void __count_memcg_events(struct mem_cgroup
*memcg
, enum vm_event_item idx
,
804 if (mem_cgroup_disabled())
807 x
= count
+ __this_cpu_read(memcg
->vmstats_percpu
->events
[idx
]);
808 if (unlikely(x
> MEMCG_CHARGE_BATCH
)) {
809 struct mem_cgroup
*mi
;
812 * Batch local counters to keep them in sync with
813 * the hierarchical ones.
815 __this_cpu_add(memcg
->vmstats_local
->events
[idx
], x
);
816 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
))
817 atomic_long_add(x
, &mi
->vmevents
[idx
]);
820 __this_cpu_write(memcg
->vmstats_percpu
->events
[idx
], x
);
823 static unsigned long memcg_events(struct mem_cgroup
*memcg
, int event
)
825 return atomic_long_read(&memcg
->vmevents
[event
]);
828 static unsigned long memcg_events_local(struct mem_cgroup
*memcg
, int event
)
833 for_each_possible_cpu(cpu
)
834 x
+= per_cpu(memcg
->vmstats_local
->events
[event
], cpu
);
838 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
840 bool compound
, int nr_pages
)
843 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
844 * counted as CACHE even if it's on ANON LRU.
847 __mod_memcg_state(memcg
, MEMCG_RSS
, nr_pages
);
849 __mod_memcg_state(memcg
, MEMCG_CACHE
, nr_pages
);
850 if (PageSwapBacked(page
))
851 __mod_memcg_state(memcg
, NR_SHMEM
, nr_pages
);
855 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
856 __mod_memcg_state(memcg
, MEMCG_RSS_HUGE
, nr_pages
);
859 /* pagein of a big page is an event. So, ignore page size */
861 __count_memcg_events(memcg
, PGPGIN
, 1);
863 __count_memcg_events(memcg
, PGPGOUT
, 1);
864 nr_pages
= -nr_pages
; /* for event */
867 __this_cpu_add(memcg
->vmstats_percpu
->nr_page_events
, nr_pages
);
870 static bool mem_cgroup_event_ratelimit(struct mem_cgroup
*memcg
,
871 enum mem_cgroup_events_target target
)
873 unsigned long val
, next
;
875 val
= __this_cpu_read(memcg
->vmstats_percpu
->nr_page_events
);
876 next
= __this_cpu_read(memcg
->vmstats_percpu
->targets
[target
]);
877 /* from time_after() in jiffies.h */
878 if ((long)(next
- val
) < 0) {
880 case MEM_CGROUP_TARGET_THRESH
:
881 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
883 case MEM_CGROUP_TARGET_SOFTLIMIT
:
884 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
886 case MEM_CGROUP_TARGET_NUMAINFO
:
887 next
= val
+ NUMAINFO_EVENTS_TARGET
;
892 __this_cpu_write(memcg
->vmstats_percpu
->targets
[target
], next
);
899 * Check events in order.
902 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
904 /* threshold event is triggered in finer grain than soft limit */
905 if (unlikely(mem_cgroup_event_ratelimit(memcg
,
906 MEM_CGROUP_TARGET_THRESH
))) {
908 bool do_numainfo __maybe_unused
;
910 do_softlimit
= mem_cgroup_event_ratelimit(memcg
,
911 MEM_CGROUP_TARGET_SOFTLIMIT
);
913 do_numainfo
= mem_cgroup_event_ratelimit(memcg
,
914 MEM_CGROUP_TARGET_NUMAINFO
);
916 mem_cgroup_threshold(memcg
);
917 if (unlikely(do_softlimit
))
918 mem_cgroup_update_tree(memcg
, page
);
920 if (unlikely(do_numainfo
))
921 atomic_inc(&memcg
->numainfo_events
);
926 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
929 * mm_update_next_owner() may clear mm->owner to NULL
930 * if it races with swapoff, page migration, etc.
931 * So this can be called with p == NULL.
936 return mem_cgroup_from_css(task_css(p
, memory_cgrp_id
));
938 EXPORT_SYMBOL(mem_cgroup_from_task
);
941 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
942 * @mm: mm from which memcg should be extracted. It can be NULL.
944 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
945 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
948 struct mem_cgroup
*get_mem_cgroup_from_mm(struct mm_struct
*mm
)
950 struct mem_cgroup
*memcg
;
952 if (mem_cgroup_disabled())
958 * Page cache insertions can happen withou an
959 * actual mm context, e.g. during disk probing
960 * on boot, loopback IO, acct() writes etc.
963 memcg
= root_mem_cgroup
;
965 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
966 if (unlikely(!memcg
))
967 memcg
= root_mem_cgroup
;
969 } while (!css_tryget_online(&memcg
->css
));
973 EXPORT_SYMBOL(get_mem_cgroup_from_mm
);
976 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
977 * @page: page from which memcg should be extracted.
979 * Obtain a reference on page->memcg and returns it if successful. Otherwise
980 * root_mem_cgroup is returned.
982 struct mem_cgroup
*get_mem_cgroup_from_page(struct page
*page
)
984 struct mem_cgroup
*memcg
= page
->mem_cgroup
;
986 if (mem_cgroup_disabled())
990 if (!memcg
|| !css_tryget_online(&memcg
->css
))
991 memcg
= root_mem_cgroup
;
995 EXPORT_SYMBOL(get_mem_cgroup_from_page
);
998 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
1000 static __always_inline
struct mem_cgroup
*get_mem_cgroup_from_current(void)
1002 if (unlikely(current
->active_memcg
)) {
1003 struct mem_cgroup
*memcg
= root_mem_cgroup
;
1006 if (css_tryget_online(¤t
->active_memcg
->css
))
1007 memcg
= current
->active_memcg
;
1011 return get_mem_cgroup_from_mm(current
->mm
);
1015 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1016 * @root: hierarchy root
1017 * @prev: previously returned memcg, NULL on first invocation
1018 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1020 * Returns references to children of the hierarchy below @root, or
1021 * @root itself, or %NULL after a full round-trip.
1023 * Caller must pass the return value in @prev on subsequent
1024 * invocations for reference counting, or use mem_cgroup_iter_break()
1025 * to cancel a hierarchy walk before the round-trip is complete.
1027 * Reclaimers can specify a node and a priority level in @reclaim to
1028 * divide up the memcgs in the hierarchy among all concurrent
1029 * reclaimers operating on the same node and priority.
1031 struct mem_cgroup
*mem_cgroup_iter(struct mem_cgroup
*root
,
1032 struct mem_cgroup
*prev
,
1033 struct mem_cgroup_reclaim_cookie
*reclaim
)
1035 struct mem_cgroup_reclaim_iter
*uninitialized_var(iter
);
1036 struct cgroup_subsys_state
*css
= NULL
;
1037 struct mem_cgroup
*memcg
= NULL
;
1038 struct mem_cgroup
*pos
= NULL
;
1040 if (mem_cgroup_disabled())
1044 root
= root_mem_cgroup
;
1046 if (prev
&& !reclaim
)
1049 if (!root
->use_hierarchy
&& root
!= root_mem_cgroup
) {
1058 struct mem_cgroup_per_node
*mz
;
1060 mz
= mem_cgroup_nodeinfo(root
, reclaim
->pgdat
->node_id
);
1061 iter
= &mz
->iter
[reclaim
->priority
];
1063 if (prev
&& reclaim
->generation
!= iter
->generation
)
1067 pos
= READ_ONCE(iter
->position
);
1068 if (!pos
|| css_tryget(&pos
->css
))
1071 * css reference reached zero, so iter->position will
1072 * be cleared by ->css_released. However, we should not
1073 * rely on this happening soon, because ->css_released
1074 * is called from a work queue, and by busy-waiting we
1075 * might block it. So we clear iter->position right
1078 (void)cmpxchg(&iter
->position
, pos
, NULL
);
1086 css
= css_next_descendant_pre(css
, &root
->css
);
1089 * Reclaimers share the hierarchy walk, and a
1090 * new one might jump in right at the end of
1091 * the hierarchy - make sure they see at least
1092 * one group and restart from the beginning.
1100 * Verify the css and acquire a reference. The root
1101 * is provided by the caller, so we know it's alive
1102 * and kicking, and don't take an extra reference.
1104 memcg
= mem_cgroup_from_css(css
);
1106 if (css
== &root
->css
)
1109 if (css_tryget(css
))
1117 * The position could have already been updated by a competing
1118 * thread, so check that the value hasn't changed since we read
1119 * it to avoid reclaiming from the same cgroup twice.
1121 (void)cmpxchg(&iter
->position
, pos
, memcg
);
1129 reclaim
->generation
= iter
->generation
;
1135 if (prev
&& prev
!= root
)
1136 css_put(&prev
->css
);
1142 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1143 * @root: hierarchy root
1144 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1146 void mem_cgroup_iter_break(struct mem_cgroup
*root
,
1147 struct mem_cgroup
*prev
)
1150 root
= root_mem_cgroup
;
1151 if (prev
&& prev
!= root
)
1152 css_put(&prev
->css
);
1155 static void __invalidate_reclaim_iterators(struct mem_cgroup
*from
,
1156 struct mem_cgroup
*dead_memcg
)
1158 struct mem_cgroup_reclaim_iter
*iter
;
1159 struct mem_cgroup_per_node
*mz
;
1163 for_each_node(nid
) {
1164 mz
= mem_cgroup_nodeinfo(from
, nid
);
1165 for (i
= 0; i
<= DEF_PRIORITY
; i
++) {
1166 iter
= &mz
->iter
[i
];
1167 cmpxchg(&iter
->position
,
1173 static void invalidate_reclaim_iterators(struct mem_cgroup
*dead_memcg
)
1175 struct mem_cgroup
*memcg
= dead_memcg
;
1176 struct mem_cgroup
*last
;
1179 __invalidate_reclaim_iterators(memcg
, dead_memcg
);
1181 } while ((memcg
= parent_mem_cgroup(memcg
)));
1184 * When cgruop1 non-hierarchy mode is used,
1185 * parent_mem_cgroup() does not walk all the way up to the
1186 * cgroup root (root_mem_cgroup). So we have to handle
1187 * dead_memcg from cgroup root separately.
1189 if (last
!= root_mem_cgroup
)
1190 __invalidate_reclaim_iterators(root_mem_cgroup
,
1195 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1196 * @memcg: hierarchy root
1197 * @fn: function to call for each task
1198 * @arg: argument passed to @fn
1200 * This function iterates over tasks attached to @memcg or to any of its
1201 * descendants and calls @fn for each task. If @fn returns a non-zero
1202 * value, the function breaks the iteration loop and returns the value.
1203 * Otherwise, it will iterate over all tasks and return 0.
1205 * This function must not be called for the root memory cgroup.
1207 int mem_cgroup_scan_tasks(struct mem_cgroup
*memcg
,
1208 int (*fn
)(struct task_struct
*, void *), void *arg
)
1210 struct mem_cgroup
*iter
;
1213 BUG_ON(memcg
== root_mem_cgroup
);
1215 for_each_mem_cgroup_tree(iter
, memcg
) {
1216 struct css_task_iter it
;
1217 struct task_struct
*task
;
1219 css_task_iter_start(&iter
->css
, CSS_TASK_ITER_PROCS
, &it
);
1220 while (!ret
&& (task
= css_task_iter_next(&it
)))
1221 ret
= fn(task
, arg
);
1222 css_task_iter_end(&it
);
1224 mem_cgroup_iter_break(memcg
, iter
);
1232 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1234 * @pgdat: pgdat of the page
1236 * This function is only safe when following the LRU page isolation
1237 * and putback protocol: the LRU lock must be held, and the page must
1238 * either be PageLRU() or the caller must have isolated/allocated it.
1240 struct lruvec
*mem_cgroup_page_lruvec(struct page
*page
, struct pglist_data
*pgdat
)
1242 struct mem_cgroup_per_node
*mz
;
1243 struct mem_cgroup
*memcg
;
1244 struct lruvec
*lruvec
;
1246 if (mem_cgroup_disabled()) {
1247 lruvec
= &pgdat
->lruvec
;
1251 memcg
= page
->mem_cgroup
;
1253 * Swapcache readahead pages are added to the LRU - and
1254 * possibly migrated - before they are charged.
1257 memcg
= root_mem_cgroup
;
1259 mz
= mem_cgroup_page_nodeinfo(memcg
, page
);
1260 lruvec
= &mz
->lruvec
;
1263 * Since a node can be onlined after the mem_cgroup was created,
1264 * we have to be prepared to initialize lruvec->zone here;
1265 * and if offlined then reonlined, we need to reinitialize it.
1267 if (unlikely(lruvec
->pgdat
!= pgdat
))
1268 lruvec
->pgdat
= pgdat
;
1273 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1274 * @lruvec: mem_cgroup per zone lru vector
1275 * @lru: index of lru list the page is sitting on
1276 * @zid: zone id of the accounted pages
1277 * @nr_pages: positive when adding or negative when removing
1279 * This function must be called under lru_lock, just before a page is added
1280 * to or just after a page is removed from an lru list (that ordering being
1281 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1283 void mem_cgroup_update_lru_size(struct lruvec
*lruvec
, enum lru_list lru
,
1284 int zid
, int nr_pages
)
1286 struct mem_cgroup_per_node
*mz
;
1287 unsigned long *lru_size
;
1290 if (mem_cgroup_disabled())
1293 mz
= container_of(lruvec
, struct mem_cgroup_per_node
, lruvec
);
1294 lru_size
= &mz
->lru_zone_size
[zid
][lru
];
1297 *lru_size
+= nr_pages
;
1300 if (WARN_ONCE(size
< 0,
1301 "%s(%p, %d, %d): lru_size %ld\n",
1302 __func__
, lruvec
, lru
, nr_pages
, size
)) {
1308 *lru_size
+= nr_pages
;
1312 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1313 * @memcg: the memory cgroup
1315 * Returns the maximum amount of memory @mem can be charged with, in
1318 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1320 unsigned long margin
= 0;
1321 unsigned long count
;
1322 unsigned long limit
;
1324 count
= page_counter_read(&memcg
->memory
);
1325 limit
= READ_ONCE(memcg
->memory
.max
);
1327 margin
= limit
- count
;
1329 if (do_memsw_account()) {
1330 count
= page_counter_read(&memcg
->memsw
);
1331 limit
= READ_ONCE(memcg
->memsw
.max
);
1333 margin
= min(margin
, limit
- count
);
1342 * A routine for checking "mem" is under move_account() or not.
1344 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1345 * moving cgroups. This is for waiting at high-memory pressure
1348 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1350 struct mem_cgroup
*from
;
1351 struct mem_cgroup
*to
;
1354 * Unlike task_move routines, we access mc.to, mc.from not under
1355 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1357 spin_lock(&mc
.lock
);
1363 ret
= mem_cgroup_is_descendant(from
, memcg
) ||
1364 mem_cgroup_is_descendant(to
, memcg
);
1366 spin_unlock(&mc
.lock
);
1370 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1372 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1373 if (mem_cgroup_under_move(memcg
)) {
1375 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1376 /* moving charge context might have finished. */
1379 finish_wait(&mc
.waitq
, &wait
);
1386 static char *memory_stat_format(struct mem_cgroup
*memcg
)
1391 seq_buf_init(&s
, kmalloc(PAGE_SIZE
, GFP_KERNEL
), PAGE_SIZE
);
1396 * Provide statistics on the state of the memory subsystem as
1397 * well as cumulative event counters that show past behavior.
1399 * This list is ordered following a combination of these gradients:
1400 * 1) generic big picture -> specifics and details
1401 * 2) reflecting userspace activity -> reflecting kernel heuristics
1403 * Current memory state:
1406 seq_buf_printf(&s
, "anon %llu\n",
1407 (u64
)memcg_page_state(memcg
, MEMCG_RSS
) *
1409 seq_buf_printf(&s
, "file %llu\n",
1410 (u64
)memcg_page_state(memcg
, MEMCG_CACHE
) *
1412 seq_buf_printf(&s
, "kernel_stack %llu\n",
1413 (u64
)memcg_page_state(memcg
, MEMCG_KERNEL_STACK_KB
) *
1415 seq_buf_printf(&s
, "slab %llu\n",
1416 (u64
)(memcg_page_state(memcg
, NR_SLAB_RECLAIMABLE
) +
1417 memcg_page_state(memcg
, NR_SLAB_UNRECLAIMABLE
)) *
1419 seq_buf_printf(&s
, "sock %llu\n",
1420 (u64
)memcg_page_state(memcg
, MEMCG_SOCK
) *
1423 seq_buf_printf(&s
, "shmem %llu\n",
1424 (u64
)memcg_page_state(memcg
, NR_SHMEM
) *
1426 seq_buf_printf(&s
, "file_mapped %llu\n",
1427 (u64
)memcg_page_state(memcg
, NR_FILE_MAPPED
) *
1429 seq_buf_printf(&s
, "file_dirty %llu\n",
1430 (u64
)memcg_page_state(memcg
, NR_FILE_DIRTY
) *
1432 seq_buf_printf(&s
, "file_writeback %llu\n",
1433 (u64
)memcg_page_state(memcg
, NR_WRITEBACK
) *
1437 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1438 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1439 * arse because it requires migrating the work out of rmap to a place
1440 * where the page->mem_cgroup is set up and stable.
1442 seq_buf_printf(&s
, "anon_thp %llu\n",
1443 (u64
)memcg_page_state(memcg
, MEMCG_RSS_HUGE
) *
1446 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
1447 seq_buf_printf(&s
, "%s %llu\n", mem_cgroup_lru_names
[i
],
1448 (u64
)memcg_page_state(memcg
, NR_LRU_BASE
+ i
) *
1451 seq_buf_printf(&s
, "slab_reclaimable %llu\n",
1452 (u64
)memcg_page_state(memcg
, NR_SLAB_RECLAIMABLE
) *
1454 seq_buf_printf(&s
, "slab_unreclaimable %llu\n",
1455 (u64
)memcg_page_state(memcg
, NR_SLAB_UNRECLAIMABLE
) *
1458 /* Accumulated memory events */
1460 seq_buf_printf(&s
, "pgfault %lu\n", memcg_events(memcg
, PGFAULT
));
1461 seq_buf_printf(&s
, "pgmajfault %lu\n", memcg_events(memcg
, PGMAJFAULT
));
1463 seq_buf_printf(&s
, "workingset_refault %lu\n",
1464 memcg_page_state(memcg
, WORKINGSET_REFAULT
));
1465 seq_buf_printf(&s
, "workingset_activate %lu\n",
1466 memcg_page_state(memcg
, WORKINGSET_ACTIVATE
));
1467 seq_buf_printf(&s
, "workingset_nodereclaim %lu\n",
1468 memcg_page_state(memcg
, WORKINGSET_NODERECLAIM
));
1470 seq_buf_printf(&s
, "pgrefill %lu\n", memcg_events(memcg
, PGREFILL
));
1471 seq_buf_printf(&s
, "pgscan %lu\n",
1472 memcg_events(memcg
, PGSCAN_KSWAPD
) +
1473 memcg_events(memcg
, PGSCAN_DIRECT
));
1474 seq_buf_printf(&s
, "pgsteal %lu\n",
1475 memcg_events(memcg
, PGSTEAL_KSWAPD
) +
1476 memcg_events(memcg
, PGSTEAL_DIRECT
));
1477 seq_buf_printf(&s
, "pgactivate %lu\n", memcg_events(memcg
, PGACTIVATE
));
1478 seq_buf_printf(&s
, "pgdeactivate %lu\n", memcg_events(memcg
, PGDEACTIVATE
));
1479 seq_buf_printf(&s
, "pglazyfree %lu\n", memcg_events(memcg
, PGLAZYFREE
));
1480 seq_buf_printf(&s
, "pglazyfreed %lu\n", memcg_events(memcg
, PGLAZYFREED
));
1482 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1483 seq_buf_printf(&s
, "thp_fault_alloc %lu\n",
1484 memcg_events(memcg
, THP_FAULT_ALLOC
));
1485 seq_buf_printf(&s
, "thp_collapse_alloc %lu\n",
1486 memcg_events(memcg
, THP_COLLAPSE_ALLOC
));
1487 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1489 /* The above should easily fit into one page */
1490 WARN_ON_ONCE(seq_buf_has_overflowed(&s
));
1495 #define K(x) ((x) << (PAGE_SHIFT-10))
1497 * mem_cgroup_print_oom_context: Print OOM information relevant to
1498 * memory controller.
1499 * @memcg: The memory cgroup that went over limit
1500 * @p: Task that is going to be killed
1502 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1505 void mem_cgroup_print_oom_context(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1510 pr_cont(",oom_memcg=");
1511 pr_cont_cgroup_path(memcg
->css
.cgroup
);
1513 pr_cont(",global_oom");
1515 pr_cont(",task_memcg=");
1516 pr_cont_cgroup_path(task_cgroup(p
, memory_cgrp_id
));
1522 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1523 * memory controller.
1524 * @memcg: The memory cgroup that went over limit
1526 void mem_cgroup_print_oom_meminfo(struct mem_cgroup
*memcg
)
1530 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1531 K((u64
)page_counter_read(&memcg
->memory
)),
1532 K((u64
)memcg
->memory
.max
), memcg
->memory
.failcnt
);
1533 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
1534 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1535 K((u64
)page_counter_read(&memcg
->swap
)),
1536 K((u64
)memcg
->swap
.max
), memcg
->swap
.failcnt
);
1538 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1539 K((u64
)page_counter_read(&memcg
->memsw
)),
1540 K((u64
)memcg
->memsw
.max
), memcg
->memsw
.failcnt
);
1541 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1542 K((u64
)page_counter_read(&memcg
->kmem
)),
1543 K((u64
)memcg
->kmem
.max
), memcg
->kmem
.failcnt
);
1546 pr_info("Memory cgroup stats for ");
1547 pr_cont_cgroup_path(memcg
->css
.cgroup
);
1549 buf
= memory_stat_format(memcg
);
1557 * Return the memory (and swap, if configured) limit for a memcg.
1559 unsigned long mem_cgroup_get_max(struct mem_cgroup
*memcg
)
1563 max
= memcg
->memory
.max
;
1564 if (mem_cgroup_swappiness(memcg
)) {
1565 unsigned long memsw_max
;
1566 unsigned long swap_max
;
1568 memsw_max
= memcg
->memsw
.max
;
1569 swap_max
= memcg
->swap
.max
;
1570 swap_max
= min(swap_max
, (unsigned long)total_swap_pages
);
1571 max
= min(max
+ swap_max
, memsw_max
);
1576 static bool mem_cgroup_out_of_memory(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1579 struct oom_control oc
= {
1583 .gfp_mask
= gfp_mask
,
1588 if (mutex_lock_killable(&oom_lock
))
1591 * A few threads which were not waiting at mutex_lock_killable() can
1592 * fail to bail out. Therefore, check again after holding oom_lock.
1594 ret
= should_force_charge() || out_of_memory(&oc
);
1595 mutex_unlock(&oom_lock
);
1599 #if MAX_NUMNODES > 1
1602 * test_mem_cgroup_node_reclaimable
1603 * @memcg: the target memcg
1604 * @nid: the node ID to be checked.
1605 * @noswap : specify true here if the user wants flle only information.
1607 * This function returns whether the specified memcg contains any
1608 * reclaimable pages on a node. Returns true if there are any reclaimable
1609 * pages in the node.
1611 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*memcg
,
1612 int nid
, bool noswap
)
1614 struct lruvec
*lruvec
= mem_cgroup_lruvec(NODE_DATA(nid
), memcg
);
1616 if (lruvec_page_state(lruvec
, NR_INACTIVE_FILE
) ||
1617 lruvec_page_state(lruvec
, NR_ACTIVE_FILE
))
1619 if (noswap
|| !total_swap_pages
)
1621 if (lruvec_page_state(lruvec
, NR_INACTIVE_ANON
) ||
1622 lruvec_page_state(lruvec
, NR_ACTIVE_ANON
))
1629 * Always updating the nodemask is not very good - even if we have an empty
1630 * list or the wrong list here, we can start from some node and traverse all
1631 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1634 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*memcg
)
1638 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1639 * pagein/pageout changes since the last update.
1641 if (!atomic_read(&memcg
->numainfo_events
))
1643 if (atomic_inc_return(&memcg
->numainfo_updating
) > 1)
1646 /* make a nodemask where this memcg uses memory from */
1647 memcg
->scan_nodes
= node_states
[N_MEMORY
];
1649 for_each_node_mask(nid
, node_states
[N_MEMORY
]) {
1651 if (!test_mem_cgroup_node_reclaimable(memcg
, nid
, false))
1652 node_clear(nid
, memcg
->scan_nodes
);
1655 atomic_set(&memcg
->numainfo_events
, 0);
1656 atomic_set(&memcg
->numainfo_updating
, 0);
1660 * Selecting a node where we start reclaim from. Because what we need is just
1661 * reducing usage counter, start from anywhere is O,K. Considering
1662 * memory reclaim from current node, there are pros. and cons.
1664 * Freeing memory from current node means freeing memory from a node which
1665 * we'll use or we've used. So, it may make LRU bad. And if several threads
1666 * hit limits, it will see a contention on a node. But freeing from remote
1667 * node means more costs for memory reclaim because of memory latency.
1669 * Now, we use round-robin. Better algorithm is welcomed.
1671 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1675 mem_cgroup_may_update_nodemask(memcg
);
1676 node
= memcg
->last_scanned_node
;
1678 node
= next_node_in(node
, memcg
->scan_nodes
);
1680 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1681 * last time it really checked all the LRUs due to rate limiting.
1682 * Fallback to the current node in that case for simplicity.
1684 if (unlikely(node
== MAX_NUMNODES
))
1685 node
= numa_node_id();
1687 memcg
->last_scanned_node
= node
;
1691 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1697 static int mem_cgroup_soft_reclaim(struct mem_cgroup
*root_memcg
,
1700 unsigned long *total_scanned
)
1702 struct mem_cgroup
*victim
= NULL
;
1705 unsigned long excess
;
1706 unsigned long nr_scanned
;
1707 struct mem_cgroup_reclaim_cookie reclaim
= {
1712 excess
= soft_limit_excess(root_memcg
);
1715 victim
= mem_cgroup_iter(root_memcg
, victim
, &reclaim
);
1720 * If we have not been able to reclaim
1721 * anything, it might because there are
1722 * no reclaimable pages under this hierarchy
1727 * We want to do more targeted reclaim.
1728 * excess >> 2 is not to excessive so as to
1729 * reclaim too much, nor too less that we keep
1730 * coming back to reclaim from this cgroup
1732 if (total
>= (excess
>> 2) ||
1733 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
))
1738 total
+= mem_cgroup_shrink_node(victim
, gfp_mask
, false,
1739 pgdat
, &nr_scanned
);
1740 *total_scanned
+= nr_scanned
;
1741 if (!soft_limit_excess(root_memcg
))
1744 mem_cgroup_iter_break(root_memcg
, victim
);
1748 #ifdef CONFIG_LOCKDEP
1749 static struct lockdep_map memcg_oom_lock_dep_map
= {
1750 .name
= "memcg_oom_lock",
1754 static DEFINE_SPINLOCK(memcg_oom_lock
);
1757 * Check OOM-Killer is already running under our hierarchy.
1758 * If someone is running, return false.
1760 static bool mem_cgroup_oom_trylock(struct mem_cgroup
*memcg
)
1762 struct mem_cgroup
*iter
, *failed
= NULL
;
1764 spin_lock(&memcg_oom_lock
);
1766 for_each_mem_cgroup_tree(iter
, memcg
) {
1767 if (iter
->oom_lock
) {
1769 * this subtree of our hierarchy is already locked
1770 * so we cannot give a lock.
1773 mem_cgroup_iter_break(memcg
, iter
);
1776 iter
->oom_lock
= true;
1781 * OK, we failed to lock the whole subtree so we have
1782 * to clean up what we set up to the failing subtree
1784 for_each_mem_cgroup_tree(iter
, memcg
) {
1785 if (iter
== failed
) {
1786 mem_cgroup_iter_break(memcg
, iter
);
1789 iter
->oom_lock
= false;
1792 mutex_acquire(&memcg_oom_lock_dep_map
, 0, 1, _RET_IP_
);
1794 spin_unlock(&memcg_oom_lock
);
1799 static void mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
1801 struct mem_cgroup
*iter
;
1803 spin_lock(&memcg_oom_lock
);
1804 mutex_release(&memcg_oom_lock_dep_map
, 1, _RET_IP_
);
1805 for_each_mem_cgroup_tree(iter
, memcg
)
1806 iter
->oom_lock
= false;
1807 spin_unlock(&memcg_oom_lock
);
1810 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
1812 struct mem_cgroup
*iter
;
1814 spin_lock(&memcg_oom_lock
);
1815 for_each_mem_cgroup_tree(iter
, memcg
)
1817 spin_unlock(&memcg_oom_lock
);
1820 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
1822 struct mem_cgroup
*iter
;
1825 * When a new child is created while the hierarchy is under oom,
1826 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1828 spin_lock(&memcg_oom_lock
);
1829 for_each_mem_cgroup_tree(iter
, memcg
)
1830 if (iter
->under_oom
> 0)
1832 spin_unlock(&memcg_oom_lock
);
1835 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1837 struct oom_wait_info
{
1838 struct mem_cgroup
*memcg
;
1839 wait_queue_entry_t wait
;
1842 static int memcg_oom_wake_function(wait_queue_entry_t
*wait
,
1843 unsigned mode
, int sync
, void *arg
)
1845 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
;
1846 struct mem_cgroup
*oom_wait_memcg
;
1847 struct oom_wait_info
*oom_wait_info
;
1849 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1850 oom_wait_memcg
= oom_wait_info
->memcg
;
1852 if (!mem_cgroup_is_descendant(wake_memcg
, oom_wait_memcg
) &&
1853 !mem_cgroup_is_descendant(oom_wait_memcg
, wake_memcg
))
1855 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1858 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
1861 * For the following lockless ->under_oom test, the only required
1862 * guarantee is that it must see the state asserted by an OOM when
1863 * this function is called as a result of userland actions
1864 * triggered by the notification of the OOM. This is trivially
1865 * achieved by invoking mem_cgroup_mark_under_oom() before
1866 * triggering notification.
1868 if (memcg
&& memcg
->under_oom
)
1869 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
1879 static enum oom_status
mem_cgroup_oom(struct mem_cgroup
*memcg
, gfp_t mask
, int order
)
1881 enum oom_status ret
;
1884 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
1887 memcg_memory_event(memcg
, MEMCG_OOM
);
1890 * We are in the middle of the charge context here, so we
1891 * don't want to block when potentially sitting on a callstack
1892 * that holds all kinds of filesystem and mm locks.
1894 * cgroup1 allows disabling the OOM killer and waiting for outside
1895 * handling until the charge can succeed; remember the context and put
1896 * the task to sleep at the end of the page fault when all locks are
1899 * On the other hand, in-kernel OOM killer allows for an async victim
1900 * memory reclaim (oom_reaper) and that means that we are not solely
1901 * relying on the oom victim to make a forward progress and we can
1902 * invoke the oom killer here.
1904 * Please note that mem_cgroup_out_of_memory might fail to find a
1905 * victim and then we have to bail out from the charge path.
1907 if (memcg
->oom_kill_disable
) {
1908 if (!current
->in_user_fault
)
1910 css_get(&memcg
->css
);
1911 current
->memcg_in_oom
= memcg
;
1912 current
->memcg_oom_gfp_mask
= mask
;
1913 current
->memcg_oom_order
= order
;
1918 mem_cgroup_mark_under_oom(memcg
);
1920 locked
= mem_cgroup_oom_trylock(memcg
);
1923 mem_cgroup_oom_notify(memcg
);
1925 mem_cgroup_unmark_under_oom(memcg
);
1926 if (mem_cgroup_out_of_memory(memcg
, mask
, order
))
1932 mem_cgroup_oom_unlock(memcg
);
1938 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1939 * @handle: actually kill/wait or just clean up the OOM state
1941 * This has to be called at the end of a page fault if the memcg OOM
1942 * handler was enabled.
1944 * Memcg supports userspace OOM handling where failed allocations must
1945 * sleep on a waitqueue until the userspace task resolves the
1946 * situation. Sleeping directly in the charge context with all kinds
1947 * of locks held is not a good idea, instead we remember an OOM state
1948 * in the task and mem_cgroup_oom_synchronize() has to be called at
1949 * the end of the page fault to complete the OOM handling.
1951 * Returns %true if an ongoing memcg OOM situation was detected and
1952 * completed, %false otherwise.
1954 bool mem_cgroup_oom_synchronize(bool handle
)
1956 struct mem_cgroup
*memcg
= current
->memcg_in_oom
;
1957 struct oom_wait_info owait
;
1960 /* OOM is global, do not handle */
1967 owait
.memcg
= memcg
;
1968 owait
.wait
.flags
= 0;
1969 owait
.wait
.func
= memcg_oom_wake_function
;
1970 owait
.wait
.private = current
;
1971 INIT_LIST_HEAD(&owait
.wait
.entry
);
1973 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1974 mem_cgroup_mark_under_oom(memcg
);
1976 locked
= mem_cgroup_oom_trylock(memcg
);
1979 mem_cgroup_oom_notify(memcg
);
1981 if (locked
&& !memcg
->oom_kill_disable
) {
1982 mem_cgroup_unmark_under_oom(memcg
);
1983 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1984 mem_cgroup_out_of_memory(memcg
, current
->memcg_oom_gfp_mask
,
1985 current
->memcg_oom_order
);
1988 mem_cgroup_unmark_under_oom(memcg
);
1989 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1993 mem_cgroup_oom_unlock(memcg
);
1995 * There is no guarantee that an OOM-lock contender
1996 * sees the wakeups triggered by the OOM kill
1997 * uncharges. Wake any sleepers explicitely.
1999 memcg_oom_recover(memcg
);
2002 current
->memcg_in_oom
= NULL
;
2003 css_put(&memcg
->css
);
2008 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2009 * @victim: task to be killed by the OOM killer
2010 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2012 * Returns a pointer to a memory cgroup, which has to be cleaned up
2013 * by killing all belonging OOM-killable tasks.
2015 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2017 struct mem_cgroup
*mem_cgroup_get_oom_group(struct task_struct
*victim
,
2018 struct mem_cgroup
*oom_domain
)
2020 struct mem_cgroup
*oom_group
= NULL
;
2021 struct mem_cgroup
*memcg
;
2023 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
))
2027 oom_domain
= root_mem_cgroup
;
2031 memcg
= mem_cgroup_from_task(victim
);
2032 if (memcg
== root_mem_cgroup
)
2036 * Traverse the memory cgroup hierarchy from the victim task's
2037 * cgroup up to the OOMing cgroup (or root) to find the
2038 * highest-level memory cgroup with oom.group set.
2040 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
2041 if (memcg
->oom_group
)
2044 if (memcg
== oom_domain
)
2049 css_get(&oom_group
->css
);
2056 void mem_cgroup_print_oom_group(struct mem_cgroup
*memcg
)
2058 pr_info("Tasks in ");
2059 pr_cont_cgroup_path(memcg
->css
.cgroup
);
2060 pr_cont(" are going to be killed due to memory.oom.group set\n");
2064 * lock_page_memcg - lock a page->mem_cgroup binding
2067 * This function protects unlocked LRU pages from being moved to
2070 * It ensures lifetime of the returned memcg. Caller is responsible
2071 * for the lifetime of the page; __unlock_page_memcg() is available
2072 * when @page might get freed inside the locked section.
2074 struct mem_cgroup
*lock_page_memcg(struct page
*page
)
2076 struct mem_cgroup
*memcg
;
2077 unsigned long flags
;
2080 * The RCU lock is held throughout the transaction. The fast
2081 * path can get away without acquiring the memcg->move_lock
2082 * because page moving starts with an RCU grace period.
2084 * The RCU lock also protects the memcg from being freed when
2085 * the page state that is going to change is the only thing
2086 * preventing the page itself from being freed. E.g. writeback
2087 * doesn't hold a page reference and relies on PG_writeback to
2088 * keep off truncation, migration and so forth.
2092 if (mem_cgroup_disabled())
2095 memcg
= page
->mem_cgroup
;
2096 if (unlikely(!memcg
))
2099 if (atomic_read(&memcg
->moving_account
) <= 0)
2102 spin_lock_irqsave(&memcg
->move_lock
, flags
);
2103 if (memcg
!= page
->mem_cgroup
) {
2104 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
2109 * When charge migration first begins, we can have locked and
2110 * unlocked page stat updates happening concurrently. Track
2111 * the task who has the lock for unlock_page_memcg().
2113 memcg
->move_lock_task
= current
;
2114 memcg
->move_lock_flags
= flags
;
2118 EXPORT_SYMBOL(lock_page_memcg
);
2121 * __unlock_page_memcg - unlock and unpin a memcg
2124 * Unlock and unpin a memcg returned by lock_page_memcg().
2126 void __unlock_page_memcg(struct mem_cgroup
*memcg
)
2128 if (memcg
&& memcg
->move_lock_task
== current
) {
2129 unsigned long flags
= memcg
->move_lock_flags
;
2131 memcg
->move_lock_task
= NULL
;
2132 memcg
->move_lock_flags
= 0;
2134 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
2141 * unlock_page_memcg - unlock a page->mem_cgroup binding
2144 void unlock_page_memcg(struct page
*page
)
2146 __unlock_page_memcg(page
->mem_cgroup
);
2148 EXPORT_SYMBOL(unlock_page_memcg
);
2150 struct memcg_stock_pcp
{
2151 struct mem_cgroup
*cached
; /* this never be root cgroup */
2152 unsigned int nr_pages
;
2153 struct work_struct work
;
2154 unsigned long flags
;
2155 #define FLUSHING_CACHED_CHARGE 0
2157 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
2158 static DEFINE_MUTEX(percpu_charge_mutex
);
2161 * consume_stock: Try to consume stocked charge on this cpu.
2162 * @memcg: memcg to consume from.
2163 * @nr_pages: how many pages to charge.
2165 * The charges will only happen if @memcg matches the current cpu's memcg
2166 * stock, and at least @nr_pages are available in that stock. Failure to
2167 * service an allocation will refill the stock.
2169 * returns true if successful, false otherwise.
2171 static bool consume_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2173 struct memcg_stock_pcp
*stock
;
2174 unsigned long flags
;
2177 if (nr_pages
> MEMCG_CHARGE_BATCH
)
2180 local_irq_save(flags
);
2182 stock
= this_cpu_ptr(&memcg_stock
);
2183 if (memcg
== stock
->cached
&& stock
->nr_pages
>= nr_pages
) {
2184 stock
->nr_pages
-= nr_pages
;
2188 local_irq_restore(flags
);
2194 * Returns stocks cached in percpu and reset cached information.
2196 static void drain_stock(struct memcg_stock_pcp
*stock
)
2198 struct mem_cgroup
*old
= stock
->cached
;
2200 if (stock
->nr_pages
) {
2201 page_counter_uncharge(&old
->memory
, stock
->nr_pages
);
2202 if (do_memsw_account())
2203 page_counter_uncharge(&old
->memsw
, stock
->nr_pages
);
2204 css_put_many(&old
->css
, stock
->nr_pages
);
2205 stock
->nr_pages
= 0;
2207 stock
->cached
= NULL
;
2210 static void drain_local_stock(struct work_struct
*dummy
)
2212 struct memcg_stock_pcp
*stock
;
2213 unsigned long flags
;
2216 * The only protection from memory hotplug vs. drain_stock races is
2217 * that we always operate on local CPU stock here with IRQ disabled
2219 local_irq_save(flags
);
2221 stock
= this_cpu_ptr(&memcg_stock
);
2223 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
2225 local_irq_restore(flags
);
2229 * Cache charges(val) to local per_cpu area.
2230 * This will be consumed by consume_stock() function, later.
2232 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2234 struct memcg_stock_pcp
*stock
;
2235 unsigned long flags
;
2237 local_irq_save(flags
);
2239 stock
= this_cpu_ptr(&memcg_stock
);
2240 if (stock
->cached
!= memcg
) { /* reset if necessary */
2242 stock
->cached
= memcg
;
2244 stock
->nr_pages
+= nr_pages
;
2246 if (stock
->nr_pages
> MEMCG_CHARGE_BATCH
)
2249 local_irq_restore(flags
);
2253 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2254 * of the hierarchy under it.
2256 static void drain_all_stock(struct mem_cgroup
*root_memcg
)
2260 /* If someone's already draining, avoid adding running more workers. */
2261 if (!mutex_trylock(&percpu_charge_mutex
))
2264 * Notify other cpus that system-wide "drain" is running
2265 * We do not care about races with the cpu hotplug because cpu down
2266 * as well as workers from this path always operate on the local
2267 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2270 for_each_online_cpu(cpu
) {
2271 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2272 struct mem_cgroup
*memcg
;
2274 memcg
= stock
->cached
;
2275 if (!memcg
|| !stock
->nr_pages
|| !css_tryget(&memcg
->css
))
2277 if (!mem_cgroup_is_descendant(memcg
, root_memcg
)) {
2278 css_put(&memcg
->css
);
2281 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
2283 drain_local_stock(&stock
->work
);
2285 schedule_work_on(cpu
, &stock
->work
);
2287 css_put(&memcg
->css
);
2290 mutex_unlock(&percpu_charge_mutex
);
2293 static int memcg_hotplug_cpu_dead(unsigned int cpu
)
2295 struct memcg_stock_pcp
*stock
;
2296 struct mem_cgroup
*memcg
, *mi
;
2298 stock
= &per_cpu(memcg_stock
, cpu
);
2301 for_each_mem_cgroup(memcg
) {
2304 for (i
= 0; i
< MEMCG_NR_STAT
; i
++) {
2308 x
= this_cpu_xchg(memcg
->vmstats_percpu
->stat
[i
], 0);
2310 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
))
2311 atomic_long_add(x
, &memcg
->vmstats
[i
]);
2313 if (i
>= NR_VM_NODE_STAT_ITEMS
)
2316 for_each_node(nid
) {
2317 struct mem_cgroup_per_node
*pn
;
2319 pn
= mem_cgroup_nodeinfo(memcg
, nid
);
2320 x
= this_cpu_xchg(pn
->lruvec_stat_cpu
->count
[i
], 0);
2323 atomic_long_add(x
, &pn
->lruvec_stat
[i
]);
2324 } while ((pn
= parent_nodeinfo(pn
, nid
)));
2328 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++) {
2331 x
= this_cpu_xchg(memcg
->vmstats_percpu
->events
[i
], 0);
2333 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
))
2334 atomic_long_add(x
, &memcg
->vmevents
[i
]);
2341 static void reclaim_high(struct mem_cgroup
*memcg
,
2342 unsigned int nr_pages
,
2346 if (page_counter_read(&memcg
->memory
) <= memcg
->high
)
2348 memcg_memory_event(memcg
, MEMCG_HIGH
);
2349 try_to_free_mem_cgroup_pages(memcg
, nr_pages
, gfp_mask
, true);
2350 } while ((memcg
= parent_mem_cgroup(memcg
)));
2353 static void high_work_func(struct work_struct
*work
)
2355 struct mem_cgroup
*memcg
;
2357 memcg
= container_of(work
, struct mem_cgroup
, high_work
);
2358 reclaim_high(memcg
, MEMCG_CHARGE_BATCH
, GFP_KERNEL
);
2362 * Scheduled by try_charge() to be executed from the userland return path
2363 * and reclaims memory over the high limit.
2365 void mem_cgroup_handle_over_high(void)
2367 unsigned int nr_pages
= current
->memcg_nr_pages_over_high
;
2368 struct mem_cgroup
*memcg
;
2370 if (likely(!nr_pages
))
2373 memcg
= get_mem_cgroup_from_mm(current
->mm
);
2374 reclaim_high(memcg
, nr_pages
, GFP_KERNEL
);
2375 css_put(&memcg
->css
);
2376 current
->memcg_nr_pages_over_high
= 0;
2379 static int try_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
2380 unsigned int nr_pages
)
2382 unsigned int batch
= max(MEMCG_CHARGE_BATCH
, nr_pages
);
2383 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2384 struct mem_cgroup
*mem_over_limit
;
2385 struct page_counter
*counter
;
2386 unsigned long nr_reclaimed
;
2387 bool may_swap
= true;
2388 bool drained
= false;
2389 enum oom_status oom_status
;
2391 if (mem_cgroup_is_root(memcg
))
2394 if (consume_stock(memcg
, nr_pages
))
2397 if (!do_memsw_account() ||
2398 page_counter_try_charge(&memcg
->memsw
, batch
, &counter
)) {
2399 if (page_counter_try_charge(&memcg
->memory
, batch
, &counter
))
2401 if (do_memsw_account())
2402 page_counter_uncharge(&memcg
->memsw
, batch
);
2403 mem_over_limit
= mem_cgroup_from_counter(counter
, memory
);
2405 mem_over_limit
= mem_cgroup_from_counter(counter
, memsw
);
2409 if (batch
> nr_pages
) {
2415 * Unlike in global OOM situations, memcg is not in a physical
2416 * memory shortage. Allow dying and OOM-killed tasks to
2417 * bypass the last charges so that they can exit quickly and
2418 * free their memory.
2420 if (unlikely(should_force_charge()))
2424 * Prevent unbounded recursion when reclaim operations need to
2425 * allocate memory. This might exceed the limits temporarily,
2426 * but we prefer facilitating memory reclaim and getting back
2427 * under the limit over triggering OOM kills in these cases.
2429 if (unlikely(current
->flags
& PF_MEMALLOC
))
2432 if (unlikely(task_in_memcg_oom(current
)))
2435 if (!gfpflags_allow_blocking(gfp_mask
))
2438 memcg_memory_event(mem_over_limit
, MEMCG_MAX
);
2440 nr_reclaimed
= try_to_free_mem_cgroup_pages(mem_over_limit
, nr_pages
,
2441 gfp_mask
, may_swap
);
2443 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
2447 drain_all_stock(mem_over_limit
);
2452 if (gfp_mask
& __GFP_NORETRY
)
2455 * Even though the limit is exceeded at this point, reclaim
2456 * may have been able to free some pages. Retry the charge
2457 * before killing the task.
2459 * Only for regular pages, though: huge pages are rather
2460 * unlikely to succeed so close to the limit, and we fall back
2461 * to regular pages anyway in case of failure.
2463 if (nr_reclaimed
&& nr_pages
<= (1 << PAGE_ALLOC_COSTLY_ORDER
))
2466 * At task move, charge accounts can be doubly counted. So, it's
2467 * better to wait until the end of task_move if something is going on.
2469 if (mem_cgroup_wait_acct_move(mem_over_limit
))
2475 if (gfp_mask
& __GFP_RETRY_MAYFAIL
)
2478 if (gfp_mask
& __GFP_NOFAIL
)
2481 if (fatal_signal_pending(current
))
2485 * keep retrying as long as the memcg oom killer is able to make
2486 * a forward progress or bypass the charge if the oom killer
2487 * couldn't make any progress.
2489 oom_status
= mem_cgroup_oom(mem_over_limit
, gfp_mask
,
2490 get_order(nr_pages
* PAGE_SIZE
));
2491 switch (oom_status
) {
2493 nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2501 if (!(gfp_mask
& __GFP_NOFAIL
))
2505 * The allocation either can't fail or will lead to more memory
2506 * being freed very soon. Allow memory usage go over the limit
2507 * temporarily by force charging it.
2509 page_counter_charge(&memcg
->memory
, nr_pages
);
2510 if (do_memsw_account())
2511 page_counter_charge(&memcg
->memsw
, nr_pages
);
2512 css_get_many(&memcg
->css
, nr_pages
);
2517 css_get_many(&memcg
->css
, batch
);
2518 if (batch
> nr_pages
)
2519 refill_stock(memcg
, batch
- nr_pages
);
2522 * If the hierarchy is above the normal consumption range, schedule
2523 * reclaim on returning to userland. We can perform reclaim here
2524 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2525 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2526 * not recorded as it most likely matches current's and won't
2527 * change in the meantime. As high limit is checked again before
2528 * reclaim, the cost of mismatch is negligible.
2531 if (page_counter_read(&memcg
->memory
) > memcg
->high
) {
2532 /* Don't bother a random interrupted task */
2533 if (in_interrupt()) {
2534 schedule_work(&memcg
->high_work
);
2537 current
->memcg_nr_pages_over_high
+= batch
;
2538 set_notify_resume(current
);
2541 } while ((memcg
= parent_mem_cgroup(memcg
)));
2546 static void cancel_charge(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2548 if (mem_cgroup_is_root(memcg
))
2551 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2552 if (do_memsw_account())
2553 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2555 css_put_many(&memcg
->css
, nr_pages
);
2558 static void lock_page_lru(struct page
*page
, int *isolated
)
2560 pg_data_t
*pgdat
= page_pgdat(page
);
2562 spin_lock_irq(&pgdat
->lru_lock
);
2563 if (PageLRU(page
)) {
2564 struct lruvec
*lruvec
;
2566 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
2568 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
2574 static void unlock_page_lru(struct page
*page
, int isolated
)
2576 pg_data_t
*pgdat
= page_pgdat(page
);
2579 struct lruvec
*lruvec
;
2581 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
2582 VM_BUG_ON_PAGE(PageLRU(page
), page
);
2584 add_page_to_lru_list(page
, lruvec
, page_lru(page
));
2586 spin_unlock_irq(&pgdat
->lru_lock
);
2589 static void commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
2594 VM_BUG_ON_PAGE(page
->mem_cgroup
, page
);
2597 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2598 * may already be on some other mem_cgroup's LRU. Take care of it.
2601 lock_page_lru(page
, &isolated
);
2604 * Nobody should be changing or seriously looking at
2605 * page->mem_cgroup at this point:
2607 * - the page is uncharged
2609 * - the page is off-LRU
2611 * - an anonymous fault has exclusive page access, except for
2612 * a locked page table
2614 * - a page cache insertion, a swapin fault, or a migration
2615 * have the page locked
2617 page
->mem_cgroup
= memcg
;
2620 unlock_page_lru(page
, isolated
);
2623 #ifdef CONFIG_MEMCG_KMEM
2624 static int memcg_alloc_cache_id(void)
2629 id
= ida_simple_get(&memcg_cache_ida
,
2630 0, MEMCG_CACHES_MAX_SIZE
, GFP_KERNEL
);
2634 if (id
< memcg_nr_cache_ids
)
2638 * There's no space for the new id in memcg_caches arrays,
2639 * so we have to grow them.
2641 down_write(&memcg_cache_ids_sem
);
2643 size
= 2 * (id
+ 1);
2644 if (size
< MEMCG_CACHES_MIN_SIZE
)
2645 size
= MEMCG_CACHES_MIN_SIZE
;
2646 else if (size
> MEMCG_CACHES_MAX_SIZE
)
2647 size
= MEMCG_CACHES_MAX_SIZE
;
2649 err
= memcg_update_all_caches(size
);
2651 err
= memcg_update_all_list_lrus(size
);
2653 memcg_nr_cache_ids
= size
;
2655 up_write(&memcg_cache_ids_sem
);
2658 ida_simple_remove(&memcg_cache_ida
, id
);
2664 static void memcg_free_cache_id(int id
)
2666 ida_simple_remove(&memcg_cache_ida
, id
);
2669 struct memcg_kmem_cache_create_work
{
2670 struct mem_cgroup
*memcg
;
2671 struct kmem_cache
*cachep
;
2672 struct work_struct work
;
2675 static void memcg_kmem_cache_create_func(struct work_struct
*w
)
2677 struct memcg_kmem_cache_create_work
*cw
=
2678 container_of(w
, struct memcg_kmem_cache_create_work
, work
);
2679 struct mem_cgroup
*memcg
= cw
->memcg
;
2680 struct kmem_cache
*cachep
= cw
->cachep
;
2682 memcg_create_kmem_cache(memcg
, cachep
);
2684 css_put(&memcg
->css
);
2689 * Enqueue the creation of a per-memcg kmem_cache.
2691 static void memcg_schedule_kmem_cache_create(struct mem_cgroup
*memcg
,
2692 struct kmem_cache
*cachep
)
2694 struct memcg_kmem_cache_create_work
*cw
;
2696 if (!css_tryget_online(&memcg
->css
))
2699 cw
= kmalloc(sizeof(*cw
), GFP_NOWAIT
| __GFP_NOWARN
);
2704 cw
->cachep
= cachep
;
2705 INIT_WORK(&cw
->work
, memcg_kmem_cache_create_func
);
2707 queue_work(memcg_kmem_cache_wq
, &cw
->work
);
2710 static inline bool memcg_kmem_bypass(void)
2712 if (in_interrupt() || !current
->mm
|| (current
->flags
& PF_KTHREAD
))
2718 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2719 * @cachep: the original global kmem cache
2721 * Return the kmem_cache we're supposed to use for a slab allocation.
2722 * We try to use the current memcg's version of the cache.
2724 * If the cache does not exist yet, if we are the first user of it, we
2725 * create it asynchronously in a workqueue and let the current allocation
2726 * go through with the original cache.
2728 * This function takes a reference to the cache it returns to assure it
2729 * won't get destroyed while we are working with it. Once the caller is
2730 * done with it, memcg_kmem_put_cache() must be called to release the
2733 struct kmem_cache
*memcg_kmem_get_cache(struct kmem_cache
*cachep
)
2735 struct mem_cgroup
*memcg
;
2736 struct kmem_cache
*memcg_cachep
;
2737 struct memcg_cache_array
*arr
;
2740 VM_BUG_ON(!is_root_cache(cachep
));
2742 if (memcg_kmem_bypass())
2747 if (unlikely(current
->active_memcg
))
2748 memcg
= current
->active_memcg
;
2750 memcg
= mem_cgroup_from_task(current
);
2752 if (!memcg
|| memcg
== root_mem_cgroup
)
2755 kmemcg_id
= READ_ONCE(memcg
->kmemcg_id
);
2759 arr
= rcu_dereference(cachep
->memcg_params
.memcg_caches
);
2762 * Make sure we will access the up-to-date value. The code updating
2763 * memcg_caches issues a write barrier to match the data dependency
2764 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2766 memcg_cachep
= READ_ONCE(arr
->entries
[kmemcg_id
]);
2769 * If we are in a safe context (can wait, and not in interrupt
2770 * context), we could be be predictable and return right away.
2771 * This would guarantee that the allocation being performed
2772 * already belongs in the new cache.
2774 * However, there are some clashes that can arrive from locking.
2775 * For instance, because we acquire the slab_mutex while doing
2776 * memcg_create_kmem_cache, this means no further allocation
2777 * could happen with the slab_mutex held. So it's better to
2780 * If the memcg is dying or memcg_cache is about to be released,
2781 * don't bother creating new kmem_caches. Because memcg_cachep
2782 * is ZEROed as the fist step of kmem offlining, we don't need
2783 * percpu_ref_tryget_live() here. css_tryget_online() check in
2784 * memcg_schedule_kmem_cache_create() will prevent us from
2785 * creation of a new kmem_cache.
2787 if (unlikely(!memcg_cachep
))
2788 memcg_schedule_kmem_cache_create(memcg
, cachep
);
2789 else if (percpu_ref_tryget(&memcg_cachep
->memcg_params
.refcnt
))
2790 cachep
= memcg_cachep
;
2797 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2798 * @cachep: the cache returned by memcg_kmem_get_cache
2800 void memcg_kmem_put_cache(struct kmem_cache
*cachep
)
2802 if (!is_root_cache(cachep
))
2803 percpu_ref_put(&cachep
->memcg_params
.refcnt
);
2807 * __memcg_kmem_charge_memcg: charge a kmem page
2808 * @page: page to charge
2809 * @gfp: reclaim mode
2810 * @order: allocation order
2811 * @memcg: memory cgroup to charge
2813 * Returns 0 on success, an error code on failure.
2815 int __memcg_kmem_charge_memcg(struct page
*page
, gfp_t gfp
, int order
,
2816 struct mem_cgroup
*memcg
)
2818 unsigned int nr_pages
= 1 << order
;
2819 struct page_counter
*counter
;
2822 ret
= try_charge(memcg
, gfp
, nr_pages
);
2826 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) &&
2827 !page_counter_try_charge(&memcg
->kmem
, nr_pages
, &counter
)) {
2828 cancel_charge(memcg
, nr_pages
);
2835 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2836 * @page: page to charge
2837 * @gfp: reclaim mode
2838 * @order: allocation order
2840 * Returns 0 on success, an error code on failure.
2842 int __memcg_kmem_charge(struct page
*page
, gfp_t gfp
, int order
)
2844 struct mem_cgroup
*memcg
;
2847 if (memcg_kmem_bypass())
2850 memcg
= get_mem_cgroup_from_current();
2851 if (!mem_cgroup_is_root(memcg
)) {
2852 ret
= __memcg_kmem_charge_memcg(page
, gfp
, order
, memcg
);
2854 page
->mem_cgroup
= memcg
;
2855 __SetPageKmemcg(page
);
2858 css_put(&memcg
->css
);
2863 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2864 * @memcg: memcg to uncharge
2865 * @nr_pages: number of pages to uncharge
2867 void __memcg_kmem_uncharge_memcg(struct mem_cgroup
*memcg
,
2868 unsigned int nr_pages
)
2870 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
))
2871 page_counter_uncharge(&memcg
->kmem
, nr_pages
);
2873 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2874 if (do_memsw_account())
2875 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2878 * __memcg_kmem_uncharge: uncharge a kmem page
2879 * @page: page to uncharge
2880 * @order: allocation order
2882 void __memcg_kmem_uncharge(struct page
*page
, int order
)
2884 struct mem_cgroup
*memcg
= page
->mem_cgroup
;
2885 unsigned int nr_pages
= 1 << order
;
2890 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg
), page
);
2891 __memcg_kmem_uncharge_memcg(memcg
, nr_pages
);
2892 page
->mem_cgroup
= NULL
;
2894 /* slab pages do not have PageKmemcg flag set */
2895 if (PageKmemcg(page
))
2896 __ClearPageKmemcg(page
);
2898 css_put_many(&memcg
->css
, nr_pages
);
2900 #endif /* CONFIG_MEMCG_KMEM */
2902 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2905 * Because tail pages are not marked as "used", set it. We're under
2906 * pgdat->lru_lock and migration entries setup in all page mappings.
2908 void mem_cgroup_split_huge_fixup(struct page
*head
)
2912 if (mem_cgroup_disabled())
2915 for (i
= 1; i
< HPAGE_PMD_NR
; i
++)
2916 head
[i
].mem_cgroup
= head
->mem_cgroup
;
2918 __mod_memcg_state(head
->mem_cgroup
, MEMCG_RSS_HUGE
, -HPAGE_PMD_NR
);
2920 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2922 #ifdef CONFIG_MEMCG_SWAP
2924 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2925 * @entry: swap entry to be moved
2926 * @from: mem_cgroup which the entry is moved from
2927 * @to: mem_cgroup which the entry is moved to
2929 * It succeeds only when the swap_cgroup's record for this entry is the same
2930 * as the mem_cgroup's id of @from.
2932 * Returns 0 on success, -EINVAL on failure.
2934 * The caller must have charged to @to, IOW, called page_counter_charge() about
2935 * both res and memsw, and called css_get().
2937 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
2938 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2940 unsigned short old_id
, new_id
;
2942 old_id
= mem_cgroup_id(from
);
2943 new_id
= mem_cgroup_id(to
);
2945 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
2946 mod_memcg_state(from
, MEMCG_SWAP
, -1);
2947 mod_memcg_state(to
, MEMCG_SWAP
, 1);
2953 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
2954 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2960 static DEFINE_MUTEX(memcg_max_mutex
);
2962 static int mem_cgroup_resize_max(struct mem_cgroup
*memcg
,
2963 unsigned long max
, bool memsw
)
2965 bool enlarge
= false;
2966 bool drained
= false;
2968 bool limits_invariant
;
2969 struct page_counter
*counter
= memsw
? &memcg
->memsw
: &memcg
->memory
;
2972 if (signal_pending(current
)) {
2977 mutex_lock(&memcg_max_mutex
);
2979 * Make sure that the new limit (memsw or memory limit) doesn't
2980 * break our basic invariant rule memory.max <= memsw.max.
2982 limits_invariant
= memsw
? max
>= memcg
->memory
.max
:
2983 max
<= memcg
->memsw
.max
;
2984 if (!limits_invariant
) {
2985 mutex_unlock(&memcg_max_mutex
);
2989 if (max
> counter
->max
)
2991 ret
= page_counter_set_max(counter
, max
);
2992 mutex_unlock(&memcg_max_mutex
);
2998 drain_all_stock(memcg
);
3003 if (!try_to_free_mem_cgroup_pages(memcg
, 1,
3004 GFP_KERNEL
, !memsw
)) {
3010 if (!ret
&& enlarge
)
3011 memcg_oom_recover(memcg
);
3016 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t
*pgdat
, int order
,
3018 unsigned long *total_scanned
)
3020 unsigned long nr_reclaimed
= 0;
3021 struct mem_cgroup_per_node
*mz
, *next_mz
= NULL
;
3022 unsigned long reclaimed
;
3024 struct mem_cgroup_tree_per_node
*mctz
;
3025 unsigned long excess
;
3026 unsigned long nr_scanned
;
3031 mctz
= soft_limit_tree_node(pgdat
->node_id
);
3034 * Do not even bother to check the largest node if the root
3035 * is empty. Do it lockless to prevent lock bouncing. Races
3036 * are acceptable as soft limit is best effort anyway.
3038 if (!mctz
|| RB_EMPTY_ROOT(&mctz
->rb_root
))
3042 * This loop can run a while, specially if mem_cgroup's continuously
3043 * keep exceeding their soft limit and putting the system under
3050 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
3055 reclaimed
= mem_cgroup_soft_reclaim(mz
->memcg
, pgdat
,
3056 gfp_mask
, &nr_scanned
);
3057 nr_reclaimed
+= reclaimed
;
3058 *total_scanned
+= nr_scanned
;
3059 spin_lock_irq(&mctz
->lock
);
3060 __mem_cgroup_remove_exceeded(mz
, mctz
);
3063 * If we failed to reclaim anything from this memory cgroup
3064 * it is time to move on to the next cgroup
3068 next_mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
3070 excess
= soft_limit_excess(mz
->memcg
);
3072 * One school of thought says that we should not add
3073 * back the node to the tree if reclaim returns 0.
3074 * But our reclaim could return 0, simply because due
3075 * to priority we are exposing a smaller subset of
3076 * memory to reclaim from. Consider this as a longer
3079 /* If excess == 0, no tree ops */
3080 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
3081 spin_unlock_irq(&mctz
->lock
);
3082 css_put(&mz
->memcg
->css
);
3085 * Could not reclaim anything and there are no more
3086 * mem cgroups to try or we seem to be looping without
3087 * reclaiming anything.
3089 if (!nr_reclaimed
&&
3091 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
3093 } while (!nr_reclaimed
);
3095 css_put(&next_mz
->memcg
->css
);
3096 return nr_reclaimed
;
3100 * Test whether @memcg has children, dead or alive. Note that this
3101 * function doesn't care whether @memcg has use_hierarchy enabled and
3102 * returns %true if there are child csses according to the cgroup
3103 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3105 static inline bool memcg_has_children(struct mem_cgroup
*memcg
)
3110 ret
= css_next_child(NULL
, &memcg
->css
);
3116 * Reclaims as many pages from the given memcg as possible.
3118 * Caller is responsible for holding css reference for memcg.
3120 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
)
3122 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
3124 /* we call try-to-free pages for make this cgroup empty */
3125 lru_add_drain_all();
3127 drain_all_stock(memcg
);
3129 /* try to free all pages in this cgroup */
3130 while (nr_retries
&& page_counter_read(&memcg
->memory
)) {
3133 if (signal_pending(current
))
3136 progress
= try_to_free_mem_cgroup_pages(memcg
, 1,
3140 /* maybe some writeback is necessary */
3141 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3149 static ssize_t
mem_cgroup_force_empty_write(struct kernfs_open_file
*of
,
3150 char *buf
, size_t nbytes
,
3153 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
3155 if (mem_cgroup_is_root(memcg
))
3157 return mem_cgroup_force_empty(memcg
) ?: nbytes
;
3160 static u64
mem_cgroup_hierarchy_read(struct cgroup_subsys_state
*css
,
3163 return mem_cgroup_from_css(css
)->use_hierarchy
;
3166 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state
*css
,
3167 struct cftype
*cft
, u64 val
)
3170 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3171 struct mem_cgroup
*parent_memcg
= mem_cgroup_from_css(memcg
->css
.parent
);
3173 if (memcg
->use_hierarchy
== val
)
3177 * If parent's use_hierarchy is set, we can't make any modifications
3178 * in the child subtrees. If it is unset, then the change can
3179 * occur, provided the current cgroup has no children.
3181 * For the root cgroup, parent_mem is NULL, we allow value to be
3182 * set if there are no children.
3184 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
3185 (val
== 1 || val
== 0)) {
3186 if (!memcg_has_children(memcg
))
3187 memcg
->use_hierarchy
= val
;
3196 static unsigned long mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
3200 if (mem_cgroup_is_root(memcg
)) {
3201 val
= memcg_page_state(memcg
, MEMCG_CACHE
) +
3202 memcg_page_state(memcg
, MEMCG_RSS
);
3204 val
+= memcg_page_state(memcg
, MEMCG_SWAP
);
3207 val
= page_counter_read(&memcg
->memory
);
3209 val
= page_counter_read(&memcg
->memsw
);
3222 static u64
mem_cgroup_read_u64(struct cgroup_subsys_state
*css
,
3225 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3226 struct page_counter
*counter
;
3228 switch (MEMFILE_TYPE(cft
->private)) {
3230 counter
= &memcg
->memory
;
3233 counter
= &memcg
->memsw
;
3236 counter
= &memcg
->kmem
;
3239 counter
= &memcg
->tcpmem
;
3245 switch (MEMFILE_ATTR(cft
->private)) {
3247 if (counter
== &memcg
->memory
)
3248 return (u64
)mem_cgroup_usage(memcg
, false) * PAGE_SIZE
;
3249 if (counter
== &memcg
->memsw
)
3250 return (u64
)mem_cgroup_usage(memcg
, true) * PAGE_SIZE
;
3251 return (u64
)page_counter_read(counter
) * PAGE_SIZE
;
3253 return (u64
)counter
->max
* PAGE_SIZE
;
3255 return (u64
)counter
->watermark
* PAGE_SIZE
;
3257 return counter
->failcnt
;
3258 case RES_SOFT_LIMIT
:
3259 return (u64
)memcg
->soft_limit
* PAGE_SIZE
;
3265 static void memcg_flush_percpu_vmstats(struct mem_cgroup
*memcg
, bool slab_only
)
3267 unsigned long stat
[MEMCG_NR_STAT
];
3268 struct mem_cgroup
*mi
;
3270 int min_idx
, max_idx
;
3273 min_idx
= NR_SLAB_RECLAIMABLE
;
3274 max_idx
= NR_SLAB_UNRECLAIMABLE
;
3277 max_idx
= MEMCG_NR_STAT
;
3280 for (i
= min_idx
; i
< max_idx
; i
++)
3283 for_each_online_cpu(cpu
)
3284 for (i
= min_idx
; i
< max_idx
; i
++)
3285 stat
[i
] += per_cpu(memcg
->vmstats_percpu
->stat
[i
], cpu
);
3287 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
))
3288 for (i
= min_idx
; i
< max_idx
; i
++)
3289 atomic_long_add(stat
[i
], &mi
->vmstats
[i
]);
3292 max_idx
= NR_VM_NODE_STAT_ITEMS
;
3294 for_each_node(node
) {
3295 struct mem_cgroup_per_node
*pn
= memcg
->nodeinfo
[node
];
3296 struct mem_cgroup_per_node
*pi
;
3298 for (i
= min_idx
; i
< max_idx
; i
++)
3301 for_each_online_cpu(cpu
)
3302 for (i
= min_idx
; i
< max_idx
; i
++)
3304 pn
->lruvec_stat_cpu
->count
[i
], cpu
);
3306 for (pi
= pn
; pi
; pi
= parent_nodeinfo(pi
, node
))
3307 for (i
= min_idx
; i
< max_idx
; i
++)
3308 atomic_long_add(stat
[i
], &pi
->lruvec_stat
[i
]);
3312 static void memcg_flush_percpu_vmevents(struct mem_cgroup
*memcg
)
3314 unsigned long events
[NR_VM_EVENT_ITEMS
];
3315 struct mem_cgroup
*mi
;
3318 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++)
3321 for_each_online_cpu(cpu
)
3322 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++)
3323 events
[i
] += per_cpu(memcg
->vmstats_percpu
->events
[i
],
3326 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
))
3327 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++)
3328 atomic_long_add(events
[i
], &mi
->vmevents
[i
]);
3331 #ifdef CONFIG_MEMCG_KMEM
3332 static int memcg_online_kmem(struct mem_cgroup
*memcg
)
3336 if (cgroup_memory_nokmem
)
3339 BUG_ON(memcg
->kmemcg_id
>= 0);
3340 BUG_ON(memcg
->kmem_state
);
3342 memcg_id
= memcg_alloc_cache_id();
3346 static_branch_inc(&memcg_kmem_enabled_key
);
3348 * A memory cgroup is considered kmem-online as soon as it gets
3349 * kmemcg_id. Setting the id after enabling static branching will
3350 * guarantee no one starts accounting before all call sites are
3353 memcg
->kmemcg_id
= memcg_id
;
3354 memcg
->kmem_state
= KMEM_ONLINE
;
3355 INIT_LIST_HEAD(&memcg
->kmem_caches
);
3360 static void memcg_offline_kmem(struct mem_cgroup
*memcg
)
3362 struct cgroup_subsys_state
*css
;
3363 struct mem_cgroup
*parent
, *child
;
3366 if (memcg
->kmem_state
!= KMEM_ONLINE
)
3369 * Clear the online state before clearing memcg_caches array
3370 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3371 * guarantees that no cache will be created for this cgroup
3372 * after we are done (see memcg_create_kmem_cache()).
3374 memcg
->kmem_state
= KMEM_ALLOCATED
;
3376 parent
= parent_mem_cgroup(memcg
);
3378 parent
= root_mem_cgroup
;
3381 * Deactivate and reparent kmem_caches. Then flush percpu
3382 * slab statistics to have precise values at the parent and
3383 * all ancestor levels. It's required to keep slab stats
3384 * accurate after the reparenting of kmem_caches.
3386 memcg_deactivate_kmem_caches(memcg
, parent
);
3387 memcg_flush_percpu_vmstats(memcg
, true);
3389 kmemcg_id
= memcg
->kmemcg_id
;
3390 BUG_ON(kmemcg_id
< 0);
3393 * Change kmemcg_id of this cgroup and all its descendants to the
3394 * parent's id, and then move all entries from this cgroup's list_lrus
3395 * to ones of the parent. After we have finished, all list_lrus
3396 * corresponding to this cgroup are guaranteed to remain empty. The
3397 * ordering is imposed by list_lru_node->lock taken by
3398 * memcg_drain_all_list_lrus().
3400 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3401 css_for_each_descendant_pre(css
, &memcg
->css
) {
3402 child
= mem_cgroup_from_css(css
);
3403 BUG_ON(child
->kmemcg_id
!= kmemcg_id
);
3404 child
->kmemcg_id
= parent
->kmemcg_id
;
3405 if (!memcg
->use_hierarchy
)
3410 memcg_drain_all_list_lrus(kmemcg_id
, parent
);
3412 memcg_free_cache_id(kmemcg_id
);
3415 static void memcg_free_kmem(struct mem_cgroup
*memcg
)
3417 /* css_alloc() failed, offlining didn't happen */
3418 if (unlikely(memcg
->kmem_state
== KMEM_ONLINE
))
3419 memcg_offline_kmem(memcg
);
3421 if (memcg
->kmem_state
== KMEM_ALLOCATED
) {
3422 WARN_ON(!list_empty(&memcg
->kmem_caches
));
3423 static_branch_dec(&memcg_kmem_enabled_key
);
3427 static int memcg_online_kmem(struct mem_cgroup
*memcg
)
3431 static void memcg_offline_kmem(struct mem_cgroup
*memcg
)
3434 static void memcg_free_kmem(struct mem_cgroup
*memcg
)
3437 #endif /* CONFIG_MEMCG_KMEM */
3439 static int memcg_update_kmem_max(struct mem_cgroup
*memcg
,
3444 mutex_lock(&memcg_max_mutex
);
3445 ret
= page_counter_set_max(&memcg
->kmem
, max
);
3446 mutex_unlock(&memcg_max_mutex
);
3450 static int memcg_update_tcp_max(struct mem_cgroup
*memcg
, unsigned long max
)
3454 mutex_lock(&memcg_max_mutex
);
3456 ret
= page_counter_set_max(&memcg
->tcpmem
, max
);
3460 if (!memcg
->tcpmem_active
) {
3462 * The active flag needs to be written after the static_key
3463 * update. This is what guarantees that the socket activation
3464 * function is the last one to run. See mem_cgroup_sk_alloc()
3465 * for details, and note that we don't mark any socket as
3466 * belonging to this memcg until that flag is up.
3468 * We need to do this, because static_keys will span multiple
3469 * sites, but we can't control their order. If we mark a socket
3470 * as accounted, but the accounting functions are not patched in
3471 * yet, we'll lose accounting.
3473 * We never race with the readers in mem_cgroup_sk_alloc(),
3474 * because when this value change, the code to process it is not
3477 static_branch_inc(&memcg_sockets_enabled_key
);
3478 memcg
->tcpmem_active
= true;
3481 mutex_unlock(&memcg_max_mutex
);
3486 * The user of this function is...
3489 static ssize_t
mem_cgroup_write(struct kernfs_open_file
*of
,
3490 char *buf
, size_t nbytes
, loff_t off
)
3492 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
3493 unsigned long nr_pages
;
3496 buf
= strstrip(buf
);
3497 ret
= page_counter_memparse(buf
, "-1", &nr_pages
);
3501 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
3503 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
3507 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
3509 ret
= mem_cgroup_resize_max(memcg
, nr_pages
, false);
3512 ret
= mem_cgroup_resize_max(memcg
, nr_pages
, true);
3515 ret
= memcg_update_kmem_max(memcg
, nr_pages
);
3518 ret
= memcg_update_tcp_max(memcg
, nr_pages
);
3522 case RES_SOFT_LIMIT
:
3523 memcg
->soft_limit
= nr_pages
;
3527 return ret
?: nbytes
;
3530 static ssize_t
mem_cgroup_reset(struct kernfs_open_file
*of
, char *buf
,
3531 size_t nbytes
, loff_t off
)
3533 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
3534 struct page_counter
*counter
;
3536 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
3538 counter
= &memcg
->memory
;
3541 counter
= &memcg
->memsw
;
3544 counter
= &memcg
->kmem
;
3547 counter
= &memcg
->tcpmem
;
3553 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
3555 page_counter_reset_watermark(counter
);
3558 counter
->failcnt
= 0;
3567 static u64
mem_cgroup_move_charge_read(struct cgroup_subsys_state
*css
,
3570 return mem_cgroup_from_css(css
)->move_charge_at_immigrate
;
3574 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3575 struct cftype
*cft
, u64 val
)
3577 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3579 if (val
& ~MOVE_MASK
)
3583 * No kind of locking is needed in here, because ->can_attach() will
3584 * check this value once in the beginning of the process, and then carry
3585 * on with stale data. This means that changes to this value will only
3586 * affect task migrations starting after the change.
3588 memcg
->move_charge_at_immigrate
= val
;
3592 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3593 struct cftype
*cft
, u64 val
)
3601 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3602 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3603 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3605 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
3606 int nid
, unsigned int lru_mask
)
3608 struct lruvec
*lruvec
= mem_cgroup_lruvec(NODE_DATA(nid
), memcg
);
3609 unsigned long nr
= 0;
3612 VM_BUG_ON((unsigned)nid
>= nr_node_ids
);
3615 if (!(BIT(lru
) & lru_mask
))
3617 nr
+= lruvec_page_state_local(lruvec
, NR_LRU_BASE
+ lru
);
3622 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
3623 unsigned int lru_mask
)
3625 unsigned long nr
= 0;
3629 if (!(BIT(lru
) & lru_mask
))
3631 nr
+= memcg_page_state_local(memcg
, NR_LRU_BASE
+ lru
);
3636 static int memcg_numa_stat_show(struct seq_file
*m
, void *v
)
3640 unsigned int lru_mask
;
3643 static const struct numa_stat stats
[] = {
3644 { "total", LRU_ALL
},
3645 { "file", LRU_ALL_FILE
},
3646 { "anon", LRU_ALL_ANON
},
3647 { "unevictable", BIT(LRU_UNEVICTABLE
) },
3649 const struct numa_stat
*stat
;
3652 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(m
);
3654 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3655 nr
= mem_cgroup_nr_lru_pages(memcg
, stat
->lru_mask
);
3656 seq_printf(m
, "%s=%lu", stat
->name
, nr
);
3657 for_each_node_state(nid
, N_MEMORY
) {
3658 nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
3660 seq_printf(m
, " N%d=%lu", nid
, nr
);
3665 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3666 struct mem_cgroup
*iter
;
3669 for_each_mem_cgroup_tree(iter
, memcg
)
3670 nr
+= mem_cgroup_nr_lru_pages(iter
, stat
->lru_mask
);
3671 seq_printf(m
, "hierarchical_%s=%lu", stat
->name
, nr
);
3672 for_each_node_state(nid
, N_MEMORY
) {
3674 for_each_mem_cgroup_tree(iter
, memcg
)
3675 nr
+= mem_cgroup_node_nr_lru_pages(
3676 iter
, nid
, stat
->lru_mask
);
3677 seq_printf(m
, " N%d=%lu", nid
, nr
);
3684 #endif /* CONFIG_NUMA */
3686 static const unsigned int memcg1_stats
[] = {
3697 static const char *const memcg1_stat_names
[] = {
3708 /* Universal VM events cgroup1 shows, original sort order */
3709 static const unsigned int memcg1_events
[] = {
3716 static const char *const memcg1_event_names
[] = {
3723 static int memcg_stat_show(struct seq_file
*m
, void *v
)
3725 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(m
);
3726 unsigned long memory
, memsw
;
3727 struct mem_cgroup
*mi
;
3730 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names
) != ARRAY_SIZE(memcg1_stats
));
3731 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names
) != NR_LRU_LISTS
);
3733 for (i
= 0; i
< ARRAY_SIZE(memcg1_stats
); i
++) {
3734 if (memcg1_stats
[i
] == MEMCG_SWAP
&& !do_memsw_account())
3736 seq_printf(m
, "%s %lu\n", memcg1_stat_names
[i
],
3737 memcg_page_state_local(memcg
, memcg1_stats
[i
]) *
3741 for (i
= 0; i
< ARRAY_SIZE(memcg1_events
); i
++)
3742 seq_printf(m
, "%s %lu\n", memcg1_event_names
[i
],
3743 memcg_events_local(memcg
, memcg1_events
[i
]));
3745 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
3746 seq_printf(m
, "%s %lu\n", mem_cgroup_lru_names
[i
],
3747 memcg_page_state_local(memcg
, NR_LRU_BASE
+ i
) *
3750 /* Hierarchical information */
3751 memory
= memsw
= PAGE_COUNTER_MAX
;
3752 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
)) {
3753 memory
= min(memory
, mi
->memory
.max
);
3754 memsw
= min(memsw
, mi
->memsw
.max
);
3756 seq_printf(m
, "hierarchical_memory_limit %llu\n",
3757 (u64
)memory
* PAGE_SIZE
);
3758 if (do_memsw_account())
3759 seq_printf(m
, "hierarchical_memsw_limit %llu\n",
3760 (u64
)memsw
* PAGE_SIZE
);
3762 for (i
= 0; i
< ARRAY_SIZE(memcg1_stats
); i
++) {
3763 if (memcg1_stats
[i
] == MEMCG_SWAP
&& !do_memsw_account())
3765 seq_printf(m
, "total_%s %llu\n", memcg1_stat_names
[i
],
3766 (u64
)memcg_page_state(memcg
, memcg1_stats
[i
]) *
3770 for (i
= 0; i
< ARRAY_SIZE(memcg1_events
); i
++)
3771 seq_printf(m
, "total_%s %llu\n", memcg1_event_names
[i
],
3772 (u64
)memcg_events(memcg
, memcg1_events
[i
]));
3774 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
3775 seq_printf(m
, "total_%s %llu\n", mem_cgroup_lru_names
[i
],
3776 (u64
)memcg_page_state(memcg
, NR_LRU_BASE
+ i
) *
3779 #ifdef CONFIG_DEBUG_VM
3782 struct mem_cgroup_per_node
*mz
;
3783 struct zone_reclaim_stat
*rstat
;
3784 unsigned long recent_rotated
[2] = {0, 0};
3785 unsigned long recent_scanned
[2] = {0, 0};
3787 for_each_online_pgdat(pgdat
) {
3788 mz
= mem_cgroup_nodeinfo(memcg
, pgdat
->node_id
);
3789 rstat
= &mz
->lruvec
.reclaim_stat
;
3791 recent_rotated
[0] += rstat
->recent_rotated
[0];
3792 recent_rotated
[1] += rstat
->recent_rotated
[1];
3793 recent_scanned
[0] += rstat
->recent_scanned
[0];
3794 recent_scanned
[1] += rstat
->recent_scanned
[1];
3796 seq_printf(m
, "recent_rotated_anon %lu\n", recent_rotated
[0]);
3797 seq_printf(m
, "recent_rotated_file %lu\n", recent_rotated
[1]);
3798 seq_printf(m
, "recent_scanned_anon %lu\n", recent_scanned
[0]);
3799 seq_printf(m
, "recent_scanned_file %lu\n", recent_scanned
[1]);
3806 static u64
mem_cgroup_swappiness_read(struct cgroup_subsys_state
*css
,
3809 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3811 return mem_cgroup_swappiness(memcg
);
3814 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state
*css
,
3815 struct cftype
*cft
, u64 val
)
3817 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3823 memcg
->swappiness
= val
;
3825 vm_swappiness
= val
;
3830 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
3832 struct mem_cgroup_threshold_ary
*t
;
3833 unsigned long usage
;
3838 t
= rcu_dereference(memcg
->thresholds
.primary
);
3840 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
3845 usage
= mem_cgroup_usage(memcg
, swap
);
3848 * current_threshold points to threshold just below or equal to usage.
3849 * If it's not true, a threshold was crossed after last
3850 * call of __mem_cgroup_threshold().
3852 i
= t
->current_threshold
;
3855 * Iterate backward over array of thresholds starting from
3856 * current_threshold and check if a threshold is crossed.
3857 * If none of thresholds below usage is crossed, we read
3858 * only one element of the array here.
3860 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
3861 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3863 /* i = current_threshold + 1 */
3867 * Iterate forward over array of thresholds starting from
3868 * current_threshold+1 and check if a threshold is crossed.
3869 * If none of thresholds above usage is crossed, we read
3870 * only one element of the array here.
3872 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
3873 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3875 /* Update current_threshold */
3876 t
->current_threshold
= i
- 1;
3881 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
3884 __mem_cgroup_threshold(memcg
, false);
3885 if (do_memsw_account())
3886 __mem_cgroup_threshold(memcg
, true);
3888 memcg
= parent_mem_cgroup(memcg
);
3892 static int compare_thresholds(const void *a
, const void *b
)
3894 const struct mem_cgroup_threshold
*_a
= a
;
3895 const struct mem_cgroup_threshold
*_b
= b
;
3897 if (_a
->threshold
> _b
->threshold
)
3900 if (_a
->threshold
< _b
->threshold
)
3906 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
3908 struct mem_cgroup_eventfd_list
*ev
;
3910 spin_lock(&memcg_oom_lock
);
3912 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
3913 eventfd_signal(ev
->eventfd
, 1);
3915 spin_unlock(&memcg_oom_lock
);
3919 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
3921 struct mem_cgroup
*iter
;
3923 for_each_mem_cgroup_tree(iter
, memcg
)
3924 mem_cgroup_oom_notify_cb(iter
);
3927 static int __mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3928 struct eventfd_ctx
*eventfd
, const char *args
, enum res_type type
)
3930 struct mem_cgroup_thresholds
*thresholds
;
3931 struct mem_cgroup_threshold_ary
*new;
3932 unsigned long threshold
;
3933 unsigned long usage
;
3936 ret
= page_counter_memparse(args
, "-1", &threshold
);
3940 mutex_lock(&memcg
->thresholds_lock
);
3943 thresholds
= &memcg
->thresholds
;
3944 usage
= mem_cgroup_usage(memcg
, false);
3945 } else if (type
== _MEMSWAP
) {
3946 thresholds
= &memcg
->memsw_thresholds
;
3947 usage
= mem_cgroup_usage(memcg
, true);
3951 /* Check if a threshold crossed before adding a new one */
3952 if (thresholds
->primary
)
3953 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3955 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
3957 /* Allocate memory for new array of thresholds */
3958 new = kmalloc(struct_size(new, entries
, size
), GFP_KERNEL
);
3965 /* Copy thresholds (if any) to new array */
3966 if (thresholds
->primary
) {
3967 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
3968 sizeof(struct mem_cgroup_threshold
));
3971 /* Add new threshold */
3972 new->entries
[size
- 1].eventfd
= eventfd
;
3973 new->entries
[size
- 1].threshold
= threshold
;
3975 /* Sort thresholds. Registering of new threshold isn't time-critical */
3976 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
3977 compare_thresholds
, NULL
);
3979 /* Find current threshold */
3980 new->current_threshold
= -1;
3981 for (i
= 0; i
< size
; i
++) {
3982 if (new->entries
[i
].threshold
<= usage
) {
3984 * new->current_threshold will not be used until
3985 * rcu_assign_pointer(), so it's safe to increment
3988 ++new->current_threshold
;
3993 /* Free old spare buffer and save old primary buffer as spare */
3994 kfree(thresholds
->spare
);
3995 thresholds
->spare
= thresholds
->primary
;
3997 rcu_assign_pointer(thresholds
->primary
, new);
3999 /* To be sure that nobody uses thresholds */
4003 mutex_unlock(&memcg
->thresholds_lock
);
4008 static int mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
4009 struct eventfd_ctx
*eventfd
, const char *args
)
4011 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEM
);
4014 static int memsw_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
4015 struct eventfd_ctx
*eventfd
, const char *args
)
4017 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEMSWAP
);
4020 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
4021 struct eventfd_ctx
*eventfd
, enum res_type type
)
4023 struct mem_cgroup_thresholds
*thresholds
;
4024 struct mem_cgroup_threshold_ary
*new;
4025 unsigned long usage
;
4028 mutex_lock(&memcg
->thresholds_lock
);
4031 thresholds
= &memcg
->thresholds
;
4032 usage
= mem_cgroup_usage(memcg
, false);
4033 } else if (type
== _MEMSWAP
) {
4034 thresholds
= &memcg
->memsw_thresholds
;
4035 usage
= mem_cgroup_usage(memcg
, true);
4039 if (!thresholds
->primary
)
4042 /* Check if a threshold crossed before removing */
4043 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4045 /* Calculate new number of threshold */
4047 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
4048 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
4052 new = thresholds
->spare
;
4054 /* Set thresholds array to NULL if we don't have thresholds */
4063 /* Copy thresholds and find current threshold */
4064 new->current_threshold
= -1;
4065 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
4066 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
4069 new->entries
[j
] = thresholds
->primary
->entries
[i
];
4070 if (new->entries
[j
].threshold
<= usage
) {
4072 * new->current_threshold will not be used
4073 * until rcu_assign_pointer(), so it's safe to increment
4076 ++new->current_threshold
;
4082 /* Swap primary and spare array */
4083 thresholds
->spare
= thresholds
->primary
;
4085 rcu_assign_pointer(thresholds
->primary
, new);
4087 /* To be sure that nobody uses thresholds */
4090 /* If all events are unregistered, free the spare array */
4092 kfree(thresholds
->spare
);
4093 thresholds
->spare
= NULL
;
4096 mutex_unlock(&memcg
->thresholds_lock
);
4099 static void mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
4100 struct eventfd_ctx
*eventfd
)
4102 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEM
);
4105 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
4106 struct eventfd_ctx
*eventfd
)
4108 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEMSWAP
);
4111 static int mem_cgroup_oom_register_event(struct mem_cgroup
*memcg
,
4112 struct eventfd_ctx
*eventfd
, const char *args
)
4114 struct mem_cgroup_eventfd_list
*event
;
4116 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
4120 spin_lock(&memcg_oom_lock
);
4122 event
->eventfd
= eventfd
;
4123 list_add(&event
->list
, &memcg
->oom_notify
);
4125 /* already in OOM ? */
4126 if (memcg
->under_oom
)
4127 eventfd_signal(eventfd
, 1);
4128 spin_unlock(&memcg_oom_lock
);
4133 static void mem_cgroup_oom_unregister_event(struct mem_cgroup
*memcg
,
4134 struct eventfd_ctx
*eventfd
)
4136 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
4138 spin_lock(&memcg_oom_lock
);
4140 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
4141 if (ev
->eventfd
== eventfd
) {
4142 list_del(&ev
->list
);
4147 spin_unlock(&memcg_oom_lock
);
4150 static int mem_cgroup_oom_control_read(struct seq_file
*sf
, void *v
)
4152 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(sf
);
4154 seq_printf(sf
, "oom_kill_disable %d\n", memcg
->oom_kill_disable
);
4155 seq_printf(sf
, "under_oom %d\n", (bool)memcg
->under_oom
);
4156 seq_printf(sf
, "oom_kill %lu\n",
4157 atomic_long_read(&memcg
->memory_events
[MEMCG_OOM_KILL
]));
4161 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state
*css
,
4162 struct cftype
*cft
, u64 val
)
4164 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4166 /* cannot set to root cgroup and only 0 and 1 are allowed */
4167 if (!css
->parent
|| !((val
== 0) || (val
== 1)))
4170 memcg
->oom_kill_disable
= val
;
4172 memcg_oom_recover(memcg
);
4177 #ifdef CONFIG_CGROUP_WRITEBACK
4179 #include <trace/events/writeback.h>
4181 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
4183 return wb_domain_init(&memcg
->cgwb_domain
, gfp
);
4186 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
4188 wb_domain_exit(&memcg
->cgwb_domain
);
4191 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
4193 wb_domain_size_changed(&memcg
->cgwb_domain
);
4196 struct wb_domain
*mem_cgroup_wb_domain(struct bdi_writeback
*wb
)
4198 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
4200 if (!memcg
->css
.parent
)
4203 return &memcg
->cgwb_domain
;
4207 * idx can be of type enum memcg_stat_item or node_stat_item.
4208 * Keep in sync with memcg_exact_page().
4210 static unsigned long memcg_exact_page_state(struct mem_cgroup
*memcg
, int idx
)
4212 long x
= atomic_long_read(&memcg
->vmstats
[idx
]);
4215 for_each_online_cpu(cpu
)
4216 x
+= per_cpu_ptr(memcg
->vmstats_percpu
, cpu
)->stat
[idx
];
4223 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4224 * @wb: bdi_writeback in question
4225 * @pfilepages: out parameter for number of file pages
4226 * @pheadroom: out parameter for number of allocatable pages according to memcg
4227 * @pdirty: out parameter for number of dirty pages
4228 * @pwriteback: out parameter for number of pages under writeback
4230 * Determine the numbers of file, headroom, dirty, and writeback pages in
4231 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4232 * is a bit more involved.
4234 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4235 * headroom is calculated as the lowest headroom of itself and the
4236 * ancestors. Note that this doesn't consider the actual amount of
4237 * available memory in the system. The caller should further cap
4238 * *@pheadroom accordingly.
4240 void mem_cgroup_wb_stats(struct bdi_writeback
*wb
, unsigned long *pfilepages
,
4241 unsigned long *pheadroom
, unsigned long *pdirty
,
4242 unsigned long *pwriteback
)
4244 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
4245 struct mem_cgroup
*parent
;
4247 *pdirty
= memcg_exact_page_state(memcg
, NR_FILE_DIRTY
);
4249 /* this should eventually include NR_UNSTABLE_NFS */
4250 *pwriteback
= memcg_exact_page_state(memcg
, NR_WRITEBACK
);
4251 *pfilepages
= memcg_exact_page_state(memcg
, NR_INACTIVE_FILE
) +
4252 memcg_exact_page_state(memcg
, NR_ACTIVE_FILE
);
4253 *pheadroom
= PAGE_COUNTER_MAX
;
4255 while ((parent
= parent_mem_cgroup(memcg
))) {
4256 unsigned long ceiling
= min(memcg
->memory
.max
, memcg
->high
);
4257 unsigned long used
= page_counter_read(&memcg
->memory
);
4259 *pheadroom
= min(*pheadroom
, ceiling
- min(ceiling
, used
));
4265 * Foreign dirty flushing
4267 * There's an inherent mismatch between memcg and writeback. The former
4268 * trackes ownership per-page while the latter per-inode. This was a
4269 * deliberate design decision because honoring per-page ownership in the
4270 * writeback path is complicated, may lead to higher CPU and IO overheads
4271 * and deemed unnecessary given that write-sharing an inode across
4272 * different cgroups isn't a common use-case.
4274 * Combined with inode majority-writer ownership switching, this works well
4275 * enough in most cases but there are some pathological cases. For
4276 * example, let's say there are two cgroups A and B which keep writing to
4277 * different but confined parts of the same inode. B owns the inode and
4278 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4279 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4280 * triggering background writeback. A will be slowed down without a way to
4281 * make writeback of the dirty pages happen.
4283 * Conditions like the above can lead to a cgroup getting repatedly and
4284 * severely throttled after making some progress after each
4285 * dirty_expire_interval while the underyling IO device is almost
4288 * Solving this problem completely requires matching the ownership tracking
4289 * granularities between memcg and writeback in either direction. However,
4290 * the more egregious behaviors can be avoided by simply remembering the
4291 * most recent foreign dirtying events and initiating remote flushes on
4292 * them when local writeback isn't enough to keep the memory clean enough.
4294 * The following two functions implement such mechanism. When a foreign
4295 * page - a page whose memcg and writeback ownerships don't match - is
4296 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4297 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4298 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4299 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4300 * foreign bdi_writebacks which haven't expired. Both the numbers of
4301 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4302 * limited to MEMCG_CGWB_FRN_CNT.
4304 * The mechanism only remembers IDs and doesn't hold any object references.
4305 * As being wrong occasionally doesn't matter, updates and accesses to the
4306 * records are lockless and racy.
4308 void mem_cgroup_track_foreign_dirty_slowpath(struct page
*page
,
4309 struct bdi_writeback
*wb
)
4311 struct mem_cgroup
*memcg
= page
->mem_cgroup
;
4312 struct memcg_cgwb_frn
*frn
;
4313 u64 now
= get_jiffies_64();
4314 u64 oldest_at
= now
;
4318 trace_track_foreign_dirty(page
, wb
);
4321 * Pick the slot to use. If there is already a slot for @wb, keep
4322 * using it. If not replace the oldest one which isn't being
4325 for (i
= 0; i
< MEMCG_CGWB_FRN_CNT
; i
++) {
4326 frn
= &memcg
->cgwb_frn
[i
];
4327 if (frn
->bdi_id
== wb
->bdi
->id
&&
4328 frn
->memcg_id
== wb
->memcg_css
->id
)
4330 if (time_before64(frn
->at
, oldest_at
) &&
4331 atomic_read(&frn
->done
.cnt
) == 1) {
4333 oldest_at
= frn
->at
;
4337 if (i
< MEMCG_CGWB_FRN_CNT
) {
4339 * Re-using an existing one. Update timestamp lazily to
4340 * avoid making the cacheline hot. We want them to be
4341 * reasonably up-to-date and significantly shorter than
4342 * dirty_expire_interval as that's what expires the record.
4343 * Use the shorter of 1s and dirty_expire_interval / 8.
4345 unsigned long update_intv
=
4346 min_t(unsigned long, HZ
,
4347 msecs_to_jiffies(dirty_expire_interval
* 10) / 8);
4349 if (time_before64(frn
->at
, now
- update_intv
))
4351 } else if (oldest
>= 0) {
4352 /* replace the oldest free one */
4353 frn
= &memcg
->cgwb_frn
[oldest
];
4354 frn
->bdi_id
= wb
->bdi
->id
;
4355 frn
->memcg_id
= wb
->memcg_css
->id
;
4360 /* issue foreign writeback flushes for recorded foreign dirtying events */
4361 void mem_cgroup_flush_foreign(struct bdi_writeback
*wb
)
4363 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
4364 unsigned long intv
= msecs_to_jiffies(dirty_expire_interval
* 10);
4365 u64 now
= jiffies_64
;
4368 for (i
= 0; i
< MEMCG_CGWB_FRN_CNT
; i
++) {
4369 struct memcg_cgwb_frn
*frn
= &memcg
->cgwb_frn
[i
];
4372 * If the record is older than dirty_expire_interval,
4373 * writeback on it has already started. No need to kick it
4374 * off again. Also, don't start a new one if there's
4375 * already one in flight.
4377 if (time_after64(frn
->at
, now
- intv
) &&
4378 atomic_read(&frn
->done
.cnt
) == 1) {
4380 trace_flush_foreign(wb
, frn
->bdi_id
, frn
->memcg_id
);
4381 cgroup_writeback_by_id(frn
->bdi_id
, frn
->memcg_id
, 0,
4382 WB_REASON_FOREIGN_FLUSH
,
4388 #else /* CONFIG_CGROUP_WRITEBACK */
4390 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
4395 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
4399 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
4403 #endif /* CONFIG_CGROUP_WRITEBACK */
4406 * DO NOT USE IN NEW FILES.
4408 * "cgroup.event_control" implementation.
4410 * This is way over-engineered. It tries to support fully configurable
4411 * events for each user. Such level of flexibility is completely
4412 * unnecessary especially in the light of the planned unified hierarchy.
4414 * Please deprecate this and replace with something simpler if at all
4419 * Unregister event and free resources.
4421 * Gets called from workqueue.
4423 static void memcg_event_remove(struct work_struct
*work
)
4425 struct mem_cgroup_event
*event
=
4426 container_of(work
, struct mem_cgroup_event
, remove
);
4427 struct mem_cgroup
*memcg
= event
->memcg
;
4429 remove_wait_queue(event
->wqh
, &event
->wait
);
4431 event
->unregister_event(memcg
, event
->eventfd
);
4433 /* Notify userspace the event is going away. */
4434 eventfd_signal(event
->eventfd
, 1);
4436 eventfd_ctx_put(event
->eventfd
);
4438 css_put(&memcg
->css
);
4442 * Gets called on EPOLLHUP on eventfd when user closes it.
4444 * Called with wqh->lock held and interrupts disabled.
4446 static int memcg_event_wake(wait_queue_entry_t
*wait
, unsigned mode
,
4447 int sync
, void *key
)
4449 struct mem_cgroup_event
*event
=
4450 container_of(wait
, struct mem_cgroup_event
, wait
);
4451 struct mem_cgroup
*memcg
= event
->memcg
;
4452 __poll_t flags
= key_to_poll(key
);
4454 if (flags
& EPOLLHUP
) {
4456 * If the event has been detached at cgroup removal, we
4457 * can simply return knowing the other side will cleanup
4460 * We can't race against event freeing since the other
4461 * side will require wqh->lock via remove_wait_queue(),
4464 spin_lock(&memcg
->event_list_lock
);
4465 if (!list_empty(&event
->list
)) {
4466 list_del_init(&event
->list
);
4468 * We are in atomic context, but cgroup_event_remove()
4469 * may sleep, so we have to call it in workqueue.
4471 schedule_work(&event
->remove
);
4473 spin_unlock(&memcg
->event_list_lock
);
4479 static void memcg_event_ptable_queue_proc(struct file
*file
,
4480 wait_queue_head_t
*wqh
, poll_table
*pt
)
4482 struct mem_cgroup_event
*event
=
4483 container_of(pt
, struct mem_cgroup_event
, pt
);
4486 add_wait_queue(wqh
, &event
->wait
);
4490 * DO NOT USE IN NEW FILES.
4492 * Parse input and register new cgroup event handler.
4494 * Input must be in format '<event_fd> <control_fd> <args>'.
4495 * Interpretation of args is defined by control file implementation.
4497 static ssize_t
memcg_write_event_control(struct kernfs_open_file
*of
,
4498 char *buf
, size_t nbytes
, loff_t off
)
4500 struct cgroup_subsys_state
*css
= of_css(of
);
4501 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4502 struct mem_cgroup_event
*event
;
4503 struct cgroup_subsys_state
*cfile_css
;
4504 unsigned int efd
, cfd
;
4511 buf
= strstrip(buf
);
4513 efd
= simple_strtoul(buf
, &endp
, 10);
4518 cfd
= simple_strtoul(buf
, &endp
, 10);
4519 if ((*endp
!= ' ') && (*endp
!= '\0'))
4523 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
4527 event
->memcg
= memcg
;
4528 INIT_LIST_HEAD(&event
->list
);
4529 init_poll_funcptr(&event
->pt
, memcg_event_ptable_queue_proc
);
4530 init_waitqueue_func_entry(&event
->wait
, memcg_event_wake
);
4531 INIT_WORK(&event
->remove
, memcg_event_remove
);
4539 event
->eventfd
= eventfd_ctx_fileget(efile
.file
);
4540 if (IS_ERR(event
->eventfd
)) {
4541 ret
= PTR_ERR(event
->eventfd
);
4548 goto out_put_eventfd
;
4551 /* the process need read permission on control file */
4552 /* AV: shouldn't we check that it's been opened for read instead? */
4553 ret
= inode_permission(file_inode(cfile
.file
), MAY_READ
);
4558 * Determine the event callbacks and set them in @event. This used
4559 * to be done via struct cftype but cgroup core no longer knows
4560 * about these events. The following is crude but the whole thing
4561 * is for compatibility anyway.
4563 * DO NOT ADD NEW FILES.
4565 name
= cfile
.file
->f_path
.dentry
->d_name
.name
;
4567 if (!strcmp(name
, "memory.usage_in_bytes")) {
4568 event
->register_event
= mem_cgroup_usage_register_event
;
4569 event
->unregister_event
= mem_cgroup_usage_unregister_event
;
4570 } else if (!strcmp(name
, "memory.oom_control")) {
4571 event
->register_event
= mem_cgroup_oom_register_event
;
4572 event
->unregister_event
= mem_cgroup_oom_unregister_event
;
4573 } else if (!strcmp(name
, "memory.pressure_level")) {
4574 event
->register_event
= vmpressure_register_event
;
4575 event
->unregister_event
= vmpressure_unregister_event
;
4576 } else if (!strcmp(name
, "memory.memsw.usage_in_bytes")) {
4577 event
->register_event
= memsw_cgroup_usage_register_event
;
4578 event
->unregister_event
= memsw_cgroup_usage_unregister_event
;
4585 * Verify @cfile should belong to @css. Also, remaining events are
4586 * automatically removed on cgroup destruction but the removal is
4587 * asynchronous, so take an extra ref on @css.
4589 cfile_css
= css_tryget_online_from_dir(cfile
.file
->f_path
.dentry
->d_parent
,
4590 &memory_cgrp_subsys
);
4592 if (IS_ERR(cfile_css
))
4594 if (cfile_css
!= css
) {
4599 ret
= event
->register_event(memcg
, event
->eventfd
, buf
);
4603 vfs_poll(efile
.file
, &event
->pt
);
4605 spin_lock(&memcg
->event_list_lock
);
4606 list_add(&event
->list
, &memcg
->event_list
);
4607 spin_unlock(&memcg
->event_list_lock
);
4619 eventfd_ctx_put(event
->eventfd
);
4628 static struct cftype mem_cgroup_legacy_files
[] = {
4630 .name
= "usage_in_bytes",
4631 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
4632 .read_u64
= mem_cgroup_read_u64
,
4635 .name
= "max_usage_in_bytes",
4636 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
4637 .write
= mem_cgroup_reset
,
4638 .read_u64
= mem_cgroup_read_u64
,
4641 .name
= "limit_in_bytes",
4642 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
4643 .write
= mem_cgroup_write
,
4644 .read_u64
= mem_cgroup_read_u64
,
4647 .name
= "soft_limit_in_bytes",
4648 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
4649 .write
= mem_cgroup_write
,
4650 .read_u64
= mem_cgroup_read_u64
,
4654 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
4655 .write
= mem_cgroup_reset
,
4656 .read_u64
= mem_cgroup_read_u64
,
4660 .seq_show
= memcg_stat_show
,
4663 .name
= "force_empty",
4664 .write
= mem_cgroup_force_empty_write
,
4667 .name
= "use_hierarchy",
4668 .write_u64
= mem_cgroup_hierarchy_write
,
4669 .read_u64
= mem_cgroup_hierarchy_read
,
4672 .name
= "cgroup.event_control", /* XXX: for compat */
4673 .write
= memcg_write_event_control
,
4674 .flags
= CFTYPE_NO_PREFIX
| CFTYPE_WORLD_WRITABLE
,
4677 .name
= "swappiness",
4678 .read_u64
= mem_cgroup_swappiness_read
,
4679 .write_u64
= mem_cgroup_swappiness_write
,
4682 .name
= "move_charge_at_immigrate",
4683 .read_u64
= mem_cgroup_move_charge_read
,
4684 .write_u64
= mem_cgroup_move_charge_write
,
4687 .name
= "oom_control",
4688 .seq_show
= mem_cgroup_oom_control_read
,
4689 .write_u64
= mem_cgroup_oom_control_write
,
4690 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
4693 .name
= "pressure_level",
4697 .name
= "numa_stat",
4698 .seq_show
= memcg_numa_stat_show
,
4702 .name
= "kmem.limit_in_bytes",
4703 .private = MEMFILE_PRIVATE(_KMEM
, RES_LIMIT
),
4704 .write
= mem_cgroup_write
,
4705 .read_u64
= mem_cgroup_read_u64
,
4708 .name
= "kmem.usage_in_bytes",
4709 .private = MEMFILE_PRIVATE(_KMEM
, RES_USAGE
),
4710 .read_u64
= mem_cgroup_read_u64
,
4713 .name
= "kmem.failcnt",
4714 .private = MEMFILE_PRIVATE(_KMEM
, RES_FAILCNT
),
4715 .write
= mem_cgroup_reset
,
4716 .read_u64
= mem_cgroup_read_u64
,
4719 .name
= "kmem.max_usage_in_bytes",
4720 .private = MEMFILE_PRIVATE(_KMEM
, RES_MAX_USAGE
),
4721 .write
= mem_cgroup_reset
,
4722 .read_u64
= mem_cgroup_read_u64
,
4724 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4726 .name
= "kmem.slabinfo",
4727 .seq_start
= memcg_slab_start
,
4728 .seq_next
= memcg_slab_next
,
4729 .seq_stop
= memcg_slab_stop
,
4730 .seq_show
= memcg_slab_show
,
4734 .name
= "kmem.tcp.limit_in_bytes",
4735 .private = MEMFILE_PRIVATE(_TCP
, RES_LIMIT
),
4736 .write
= mem_cgroup_write
,
4737 .read_u64
= mem_cgroup_read_u64
,
4740 .name
= "kmem.tcp.usage_in_bytes",
4741 .private = MEMFILE_PRIVATE(_TCP
, RES_USAGE
),
4742 .read_u64
= mem_cgroup_read_u64
,
4745 .name
= "kmem.tcp.failcnt",
4746 .private = MEMFILE_PRIVATE(_TCP
, RES_FAILCNT
),
4747 .write
= mem_cgroup_reset
,
4748 .read_u64
= mem_cgroup_read_u64
,
4751 .name
= "kmem.tcp.max_usage_in_bytes",
4752 .private = MEMFILE_PRIVATE(_TCP
, RES_MAX_USAGE
),
4753 .write
= mem_cgroup_reset
,
4754 .read_u64
= mem_cgroup_read_u64
,
4756 { }, /* terminate */
4760 * Private memory cgroup IDR
4762 * Swap-out records and page cache shadow entries need to store memcg
4763 * references in constrained space, so we maintain an ID space that is
4764 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4765 * memory-controlled cgroups to 64k.
4767 * However, there usually are many references to the oflline CSS after
4768 * the cgroup has been destroyed, such as page cache or reclaimable
4769 * slab objects, that don't need to hang on to the ID. We want to keep
4770 * those dead CSS from occupying IDs, or we might quickly exhaust the
4771 * relatively small ID space and prevent the creation of new cgroups
4772 * even when there are much fewer than 64k cgroups - possibly none.
4774 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4775 * be freed and recycled when it's no longer needed, which is usually
4776 * when the CSS is offlined.
4778 * The only exception to that are records of swapped out tmpfs/shmem
4779 * pages that need to be attributed to live ancestors on swapin. But
4780 * those references are manageable from userspace.
4783 static DEFINE_IDR(mem_cgroup_idr
);
4785 static void mem_cgroup_id_remove(struct mem_cgroup
*memcg
)
4787 if (memcg
->id
.id
> 0) {
4788 idr_remove(&mem_cgroup_idr
, memcg
->id
.id
);
4793 static void mem_cgroup_id_get_many(struct mem_cgroup
*memcg
, unsigned int n
)
4795 refcount_add(n
, &memcg
->id
.ref
);
4798 static void mem_cgroup_id_put_many(struct mem_cgroup
*memcg
, unsigned int n
)
4800 if (refcount_sub_and_test(n
, &memcg
->id
.ref
)) {
4801 mem_cgroup_id_remove(memcg
);
4803 /* Memcg ID pins CSS */
4804 css_put(&memcg
->css
);
4808 static inline void mem_cgroup_id_get(struct mem_cgroup
*memcg
)
4810 mem_cgroup_id_get_many(memcg
, 1);
4813 static inline void mem_cgroup_id_put(struct mem_cgroup
*memcg
)
4815 mem_cgroup_id_put_many(memcg
, 1);
4819 * mem_cgroup_from_id - look up a memcg from a memcg id
4820 * @id: the memcg id to look up
4822 * Caller must hold rcu_read_lock().
4824 struct mem_cgroup
*mem_cgroup_from_id(unsigned short id
)
4826 WARN_ON_ONCE(!rcu_read_lock_held());
4827 return idr_find(&mem_cgroup_idr
, id
);
4830 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup
*memcg
, int node
)
4832 struct mem_cgroup_per_node
*pn
;
4835 * This routine is called against possible nodes.
4836 * But it's BUG to call kmalloc() against offline node.
4838 * TODO: this routine can waste much memory for nodes which will
4839 * never be onlined. It's better to use memory hotplug callback
4842 if (!node_state(node
, N_NORMAL_MEMORY
))
4844 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4848 pn
->lruvec_stat_local
= alloc_percpu(struct lruvec_stat
);
4849 if (!pn
->lruvec_stat_local
) {
4854 pn
->lruvec_stat_cpu
= alloc_percpu(struct lruvec_stat
);
4855 if (!pn
->lruvec_stat_cpu
) {
4856 free_percpu(pn
->lruvec_stat_local
);
4861 lruvec_init(&pn
->lruvec
);
4862 pn
->usage_in_excess
= 0;
4863 pn
->on_tree
= false;
4866 memcg
->nodeinfo
[node
] = pn
;
4870 static void free_mem_cgroup_per_node_info(struct mem_cgroup
*memcg
, int node
)
4872 struct mem_cgroup_per_node
*pn
= memcg
->nodeinfo
[node
];
4877 free_percpu(pn
->lruvec_stat_cpu
);
4878 free_percpu(pn
->lruvec_stat_local
);
4882 static void __mem_cgroup_free(struct mem_cgroup
*memcg
)
4887 * Flush percpu vmstats and vmevents to guarantee the value correctness
4888 * on parent's and all ancestor levels.
4890 memcg_flush_percpu_vmstats(memcg
, false);
4891 memcg_flush_percpu_vmevents(memcg
);
4893 free_mem_cgroup_per_node_info(memcg
, node
);
4894 free_percpu(memcg
->vmstats_percpu
);
4895 free_percpu(memcg
->vmstats_local
);
4899 static void mem_cgroup_free(struct mem_cgroup
*memcg
)
4901 memcg_wb_domain_exit(memcg
);
4902 __mem_cgroup_free(memcg
);
4905 static struct mem_cgroup
*mem_cgroup_alloc(void)
4907 struct mem_cgroup
*memcg
;
4910 int __maybe_unused i
;
4912 size
= sizeof(struct mem_cgroup
);
4913 size
+= nr_node_ids
* sizeof(struct mem_cgroup_per_node
*);
4915 memcg
= kzalloc(size
, GFP_KERNEL
);
4919 memcg
->id
.id
= idr_alloc(&mem_cgroup_idr
, NULL
,
4920 1, MEM_CGROUP_ID_MAX
,
4922 if (memcg
->id
.id
< 0)
4925 memcg
->vmstats_local
= alloc_percpu(struct memcg_vmstats_percpu
);
4926 if (!memcg
->vmstats_local
)
4929 memcg
->vmstats_percpu
= alloc_percpu(struct memcg_vmstats_percpu
);
4930 if (!memcg
->vmstats_percpu
)
4934 if (alloc_mem_cgroup_per_node_info(memcg
, node
))
4937 if (memcg_wb_domain_init(memcg
, GFP_KERNEL
))
4940 INIT_WORK(&memcg
->high_work
, high_work_func
);
4941 memcg
->last_scanned_node
= MAX_NUMNODES
;
4942 INIT_LIST_HEAD(&memcg
->oom_notify
);
4943 mutex_init(&memcg
->thresholds_lock
);
4944 spin_lock_init(&memcg
->move_lock
);
4945 vmpressure_init(&memcg
->vmpressure
);
4946 INIT_LIST_HEAD(&memcg
->event_list
);
4947 spin_lock_init(&memcg
->event_list_lock
);
4948 memcg
->socket_pressure
= jiffies
;
4949 #ifdef CONFIG_MEMCG_KMEM
4950 memcg
->kmemcg_id
= -1;
4952 #ifdef CONFIG_CGROUP_WRITEBACK
4953 INIT_LIST_HEAD(&memcg
->cgwb_list
);
4954 for (i
= 0; i
< MEMCG_CGWB_FRN_CNT
; i
++)
4955 memcg
->cgwb_frn
[i
].done
=
4956 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq
);
4958 idr_replace(&mem_cgroup_idr
, memcg
, memcg
->id
.id
);
4961 mem_cgroup_id_remove(memcg
);
4962 __mem_cgroup_free(memcg
);
4966 static struct cgroup_subsys_state
* __ref
4967 mem_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
4969 struct mem_cgroup
*parent
= mem_cgroup_from_css(parent_css
);
4970 struct mem_cgroup
*memcg
;
4971 long error
= -ENOMEM
;
4973 memcg
= mem_cgroup_alloc();
4975 return ERR_PTR(error
);
4977 memcg
->high
= PAGE_COUNTER_MAX
;
4978 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4980 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
4981 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
4983 if (parent
&& parent
->use_hierarchy
) {
4984 memcg
->use_hierarchy
= true;
4985 page_counter_init(&memcg
->memory
, &parent
->memory
);
4986 page_counter_init(&memcg
->swap
, &parent
->swap
);
4987 page_counter_init(&memcg
->memsw
, &parent
->memsw
);
4988 page_counter_init(&memcg
->kmem
, &parent
->kmem
);
4989 page_counter_init(&memcg
->tcpmem
, &parent
->tcpmem
);
4991 page_counter_init(&memcg
->memory
, NULL
);
4992 page_counter_init(&memcg
->swap
, NULL
);
4993 page_counter_init(&memcg
->memsw
, NULL
);
4994 page_counter_init(&memcg
->kmem
, NULL
);
4995 page_counter_init(&memcg
->tcpmem
, NULL
);
4997 * Deeper hierachy with use_hierarchy == false doesn't make
4998 * much sense so let cgroup subsystem know about this
4999 * unfortunate state in our controller.
5001 if (parent
!= root_mem_cgroup
)
5002 memory_cgrp_subsys
.broken_hierarchy
= true;
5005 /* The following stuff does not apply to the root */
5007 #ifdef CONFIG_MEMCG_KMEM
5008 INIT_LIST_HEAD(&memcg
->kmem_caches
);
5010 root_mem_cgroup
= memcg
;
5014 error
= memcg_online_kmem(memcg
);
5018 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !cgroup_memory_nosocket
)
5019 static_branch_inc(&memcg_sockets_enabled_key
);
5023 mem_cgroup_id_remove(memcg
);
5024 mem_cgroup_free(memcg
);
5025 return ERR_PTR(-ENOMEM
);
5028 static int mem_cgroup_css_online(struct cgroup_subsys_state
*css
)
5030 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5033 * A memcg must be visible for memcg_expand_shrinker_maps()
5034 * by the time the maps are allocated. So, we allocate maps
5035 * here, when for_each_mem_cgroup() can't skip it.
5037 if (memcg_alloc_shrinker_maps(memcg
)) {
5038 mem_cgroup_id_remove(memcg
);
5042 /* Online state pins memcg ID, memcg ID pins CSS */
5043 refcount_set(&memcg
->id
.ref
, 1);
5048 static void mem_cgroup_css_offline(struct cgroup_subsys_state
*css
)
5050 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5051 struct mem_cgroup_event
*event
, *tmp
;
5054 * Unregister events and notify userspace.
5055 * Notify userspace about cgroup removing only after rmdir of cgroup
5056 * directory to avoid race between userspace and kernelspace.
5058 spin_lock(&memcg
->event_list_lock
);
5059 list_for_each_entry_safe(event
, tmp
, &memcg
->event_list
, list
) {
5060 list_del_init(&event
->list
);
5061 schedule_work(&event
->remove
);
5063 spin_unlock(&memcg
->event_list_lock
);
5065 page_counter_set_min(&memcg
->memory
, 0);
5066 page_counter_set_low(&memcg
->memory
, 0);
5068 memcg_offline_kmem(memcg
);
5069 wb_memcg_offline(memcg
);
5071 drain_all_stock(memcg
);
5073 mem_cgroup_id_put(memcg
);
5076 static void mem_cgroup_css_released(struct cgroup_subsys_state
*css
)
5078 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5080 invalidate_reclaim_iterators(memcg
);
5083 static void mem_cgroup_css_free(struct cgroup_subsys_state
*css
)
5085 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5086 int __maybe_unused i
;
5088 #ifdef CONFIG_CGROUP_WRITEBACK
5089 for (i
= 0; i
< MEMCG_CGWB_FRN_CNT
; i
++)
5090 wb_wait_for_completion(&memcg
->cgwb_frn
[i
].done
);
5092 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !cgroup_memory_nosocket
)
5093 static_branch_dec(&memcg_sockets_enabled_key
);
5095 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && memcg
->tcpmem_active
)
5096 static_branch_dec(&memcg_sockets_enabled_key
);
5098 vmpressure_cleanup(&memcg
->vmpressure
);
5099 cancel_work_sync(&memcg
->high_work
);
5100 mem_cgroup_remove_from_trees(memcg
);
5101 memcg_free_shrinker_maps(memcg
);
5102 memcg_free_kmem(memcg
);
5103 mem_cgroup_free(memcg
);
5107 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5108 * @css: the target css
5110 * Reset the states of the mem_cgroup associated with @css. This is
5111 * invoked when the userland requests disabling on the default hierarchy
5112 * but the memcg is pinned through dependency. The memcg should stop
5113 * applying policies and should revert to the vanilla state as it may be
5114 * made visible again.
5116 * The current implementation only resets the essential configurations.
5117 * This needs to be expanded to cover all the visible parts.
5119 static void mem_cgroup_css_reset(struct cgroup_subsys_state
*css
)
5121 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5123 page_counter_set_max(&memcg
->memory
, PAGE_COUNTER_MAX
);
5124 page_counter_set_max(&memcg
->swap
, PAGE_COUNTER_MAX
);
5125 page_counter_set_max(&memcg
->memsw
, PAGE_COUNTER_MAX
);
5126 page_counter_set_max(&memcg
->kmem
, PAGE_COUNTER_MAX
);
5127 page_counter_set_max(&memcg
->tcpmem
, PAGE_COUNTER_MAX
);
5128 page_counter_set_min(&memcg
->memory
, 0);
5129 page_counter_set_low(&memcg
->memory
, 0);
5130 memcg
->high
= PAGE_COUNTER_MAX
;
5131 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
5132 memcg_wb_domain_size_changed(memcg
);
5136 /* Handlers for move charge at task migration. */
5137 static int mem_cgroup_do_precharge(unsigned long count
)
5141 /* Try a single bulk charge without reclaim first, kswapd may wake */
5142 ret
= try_charge(mc
.to
, GFP_KERNEL
& ~__GFP_DIRECT_RECLAIM
, count
);
5144 mc
.precharge
+= count
;
5148 /* Try charges one by one with reclaim, but do not retry */
5150 ret
= try_charge(mc
.to
, GFP_KERNEL
| __GFP_NORETRY
, 1);
5164 enum mc_target_type
{
5171 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
5172 unsigned long addr
, pte_t ptent
)
5174 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
5176 if (!page
|| !page_mapped(page
))
5178 if (PageAnon(page
)) {
5179 if (!(mc
.flags
& MOVE_ANON
))
5182 if (!(mc
.flags
& MOVE_FILE
))
5185 if (!get_page_unless_zero(page
))
5191 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5192 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
5193 pte_t ptent
, swp_entry_t
*entry
)
5195 struct page
*page
= NULL
;
5196 swp_entry_t ent
= pte_to_swp_entry(ptent
);
5198 if (!(mc
.flags
& MOVE_ANON
) || non_swap_entry(ent
))
5202 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5203 * a device and because they are not accessible by CPU they are store
5204 * as special swap entry in the CPU page table.
5206 if (is_device_private_entry(ent
)) {
5207 page
= device_private_entry_to_page(ent
);
5209 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5210 * a refcount of 1 when free (unlike normal page)
5212 if (!page_ref_add_unless(page
, 1, 1))
5218 * Because lookup_swap_cache() updates some statistics counter,
5219 * we call find_get_page() with swapper_space directly.
5221 page
= find_get_page(swap_address_space(ent
), swp_offset(ent
));
5222 if (do_memsw_account())
5223 entry
->val
= ent
.val
;
5228 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
5229 pte_t ptent
, swp_entry_t
*entry
)
5235 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
5236 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5238 struct page
*page
= NULL
;
5239 struct address_space
*mapping
;
5242 if (!vma
->vm_file
) /* anonymous vma */
5244 if (!(mc
.flags
& MOVE_FILE
))
5247 mapping
= vma
->vm_file
->f_mapping
;
5248 pgoff
= linear_page_index(vma
, addr
);
5250 /* page is moved even if it's not RSS of this task(page-faulted). */
5252 /* shmem/tmpfs may report page out on swap: account for that too. */
5253 if (shmem_mapping(mapping
)) {
5254 page
= find_get_entry(mapping
, pgoff
);
5255 if (xa_is_value(page
)) {
5256 swp_entry_t swp
= radix_to_swp_entry(page
);
5257 if (do_memsw_account())
5259 page
= find_get_page(swap_address_space(swp
),
5263 page
= find_get_page(mapping
, pgoff
);
5265 page
= find_get_page(mapping
, pgoff
);
5271 * mem_cgroup_move_account - move account of the page
5273 * @compound: charge the page as compound or small page
5274 * @from: mem_cgroup which the page is moved from.
5275 * @to: mem_cgroup which the page is moved to. @from != @to.
5277 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5279 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5282 static int mem_cgroup_move_account(struct page
*page
,
5284 struct mem_cgroup
*from
,
5285 struct mem_cgroup
*to
)
5287 unsigned long flags
;
5288 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5292 VM_BUG_ON(from
== to
);
5293 VM_BUG_ON_PAGE(PageLRU(page
), page
);
5294 VM_BUG_ON(compound
&& !PageTransHuge(page
));
5297 * Prevent mem_cgroup_migrate() from looking at
5298 * page->mem_cgroup of its source page while we change it.
5301 if (!trylock_page(page
))
5305 if (page
->mem_cgroup
!= from
)
5308 anon
= PageAnon(page
);
5310 spin_lock_irqsave(&from
->move_lock
, flags
);
5312 if (!anon
&& page_mapped(page
)) {
5313 __mod_memcg_state(from
, NR_FILE_MAPPED
, -nr_pages
);
5314 __mod_memcg_state(to
, NR_FILE_MAPPED
, nr_pages
);
5318 * move_lock grabbed above and caller set from->moving_account, so
5319 * mod_memcg_page_state will serialize updates to PageDirty.
5320 * So mapping should be stable for dirty pages.
5322 if (!anon
&& PageDirty(page
)) {
5323 struct address_space
*mapping
= page_mapping(page
);
5325 if (mapping_cap_account_dirty(mapping
)) {
5326 __mod_memcg_state(from
, NR_FILE_DIRTY
, -nr_pages
);
5327 __mod_memcg_state(to
, NR_FILE_DIRTY
, nr_pages
);
5331 if (PageWriteback(page
)) {
5332 __mod_memcg_state(from
, NR_WRITEBACK
, -nr_pages
);
5333 __mod_memcg_state(to
, NR_WRITEBACK
, nr_pages
);
5337 * It is safe to change page->mem_cgroup here because the page
5338 * is referenced, charged, and isolated - we can't race with
5339 * uncharging, charging, migration, or LRU putback.
5342 /* caller should have done css_get */
5343 page
->mem_cgroup
= to
;
5344 spin_unlock_irqrestore(&from
->move_lock
, flags
);
5348 local_irq_disable();
5349 mem_cgroup_charge_statistics(to
, page
, compound
, nr_pages
);
5350 memcg_check_events(to
, page
);
5351 mem_cgroup_charge_statistics(from
, page
, compound
, -nr_pages
);
5352 memcg_check_events(from
, page
);
5361 * get_mctgt_type - get target type of moving charge
5362 * @vma: the vma the pte to be checked belongs
5363 * @addr: the address corresponding to the pte to be checked
5364 * @ptent: the pte to be checked
5365 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5368 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5369 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5370 * move charge. if @target is not NULL, the page is stored in target->page
5371 * with extra refcnt got(Callers should handle it).
5372 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5373 * target for charge migration. if @target is not NULL, the entry is stored
5375 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5376 * (so ZONE_DEVICE page and thus not on the lru).
5377 * For now we such page is charge like a regular page would be as for all
5378 * intent and purposes it is just special memory taking the place of a
5381 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5383 * Called with pte lock held.
5386 static enum mc_target_type
get_mctgt_type(struct vm_area_struct
*vma
,
5387 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
5389 struct page
*page
= NULL
;
5390 enum mc_target_type ret
= MC_TARGET_NONE
;
5391 swp_entry_t ent
= { .val
= 0 };
5393 if (pte_present(ptent
))
5394 page
= mc_handle_present_pte(vma
, addr
, ptent
);
5395 else if (is_swap_pte(ptent
))
5396 page
= mc_handle_swap_pte(vma
, ptent
, &ent
);
5397 else if (pte_none(ptent
))
5398 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
5400 if (!page
&& !ent
.val
)
5404 * Do only loose check w/o serialization.
5405 * mem_cgroup_move_account() checks the page is valid or
5406 * not under LRU exclusion.
5408 if (page
->mem_cgroup
== mc
.from
) {
5409 ret
= MC_TARGET_PAGE
;
5410 if (is_device_private_page(page
))
5411 ret
= MC_TARGET_DEVICE
;
5413 target
->page
= page
;
5415 if (!ret
|| !target
)
5419 * There is a swap entry and a page doesn't exist or isn't charged.
5420 * But we cannot move a tail-page in a THP.
5422 if (ent
.val
&& !ret
&& (!page
|| !PageTransCompound(page
)) &&
5423 mem_cgroup_id(mc
.from
) == lookup_swap_cgroup_id(ent
)) {
5424 ret
= MC_TARGET_SWAP
;
5431 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5433 * We don't consider PMD mapped swapping or file mapped pages because THP does
5434 * not support them for now.
5435 * Caller should make sure that pmd_trans_huge(pmd) is true.
5437 static enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
5438 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
5440 struct page
*page
= NULL
;
5441 enum mc_target_type ret
= MC_TARGET_NONE
;
5443 if (unlikely(is_swap_pmd(pmd
))) {
5444 VM_BUG_ON(thp_migration_supported() &&
5445 !is_pmd_migration_entry(pmd
));
5448 page
= pmd_page(pmd
);
5449 VM_BUG_ON_PAGE(!page
|| !PageHead(page
), page
);
5450 if (!(mc
.flags
& MOVE_ANON
))
5452 if (page
->mem_cgroup
== mc
.from
) {
5453 ret
= MC_TARGET_PAGE
;
5456 target
->page
= page
;
5462 static inline enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
5463 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
5465 return MC_TARGET_NONE
;
5469 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
5470 unsigned long addr
, unsigned long end
,
5471 struct mm_walk
*walk
)
5473 struct vm_area_struct
*vma
= walk
->vma
;
5477 ptl
= pmd_trans_huge_lock(pmd
, vma
);
5480 * Note their can not be MC_TARGET_DEVICE for now as we do not
5481 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5482 * this might change.
5484 if (get_mctgt_type_thp(vma
, addr
, *pmd
, NULL
) == MC_TARGET_PAGE
)
5485 mc
.precharge
+= HPAGE_PMD_NR
;
5490 if (pmd_trans_unstable(pmd
))
5492 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5493 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
5494 if (get_mctgt_type(vma
, addr
, *pte
, NULL
))
5495 mc
.precharge
++; /* increment precharge temporarily */
5496 pte_unmap_unlock(pte
- 1, ptl
);
5502 static const struct mm_walk_ops precharge_walk_ops
= {
5503 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
5506 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
5508 unsigned long precharge
;
5510 down_read(&mm
->mmap_sem
);
5511 walk_page_range(mm
, 0, mm
->highest_vm_end
, &precharge_walk_ops
, NULL
);
5512 up_read(&mm
->mmap_sem
);
5514 precharge
= mc
.precharge
;
5520 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
5522 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
5524 VM_BUG_ON(mc
.moving_task
);
5525 mc
.moving_task
= current
;
5526 return mem_cgroup_do_precharge(precharge
);
5529 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5530 static void __mem_cgroup_clear_mc(void)
5532 struct mem_cgroup
*from
= mc
.from
;
5533 struct mem_cgroup
*to
= mc
.to
;
5535 /* we must uncharge all the leftover precharges from mc.to */
5537 cancel_charge(mc
.to
, mc
.precharge
);
5541 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5542 * we must uncharge here.
5544 if (mc
.moved_charge
) {
5545 cancel_charge(mc
.from
, mc
.moved_charge
);
5546 mc
.moved_charge
= 0;
5548 /* we must fixup refcnts and charges */
5549 if (mc
.moved_swap
) {
5550 /* uncharge swap account from the old cgroup */
5551 if (!mem_cgroup_is_root(mc
.from
))
5552 page_counter_uncharge(&mc
.from
->memsw
, mc
.moved_swap
);
5554 mem_cgroup_id_put_many(mc
.from
, mc
.moved_swap
);
5557 * we charged both to->memory and to->memsw, so we
5558 * should uncharge to->memory.
5560 if (!mem_cgroup_is_root(mc
.to
))
5561 page_counter_uncharge(&mc
.to
->memory
, mc
.moved_swap
);
5563 mem_cgroup_id_get_many(mc
.to
, mc
.moved_swap
);
5564 css_put_many(&mc
.to
->css
, mc
.moved_swap
);
5568 memcg_oom_recover(from
);
5569 memcg_oom_recover(to
);
5570 wake_up_all(&mc
.waitq
);
5573 static void mem_cgroup_clear_mc(void)
5575 struct mm_struct
*mm
= mc
.mm
;
5578 * we must clear moving_task before waking up waiters at the end of
5581 mc
.moving_task
= NULL
;
5582 __mem_cgroup_clear_mc();
5583 spin_lock(&mc
.lock
);
5587 spin_unlock(&mc
.lock
);
5592 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
5594 struct cgroup_subsys_state
*css
;
5595 struct mem_cgroup
*memcg
= NULL
; /* unneeded init to make gcc happy */
5596 struct mem_cgroup
*from
;
5597 struct task_struct
*leader
, *p
;
5598 struct mm_struct
*mm
;
5599 unsigned long move_flags
;
5602 /* charge immigration isn't supported on the default hierarchy */
5603 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5607 * Multi-process migrations only happen on the default hierarchy
5608 * where charge immigration is not used. Perform charge
5609 * immigration if @tset contains a leader and whine if there are
5613 cgroup_taskset_for_each_leader(leader
, css
, tset
) {
5616 memcg
= mem_cgroup_from_css(css
);
5622 * We are now commited to this value whatever it is. Changes in this
5623 * tunable will only affect upcoming migrations, not the current one.
5624 * So we need to save it, and keep it going.
5626 move_flags
= READ_ONCE(memcg
->move_charge_at_immigrate
);
5630 from
= mem_cgroup_from_task(p
);
5632 VM_BUG_ON(from
== memcg
);
5634 mm
= get_task_mm(p
);
5637 /* We move charges only when we move a owner of the mm */
5638 if (mm
->owner
== p
) {
5641 VM_BUG_ON(mc
.precharge
);
5642 VM_BUG_ON(mc
.moved_charge
);
5643 VM_BUG_ON(mc
.moved_swap
);
5645 spin_lock(&mc
.lock
);
5649 mc
.flags
= move_flags
;
5650 spin_unlock(&mc
.lock
);
5651 /* We set mc.moving_task later */
5653 ret
= mem_cgroup_precharge_mc(mm
);
5655 mem_cgroup_clear_mc();
5662 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
5665 mem_cgroup_clear_mc();
5668 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
5669 unsigned long addr
, unsigned long end
,
5670 struct mm_walk
*walk
)
5673 struct vm_area_struct
*vma
= walk
->vma
;
5676 enum mc_target_type target_type
;
5677 union mc_target target
;
5680 ptl
= pmd_trans_huge_lock(pmd
, vma
);
5682 if (mc
.precharge
< HPAGE_PMD_NR
) {
5686 target_type
= get_mctgt_type_thp(vma
, addr
, *pmd
, &target
);
5687 if (target_type
== MC_TARGET_PAGE
) {
5689 if (!isolate_lru_page(page
)) {
5690 if (!mem_cgroup_move_account(page
, true,
5692 mc
.precharge
-= HPAGE_PMD_NR
;
5693 mc
.moved_charge
+= HPAGE_PMD_NR
;
5695 putback_lru_page(page
);
5698 } else if (target_type
== MC_TARGET_DEVICE
) {
5700 if (!mem_cgroup_move_account(page
, true,
5702 mc
.precharge
-= HPAGE_PMD_NR
;
5703 mc
.moved_charge
+= HPAGE_PMD_NR
;
5711 if (pmd_trans_unstable(pmd
))
5714 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5715 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
5716 pte_t ptent
= *(pte
++);
5717 bool device
= false;
5723 switch (get_mctgt_type(vma
, addr
, ptent
, &target
)) {
5724 case MC_TARGET_DEVICE
:
5727 case MC_TARGET_PAGE
:
5730 * We can have a part of the split pmd here. Moving it
5731 * can be done but it would be too convoluted so simply
5732 * ignore such a partial THP and keep it in original
5733 * memcg. There should be somebody mapping the head.
5735 if (PageTransCompound(page
))
5737 if (!device
&& isolate_lru_page(page
))
5739 if (!mem_cgroup_move_account(page
, false,
5742 /* we uncharge from mc.from later. */
5746 putback_lru_page(page
);
5747 put
: /* get_mctgt_type() gets the page */
5750 case MC_TARGET_SWAP
:
5752 if (!mem_cgroup_move_swap_account(ent
, mc
.from
, mc
.to
)) {
5754 /* we fixup refcnts and charges later. */
5762 pte_unmap_unlock(pte
- 1, ptl
);
5767 * We have consumed all precharges we got in can_attach().
5768 * We try charge one by one, but don't do any additional
5769 * charges to mc.to if we have failed in charge once in attach()
5772 ret
= mem_cgroup_do_precharge(1);
5780 static const struct mm_walk_ops charge_walk_ops
= {
5781 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
5784 static void mem_cgroup_move_charge(void)
5786 lru_add_drain_all();
5788 * Signal lock_page_memcg() to take the memcg's move_lock
5789 * while we're moving its pages to another memcg. Then wait
5790 * for already started RCU-only updates to finish.
5792 atomic_inc(&mc
.from
->moving_account
);
5795 if (unlikely(!down_read_trylock(&mc
.mm
->mmap_sem
))) {
5797 * Someone who are holding the mmap_sem might be waiting in
5798 * waitq. So we cancel all extra charges, wake up all waiters,
5799 * and retry. Because we cancel precharges, we might not be able
5800 * to move enough charges, but moving charge is a best-effort
5801 * feature anyway, so it wouldn't be a big problem.
5803 __mem_cgroup_clear_mc();
5808 * When we have consumed all precharges and failed in doing
5809 * additional charge, the page walk just aborts.
5811 walk_page_range(mc
.mm
, 0, mc
.mm
->highest_vm_end
, &charge_walk_ops
,
5814 up_read(&mc
.mm
->mmap_sem
);
5815 atomic_dec(&mc
.from
->moving_account
);
5818 static void mem_cgroup_move_task(void)
5821 mem_cgroup_move_charge();
5822 mem_cgroup_clear_mc();
5825 #else /* !CONFIG_MMU */
5826 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
5830 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
5833 static void mem_cgroup_move_task(void)
5839 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5840 * to verify whether we're attached to the default hierarchy on each mount
5843 static void mem_cgroup_bind(struct cgroup_subsys_state
*root_css
)
5846 * use_hierarchy is forced on the default hierarchy. cgroup core
5847 * guarantees that @root doesn't have any children, so turning it
5848 * on for the root memcg is enough.
5850 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5851 root_mem_cgroup
->use_hierarchy
= true;
5853 root_mem_cgroup
->use_hierarchy
= false;
5856 static int seq_puts_memcg_tunable(struct seq_file
*m
, unsigned long value
)
5858 if (value
== PAGE_COUNTER_MAX
)
5859 seq_puts(m
, "max\n");
5861 seq_printf(m
, "%llu\n", (u64
)value
* PAGE_SIZE
);
5866 static u64
memory_current_read(struct cgroup_subsys_state
*css
,
5869 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5871 return (u64
)page_counter_read(&memcg
->memory
) * PAGE_SIZE
;
5874 static int memory_min_show(struct seq_file
*m
, void *v
)
5876 return seq_puts_memcg_tunable(m
,
5877 READ_ONCE(mem_cgroup_from_seq(m
)->memory
.min
));
5880 static ssize_t
memory_min_write(struct kernfs_open_file
*of
,
5881 char *buf
, size_t nbytes
, loff_t off
)
5883 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5887 buf
= strstrip(buf
);
5888 err
= page_counter_memparse(buf
, "max", &min
);
5892 page_counter_set_min(&memcg
->memory
, min
);
5897 static int memory_low_show(struct seq_file
*m
, void *v
)
5899 return seq_puts_memcg_tunable(m
,
5900 READ_ONCE(mem_cgroup_from_seq(m
)->memory
.low
));
5903 static ssize_t
memory_low_write(struct kernfs_open_file
*of
,
5904 char *buf
, size_t nbytes
, loff_t off
)
5906 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5910 buf
= strstrip(buf
);
5911 err
= page_counter_memparse(buf
, "max", &low
);
5915 page_counter_set_low(&memcg
->memory
, low
);
5920 static int memory_high_show(struct seq_file
*m
, void *v
)
5922 return seq_puts_memcg_tunable(m
, READ_ONCE(mem_cgroup_from_seq(m
)->high
));
5925 static ssize_t
memory_high_write(struct kernfs_open_file
*of
,
5926 char *buf
, size_t nbytes
, loff_t off
)
5928 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5929 unsigned long nr_pages
;
5933 buf
= strstrip(buf
);
5934 err
= page_counter_memparse(buf
, "max", &high
);
5940 nr_pages
= page_counter_read(&memcg
->memory
);
5941 if (nr_pages
> high
)
5942 try_to_free_mem_cgroup_pages(memcg
, nr_pages
- high
,
5945 memcg_wb_domain_size_changed(memcg
);
5949 static int memory_max_show(struct seq_file
*m
, void *v
)
5951 return seq_puts_memcg_tunable(m
,
5952 READ_ONCE(mem_cgroup_from_seq(m
)->memory
.max
));
5955 static ssize_t
memory_max_write(struct kernfs_open_file
*of
,
5956 char *buf
, size_t nbytes
, loff_t off
)
5958 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5959 unsigned int nr_reclaims
= MEM_CGROUP_RECLAIM_RETRIES
;
5960 bool drained
= false;
5964 buf
= strstrip(buf
);
5965 err
= page_counter_memparse(buf
, "max", &max
);
5969 xchg(&memcg
->memory
.max
, max
);
5972 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
5974 if (nr_pages
<= max
)
5977 if (signal_pending(current
)) {
5983 drain_all_stock(memcg
);
5989 if (!try_to_free_mem_cgroup_pages(memcg
, nr_pages
- max
,
5995 memcg_memory_event(memcg
, MEMCG_OOM
);
5996 if (!mem_cgroup_out_of_memory(memcg
, GFP_KERNEL
, 0))
6000 memcg_wb_domain_size_changed(memcg
);
6004 static void __memory_events_show(struct seq_file
*m
, atomic_long_t
*events
)
6006 seq_printf(m
, "low %lu\n", atomic_long_read(&events
[MEMCG_LOW
]));
6007 seq_printf(m
, "high %lu\n", atomic_long_read(&events
[MEMCG_HIGH
]));
6008 seq_printf(m
, "max %lu\n", atomic_long_read(&events
[MEMCG_MAX
]));
6009 seq_printf(m
, "oom %lu\n", atomic_long_read(&events
[MEMCG_OOM
]));
6010 seq_printf(m
, "oom_kill %lu\n",
6011 atomic_long_read(&events
[MEMCG_OOM_KILL
]));
6014 static int memory_events_show(struct seq_file
*m
, void *v
)
6016 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(m
);
6018 __memory_events_show(m
, memcg
->memory_events
);
6022 static int memory_events_local_show(struct seq_file
*m
, void *v
)
6024 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(m
);
6026 __memory_events_show(m
, memcg
->memory_events_local
);
6030 static int memory_stat_show(struct seq_file
*m
, void *v
)
6032 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(m
);
6035 buf
= memory_stat_format(memcg
);
6043 static int memory_oom_group_show(struct seq_file
*m
, void *v
)
6045 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(m
);
6047 seq_printf(m
, "%d\n", memcg
->oom_group
);
6052 static ssize_t
memory_oom_group_write(struct kernfs_open_file
*of
,
6053 char *buf
, size_t nbytes
, loff_t off
)
6055 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
6058 buf
= strstrip(buf
);
6062 ret
= kstrtoint(buf
, 0, &oom_group
);
6066 if (oom_group
!= 0 && oom_group
!= 1)
6069 memcg
->oom_group
= oom_group
;
6074 static struct cftype memory_files
[] = {
6077 .flags
= CFTYPE_NOT_ON_ROOT
,
6078 .read_u64
= memory_current_read
,
6082 .flags
= CFTYPE_NOT_ON_ROOT
,
6083 .seq_show
= memory_min_show
,
6084 .write
= memory_min_write
,
6088 .flags
= CFTYPE_NOT_ON_ROOT
,
6089 .seq_show
= memory_low_show
,
6090 .write
= memory_low_write
,
6094 .flags
= CFTYPE_NOT_ON_ROOT
,
6095 .seq_show
= memory_high_show
,
6096 .write
= memory_high_write
,
6100 .flags
= CFTYPE_NOT_ON_ROOT
,
6101 .seq_show
= memory_max_show
,
6102 .write
= memory_max_write
,
6106 .flags
= CFTYPE_NOT_ON_ROOT
,
6107 .file_offset
= offsetof(struct mem_cgroup
, events_file
),
6108 .seq_show
= memory_events_show
,
6111 .name
= "events.local",
6112 .flags
= CFTYPE_NOT_ON_ROOT
,
6113 .file_offset
= offsetof(struct mem_cgroup
, events_local_file
),
6114 .seq_show
= memory_events_local_show
,
6118 .flags
= CFTYPE_NOT_ON_ROOT
,
6119 .seq_show
= memory_stat_show
,
6122 .name
= "oom.group",
6123 .flags
= CFTYPE_NOT_ON_ROOT
| CFTYPE_NS_DELEGATABLE
,
6124 .seq_show
= memory_oom_group_show
,
6125 .write
= memory_oom_group_write
,
6130 struct cgroup_subsys memory_cgrp_subsys
= {
6131 .css_alloc
= mem_cgroup_css_alloc
,
6132 .css_online
= mem_cgroup_css_online
,
6133 .css_offline
= mem_cgroup_css_offline
,
6134 .css_released
= mem_cgroup_css_released
,
6135 .css_free
= mem_cgroup_css_free
,
6136 .css_reset
= mem_cgroup_css_reset
,
6137 .can_attach
= mem_cgroup_can_attach
,
6138 .cancel_attach
= mem_cgroup_cancel_attach
,
6139 .post_attach
= mem_cgroup_move_task
,
6140 .bind
= mem_cgroup_bind
,
6141 .dfl_cftypes
= memory_files
,
6142 .legacy_cftypes
= mem_cgroup_legacy_files
,
6147 * mem_cgroup_protected - check if memory consumption is in the normal range
6148 * @root: the top ancestor of the sub-tree being checked
6149 * @memcg: the memory cgroup to check
6151 * WARNING: This function is not stateless! It can only be used as part
6152 * of a top-down tree iteration, not for isolated queries.
6154 * Returns one of the following:
6155 * MEMCG_PROT_NONE: cgroup memory is not protected
6156 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6157 * an unprotected supply of reclaimable memory from other cgroups.
6158 * MEMCG_PROT_MIN: cgroup memory is protected
6160 * @root is exclusive; it is never protected when looked at directly
6162 * To provide a proper hierarchical behavior, effective memory.min/low values
6163 * are used. Below is the description of how effective memory.low is calculated.
6164 * Effective memory.min values is calculated in the same way.
6166 * Effective memory.low is always equal or less than the original memory.low.
6167 * If there is no memory.low overcommittment (which is always true for
6168 * top-level memory cgroups), these two values are equal.
6169 * Otherwise, it's a part of parent's effective memory.low,
6170 * calculated as a cgroup's memory.low usage divided by sum of sibling's
6171 * memory.low usages, where memory.low usage is the size of actually
6175 * elow = min( memory.low, parent->elow * ------------------ ),
6176 * siblings_low_usage
6178 * | memory.current, if memory.current < memory.low
6183 * Such definition of the effective memory.low provides the expected
6184 * hierarchical behavior: parent's memory.low value is limiting
6185 * children, unprotected memory is reclaimed first and cgroups,
6186 * which are not using their guarantee do not affect actual memory
6189 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6191 * A A/memory.low = 2G, A/memory.current = 6G
6193 * BC DE B/memory.low = 3G B/memory.current = 2G
6194 * C/memory.low = 1G C/memory.current = 2G
6195 * D/memory.low = 0 D/memory.current = 2G
6196 * E/memory.low = 10G E/memory.current = 0
6198 * and the memory pressure is applied, the following memory distribution
6199 * is expected (approximately):
6201 * A/memory.current = 2G
6203 * B/memory.current = 1.3G
6204 * C/memory.current = 0.6G
6205 * D/memory.current = 0
6206 * E/memory.current = 0
6208 * These calculations require constant tracking of the actual low usages
6209 * (see propagate_protected_usage()), as well as recursive calculation of
6210 * effective memory.low values. But as we do call mem_cgroup_protected()
6211 * path for each memory cgroup top-down from the reclaim,
6212 * it's possible to optimize this part, and save calculated elow
6213 * for next usage. This part is intentionally racy, but it's ok,
6214 * as memory.low is a best-effort mechanism.
6216 enum mem_cgroup_protection
mem_cgroup_protected(struct mem_cgroup
*root
,
6217 struct mem_cgroup
*memcg
)
6219 struct mem_cgroup
*parent
;
6220 unsigned long emin
, parent_emin
;
6221 unsigned long elow
, parent_elow
;
6222 unsigned long usage
;
6224 if (mem_cgroup_disabled())
6225 return MEMCG_PROT_NONE
;
6228 root
= root_mem_cgroup
;
6230 return MEMCG_PROT_NONE
;
6232 usage
= page_counter_read(&memcg
->memory
);
6234 return MEMCG_PROT_NONE
;
6236 emin
= memcg
->memory
.min
;
6237 elow
= memcg
->memory
.low
;
6239 parent
= parent_mem_cgroup(memcg
);
6240 /* No parent means a non-hierarchical mode on v1 memcg */
6242 return MEMCG_PROT_NONE
;
6247 parent_emin
= READ_ONCE(parent
->memory
.emin
);
6248 emin
= min(emin
, parent_emin
);
6249 if (emin
&& parent_emin
) {
6250 unsigned long min_usage
, siblings_min_usage
;
6252 min_usage
= min(usage
, memcg
->memory
.min
);
6253 siblings_min_usage
= atomic_long_read(
6254 &parent
->memory
.children_min_usage
);
6256 if (min_usage
&& siblings_min_usage
)
6257 emin
= min(emin
, parent_emin
* min_usage
/
6258 siblings_min_usage
);
6261 parent_elow
= READ_ONCE(parent
->memory
.elow
);
6262 elow
= min(elow
, parent_elow
);
6263 if (elow
&& parent_elow
) {
6264 unsigned long low_usage
, siblings_low_usage
;
6266 low_usage
= min(usage
, memcg
->memory
.low
);
6267 siblings_low_usage
= atomic_long_read(
6268 &parent
->memory
.children_low_usage
);
6270 if (low_usage
&& siblings_low_usage
)
6271 elow
= min(elow
, parent_elow
* low_usage
/
6272 siblings_low_usage
);
6276 memcg
->memory
.emin
= emin
;
6277 memcg
->memory
.elow
= elow
;
6280 return MEMCG_PROT_MIN
;
6281 else if (usage
<= elow
)
6282 return MEMCG_PROT_LOW
;
6284 return MEMCG_PROT_NONE
;
6288 * mem_cgroup_try_charge - try charging a page
6289 * @page: page to charge
6290 * @mm: mm context of the victim
6291 * @gfp_mask: reclaim mode
6292 * @memcgp: charged memcg return
6293 * @compound: charge the page as compound or small page
6295 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6296 * pages according to @gfp_mask if necessary.
6298 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6299 * Otherwise, an error code is returned.
6301 * After page->mapping has been set up, the caller must finalize the
6302 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6303 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6305 int mem_cgroup_try_charge(struct page
*page
, struct mm_struct
*mm
,
6306 gfp_t gfp_mask
, struct mem_cgroup
**memcgp
,
6309 struct mem_cgroup
*memcg
= NULL
;
6310 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
6313 if (mem_cgroup_disabled())
6316 if (PageSwapCache(page
)) {
6318 * Every swap fault against a single page tries to charge the
6319 * page, bail as early as possible. shmem_unuse() encounters
6320 * already charged pages, too. The USED bit is protected by
6321 * the page lock, which serializes swap cache removal, which
6322 * in turn serializes uncharging.
6324 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
6325 if (compound_head(page
)->mem_cgroup
)
6328 if (do_swap_account
) {
6329 swp_entry_t ent
= { .val
= page_private(page
), };
6330 unsigned short id
= lookup_swap_cgroup_id(ent
);
6333 memcg
= mem_cgroup_from_id(id
);
6334 if (memcg
&& !css_tryget_online(&memcg
->css
))
6341 memcg
= get_mem_cgroup_from_mm(mm
);
6343 ret
= try_charge(memcg
, gfp_mask
, nr_pages
);
6345 css_put(&memcg
->css
);
6351 int mem_cgroup_try_charge_delay(struct page
*page
, struct mm_struct
*mm
,
6352 gfp_t gfp_mask
, struct mem_cgroup
**memcgp
,
6355 struct mem_cgroup
*memcg
;
6358 ret
= mem_cgroup_try_charge(page
, mm
, gfp_mask
, memcgp
, compound
);
6360 mem_cgroup_throttle_swaprate(memcg
, page_to_nid(page
), gfp_mask
);
6365 * mem_cgroup_commit_charge - commit a page charge
6366 * @page: page to charge
6367 * @memcg: memcg to charge the page to
6368 * @lrucare: page might be on LRU already
6369 * @compound: charge the page as compound or small page
6371 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6372 * after page->mapping has been set up. This must happen atomically
6373 * as part of the page instantiation, i.e. under the page table lock
6374 * for anonymous pages, under the page lock for page and swap cache.
6376 * In addition, the page must not be on the LRU during the commit, to
6377 * prevent racing with task migration. If it might be, use @lrucare.
6379 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6381 void mem_cgroup_commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
6382 bool lrucare
, bool compound
)
6384 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
6386 VM_BUG_ON_PAGE(!page
->mapping
, page
);
6387 VM_BUG_ON_PAGE(PageLRU(page
) && !lrucare
, page
);
6389 if (mem_cgroup_disabled())
6392 * Swap faults will attempt to charge the same page multiple
6393 * times. But reuse_swap_page() might have removed the page
6394 * from swapcache already, so we can't check PageSwapCache().
6399 commit_charge(page
, memcg
, lrucare
);
6401 local_irq_disable();
6402 mem_cgroup_charge_statistics(memcg
, page
, compound
, nr_pages
);
6403 memcg_check_events(memcg
, page
);
6406 if (do_memsw_account() && PageSwapCache(page
)) {
6407 swp_entry_t entry
= { .val
= page_private(page
) };
6409 * The swap entry might not get freed for a long time,
6410 * let's not wait for it. The page already received a
6411 * memory+swap charge, drop the swap entry duplicate.
6413 mem_cgroup_uncharge_swap(entry
, nr_pages
);
6418 * mem_cgroup_cancel_charge - cancel a page charge
6419 * @page: page to charge
6420 * @memcg: memcg to charge the page to
6421 * @compound: charge the page as compound or small page
6423 * Cancel a charge transaction started by mem_cgroup_try_charge().
6425 void mem_cgroup_cancel_charge(struct page
*page
, struct mem_cgroup
*memcg
,
6428 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
6430 if (mem_cgroup_disabled())
6433 * Swap faults will attempt to charge the same page multiple
6434 * times. But reuse_swap_page() might have removed the page
6435 * from swapcache already, so we can't check PageSwapCache().
6440 cancel_charge(memcg
, nr_pages
);
6443 struct uncharge_gather
{
6444 struct mem_cgroup
*memcg
;
6445 unsigned long pgpgout
;
6446 unsigned long nr_anon
;
6447 unsigned long nr_file
;
6448 unsigned long nr_kmem
;
6449 unsigned long nr_huge
;
6450 unsigned long nr_shmem
;
6451 struct page
*dummy_page
;
6454 static inline void uncharge_gather_clear(struct uncharge_gather
*ug
)
6456 memset(ug
, 0, sizeof(*ug
));
6459 static void uncharge_batch(const struct uncharge_gather
*ug
)
6461 unsigned long nr_pages
= ug
->nr_anon
+ ug
->nr_file
+ ug
->nr_kmem
;
6462 unsigned long flags
;
6464 if (!mem_cgroup_is_root(ug
->memcg
)) {
6465 page_counter_uncharge(&ug
->memcg
->memory
, nr_pages
);
6466 if (do_memsw_account())
6467 page_counter_uncharge(&ug
->memcg
->memsw
, nr_pages
);
6468 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && ug
->nr_kmem
)
6469 page_counter_uncharge(&ug
->memcg
->kmem
, ug
->nr_kmem
);
6470 memcg_oom_recover(ug
->memcg
);
6473 local_irq_save(flags
);
6474 __mod_memcg_state(ug
->memcg
, MEMCG_RSS
, -ug
->nr_anon
);
6475 __mod_memcg_state(ug
->memcg
, MEMCG_CACHE
, -ug
->nr_file
);
6476 __mod_memcg_state(ug
->memcg
, MEMCG_RSS_HUGE
, -ug
->nr_huge
);
6477 __mod_memcg_state(ug
->memcg
, NR_SHMEM
, -ug
->nr_shmem
);
6478 __count_memcg_events(ug
->memcg
, PGPGOUT
, ug
->pgpgout
);
6479 __this_cpu_add(ug
->memcg
->vmstats_percpu
->nr_page_events
, nr_pages
);
6480 memcg_check_events(ug
->memcg
, ug
->dummy_page
);
6481 local_irq_restore(flags
);
6483 if (!mem_cgroup_is_root(ug
->memcg
))
6484 css_put_many(&ug
->memcg
->css
, nr_pages
);
6487 static void uncharge_page(struct page
*page
, struct uncharge_gather
*ug
)
6489 VM_BUG_ON_PAGE(PageLRU(page
), page
);
6490 VM_BUG_ON_PAGE(page_count(page
) && !is_zone_device_page(page
) &&
6491 !PageHWPoison(page
) , page
);
6493 if (!page
->mem_cgroup
)
6497 * Nobody should be changing or seriously looking at
6498 * page->mem_cgroup at this point, we have fully
6499 * exclusive access to the page.
6502 if (ug
->memcg
!= page
->mem_cgroup
) {
6505 uncharge_gather_clear(ug
);
6507 ug
->memcg
= page
->mem_cgroup
;
6510 if (!PageKmemcg(page
)) {
6511 unsigned int nr_pages
= 1;
6513 if (PageTransHuge(page
)) {
6514 nr_pages
<<= compound_order(page
);
6515 ug
->nr_huge
+= nr_pages
;
6518 ug
->nr_anon
+= nr_pages
;
6520 ug
->nr_file
+= nr_pages
;
6521 if (PageSwapBacked(page
))
6522 ug
->nr_shmem
+= nr_pages
;
6526 ug
->nr_kmem
+= 1 << compound_order(page
);
6527 __ClearPageKmemcg(page
);
6530 ug
->dummy_page
= page
;
6531 page
->mem_cgroup
= NULL
;
6534 static void uncharge_list(struct list_head
*page_list
)
6536 struct uncharge_gather ug
;
6537 struct list_head
*next
;
6539 uncharge_gather_clear(&ug
);
6542 * Note that the list can be a single page->lru; hence the
6543 * do-while loop instead of a simple list_for_each_entry().
6545 next
= page_list
->next
;
6549 page
= list_entry(next
, struct page
, lru
);
6550 next
= page
->lru
.next
;
6552 uncharge_page(page
, &ug
);
6553 } while (next
!= page_list
);
6556 uncharge_batch(&ug
);
6560 * mem_cgroup_uncharge - uncharge a page
6561 * @page: page to uncharge
6563 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6564 * mem_cgroup_commit_charge().
6566 void mem_cgroup_uncharge(struct page
*page
)
6568 struct uncharge_gather ug
;
6570 if (mem_cgroup_disabled())
6573 /* Don't touch page->lru of any random page, pre-check: */
6574 if (!page
->mem_cgroup
)
6577 uncharge_gather_clear(&ug
);
6578 uncharge_page(page
, &ug
);
6579 uncharge_batch(&ug
);
6583 * mem_cgroup_uncharge_list - uncharge a list of page
6584 * @page_list: list of pages to uncharge
6586 * Uncharge a list of pages previously charged with
6587 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6589 void mem_cgroup_uncharge_list(struct list_head
*page_list
)
6591 if (mem_cgroup_disabled())
6594 if (!list_empty(page_list
))
6595 uncharge_list(page_list
);
6599 * mem_cgroup_migrate - charge a page's replacement
6600 * @oldpage: currently circulating page
6601 * @newpage: replacement page
6603 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6604 * be uncharged upon free.
6606 * Both pages must be locked, @newpage->mapping must be set up.
6608 void mem_cgroup_migrate(struct page
*oldpage
, struct page
*newpage
)
6610 struct mem_cgroup
*memcg
;
6611 unsigned int nr_pages
;
6613 unsigned long flags
;
6615 VM_BUG_ON_PAGE(!PageLocked(oldpage
), oldpage
);
6616 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
6617 VM_BUG_ON_PAGE(PageAnon(oldpage
) != PageAnon(newpage
), newpage
);
6618 VM_BUG_ON_PAGE(PageTransHuge(oldpage
) != PageTransHuge(newpage
),
6621 if (mem_cgroup_disabled())
6624 /* Page cache replacement: new page already charged? */
6625 if (newpage
->mem_cgroup
)
6628 /* Swapcache readahead pages can get replaced before being charged */
6629 memcg
= oldpage
->mem_cgroup
;
6633 /* Force-charge the new page. The old one will be freed soon */
6634 compound
= PageTransHuge(newpage
);
6635 nr_pages
= compound
? hpage_nr_pages(newpage
) : 1;
6637 page_counter_charge(&memcg
->memory
, nr_pages
);
6638 if (do_memsw_account())
6639 page_counter_charge(&memcg
->memsw
, nr_pages
);
6640 css_get_many(&memcg
->css
, nr_pages
);
6642 commit_charge(newpage
, memcg
, false);
6644 local_irq_save(flags
);
6645 mem_cgroup_charge_statistics(memcg
, newpage
, compound
, nr_pages
);
6646 memcg_check_events(memcg
, newpage
);
6647 local_irq_restore(flags
);
6650 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key
);
6651 EXPORT_SYMBOL(memcg_sockets_enabled_key
);
6653 void mem_cgroup_sk_alloc(struct sock
*sk
)
6655 struct mem_cgroup
*memcg
;
6657 if (!mem_cgroup_sockets_enabled
)
6661 * Socket cloning can throw us here with sk_memcg already
6662 * filled. It won't however, necessarily happen from
6663 * process context. So the test for root memcg given
6664 * the current task's memcg won't help us in this case.
6666 * Respecting the original socket's memcg is a better
6667 * decision in this case.
6670 css_get(&sk
->sk_memcg
->css
);
6675 memcg
= mem_cgroup_from_task(current
);
6676 if (memcg
== root_mem_cgroup
)
6678 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !memcg
->tcpmem_active
)
6680 if (css_tryget_online(&memcg
->css
))
6681 sk
->sk_memcg
= memcg
;
6686 void mem_cgroup_sk_free(struct sock
*sk
)
6689 css_put(&sk
->sk_memcg
->css
);
6693 * mem_cgroup_charge_skmem - charge socket memory
6694 * @memcg: memcg to charge
6695 * @nr_pages: number of pages to charge
6697 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6698 * @memcg's configured limit, %false if the charge had to be forced.
6700 bool mem_cgroup_charge_skmem(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
6702 gfp_t gfp_mask
= GFP_KERNEL
;
6704 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
)) {
6705 struct page_counter
*fail
;
6707 if (page_counter_try_charge(&memcg
->tcpmem
, nr_pages
, &fail
)) {
6708 memcg
->tcpmem_pressure
= 0;
6711 page_counter_charge(&memcg
->tcpmem
, nr_pages
);
6712 memcg
->tcpmem_pressure
= 1;
6716 /* Don't block in the packet receive path */
6718 gfp_mask
= GFP_NOWAIT
;
6720 mod_memcg_state(memcg
, MEMCG_SOCK
, nr_pages
);
6722 if (try_charge(memcg
, gfp_mask
, nr_pages
) == 0)
6725 try_charge(memcg
, gfp_mask
|__GFP_NOFAIL
, nr_pages
);
6730 * mem_cgroup_uncharge_skmem - uncharge socket memory
6731 * @memcg: memcg to uncharge
6732 * @nr_pages: number of pages to uncharge
6734 void mem_cgroup_uncharge_skmem(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
6736 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
)) {
6737 page_counter_uncharge(&memcg
->tcpmem
, nr_pages
);
6741 mod_memcg_state(memcg
, MEMCG_SOCK
, -nr_pages
);
6743 refill_stock(memcg
, nr_pages
);
6746 static int __init
cgroup_memory(char *s
)
6750 while ((token
= strsep(&s
, ",")) != NULL
) {
6753 if (!strcmp(token
, "nosocket"))
6754 cgroup_memory_nosocket
= true;
6755 if (!strcmp(token
, "nokmem"))
6756 cgroup_memory_nokmem
= true;
6760 __setup("cgroup.memory=", cgroup_memory
);
6763 * subsys_initcall() for memory controller.
6765 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6766 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6767 * basically everything that doesn't depend on a specific mem_cgroup structure
6768 * should be initialized from here.
6770 static int __init
mem_cgroup_init(void)
6774 #ifdef CONFIG_MEMCG_KMEM
6776 * Kmem cache creation is mostly done with the slab_mutex held,
6777 * so use a workqueue with limited concurrency to avoid stalling
6778 * all worker threads in case lots of cgroups are created and
6779 * destroyed simultaneously.
6781 memcg_kmem_cache_wq
= alloc_workqueue("memcg_kmem_cache", 0, 1);
6782 BUG_ON(!memcg_kmem_cache_wq
);
6785 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD
, "mm/memctrl:dead", NULL
,
6786 memcg_hotplug_cpu_dead
);
6788 for_each_possible_cpu(cpu
)
6789 INIT_WORK(&per_cpu_ptr(&memcg_stock
, cpu
)->work
,
6792 for_each_node(node
) {
6793 struct mem_cgroup_tree_per_node
*rtpn
;
6795 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
,
6796 node_online(node
) ? node
: NUMA_NO_NODE
);
6798 rtpn
->rb_root
= RB_ROOT
;
6799 rtpn
->rb_rightmost
= NULL
;
6800 spin_lock_init(&rtpn
->lock
);
6801 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
6806 subsys_initcall(mem_cgroup_init
);
6808 #ifdef CONFIG_MEMCG_SWAP
6809 static struct mem_cgroup
*mem_cgroup_id_get_online(struct mem_cgroup
*memcg
)
6811 while (!refcount_inc_not_zero(&memcg
->id
.ref
)) {
6813 * The root cgroup cannot be destroyed, so it's refcount must
6816 if (WARN_ON_ONCE(memcg
== root_mem_cgroup
)) {
6820 memcg
= parent_mem_cgroup(memcg
);
6822 memcg
= root_mem_cgroup
;
6828 * mem_cgroup_swapout - transfer a memsw charge to swap
6829 * @page: page whose memsw charge to transfer
6830 * @entry: swap entry to move the charge to
6832 * Transfer the memsw charge of @page to @entry.
6834 void mem_cgroup_swapout(struct page
*page
, swp_entry_t entry
)
6836 struct mem_cgroup
*memcg
, *swap_memcg
;
6837 unsigned int nr_entries
;
6838 unsigned short oldid
;
6840 VM_BUG_ON_PAGE(PageLRU(page
), page
);
6841 VM_BUG_ON_PAGE(page_count(page
), page
);
6843 if (!do_memsw_account())
6846 memcg
= page
->mem_cgroup
;
6848 /* Readahead page, never charged */
6853 * In case the memcg owning these pages has been offlined and doesn't
6854 * have an ID allocated to it anymore, charge the closest online
6855 * ancestor for the swap instead and transfer the memory+swap charge.
6857 swap_memcg
= mem_cgroup_id_get_online(memcg
);
6858 nr_entries
= hpage_nr_pages(page
);
6859 /* Get references for the tail pages, too */
6861 mem_cgroup_id_get_many(swap_memcg
, nr_entries
- 1);
6862 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(swap_memcg
),
6864 VM_BUG_ON_PAGE(oldid
, page
);
6865 mod_memcg_state(swap_memcg
, MEMCG_SWAP
, nr_entries
);
6867 page
->mem_cgroup
= NULL
;
6869 if (!mem_cgroup_is_root(memcg
))
6870 page_counter_uncharge(&memcg
->memory
, nr_entries
);
6872 if (memcg
!= swap_memcg
) {
6873 if (!mem_cgroup_is_root(swap_memcg
))
6874 page_counter_charge(&swap_memcg
->memsw
, nr_entries
);
6875 page_counter_uncharge(&memcg
->memsw
, nr_entries
);
6879 * Interrupts should be disabled here because the caller holds the
6880 * i_pages lock which is taken with interrupts-off. It is
6881 * important here to have the interrupts disabled because it is the
6882 * only synchronisation we have for updating the per-CPU variables.
6884 VM_BUG_ON(!irqs_disabled());
6885 mem_cgroup_charge_statistics(memcg
, page
, PageTransHuge(page
),
6887 memcg_check_events(memcg
, page
);
6889 if (!mem_cgroup_is_root(memcg
))
6890 css_put_many(&memcg
->css
, nr_entries
);
6894 * mem_cgroup_try_charge_swap - try charging swap space for a page
6895 * @page: page being added to swap
6896 * @entry: swap entry to charge
6898 * Try to charge @page's memcg for the swap space at @entry.
6900 * Returns 0 on success, -ENOMEM on failure.
6902 int mem_cgroup_try_charge_swap(struct page
*page
, swp_entry_t entry
)
6904 unsigned int nr_pages
= hpage_nr_pages(page
);
6905 struct page_counter
*counter
;
6906 struct mem_cgroup
*memcg
;
6907 unsigned short oldid
;
6909 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) || !do_swap_account
)
6912 memcg
= page
->mem_cgroup
;
6914 /* Readahead page, never charged */
6919 memcg_memory_event(memcg
, MEMCG_SWAP_FAIL
);
6923 memcg
= mem_cgroup_id_get_online(memcg
);
6925 if (!mem_cgroup_is_root(memcg
) &&
6926 !page_counter_try_charge(&memcg
->swap
, nr_pages
, &counter
)) {
6927 memcg_memory_event(memcg
, MEMCG_SWAP_MAX
);
6928 memcg_memory_event(memcg
, MEMCG_SWAP_FAIL
);
6929 mem_cgroup_id_put(memcg
);
6933 /* Get references for the tail pages, too */
6935 mem_cgroup_id_get_many(memcg
, nr_pages
- 1);
6936 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(memcg
), nr_pages
);
6937 VM_BUG_ON_PAGE(oldid
, page
);
6938 mod_memcg_state(memcg
, MEMCG_SWAP
, nr_pages
);
6944 * mem_cgroup_uncharge_swap - uncharge swap space
6945 * @entry: swap entry to uncharge
6946 * @nr_pages: the amount of swap space to uncharge
6948 void mem_cgroup_uncharge_swap(swp_entry_t entry
, unsigned int nr_pages
)
6950 struct mem_cgroup
*memcg
;
6953 if (!do_swap_account
)
6956 id
= swap_cgroup_record(entry
, 0, nr_pages
);
6958 memcg
= mem_cgroup_from_id(id
);
6960 if (!mem_cgroup_is_root(memcg
)) {
6961 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
6962 page_counter_uncharge(&memcg
->swap
, nr_pages
);
6964 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
6966 mod_memcg_state(memcg
, MEMCG_SWAP
, -nr_pages
);
6967 mem_cgroup_id_put_many(memcg
, nr_pages
);
6972 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup
*memcg
)
6974 long nr_swap_pages
= get_nr_swap_pages();
6976 if (!do_swap_account
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
6977 return nr_swap_pages
;
6978 for (; memcg
!= root_mem_cgroup
; memcg
= parent_mem_cgroup(memcg
))
6979 nr_swap_pages
= min_t(long, nr_swap_pages
,
6980 READ_ONCE(memcg
->swap
.max
) -
6981 page_counter_read(&memcg
->swap
));
6982 return nr_swap_pages
;
6985 bool mem_cgroup_swap_full(struct page
*page
)
6987 struct mem_cgroup
*memcg
;
6989 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
6993 if (!do_swap_account
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
6996 memcg
= page
->mem_cgroup
;
7000 for (; memcg
!= root_mem_cgroup
; memcg
= parent_mem_cgroup(memcg
))
7001 if (page_counter_read(&memcg
->swap
) * 2 >= memcg
->swap
.max
)
7007 /* for remember boot option*/
7008 #ifdef CONFIG_MEMCG_SWAP_ENABLED
7009 static int really_do_swap_account __initdata
= 1;
7011 static int really_do_swap_account __initdata
;
7014 static int __init
enable_swap_account(char *s
)
7016 if (!strcmp(s
, "1"))
7017 really_do_swap_account
= 1;
7018 else if (!strcmp(s
, "0"))
7019 really_do_swap_account
= 0;
7022 __setup("swapaccount=", enable_swap_account
);
7024 static u64
swap_current_read(struct cgroup_subsys_state
*css
,
7027 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
7029 return (u64
)page_counter_read(&memcg
->swap
) * PAGE_SIZE
;
7032 static int swap_max_show(struct seq_file
*m
, void *v
)
7034 return seq_puts_memcg_tunable(m
,
7035 READ_ONCE(mem_cgroup_from_seq(m
)->swap
.max
));
7038 static ssize_t
swap_max_write(struct kernfs_open_file
*of
,
7039 char *buf
, size_t nbytes
, loff_t off
)
7041 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
7045 buf
= strstrip(buf
);
7046 err
= page_counter_memparse(buf
, "max", &max
);
7050 xchg(&memcg
->swap
.max
, max
);
7055 static int swap_events_show(struct seq_file
*m
, void *v
)
7057 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(m
);
7059 seq_printf(m
, "max %lu\n",
7060 atomic_long_read(&memcg
->memory_events
[MEMCG_SWAP_MAX
]));
7061 seq_printf(m
, "fail %lu\n",
7062 atomic_long_read(&memcg
->memory_events
[MEMCG_SWAP_FAIL
]));
7067 static struct cftype swap_files
[] = {
7069 .name
= "swap.current",
7070 .flags
= CFTYPE_NOT_ON_ROOT
,
7071 .read_u64
= swap_current_read
,
7075 .flags
= CFTYPE_NOT_ON_ROOT
,
7076 .seq_show
= swap_max_show
,
7077 .write
= swap_max_write
,
7080 .name
= "swap.events",
7081 .flags
= CFTYPE_NOT_ON_ROOT
,
7082 .file_offset
= offsetof(struct mem_cgroup
, swap_events_file
),
7083 .seq_show
= swap_events_show
,
7088 static struct cftype memsw_cgroup_files
[] = {
7090 .name
= "memsw.usage_in_bytes",
7091 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
7092 .read_u64
= mem_cgroup_read_u64
,
7095 .name
= "memsw.max_usage_in_bytes",
7096 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
7097 .write
= mem_cgroup_reset
,
7098 .read_u64
= mem_cgroup_read_u64
,
7101 .name
= "memsw.limit_in_bytes",
7102 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
7103 .write
= mem_cgroup_write
,
7104 .read_u64
= mem_cgroup_read_u64
,
7107 .name
= "memsw.failcnt",
7108 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
7109 .write
= mem_cgroup_reset
,
7110 .read_u64
= mem_cgroup_read_u64
,
7112 { }, /* terminate */
7115 static int __init
mem_cgroup_swap_init(void)
7117 if (!mem_cgroup_disabled() && really_do_swap_account
) {
7118 do_swap_account
= 1;
7119 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys
,
7121 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys
,
7122 memsw_cgroup_files
));
7126 subsys_initcall(mem_cgroup_swap_init
);
7128 #endif /* CONFIG_MEMCG_SWAP */