Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[linux/fpc-iii.git] / mm / shmem.c
blob0f7fd4a85db6e5f3497d21c1d8d512cf121c62e1
1 /*
2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
44 static struct vfsmount *shm_mnt;
46 #ifdef CONFIG_SHMEM
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
84 #include <linux/uaccess.h>
85 #include <asm/pgtable.h>
87 #include "internal.h"
89 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
90 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
92 /* Pretend that each entry is of this size in directory's i_size */
93 #define BOGO_DIRENT_SIZE 20
95 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
96 #define SHORT_SYMLINK_LEN 128
99 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
100 * inode->i_private (with i_mutex making sure that it has only one user at
101 * a time): we would prefer not to enlarge the shmem inode just for that.
103 struct shmem_falloc {
104 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
105 pgoff_t start; /* start of range currently being fallocated */
106 pgoff_t next; /* the next page offset to be fallocated */
107 pgoff_t nr_falloced; /* how many new pages have been fallocated */
108 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
111 struct shmem_options {
112 unsigned long long blocks;
113 unsigned long long inodes;
114 struct mempolicy *mpol;
115 kuid_t uid;
116 kgid_t gid;
117 umode_t mode;
118 int huge;
119 int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
125 #ifdef CONFIG_TMPFS
126 static unsigned long shmem_default_max_blocks(void)
128 return totalram_pages() / 2;
131 static unsigned long shmem_default_max_inodes(void)
133 unsigned long nr_pages = totalram_pages();
135 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
137 #endif
139 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
140 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
141 struct shmem_inode_info *info, pgoff_t index);
142 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
143 struct page **pagep, enum sgp_type sgp,
144 gfp_t gfp, struct vm_area_struct *vma,
145 vm_fault_t *fault_type);
146 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
147 struct page **pagep, enum sgp_type sgp,
148 gfp_t gfp, struct vm_area_struct *vma,
149 struct vm_fault *vmf, vm_fault_t *fault_type);
151 int shmem_getpage(struct inode *inode, pgoff_t index,
152 struct page **pagep, enum sgp_type sgp)
154 return shmem_getpage_gfp(inode, index, pagep, sgp,
155 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
158 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160 return sb->s_fs_info;
164 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
165 * for shared memory and for shared anonymous (/dev/zero) mappings
166 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
167 * consistent with the pre-accounting of private mappings ...
169 static inline int shmem_acct_size(unsigned long flags, loff_t size)
171 return (flags & VM_NORESERVE) ?
172 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
175 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177 if (!(flags & VM_NORESERVE))
178 vm_unacct_memory(VM_ACCT(size));
181 static inline int shmem_reacct_size(unsigned long flags,
182 loff_t oldsize, loff_t newsize)
184 if (!(flags & VM_NORESERVE)) {
185 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
186 return security_vm_enough_memory_mm(current->mm,
187 VM_ACCT(newsize) - VM_ACCT(oldsize));
188 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
189 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
191 return 0;
195 * ... whereas tmpfs objects are accounted incrementally as
196 * pages are allocated, in order to allow large sparse files.
197 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
198 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200 static inline int shmem_acct_block(unsigned long flags, long pages)
202 if (!(flags & VM_NORESERVE))
203 return 0;
205 return security_vm_enough_memory_mm(current->mm,
206 pages * VM_ACCT(PAGE_SIZE));
209 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 if (flags & VM_NORESERVE)
212 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
215 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217 struct shmem_inode_info *info = SHMEM_I(inode);
218 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220 if (shmem_acct_block(info->flags, pages))
221 return false;
223 if (sbinfo->max_blocks) {
224 if (percpu_counter_compare(&sbinfo->used_blocks,
225 sbinfo->max_blocks - pages) > 0)
226 goto unacct;
227 percpu_counter_add(&sbinfo->used_blocks, pages);
230 return true;
232 unacct:
233 shmem_unacct_blocks(info->flags, pages);
234 return false;
237 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239 struct shmem_inode_info *info = SHMEM_I(inode);
240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242 if (sbinfo->max_blocks)
243 percpu_counter_sub(&sbinfo->used_blocks, pages);
244 shmem_unacct_blocks(info->flags, pages);
247 static const struct super_operations shmem_ops;
248 static const struct address_space_operations shmem_aops;
249 static const struct file_operations shmem_file_operations;
250 static const struct inode_operations shmem_inode_operations;
251 static const struct inode_operations shmem_dir_inode_operations;
252 static const struct inode_operations shmem_special_inode_operations;
253 static const struct vm_operations_struct shmem_vm_ops;
254 static struct file_system_type shmem_fs_type;
256 bool vma_is_shmem(struct vm_area_struct *vma)
258 return vma->vm_ops == &shmem_vm_ops;
261 static LIST_HEAD(shmem_swaplist);
262 static DEFINE_MUTEX(shmem_swaplist_mutex);
264 static int shmem_reserve_inode(struct super_block *sb)
266 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
267 if (sbinfo->max_inodes) {
268 spin_lock(&sbinfo->stat_lock);
269 if (!sbinfo->free_inodes) {
270 spin_unlock(&sbinfo->stat_lock);
271 return -ENOSPC;
273 sbinfo->free_inodes--;
274 spin_unlock(&sbinfo->stat_lock);
276 return 0;
279 static void shmem_free_inode(struct super_block *sb)
281 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
282 if (sbinfo->max_inodes) {
283 spin_lock(&sbinfo->stat_lock);
284 sbinfo->free_inodes++;
285 spin_unlock(&sbinfo->stat_lock);
290 * shmem_recalc_inode - recalculate the block usage of an inode
291 * @inode: inode to recalc
293 * We have to calculate the free blocks since the mm can drop
294 * undirtied hole pages behind our back.
296 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
297 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
299 * It has to be called with the spinlock held.
301 static void shmem_recalc_inode(struct inode *inode)
303 struct shmem_inode_info *info = SHMEM_I(inode);
304 long freed;
306 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
307 if (freed > 0) {
308 info->alloced -= freed;
309 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
310 shmem_inode_unacct_blocks(inode, freed);
314 bool shmem_charge(struct inode *inode, long pages)
316 struct shmem_inode_info *info = SHMEM_I(inode);
317 unsigned long flags;
319 if (!shmem_inode_acct_block(inode, pages))
320 return false;
322 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
323 inode->i_mapping->nrpages += pages;
325 spin_lock_irqsave(&info->lock, flags);
326 info->alloced += pages;
327 inode->i_blocks += pages * BLOCKS_PER_PAGE;
328 shmem_recalc_inode(inode);
329 spin_unlock_irqrestore(&info->lock, flags);
331 return true;
334 void shmem_uncharge(struct inode *inode, long pages)
336 struct shmem_inode_info *info = SHMEM_I(inode);
337 unsigned long flags;
339 /* nrpages adjustment done by __delete_from_page_cache() or caller */
341 spin_lock_irqsave(&info->lock, flags);
342 info->alloced -= pages;
343 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
344 shmem_recalc_inode(inode);
345 spin_unlock_irqrestore(&info->lock, flags);
347 shmem_inode_unacct_blocks(inode, pages);
351 * Replace item expected in xarray by a new item, while holding xa_lock.
353 static int shmem_replace_entry(struct address_space *mapping,
354 pgoff_t index, void *expected, void *replacement)
356 XA_STATE(xas, &mapping->i_pages, index);
357 void *item;
359 VM_BUG_ON(!expected);
360 VM_BUG_ON(!replacement);
361 item = xas_load(&xas);
362 if (item != expected)
363 return -ENOENT;
364 xas_store(&xas, replacement);
365 return 0;
369 * Sometimes, before we decide whether to proceed or to fail, we must check
370 * that an entry was not already brought back from swap by a racing thread.
372 * Checking page is not enough: by the time a SwapCache page is locked, it
373 * might be reused, and again be SwapCache, using the same swap as before.
375 static bool shmem_confirm_swap(struct address_space *mapping,
376 pgoff_t index, swp_entry_t swap)
378 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
382 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
384 * SHMEM_HUGE_NEVER:
385 * disables huge pages for the mount;
386 * SHMEM_HUGE_ALWAYS:
387 * enables huge pages for the mount;
388 * SHMEM_HUGE_WITHIN_SIZE:
389 * only allocate huge pages if the page will be fully within i_size,
390 * also respect fadvise()/madvise() hints;
391 * SHMEM_HUGE_ADVISE:
392 * only allocate huge pages if requested with fadvise()/madvise();
395 #define SHMEM_HUGE_NEVER 0
396 #define SHMEM_HUGE_ALWAYS 1
397 #define SHMEM_HUGE_WITHIN_SIZE 2
398 #define SHMEM_HUGE_ADVISE 3
401 * Special values.
402 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
404 * SHMEM_HUGE_DENY:
405 * disables huge on shm_mnt and all mounts, for emergency use;
406 * SHMEM_HUGE_FORCE:
407 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
410 #define SHMEM_HUGE_DENY (-1)
411 #define SHMEM_HUGE_FORCE (-2)
413 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
414 /* ifdef here to avoid bloating shmem.o when not necessary */
416 static int shmem_huge __read_mostly;
418 #if defined(CONFIG_SYSFS)
419 static int shmem_parse_huge(const char *str)
421 if (!strcmp(str, "never"))
422 return SHMEM_HUGE_NEVER;
423 if (!strcmp(str, "always"))
424 return SHMEM_HUGE_ALWAYS;
425 if (!strcmp(str, "within_size"))
426 return SHMEM_HUGE_WITHIN_SIZE;
427 if (!strcmp(str, "advise"))
428 return SHMEM_HUGE_ADVISE;
429 if (!strcmp(str, "deny"))
430 return SHMEM_HUGE_DENY;
431 if (!strcmp(str, "force"))
432 return SHMEM_HUGE_FORCE;
433 return -EINVAL;
435 #endif
437 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
438 static const char *shmem_format_huge(int huge)
440 switch (huge) {
441 case SHMEM_HUGE_NEVER:
442 return "never";
443 case SHMEM_HUGE_ALWAYS:
444 return "always";
445 case SHMEM_HUGE_WITHIN_SIZE:
446 return "within_size";
447 case SHMEM_HUGE_ADVISE:
448 return "advise";
449 case SHMEM_HUGE_DENY:
450 return "deny";
451 case SHMEM_HUGE_FORCE:
452 return "force";
453 default:
454 VM_BUG_ON(1);
455 return "bad_val";
458 #endif
460 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
461 struct shrink_control *sc, unsigned long nr_to_split)
463 LIST_HEAD(list), *pos, *next;
464 LIST_HEAD(to_remove);
465 struct inode *inode;
466 struct shmem_inode_info *info;
467 struct page *page;
468 unsigned long batch = sc ? sc->nr_to_scan : 128;
469 int removed = 0, split = 0;
471 if (list_empty(&sbinfo->shrinklist))
472 return SHRINK_STOP;
474 spin_lock(&sbinfo->shrinklist_lock);
475 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
476 info = list_entry(pos, struct shmem_inode_info, shrinklist);
478 /* pin the inode */
479 inode = igrab(&info->vfs_inode);
481 /* inode is about to be evicted */
482 if (!inode) {
483 list_del_init(&info->shrinklist);
484 removed++;
485 goto next;
488 /* Check if there's anything to gain */
489 if (round_up(inode->i_size, PAGE_SIZE) ==
490 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
491 list_move(&info->shrinklist, &to_remove);
492 removed++;
493 goto next;
496 list_move(&info->shrinklist, &list);
497 next:
498 if (!--batch)
499 break;
501 spin_unlock(&sbinfo->shrinklist_lock);
503 list_for_each_safe(pos, next, &to_remove) {
504 info = list_entry(pos, struct shmem_inode_info, shrinklist);
505 inode = &info->vfs_inode;
506 list_del_init(&info->shrinklist);
507 iput(inode);
510 list_for_each_safe(pos, next, &list) {
511 int ret;
513 info = list_entry(pos, struct shmem_inode_info, shrinklist);
514 inode = &info->vfs_inode;
516 if (nr_to_split && split >= nr_to_split)
517 goto leave;
519 page = find_get_page(inode->i_mapping,
520 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
521 if (!page)
522 goto drop;
524 /* No huge page at the end of the file: nothing to split */
525 if (!PageTransHuge(page)) {
526 put_page(page);
527 goto drop;
531 * Leave the inode on the list if we failed to lock
532 * the page at this time.
534 * Waiting for the lock may lead to deadlock in the
535 * reclaim path.
537 if (!trylock_page(page)) {
538 put_page(page);
539 goto leave;
542 ret = split_huge_page(page);
543 unlock_page(page);
544 put_page(page);
546 /* If split failed leave the inode on the list */
547 if (ret)
548 goto leave;
550 split++;
551 drop:
552 list_del_init(&info->shrinklist);
553 removed++;
554 leave:
555 iput(inode);
558 spin_lock(&sbinfo->shrinklist_lock);
559 list_splice_tail(&list, &sbinfo->shrinklist);
560 sbinfo->shrinklist_len -= removed;
561 spin_unlock(&sbinfo->shrinklist_lock);
563 return split;
566 static long shmem_unused_huge_scan(struct super_block *sb,
567 struct shrink_control *sc)
569 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
571 if (!READ_ONCE(sbinfo->shrinklist_len))
572 return SHRINK_STOP;
574 return shmem_unused_huge_shrink(sbinfo, sc, 0);
577 static long shmem_unused_huge_count(struct super_block *sb,
578 struct shrink_control *sc)
580 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
581 return READ_ONCE(sbinfo->shrinklist_len);
583 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
585 #define shmem_huge SHMEM_HUGE_DENY
587 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
588 struct shrink_control *sc, unsigned long nr_to_split)
590 return 0;
592 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
594 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
596 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
597 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
598 shmem_huge != SHMEM_HUGE_DENY)
599 return true;
600 return false;
604 * Like add_to_page_cache_locked, but error if expected item has gone.
606 static int shmem_add_to_page_cache(struct page *page,
607 struct address_space *mapping,
608 pgoff_t index, void *expected, gfp_t gfp)
610 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
611 unsigned long i = 0;
612 unsigned long nr = 1UL << compound_order(page);
614 VM_BUG_ON_PAGE(PageTail(page), page);
615 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
616 VM_BUG_ON_PAGE(!PageLocked(page), page);
617 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
618 VM_BUG_ON(expected && PageTransHuge(page));
620 page_ref_add(page, nr);
621 page->mapping = mapping;
622 page->index = index;
624 do {
625 void *entry;
626 xas_lock_irq(&xas);
627 entry = xas_find_conflict(&xas);
628 if (entry != expected)
629 xas_set_err(&xas, -EEXIST);
630 xas_create_range(&xas);
631 if (xas_error(&xas))
632 goto unlock;
633 next:
634 xas_store(&xas, page + i);
635 if (++i < nr) {
636 xas_next(&xas);
637 goto next;
639 if (PageTransHuge(page)) {
640 count_vm_event(THP_FILE_ALLOC);
641 __inc_node_page_state(page, NR_SHMEM_THPS);
643 mapping->nrpages += nr;
644 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
645 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
646 unlock:
647 xas_unlock_irq(&xas);
648 } while (xas_nomem(&xas, gfp));
650 if (xas_error(&xas)) {
651 page->mapping = NULL;
652 page_ref_sub(page, nr);
653 return xas_error(&xas);
656 return 0;
660 * Like delete_from_page_cache, but substitutes swap for page.
662 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
664 struct address_space *mapping = page->mapping;
665 int error;
667 VM_BUG_ON_PAGE(PageCompound(page), page);
669 xa_lock_irq(&mapping->i_pages);
670 error = shmem_replace_entry(mapping, page->index, page, radswap);
671 page->mapping = NULL;
672 mapping->nrpages--;
673 __dec_node_page_state(page, NR_FILE_PAGES);
674 __dec_node_page_state(page, NR_SHMEM);
675 xa_unlock_irq(&mapping->i_pages);
676 put_page(page);
677 BUG_ON(error);
681 * Remove swap entry from page cache, free the swap and its page cache.
683 static int shmem_free_swap(struct address_space *mapping,
684 pgoff_t index, void *radswap)
686 void *old;
688 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
689 if (old != radswap)
690 return -ENOENT;
691 free_swap_and_cache(radix_to_swp_entry(radswap));
692 return 0;
696 * Determine (in bytes) how many of the shmem object's pages mapped by the
697 * given offsets are swapped out.
699 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
700 * as long as the inode doesn't go away and racy results are not a problem.
702 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
703 pgoff_t start, pgoff_t end)
705 XA_STATE(xas, &mapping->i_pages, start);
706 struct page *page;
707 unsigned long swapped = 0;
709 rcu_read_lock();
710 xas_for_each(&xas, page, end - 1) {
711 if (xas_retry(&xas, page))
712 continue;
713 if (xa_is_value(page))
714 swapped++;
716 if (need_resched()) {
717 xas_pause(&xas);
718 cond_resched_rcu();
722 rcu_read_unlock();
724 return swapped << PAGE_SHIFT;
728 * Determine (in bytes) how many of the shmem object's pages mapped by the
729 * given vma is swapped out.
731 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
732 * as long as the inode doesn't go away and racy results are not a problem.
734 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
736 struct inode *inode = file_inode(vma->vm_file);
737 struct shmem_inode_info *info = SHMEM_I(inode);
738 struct address_space *mapping = inode->i_mapping;
739 unsigned long swapped;
741 /* Be careful as we don't hold info->lock */
742 swapped = READ_ONCE(info->swapped);
745 * The easier cases are when the shmem object has nothing in swap, or
746 * the vma maps it whole. Then we can simply use the stats that we
747 * already track.
749 if (!swapped)
750 return 0;
752 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
753 return swapped << PAGE_SHIFT;
755 /* Here comes the more involved part */
756 return shmem_partial_swap_usage(mapping,
757 linear_page_index(vma, vma->vm_start),
758 linear_page_index(vma, vma->vm_end));
762 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
764 void shmem_unlock_mapping(struct address_space *mapping)
766 struct pagevec pvec;
767 pgoff_t indices[PAGEVEC_SIZE];
768 pgoff_t index = 0;
770 pagevec_init(&pvec);
772 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
774 while (!mapping_unevictable(mapping)) {
776 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
777 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
779 pvec.nr = find_get_entries(mapping, index,
780 PAGEVEC_SIZE, pvec.pages, indices);
781 if (!pvec.nr)
782 break;
783 index = indices[pvec.nr - 1] + 1;
784 pagevec_remove_exceptionals(&pvec);
785 check_move_unevictable_pages(&pvec);
786 pagevec_release(&pvec);
787 cond_resched();
792 * Remove range of pages and swap entries from page cache, and free them.
793 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
795 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
796 bool unfalloc)
798 struct address_space *mapping = inode->i_mapping;
799 struct shmem_inode_info *info = SHMEM_I(inode);
800 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
801 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
802 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
803 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
804 struct pagevec pvec;
805 pgoff_t indices[PAGEVEC_SIZE];
806 long nr_swaps_freed = 0;
807 pgoff_t index;
808 int i;
810 if (lend == -1)
811 end = -1; /* unsigned, so actually very big */
813 pagevec_init(&pvec);
814 index = start;
815 while (index < end) {
816 pvec.nr = find_get_entries(mapping, index,
817 min(end - index, (pgoff_t)PAGEVEC_SIZE),
818 pvec.pages, indices);
819 if (!pvec.nr)
820 break;
821 for (i = 0; i < pagevec_count(&pvec); i++) {
822 struct page *page = pvec.pages[i];
824 index = indices[i];
825 if (index >= end)
826 break;
828 if (xa_is_value(page)) {
829 if (unfalloc)
830 continue;
831 nr_swaps_freed += !shmem_free_swap(mapping,
832 index, page);
833 continue;
836 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
838 if (!trylock_page(page))
839 continue;
841 if (PageTransTail(page)) {
842 /* Middle of THP: zero out the page */
843 clear_highpage(page);
844 unlock_page(page);
845 continue;
846 } else if (PageTransHuge(page)) {
847 if (index == round_down(end, HPAGE_PMD_NR)) {
849 * Range ends in the middle of THP:
850 * zero out the page
852 clear_highpage(page);
853 unlock_page(page);
854 continue;
856 index += HPAGE_PMD_NR - 1;
857 i += HPAGE_PMD_NR - 1;
860 if (!unfalloc || !PageUptodate(page)) {
861 VM_BUG_ON_PAGE(PageTail(page), page);
862 if (page_mapping(page) == mapping) {
863 VM_BUG_ON_PAGE(PageWriteback(page), page);
864 truncate_inode_page(mapping, page);
867 unlock_page(page);
869 pagevec_remove_exceptionals(&pvec);
870 pagevec_release(&pvec);
871 cond_resched();
872 index++;
875 if (partial_start) {
876 struct page *page = NULL;
877 shmem_getpage(inode, start - 1, &page, SGP_READ);
878 if (page) {
879 unsigned int top = PAGE_SIZE;
880 if (start > end) {
881 top = partial_end;
882 partial_end = 0;
884 zero_user_segment(page, partial_start, top);
885 set_page_dirty(page);
886 unlock_page(page);
887 put_page(page);
890 if (partial_end) {
891 struct page *page = NULL;
892 shmem_getpage(inode, end, &page, SGP_READ);
893 if (page) {
894 zero_user_segment(page, 0, partial_end);
895 set_page_dirty(page);
896 unlock_page(page);
897 put_page(page);
900 if (start >= end)
901 return;
903 index = start;
904 while (index < end) {
905 cond_resched();
907 pvec.nr = find_get_entries(mapping, index,
908 min(end - index, (pgoff_t)PAGEVEC_SIZE),
909 pvec.pages, indices);
910 if (!pvec.nr) {
911 /* If all gone or hole-punch or unfalloc, we're done */
912 if (index == start || end != -1)
913 break;
914 /* But if truncating, restart to make sure all gone */
915 index = start;
916 continue;
918 for (i = 0; i < pagevec_count(&pvec); i++) {
919 struct page *page = pvec.pages[i];
921 index = indices[i];
922 if (index >= end)
923 break;
925 if (xa_is_value(page)) {
926 if (unfalloc)
927 continue;
928 if (shmem_free_swap(mapping, index, page)) {
929 /* Swap was replaced by page: retry */
930 index--;
931 break;
933 nr_swaps_freed++;
934 continue;
937 lock_page(page);
939 if (PageTransTail(page)) {
940 /* Middle of THP: zero out the page */
941 clear_highpage(page);
942 unlock_page(page);
944 * Partial thp truncate due 'start' in middle
945 * of THP: don't need to look on these pages
946 * again on !pvec.nr restart.
948 if (index != round_down(end, HPAGE_PMD_NR))
949 start++;
950 continue;
951 } else if (PageTransHuge(page)) {
952 if (index == round_down(end, HPAGE_PMD_NR)) {
954 * Range ends in the middle of THP:
955 * zero out the page
957 clear_highpage(page);
958 unlock_page(page);
959 continue;
961 index += HPAGE_PMD_NR - 1;
962 i += HPAGE_PMD_NR - 1;
965 if (!unfalloc || !PageUptodate(page)) {
966 VM_BUG_ON_PAGE(PageTail(page), page);
967 if (page_mapping(page) == mapping) {
968 VM_BUG_ON_PAGE(PageWriteback(page), page);
969 truncate_inode_page(mapping, page);
970 } else {
971 /* Page was replaced by swap: retry */
972 unlock_page(page);
973 index--;
974 break;
977 unlock_page(page);
979 pagevec_remove_exceptionals(&pvec);
980 pagevec_release(&pvec);
981 index++;
984 spin_lock_irq(&info->lock);
985 info->swapped -= nr_swaps_freed;
986 shmem_recalc_inode(inode);
987 spin_unlock_irq(&info->lock);
990 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
992 shmem_undo_range(inode, lstart, lend, false);
993 inode->i_ctime = inode->i_mtime = current_time(inode);
995 EXPORT_SYMBOL_GPL(shmem_truncate_range);
997 static int shmem_getattr(const struct path *path, struct kstat *stat,
998 u32 request_mask, unsigned int query_flags)
1000 struct inode *inode = path->dentry->d_inode;
1001 struct shmem_inode_info *info = SHMEM_I(inode);
1002 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1004 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1005 spin_lock_irq(&info->lock);
1006 shmem_recalc_inode(inode);
1007 spin_unlock_irq(&info->lock);
1009 generic_fillattr(inode, stat);
1011 if (is_huge_enabled(sb_info))
1012 stat->blksize = HPAGE_PMD_SIZE;
1014 return 0;
1017 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1019 struct inode *inode = d_inode(dentry);
1020 struct shmem_inode_info *info = SHMEM_I(inode);
1021 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1022 int error;
1024 error = setattr_prepare(dentry, attr);
1025 if (error)
1026 return error;
1028 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1029 loff_t oldsize = inode->i_size;
1030 loff_t newsize = attr->ia_size;
1032 /* protected by i_mutex */
1033 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1034 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1035 return -EPERM;
1037 if (newsize != oldsize) {
1038 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1039 oldsize, newsize);
1040 if (error)
1041 return error;
1042 i_size_write(inode, newsize);
1043 inode->i_ctime = inode->i_mtime = current_time(inode);
1045 if (newsize <= oldsize) {
1046 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1047 if (oldsize > holebegin)
1048 unmap_mapping_range(inode->i_mapping,
1049 holebegin, 0, 1);
1050 if (info->alloced)
1051 shmem_truncate_range(inode,
1052 newsize, (loff_t)-1);
1053 /* unmap again to remove racily COWed private pages */
1054 if (oldsize > holebegin)
1055 unmap_mapping_range(inode->i_mapping,
1056 holebegin, 0, 1);
1059 * Part of the huge page can be beyond i_size: subject
1060 * to shrink under memory pressure.
1062 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1063 spin_lock(&sbinfo->shrinklist_lock);
1065 * _careful to defend against unlocked access to
1066 * ->shrink_list in shmem_unused_huge_shrink()
1068 if (list_empty_careful(&info->shrinklist)) {
1069 list_add_tail(&info->shrinklist,
1070 &sbinfo->shrinklist);
1071 sbinfo->shrinklist_len++;
1073 spin_unlock(&sbinfo->shrinklist_lock);
1078 setattr_copy(inode, attr);
1079 if (attr->ia_valid & ATTR_MODE)
1080 error = posix_acl_chmod(inode, inode->i_mode);
1081 return error;
1084 static void shmem_evict_inode(struct inode *inode)
1086 struct shmem_inode_info *info = SHMEM_I(inode);
1087 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1089 if (inode->i_mapping->a_ops == &shmem_aops) {
1090 shmem_unacct_size(info->flags, inode->i_size);
1091 inode->i_size = 0;
1092 shmem_truncate_range(inode, 0, (loff_t)-1);
1093 if (!list_empty(&info->shrinklist)) {
1094 spin_lock(&sbinfo->shrinklist_lock);
1095 if (!list_empty(&info->shrinklist)) {
1096 list_del_init(&info->shrinklist);
1097 sbinfo->shrinklist_len--;
1099 spin_unlock(&sbinfo->shrinklist_lock);
1101 while (!list_empty(&info->swaplist)) {
1102 /* Wait while shmem_unuse() is scanning this inode... */
1103 wait_var_event(&info->stop_eviction,
1104 !atomic_read(&info->stop_eviction));
1105 mutex_lock(&shmem_swaplist_mutex);
1106 /* ...but beware of the race if we peeked too early */
1107 if (!atomic_read(&info->stop_eviction))
1108 list_del_init(&info->swaplist);
1109 mutex_unlock(&shmem_swaplist_mutex);
1113 simple_xattrs_free(&info->xattrs);
1114 WARN_ON(inode->i_blocks);
1115 shmem_free_inode(inode->i_sb);
1116 clear_inode(inode);
1119 extern struct swap_info_struct *swap_info[];
1121 static int shmem_find_swap_entries(struct address_space *mapping,
1122 pgoff_t start, unsigned int nr_entries,
1123 struct page **entries, pgoff_t *indices,
1124 unsigned int type, bool frontswap)
1126 XA_STATE(xas, &mapping->i_pages, start);
1127 struct page *page;
1128 swp_entry_t entry;
1129 unsigned int ret = 0;
1131 if (!nr_entries)
1132 return 0;
1134 rcu_read_lock();
1135 xas_for_each(&xas, page, ULONG_MAX) {
1136 if (xas_retry(&xas, page))
1137 continue;
1139 if (!xa_is_value(page))
1140 continue;
1142 entry = radix_to_swp_entry(page);
1143 if (swp_type(entry) != type)
1144 continue;
1145 if (frontswap &&
1146 !frontswap_test(swap_info[type], swp_offset(entry)))
1147 continue;
1149 indices[ret] = xas.xa_index;
1150 entries[ret] = page;
1152 if (need_resched()) {
1153 xas_pause(&xas);
1154 cond_resched_rcu();
1156 if (++ret == nr_entries)
1157 break;
1159 rcu_read_unlock();
1161 return ret;
1165 * Move the swapped pages for an inode to page cache. Returns the count
1166 * of pages swapped in, or the error in case of failure.
1168 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1169 pgoff_t *indices)
1171 int i = 0;
1172 int ret = 0;
1173 int error = 0;
1174 struct address_space *mapping = inode->i_mapping;
1176 for (i = 0; i < pvec.nr; i++) {
1177 struct page *page = pvec.pages[i];
1179 if (!xa_is_value(page))
1180 continue;
1181 error = shmem_swapin_page(inode, indices[i],
1182 &page, SGP_CACHE,
1183 mapping_gfp_mask(mapping),
1184 NULL, NULL);
1185 if (error == 0) {
1186 unlock_page(page);
1187 put_page(page);
1188 ret++;
1190 if (error == -ENOMEM)
1191 break;
1192 error = 0;
1194 return error ? error : ret;
1198 * If swap found in inode, free it and move page from swapcache to filecache.
1200 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1201 bool frontswap, unsigned long *fs_pages_to_unuse)
1203 struct address_space *mapping = inode->i_mapping;
1204 pgoff_t start = 0;
1205 struct pagevec pvec;
1206 pgoff_t indices[PAGEVEC_SIZE];
1207 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1208 int ret = 0;
1210 pagevec_init(&pvec);
1211 do {
1212 unsigned int nr_entries = PAGEVEC_SIZE;
1214 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1215 nr_entries = *fs_pages_to_unuse;
1217 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1218 pvec.pages, indices,
1219 type, frontswap);
1220 if (pvec.nr == 0) {
1221 ret = 0;
1222 break;
1225 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1226 if (ret < 0)
1227 break;
1229 if (frontswap_partial) {
1230 *fs_pages_to_unuse -= ret;
1231 if (*fs_pages_to_unuse == 0) {
1232 ret = FRONTSWAP_PAGES_UNUSED;
1233 break;
1237 start = indices[pvec.nr - 1];
1238 } while (true);
1240 return ret;
1244 * Read all the shared memory data that resides in the swap
1245 * device 'type' back into memory, so the swap device can be
1246 * unused.
1248 int shmem_unuse(unsigned int type, bool frontswap,
1249 unsigned long *fs_pages_to_unuse)
1251 struct shmem_inode_info *info, *next;
1252 int error = 0;
1254 if (list_empty(&shmem_swaplist))
1255 return 0;
1257 mutex_lock(&shmem_swaplist_mutex);
1258 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1259 if (!info->swapped) {
1260 list_del_init(&info->swaplist);
1261 continue;
1264 * Drop the swaplist mutex while searching the inode for swap;
1265 * but before doing so, make sure shmem_evict_inode() will not
1266 * remove placeholder inode from swaplist, nor let it be freed
1267 * (igrab() would protect from unlink, but not from unmount).
1269 atomic_inc(&info->stop_eviction);
1270 mutex_unlock(&shmem_swaplist_mutex);
1272 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1273 fs_pages_to_unuse);
1274 cond_resched();
1276 mutex_lock(&shmem_swaplist_mutex);
1277 next = list_next_entry(info, swaplist);
1278 if (!info->swapped)
1279 list_del_init(&info->swaplist);
1280 if (atomic_dec_and_test(&info->stop_eviction))
1281 wake_up_var(&info->stop_eviction);
1282 if (error)
1283 break;
1285 mutex_unlock(&shmem_swaplist_mutex);
1287 return error;
1291 * Move the page from the page cache to the swap cache.
1293 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1295 struct shmem_inode_info *info;
1296 struct address_space *mapping;
1297 struct inode *inode;
1298 swp_entry_t swap;
1299 pgoff_t index;
1301 VM_BUG_ON_PAGE(PageCompound(page), page);
1302 BUG_ON(!PageLocked(page));
1303 mapping = page->mapping;
1304 index = page->index;
1305 inode = mapping->host;
1306 info = SHMEM_I(inode);
1307 if (info->flags & VM_LOCKED)
1308 goto redirty;
1309 if (!total_swap_pages)
1310 goto redirty;
1313 * Our capabilities prevent regular writeback or sync from ever calling
1314 * shmem_writepage; but a stacking filesystem might use ->writepage of
1315 * its underlying filesystem, in which case tmpfs should write out to
1316 * swap only in response to memory pressure, and not for the writeback
1317 * threads or sync.
1319 if (!wbc->for_reclaim) {
1320 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1321 goto redirty;
1325 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1326 * value into swapfile.c, the only way we can correctly account for a
1327 * fallocated page arriving here is now to initialize it and write it.
1329 * That's okay for a page already fallocated earlier, but if we have
1330 * not yet completed the fallocation, then (a) we want to keep track
1331 * of this page in case we have to undo it, and (b) it may not be a
1332 * good idea to continue anyway, once we're pushing into swap. So
1333 * reactivate the page, and let shmem_fallocate() quit when too many.
1335 if (!PageUptodate(page)) {
1336 if (inode->i_private) {
1337 struct shmem_falloc *shmem_falloc;
1338 spin_lock(&inode->i_lock);
1339 shmem_falloc = inode->i_private;
1340 if (shmem_falloc &&
1341 !shmem_falloc->waitq &&
1342 index >= shmem_falloc->start &&
1343 index < shmem_falloc->next)
1344 shmem_falloc->nr_unswapped++;
1345 else
1346 shmem_falloc = NULL;
1347 spin_unlock(&inode->i_lock);
1348 if (shmem_falloc)
1349 goto redirty;
1351 clear_highpage(page);
1352 flush_dcache_page(page);
1353 SetPageUptodate(page);
1356 swap = get_swap_page(page);
1357 if (!swap.val)
1358 goto redirty;
1361 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1362 * if it's not already there. Do it now before the page is
1363 * moved to swap cache, when its pagelock no longer protects
1364 * the inode from eviction. But don't unlock the mutex until
1365 * we've incremented swapped, because shmem_unuse_inode() will
1366 * prune a !swapped inode from the swaplist under this mutex.
1368 mutex_lock(&shmem_swaplist_mutex);
1369 if (list_empty(&info->swaplist))
1370 list_add(&info->swaplist, &shmem_swaplist);
1372 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1373 spin_lock_irq(&info->lock);
1374 shmem_recalc_inode(inode);
1375 info->swapped++;
1376 spin_unlock_irq(&info->lock);
1378 swap_shmem_alloc(swap);
1379 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1381 mutex_unlock(&shmem_swaplist_mutex);
1382 BUG_ON(page_mapped(page));
1383 swap_writepage(page, wbc);
1384 return 0;
1387 mutex_unlock(&shmem_swaplist_mutex);
1388 put_swap_page(page, swap);
1389 redirty:
1390 set_page_dirty(page);
1391 if (wbc->for_reclaim)
1392 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1393 unlock_page(page);
1394 return 0;
1397 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1398 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1400 char buffer[64];
1402 if (!mpol || mpol->mode == MPOL_DEFAULT)
1403 return; /* show nothing */
1405 mpol_to_str(buffer, sizeof(buffer), mpol);
1407 seq_printf(seq, ",mpol=%s", buffer);
1410 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1412 struct mempolicy *mpol = NULL;
1413 if (sbinfo->mpol) {
1414 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1415 mpol = sbinfo->mpol;
1416 mpol_get(mpol);
1417 spin_unlock(&sbinfo->stat_lock);
1419 return mpol;
1421 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1422 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1425 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1427 return NULL;
1429 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1430 #ifndef CONFIG_NUMA
1431 #define vm_policy vm_private_data
1432 #endif
1434 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1435 struct shmem_inode_info *info, pgoff_t index)
1437 /* Create a pseudo vma that just contains the policy */
1438 vma_init(vma, NULL);
1439 /* Bias interleave by inode number to distribute better across nodes */
1440 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1441 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1444 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1446 /* Drop reference taken by mpol_shared_policy_lookup() */
1447 mpol_cond_put(vma->vm_policy);
1450 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1451 struct shmem_inode_info *info, pgoff_t index)
1453 struct vm_area_struct pvma;
1454 struct page *page;
1455 struct vm_fault vmf;
1457 shmem_pseudo_vma_init(&pvma, info, index);
1458 vmf.vma = &pvma;
1459 vmf.address = 0;
1460 page = swap_cluster_readahead(swap, gfp, &vmf);
1461 shmem_pseudo_vma_destroy(&pvma);
1463 return page;
1466 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1467 struct shmem_inode_info *info, pgoff_t index)
1469 struct vm_area_struct pvma;
1470 struct address_space *mapping = info->vfs_inode.i_mapping;
1471 pgoff_t hindex;
1472 struct page *page;
1474 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1475 return NULL;
1477 hindex = round_down(index, HPAGE_PMD_NR);
1478 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1479 XA_PRESENT))
1480 return NULL;
1482 shmem_pseudo_vma_init(&pvma, info, hindex);
1483 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1484 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id());
1485 shmem_pseudo_vma_destroy(&pvma);
1486 if (page)
1487 prep_transhuge_page(page);
1488 return page;
1491 static struct page *shmem_alloc_page(gfp_t gfp,
1492 struct shmem_inode_info *info, pgoff_t index)
1494 struct vm_area_struct pvma;
1495 struct page *page;
1497 shmem_pseudo_vma_init(&pvma, info, index);
1498 page = alloc_page_vma(gfp, &pvma, 0);
1499 shmem_pseudo_vma_destroy(&pvma);
1501 return page;
1504 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1505 struct inode *inode,
1506 pgoff_t index, bool huge)
1508 struct shmem_inode_info *info = SHMEM_I(inode);
1509 struct page *page;
1510 int nr;
1511 int err = -ENOSPC;
1513 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1514 huge = false;
1515 nr = huge ? HPAGE_PMD_NR : 1;
1517 if (!shmem_inode_acct_block(inode, nr))
1518 goto failed;
1520 if (huge)
1521 page = shmem_alloc_hugepage(gfp, info, index);
1522 else
1523 page = shmem_alloc_page(gfp, info, index);
1524 if (page) {
1525 __SetPageLocked(page);
1526 __SetPageSwapBacked(page);
1527 return page;
1530 err = -ENOMEM;
1531 shmem_inode_unacct_blocks(inode, nr);
1532 failed:
1533 return ERR_PTR(err);
1537 * When a page is moved from swapcache to shmem filecache (either by the
1538 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1539 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1540 * ignorance of the mapping it belongs to. If that mapping has special
1541 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1542 * we may need to copy to a suitable page before moving to filecache.
1544 * In a future release, this may well be extended to respect cpuset and
1545 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1546 * but for now it is a simple matter of zone.
1548 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1550 return page_zonenum(page) > gfp_zone(gfp);
1553 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1554 struct shmem_inode_info *info, pgoff_t index)
1556 struct page *oldpage, *newpage;
1557 struct address_space *swap_mapping;
1558 swp_entry_t entry;
1559 pgoff_t swap_index;
1560 int error;
1562 oldpage = *pagep;
1563 entry.val = page_private(oldpage);
1564 swap_index = swp_offset(entry);
1565 swap_mapping = page_mapping(oldpage);
1568 * We have arrived here because our zones are constrained, so don't
1569 * limit chance of success by further cpuset and node constraints.
1571 gfp &= ~GFP_CONSTRAINT_MASK;
1572 newpage = shmem_alloc_page(gfp, info, index);
1573 if (!newpage)
1574 return -ENOMEM;
1576 get_page(newpage);
1577 copy_highpage(newpage, oldpage);
1578 flush_dcache_page(newpage);
1580 __SetPageLocked(newpage);
1581 __SetPageSwapBacked(newpage);
1582 SetPageUptodate(newpage);
1583 set_page_private(newpage, entry.val);
1584 SetPageSwapCache(newpage);
1587 * Our caller will very soon move newpage out of swapcache, but it's
1588 * a nice clean interface for us to replace oldpage by newpage there.
1590 xa_lock_irq(&swap_mapping->i_pages);
1591 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1592 if (!error) {
1593 __inc_node_page_state(newpage, NR_FILE_PAGES);
1594 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1596 xa_unlock_irq(&swap_mapping->i_pages);
1598 if (unlikely(error)) {
1600 * Is this possible? I think not, now that our callers check
1601 * both PageSwapCache and page_private after getting page lock;
1602 * but be defensive. Reverse old to newpage for clear and free.
1604 oldpage = newpage;
1605 } else {
1606 mem_cgroup_migrate(oldpage, newpage);
1607 lru_cache_add_anon(newpage);
1608 *pagep = newpage;
1611 ClearPageSwapCache(oldpage);
1612 set_page_private(oldpage, 0);
1614 unlock_page(oldpage);
1615 put_page(oldpage);
1616 put_page(oldpage);
1617 return error;
1621 * Swap in the page pointed to by *pagep.
1622 * Caller has to make sure that *pagep contains a valid swapped page.
1623 * Returns 0 and the page in pagep if success. On failure, returns the
1624 * the error code and NULL in *pagep.
1626 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1627 struct page **pagep, enum sgp_type sgp,
1628 gfp_t gfp, struct vm_area_struct *vma,
1629 vm_fault_t *fault_type)
1631 struct address_space *mapping = inode->i_mapping;
1632 struct shmem_inode_info *info = SHMEM_I(inode);
1633 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1634 struct mem_cgroup *memcg;
1635 struct page *page;
1636 swp_entry_t swap;
1637 int error;
1639 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1640 swap = radix_to_swp_entry(*pagep);
1641 *pagep = NULL;
1643 /* Look it up and read it in.. */
1644 page = lookup_swap_cache(swap, NULL, 0);
1645 if (!page) {
1646 /* Or update major stats only when swapin succeeds?? */
1647 if (fault_type) {
1648 *fault_type |= VM_FAULT_MAJOR;
1649 count_vm_event(PGMAJFAULT);
1650 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1652 /* Here we actually start the io */
1653 page = shmem_swapin(swap, gfp, info, index);
1654 if (!page) {
1655 error = -ENOMEM;
1656 goto failed;
1660 /* We have to do this with page locked to prevent races */
1661 lock_page(page);
1662 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1663 !shmem_confirm_swap(mapping, index, swap)) {
1664 error = -EEXIST;
1665 goto unlock;
1667 if (!PageUptodate(page)) {
1668 error = -EIO;
1669 goto failed;
1671 wait_on_page_writeback(page);
1673 if (shmem_should_replace_page(page, gfp)) {
1674 error = shmem_replace_page(&page, gfp, info, index);
1675 if (error)
1676 goto failed;
1679 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1680 false);
1681 if (!error) {
1682 error = shmem_add_to_page_cache(page, mapping, index,
1683 swp_to_radix_entry(swap), gfp);
1685 * We already confirmed swap under page lock, and make
1686 * no memory allocation here, so usually no possibility
1687 * of error; but free_swap_and_cache() only trylocks a
1688 * page, so it is just possible that the entry has been
1689 * truncated or holepunched since swap was confirmed.
1690 * shmem_undo_range() will have done some of the
1691 * unaccounting, now delete_from_swap_cache() will do
1692 * the rest.
1694 if (error) {
1695 mem_cgroup_cancel_charge(page, memcg, false);
1696 delete_from_swap_cache(page);
1699 if (error)
1700 goto failed;
1702 mem_cgroup_commit_charge(page, memcg, true, false);
1704 spin_lock_irq(&info->lock);
1705 info->swapped--;
1706 shmem_recalc_inode(inode);
1707 spin_unlock_irq(&info->lock);
1709 if (sgp == SGP_WRITE)
1710 mark_page_accessed(page);
1712 delete_from_swap_cache(page);
1713 set_page_dirty(page);
1714 swap_free(swap);
1716 *pagep = page;
1717 return 0;
1718 failed:
1719 if (!shmem_confirm_swap(mapping, index, swap))
1720 error = -EEXIST;
1721 unlock:
1722 if (page) {
1723 unlock_page(page);
1724 put_page(page);
1727 return error;
1731 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1733 * If we allocate a new one we do not mark it dirty. That's up to the
1734 * vm. If we swap it in we mark it dirty since we also free the swap
1735 * entry since a page cannot live in both the swap and page cache.
1737 * fault_mm and fault_type are only supplied by shmem_fault:
1738 * otherwise they are NULL.
1740 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1741 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1742 struct vm_area_struct *vma, struct vm_fault *vmf,
1743 vm_fault_t *fault_type)
1745 struct address_space *mapping = inode->i_mapping;
1746 struct shmem_inode_info *info = SHMEM_I(inode);
1747 struct shmem_sb_info *sbinfo;
1748 struct mm_struct *charge_mm;
1749 struct mem_cgroup *memcg;
1750 struct page *page;
1751 enum sgp_type sgp_huge = sgp;
1752 pgoff_t hindex = index;
1753 int error;
1754 int once = 0;
1755 int alloced = 0;
1757 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1758 return -EFBIG;
1759 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1760 sgp = SGP_CACHE;
1761 repeat:
1762 if (sgp <= SGP_CACHE &&
1763 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1764 return -EINVAL;
1767 sbinfo = SHMEM_SB(inode->i_sb);
1768 charge_mm = vma ? vma->vm_mm : current->mm;
1770 page = find_lock_entry(mapping, index);
1771 if (xa_is_value(page)) {
1772 error = shmem_swapin_page(inode, index, &page,
1773 sgp, gfp, vma, fault_type);
1774 if (error == -EEXIST)
1775 goto repeat;
1777 *pagep = page;
1778 return error;
1781 if (page && sgp == SGP_WRITE)
1782 mark_page_accessed(page);
1784 /* fallocated page? */
1785 if (page && !PageUptodate(page)) {
1786 if (sgp != SGP_READ)
1787 goto clear;
1788 unlock_page(page);
1789 put_page(page);
1790 page = NULL;
1792 if (page || sgp == SGP_READ) {
1793 *pagep = page;
1794 return 0;
1798 * Fast cache lookup did not find it:
1799 * bring it back from swap or allocate.
1802 if (vma && userfaultfd_missing(vma)) {
1803 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1804 return 0;
1807 /* shmem_symlink() */
1808 if (mapping->a_ops != &shmem_aops)
1809 goto alloc_nohuge;
1810 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1811 goto alloc_nohuge;
1812 if (shmem_huge == SHMEM_HUGE_FORCE)
1813 goto alloc_huge;
1814 switch (sbinfo->huge) {
1815 loff_t i_size;
1816 pgoff_t off;
1817 case SHMEM_HUGE_NEVER:
1818 goto alloc_nohuge;
1819 case SHMEM_HUGE_WITHIN_SIZE:
1820 off = round_up(index, HPAGE_PMD_NR);
1821 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1822 if (i_size >= HPAGE_PMD_SIZE &&
1823 i_size >> PAGE_SHIFT >= off)
1824 goto alloc_huge;
1825 /* fallthrough */
1826 case SHMEM_HUGE_ADVISE:
1827 if (sgp_huge == SGP_HUGE)
1828 goto alloc_huge;
1829 /* TODO: implement fadvise() hints */
1830 goto alloc_nohuge;
1833 alloc_huge:
1834 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1835 if (IS_ERR(page)) {
1836 alloc_nohuge:
1837 page = shmem_alloc_and_acct_page(gfp, inode,
1838 index, false);
1840 if (IS_ERR(page)) {
1841 int retry = 5;
1843 error = PTR_ERR(page);
1844 page = NULL;
1845 if (error != -ENOSPC)
1846 goto unlock;
1848 * Try to reclaim some space by splitting a huge page
1849 * beyond i_size on the filesystem.
1851 while (retry--) {
1852 int ret;
1854 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1855 if (ret == SHRINK_STOP)
1856 break;
1857 if (ret)
1858 goto alloc_nohuge;
1860 goto unlock;
1863 if (PageTransHuge(page))
1864 hindex = round_down(index, HPAGE_PMD_NR);
1865 else
1866 hindex = index;
1868 if (sgp == SGP_WRITE)
1869 __SetPageReferenced(page);
1871 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1872 PageTransHuge(page));
1873 if (error)
1874 goto unacct;
1875 error = shmem_add_to_page_cache(page, mapping, hindex,
1876 NULL, gfp & GFP_RECLAIM_MASK);
1877 if (error) {
1878 mem_cgroup_cancel_charge(page, memcg,
1879 PageTransHuge(page));
1880 goto unacct;
1882 mem_cgroup_commit_charge(page, memcg, false,
1883 PageTransHuge(page));
1884 lru_cache_add_anon(page);
1886 spin_lock_irq(&info->lock);
1887 info->alloced += 1 << compound_order(page);
1888 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1889 shmem_recalc_inode(inode);
1890 spin_unlock_irq(&info->lock);
1891 alloced = true;
1893 if (PageTransHuge(page) &&
1894 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1895 hindex + HPAGE_PMD_NR - 1) {
1897 * Part of the huge page is beyond i_size: subject
1898 * to shrink under memory pressure.
1900 spin_lock(&sbinfo->shrinklist_lock);
1902 * _careful to defend against unlocked access to
1903 * ->shrink_list in shmem_unused_huge_shrink()
1905 if (list_empty_careful(&info->shrinklist)) {
1906 list_add_tail(&info->shrinklist,
1907 &sbinfo->shrinklist);
1908 sbinfo->shrinklist_len++;
1910 spin_unlock(&sbinfo->shrinklist_lock);
1914 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1916 if (sgp == SGP_FALLOC)
1917 sgp = SGP_WRITE;
1918 clear:
1920 * Let SGP_WRITE caller clear ends if write does not fill page;
1921 * but SGP_FALLOC on a page fallocated earlier must initialize
1922 * it now, lest undo on failure cancel our earlier guarantee.
1924 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1925 struct page *head = compound_head(page);
1926 int i;
1928 for (i = 0; i < (1 << compound_order(head)); i++) {
1929 clear_highpage(head + i);
1930 flush_dcache_page(head + i);
1932 SetPageUptodate(head);
1935 /* Perhaps the file has been truncated since we checked */
1936 if (sgp <= SGP_CACHE &&
1937 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1938 if (alloced) {
1939 ClearPageDirty(page);
1940 delete_from_page_cache(page);
1941 spin_lock_irq(&info->lock);
1942 shmem_recalc_inode(inode);
1943 spin_unlock_irq(&info->lock);
1945 error = -EINVAL;
1946 goto unlock;
1948 *pagep = page + index - hindex;
1949 return 0;
1952 * Error recovery.
1954 unacct:
1955 shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1957 if (PageTransHuge(page)) {
1958 unlock_page(page);
1959 put_page(page);
1960 goto alloc_nohuge;
1962 unlock:
1963 if (page) {
1964 unlock_page(page);
1965 put_page(page);
1967 if (error == -ENOSPC && !once++) {
1968 spin_lock_irq(&info->lock);
1969 shmem_recalc_inode(inode);
1970 spin_unlock_irq(&info->lock);
1971 goto repeat;
1973 if (error == -EEXIST)
1974 goto repeat;
1975 return error;
1979 * This is like autoremove_wake_function, but it removes the wait queue
1980 * entry unconditionally - even if something else had already woken the
1981 * target.
1983 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1985 int ret = default_wake_function(wait, mode, sync, key);
1986 list_del_init(&wait->entry);
1987 return ret;
1990 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1992 struct vm_area_struct *vma = vmf->vma;
1993 struct inode *inode = file_inode(vma->vm_file);
1994 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1995 enum sgp_type sgp;
1996 int err;
1997 vm_fault_t ret = VM_FAULT_LOCKED;
2000 * Trinity finds that probing a hole which tmpfs is punching can
2001 * prevent the hole-punch from ever completing: which in turn
2002 * locks writers out with its hold on i_mutex. So refrain from
2003 * faulting pages into the hole while it's being punched. Although
2004 * shmem_undo_range() does remove the additions, it may be unable to
2005 * keep up, as each new page needs its own unmap_mapping_range() call,
2006 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2008 * It does not matter if we sometimes reach this check just before the
2009 * hole-punch begins, so that one fault then races with the punch:
2010 * we just need to make racing faults a rare case.
2012 * The implementation below would be much simpler if we just used a
2013 * standard mutex or completion: but we cannot take i_mutex in fault,
2014 * and bloating every shmem inode for this unlikely case would be sad.
2016 if (unlikely(inode->i_private)) {
2017 struct shmem_falloc *shmem_falloc;
2019 spin_lock(&inode->i_lock);
2020 shmem_falloc = inode->i_private;
2021 if (shmem_falloc &&
2022 shmem_falloc->waitq &&
2023 vmf->pgoff >= shmem_falloc->start &&
2024 vmf->pgoff < shmem_falloc->next) {
2025 wait_queue_head_t *shmem_falloc_waitq;
2026 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2028 ret = VM_FAULT_NOPAGE;
2029 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
2030 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
2031 /* It's polite to up mmap_sem if we can */
2032 up_read(&vma->vm_mm->mmap_sem);
2033 ret = VM_FAULT_RETRY;
2036 shmem_falloc_waitq = shmem_falloc->waitq;
2037 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2038 TASK_UNINTERRUPTIBLE);
2039 spin_unlock(&inode->i_lock);
2040 schedule();
2043 * shmem_falloc_waitq points into the shmem_fallocate()
2044 * stack of the hole-punching task: shmem_falloc_waitq
2045 * is usually invalid by the time we reach here, but
2046 * finish_wait() does not dereference it in that case;
2047 * though i_lock needed lest racing with wake_up_all().
2049 spin_lock(&inode->i_lock);
2050 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2051 spin_unlock(&inode->i_lock);
2052 return ret;
2054 spin_unlock(&inode->i_lock);
2057 sgp = SGP_CACHE;
2059 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2060 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2061 sgp = SGP_NOHUGE;
2062 else if (vma->vm_flags & VM_HUGEPAGE)
2063 sgp = SGP_HUGE;
2065 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2066 gfp, vma, vmf, &ret);
2067 if (err)
2068 return vmf_error(err);
2069 return ret;
2072 unsigned long shmem_get_unmapped_area(struct file *file,
2073 unsigned long uaddr, unsigned long len,
2074 unsigned long pgoff, unsigned long flags)
2076 unsigned long (*get_area)(struct file *,
2077 unsigned long, unsigned long, unsigned long, unsigned long);
2078 unsigned long addr;
2079 unsigned long offset;
2080 unsigned long inflated_len;
2081 unsigned long inflated_addr;
2082 unsigned long inflated_offset;
2084 if (len > TASK_SIZE)
2085 return -ENOMEM;
2087 get_area = current->mm->get_unmapped_area;
2088 addr = get_area(file, uaddr, len, pgoff, flags);
2090 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2091 return addr;
2092 if (IS_ERR_VALUE(addr))
2093 return addr;
2094 if (addr & ~PAGE_MASK)
2095 return addr;
2096 if (addr > TASK_SIZE - len)
2097 return addr;
2099 if (shmem_huge == SHMEM_HUGE_DENY)
2100 return addr;
2101 if (len < HPAGE_PMD_SIZE)
2102 return addr;
2103 if (flags & MAP_FIXED)
2104 return addr;
2106 * Our priority is to support MAP_SHARED mapped hugely;
2107 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2108 * But if caller specified an address hint, respect that as before.
2110 if (uaddr)
2111 return addr;
2113 if (shmem_huge != SHMEM_HUGE_FORCE) {
2114 struct super_block *sb;
2116 if (file) {
2117 VM_BUG_ON(file->f_op != &shmem_file_operations);
2118 sb = file_inode(file)->i_sb;
2119 } else {
2121 * Called directly from mm/mmap.c, or drivers/char/mem.c
2122 * for "/dev/zero", to create a shared anonymous object.
2124 if (IS_ERR(shm_mnt))
2125 return addr;
2126 sb = shm_mnt->mnt_sb;
2128 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2129 return addr;
2132 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2133 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2134 return addr;
2135 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2136 return addr;
2138 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2139 if (inflated_len > TASK_SIZE)
2140 return addr;
2141 if (inflated_len < len)
2142 return addr;
2144 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2145 if (IS_ERR_VALUE(inflated_addr))
2146 return addr;
2147 if (inflated_addr & ~PAGE_MASK)
2148 return addr;
2150 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2151 inflated_addr += offset - inflated_offset;
2152 if (inflated_offset > offset)
2153 inflated_addr += HPAGE_PMD_SIZE;
2155 if (inflated_addr > TASK_SIZE - len)
2156 return addr;
2157 return inflated_addr;
2160 #ifdef CONFIG_NUMA
2161 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2163 struct inode *inode = file_inode(vma->vm_file);
2164 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2167 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2168 unsigned long addr)
2170 struct inode *inode = file_inode(vma->vm_file);
2171 pgoff_t index;
2173 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2174 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2176 #endif
2178 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2180 struct inode *inode = file_inode(file);
2181 struct shmem_inode_info *info = SHMEM_I(inode);
2182 int retval = -ENOMEM;
2184 spin_lock_irq(&info->lock);
2185 if (lock && !(info->flags & VM_LOCKED)) {
2186 if (!user_shm_lock(inode->i_size, user))
2187 goto out_nomem;
2188 info->flags |= VM_LOCKED;
2189 mapping_set_unevictable(file->f_mapping);
2191 if (!lock && (info->flags & VM_LOCKED) && user) {
2192 user_shm_unlock(inode->i_size, user);
2193 info->flags &= ~VM_LOCKED;
2194 mapping_clear_unevictable(file->f_mapping);
2196 retval = 0;
2198 out_nomem:
2199 spin_unlock_irq(&info->lock);
2200 return retval;
2203 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2205 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2207 if (info->seals & F_SEAL_FUTURE_WRITE) {
2209 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2210 * "future write" seal active.
2212 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2213 return -EPERM;
2216 * Since the F_SEAL_FUTURE_WRITE seals allow for a MAP_SHARED
2217 * read-only mapping, take care to not allow mprotect to revert
2218 * protections.
2220 vma->vm_flags &= ~(VM_MAYWRITE);
2223 file_accessed(file);
2224 vma->vm_ops = &shmem_vm_ops;
2225 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2226 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2227 (vma->vm_end & HPAGE_PMD_MASK)) {
2228 khugepaged_enter(vma, vma->vm_flags);
2230 return 0;
2233 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2234 umode_t mode, dev_t dev, unsigned long flags)
2236 struct inode *inode;
2237 struct shmem_inode_info *info;
2238 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2240 if (shmem_reserve_inode(sb))
2241 return NULL;
2243 inode = new_inode(sb);
2244 if (inode) {
2245 inode->i_ino = get_next_ino();
2246 inode_init_owner(inode, dir, mode);
2247 inode->i_blocks = 0;
2248 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2249 inode->i_generation = prandom_u32();
2250 info = SHMEM_I(inode);
2251 memset(info, 0, (char *)inode - (char *)info);
2252 spin_lock_init(&info->lock);
2253 atomic_set(&info->stop_eviction, 0);
2254 info->seals = F_SEAL_SEAL;
2255 info->flags = flags & VM_NORESERVE;
2256 INIT_LIST_HEAD(&info->shrinklist);
2257 INIT_LIST_HEAD(&info->swaplist);
2258 simple_xattrs_init(&info->xattrs);
2259 cache_no_acl(inode);
2261 switch (mode & S_IFMT) {
2262 default:
2263 inode->i_op = &shmem_special_inode_operations;
2264 init_special_inode(inode, mode, dev);
2265 break;
2266 case S_IFREG:
2267 inode->i_mapping->a_ops = &shmem_aops;
2268 inode->i_op = &shmem_inode_operations;
2269 inode->i_fop = &shmem_file_operations;
2270 mpol_shared_policy_init(&info->policy,
2271 shmem_get_sbmpol(sbinfo));
2272 break;
2273 case S_IFDIR:
2274 inc_nlink(inode);
2275 /* Some things misbehave if size == 0 on a directory */
2276 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2277 inode->i_op = &shmem_dir_inode_operations;
2278 inode->i_fop = &simple_dir_operations;
2279 break;
2280 case S_IFLNK:
2282 * Must not load anything in the rbtree,
2283 * mpol_free_shared_policy will not be called.
2285 mpol_shared_policy_init(&info->policy, NULL);
2286 break;
2289 lockdep_annotate_inode_mutex_key(inode);
2290 } else
2291 shmem_free_inode(sb);
2292 return inode;
2295 bool shmem_mapping(struct address_space *mapping)
2297 return mapping->a_ops == &shmem_aops;
2300 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2301 pmd_t *dst_pmd,
2302 struct vm_area_struct *dst_vma,
2303 unsigned long dst_addr,
2304 unsigned long src_addr,
2305 bool zeropage,
2306 struct page **pagep)
2308 struct inode *inode = file_inode(dst_vma->vm_file);
2309 struct shmem_inode_info *info = SHMEM_I(inode);
2310 struct address_space *mapping = inode->i_mapping;
2311 gfp_t gfp = mapping_gfp_mask(mapping);
2312 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2313 struct mem_cgroup *memcg;
2314 spinlock_t *ptl;
2315 void *page_kaddr;
2316 struct page *page;
2317 pte_t _dst_pte, *dst_pte;
2318 int ret;
2319 pgoff_t offset, max_off;
2321 ret = -ENOMEM;
2322 if (!shmem_inode_acct_block(inode, 1))
2323 goto out;
2325 if (!*pagep) {
2326 page = shmem_alloc_page(gfp, info, pgoff);
2327 if (!page)
2328 goto out_unacct_blocks;
2330 if (!zeropage) { /* mcopy_atomic */
2331 page_kaddr = kmap_atomic(page);
2332 ret = copy_from_user(page_kaddr,
2333 (const void __user *)src_addr,
2334 PAGE_SIZE);
2335 kunmap_atomic(page_kaddr);
2337 /* fallback to copy_from_user outside mmap_sem */
2338 if (unlikely(ret)) {
2339 *pagep = page;
2340 shmem_inode_unacct_blocks(inode, 1);
2341 /* don't free the page */
2342 return -ENOENT;
2344 } else { /* mfill_zeropage_atomic */
2345 clear_highpage(page);
2347 } else {
2348 page = *pagep;
2349 *pagep = NULL;
2352 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2353 __SetPageLocked(page);
2354 __SetPageSwapBacked(page);
2355 __SetPageUptodate(page);
2357 ret = -EFAULT;
2358 offset = linear_page_index(dst_vma, dst_addr);
2359 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2360 if (unlikely(offset >= max_off))
2361 goto out_release;
2363 ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2364 if (ret)
2365 goto out_release;
2367 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2368 gfp & GFP_RECLAIM_MASK);
2369 if (ret)
2370 goto out_release_uncharge;
2372 mem_cgroup_commit_charge(page, memcg, false, false);
2374 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2375 if (dst_vma->vm_flags & VM_WRITE)
2376 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2377 else {
2379 * We don't set the pte dirty if the vma has no
2380 * VM_WRITE permission, so mark the page dirty or it
2381 * could be freed from under us. We could do it
2382 * unconditionally before unlock_page(), but doing it
2383 * only if VM_WRITE is not set is faster.
2385 set_page_dirty(page);
2388 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2390 ret = -EFAULT;
2391 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2392 if (unlikely(offset >= max_off))
2393 goto out_release_uncharge_unlock;
2395 ret = -EEXIST;
2396 if (!pte_none(*dst_pte))
2397 goto out_release_uncharge_unlock;
2399 lru_cache_add_anon(page);
2401 spin_lock(&info->lock);
2402 info->alloced++;
2403 inode->i_blocks += BLOCKS_PER_PAGE;
2404 shmem_recalc_inode(inode);
2405 spin_unlock(&info->lock);
2407 inc_mm_counter(dst_mm, mm_counter_file(page));
2408 page_add_file_rmap(page, false);
2409 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2411 /* No need to invalidate - it was non-present before */
2412 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2413 pte_unmap_unlock(dst_pte, ptl);
2414 unlock_page(page);
2415 ret = 0;
2416 out:
2417 return ret;
2418 out_release_uncharge_unlock:
2419 pte_unmap_unlock(dst_pte, ptl);
2420 ClearPageDirty(page);
2421 delete_from_page_cache(page);
2422 out_release_uncharge:
2423 mem_cgroup_cancel_charge(page, memcg, false);
2424 out_release:
2425 unlock_page(page);
2426 put_page(page);
2427 out_unacct_blocks:
2428 shmem_inode_unacct_blocks(inode, 1);
2429 goto out;
2432 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2433 pmd_t *dst_pmd,
2434 struct vm_area_struct *dst_vma,
2435 unsigned long dst_addr,
2436 unsigned long src_addr,
2437 struct page **pagep)
2439 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2440 dst_addr, src_addr, false, pagep);
2443 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2444 pmd_t *dst_pmd,
2445 struct vm_area_struct *dst_vma,
2446 unsigned long dst_addr)
2448 struct page *page = NULL;
2450 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2451 dst_addr, 0, true, &page);
2454 #ifdef CONFIG_TMPFS
2455 static const struct inode_operations shmem_symlink_inode_operations;
2456 static const struct inode_operations shmem_short_symlink_operations;
2458 #ifdef CONFIG_TMPFS_XATTR
2459 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2460 #else
2461 #define shmem_initxattrs NULL
2462 #endif
2464 static int
2465 shmem_write_begin(struct file *file, struct address_space *mapping,
2466 loff_t pos, unsigned len, unsigned flags,
2467 struct page **pagep, void **fsdata)
2469 struct inode *inode = mapping->host;
2470 struct shmem_inode_info *info = SHMEM_I(inode);
2471 pgoff_t index = pos >> PAGE_SHIFT;
2473 /* i_mutex is held by caller */
2474 if (unlikely(info->seals & (F_SEAL_GROW |
2475 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2476 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2477 return -EPERM;
2478 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2479 return -EPERM;
2482 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2485 static int
2486 shmem_write_end(struct file *file, struct address_space *mapping,
2487 loff_t pos, unsigned len, unsigned copied,
2488 struct page *page, void *fsdata)
2490 struct inode *inode = mapping->host;
2492 if (pos + copied > inode->i_size)
2493 i_size_write(inode, pos + copied);
2495 if (!PageUptodate(page)) {
2496 struct page *head = compound_head(page);
2497 if (PageTransCompound(page)) {
2498 int i;
2500 for (i = 0; i < HPAGE_PMD_NR; i++) {
2501 if (head + i == page)
2502 continue;
2503 clear_highpage(head + i);
2504 flush_dcache_page(head + i);
2507 if (copied < PAGE_SIZE) {
2508 unsigned from = pos & (PAGE_SIZE - 1);
2509 zero_user_segments(page, 0, from,
2510 from + copied, PAGE_SIZE);
2512 SetPageUptodate(head);
2514 set_page_dirty(page);
2515 unlock_page(page);
2516 put_page(page);
2518 return copied;
2521 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2523 struct file *file = iocb->ki_filp;
2524 struct inode *inode = file_inode(file);
2525 struct address_space *mapping = inode->i_mapping;
2526 pgoff_t index;
2527 unsigned long offset;
2528 enum sgp_type sgp = SGP_READ;
2529 int error = 0;
2530 ssize_t retval = 0;
2531 loff_t *ppos = &iocb->ki_pos;
2534 * Might this read be for a stacking filesystem? Then when reading
2535 * holes of a sparse file, we actually need to allocate those pages,
2536 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2538 if (!iter_is_iovec(to))
2539 sgp = SGP_CACHE;
2541 index = *ppos >> PAGE_SHIFT;
2542 offset = *ppos & ~PAGE_MASK;
2544 for (;;) {
2545 struct page *page = NULL;
2546 pgoff_t end_index;
2547 unsigned long nr, ret;
2548 loff_t i_size = i_size_read(inode);
2550 end_index = i_size >> PAGE_SHIFT;
2551 if (index > end_index)
2552 break;
2553 if (index == end_index) {
2554 nr = i_size & ~PAGE_MASK;
2555 if (nr <= offset)
2556 break;
2559 error = shmem_getpage(inode, index, &page, sgp);
2560 if (error) {
2561 if (error == -EINVAL)
2562 error = 0;
2563 break;
2565 if (page) {
2566 if (sgp == SGP_CACHE)
2567 set_page_dirty(page);
2568 unlock_page(page);
2572 * We must evaluate after, since reads (unlike writes)
2573 * are called without i_mutex protection against truncate
2575 nr = PAGE_SIZE;
2576 i_size = i_size_read(inode);
2577 end_index = i_size >> PAGE_SHIFT;
2578 if (index == end_index) {
2579 nr = i_size & ~PAGE_MASK;
2580 if (nr <= offset) {
2581 if (page)
2582 put_page(page);
2583 break;
2586 nr -= offset;
2588 if (page) {
2590 * If users can be writing to this page using arbitrary
2591 * virtual addresses, take care about potential aliasing
2592 * before reading the page on the kernel side.
2594 if (mapping_writably_mapped(mapping))
2595 flush_dcache_page(page);
2597 * Mark the page accessed if we read the beginning.
2599 if (!offset)
2600 mark_page_accessed(page);
2601 } else {
2602 page = ZERO_PAGE(0);
2603 get_page(page);
2607 * Ok, we have the page, and it's up-to-date, so
2608 * now we can copy it to user space...
2610 ret = copy_page_to_iter(page, offset, nr, to);
2611 retval += ret;
2612 offset += ret;
2613 index += offset >> PAGE_SHIFT;
2614 offset &= ~PAGE_MASK;
2616 put_page(page);
2617 if (!iov_iter_count(to))
2618 break;
2619 if (ret < nr) {
2620 error = -EFAULT;
2621 break;
2623 cond_resched();
2626 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2627 file_accessed(file);
2628 return retval ? retval : error;
2632 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2634 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2635 pgoff_t index, pgoff_t end, int whence)
2637 struct page *page;
2638 struct pagevec pvec;
2639 pgoff_t indices[PAGEVEC_SIZE];
2640 bool done = false;
2641 int i;
2643 pagevec_init(&pvec);
2644 pvec.nr = 1; /* start small: we may be there already */
2645 while (!done) {
2646 pvec.nr = find_get_entries(mapping, index,
2647 pvec.nr, pvec.pages, indices);
2648 if (!pvec.nr) {
2649 if (whence == SEEK_DATA)
2650 index = end;
2651 break;
2653 for (i = 0; i < pvec.nr; i++, index++) {
2654 if (index < indices[i]) {
2655 if (whence == SEEK_HOLE) {
2656 done = true;
2657 break;
2659 index = indices[i];
2661 page = pvec.pages[i];
2662 if (page && !xa_is_value(page)) {
2663 if (!PageUptodate(page))
2664 page = NULL;
2666 if (index >= end ||
2667 (page && whence == SEEK_DATA) ||
2668 (!page && whence == SEEK_HOLE)) {
2669 done = true;
2670 break;
2673 pagevec_remove_exceptionals(&pvec);
2674 pagevec_release(&pvec);
2675 pvec.nr = PAGEVEC_SIZE;
2676 cond_resched();
2678 return index;
2681 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2683 struct address_space *mapping = file->f_mapping;
2684 struct inode *inode = mapping->host;
2685 pgoff_t start, end;
2686 loff_t new_offset;
2688 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2689 return generic_file_llseek_size(file, offset, whence,
2690 MAX_LFS_FILESIZE, i_size_read(inode));
2691 inode_lock(inode);
2692 /* We're holding i_mutex so we can access i_size directly */
2694 if (offset < 0 || offset >= inode->i_size)
2695 offset = -ENXIO;
2696 else {
2697 start = offset >> PAGE_SHIFT;
2698 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2699 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2700 new_offset <<= PAGE_SHIFT;
2701 if (new_offset > offset) {
2702 if (new_offset < inode->i_size)
2703 offset = new_offset;
2704 else if (whence == SEEK_DATA)
2705 offset = -ENXIO;
2706 else
2707 offset = inode->i_size;
2711 if (offset >= 0)
2712 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2713 inode_unlock(inode);
2714 return offset;
2717 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2718 loff_t len)
2720 struct inode *inode = file_inode(file);
2721 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2722 struct shmem_inode_info *info = SHMEM_I(inode);
2723 struct shmem_falloc shmem_falloc;
2724 pgoff_t start, index, end;
2725 int error;
2727 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2728 return -EOPNOTSUPP;
2730 inode_lock(inode);
2732 if (mode & FALLOC_FL_PUNCH_HOLE) {
2733 struct address_space *mapping = file->f_mapping;
2734 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2735 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2736 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2738 /* protected by i_mutex */
2739 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2740 error = -EPERM;
2741 goto out;
2744 shmem_falloc.waitq = &shmem_falloc_waitq;
2745 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2746 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2747 spin_lock(&inode->i_lock);
2748 inode->i_private = &shmem_falloc;
2749 spin_unlock(&inode->i_lock);
2751 if ((u64)unmap_end > (u64)unmap_start)
2752 unmap_mapping_range(mapping, unmap_start,
2753 1 + unmap_end - unmap_start, 0);
2754 shmem_truncate_range(inode, offset, offset + len - 1);
2755 /* No need to unmap again: hole-punching leaves COWed pages */
2757 spin_lock(&inode->i_lock);
2758 inode->i_private = NULL;
2759 wake_up_all(&shmem_falloc_waitq);
2760 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2761 spin_unlock(&inode->i_lock);
2762 error = 0;
2763 goto out;
2766 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2767 error = inode_newsize_ok(inode, offset + len);
2768 if (error)
2769 goto out;
2771 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2772 error = -EPERM;
2773 goto out;
2776 start = offset >> PAGE_SHIFT;
2777 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2778 /* Try to avoid a swapstorm if len is impossible to satisfy */
2779 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2780 error = -ENOSPC;
2781 goto out;
2784 shmem_falloc.waitq = NULL;
2785 shmem_falloc.start = start;
2786 shmem_falloc.next = start;
2787 shmem_falloc.nr_falloced = 0;
2788 shmem_falloc.nr_unswapped = 0;
2789 spin_lock(&inode->i_lock);
2790 inode->i_private = &shmem_falloc;
2791 spin_unlock(&inode->i_lock);
2793 for (index = start; index < end; index++) {
2794 struct page *page;
2797 * Good, the fallocate(2) manpage permits EINTR: we may have
2798 * been interrupted because we are using up too much memory.
2800 if (signal_pending(current))
2801 error = -EINTR;
2802 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2803 error = -ENOMEM;
2804 else
2805 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2806 if (error) {
2807 /* Remove the !PageUptodate pages we added */
2808 if (index > start) {
2809 shmem_undo_range(inode,
2810 (loff_t)start << PAGE_SHIFT,
2811 ((loff_t)index << PAGE_SHIFT) - 1, true);
2813 goto undone;
2817 * Inform shmem_writepage() how far we have reached.
2818 * No need for lock or barrier: we have the page lock.
2820 shmem_falloc.next++;
2821 if (!PageUptodate(page))
2822 shmem_falloc.nr_falloced++;
2825 * If !PageUptodate, leave it that way so that freeable pages
2826 * can be recognized if we need to rollback on error later.
2827 * But set_page_dirty so that memory pressure will swap rather
2828 * than free the pages we are allocating (and SGP_CACHE pages
2829 * might still be clean: we now need to mark those dirty too).
2831 set_page_dirty(page);
2832 unlock_page(page);
2833 put_page(page);
2834 cond_resched();
2837 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2838 i_size_write(inode, offset + len);
2839 inode->i_ctime = current_time(inode);
2840 undone:
2841 spin_lock(&inode->i_lock);
2842 inode->i_private = NULL;
2843 spin_unlock(&inode->i_lock);
2844 out:
2845 inode_unlock(inode);
2846 return error;
2849 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2851 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2853 buf->f_type = TMPFS_MAGIC;
2854 buf->f_bsize = PAGE_SIZE;
2855 buf->f_namelen = NAME_MAX;
2856 if (sbinfo->max_blocks) {
2857 buf->f_blocks = sbinfo->max_blocks;
2858 buf->f_bavail =
2859 buf->f_bfree = sbinfo->max_blocks -
2860 percpu_counter_sum(&sbinfo->used_blocks);
2862 if (sbinfo->max_inodes) {
2863 buf->f_files = sbinfo->max_inodes;
2864 buf->f_ffree = sbinfo->free_inodes;
2866 /* else leave those fields 0 like simple_statfs */
2867 return 0;
2871 * File creation. Allocate an inode, and we're done..
2873 static int
2874 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2876 struct inode *inode;
2877 int error = -ENOSPC;
2879 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2880 if (inode) {
2881 error = simple_acl_create(dir, inode);
2882 if (error)
2883 goto out_iput;
2884 error = security_inode_init_security(inode, dir,
2885 &dentry->d_name,
2886 shmem_initxattrs, NULL);
2887 if (error && error != -EOPNOTSUPP)
2888 goto out_iput;
2890 error = 0;
2891 dir->i_size += BOGO_DIRENT_SIZE;
2892 dir->i_ctime = dir->i_mtime = current_time(dir);
2893 d_instantiate(dentry, inode);
2894 dget(dentry); /* Extra count - pin the dentry in core */
2896 return error;
2897 out_iput:
2898 iput(inode);
2899 return error;
2902 static int
2903 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2905 struct inode *inode;
2906 int error = -ENOSPC;
2908 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2909 if (inode) {
2910 error = security_inode_init_security(inode, dir,
2911 NULL,
2912 shmem_initxattrs, NULL);
2913 if (error && error != -EOPNOTSUPP)
2914 goto out_iput;
2915 error = simple_acl_create(dir, inode);
2916 if (error)
2917 goto out_iput;
2918 d_tmpfile(dentry, inode);
2920 return error;
2921 out_iput:
2922 iput(inode);
2923 return error;
2926 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2928 int error;
2930 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2931 return error;
2932 inc_nlink(dir);
2933 return 0;
2936 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2937 bool excl)
2939 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2943 * Link a file..
2945 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2947 struct inode *inode = d_inode(old_dentry);
2948 int ret = 0;
2951 * No ordinary (disk based) filesystem counts links as inodes;
2952 * but each new link needs a new dentry, pinning lowmem, and
2953 * tmpfs dentries cannot be pruned until they are unlinked.
2954 * But if an O_TMPFILE file is linked into the tmpfs, the
2955 * first link must skip that, to get the accounting right.
2957 if (inode->i_nlink) {
2958 ret = shmem_reserve_inode(inode->i_sb);
2959 if (ret)
2960 goto out;
2963 dir->i_size += BOGO_DIRENT_SIZE;
2964 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2965 inc_nlink(inode);
2966 ihold(inode); /* New dentry reference */
2967 dget(dentry); /* Extra pinning count for the created dentry */
2968 d_instantiate(dentry, inode);
2969 out:
2970 return ret;
2973 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2975 struct inode *inode = d_inode(dentry);
2977 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2978 shmem_free_inode(inode->i_sb);
2980 dir->i_size -= BOGO_DIRENT_SIZE;
2981 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2982 drop_nlink(inode);
2983 dput(dentry); /* Undo the count from "create" - this does all the work */
2984 return 0;
2987 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2989 if (!simple_empty(dentry))
2990 return -ENOTEMPTY;
2992 drop_nlink(d_inode(dentry));
2993 drop_nlink(dir);
2994 return shmem_unlink(dir, dentry);
2997 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2999 bool old_is_dir = d_is_dir(old_dentry);
3000 bool new_is_dir = d_is_dir(new_dentry);
3002 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3003 if (old_is_dir) {
3004 drop_nlink(old_dir);
3005 inc_nlink(new_dir);
3006 } else {
3007 drop_nlink(new_dir);
3008 inc_nlink(old_dir);
3011 old_dir->i_ctime = old_dir->i_mtime =
3012 new_dir->i_ctime = new_dir->i_mtime =
3013 d_inode(old_dentry)->i_ctime =
3014 d_inode(new_dentry)->i_ctime = current_time(old_dir);
3016 return 0;
3019 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3021 struct dentry *whiteout;
3022 int error;
3024 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3025 if (!whiteout)
3026 return -ENOMEM;
3028 error = shmem_mknod(old_dir, whiteout,
3029 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3030 dput(whiteout);
3031 if (error)
3032 return error;
3035 * Cheat and hash the whiteout while the old dentry is still in
3036 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3038 * d_lookup() will consistently find one of them at this point,
3039 * not sure which one, but that isn't even important.
3041 d_rehash(whiteout);
3042 return 0;
3046 * The VFS layer already does all the dentry stuff for rename,
3047 * we just have to decrement the usage count for the target if
3048 * it exists so that the VFS layer correctly free's it when it
3049 * gets overwritten.
3051 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3053 struct inode *inode = d_inode(old_dentry);
3054 int they_are_dirs = S_ISDIR(inode->i_mode);
3056 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3057 return -EINVAL;
3059 if (flags & RENAME_EXCHANGE)
3060 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3062 if (!simple_empty(new_dentry))
3063 return -ENOTEMPTY;
3065 if (flags & RENAME_WHITEOUT) {
3066 int error;
3068 error = shmem_whiteout(old_dir, old_dentry);
3069 if (error)
3070 return error;
3073 if (d_really_is_positive(new_dentry)) {
3074 (void) shmem_unlink(new_dir, new_dentry);
3075 if (they_are_dirs) {
3076 drop_nlink(d_inode(new_dentry));
3077 drop_nlink(old_dir);
3079 } else if (they_are_dirs) {
3080 drop_nlink(old_dir);
3081 inc_nlink(new_dir);
3084 old_dir->i_size -= BOGO_DIRENT_SIZE;
3085 new_dir->i_size += BOGO_DIRENT_SIZE;
3086 old_dir->i_ctime = old_dir->i_mtime =
3087 new_dir->i_ctime = new_dir->i_mtime =
3088 inode->i_ctime = current_time(old_dir);
3089 return 0;
3092 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3094 int error;
3095 int len;
3096 struct inode *inode;
3097 struct page *page;
3099 len = strlen(symname) + 1;
3100 if (len > PAGE_SIZE)
3101 return -ENAMETOOLONG;
3103 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3104 VM_NORESERVE);
3105 if (!inode)
3106 return -ENOSPC;
3108 error = security_inode_init_security(inode, dir, &dentry->d_name,
3109 shmem_initxattrs, NULL);
3110 if (error) {
3111 if (error != -EOPNOTSUPP) {
3112 iput(inode);
3113 return error;
3115 error = 0;
3118 inode->i_size = len-1;
3119 if (len <= SHORT_SYMLINK_LEN) {
3120 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3121 if (!inode->i_link) {
3122 iput(inode);
3123 return -ENOMEM;
3125 inode->i_op = &shmem_short_symlink_operations;
3126 } else {
3127 inode_nohighmem(inode);
3128 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3129 if (error) {
3130 iput(inode);
3131 return error;
3133 inode->i_mapping->a_ops = &shmem_aops;
3134 inode->i_op = &shmem_symlink_inode_operations;
3135 memcpy(page_address(page), symname, len);
3136 SetPageUptodate(page);
3137 set_page_dirty(page);
3138 unlock_page(page);
3139 put_page(page);
3141 dir->i_size += BOGO_DIRENT_SIZE;
3142 dir->i_ctime = dir->i_mtime = current_time(dir);
3143 d_instantiate(dentry, inode);
3144 dget(dentry);
3145 return 0;
3148 static void shmem_put_link(void *arg)
3150 mark_page_accessed(arg);
3151 put_page(arg);
3154 static const char *shmem_get_link(struct dentry *dentry,
3155 struct inode *inode,
3156 struct delayed_call *done)
3158 struct page *page = NULL;
3159 int error;
3160 if (!dentry) {
3161 page = find_get_page(inode->i_mapping, 0);
3162 if (!page)
3163 return ERR_PTR(-ECHILD);
3164 if (!PageUptodate(page)) {
3165 put_page(page);
3166 return ERR_PTR(-ECHILD);
3168 } else {
3169 error = shmem_getpage(inode, 0, &page, SGP_READ);
3170 if (error)
3171 return ERR_PTR(error);
3172 unlock_page(page);
3174 set_delayed_call(done, shmem_put_link, page);
3175 return page_address(page);
3178 #ifdef CONFIG_TMPFS_XATTR
3180 * Superblocks without xattr inode operations may get some security.* xattr
3181 * support from the LSM "for free". As soon as we have any other xattrs
3182 * like ACLs, we also need to implement the security.* handlers at
3183 * filesystem level, though.
3187 * Callback for security_inode_init_security() for acquiring xattrs.
3189 static int shmem_initxattrs(struct inode *inode,
3190 const struct xattr *xattr_array,
3191 void *fs_info)
3193 struct shmem_inode_info *info = SHMEM_I(inode);
3194 const struct xattr *xattr;
3195 struct simple_xattr *new_xattr;
3196 size_t len;
3198 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3199 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3200 if (!new_xattr)
3201 return -ENOMEM;
3203 len = strlen(xattr->name) + 1;
3204 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3205 GFP_KERNEL);
3206 if (!new_xattr->name) {
3207 kfree(new_xattr);
3208 return -ENOMEM;
3211 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3212 XATTR_SECURITY_PREFIX_LEN);
3213 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3214 xattr->name, len);
3216 simple_xattr_list_add(&info->xattrs, new_xattr);
3219 return 0;
3222 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3223 struct dentry *unused, struct inode *inode,
3224 const char *name, void *buffer, size_t size)
3226 struct shmem_inode_info *info = SHMEM_I(inode);
3228 name = xattr_full_name(handler, name);
3229 return simple_xattr_get(&info->xattrs, name, buffer, size);
3232 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3233 struct dentry *unused, struct inode *inode,
3234 const char *name, const void *value,
3235 size_t size, int flags)
3237 struct shmem_inode_info *info = SHMEM_I(inode);
3239 name = xattr_full_name(handler, name);
3240 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3243 static const struct xattr_handler shmem_security_xattr_handler = {
3244 .prefix = XATTR_SECURITY_PREFIX,
3245 .get = shmem_xattr_handler_get,
3246 .set = shmem_xattr_handler_set,
3249 static const struct xattr_handler shmem_trusted_xattr_handler = {
3250 .prefix = XATTR_TRUSTED_PREFIX,
3251 .get = shmem_xattr_handler_get,
3252 .set = shmem_xattr_handler_set,
3255 static const struct xattr_handler *shmem_xattr_handlers[] = {
3256 #ifdef CONFIG_TMPFS_POSIX_ACL
3257 &posix_acl_access_xattr_handler,
3258 &posix_acl_default_xattr_handler,
3259 #endif
3260 &shmem_security_xattr_handler,
3261 &shmem_trusted_xattr_handler,
3262 NULL
3265 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3267 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3268 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3270 #endif /* CONFIG_TMPFS_XATTR */
3272 static const struct inode_operations shmem_short_symlink_operations = {
3273 .get_link = simple_get_link,
3274 #ifdef CONFIG_TMPFS_XATTR
3275 .listxattr = shmem_listxattr,
3276 #endif
3279 static const struct inode_operations shmem_symlink_inode_operations = {
3280 .get_link = shmem_get_link,
3281 #ifdef CONFIG_TMPFS_XATTR
3282 .listxattr = shmem_listxattr,
3283 #endif
3286 static struct dentry *shmem_get_parent(struct dentry *child)
3288 return ERR_PTR(-ESTALE);
3291 static int shmem_match(struct inode *ino, void *vfh)
3293 __u32 *fh = vfh;
3294 __u64 inum = fh[2];
3295 inum = (inum << 32) | fh[1];
3296 return ino->i_ino == inum && fh[0] == ino->i_generation;
3299 /* Find any alias of inode, but prefer a hashed alias */
3300 static struct dentry *shmem_find_alias(struct inode *inode)
3302 struct dentry *alias = d_find_alias(inode);
3304 return alias ?: d_find_any_alias(inode);
3308 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3309 struct fid *fid, int fh_len, int fh_type)
3311 struct inode *inode;
3312 struct dentry *dentry = NULL;
3313 u64 inum;
3315 if (fh_len < 3)
3316 return NULL;
3318 inum = fid->raw[2];
3319 inum = (inum << 32) | fid->raw[1];
3321 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3322 shmem_match, fid->raw);
3323 if (inode) {
3324 dentry = shmem_find_alias(inode);
3325 iput(inode);
3328 return dentry;
3331 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3332 struct inode *parent)
3334 if (*len < 3) {
3335 *len = 3;
3336 return FILEID_INVALID;
3339 if (inode_unhashed(inode)) {
3340 /* Unfortunately insert_inode_hash is not idempotent,
3341 * so as we hash inodes here rather than at creation
3342 * time, we need a lock to ensure we only try
3343 * to do it once
3345 static DEFINE_SPINLOCK(lock);
3346 spin_lock(&lock);
3347 if (inode_unhashed(inode))
3348 __insert_inode_hash(inode,
3349 inode->i_ino + inode->i_generation);
3350 spin_unlock(&lock);
3353 fh[0] = inode->i_generation;
3354 fh[1] = inode->i_ino;
3355 fh[2] = ((__u64)inode->i_ino) >> 32;
3357 *len = 3;
3358 return 1;
3361 static const struct export_operations shmem_export_ops = {
3362 .get_parent = shmem_get_parent,
3363 .encode_fh = shmem_encode_fh,
3364 .fh_to_dentry = shmem_fh_to_dentry,
3367 enum shmem_param {
3368 Opt_gid,
3369 Opt_huge,
3370 Opt_mode,
3371 Opt_mpol,
3372 Opt_nr_blocks,
3373 Opt_nr_inodes,
3374 Opt_size,
3375 Opt_uid,
3378 static const struct fs_parameter_spec shmem_param_specs[] = {
3379 fsparam_u32 ("gid", Opt_gid),
3380 fsparam_enum ("huge", Opt_huge),
3381 fsparam_u32oct("mode", Opt_mode),
3382 fsparam_string("mpol", Opt_mpol),
3383 fsparam_string("nr_blocks", Opt_nr_blocks),
3384 fsparam_string("nr_inodes", Opt_nr_inodes),
3385 fsparam_string("size", Opt_size),
3386 fsparam_u32 ("uid", Opt_uid),
3390 static const struct fs_parameter_enum shmem_param_enums[] = {
3391 { Opt_huge, "never", SHMEM_HUGE_NEVER },
3392 { Opt_huge, "always", SHMEM_HUGE_ALWAYS },
3393 { Opt_huge, "within_size", SHMEM_HUGE_WITHIN_SIZE },
3394 { Opt_huge, "advise", SHMEM_HUGE_ADVISE },
3398 const struct fs_parameter_description shmem_fs_parameters = {
3399 .name = "tmpfs",
3400 .specs = shmem_param_specs,
3401 .enums = shmem_param_enums,
3404 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3406 struct shmem_options *ctx = fc->fs_private;
3407 struct fs_parse_result result;
3408 unsigned long long size;
3409 char *rest;
3410 int opt;
3412 opt = fs_parse(fc, &shmem_fs_parameters, param, &result);
3413 if (opt < 0)
3414 return opt;
3416 switch (opt) {
3417 case Opt_size:
3418 size = memparse(param->string, &rest);
3419 if (*rest == '%') {
3420 size <<= PAGE_SHIFT;
3421 size *= totalram_pages();
3422 do_div(size, 100);
3423 rest++;
3425 if (*rest)
3426 goto bad_value;
3427 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3428 ctx->seen |= SHMEM_SEEN_BLOCKS;
3429 break;
3430 case Opt_nr_blocks:
3431 ctx->blocks = memparse(param->string, &rest);
3432 if (*rest)
3433 goto bad_value;
3434 ctx->seen |= SHMEM_SEEN_BLOCKS;
3435 break;
3436 case Opt_nr_inodes:
3437 ctx->inodes = memparse(param->string, &rest);
3438 if (*rest)
3439 goto bad_value;
3440 ctx->seen |= SHMEM_SEEN_INODES;
3441 break;
3442 case Opt_mode:
3443 ctx->mode = result.uint_32 & 07777;
3444 break;
3445 case Opt_uid:
3446 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3447 if (!uid_valid(ctx->uid))
3448 goto bad_value;
3449 break;
3450 case Opt_gid:
3451 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3452 if (!gid_valid(ctx->gid))
3453 goto bad_value;
3454 break;
3455 case Opt_huge:
3456 ctx->huge = result.uint_32;
3457 if (ctx->huge != SHMEM_HUGE_NEVER &&
3458 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
3459 has_transparent_hugepage()))
3460 goto unsupported_parameter;
3461 ctx->seen |= SHMEM_SEEN_HUGE;
3462 break;
3463 case Opt_mpol:
3464 if (IS_ENABLED(CONFIG_NUMA)) {
3465 mpol_put(ctx->mpol);
3466 ctx->mpol = NULL;
3467 if (mpol_parse_str(param->string, &ctx->mpol))
3468 goto bad_value;
3469 break;
3471 goto unsupported_parameter;
3473 return 0;
3475 unsupported_parameter:
3476 return invalf(fc, "tmpfs: Unsupported parameter '%s'", param->key);
3477 bad_value:
3478 return invalf(fc, "tmpfs: Bad value for '%s'", param->key);
3481 static int shmem_parse_options(struct fs_context *fc, void *data)
3483 char *options = data;
3485 while (options != NULL) {
3486 char *this_char = options;
3487 for (;;) {
3489 * NUL-terminate this option: unfortunately,
3490 * mount options form a comma-separated list,
3491 * but mpol's nodelist may also contain commas.
3493 options = strchr(options, ',');
3494 if (options == NULL)
3495 break;
3496 options++;
3497 if (!isdigit(*options)) {
3498 options[-1] = '\0';
3499 break;
3502 if (*this_char) {
3503 char *value = strchr(this_char,'=');
3504 size_t len = 0;
3505 int err;
3507 if (value) {
3508 *value++ = '\0';
3509 len = strlen(value);
3511 err = vfs_parse_fs_string(fc, this_char, value, len);
3512 if (err < 0)
3513 return err;
3516 return 0;
3520 * Reconfigure a shmem filesystem.
3522 * Note that we disallow change from limited->unlimited blocks/inodes while any
3523 * are in use; but we must separately disallow unlimited->limited, because in
3524 * that case we have no record of how much is already in use.
3526 static int shmem_reconfigure(struct fs_context *fc)
3528 struct shmem_options *ctx = fc->fs_private;
3529 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3530 unsigned long inodes;
3531 const char *err;
3533 spin_lock(&sbinfo->stat_lock);
3534 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3535 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3536 if (!sbinfo->max_blocks) {
3537 err = "Cannot retroactively limit size";
3538 goto out;
3540 if (percpu_counter_compare(&sbinfo->used_blocks,
3541 ctx->blocks) > 0) {
3542 err = "Too small a size for current use";
3543 goto out;
3546 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3547 if (!sbinfo->max_inodes) {
3548 err = "Cannot retroactively limit inodes";
3549 goto out;
3551 if (ctx->inodes < inodes) {
3552 err = "Too few inodes for current use";
3553 goto out;
3557 if (ctx->seen & SHMEM_SEEN_HUGE)
3558 sbinfo->huge = ctx->huge;
3559 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3560 sbinfo->max_blocks = ctx->blocks;
3561 if (ctx->seen & SHMEM_SEEN_INODES) {
3562 sbinfo->max_inodes = ctx->inodes;
3563 sbinfo->free_inodes = ctx->inodes - inodes;
3567 * Preserve previous mempolicy unless mpol remount option was specified.
3569 if (ctx->mpol) {
3570 mpol_put(sbinfo->mpol);
3571 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3572 ctx->mpol = NULL;
3574 spin_unlock(&sbinfo->stat_lock);
3575 return 0;
3576 out:
3577 spin_unlock(&sbinfo->stat_lock);
3578 return invalf(fc, "tmpfs: %s", err);
3581 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3583 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3585 if (sbinfo->max_blocks != shmem_default_max_blocks())
3586 seq_printf(seq, ",size=%luk",
3587 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3588 if (sbinfo->max_inodes != shmem_default_max_inodes())
3589 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3590 if (sbinfo->mode != (0777 | S_ISVTX))
3591 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3592 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3593 seq_printf(seq, ",uid=%u",
3594 from_kuid_munged(&init_user_ns, sbinfo->uid));
3595 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3596 seq_printf(seq, ",gid=%u",
3597 from_kgid_munged(&init_user_ns, sbinfo->gid));
3598 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3599 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3600 if (sbinfo->huge)
3601 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3602 #endif
3603 shmem_show_mpol(seq, sbinfo->mpol);
3604 return 0;
3607 #endif /* CONFIG_TMPFS */
3609 static void shmem_put_super(struct super_block *sb)
3611 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3613 percpu_counter_destroy(&sbinfo->used_blocks);
3614 mpol_put(sbinfo->mpol);
3615 kfree(sbinfo);
3616 sb->s_fs_info = NULL;
3619 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3621 struct shmem_options *ctx = fc->fs_private;
3622 struct inode *inode;
3623 struct shmem_sb_info *sbinfo;
3624 int err = -ENOMEM;
3626 /* Round up to L1_CACHE_BYTES to resist false sharing */
3627 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3628 L1_CACHE_BYTES), GFP_KERNEL);
3629 if (!sbinfo)
3630 return -ENOMEM;
3632 sb->s_fs_info = sbinfo;
3634 #ifdef CONFIG_TMPFS
3636 * Per default we only allow half of the physical ram per
3637 * tmpfs instance, limiting inodes to one per page of lowmem;
3638 * but the internal instance is left unlimited.
3640 if (!(sb->s_flags & SB_KERNMOUNT)) {
3641 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3642 ctx->blocks = shmem_default_max_blocks();
3643 if (!(ctx->seen & SHMEM_SEEN_INODES))
3644 ctx->inodes = shmem_default_max_inodes();
3645 } else {
3646 sb->s_flags |= SB_NOUSER;
3648 sb->s_export_op = &shmem_export_ops;
3649 sb->s_flags |= SB_NOSEC;
3650 #else
3651 sb->s_flags |= SB_NOUSER;
3652 #endif
3653 sbinfo->max_blocks = ctx->blocks;
3654 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3655 sbinfo->uid = ctx->uid;
3656 sbinfo->gid = ctx->gid;
3657 sbinfo->mode = ctx->mode;
3658 sbinfo->huge = ctx->huge;
3659 sbinfo->mpol = ctx->mpol;
3660 ctx->mpol = NULL;
3662 spin_lock_init(&sbinfo->stat_lock);
3663 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3664 goto failed;
3665 spin_lock_init(&sbinfo->shrinklist_lock);
3666 INIT_LIST_HEAD(&sbinfo->shrinklist);
3668 sb->s_maxbytes = MAX_LFS_FILESIZE;
3669 sb->s_blocksize = PAGE_SIZE;
3670 sb->s_blocksize_bits = PAGE_SHIFT;
3671 sb->s_magic = TMPFS_MAGIC;
3672 sb->s_op = &shmem_ops;
3673 sb->s_time_gran = 1;
3674 #ifdef CONFIG_TMPFS_XATTR
3675 sb->s_xattr = shmem_xattr_handlers;
3676 #endif
3677 #ifdef CONFIG_TMPFS_POSIX_ACL
3678 sb->s_flags |= SB_POSIXACL;
3679 #endif
3680 uuid_gen(&sb->s_uuid);
3682 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3683 if (!inode)
3684 goto failed;
3685 inode->i_uid = sbinfo->uid;
3686 inode->i_gid = sbinfo->gid;
3687 sb->s_root = d_make_root(inode);
3688 if (!sb->s_root)
3689 goto failed;
3690 return 0;
3692 failed:
3693 shmem_put_super(sb);
3694 return err;
3697 static int shmem_get_tree(struct fs_context *fc)
3699 return get_tree_nodev(fc, shmem_fill_super);
3702 static void shmem_free_fc(struct fs_context *fc)
3704 struct shmem_options *ctx = fc->fs_private;
3706 if (ctx) {
3707 mpol_put(ctx->mpol);
3708 kfree(ctx);
3712 static const struct fs_context_operations shmem_fs_context_ops = {
3713 .free = shmem_free_fc,
3714 .get_tree = shmem_get_tree,
3715 #ifdef CONFIG_TMPFS
3716 .parse_monolithic = shmem_parse_options,
3717 .parse_param = shmem_parse_one,
3718 .reconfigure = shmem_reconfigure,
3719 #endif
3722 static struct kmem_cache *shmem_inode_cachep;
3724 static struct inode *shmem_alloc_inode(struct super_block *sb)
3726 struct shmem_inode_info *info;
3727 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3728 if (!info)
3729 return NULL;
3730 return &info->vfs_inode;
3733 static void shmem_free_in_core_inode(struct inode *inode)
3735 if (S_ISLNK(inode->i_mode))
3736 kfree(inode->i_link);
3737 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3740 static void shmem_destroy_inode(struct inode *inode)
3742 if (S_ISREG(inode->i_mode))
3743 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3746 static void shmem_init_inode(void *foo)
3748 struct shmem_inode_info *info = foo;
3749 inode_init_once(&info->vfs_inode);
3752 static void shmem_init_inodecache(void)
3754 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3755 sizeof(struct shmem_inode_info),
3756 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3759 static void shmem_destroy_inodecache(void)
3761 kmem_cache_destroy(shmem_inode_cachep);
3764 static const struct address_space_operations shmem_aops = {
3765 .writepage = shmem_writepage,
3766 .set_page_dirty = __set_page_dirty_no_writeback,
3767 #ifdef CONFIG_TMPFS
3768 .write_begin = shmem_write_begin,
3769 .write_end = shmem_write_end,
3770 #endif
3771 #ifdef CONFIG_MIGRATION
3772 .migratepage = migrate_page,
3773 #endif
3774 .error_remove_page = generic_error_remove_page,
3777 static const struct file_operations shmem_file_operations = {
3778 .mmap = shmem_mmap,
3779 .get_unmapped_area = shmem_get_unmapped_area,
3780 #ifdef CONFIG_TMPFS
3781 .llseek = shmem_file_llseek,
3782 .read_iter = shmem_file_read_iter,
3783 .write_iter = generic_file_write_iter,
3784 .fsync = noop_fsync,
3785 .splice_read = generic_file_splice_read,
3786 .splice_write = iter_file_splice_write,
3787 .fallocate = shmem_fallocate,
3788 #endif
3791 static const struct inode_operations shmem_inode_operations = {
3792 .getattr = shmem_getattr,
3793 .setattr = shmem_setattr,
3794 #ifdef CONFIG_TMPFS_XATTR
3795 .listxattr = shmem_listxattr,
3796 .set_acl = simple_set_acl,
3797 #endif
3800 static const struct inode_operations shmem_dir_inode_operations = {
3801 #ifdef CONFIG_TMPFS
3802 .create = shmem_create,
3803 .lookup = simple_lookup,
3804 .link = shmem_link,
3805 .unlink = shmem_unlink,
3806 .symlink = shmem_symlink,
3807 .mkdir = shmem_mkdir,
3808 .rmdir = shmem_rmdir,
3809 .mknod = shmem_mknod,
3810 .rename = shmem_rename2,
3811 .tmpfile = shmem_tmpfile,
3812 #endif
3813 #ifdef CONFIG_TMPFS_XATTR
3814 .listxattr = shmem_listxattr,
3815 #endif
3816 #ifdef CONFIG_TMPFS_POSIX_ACL
3817 .setattr = shmem_setattr,
3818 .set_acl = simple_set_acl,
3819 #endif
3822 static const struct inode_operations shmem_special_inode_operations = {
3823 #ifdef CONFIG_TMPFS_XATTR
3824 .listxattr = shmem_listxattr,
3825 #endif
3826 #ifdef CONFIG_TMPFS_POSIX_ACL
3827 .setattr = shmem_setattr,
3828 .set_acl = simple_set_acl,
3829 #endif
3832 static const struct super_operations shmem_ops = {
3833 .alloc_inode = shmem_alloc_inode,
3834 .free_inode = shmem_free_in_core_inode,
3835 .destroy_inode = shmem_destroy_inode,
3836 #ifdef CONFIG_TMPFS
3837 .statfs = shmem_statfs,
3838 .show_options = shmem_show_options,
3839 #endif
3840 .evict_inode = shmem_evict_inode,
3841 .drop_inode = generic_delete_inode,
3842 .put_super = shmem_put_super,
3843 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3844 .nr_cached_objects = shmem_unused_huge_count,
3845 .free_cached_objects = shmem_unused_huge_scan,
3846 #endif
3849 static const struct vm_operations_struct shmem_vm_ops = {
3850 .fault = shmem_fault,
3851 .map_pages = filemap_map_pages,
3852 #ifdef CONFIG_NUMA
3853 .set_policy = shmem_set_policy,
3854 .get_policy = shmem_get_policy,
3855 #endif
3858 int shmem_init_fs_context(struct fs_context *fc)
3860 struct shmem_options *ctx;
3862 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3863 if (!ctx)
3864 return -ENOMEM;
3866 ctx->mode = 0777 | S_ISVTX;
3867 ctx->uid = current_fsuid();
3868 ctx->gid = current_fsgid();
3870 fc->fs_private = ctx;
3871 fc->ops = &shmem_fs_context_ops;
3872 return 0;
3875 static struct file_system_type shmem_fs_type = {
3876 .owner = THIS_MODULE,
3877 .name = "tmpfs",
3878 .init_fs_context = shmem_init_fs_context,
3879 #ifdef CONFIG_TMPFS
3880 .parameters = &shmem_fs_parameters,
3881 #endif
3882 .kill_sb = kill_litter_super,
3883 .fs_flags = FS_USERNS_MOUNT,
3886 int __init shmem_init(void)
3888 int error;
3890 shmem_init_inodecache();
3892 error = register_filesystem(&shmem_fs_type);
3893 if (error) {
3894 pr_err("Could not register tmpfs\n");
3895 goto out2;
3898 shm_mnt = kern_mount(&shmem_fs_type);
3899 if (IS_ERR(shm_mnt)) {
3900 error = PTR_ERR(shm_mnt);
3901 pr_err("Could not kern_mount tmpfs\n");
3902 goto out1;
3905 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3906 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3907 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3908 else
3909 shmem_huge = 0; /* just in case it was patched */
3910 #endif
3911 return 0;
3913 out1:
3914 unregister_filesystem(&shmem_fs_type);
3915 out2:
3916 shmem_destroy_inodecache();
3917 shm_mnt = ERR_PTR(error);
3918 return error;
3921 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3922 static ssize_t shmem_enabled_show(struct kobject *kobj,
3923 struct kobj_attribute *attr, char *buf)
3925 int values[] = {
3926 SHMEM_HUGE_ALWAYS,
3927 SHMEM_HUGE_WITHIN_SIZE,
3928 SHMEM_HUGE_ADVISE,
3929 SHMEM_HUGE_NEVER,
3930 SHMEM_HUGE_DENY,
3931 SHMEM_HUGE_FORCE,
3933 int i, count;
3935 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3936 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3938 count += sprintf(buf + count, fmt,
3939 shmem_format_huge(values[i]));
3941 buf[count - 1] = '\n';
3942 return count;
3945 static ssize_t shmem_enabled_store(struct kobject *kobj,
3946 struct kobj_attribute *attr, const char *buf, size_t count)
3948 char tmp[16];
3949 int huge;
3951 if (count + 1 > sizeof(tmp))
3952 return -EINVAL;
3953 memcpy(tmp, buf, count);
3954 tmp[count] = '\0';
3955 if (count && tmp[count - 1] == '\n')
3956 tmp[count - 1] = '\0';
3958 huge = shmem_parse_huge(tmp);
3959 if (huge == -EINVAL)
3960 return -EINVAL;
3961 if (!has_transparent_hugepage() &&
3962 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3963 return -EINVAL;
3965 shmem_huge = huge;
3966 if (shmem_huge > SHMEM_HUGE_DENY)
3967 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3968 return count;
3971 struct kobj_attribute shmem_enabled_attr =
3972 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3973 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3975 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3976 bool shmem_huge_enabled(struct vm_area_struct *vma)
3978 struct inode *inode = file_inode(vma->vm_file);
3979 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3980 loff_t i_size;
3981 pgoff_t off;
3983 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
3984 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
3985 return false;
3986 if (shmem_huge == SHMEM_HUGE_FORCE)
3987 return true;
3988 if (shmem_huge == SHMEM_HUGE_DENY)
3989 return false;
3990 switch (sbinfo->huge) {
3991 case SHMEM_HUGE_NEVER:
3992 return false;
3993 case SHMEM_HUGE_ALWAYS:
3994 return true;
3995 case SHMEM_HUGE_WITHIN_SIZE:
3996 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3997 i_size = round_up(i_size_read(inode), PAGE_SIZE);
3998 if (i_size >= HPAGE_PMD_SIZE &&
3999 i_size >> PAGE_SHIFT >= off)
4000 return true;
4001 /* fall through */
4002 case SHMEM_HUGE_ADVISE:
4003 /* TODO: implement fadvise() hints */
4004 return (vma->vm_flags & VM_HUGEPAGE);
4005 default:
4006 VM_BUG_ON(1);
4007 return false;
4010 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4012 #else /* !CONFIG_SHMEM */
4015 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4017 * This is intended for small system where the benefits of the full
4018 * shmem code (swap-backed and resource-limited) are outweighed by
4019 * their complexity. On systems without swap this code should be
4020 * effectively equivalent, but much lighter weight.
4023 static struct file_system_type shmem_fs_type = {
4024 .name = "tmpfs",
4025 .init_fs_context = ramfs_init_fs_context,
4026 .parameters = &ramfs_fs_parameters,
4027 .kill_sb = kill_litter_super,
4028 .fs_flags = FS_USERNS_MOUNT,
4031 int __init shmem_init(void)
4033 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4035 shm_mnt = kern_mount(&shmem_fs_type);
4036 BUG_ON(IS_ERR(shm_mnt));
4038 return 0;
4041 int shmem_unuse(unsigned int type, bool frontswap,
4042 unsigned long *fs_pages_to_unuse)
4044 return 0;
4047 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4049 return 0;
4052 void shmem_unlock_mapping(struct address_space *mapping)
4056 #ifdef CONFIG_MMU
4057 unsigned long shmem_get_unmapped_area(struct file *file,
4058 unsigned long addr, unsigned long len,
4059 unsigned long pgoff, unsigned long flags)
4061 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4063 #endif
4065 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4067 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4069 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4071 #define shmem_vm_ops generic_file_vm_ops
4072 #define shmem_file_operations ramfs_file_operations
4073 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4074 #define shmem_acct_size(flags, size) 0
4075 #define shmem_unacct_size(flags, size) do {} while (0)
4077 #endif /* CONFIG_SHMEM */
4079 /* common code */
4081 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4082 unsigned long flags, unsigned int i_flags)
4084 struct inode *inode;
4085 struct file *res;
4087 if (IS_ERR(mnt))
4088 return ERR_CAST(mnt);
4090 if (size < 0 || size > MAX_LFS_FILESIZE)
4091 return ERR_PTR(-EINVAL);
4093 if (shmem_acct_size(flags, size))
4094 return ERR_PTR(-ENOMEM);
4096 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4097 flags);
4098 if (unlikely(!inode)) {
4099 shmem_unacct_size(flags, size);
4100 return ERR_PTR(-ENOSPC);
4102 inode->i_flags |= i_flags;
4103 inode->i_size = size;
4104 clear_nlink(inode); /* It is unlinked */
4105 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4106 if (!IS_ERR(res))
4107 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4108 &shmem_file_operations);
4109 if (IS_ERR(res))
4110 iput(inode);
4111 return res;
4115 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4116 * kernel internal. There will be NO LSM permission checks against the
4117 * underlying inode. So users of this interface must do LSM checks at a
4118 * higher layer. The users are the big_key and shm implementations. LSM
4119 * checks are provided at the key or shm level rather than the inode.
4120 * @name: name for dentry (to be seen in /proc/<pid>/maps
4121 * @size: size to be set for the file
4122 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4124 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4126 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4130 * shmem_file_setup - get an unlinked file living in tmpfs
4131 * @name: name for dentry (to be seen in /proc/<pid>/maps
4132 * @size: size to be set for the file
4133 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4135 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4137 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4139 EXPORT_SYMBOL_GPL(shmem_file_setup);
4142 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4143 * @mnt: the tmpfs mount where the file will be created
4144 * @name: name for dentry (to be seen in /proc/<pid>/maps
4145 * @size: size to be set for the file
4146 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4148 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4149 loff_t size, unsigned long flags)
4151 return __shmem_file_setup(mnt, name, size, flags, 0);
4153 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4156 * shmem_zero_setup - setup a shared anonymous mapping
4157 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4159 int shmem_zero_setup(struct vm_area_struct *vma)
4161 struct file *file;
4162 loff_t size = vma->vm_end - vma->vm_start;
4165 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4166 * between XFS directory reading and selinux: since this file is only
4167 * accessible to the user through its mapping, use S_PRIVATE flag to
4168 * bypass file security, in the same way as shmem_kernel_file_setup().
4170 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4171 if (IS_ERR(file))
4172 return PTR_ERR(file);
4174 if (vma->vm_file)
4175 fput(vma->vm_file);
4176 vma->vm_file = file;
4177 vma->vm_ops = &shmem_vm_ops;
4179 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4180 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4181 (vma->vm_end & HPAGE_PMD_MASK)) {
4182 khugepaged_enter(vma, vma->vm_flags);
4185 return 0;
4189 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4190 * @mapping: the page's address_space
4191 * @index: the page index
4192 * @gfp: the page allocator flags to use if allocating
4194 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4195 * with any new page allocations done using the specified allocation flags.
4196 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4197 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4198 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4200 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4201 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4203 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4204 pgoff_t index, gfp_t gfp)
4206 #ifdef CONFIG_SHMEM
4207 struct inode *inode = mapping->host;
4208 struct page *page;
4209 int error;
4211 BUG_ON(mapping->a_ops != &shmem_aops);
4212 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4213 gfp, NULL, NULL, NULL);
4214 if (error)
4215 page = ERR_PTR(error);
4216 else
4217 unlock_page(page);
4218 return page;
4219 #else
4221 * The tiny !SHMEM case uses ramfs without swap
4223 return read_cache_page_gfp(mapping, index, gfp);
4224 #endif
4226 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);