Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[linux/fpc-iii.git] / mm / slab_common.c
blob807490fe217a97d51b4575d19db8b0e04a40e000
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Slab allocator functions that are independent of the allocator strategy
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7 #include <linux/slab.h>
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/module.h>
16 #include <linux/cpu.h>
17 #include <linux/uaccess.h>
18 #include <linux/seq_file.h>
19 #include <linux/proc_fs.h>
20 #include <linux/debugfs.h>
21 #include <asm/cacheflush.h>
22 #include <asm/tlbflush.h>
23 #include <asm/page.h>
24 #include <linux/memcontrol.h>
26 #define CREATE_TRACE_POINTS
27 #include <trace/events/kmem.h>
29 #include "slab.h"
31 enum slab_state slab_state;
32 LIST_HEAD(slab_caches);
33 DEFINE_MUTEX(slab_mutex);
34 struct kmem_cache *kmem_cache;
36 #ifdef CONFIG_HARDENED_USERCOPY
37 bool usercopy_fallback __ro_after_init =
38 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
39 module_param(usercopy_fallback, bool, 0400);
40 MODULE_PARM_DESC(usercopy_fallback,
41 "WARN instead of reject usercopy whitelist violations");
42 #endif
44 static LIST_HEAD(slab_caches_to_rcu_destroy);
45 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
46 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
47 slab_caches_to_rcu_destroy_workfn);
50 * Set of flags that will prevent slab merging
52 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
53 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
54 SLAB_FAILSLAB | SLAB_KASAN)
56 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
57 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
60 * Merge control. If this is set then no merging of slab caches will occur.
62 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
64 static int __init setup_slab_nomerge(char *str)
66 slab_nomerge = true;
67 return 1;
70 #ifdef CONFIG_SLUB
71 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
72 #endif
74 __setup("slab_nomerge", setup_slab_nomerge);
77 * Determine the size of a slab object
79 unsigned int kmem_cache_size(struct kmem_cache *s)
81 return s->object_size;
83 EXPORT_SYMBOL(kmem_cache_size);
85 #ifdef CONFIG_DEBUG_VM
86 static int kmem_cache_sanity_check(const char *name, unsigned int size)
88 if (!name || in_interrupt() || size < sizeof(void *) ||
89 size > KMALLOC_MAX_SIZE) {
90 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
91 return -EINVAL;
94 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
95 return 0;
97 #else
98 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
100 return 0;
102 #endif
104 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
106 size_t i;
108 for (i = 0; i < nr; i++) {
109 if (s)
110 kmem_cache_free(s, p[i]);
111 else
112 kfree(p[i]);
116 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
117 void **p)
119 size_t i;
121 for (i = 0; i < nr; i++) {
122 void *x = p[i] = kmem_cache_alloc(s, flags);
123 if (!x) {
124 __kmem_cache_free_bulk(s, i, p);
125 return 0;
128 return i;
131 #ifdef CONFIG_MEMCG_KMEM
133 LIST_HEAD(slab_root_caches);
134 static DEFINE_SPINLOCK(memcg_kmem_wq_lock);
136 static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref);
138 void slab_init_memcg_params(struct kmem_cache *s)
140 s->memcg_params.root_cache = NULL;
141 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
142 INIT_LIST_HEAD(&s->memcg_params.children);
143 s->memcg_params.dying = false;
146 static int init_memcg_params(struct kmem_cache *s,
147 struct kmem_cache *root_cache)
149 struct memcg_cache_array *arr;
151 if (root_cache) {
152 int ret = percpu_ref_init(&s->memcg_params.refcnt,
153 kmemcg_cache_shutdown,
154 0, GFP_KERNEL);
155 if (ret)
156 return ret;
158 s->memcg_params.root_cache = root_cache;
159 INIT_LIST_HEAD(&s->memcg_params.children_node);
160 INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
161 return 0;
164 slab_init_memcg_params(s);
166 if (!memcg_nr_cache_ids)
167 return 0;
169 arr = kvzalloc(sizeof(struct memcg_cache_array) +
170 memcg_nr_cache_ids * sizeof(void *),
171 GFP_KERNEL);
172 if (!arr)
173 return -ENOMEM;
175 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
176 return 0;
179 static void destroy_memcg_params(struct kmem_cache *s)
181 if (is_root_cache(s))
182 kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
183 else
184 percpu_ref_exit(&s->memcg_params.refcnt);
187 static void free_memcg_params(struct rcu_head *rcu)
189 struct memcg_cache_array *old;
191 old = container_of(rcu, struct memcg_cache_array, rcu);
192 kvfree(old);
195 static int update_memcg_params(struct kmem_cache *s, int new_array_size)
197 struct memcg_cache_array *old, *new;
199 new = kvzalloc(sizeof(struct memcg_cache_array) +
200 new_array_size * sizeof(void *), GFP_KERNEL);
201 if (!new)
202 return -ENOMEM;
204 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
205 lockdep_is_held(&slab_mutex));
206 if (old)
207 memcpy(new->entries, old->entries,
208 memcg_nr_cache_ids * sizeof(void *));
210 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
211 if (old)
212 call_rcu(&old->rcu, free_memcg_params);
213 return 0;
216 int memcg_update_all_caches(int num_memcgs)
218 struct kmem_cache *s;
219 int ret = 0;
221 mutex_lock(&slab_mutex);
222 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
223 ret = update_memcg_params(s, num_memcgs);
225 * Instead of freeing the memory, we'll just leave the caches
226 * up to this point in an updated state.
228 if (ret)
229 break;
231 mutex_unlock(&slab_mutex);
232 return ret;
235 void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg)
237 if (is_root_cache(s)) {
238 list_add(&s->root_caches_node, &slab_root_caches);
239 } else {
240 css_get(&memcg->css);
241 s->memcg_params.memcg = memcg;
242 list_add(&s->memcg_params.children_node,
243 &s->memcg_params.root_cache->memcg_params.children);
244 list_add(&s->memcg_params.kmem_caches_node,
245 &s->memcg_params.memcg->kmem_caches);
249 static void memcg_unlink_cache(struct kmem_cache *s)
251 if (is_root_cache(s)) {
252 list_del(&s->root_caches_node);
253 } else {
254 list_del(&s->memcg_params.children_node);
255 list_del(&s->memcg_params.kmem_caches_node);
256 mem_cgroup_put(s->memcg_params.memcg);
257 WRITE_ONCE(s->memcg_params.memcg, NULL);
260 #else
261 static inline int init_memcg_params(struct kmem_cache *s,
262 struct kmem_cache *root_cache)
264 return 0;
267 static inline void destroy_memcg_params(struct kmem_cache *s)
271 static inline void memcg_unlink_cache(struct kmem_cache *s)
274 #endif /* CONFIG_MEMCG_KMEM */
277 * Figure out what the alignment of the objects will be given a set of
278 * flags, a user specified alignment and the size of the objects.
280 static unsigned int calculate_alignment(slab_flags_t flags,
281 unsigned int align, unsigned int size)
284 * If the user wants hardware cache aligned objects then follow that
285 * suggestion if the object is sufficiently large.
287 * The hardware cache alignment cannot override the specified
288 * alignment though. If that is greater then use it.
290 if (flags & SLAB_HWCACHE_ALIGN) {
291 unsigned int ralign;
293 ralign = cache_line_size();
294 while (size <= ralign / 2)
295 ralign /= 2;
296 align = max(align, ralign);
299 if (align < ARCH_SLAB_MINALIGN)
300 align = ARCH_SLAB_MINALIGN;
302 return ALIGN(align, sizeof(void *));
306 * Find a mergeable slab cache
308 int slab_unmergeable(struct kmem_cache *s)
310 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
311 return 1;
313 if (!is_root_cache(s))
314 return 1;
316 if (s->ctor)
317 return 1;
319 if (s->usersize)
320 return 1;
323 * We may have set a slab to be unmergeable during bootstrap.
325 if (s->refcount < 0)
326 return 1;
328 return 0;
331 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
332 slab_flags_t flags, const char *name, void (*ctor)(void *))
334 struct kmem_cache *s;
336 if (slab_nomerge)
337 return NULL;
339 if (ctor)
340 return NULL;
342 size = ALIGN(size, sizeof(void *));
343 align = calculate_alignment(flags, align, size);
344 size = ALIGN(size, align);
345 flags = kmem_cache_flags(size, flags, name, NULL);
347 if (flags & SLAB_NEVER_MERGE)
348 return NULL;
350 list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
351 if (slab_unmergeable(s))
352 continue;
354 if (size > s->size)
355 continue;
357 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
358 continue;
360 * Check if alignment is compatible.
361 * Courtesy of Adrian Drzewiecki
363 if ((s->size & ~(align - 1)) != s->size)
364 continue;
366 if (s->size - size >= sizeof(void *))
367 continue;
369 if (IS_ENABLED(CONFIG_SLAB) && align &&
370 (align > s->align || s->align % align))
371 continue;
373 return s;
375 return NULL;
378 static struct kmem_cache *create_cache(const char *name,
379 unsigned int object_size, unsigned int align,
380 slab_flags_t flags, unsigned int useroffset,
381 unsigned int usersize, void (*ctor)(void *),
382 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
384 struct kmem_cache *s;
385 int err;
387 if (WARN_ON(useroffset + usersize > object_size))
388 useroffset = usersize = 0;
390 err = -ENOMEM;
391 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
392 if (!s)
393 goto out;
395 s->name = name;
396 s->size = s->object_size = object_size;
397 s->align = align;
398 s->ctor = ctor;
399 s->useroffset = useroffset;
400 s->usersize = usersize;
402 err = init_memcg_params(s, root_cache);
403 if (err)
404 goto out_free_cache;
406 err = __kmem_cache_create(s, flags);
407 if (err)
408 goto out_free_cache;
410 s->refcount = 1;
411 list_add(&s->list, &slab_caches);
412 memcg_link_cache(s, memcg);
413 out:
414 if (err)
415 return ERR_PTR(err);
416 return s;
418 out_free_cache:
419 destroy_memcg_params(s);
420 kmem_cache_free(kmem_cache, s);
421 goto out;
425 * kmem_cache_create_usercopy - Create a cache with a region suitable
426 * for copying to userspace
427 * @name: A string which is used in /proc/slabinfo to identify this cache.
428 * @size: The size of objects to be created in this cache.
429 * @align: The required alignment for the objects.
430 * @flags: SLAB flags
431 * @useroffset: Usercopy region offset
432 * @usersize: Usercopy region size
433 * @ctor: A constructor for the objects.
435 * Cannot be called within a interrupt, but can be interrupted.
436 * The @ctor is run when new pages are allocated by the cache.
438 * The flags are
440 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
441 * to catch references to uninitialised memory.
443 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
444 * for buffer overruns.
446 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
447 * cacheline. This can be beneficial if you're counting cycles as closely
448 * as davem.
450 * Return: a pointer to the cache on success, NULL on failure.
452 struct kmem_cache *
453 kmem_cache_create_usercopy(const char *name,
454 unsigned int size, unsigned int align,
455 slab_flags_t flags,
456 unsigned int useroffset, unsigned int usersize,
457 void (*ctor)(void *))
459 struct kmem_cache *s = NULL;
460 const char *cache_name;
461 int err;
463 get_online_cpus();
464 get_online_mems();
465 memcg_get_cache_ids();
467 mutex_lock(&slab_mutex);
469 err = kmem_cache_sanity_check(name, size);
470 if (err) {
471 goto out_unlock;
474 /* Refuse requests with allocator specific flags */
475 if (flags & ~SLAB_FLAGS_PERMITTED) {
476 err = -EINVAL;
477 goto out_unlock;
481 * Some allocators will constraint the set of valid flags to a subset
482 * of all flags. We expect them to define CACHE_CREATE_MASK in this
483 * case, and we'll just provide them with a sanitized version of the
484 * passed flags.
486 flags &= CACHE_CREATE_MASK;
488 /* Fail closed on bad usersize of useroffset values. */
489 if (WARN_ON(!usersize && useroffset) ||
490 WARN_ON(size < usersize || size - usersize < useroffset))
491 usersize = useroffset = 0;
493 if (!usersize)
494 s = __kmem_cache_alias(name, size, align, flags, ctor);
495 if (s)
496 goto out_unlock;
498 cache_name = kstrdup_const(name, GFP_KERNEL);
499 if (!cache_name) {
500 err = -ENOMEM;
501 goto out_unlock;
504 s = create_cache(cache_name, size,
505 calculate_alignment(flags, align, size),
506 flags, useroffset, usersize, ctor, NULL, NULL);
507 if (IS_ERR(s)) {
508 err = PTR_ERR(s);
509 kfree_const(cache_name);
512 out_unlock:
513 mutex_unlock(&slab_mutex);
515 memcg_put_cache_ids();
516 put_online_mems();
517 put_online_cpus();
519 if (err) {
520 if (flags & SLAB_PANIC)
521 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
522 name, err);
523 else {
524 pr_warn("kmem_cache_create(%s) failed with error %d\n",
525 name, err);
526 dump_stack();
528 return NULL;
530 return s;
532 EXPORT_SYMBOL(kmem_cache_create_usercopy);
535 * kmem_cache_create - Create a cache.
536 * @name: A string which is used in /proc/slabinfo to identify this cache.
537 * @size: The size of objects to be created in this cache.
538 * @align: The required alignment for the objects.
539 * @flags: SLAB flags
540 * @ctor: A constructor for the objects.
542 * Cannot be called within a interrupt, but can be interrupted.
543 * The @ctor is run when new pages are allocated by the cache.
545 * The flags are
547 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
548 * to catch references to uninitialised memory.
550 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
551 * for buffer overruns.
553 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
554 * cacheline. This can be beneficial if you're counting cycles as closely
555 * as davem.
557 * Return: a pointer to the cache on success, NULL on failure.
559 struct kmem_cache *
560 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
561 slab_flags_t flags, void (*ctor)(void *))
563 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
564 ctor);
566 EXPORT_SYMBOL(kmem_cache_create);
568 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
570 LIST_HEAD(to_destroy);
571 struct kmem_cache *s, *s2;
574 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
575 * @slab_caches_to_rcu_destroy list. The slab pages are freed
576 * through RCU and and the associated kmem_cache are dereferenced
577 * while freeing the pages, so the kmem_caches should be freed only
578 * after the pending RCU operations are finished. As rcu_barrier()
579 * is a pretty slow operation, we batch all pending destructions
580 * asynchronously.
582 mutex_lock(&slab_mutex);
583 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
584 mutex_unlock(&slab_mutex);
586 if (list_empty(&to_destroy))
587 return;
589 rcu_barrier();
591 list_for_each_entry_safe(s, s2, &to_destroy, list) {
592 #ifdef SLAB_SUPPORTS_SYSFS
593 sysfs_slab_release(s);
594 #else
595 slab_kmem_cache_release(s);
596 #endif
600 static int shutdown_cache(struct kmem_cache *s)
602 /* free asan quarantined objects */
603 kasan_cache_shutdown(s);
605 if (__kmem_cache_shutdown(s) != 0)
606 return -EBUSY;
608 memcg_unlink_cache(s);
609 list_del(&s->list);
611 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
612 #ifdef SLAB_SUPPORTS_SYSFS
613 sysfs_slab_unlink(s);
614 #endif
615 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
616 schedule_work(&slab_caches_to_rcu_destroy_work);
617 } else {
618 #ifdef SLAB_SUPPORTS_SYSFS
619 sysfs_slab_unlink(s);
620 sysfs_slab_release(s);
621 #else
622 slab_kmem_cache_release(s);
623 #endif
626 return 0;
629 #ifdef CONFIG_MEMCG_KMEM
631 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
632 * @memcg: The memory cgroup the new cache is for.
633 * @root_cache: The parent of the new cache.
635 * This function attempts to create a kmem cache that will serve allocation
636 * requests going from @memcg to @root_cache. The new cache inherits properties
637 * from its parent.
639 void memcg_create_kmem_cache(struct mem_cgroup *memcg,
640 struct kmem_cache *root_cache)
642 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
643 struct cgroup_subsys_state *css = &memcg->css;
644 struct memcg_cache_array *arr;
645 struct kmem_cache *s = NULL;
646 char *cache_name;
647 int idx;
649 get_online_cpus();
650 get_online_mems();
652 mutex_lock(&slab_mutex);
655 * The memory cgroup could have been offlined while the cache
656 * creation work was pending.
658 if (memcg->kmem_state != KMEM_ONLINE)
659 goto out_unlock;
661 idx = memcg_cache_id(memcg);
662 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
663 lockdep_is_held(&slab_mutex));
666 * Since per-memcg caches are created asynchronously on first
667 * allocation (see memcg_kmem_get_cache()), several threads can try to
668 * create the same cache, but only one of them may succeed.
670 if (arr->entries[idx])
671 goto out_unlock;
673 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
674 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
675 css->serial_nr, memcg_name_buf);
676 if (!cache_name)
677 goto out_unlock;
679 s = create_cache(cache_name, root_cache->object_size,
680 root_cache->align,
681 root_cache->flags & CACHE_CREATE_MASK,
682 root_cache->useroffset, root_cache->usersize,
683 root_cache->ctor, memcg, root_cache);
685 * If we could not create a memcg cache, do not complain, because
686 * that's not critical at all as we can always proceed with the root
687 * cache.
689 if (IS_ERR(s)) {
690 kfree(cache_name);
691 goto out_unlock;
695 * Since readers won't lock (see memcg_kmem_get_cache()), we need a
696 * barrier here to ensure nobody will see the kmem_cache partially
697 * initialized.
699 smp_wmb();
700 arr->entries[idx] = s;
702 out_unlock:
703 mutex_unlock(&slab_mutex);
705 put_online_mems();
706 put_online_cpus();
709 static void kmemcg_workfn(struct work_struct *work)
711 struct kmem_cache *s = container_of(work, struct kmem_cache,
712 memcg_params.work);
714 get_online_cpus();
715 get_online_mems();
717 mutex_lock(&slab_mutex);
718 s->memcg_params.work_fn(s);
719 mutex_unlock(&slab_mutex);
721 put_online_mems();
722 put_online_cpus();
725 static void kmemcg_rcufn(struct rcu_head *head)
727 struct kmem_cache *s = container_of(head, struct kmem_cache,
728 memcg_params.rcu_head);
731 * We need to grab blocking locks. Bounce to ->work. The
732 * work item shares the space with the RCU head and can't be
733 * initialized eariler.
735 INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
736 queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
739 static void kmemcg_cache_shutdown_fn(struct kmem_cache *s)
741 WARN_ON(shutdown_cache(s));
744 static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref)
746 struct kmem_cache *s = container_of(percpu_ref, struct kmem_cache,
747 memcg_params.refcnt);
748 unsigned long flags;
750 spin_lock_irqsave(&memcg_kmem_wq_lock, flags);
751 if (s->memcg_params.root_cache->memcg_params.dying)
752 goto unlock;
754 s->memcg_params.work_fn = kmemcg_cache_shutdown_fn;
755 INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
756 queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
758 unlock:
759 spin_unlock_irqrestore(&memcg_kmem_wq_lock, flags);
762 static void kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
764 __kmemcg_cache_deactivate_after_rcu(s);
765 percpu_ref_kill(&s->memcg_params.refcnt);
768 static void kmemcg_cache_deactivate(struct kmem_cache *s)
770 if (WARN_ON_ONCE(is_root_cache(s)))
771 return;
773 __kmemcg_cache_deactivate(s);
774 s->flags |= SLAB_DEACTIVATED;
777 * memcg_kmem_wq_lock is used to synchronize memcg_params.dying
778 * flag and make sure that no new kmem_cache deactivation tasks
779 * are queued (see flush_memcg_workqueue() ).
781 spin_lock_irq(&memcg_kmem_wq_lock);
782 if (s->memcg_params.root_cache->memcg_params.dying)
783 goto unlock;
785 s->memcg_params.work_fn = kmemcg_cache_deactivate_after_rcu;
786 call_rcu(&s->memcg_params.rcu_head, kmemcg_rcufn);
787 unlock:
788 spin_unlock_irq(&memcg_kmem_wq_lock);
791 void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg,
792 struct mem_cgroup *parent)
794 int idx;
795 struct memcg_cache_array *arr;
796 struct kmem_cache *s, *c;
797 unsigned int nr_reparented;
799 idx = memcg_cache_id(memcg);
801 get_online_cpus();
802 get_online_mems();
804 mutex_lock(&slab_mutex);
805 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
806 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
807 lockdep_is_held(&slab_mutex));
808 c = arr->entries[idx];
809 if (!c)
810 continue;
812 kmemcg_cache_deactivate(c);
813 arr->entries[idx] = NULL;
815 nr_reparented = 0;
816 list_for_each_entry(s, &memcg->kmem_caches,
817 memcg_params.kmem_caches_node) {
818 WRITE_ONCE(s->memcg_params.memcg, parent);
819 css_put(&memcg->css);
820 nr_reparented++;
822 if (nr_reparented) {
823 list_splice_init(&memcg->kmem_caches,
824 &parent->kmem_caches);
825 css_get_many(&parent->css, nr_reparented);
827 mutex_unlock(&slab_mutex);
829 put_online_mems();
830 put_online_cpus();
833 static int shutdown_memcg_caches(struct kmem_cache *s)
835 struct memcg_cache_array *arr;
836 struct kmem_cache *c, *c2;
837 LIST_HEAD(busy);
838 int i;
840 BUG_ON(!is_root_cache(s));
843 * First, shutdown active caches, i.e. caches that belong to online
844 * memory cgroups.
846 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
847 lockdep_is_held(&slab_mutex));
848 for_each_memcg_cache_index(i) {
849 c = arr->entries[i];
850 if (!c)
851 continue;
852 if (shutdown_cache(c))
854 * The cache still has objects. Move it to a temporary
855 * list so as not to try to destroy it for a second
856 * time while iterating over inactive caches below.
858 list_move(&c->memcg_params.children_node, &busy);
859 else
861 * The cache is empty and will be destroyed soon. Clear
862 * the pointer to it in the memcg_caches array so that
863 * it will never be accessed even if the root cache
864 * stays alive.
866 arr->entries[i] = NULL;
870 * Second, shutdown all caches left from memory cgroups that are now
871 * offline.
873 list_for_each_entry_safe(c, c2, &s->memcg_params.children,
874 memcg_params.children_node)
875 shutdown_cache(c);
877 list_splice(&busy, &s->memcg_params.children);
880 * A cache being destroyed must be empty. In particular, this means
881 * that all per memcg caches attached to it must be empty too.
883 if (!list_empty(&s->memcg_params.children))
884 return -EBUSY;
885 return 0;
888 static void flush_memcg_workqueue(struct kmem_cache *s)
890 spin_lock_irq(&memcg_kmem_wq_lock);
891 s->memcg_params.dying = true;
892 spin_unlock_irq(&memcg_kmem_wq_lock);
895 * SLAB and SLUB deactivate the kmem_caches through call_rcu. Make
896 * sure all registered rcu callbacks have been invoked.
898 rcu_barrier();
901 * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB
902 * deactivates the memcg kmem_caches through workqueue. Make sure all
903 * previous workitems on workqueue are processed.
905 flush_workqueue(memcg_kmem_cache_wq);
907 #else
908 static inline int shutdown_memcg_caches(struct kmem_cache *s)
910 return 0;
913 static inline void flush_memcg_workqueue(struct kmem_cache *s)
916 #endif /* CONFIG_MEMCG_KMEM */
918 void slab_kmem_cache_release(struct kmem_cache *s)
920 __kmem_cache_release(s);
921 destroy_memcg_params(s);
922 kfree_const(s->name);
923 kmem_cache_free(kmem_cache, s);
926 void kmem_cache_destroy(struct kmem_cache *s)
928 int err;
930 if (unlikely(!s))
931 return;
933 flush_memcg_workqueue(s);
935 get_online_cpus();
936 get_online_mems();
938 mutex_lock(&slab_mutex);
940 s->refcount--;
941 if (s->refcount)
942 goto out_unlock;
944 err = shutdown_memcg_caches(s);
945 if (!err)
946 err = shutdown_cache(s);
948 if (err) {
949 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
950 s->name);
951 dump_stack();
953 out_unlock:
954 mutex_unlock(&slab_mutex);
956 put_online_mems();
957 put_online_cpus();
959 EXPORT_SYMBOL(kmem_cache_destroy);
962 * kmem_cache_shrink - Shrink a cache.
963 * @cachep: The cache to shrink.
965 * Releases as many slabs as possible for a cache.
966 * To help debugging, a zero exit status indicates all slabs were released.
968 * Return: %0 if all slabs were released, non-zero otherwise
970 int kmem_cache_shrink(struct kmem_cache *cachep)
972 int ret;
974 get_online_cpus();
975 get_online_mems();
976 kasan_cache_shrink(cachep);
977 ret = __kmem_cache_shrink(cachep);
978 put_online_mems();
979 put_online_cpus();
980 return ret;
982 EXPORT_SYMBOL(kmem_cache_shrink);
984 bool slab_is_available(void)
986 return slab_state >= UP;
989 #ifndef CONFIG_SLOB
990 /* Create a cache during boot when no slab services are available yet */
991 void __init create_boot_cache(struct kmem_cache *s, const char *name,
992 unsigned int size, slab_flags_t flags,
993 unsigned int useroffset, unsigned int usersize)
995 int err;
997 s->name = name;
998 s->size = s->object_size = size;
999 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
1000 s->useroffset = useroffset;
1001 s->usersize = usersize;
1003 slab_init_memcg_params(s);
1005 err = __kmem_cache_create(s, flags);
1007 if (err)
1008 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
1009 name, size, err);
1011 s->refcount = -1; /* Exempt from merging for now */
1014 struct kmem_cache *__init create_kmalloc_cache(const char *name,
1015 unsigned int size, slab_flags_t flags,
1016 unsigned int useroffset, unsigned int usersize)
1018 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
1020 if (!s)
1021 panic("Out of memory when creating slab %s\n", name);
1023 create_boot_cache(s, name, size, flags, useroffset, usersize);
1024 list_add(&s->list, &slab_caches);
1025 memcg_link_cache(s, NULL);
1026 s->refcount = 1;
1027 return s;
1030 struct kmem_cache *
1031 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
1032 { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
1033 EXPORT_SYMBOL(kmalloc_caches);
1036 * Conversion table for small slabs sizes / 8 to the index in the
1037 * kmalloc array. This is necessary for slabs < 192 since we have non power
1038 * of two cache sizes there. The size of larger slabs can be determined using
1039 * fls.
1041 static u8 size_index[24] __ro_after_init = {
1042 3, /* 8 */
1043 4, /* 16 */
1044 5, /* 24 */
1045 5, /* 32 */
1046 6, /* 40 */
1047 6, /* 48 */
1048 6, /* 56 */
1049 6, /* 64 */
1050 1, /* 72 */
1051 1, /* 80 */
1052 1, /* 88 */
1053 1, /* 96 */
1054 7, /* 104 */
1055 7, /* 112 */
1056 7, /* 120 */
1057 7, /* 128 */
1058 2, /* 136 */
1059 2, /* 144 */
1060 2, /* 152 */
1061 2, /* 160 */
1062 2, /* 168 */
1063 2, /* 176 */
1064 2, /* 184 */
1065 2 /* 192 */
1068 static inline unsigned int size_index_elem(unsigned int bytes)
1070 return (bytes - 1) / 8;
1074 * Find the kmem_cache structure that serves a given size of
1075 * allocation
1077 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
1079 unsigned int index;
1081 if (size <= 192) {
1082 if (!size)
1083 return ZERO_SIZE_PTR;
1085 index = size_index[size_index_elem(size)];
1086 } else {
1087 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
1088 return NULL;
1089 index = fls(size - 1);
1092 return kmalloc_caches[kmalloc_type(flags)][index];
1096 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
1097 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
1098 * kmalloc-67108864.
1100 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
1101 {NULL, 0}, {"kmalloc-96", 96},
1102 {"kmalloc-192", 192}, {"kmalloc-8", 8},
1103 {"kmalloc-16", 16}, {"kmalloc-32", 32},
1104 {"kmalloc-64", 64}, {"kmalloc-128", 128},
1105 {"kmalloc-256", 256}, {"kmalloc-512", 512},
1106 {"kmalloc-1k", 1024}, {"kmalloc-2k", 2048},
1107 {"kmalloc-4k", 4096}, {"kmalloc-8k", 8192},
1108 {"kmalloc-16k", 16384}, {"kmalloc-32k", 32768},
1109 {"kmalloc-64k", 65536}, {"kmalloc-128k", 131072},
1110 {"kmalloc-256k", 262144}, {"kmalloc-512k", 524288},
1111 {"kmalloc-1M", 1048576}, {"kmalloc-2M", 2097152},
1112 {"kmalloc-4M", 4194304}, {"kmalloc-8M", 8388608},
1113 {"kmalloc-16M", 16777216}, {"kmalloc-32M", 33554432},
1114 {"kmalloc-64M", 67108864}
1118 * Patch up the size_index table if we have strange large alignment
1119 * requirements for the kmalloc array. This is only the case for
1120 * MIPS it seems. The standard arches will not generate any code here.
1122 * Largest permitted alignment is 256 bytes due to the way we
1123 * handle the index determination for the smaller caches.
1125 * Make sure that nothing crazy happens if someone starts tinkering
1126 * around with ARCH_KMALLOC_MINALIGN
1128 void __init setup_kmalloc_cache_index_table(void)
1130 unsigned int i;
1132 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
1133 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
1135 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
1136 unsigned int elem = size_index_elem(i);
1138 if (elem >= ARRAY_SIZE(size_index))
1139 break;
1140 size_index[elem] = KMALLOC_SHIFT_LOW;
1143 if (KMALLOC_MIN_SIZE >= 64) {
1145 * The 96 byte size cache is not used if the alignment
1146 * is 64 byte.
1148 for (i = 64 + 8; i <= 96; i += 8)
1149 size_index[size_index_elem(i)] = 7;
1153 if (KMALLOC_MIN_SIZE >= 128) {
1155 * The 192 byte sized cache is not used if the alignment
1156 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1157 * instead.
1159 for (i = 128 + 8; i <= 192; i += 8)
1160 size_index[size_index_elem(i)] = 8;
1164 static const char *
1165 kmalloc_cache_name(const char *prefix, unsigned int size)
1168 static const char units[3] = "\0kM";
1169 int idx = 0;
1171 while (size >= 1024 && (size % 1024 == 0)) {
1172 size /= 1024;
1173 idx++;
1176 return kasprintf(GFP_NOWAIT, "%s-%u%c", prefix, size, units[idx]);
1179 static void __init
1180 new_kmalloc_cache(int idx, int type, slab_flags_t flags)
1182 const char *name;
1184 if (type == KMALLOC_RECLAIM) {
1185 flags |= SLAB_RECLAIM_ACCOUNT;
1186 name = kmalloc_cache_name("kmalloc-rcl",
1187 kmalloc_info[idx].size);
1188 BUG_ON(!name);
1189 } else {
1190 name = kmalloc_info[idx].name;
1193 kmalloc_caches[type][idx] = create_kmalloc_cache(name,
1194 kmalloc_info[idx].size, flags, 0,
1195 kmalloc_info[idx].size);
1199 * Create the kmalloc array. Some of the regular kmalloc arrays
1200 * may already have been created because they were needed to
1201 * enable allocations for slab creation.
1203 void __init create_kmalloc_caches(slab_flags_t flags)
1205 int i, type;
1207 for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
1208 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1209 if (!kmalloc_caches[type][i])
1210 new_kmalloc_cache(i, type, flags);
1213 * Caches that are not of the two-to-the-power-of size.
1214 * These have to be created immediately after the
1215 * earlier power of two caches
1217 if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
1218 !kmalloc_caches[type][1])
1219 new_kmalloc_cache(1, type, flags);
1220 if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
1221 !kmalloc_caches[type][2])
1222 new_kmalloc_cache(2, type, flags);
1226 /* Kmalloc array is now usable */
1227 slab_state = UP;
1229 #ifdef CONFIG_ZONE_DMA
1230 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1231 struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
1233 if (s) {
1234 unsigned int size = kmalloc_size(i);
1235 const char *n = kmalloc_cache_name("dma-kmalloc", size);
1237 BUG_ON(!n);
1238 kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
1239 n, size, SLAB_CACHE_DMA | flags, 0, 0);
1242 #endif
1244 #endif /* !CONFIG_SLOB */
1247 * To avoid unnecessary overhead, we pass through large allocation requests
1248 * directly to the page allocator. We use __GFP_COMP, because we will need to
1249 * know the allocation order to free the pages properly in kfree.
1251 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1253 void *ret;
1254 struct page *page;
1256 flags |= __GFP_COMP;
1257 page = alloc_pages(flags, order);
1258 ret = page ? page_address(page) : NULL;
1259 ret = kasan_kmalloc_large(ret, size, flags);
1260 /* As ret might get tagged, call kmemleak hook after KASAN. */
1261 kmemleak_alloc(ret, size, 1, flags);
1262 return ret;
1264 EXPORT_SYMBOL(kmalloc_order);
1266 #ifdef CONFIG_TRACING
1267 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1269 void *ret = kmalloc_order(size, flags, order);
1270 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1271 return ret;
1273 EXPORT_SYMBOL(kmalloc_order_trace);
1274 #endif
1276 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1277 /* Randomize a generic freelist */
1278 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1279 unsigned int count)
1281 unsigned int rand;
1282 unsigned int i;
1284 for (i = 0; i < count; i++)
1285 list[i] = i;
1287 /* Fisher-Yates shuffle */
1288 for (i = count - 1; i > 0; i--) {
1289 rand = prandom_u32_state(state);
1290 rand %= (i + 1);
1291 swap(list[i], list[rand]);
1295 /* Create a random sequence per cache */
1296 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1297 gfp_t gfp)
1299 struct rnd_state state;
1301 if (count < 2 || cachep->random_seq)
1302 return 0;
1304 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1305 if (!cachep->random_seq)
1306 return -ENOMEM;
1308 /* Get best entropy at this stage of boot */
1309 prandom_seed_state(&state, get_random_long());
1311 freelist_randomize(&state, cachep->random_seq, count);
1312 return 0;
1315 /* Destroy the per-cache random freelist sequence */
1316 void cache_random_seq_destroy(struct kmem_cache *cachep)
1318 kfree(cachep->random_seq);
1319 cachep->random_seq = NULL;
1321 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1323 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1324 #ifdef CONFIG_SLAB
1325 #define SLABINFO_RIGHTS (0600)
1326 #else
1327 #define SLABINFO_RIGHTS (0400)
1328 #endif
1330 static void print_slabinfo_header(struct seq_file *m)
1333 * Output format version, so at least we can change it
1334 * without _too_ many complaints.
1336 #ifdef CONFIG_DEBUG_SLAB
1337 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1338 #else
1339 seq_puts(m, "slabinfo - version: 2.1\n");
1340 #endif
1341 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1342 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1343 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1344 #ifdef CONFIG_DEBUG_SLAB
1345 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1346 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1347 #endif
1348 seq_putc(m, '\n');
1351 void *slab_start(struct seq_file *m, loff_t *pos)
1353 mutex_lock(&slab_mutex);
1354 return seq_list_start(&slab_root_caches, *pos);
1357 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1359 return seq_list_next(p, &slab_root_caches, pos);
1362 void slab_stop(struct seq_file *m, void *p)
1364 mutex_unlock(&slab_mutex);
1367 static void
1368 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1370 struct kmem_cache *c;
1371 struct slabinfo sinfo;
1373 if (!is_root_cache(s))
1374 return;
1376 for_each_memcg_cache(c, s) {
1377 memset(&sinfo, 0, sizeof(sinfo));
1378 get_slabinfo(c, &sinfo);
1380 info->active_slabs += sinfo.active_slabs;
1381 info->num_slabs += sinfo.num_slabs;
1382 info->shared_avail += sinfo.shared_avail;
1383 info->active_objs += sinfo.active_objs;
1384 info->num_objs += sinfo.num_objs;
1388 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1390 struct slabinfo sinfo;
1392 memset(&sinfo, 0, sizeof(sinfo));
1393 get_slabinfo(s, &sinfo);
1395 memcg_accumulate_slabinfo(s, &sinfo);
1397 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1398 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1399 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1401 seq_printf(m, " : tunables %4u %4u %4u",
1402 sinfo.limit, sinfo.batchcount, sinfo.shared);
1403 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1404 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1405 slabinfo_show_stats(m, s);
1406 seq_putc(m, '\n');
1409 static int slab_show(struct seq_file *m, void *p)
1411 struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1413 if (p == slab_root_caches.next)
1414 print_slabinfo_header(m);
1415 cache_show(s, m);
1416 return 0;
1419 void dump_unreclaimable_slab(void)
1421 struct kmem_cache *s, *s2;
1422 struct slabinfo sinfo;
1425 * Here acquiring slab_mutex is risky since we don't prefer to get
1426 * sleep in oom path. But, without mutex hold, it may introduce a
1427 * risk of crash.
1428 * Use mutex_trylock to protect the list traverse, dump nothing
1429 * without acquiring the mutex.
1431 if (!mutex_trylock(&slab_mutex)) {
1432 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1433 return;
1436 pr_info("Unreclaimable slab info:\n");
1437 pr_info("Name Used Total\n");
1439 list_for_each_entry_safe(s, s2, &slab_caches, list) {
1440 if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
1441 continue;
1443 get_slabinfo(s, &sinfo);
1445 if (sinfo.num_objs > 0)
1446 pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
1447 (sinfo.active_objs * s->size) / 1024,
1448 (sinfo.num_objs * s->size) / 1024);
1450 mutex_unlock(&slab_mutex);
1453 #if defined(CONFIG_MEMCG)
1454 void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1456 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1458 mutex_lock(&slab_mutex);
1459 return seq_list_start(&memcg->kmem_caches, *pos);
1462 void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1464 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1466 return seq_list_next(p, &memcg->kmem_caches, pos);
1469 void memcg_slab_stop(struct seq_file *m, void *p)
1471 mutex_unlock(&slab_mutex);
1474 int memcg_slab_show(struct seq_file *m, void *p)
1476 struct kmem_cache *s = list_entry(p, struct kmem_cache,
1477 memcg_params.kmem_caches_node);
1478 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1480 if (p == memcg->kmem_caches.next)
1481 print_slabinfo_header(m);
1482 cache_show(s, m);
1483 return 0;
1485 #endif
1488 * slabinfo_op - iterator that generates /proc/slabinfo
1490 * Output layout:
1491 * cache-name
1492 * num-active-objs
1493 * total-objs
1494 * object size
1495 * num-active-slabs
1496 * total-slabs
1497 * num-pages-per-slab
1498 * + further values on SMP and with statistics enabled
1500 static const struct seq_operations slabinfo_op = {
1501 .start = slab_start,
1502 .next = slab_next,
1503 .stop = slab_stop,
1504 .show = slab_show,
1507 static int slabinfo_open(struct inode *inode, struct file *file)
1509 return seq_open(file, &slabinfo_op);
1512 static const struct file_operations proc_slabinfo_operations = {
1513 .open = slabinfo_open,
1514 .read = seq_read,
1515 .write = slabinfo_write,
1516 .llseek = seq_lseek,
1517 .release = seq_release,
1520 static int __init slab_proc_init(void)
1522 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1523 &proc_slabinfo_operations);
1524 return 0;
1526 module_init(slab_proc_init);
1528 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_MEMCG_KMEM)
1530 * Display information about kmem caches that have child memcg caches.
1532 static int memcg_slabinfo_show(struct seq_file *m, void *unused)
1534 struct kmem_cache *s, *c;
1535 struct slabinfo sinfo;
1537 mutex_lock(&slab_mutex);
1538 seq_puts(m, "# <name> <css_id[:dead|deact]> <active_objs> <num_objs>");
1539 seq_puts(m, " <active_slabs> <num_slabs>\n");
1540 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
1542 * Skip kmem caches that don't have any memcg children.
1544 if (list_empty(&s->memcg_params.children))
1545 continue;
1547 memset(&sinfo, 0, sizeof(sinfo));
1548 get_slabinfo(s, &sinfo);
1549 seq_printf(m, "%-17s root %6lu %6lu %6lu %6lu\n",
1550 cache_name(s), sinfo.active_objs, sinfo.num_objs,
1551 sinfo.active_slabs, sinfo.num_slabs);
1553 for_each_memcg_cache(c, s) {
1554 struct cgroup_subsys_state *css;
1555 char *status = "";
1557 css = &c->memcg_params.memcg->css;
1558 if (!(css->flags & CSS_ONLINE))
1559 status = ":dead";
1560 else if (c->flags & SLAB_DEACTIVATED)
1561 status = ":deact";
1563 memset(&sinfo, 0, sizeof(sinfo));
1564 get_slabinfo(c, &sinfo);
1565 seq_printf(m, "%-17s %4d%-6s %6lu %6lu %6lu %6lu\n",
1566 cache_name(c), css->id, status,
1567 sinfo.active_objs, sinfo.num_objs,
1568 sinfo.active_slabs, sinfo.num_slabs);
1571 mutex_unlock(&slab_mutex);
1572 return 0;
1574 DEFINE_SHOW_ATTRIBUTE(memcg_slabinfo);
1576 static int __init memcg_slabinfo_init(void)
1578 debugfs_create_file("memcg_slabinfo", S_IFREG | S_IRUGO,
1579 NULL, NULL, &memcg_slabinfo_fops);
1580 return 0;
1583 late_initcall(memcg_slabinfo_init);
1584 #endif /* CONFIG_DEBUG_FS && CONFIG_MEMCG_KMEM */
1585 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1587 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1588 gfp_t flags)
1590 void *ret;
1591 size_t ks = 0;
1593 if (p)
1594 ks = ksize(p);
1596 if (ks >= new_size) {
1597 p = kasan_krealloc((void *)p, new_size, flags);
1598 return (void *)p;
1601 ret = kmalloc_track_caller(new_size, flags);
1602 if (ret && p)
1603 memcpy(ret, p, ks);
1605 return ret;
1609 * __krealloc - like krealloc() but don't free @p.
1610 * @p: object to reallocate memory for.
1611 * @new_size: how many bytes of memory are required.
1612 * @flags: the type of memory to allocate.
1614 * This function is like krealloc() except it never frees the originally
1615 * allocated buffer. Use this if you don't want to free the buffer immediately
1616 * like, for example, with RCU.
1618 * Return: pointer to the allocated memory or %NULL in case of error
1620 void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1622 if (unlikely(!new_size))
1623 return ZERO_SIZE_PTR;
1625 return __do_krealloc(p, new_size, flags);
1628 EXPORT_SYMBOL(__krealloc);
1631 * krealloc - reallocate memory. The contents will remain unchanged.
1632 * @p: object to reallocate memory for.
1633 * @new_size: how many bytes of memory are required.
1634 * @flags: the type of memory to allocate.
1636 * The contents of the object pointed to are preserved up to the
1637 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1638 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1639 * %NULL pointer, the object pointed to is freed.
1641 * Return: pointer to the allocated memory or %NULL in case of error
1643 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1645 void *ret;
1647 if (unlikely(!new_size)) {
1648 kfree(p);
1649 return ZERO_SIZE_PTR;
1652 ret = __do_krealloc(p, new_size, flags);
1653 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1654 kfree(p);
1656 return ret;
1658 EXPORT_SYMBOL(krealloc);
1661 * kzfree - like kfree but zero memory
1662 * @p: object to free memory of
1664 * The memory of the object @p points to is zeroed before freed.
1665 * If @p is %NULL, kzfree() does nothing.
1667 * Note: this function zeroes the whole allocated buffer which can be a good
1668 * deal bigger than the requested buffer size passed to kmalloc(). So be
1669 * careful when using this function in performance sensitive code.
1671 void kzfree(const void *p)
1673 size_t ks;
1674 void *mem = (void *)p;
1676 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1677 return;
1678 ks = ksize(mem);
1679 memset(mem, 0, ks);
1680 kfree(mem);
1682 EXPORT_SYMBOL(kzfree);
1685 * ksize - get the actual amount of memory allocated for a given object
1686 * @objp: Pointer to the object
1688 * kmalloc may internally round up allocations and return more memory
1689 * than requested. ksize() can be used to determine the actual amount of
1690 * memory allocated. The caller may use this additional memory, even though
1691 * a smaller amount of memory was initially specified with the kmalloc call.
1692 * The caller must guarantee that objp points to a valid object previously
1693 * allocated with either kmalloc() or kmem_cache_alloc(). The object
1694 * must not be freed during the duration of the call.
1696 * Return: size of the actual memory used by @objp in bytes
1698 size_t ksize(const void *objp)
1700 size_t size;
1702 if (WARN_ON_ONCE(!objp))
1703 return 0;
1705 * We need to check that the pointed to object is valid, and only then
1706 * unpoison the shadow memory below. We use __kasan_check_read(), to
1707 * generate a more useful report at the time ksize() is called (rather
1708 * than later where behaviour is undefined due to potential
1709 * use-after-free or double-free).
1711 * If the pointed to memory is invalid we return 0, to avoid users of
1712 * ksize() writing to and potentially corrupting the memory region.
1714 * We want to perform the check before __ksize(), to avoid potentially
1715 * crashing in __ksize() due to accessing invalid metadata.
1717 if (unlikely(objp == ZERO_SIZE_PTR) || !__kasan_check_read(objp, 1))
1718 return 0;
1720 size = __ksize(objp);
1722 * We assume that ksize callers could use whole allocated area,
1723 * so we need to unpoison this area.
1725 kasan_unpoison_shadow(objp, size);
1726 return size;
1728 EXPORT_SYMBOL(ksize);
1730 /* Tracepoints definitions. */
1731 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1732 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1733 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1734 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1735 EXPORT_TRACEPOINT_SYMBOL(kfree);
1736 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1738 int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1740 if (__should_failslab(s, gfpflags))
1741 return -ENOMEM;
1742 return 0;
1744 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);