2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
23 * page->units: first object offset in a subpage of zspage
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/pseudo_fs.h>
56 #include <linux/migrate.h>
57 #include <linux/wait.h>
58 #include <linux/pagemap.h>
61 #define ZSPAGE_MAGIC 0x58
64 * This must be power of 2 and greater than of equal to sizeof(link_free).
65 * These two conditions ensure that any 'struct link_free' itself doesn't
66 * span more than 1 page which avoids complex case of mapping 2 pages simply
67 * to restore link_free pointer values.
72 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
73 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
75 #define ZS_MAX_ZSPAGE_ORDER 2
76 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
78 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
81 * Object location (<PFN>, <obj_idx>) is encoded as
82 * as single (unsigned long) handle value.
84 * Note that object index <obj_idx> starts from 0.
86 * This is made more complicated by various memory models and PAE.
89 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
90 #ifdef MAX_PHYSMEM_BITS
91 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
94 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
97 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
101 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
104 * Memory for allocating for handle keeps object position by
105 * encoding <page, obj_idx> and the encoded value has a room
106 * in least bit(ie, look at obj_to_location).
107 * We use the bit to synchronize between object access by
108 * user and migration.
110 #define HANDLE_PIN_BIT 0
113 * Head in allocated object should have OBJ_ALLOCATED_TAG
114 * to identify the object was allocated or not.
115 * It's okay to add the status bit in the least bit because
116 * header keeps handle which is 4byte-aligned address so we
117 * have room for two bit at least.
119 #define OBJ_ALLOCATED_TAG 1
120 #define OBJ_TAG_BITS 1
121 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
122 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
124 #define FULLNESS_BITS 2
126 #define ISOLATED_BITS 3
127 #define MAGIC_VAL_BITS 8
129 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
130 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
131 #define ZS_MIN_ALLOC_SIZE \
132 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
133 /* each chunk includes extra space to keep handle */
134 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
137 * On systems with 4K page size, this gives 255 size classes! There is a
139 * - Large number of size classes is potentially wasteful as free page are
140 * spread across these classes
141 * - Small number of size classes causes large internal fragmentation
142 * - Probably its better to use specific size classes (empirically
143 * determined). NOTE: all those class sizes must be set as multiple of
144 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
146 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
149 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
150 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
151 ZS_SIZE_CLASS_DELTA) + 1)
153 enum fullness_group
{
171 struct zs_size_stat
{
172 unsigned long objs
[NR_ZS_STAT_TYPE
];
175 #ifdef CONFIG_ZSMALLOC_STAT
176 static struct dentry
*zs_stat_root
;
179 #ifdef CONFIG_COMPACTION
180 static struct vfsmount
*zsmalloc_mnt
;
184 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
186 * n = number of allocated objects
187 * N = total number of objects zspage can store
188 * f = fullness_threshold_frac
190 * Similarly, we assign zspage to:
191 * ZS_ALMOST_FULL when n > N / f
192 * ZS_EMPTY when n == 0
193 * ZS_FULL when n == N
195 * (see: fix_fullness_group())
197 static const int fullness_threshold_frac
= 4;
198 static size_t huge_class_size
;
202 struct list_head fullness_list
[NR_ZS_FULLNESS
];
204 * Size of objects stored in this class. Must be multiple
209 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
210 int pages_per_zspage
;
213 struct zs_size_stat stats
;
216 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
217 static void SetPageHugeObject(struct page
*page
)
219 SetPageOwnerPriv1(page
);
222 static void ClearPageHugeObject(struct page
*page
)
224 ClearPageOwnerPriv1(page
);
227 static int PageHugeObject(struct page
*page
)
229 return PageOwnerPriv1(page
);
233 * Placed within free objects to form a singly linked list.
234 * For every zspage, zspage->freeobj gives head of this list.
236 * This must be power of 2 and less than or equal to ZS_ALIGN
242 * It's valid for non-allocated object
246 * Handle of allocated object.
248 unsigned long handle
;
255 struct size_class
*size_class
[ZS_SIZE_CLASSES
];
256 struct kmem_cache
*handle_cachep
;
257 struct kmem_cache
*zspage_cachep
;
259 atomic_long_t pages_allocated
;
261 struct zs_pool_stats stats
;
263 /* Compact classes */
264 struct shrinker shrinker
;
266 #ifdef CONFIG_ZSMALLOC_STAT
267 struct dentry
*stat_dentry
;
269 #ifdef CONFIG_COMPACTION
271 struct work_struct free_work
;
272 /* A wait queue for when migration races with async_free_zspage() */
273 struct wait_queue_head migration_wait
;
274 atomic_long_t isolated_pages
;
281 unsigned int fullness
:FULLNESS_BITS
;
282 unsigned int class:CLASS_BITS
+ 1;
283 unsigned int isolated
:ISOLATED_BITS
;
284 unsigned int magic
:MAGIC_VAL_BITS
;
287 unsigned int freeobj
;
288 struct page
*first_page
;
289 struct list_head list
; /* fullness list */
290 #ifdef CONFIG_COMPACTION
295 struct mapping_area
{
296 #ifdef CONFIG_PGTABLE_MAPPING
297 struct vm_struct
*vm
; /* vm area for mapping object that span pages */
299 char *vm_buf
; /* copy buffer for objects that span pages */
301 char *vm_addr
; /* address of kmap_atomic()'ed pages */
302 enum zs_mapmode vm_mm
; /* mapping mode */
305 #ifdef CONFIG_COMPACTION
306 static int zs_register_migration(struct zs_pool
*pool
);
307 static void zs_unregister_migration(struct zs_pool
*pool
);
308 static void migrate_lock_init(struct zspage
*zspage
);
309 static void migrate_read_lock(struct zspage
*zspage
);
310 static void migrate_read_unlock(struct zspage
*zspage
);
311 static void kick_deferred_free(struct zs_pool
*pool
);
312 static void init_deferred_free(struct zs_pool
*pool
);
313 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
);
315 static int zsmalloc_mount(void) { return 0; }
316 static void zsmalloc_unmount(void) {}
317 static int zs_register_migration(struct zs_pool
*pool
) { return 0; }
318 static void zs_unregister_migration(struct zs_pool
*pool
) {}
319 static void migrate_lock_init(struct zspage
*zspage
) {}
320 static void migrate_read_lock(struct zspage
*zspage
) {}
321 static void migrate_read_unlock(struct zspage
*zspage
) {}
322 static void kick_deferred_free(struct zs_pool
*pool
) {}
323 static void init_deferred_free(struct zs_pool
*pool
) {}
324 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
) {}
327 static int create_cache(struct zs_pool
*pool
)
329 pool
->handle_cachep
= kmem_cache_create("zs_handle", ZS_HANDLE_SIZE
,
331 if (!pool
->handle_cachep
)
334 pool
->zspage_cachep
= kmem_cache_create("zspage", sizeof(struct zspage
),
336 if (!pool
->zspage_cachep
) {
337 kmem_cache_destroy(pool
->handle_cachep
);
338 pool
->handle_cachep
= NULL
;
345 static void destroy_cache(struct zs_pool
*pool
)
347 kmem_cache_destroy(pool
->handle_cachep
);
348 kmem_cache_destroy(pool
->zspage_cachep
);
351 static unsigned long cache_alloc_handle(struct zs_pool
*pool
, gfp_t gfp
)
353 return (unsigned long)kmem_cache_alloc(pool
->handle_cachep
,
354 gfp
& ~(__GFP_HIGHMEM
|__GFP_MOVABLE
));
357 static void cache_free_handle(struct zs_pool
*pool
, unsigned long handle
)
359 kmem_cache_free(pool
->handle_cachep
, (void *)handle
);
362 static struct zspage
*cache_alloc_zspage(struct zs_pool
*pool
, gfp_t flags
)
364 return kmem_cache_alloc(pool
->zspage_cachep
,
365 flags
& ~(__GFP_HIGHMEM
|__GFP_MOVABLE
));
368 static void cache_free_zspage(struct zs_pool
*pool
, struct zspage
*zspage
)
370 kmem_cache_free(pool
->zspage_cachep
, zspage
);
373 static void record_obj(unsigned long handle
, unsigned long obj
)
376 * lsb of @obj represents handle lock while other bits
377 * represent object value the handle is pointing so
378 * updating shouldn't do store tearing.
380 WRITE_ONCE(*(unsigned long *)handle
, obj
);
387 static void *zs_zpool_create(const char *name
, gfp_t gfp
,
388 const struct zpool_ops
*zpool_ops
,
392 * Ignore global gfp flags: zs_malloc() may be invoked from
393 * different contexts and its caller must provide a valid
396 return zs_create_pool(name
);
399 static void zs_zpool_destroy(void *pool
)
401 zs_destroy_pool(pool
);
404 static int zs_zpool_malloc(void *pool
, size_t size
, gfp_t gfp
,
405 unsigned long *handle
)
407 *handle
= zs_malloc(pool
, size
, gfp
);
408 return *handle
? 0 : -1;
410 static void zs_zpool_free(void *pool
, unsigned long handle
)
412 zs_free(pool
, handle
);
415 static void *zs_zpool_map(void *pool
, unsigned long handle
,
416 enum zpool_mapmode mm
)
418 enum zs_mapmode zs_mm
;
427 case ZPOOL_MM_RW
: /* fall through */
433 return zs_map_object(pool
, handle
, zs_mm
);
435 static void zs_zpool_unmap(void *pool
, unsigned long handle
)
437 zs_unmap_object(pool
, handle
);
440 static u64
zs_zpool_total_size(void *pool
)
442 return zs_get_total_pages(pool
) << PAGE_SHIFT
;
445 static struct zpool_driver zs_zpool_driver
= {
447 .owner
= THIS_MODULE
,
448 .create
= zs_zpool_create
,
449 .destroy
= zs_zpool_destroy
,
450 .malloc
= zs_zpool_malloc
,
451 .free
= zs_zpool_free
,
453 .unmap
= zs_zpool_unmap
,
454 .total_size
= zs_zpool_total_size
,
457 MODULE_ALIAS("zpool-zsmalloc");
458 #endif /* CONFIG_ZPOOL */
460 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
461 static DEFINE_PER_CPU(struct mapping_area
, zs_map_area
);
463 static bool is_zspage_isolated(struct zspage
*zspage
)
465 return zspage
->isolated
;
468 static __maybe_unused
int is_first_page(struct page
*page
)
470 return PagePrivate(page
);
473 /* Protected by class->lock */
474 static inline int get_zspage_inuse(struct zspage
*zspage
)
476 return zspage
->inuse
;
479 static inline void set_zspage_inuse(struct zspage
*zspage
, int val
)
484 static inline void mod_zspage_inuse(struct zspage
*zspage
, int val
)
486 zspage
->inuse
+= val
;
489 static inline struct page
*get_first_page(struct zspage
*zspage
)
491 struct page
*first_page
= zspage
->first_page
;
493 VM_BUG_ON_PAGE(!is_first_page(first_page
), first_page
);
497 static inline int get_first_obj_offset(struct page
*page
)
502 static inline void set_first_obj_offset(struct page
*page
, int offset
)
504 page
->units
= offset
;
507 static inline unsigned int get_freeobj(struct zspage
*zspage
)
509 return zspage
->freeobj
;
512 static inline void set_freeobj(struct zspage
*zspage
, unsigned int obj
)
514 zspage
->freeobj
= obj
;
517 static void get_zspage_mapping(struct zspage
*zspage
,
518 unsigned int *class_idx
,
519 enum fullness_group
*fullness
)
521 BUG_ON(zspage
->magic
!= ZSPAGE_MAGIC
);
523 *fullness
= zspage
->fullness
;
524 *class_idx
= zspage
->class;
527 static void set_zspage_mapping(struct zspage
*zspage
,
528 unsigned int class_idx
,
529 enum fullness_group fullness
)
531 zspage
->class = class_idx
;
532 zspage
->fullness
= fullness
;
536 * zsmalloc divides the pool into various size classes where each
537 * class maintains a list of zspages where each zspage is divided
538 * into equal sized chunks. Each allocation falls into one of these
539 * classes depending on its size. This function returns index of the
540 * size class which has chunk size big enough to hold the give size.
542 static int get_size_class_index(int size
)
546 if (likely(size
> ZS_MIN_ALLOC_SIZE
))
547 idx
= DIV_ROUND_UP(size
- ZS_MIN_ALLOC_SIZE
,
548 ZS_SIZE_CLASS_DELTA
);
550 return min_t(int, ZS_SIZE_CLASSES
- 1, idx
);
553 /* type can be of enum type zs_stat_type or fullness_group */
554 static inline void zs_stat_inc(struct size_class
*class,
555 int type
, unsigned long cnt
)
557 class->stats
.objs
[type
] += cnt
;
560 /* type can be of enum type zs_stat_type or fullness_group */
561 static inline void zs_stat_dec(struct size_class
*class,
562 int type
, unsigned long cnt
)
564 class->stats
.objs
[type
] -= cnt
;
567 /* type can be of enum type zs_stat_type or fullness_group */
568 static inline unsigned long zs_stat_get(struct size_class
*class,
571 return class->stats
.objs
[type
];
574 #ifdef CONFIG_ZSMALLOC_STAT
576 static void __init
zs_stat_init(void)
578 if (!debugfs_initialized()) {
579 pr_warn("debugfs not available, stat dir not created\n");
583 zs_stat_root
= debugfs_create_dir("zsmalloc", NULL
);
586 static void __exit
zs_stat_exit(void)
588 debugfs_remove_recursive(zs_stat_root
);
591 static unsigned long zs_can_compact(struct size_class
*class);
593 static int zs_stats_size_show(struct seq_file
*s
, void *v
)
596 struct zs_pool
*pool
= s
->private;
597 struct size_class
*class;
599 unsigned long class_almost_full
, class_almost_empty
;
600 unsigned long obj_allocated
, obj_used
, pages_used
, freeable
;
601 unsigned long total_class_almost_full
= 0, total_class_almost_empty
= 0;
602 unsigned long total_objs
= 0, total_used_objs
= 0, total_pages
= 0;
603 unsigned long total_freeable
= 0;
605 seq_printf(s
, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
606 "class", "size", "almost_full", "almost_empty",
607 "obj_allocated", "obj_used", "pages_used",
608 "pages_per_zspage", "freeable");
610 for (i
= 0; i
< ZS_SIZE_CLASSES
; i
++) {
611 class = pool
->size_class
[i
];
613 if (class->index
!= i
)
616 spin_lock(&class->lock
);
617 class_almost_full
= zs_stat_get(class, CLASS_ALMOST_FULL
);
618 class_almost_empty
= zs_stat_get(class, CLASS_ALMOST_EMPTY
);
619 obj_allocated
= zs_stat_get(class, OBJ_ALLOCATED
);
620 obj_used
= zs_stat_get(class, OBJ_USED
);
621 freeable
= zs_can_compact(class);
622 spin_unlock(&class->lock
);
624 objs_per_zspage
= class->objs_per_zspage
;
625 pages_used
= obj_allocated
/ objs_per_zspage
*
626 class->pages_per_zspage
;
628 seq_printf(s
, " %5u %5u %11lu %12lu %13lu"
629 " %10lu %10lu %16d %8lu\n",
630 i
, class->size
, class_almost_full
, class_almost_empty
,
631 obj_allocated
, obj_used
, pages_used
,
632 class->pages_per_zspage
, freeable
);
634 total_class_almost_full
+= class_almost_full
;
635 total_class_almost_empty
+= class_almost_empty
;
636 total_objs
+= obj_allocated
;
637 total_used_objs
+= obj_used
;
638 total_pages
+= pages_used
;
639 total_freeable
+= freeable
;
643 seq_printf(s
, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
644 "Total", "", total_class_almost_full
,
645 total_class_almost_empty
, total_objs
,
646 total_used_objs
, total_pages
, "", total_freeable
);
650 DEFINE_SHOW_ATTRIBUTE(zs_stats_size
);
652 static void zs_pool_stat_create(struct zs_pool
*pool
, const char *name
)
655 pr_warn("no root stat dir, not creating <%s> stat dir\n", name
);
659 pool
->stat_dentry
= debugfs_create_dir(name
, zs_stat_root
);
661 debugfs_create_file("classes", S_IFREG
| 0444, pool
->stat_dentry
, pool
,
662 &zs_stats_size_fops
);
665 static void zs_pool_stat_destroy(struct zs_pool
*pool
)
667 debugfs_remove_recursive(pool
->stat_dentry
);
670 #else /* CONFIG_ZSMALLOC_STAT */
671 static void __init
zs_stat_init(void)
675 static void __exit
zs_stat_exit(void)
679 static inline void zs_pool_stat_create(struct zs_pool
*pool
, const char *name
)
683 static inline void zs_pool_stat_destroy(struct zs_pool
*pool
)
690 * For each size class, zspages are divided into different groups
691 * depending on how "full" they are. This was done so that we could
692 * easily find empty or nearly empty zspages when we try to shrink
693 * the pool (not yet implemented). This function returns fullness
694 * status of the given page.
696 static enum fullness_group
get_fullness_group(struct size_class
*class,
697 struct zspage
*zspage
)
699 int inuse
, objs_per_zspage
;
700 enum fullness_group fg
;
702 inuse
= get_zspage_inuse(zspage
);
703 objs_per_zspage
= class->objs_per_zspage
;
707 else if (inuse
== objs_per_zspage
)
709 else if (inuse
<= 3 * objs_per_zspage
/ fullness_threshold_frac
)
710 fg
= ZS_ALMOST_EMPTY
;
718 * Each size class maintains various freelists and zspages are assigned
719 * to one of these freelists based on the number of live objects they
720 * have. This functions inserts the given zspage into the freelist
721 * identified by <class, fullness_group>.
723 static void insert_zspage(struct size_class
*class,
724 struct zspage
*zspage
,
725 enum fullness_group fullness
)
729 zs_stat_inc(class, fullness
, 1);
730 head
= list_first_entry_or_null(&class->fullness_list
[fullness
],
731 struct zspage
, list
);
733 * We want to see more ZS_FULL pages and less almost empty/full.
734 * Put pages with higher ->inuse first.
737 if (get_zspage_inuse(zspage
) < get_zspage_inuse(head
)) {
738 list_add(&zspage
->list
, &head
->list
);
742 list_add(&zspage
->list
, &class->fullness_list
[fullness
]);
746 * This function removes the given zspage from the freelist identified
747 * by <class, fullness_group>.
749 static void remove_zspage(struct size_class
*class,
750 struct zspage
*zspage
,
751 enum fullness_group fullness
)
753 VM_BUG_ON(list_empty(&class->fullness_list
[fullness
]));
754 VM_BUG_ON(is_zspage_isolated(zspage
));
756 list_del_init(&zspage
->list
);
757 zs_stat_dec(class, fullness
, 1);
761 * Each size class maintains zspages in different fullness groups depending
762 * on the number of live objects they contain. When allocating or freeing
763 * objects, the fullness status of the page can change, say, from ALMOST_FULL
764 * to ALMOST_EMPTY when freeing an object. This function checks if such
765 * a status change has occurred for the given page and accordingly moves the
766 * page from the freelist of the old fullness group to that of the new
769 static enum fullness_group
fix_fullness_group(struct size_class
*class,
770 struct zspage
*zspage
)
773 enum fullness_group currfg
, newfg
;
775 get_zspage_mapping(zspage
, &class_idx
, &currfg
);
776 newfg
= get_fullness_group(class, zspage
);
780 if (!is_zspage_isolated(zspage
)) {
781 remove_zspage(class, zspage
, currfg
);
782 insert_zspage(class, zspage
, newfg
);
785 set_zspage_mapping(zspage
, class_idx
, newfg
);
792 * We have to decide on how many pages to link together
793 * to form a zspage for each size class. This is important
794 * to reduce wastage due to unusable space left at end of
795 * each zspage which is given as:
796 * wastage = Zp % class_size
797 * usage = Zp - wastage
798 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
800 * For example, for size class of 3/8 * PAGE_SIZE, we should
801 * link together 3 PAGE_SIZE sized pages to form a zspage
802 * since then we can perfectly fit in 8 such objects.
804 static int get_pages_per_zspage(int class_size
)
806 int i
, max_usedpc
= 0;
807 /* zspage order which gives maximum used size per KB */
808 int max_usedpc_order
= 1;
810 for (i
= 1; i
<= ZS_MAX_PAGES_PER_ZSPAGE
; i
++) {
814 zspage_size
= i
* PAGE_SIZE
;
815 waste
= zspage_size
% class_size
;
816 usedpc
= (zspage_size
- waste
) * 100 / zspage_size
;
818 if (usedpc
> max_usedpc
) {
820 max_usedpc_order
= i
;
824 return max_usedpc_order
;
827 static struct zspage
*get_zspage(struct page
*page
)
829 struct zspage
*zspage
= (struct zspage
*)page
->private;
831 BUG_ON(zspage
->magic
!= ZSPAGE_MAGIC
);
835 static struct page
*get_next_page(struct page
*page
)
837 if (unlikely(PageHugeObject(page
)))
840 return page
->freelist
;
844 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
845 * @obj: the encoded object value
846 * @page: page object resides in zspage
847 * @obj_idx: object index
849 static void obj_to_location(unsigned long obj
, struct page
**page
,
850 unsigned int *obj_idx
)
852 obj
>>= OBJ_TAG_BITS
;
853 *page
= pfn_to_page(obj
>> OBJ_INDEX_BITS
);
854 *obj_idx
= (obj
& OBJ_INDEX_MASK
);
858 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
859 * @page: page object resides in zspage
860 * @obj_idx: object index
862 static unsigned long location_to_obj(struct page
*page
, unsigned int obj_idx
)
866 obj
= page_to_pfn(page
) << OBJ_INDEX_BITS
;
867 obj
|= obj_idx
& OBJ_INDEX_MASK
;
868 obj
<<= OBJ_TAG_BITS
;
873 static unsigned long handle_to_obj(unsigned long handle
)
875 return *(unsigned long *)handle
;
878 static unsigned long obj_to_head(struct page
*page
, void *obj
)
880 if (unlikely(PageHugeObject(page
))) {
881 VM_BUG_ON_PAGE(!is_first_page(page
), page
);
884 return *(unsigned long *)obj
;
887 static inline int testpin_tag(unsigned long handle
)
889 return bit_spin_is_locked(HANDLE_PIN_BIT
, (unsigned long *)handle
);
892 static inline int trypin_tag(unsigned long handle
)
894 return bit_spin_trylock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
897 static void pin_tag(unsigned long handle
)
899 bit_spin_lock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
902 static void unpin_tag(unsigned long handle
)
904 bit_spin_unlock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
907 static void reset_page(struct page
*page
)
909 __ClearPageMovable(page
);
910 ClearPagePrivate(page
);
911 set_page_private(page
, 0);
912 page_mapcount_reset(page
);
913 ClearPageHugeObject(page
);
914 page
->freelist
= NULL
;
917 static int trylock_zspage(struct zspage
*zspage
)
919 struct page
*cursor
, *fail
;
921 for (cursor
= get_first_page(zspage
); cursor
!= NULL
; cursor
=
922 get_next_page(cursor
)) {
923 if (!trylock_page(cursor
)) {
931 for (cursor
= get_first_page(zspage
); cursor
!= fail
; cursor
=
932 get_next_page(cursor
))
938 static void __free_zspage(struct zs_pool
*pool
, struct size_class
*class,
939 struct zspage
*zspage
)
941 struct page
*page
, *next
;
942 enum fullness_group fg
;
943 unsigned int class_idx
;
945 get_zspage_mapping(zspage
, &class_idx
, &fg
);
947 assert_spin_locked(&class->lock
);
949 VM_BUG_ON(get_zspage_inuse(zspage
));
950 VM_BUG_ON(fg
!= ZS_EMPTY
);
952 next
= page
= get_first_page(zspage
);
954 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
955 next
= get_next_page(page
);
958 dec_zone_page_state(page
, NR_ZSPAGES
);
961 } while (page
!= NULL
);
963 cache_free_zspage(pool
, zspage
);
965 zs_stat_dec(class, OBJ_ALLOCATED
, class->objs_per_zspage
);
966 atomic_long_sub(class->pages_per_zspage
,
967 &pool
->pages_allocated
);
970 static void free_zspage(struct zs_pool
*pool
, struct size_class
*class,
971 struct zspage
*zspage
)
973 VM_BUG_ON(get_zspage_inuse(zspage
));
974 VM_BUG_ON(list_empty(&zspage
->list
));
976 if (!trylock_zspage(zspage
)) {
977 kick_deferred_free(pool
);
981 remove_zspage(class, zspage
, ZS_EMPTY
);
982 __free_zspage(pool
, class, zspage
);
985 /* Initialize a newly allocated zspage */
986 static void init_zspage(struct size_class
*class, struct zspage
*zspage
)
988 unsigned int freeobj
= 1;
989 unsigned long off
= 0;
990 struct page
*page
= get_first_page(zspage
);
993 struct page
*next_page
;
994 struct link_free
*link
;
997 set_first_obj_offset(page
, off
);
999 vaddr
= kmap_atomic(page
);
1000 link
= (struct link_free
*)vaddr
+ off
/ sizeof(*link
);
1002 while ((off
+= class->size
) < PAGE_SIZE
) {
1003 link
->next
= freeobj
++ << OBJ_TAG_BITS
;
1004 link
+= class->size
/ sizeof(*link
);
1008 * We now come to the last (full or partial) object on this
1009 * page, which must point to the first object on the next
1012 next_page
= get_next_page(page
);
1014 link
->next
= freeobj
++ << OBJ_TAG_BITS
;
1017 * Reset OBJ_TAG_BITS bit to last link to tell
1018 * whether it's allocated object or not.
1020 link
->next
= -1UL << OBJ_TAG_BITS
;
1022 kunmap_atomic(vaddr
);
1027 set_freeobj(zspage
, 0);
1030 static void create_page_chain(struct size_class
*class, struct zspage
*zspage
,
1031 struct page
*pages
[])
1035 struct page
*prev_page
= NULL
;
1036 int nr_pages
= class->pages_per_zspage
;
1039 * Allocate individual pages and link them together as:
1040 * 1. all pages are linked together using page->freelist
1041 * 2. each sub-page point to zspage using page->private
1043 * we set PG_private to identify the first page (i.e. no other sub-page
1044 * has this flag set).
1046 for (i
= 0; i
< nr_pages
; i
++) {
1048 set_page_private(page
, (unsigned long)zspage
);
1049 page
->freelist
= NULL
;
1051 zspage
->first_page
= page
;
1052 SetPagePrivate(page
);
1053 if (unlikely(class->objs_per_zspage
== 1 &&
1054 class->pages_per_zspage
== 1))
1055 SetPageHugeObject(page
);
1057 prev_page
->freelist
= page
;
1064 * Allocate a zspage for the given size class
1066 static struct zspage
*alloc_zspage(struct zs_pool
*pool
,
1067 struct size_class
*class,
1071 struct page
*pages
[ZS_MAX_PAGES_PER_ZSPAGE
];
1072 struct zspage
*zspage
= cache_alloc_zspage(pool
, gfp
);
1077 memset(zspage
, 0, sizeof(struct zspage
));
1078 zspage
->magic
= ZSPAGE_MAGIC
;
1079 migrate_lock_init(zspage
);
1081 for (i
= 0; i
< class->pages_per_zspage
; i
++) {
1084 page
= alloc_page(gfp
);
1087 dec_zone_page_state(pages
[i
], NR_ZSPAGES
);
1088 __free_page(pages
[i
]);
1090 cache_free_zspage(pool
, zspage
);
1094 inc_zone_page_state(page
, NR_ZSPAGES
);
1098 create_page_chain(class, zspage
, pages
);
1099 init_zspage(class, zspage
);
1104 static struct zspage
*find_get_zspage(struct size_class
*class)
1107 struct zspage
*zspage
;
1109 for (i
= ZS_ALMOST_FULL
; i
>= ZS_EMPTY
; i
--) {
1110 zspage
= list_first_entry_or_null(&class->fullness_list
[i
],
1111 struct zspage
, list
);
1119 #ifdef CONFIG_PGTABLE_MAPPING
1120 static inline int __zs_cpu_up(struct mapping_area
*area
)
1123 * Make sure we don't leak memory if a cpu UP notification
1124 * and zs_init() race and both call zs_cpu_up() on the same cpu
1128 area
->vm
= alloc_vm_area(PAGE_SIZE
* 2, NULL
);
1134 static inline void __zs_cpu_down(struct mapping_area
*area
)
1137 free_vm_area(area
->vm
);
1141 static inline void *__zs_map_object(struct mapping_area
*area
,
1142 struct page
*pages
[2], int off
, int size
)
1144 BUG_ON(map_vm_area(area
->vm
, PAGE_KERNEL
, pages
));
1145 area
->vm_addr
= area
->vm
->addr
;
1146 return area
->vm_addr
+ off
;
1149 static inline void __zs_unmap_object(struct mapping_area
*area
,
1150 struct page
*pages
[2], int off
, int size
)
1152 unsigned long addr
= (unsigned long)area
->vm_addr
;
1154 unmap_kernel_range(addr
, PAGE_SIZE
* 2);
1157 #else /* CONFIG_PGTABLE_MAPPING */
1159 static inline int __zs_cpu_up(struct mapping_area
*area
)
1162 * Make sure we don't leak memory if a cpu UP notification
1163 * and zs_init() race and both call zs_cpu_up() on the same cpu
1167 area
->vm_buf
= kmalloc(ZS_MAX_ALLOC_SIZE
, GFP_KERNEL
);
1173 static inline void __zs_cpu_down(struct mapping_area
*area
)
1175 kfree(area
->vm_buf
);
1176 area
->vm_buf
= NULL
;
1179 static void *__zs_map_object(struct mapping_area
*area
,
1180 struct page
*pages
[2], int off
, int size
)
1184 char *buf
= area
->vm_buf
;
1186 /* disable page faults to match kmap_atomic() return conditions */
1187 pagefault_disable();
1189 /* no read fastpath */
1190 if (area
->vm_mm
== ZS_MM_WO
)
1193 sizes
[0] = PAGE_SIZE
- off
;
1194 sizes
[1] = size
- sizes
[0];
1196 /* copy object to per-cpu buffer */
1197 addr
= kmap_atomic(pages
[0]);
1198 memcpy(buf
, addr
+ off
, sizes
[0]);
1199 kunmap_atomic(addr
);
1200 addr
= kmap_atomic(pages
[1]);
1201 memcpy(buf
+ sizes
[0], addr
, sizes
[1]);
1202 kunmap_atomic(addr
);
1204 return area
->vm_buf
;
1207 static void __zs_unmap_object(struct mapping_area
*area
,
1208 struct page
*pages
[2], int off
, int size
)
1214 /* no write fastpath */
1215 if (area
->vm_mm
== ZS_MM_RO
)
1219 buf
= buf
+ ZS_HANDLE_SIZE
;
1220 size
-= ZS_HANDLE_SIZE
;
1221 off
+= ZS_HANDLE_SIZE
;
1223 sizes
[0] = PAGE_SIZE
- off
;
1224 sizes
[1] = size
- sizes
[0];
1226 /* copy per-cpu buffer to object */
1227 addr
= kmap_atomic(pages
[0]);
1228 memcpy(addr
+ off
, buf
, sizes
[0]);
1229 kunmap_atomic(addr
);
1230 addr
= kmap_atomic(pages
[1]);
1231 memcpy(addr
, buf
+ sizes
[0], sizes
[1]);
1232 kunmap_atomic(addr
);
1235 /* enable page faults to match kunmap_atomic() return conditions */
1239 #endif /* CONFIG_PGTABLE_MAPPING */
1241 static int zs_cpu_prepare(unsigned int cpu
)
1243 struct mapping_area
*area
;
1245 area
= &per_cpu(zs_map_area
, cpu
);
1246 return __zs_cpu_up(area
);
1249 static int zs_cpu_dead(unsigned int cpu
)
1251 struct mapping_area
*area
;
1253 area
= &per_cpu(zs_map_area
, cpu
);
1254 __zs_cpu_down(area
);
1258 static bool can_merge(struct size_class
*prev
, int pages_per_zspage
,
1259 int objs_per_zspage
)
1261 if (prev
->pages_per_zspage
== pages_per_zspage
&&
1262 prev
->objs_per_zspage
== objs_per_zspage
)
1268 static bool zspage_full(struct size_class
*class, struct zspage
*zspage
)
1270 return get_zspage_inuse(zspage
) == class->objs_per_zspage
;
1273 unsigned long zs_get_total_pages(struct zs_pool
*pool
)
1275 return atomic_long_read(&pool
->pages_allocated
);
1277 EXPORT_SYMBOL_GPL(zs_get_total_pages
);
1280 * zs_map_object - get address of allocated object from handle.
1281 * @pool: pool from which the object was allocated
1282 * @handle: handle returned from zs_malloc
1283 * @mm: maping mode to use
1285 * Before using an object allocated from zs_malloc, it must be mapped using
1286 * this function. When done with the object, it must be unmapped using
1289 * Only one object can be mapped per cpu at a time. There is no protection
1290 * against nested mappings.
1292 * This function returns with preemption and page faults disabled.
1294 void *zs_map_object(struct zs_pool
*pool
, unsigned long handle
,
1297 struct zspage
*zspage
;
1299 unsigned long obj
, off
;
1300 unsigned int obj_idx
;
1302 unsigned int class_idx
;
1303 enum fullness_group fg
;
1304 struct size_class
*class;
1305 struct mapping_area
*area
;
1306 struct page
*pages
[2];
1310 * Because we use per-cpu mapping areas shared among the
1311 * pools/users, we can't allow mapping in interrupt context
1312 * because it can corrupt another users mappings.
1314 BUG_ON(in_interrupt());
1316 /* From now on, migration cannot move the object */
1319 obj
= handle_to_obj(handle
);
1320 obj_to_location(obj
, &page
, &obj_idx
);
1321 zspage
= get_zspage(page
);
1323 /* migration cannot move any subpage in this zspage */
1324 migrate_read_lock(zspage
);
1326 get_zspage_mapping(zspage
, &class_idx
, &fg
);
1327 class = pool
->size_class
[class_idx
];
1328 off
= (class->size
* obj_idx
) & ~PAGE_MASK
;
1330 area
= &get_cpu_var(zs_map_area
);
1332 if (off
+ class->size
<= PAGE_SIZE
) {
1333 /* this object is contained entirely within a page */
1334 area
->vm_addr
= kmap_atomic(page
);
1335 ret
= area
->vm_addr
+ off
;
1339 /* this object spans two pages */
1341 pages
[1] = get_next_page(page
);
1344 ret
= __zs_map_object(area
, pages
, off
, class->size
);
1346 if (likely(!PageHugeObject(page
)))
1347 ret
+= ZS_HANDLE_SIZE
;
1351 EXPORT_SYMBOL_GPL(zs_map_object
);
1353 void zs_unmap_object(struct zs_pool
*pool
, unsigned long handle
)
1355 struct zspage
*zspage
;
1357 unsigned long obj
, off
;
1358 unsigned int obj_idx
;
1360 unsigned int class_idx
;
1361 enum fullness_group fg
;
1362 struct size_class
*class;
1363 struct mapping_area
*area
;
1365 obj
= handle_to_obj(handle
);
1366 obj_to_location(obj
, &page
, &obj_idx
);
1367 zspage
= get_zspage(page
);
1368 get_zspage_mapping(zspage
, &class_idx
, &fg
);
1369 class = pool
->size_class
[class_idx
];
1370 off
= (class->size
* obj_idx
) & ~PAGE_MASK
;
1372 area
= this_cpu_ptr(&zs_map_area
);
1373 if (off
+ class->size
<= PAGE_SIZE
)
1374 kunmap_atomic(area
->vm_addr
);
1376 struct page
*pages
[2];
1379 pages
[1] = get_next_page(page
);
1382 __zs_unmap_object(area
, pages
, off
, class->size
);
1384 put_cpu_var(zs_map_area
);
1386 migrate_read_unlock(zspage
);
1389 EXPORT_SYMBOL_GPL(zs_unmap_object
);
1392 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1393 * zsmalloc &size_class.
1394 * @pool: zsmalloc pool to use
1396 * The function returns the size of the first huge class - any object of equal
1397 * or bigger size will be stored in zspage consisting of a single physical
1400 * Context: Any context.
1402 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1404 size_t zs_huge_class_size(struct zs_pool
*pool
)
1406 return huge_class_size
;
1408 EXPORT_SYMBOL_GPL(zs_huge_class_size
);
1410 static unsigned long obj_malloc(struct size_class
*class,
1411 struct zspage
*zspage
, unsigned long handle
)
1413 int i
, nr_page
, offset
;
1415 struct link_free
*link
;
1417 struct page
*m_page
;
1418 unsigned long m_offset
;
1421 handle
|= OBJ_ALLOCATED_TAG
;
1422 obj
= get_freeobj(zspage
);
1424 offset
= obj
* class->size
;
1425 nr_page
= offset
>> PAGE_SHIFT
;
1426 m_offset
= offset
& ~PAGE_MASK
;
1427 m_page
= get_first_page(zspage
);
1429 for (i
= 0; i
< nr_page
; i
++)
1430 m_page
= get_next_page(m_page
);
1432 vaddr
= kmap_atomic(m_page
);
1433 link
= (struct link_free
*)vaddr
+ m_offset
/ sizeof(*link
);
1434 set_freeobj(zspage
, link
->next
>> OBJ_TAG_BITS
);
1435 if (likely(!PageHugeObject(m_page
)))
1436 /* record handle in the header of allocated chunk */
1437 link
->handle
= handle
;
1439 /* record handle to page->index */
1440 zspage
->first_page
->index
= handle
;
1442 kunmap_atomic(vaddr
);
1443 mod_zspage_inuse(zspage
, 1);
1444 zs_stat_inc(class, OBJ_USED
, 1);
1446 obj
= location_to_obj(m_page
, obj
);
1453 * zs_malloc - Allocate block of given size from pool.
1454 * @pool: pool to allocate from
1455 * @size: size of block to allocate
1456 * @gfp: gfp flags when allocating object
1458 * On success, handle to the allocated object is returned,
1460 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1462 unsigned long zs_malloc(struct zs_pool
*pool
, size_t size
, gfp_t gfp
)
1464 unsigned long handle
, obj
;
1465 struct size_class
*class;
1466 enum fullness_group newfg
;
1467 struct zspage
*zspage
;
1469 if (unlikely(!size
|| size
> ZS_MAX_ALLOC_SIZE
))
1472 handle
= cache_alloc_handle(pool
, gfp
);
1476 /* extra space in chunk to keep the handle */
1477 size
+= ZS_HANDLE_SIZE
;
1478 class = pool
->size_class
[get_size_class_index(size
)];
1480 spin_lock(&class->lock
);
1481 zspage
= find_get_zspage(class);
1482 if (likely(zspage
)) {
1483 obj
= obj_malloc(class, zspage
, handle
);
1484 /* Now move the zspage to another fullness group, if required */
1485 fix_fullness_group(class, zspage
);
1486 record_obj(handle
, obj
);
1487 spin_unlock(&class->lock
);
1492 spin_unlock(&class->lock
);
1494 zspage
= alloc_zspage(pool
, class, gfp
);
1496 cache_free_handle(pool
, handle
);
1500 spin_lock(&class->lock
);
1501 obj
= obj_malloc(class, zspage
, handle
);
1502 newfg
= get_fullness_group(class, zspage
);
1503 insert_zspage(class, zspage
, newfg
);
1504 set_zspage_mapping(zspage
, class->index
, newfg
);
1505 record_obj(handle
, obj
);
1506 atomic_long_add(class->pages_per_zspage
,
1507 &pool
->pages_allocated
);
1508 zs_stat_inc(class, OBJ_ALLOCATED
, class->objs_per_zspage
);
1510 /* We completely set up zspage so mark them as movable */
1511 SetZsPageMovable(pool
, zspage
);
1512 spin_unlock(&class->lock
);
1516 EXPORT_SYMBOL_GPL(zs_malloc
);
1518 static void obj_free(struct size_class
*class, unsigned long obj
)
1520 struct link_free
*link
;
1521 struct zspage
*zspage
;
1522 struct page
*f_page
;
1523 unsigned long f_offset
;
1524 unsigned int f_objidx
;
1527 obj
&= ~OBJ_ALLOCATED_TAG
;
1528 obj_to_location(obj
, &f_page
, &f_objidx
);
1529 f_offset
= (class->size
* f_objidx
) & ~PAGE_MASK
;
1530 zspage
= get_zspage(f_page
);
1532 vaddr
= kmap_atomic(f_page
);
1534 /* Insert this object in containing zspage's freelist */
1535 link
= (struct link_free
*)(vaddr
+ f_offset
);
1536 link
->next
= get_freeobj(zspage
) << OBJ_TAG_BITS
;
1537 kunmap_atomic(vaddr
);
1538 set_freeobj(zspage
, f_objidx
);
1539 mod_zspage_inuse(zspage
, -1);
1540 zs_stat_dec(class, OBJ_USED
, 1);
1543 void zs_free(struct zs_pool
*pool
, unsigned long handle
)
1545 struct zspage
*zspage
;
1546 struct page
*f_page
;
1548 unsigned int f_objidx
;
1550 struct size_class
*class;
1551 enum fullness_group fullness
;
1554 if (unlikely(!handle
))
1558 obj
= handle_to_obj(handle
);
1559 obj_to_location(obj
, &f_page
, &f_objidx
);
1560 zspage
= get_zspage(f_page
);
1562 migrate_read_lock(zspage
);
1564 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1565 class = pool
->size_class
[class_idx
];
1567 spin_lock(&class->lock
);
1568 obj_free(class, obj
);
1569 fullness
= fix_fullness_group(class, zspage
);
1570 if (fullness
!= ZS_EMPTY
) {
1571 migrate_read_unlock(zspage
);
1575 isolated
= is_zspage_isolated(zspage
);
1576 migrate_read_unlock(zspage
);
1577 /* If zspage is isolated, zs_page_putback will free the zspage */
1578 if (likely(!isolated
))
1579 free_zspage(pool
, class, zspage
);
1582 spin_unlock(&class->lock
);
1584 cache_free_handle(pool
, handle
);
1586 EXPORT_SYMBOL_GPL(zs_free
);
1588 static void zs_object_copy(struct size_class
*class, unsigned long dst
,
1591 struct page
*s_page
, *d_page
;
1592 unsigned int s_objidx
, d_objidx
;
1593 unsigned long s_off
, d_off
;
1594 void *s_addr
, *d_addr
;
1595 int s_size
, d_size
, size
;
1598 s_size
= d_size
= class->size
;
1600 obj_to_location(src
, &s_page
, &s_objidx
);
1601 obj_to_location(dst
, &d_page
, &d_objidx
);
1603 s_off
= (class->size
* s_objidx
) & ~PAGE_MASK
;
1604 d_off
= (class->size
* d_objidx
) & ~PAGE_MASK
;
1606 if (s_off
+ class->size
> PAGE_SIZE
)
1607 s_size
= PAGE_SIZE
- s_off
;
1609 if (d_off
+ class->size
> PAGE_SIZE
)
1610 d_size
= PAGE_SIZE
- d_off
;
1612 s_addr
= kmap_atomic(s_page
);
1613 d_addr
= kmap_atomic(d_page
);
1616 size
= min(s_size
, d_size
);
1617 memcpy(d_addr
+ d_off
, s_addr
+ s_off
, size
);
1620 if (written
== class->size
)
1628 if (s_off
>= PAGE_SIZE
) {
1629 kunmap_atomic(d_addr
);
1630 kunmap_atomic(s_addr
);
1631 s_page
= get_next_page(s_page
);
1632 s_addr
= kmap_atomic(s_page
);
1633 d_addr
= kmap_atomic(d_page
);
1634 s_size
= class->size
- written
;
1638 if (d_off
>= PAGE_SIZE
) {
1639 kunmap_atomic(d_addr
);
1640 d_page
= get_next_page(d_page
);
1641 d_addr
= kmap_atomic(d_page
);
1642 d_size
= class->size
- written
;
1647 kunmap_atomic(d_addr
);
1648 kunmap_atomic(s_addr
);
1652 * Find alloced object in zspage from index object and
1655 static unsigned long find_alloced_obj(struct size_class
*class,
1656 struct page
*page
, int *obj_idx
)
1660 int index
= *obj_idx
;
1661 unsigned long handle
= 0;
1662 void *addr
= kmap_atomic(page
);
1664 offset
= get_first_obj_offset(page
);
1665 offset
+= class->size
* index
;
1667 while (offset
< PAGE_SIZE
) {
1668 head
= obj_to_head(page
, addr
+ offset
);
1669 if (head
& OBJ_ALLOCATED_TAG
) {
1670 handle
= head
& ~OBJ_ALLOCATED_TAG
;
1671 if (trypin_tag(handle
))
1676 offset
+= class->size
;
1680 kunmap_atomic(addr
);
1687 struct zs_compact_control
{
1688 /* Source spage for migration which could be a subpage of zspage */
1689 struct page
*s_page
;
1690 /* Destination page for migration which should be a first page
1692 struct page
*d_page
;
1693 /* Starting object index within @s_page which used for live object
1694 * in the subpage. */
1698 static int migrate_zspage(struct zs_pool
*pool
, struct size_class
*class,
1699 struct zs_compact_control
*cc
)
1701 unsigned long used_obj
, free_obj
;
1702 unsigned long handle
;
1703 struct page
*s_page
= cc
->s_page
;
1704 struct page
*d_page
= cc
->d_page
;
1705 int obj_idx
= cc
->obj_idx
;
1709 handle
= find_alloced_obj(class, s_page
, &obj_idx
);
1711 s_page
= get_next_page(s_page
);
1718 /* Stop if there is no more space */
1719 if (zspage_full(class, get_zspage(d_page
))) {
1725 used_obj
= handle_to_obj(handle
);
1726 free_obj
= obj_malloc(class, get_zspage(d_page
), handle
);
1727 zs_object_copy(class, free_obj
, used_obj
);
1730 * record_obj updates handle's value to free_obj and it will
1731 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1732 * breaks synchronization using pin_tag(e,g, zs_free) so
1733 * let's keep the lock bit.
1735 free_obj
|= BIT(HANDLE_PIN_BIT
);
1736 record_obj(handle
, free_obj
);
1738 obj_free(class, used_obj
);
1741 /* Remember last position in this iteration */
1742 cc
->s_page
= s_page
;
1743 cc
->obj_idx
= obj_idx
;
1748 static struct zspage
*isolate_zspage(struct size_class
*class, bool source
)
1751 struct zspage
*zspage
;
1752 enum fullness_group fg
[2] = {ZS_ALMOST_EMPTY
, ZS_ALMOST_FULL
};
1755 fg
[0] = ZS_ALMOST_FULL
;
1756 fg
[1] = ZS_ALMOST_EMPTY
;
1759 for (i
= 0; i
< 2; i
++) {
1760 zspage
= list_first_entry_or_null(&class->fullness_list
[fg
[i
]],
1761 struct zspage
, list
);
1763 VM_BUG_ON(is_zspage_isolated(zspage
));
1764 remove_zspage(class, zspage
, fg
[i
]);
1773 * putback_zspage - add @zspage into right class's fullness list
1774 * @class: destination class
1775 * @zspage: target page
1777 * Return @zspage's fullness_group
1779 static enum fullness_group
putback_zspage(struct size_class
*class,
1780 struct zspage
*zspage
)
1782 enum fullness_group fullness
;
1784 VM_BUG_ON(is_zspage_isolated(zspage
));
1786 fullness
= get_fullness_group(class, zspage
);
1787 insert_zspage(class, zspage
, fullness
);
1788 set_zspage_mapping(zspage
, class->index
, fullness
);
1793 #ifdef CONFIG_COMPACTION
1795 * To prevent zspage destroy during migration, zspage freeing should
1796 * hold locks of all pages in the zspage.
1798 static void lock_zspage(struct zspage
*zspage
)
1800 struct page
*page
= get_first_page(zspage
);
1804 } while ((page
= get_next_page(page
)) != NULL
);
1807 static int zs_init_fs_context(struct fs_context
*fc
)
1809 return init_pseudo(fc
, ZSMALLOC_MAGIC
) ? 0 : -ENOMEM
;
1812 static struct file_system_type zsmalloc_fs
= {
1814 .init_fs_context
= zs_init_fs_context
,
1815 .kill_sb
= kill_anon_super
,
1818 static int zsmalloc_mount(void)
1822 zsmalloc_mnt
= kern_mount(&zsmalloc_fs
);
1823 if (IS_ERR(zsmalloc_mnt
))
1824 ret
= PTR_ERR(zsmalloc_mnt
);
1829 static void zsmalloc_unmount(void)
1831 kern_unmount(zsmalloc_mnt
);
1834 static void migrate_lock_init(struct zspage
*zspage
)
1836 rwlock_init(&zspage
->lock
);
1839 static void migrate_read_lock(struct zspage
*zspage
)
1841 read_lock(&zspage
->lock
);
1844 static void migrate_read_unlock(struct zspage
*zspage
)
1846 read_unlock(&zspage
->lock
);
1849 static void migrate_write_lock(struct zspage
*zspage
)
1851 write_lock(&zspage
->lock
);
1854 static void migrate_write_unlock(struct zspage
*zspage
)
1856 write_unlock(&zspage
->lock
);
1859 /* Number of isolated subpage for *page migration* in this zspage */
1860 static void inc_zspage_isolation(struct zspage
*zspage
)
1865 static void dec_zspage_isolation(struct zspage
*zspage
)
1870 static void putback_zspage_deferred(struct zs_pool
*pool
,
1871 struct size_class
*class,
1872 struct zspage
*zspage
)
1874 enum fullness_group fg
;
1876 fg
= putback_zspage(class, zspage
);
1878 schedule_work(&pool
->free_work
);
1882 static inline void zs_pool_dec_isolated(struct zs_pool
*pool
)
1884 VM_BUG_ON(atomic_long_read(&pool
->isolated_pages
) <= 0);
1885 atomic_long_dec(&pool
->isolated_pages
);
1887 * There's no possibility of racing, since wait_for_isolated_drain()
1888 * checks the isolated count under &class->lock after enqueuing
1889 * on migration_wait.
1891 if (atomic_long_read(&pool
->isolated_pages
) == 0 && pool
->destroying
)
1892 wake_up_all(&pool
->migration_wait
);
1895 static void replace_sub_page(struct size_class
*class, struct zspage
*zspage
,
1896 struct page
*newpage
, struct page
*oldpage
)
1899 struct page
*pages
[ZS_MAX_PAGES_PER_ZSPAGE
] = {NULL
, };
1902 page
= get_first_page(zspage
);
1904 if (page
== oldpage
)
1905 pages
[idx
] = newpage
;
1909 } while ((page
= get_next_page(page
)) != NULL
);
1911 create_page_chain(class, zspage
, pages
);
1912 set_first_obj_offset(newpage
, get_first_obj_offset(oldpage
));
1913 if (unlikely(PageHugeObject(oldpage
)))
1914 newpage
->index
= oldpage
->index
;
1915 __SetPageMovable(newpage
, page_mapping(oldpage
));
1918 static bool zs_page_isolate(struct page
*page
, isolate_mode_t mode
)
1920 struct zs_pool
*pool
;
1921 struct size_class
*class;
1923 enum fullness_group fullness
;
1924 struct zspage
*zspage
;
1925 struct address_space
*mapping
;
1928 * Page is locked so zspage couldn't be destroyed. For detail, look at
1929 * lock_zspage in free_zspage.
1931 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
1932 VM_BUG_ON_PAGE(PageIsolated(page
), page
);
1934 zspage
= get_zspage(page
);
1937 * Without class lock, fullness could be stale while class_idx is okay
1938 * because class_idx is constant unless page is freed so we should get
1939 * fullness again under class lock.
1941 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1942 mapping
= page_mapping(page
);
1943 pool
= mapping
->private_data
;
1944 class = pool
->size_class
[class_idx
];
1946 spin_lock(&class->lock
);
1947 if (get_zspage_inuse(zspage
) == 0) {
1948 spin_unlock(&class->lock
);
1952 /* zspage is isolated for object migration */
1953 if (list_empty(&zspage
->list
) && !is_zspage_isolated(zspage
)) {
1954 spin_unlock(&class->lock
);
1959 * If this is first time isolation for the zspage, isolate zspage from
1960 * size_class to prevent further object allocation from the zspage.
1962 if (!list_empty(&zspage
->list
) && !is_zspage_isolated(zspage
)) {
1963 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1964 atomic_long_inc(&pool
->isolated_pages
);
1965 remove_zspage(class, zspage
, fullness
);
1968 inc_zspage_isolation(zspage
);
1969 spin_unlock(&class->lock
);
1974 static int zs_page_migrate(struct address_space
*mapping
, struct page
*newpage
,
1975 struct page
*page
, enum migrate_mode mode
)
1977 struct zs_pool
*pool
;
1978 struct size_class
*class;
1980 enum fullness_group fullness
;
1981 struct zspage
*zspage
;
1983 void *s_addr
, *d_addr
, *addr
;
1985 unsigned long handle
, head
;
1986 unsigned long old_obj
, new_obj
;
1987 unsigned int obj_idx
;
1991 * We cannot support the _NO_COPY case here, because copy needs to
1992 * happen under the zs lock, which does not work with
1993 * MIGRATE_SYNC_NO_COPY workflow.
1995 if (mode
== MIGRATE_SYNC_NO_COPY
)
1998 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
1999 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
2001 zspage
= get_zspage(page
);
2003 /* Concurrent compactor cannot migrate any subpage in zspage */
2004 migrate_write_lock(zspage
);
2005 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
2006 pool
= mapping
->private_data
;
2007 class = pool
->size_class
[class_idx
];
2008 offset
= get_first_obj_offset(page
);
2010 spin_lock(&class->lock
);
2011 if (!get_zspage_inuse(zspage
)) {
2013 * Set "offset" to end of the page so that every loops
2014 * skips unnecessary object scanning.
2020 s_addr
= kmap_atomic(page
);
2021 while (pos
< PAGE_SIZE
) {
2022 head
= obj_to_head(page
, s_addr
+ pos
);
2023 if (head
& OBJ_ALLOCATED_TAG
) {
2024 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2025 if (!trypin_tag(handle
))
2032 * Here, any user cannot access all objects in the zspage so let's move.
2034 d_addr
= kmap_atomic(newpage
);
2035 memcpy(d_addr
, s_addr
, PAGE_SIZE
);
2036 kunmap_atomic(d_addr
);
2038 for (addr
= s_addr
+ offset
; addr
< s_addr
+ pos
;
2039 addr
+= class->size
) {
2040 head
= obj_to_head(page
, addr
);
2041 if (head
& OBJ_ALLOCATED_TAG
) {
2042 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2043 if (!testpin_tag(handle
))
2046 old_obj
= handle_to_obj(handle
);
2047 obj_to_location(old_obj
, &dummy
, &obj_idx
);
2048 new_obj
= (unsigned long)location_to_obj(newpage
,
2050 new_obj
|= BIT(HANDLE_PIN_BIT
);
2051 record_obj(handle
, new_obj
);
2055 replace_sub_page(class, zspage
, newpage
, page
);
2058 dec_zspage_isolation(zspage
);
2061 * Page migration is done so let's putback isolated zspage to
2062 * the list if @page is final isolated subpage in the zspage.
2064 if (!is_zspage_isolated(zspage
)) {
2066 * We cannot race with zs_destroy_pool() here because we wait
2067 * for isolation to hit zero before we start destroying.
2068 * Also, we ensure that everyone can see pool->destroying before
2071 putback_zspage_deferred(pool
, class, zspage
);
2072 zs_pool_dec_isolated(pool
);
2079 ret
= MIGRATEPAGE_SUCCESS
;
2081 for (addr
= s_addr
+ offset
; addr
< s_addr
+ pos
;
2082 addr
+= class->size
) {
2083 head
= obj_to_head(page
, addr
);
2084 if (head
& OBJ_ALLOCATED_TAG
) {
2085 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2086 if (!testpin_tag(handle
))
2091 kunmap_atomic(s_addr
);
2092 spin_unlock(&class->lock
);
2093 migrate_write_unlock(zspage
);
2098 static void zs_page_putback(struct page
*page
)
2100 struct zs_pool
*pool
;
2101 struct size_class
*class;
2103 enum fullness_group fg
;
2104 struct address_space
*mapping
;
2105 struct zspage
*zspage
;
2107 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
2108 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
2110 zspage
= get_zspage(page
);
2111 get_zspage_mapping(zspage
, &class_idx
, &fg
);
2112 mapping
= page_mapping(page
);
2113 pool
= mapping
->private_data
;
2114 class = pool
->size_class
[class_idx
];
2116 spin_lock(&class->lock
);
2117 dec_zspage_isolation(zspage
);
2118 if (!is_zspage_isolated(zspage
)) {
2120 * Due to page_lock, we cannot free zspage immediately
2123 putback_zspage_deferred(pool
, class, zspage
);
2124 zs_pool_dec_isolated(pool
);
2126 spin_unlock(&class->lock
);
2129 static const struct address_space_operations zsmalloc_aops
= {
2130 .isolate_page
= zs_page_isolate
,
2131 .migratepage
= zs_page_migrate
,
2132 .putback_page
= zs_page_putback
,
2135 static int zs_register_migration(struct zs_pool
*pool
)
2137 pool
->inode
= alloc_anon_inode(zsmalloc_mnt
->mnt_sb
);
2138 if (IS_ERR(pool
->inode
)) {
2143 pool
->inode
->i_mapping
->private_data
= pool
;
2144 pool
->inode
->i_mapping
->a_ops
= &zsmalloc_aops
;
2148 static bool pool_isolated_are_drained(struct zs_pool
*pool
)
2150 return atomic_long_read(&pool
->isolated_pages
) == 0;
2153 /* Function for resolving migration */
2154 static void wait_for_isolated_drain(struct zs_pool
*pool
)
2158 * We're in the process of destroying the pool, so there are no
2159 * active allocations. zs_page_isolate() fails for completely free
2160 * zspages, so we need only wait for the zs_pool's isolated
2161 * count to hit zero.
2163 wait_event(pool
->migration_wait
,
2164 pool_isolated_are_drained(pool
));
2167 static void zs_unregister_migration(struct zs_pool
*pool
)
2169 pool
->destroying
= true;
2171 * We need a memory barrier here to ensure global visibility of
2172 * pool->destroying. Thus pool->isolated pages will either be 0 in which
2173 * case we don't care, or it will be > 0 and pool->destroying will
2174 * ensure that we wake up once isolation hits 0.
2177 wait_for_isolated_drain(pool
); /* This can block */
2178 flush_work(&pool
->free_work
);
2183 * Caller should hold page_lock of all pages in the zspage
2184 * In here, we cannot use zspage meta data.
2186 static void async_free_zspage(struct work_struct
*work
)
2189 struct size_class
*class;
2190 unsigned int class_idx
;
2191 enum fullness_group fullness
;
2192 struct zspage
*zspage
, *tmp
;
2193 LIST_HEAD(free_pages
);
2194 struct zs_pool
*pool
= container_of(work
, struct zs_pool
,
2197 for (i
= 0; i
< ZS_SIZE_CLASSES
; i
++) {
2198 class = pool
->size_class
[i
];
2199 if (class->index
!= i
)
2202 spin_lock(&class->lock
);
2203 list_splice_init(&class->fullness_list
[ZS_EMPTY
], &free_pages
);
2204 spin_unlock(&class->lock
);
2208 list_for_each_entry_safe(zspage
, tmp
, &free_pages
, list
) {
2209 list_del(&zspage
->list
);
2210 lock_zspage(zspage
);
2212 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
2213 VM_BUG_ON(fullness
!= ZS_EMPTY
);
2214 class = pool
->size_class
[class_idx
];
2215 spin_lock(&class->lock
);
2216 __free_zspage(pool
, pool
->size_class
[class_idx
], zspage
);
2217 spin_unlock(&class->lock
);
2221 static void kick_deferred_free(struct zs_pool
*pool
)
2223 schedule_work(&pool
->free_work
);
2226 static void init_deferred_free(struct zs_pool
*pool
)
2228 INIT_WORK(&pool
->free_work
, async_free_zspage
);
2231 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
)
2233 struct page
*page
= get_first_page(zspage
);
2236 WARN_ON(!trylock_page(page
));
2237 __SetPageMovable(page
, pool
->inode
->i_mapping
);
2239 } while ((page
= get_next_page(page
)) != NULL
);
2245 * Based on the number of unused allocated objects calculate
2246 * and return the number of pages that we can free.
2248 static unsigned long zs_can_compact(struct size_class
*class)
2250 unsigned long obj_wasted
;
2251 unsigned long obj_allocated
= zs_stat_get(class, OBJ_ALLOCATED
);
2252 unsigned long obj_used
= zs_stat_get(class, OBJ_USED
);
2254 if (obj_allocated
<= obj_used
)
2257 obj_wasted
= obj_allocated
- obj_used
;
2258 obj_wasted
/= class->objs_per_zspage
;
2260 return obj_wasted
* class->pages_per_zspage
;
2263 static void __zs_compact(struct zs_pool
*pool
, struct size_class
*class)
2265 struct zs_compact_control cc
;
2266 struct zspage
*src_zspage
;
2267 struct zspage
*dst_zspage
= NULL
;
2269 spin_lock(&class->lock
);
2270 while ((src_zspage
= isolate_zspage(class, true))) {
2272 if (!zs_can_compact(class))
2276 cc
.s_page
= get_first_page(src_zspage
);
2278 while ((dst_zspage
= isolate_zspage(class, false))) {
2279 cc
.d_page
= get_first_page(dst_zspage
);
2281 * If there is no more space in dst_page, resched
2282 * and see if anyone had allocated another zspage.
2284 if (!migrate_zspage(pool
, class, &cc
))
2287 putback_zspage(class, dst_zspage
);
2290 /* Stop if we couldn't find slot */
2291 if (dst_zspage
== NULL
)
2294 putback_zspage(class, dst_zspage
);
2295 if (putback_zspage(class, src_zspage
) == ZS_EMPTY
) {
2296 free_zspage(pool
, class, src_zspage
);
2297 pool
->stats
.pages_compacted
+= class->pages_per_zspage
;
2299 spin_unlock(&class->lock
);
2301 spin_lock(&class->lock
);
2305 putback_zspage(class, src_zspage
);
2307 spin_unlock(&class->lock
);
2310 unsigned long zs_compact(struct zs_pool
*pool
)
2313 struct size_class
*class;
2315 for (i
= ZS_SIZE_CLASSES
- 1; i
>= 0; i
--) {
2316 class = pool
->size_class
[i
];
2319 if (class->index
!= i
)
2321 __zs_compact(pool
, class);
2324 return pool
->stats
.pages_compacted
;
2326 EXPORT_SYMBOL_GPL(zs_compact
);
2328 void zs_pool_stats(struct zs_pool
*pool
, struct zs_pool_stats
*stats
)
2330 memcpy(stats
, &pool
->stats
, sizeof(struct zs_pool_stats
));
2332 EXPORT_SYMBOL_GPL(zs_pool_stats
);
2334 static unsigned long zs_shrinker_scan(struct shrinker
*shrinker
,
2335 struct shrink_control
*sc
)
2337 unsigned long pages_freed
;
2338 struct zs_pool
*pool
= container_of(shrinker
, struct zs_pool
,
2341 pages_freed
= pool
->stats
.pages_compacted
;
2343 * Compact classes and calculate compaction delta.
2344 * Can run concurrently with a manually triggered
2345 * (by user) compaction.
2347 pages_freed
= zs_compact(pool
) - pages_freed
;
2349 return pages_freed
? pages_freed
: SHRINK_STOP
;
2352 static unsigned long zs_shrinker_count(struct shrinker
*shrinker
,
2353 struct shrink_control
*sc
)
2356 struct size_class
*class;
2357 unsigned long pages_to_free
= 0;
2358 struct zs_pool
*pool
= container_of(shrinker
, struct zs_pool
,
2361 for (i
= ZS_SIZE_CLASSES
- 1; i
>= 0; i
--) {
2362 class = pool
->size_class
[i
];
2365 if (class->index
!= i
)
2368 pages_to_free
+= zs_can_compact(class);
2371 return pages_to_free
;
2374 static void zs_unregister_shrinker(struct zs_pool
*pool
)
2376 unregister_shrinker(&pool
->shrinker
);
2379 static int zs_register_shrinker(struct zs_pool
*pool
)
2381 pool
->shrinker
.scan_objects
= zs_shrinker_scan
;
2382 pool
->shrinker
.count_objects
= zs_shrinker_count
;
2383 pool
->shrinker
.batch
= 0;
2384 pool
->shrinker
.seeks
= DEFAULT_SEEKS
;
2386 return register_shrinker(&pool
->shrinker
);
2390 * zs_create_pool - Creates an allocation pool to work from.
2391 * @name: pool name to be created
2393 * This function must be called before anything when using
2394 * the zsmalloc allocator.
2396 * On success, a pointer to the newly created pool is returned,
2399 struct zs_pool
*zs_create_pool(const char *name
)
2402 struct zs_pool
*pool
;
2403 struct size_class
*prev_class
= NULL
;
2405 pool
= kzalloc(sizeof(*pool
), GFP_KERNEL
);
2409 init_deferred_free(pool
);
2411 pool
->name
= kstrdup(name
, GFP_KERNEL
);
2415 #ifdef CONFIG_COMPACTION
2416 init_waitqueue_head(&pool
->migration_wait
);
2419 if (create_cache(pool
))
2423 * Iterate reversely, because, size of size_class that we want to use
2424 * for merging should be larger or equal to current size.
2426 for (i
= ZS_SIZE_CLASSES
- 1; i
>= 0; i
--) {
2428 int pages_per_zspage
;
2429 int objs_per_zspage
;
2430 struct size_class
*class;
2433 size
= ZS_MIN_ALLOC_SIZE
+ i
* ZS_SIZE_CLASS_DELTA
;
2434 if (size
> ZS_MAX_ALLOC_SIZE
)
2435 size
= ZS_MAX_ALLOC_SIZE
;
2436 pages_per_zspage
= get_pages_per_zspage(size
);
2437 objs_per_zspage
= pages_per_zspage
* PAGE_SIZE
/ size
;
2440 * We iterate from biggest down to smallest classes,
2441 * so huge_class_size holds the size of the first huge
2442 * class. Any object bigger than or equal to that will
2443 * endup in the huge class.
2445 if (pages_per_zspage
!= 1 && objs_per_zspage
!= 1 &&
2447 huge_class_size
= size
;
2449 * The object uses ZS_HANDLE_SIZE bytes to store the
2450 * handle. We need to subtract it, because zs_malloc()
2451 * unconditionally adds handle size before it performs
2452 * size class search - so object may be smaller than
2453 * huge class size, yet it still can end up in the huge
2454 * class because it grows by ZS_HANDLE_SIZE extra bytes
2455 * right before class lookup.
2457 huge_class_size
-= (ZS_HANDLE_SIZE
- 1);
2461 * size_class is used for normal zsmalloc operation such
2462 * as alloc/free for that size. Although it is natural that we
2463 * have one size_class for each size, there is a chance that we
2464 * can get more memory utilization if we use one size_class for
2465 * many different sizes whose size_class have same
2466 * characteristics. So, we makes size_class point to
2467 * previous size_class if possible.
2470 if (can_merge(prev_class
, pages_per_zspage
, objs_per_zspage
)) {
2471 pool
->size_class
[i
] = prev_class
;
2476 class = kzalloc(sizeof(struct size_class
), GFP_KERNEL
);
2482 class->pages_per_zspage
= pages_per_zspage
;
2483 class->objs_per_zspage
= objs_per_zspage
;
2484 spin_lock_init(&class->lock
);
2485 pool
->size_class
[i
] = class;
2486 for (fullness
= ZS_EMPTY
; fullness
< NR_ZS_FULLNESS
;
2488 INIT_LIST_HEAD(&class->fullness_list
[fullness
]);
2493 /* debug only, don't abort if it fails */
2494 zs_pool_stat_create(pool
, name
);
2496 if (zs_register_migration(pool
))
2500 * Not critical since shrinker is only used to trigger internal
2501 * defragmentation of the pool which is pretty optional thing. If
2502 * registration fails we still can use the pool normally and user can
2503 * trigger compaction manually. Thus, ignore return code.
2505 zs_register_shrinker(pool
);
2510 zs_destroy_pool(pool
);
2513 EXPORT_SYMBOL_GPL(zs_create_pool
);
2515 void zs_destroy_pool(struct zs_pool
*pool
)
2519 zs_unregister_shrinker(pool
);
2520 zs_unregister_migration(pool
);
2521 zs_pool_stat_destroy(pool
);
2523 for (i
= 0; i
< ZS_SIZE_CLASSES
; i
++) {
2525 struct size_class
*class = pool
->size_class
[i
];
2530 if (class->index
!= i
)
2533 for (fg
= ZS_EMPTY
; fg
< NR_ZS_FULLNESS
; fg
++) {
2534 if (!list_empty(&class->fullness_list
[fg
])) {
2535 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2542 destroy_cache(pool
);
2546 EXPORT_SYMBOL_GPL(zs_destroy_pool
);
2548 static int __init
zs_init(void)
2552 ret
= zsmalloc_mount();
2556 ret
= cpuhp_setup_state(CPUHP_MM_ZS_PREPARE
, "mm/zsmalloc:prepare",
2557 zs_cpu_prepare
, zs_cpu_dead
);
2562 zpool_register_driver(&zs_zpool_driver
);
2575 static void __exit
zs_exit(void)
2578 zpool_unregister_driver(&zs_zpool_driver
);
2581 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE
);
2586 module_init(zs_init
);
2587 module_exit(zs_exit
);
2589 MODULE_LICENSE("Dual BSD/GPL");
2590 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");