2 * Copyright (c) International Business Machines Corp., 2006
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
22 * UBI wear-leveling unit.
24 * This unit is responsible for wear-leveling. It works in terms of physical
25 * eraseblocks and erase counters and knows nothing about logical eraseblocks,
26 * volumes, etc. From this unit's perspective all physical eraseblocks are of
27 * two types - used and free. Used physical eraseblocks are those that were
28 * "get" by the 'ubi_wl_get_peb()' function, and free physical eraseblocks are
29 * those that were put by the 'ubi_wl_put_peb()' function.
31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32 * header. The rest of the physical eraseblock contains only 0xFF bytes.
34 * When physical eraseblocks are returned to the WL unit by means of the
35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36 * done asynchronously in context of the per-UBI device background thread,
37 * which is also managed by the WL unit.
39 * The wear-leveling is ensured by means of moving the contents of used
40 * physical eraseblocks with low erase counter to free physical eraseblocks
41 * with high erase counter.
43 * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
44 * an "optimal" physical eraseblock. For example, when it is known that the
45 * physical eraseblock will be "put" soon because it contains short-term data,
46 * the WL unit may pick a free physical eraseblock with low erase counter, and
49 * If the WL unit fails to erase a physical eraseblock, it marks it as bad.
51 * This unit is also responsible for scrubbing. If a bit-flip is detected in a
52 * physical eraseblock, it has to be moved. Technically this is the same as
53 * moving it for wear-leveling reasons.
55 * As it was said, for the UBI unit all physical eraseblocks are either "free"
56 * or "used". Free eraseblock are kept in the @wl->free RB-tree, while used
57 * eraseblocks are kept in a set of different RB-trees: @wl->used,
58 * @wl->prot.pnum, @wl->prot.aec, and @wl->scrub.
60 * Note, in this implementation, we keep a small in-RAM object for each physical
61 * eraseblock. This is surely not a scalable solution. But it appears to be good
62 * enough for moderately large flashes and it is simple. In future, one may
63 * re-work this unit and make it more scalable.
65 * At the moment this unit does not utilize the sequence number, which was
66 * introduced relatively recently. But it would be wise to do this because the
67 * sequence number of a logical eraseblock characterizes how old is it. For
68 * example, when we move a PEB with low erase counter, and we need to pick the
69 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
70 * pick target PEB with an average EC if our PEB is not very "old". This is a
71 * room for future re-works of the WL unit.
73 * FIXME: looks too complex, should be simplified (later).
76 #include <linux/slab.h>
77 #include <linux/crc32.h>
78 #include <linux/freezer.h>
79 #include <linux/kthread.h>
82 /* Number of physical eraseblocks reserved for wear-leveling purposes */
83 #define WL_RESERVED_PEBS 1
86 * How many erase cycles are short term, unknown, and long term physical
87 * eraseblocks protected.
89 #define ST_PROTECTION 16
90 #define U_PROTECTION 10
91 #define LT_PROTECTION 4
94 * Maximum difference between two erase counters. If this threshold is
95 * exceeded, the WL unit starts moving data from used physical eraseblocks with
96 * low erase counter to free physical eraseblocks with high erase counter.
98 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
101 * When a physical eraseblock is moved, the WL unit has to pick the target
102 * physical eraseblock to move to. The simplest way would be just to pick the
103 * one with the highest erase counter. But in certain workloads this could lead
104 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
105 * situation when the picked physical eraseblock is constantly erased after the
106 * data is written to it. So, we have a constant which limits the highest erase
107 * counter of the free physical eraseblock to pick. Namely, the WL unit does
108 * not pick eraseblocks with erase counter greater then the lowest erase
109 * counter plus %WL_FREE_MAX_DIFF.
111 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
114 * Maximum number of consecutive background thread failures which is enough to
115 * switch to read-only mode.
117 #define WL_MAX_FAILURES 32
120 * struct ubi_wl_entry - wear-leveling entry.
121 * @rb: link in the corresponding RB-tree
123 * @pnum: physical eraseblock number
125 * Each physical eraseblock has a corresponding &struct wl_entry object which
126 * may be kept in different RB-trees.
128 struct ubi_wl_entry
{
135 * struct ubi_wl_prot_entry - PEB protection entry.
136 * @rb_pnum: link in the @wl->prot.pnum RB-tree
137 * @rb_aec: link in the @wl->prot.aec RB-tree
138 * @abs_ec: the absolute erase counter value when the protection ends
139 * @e: the wear-leveling entry of the physical eraseblock under protection
141 * When the WL unit returns a physical eraseblock, the physical eraseblock is
142 * protected from being moved for some "time". For this reason, the physical
143 * eraseblock is not directly moved from the @wl->free tree to the @wl->used
144 * tree. There is one more tree in between where this physical eraseblock is
145 * temporarily stored (@wl->prot).
147 * All this protection stuff is needed because:
148 * o we don't want to move physical eraseblocks just after we have given them
149 * to the user; instead, we first want to let users fill them up with data;
151 * o there is a chance that the user will put the physical eraseblock very
152 * soon, so it makes sense not to move it for some time, but wait; this is
153 * especially important in case of "short term" physical eraseblocks.
155 * Physical eraseblocks stay protected only for limited time. But the "time" is
156 * measured in erase cycles in this case. This is implemented with help of the
157 * absolute erase counter (@wl->abs_ec). When it reaches certain value, the
158 * physical eraseblocks are moved from the protection trees (@wl->prot.*) to
159 * the @wl->used tree.
161 * Protected physical eraseblocks are searched by physical eraseblock number
162 * (when they are put) and by the absolute erase counter (to check if it is
163 * time to move them to the @wl->used tree). So there are actually 2 RB-trees
164 * storing the protected physical eraseblocks: @wl->prot.pnum and
165 * @wl->prot.aec. They are referred to as the "protection" trees. The
166 * first one is indexed by the physical eraseblock number. The second one is
167 * indexed by the absolute erase counter. Both trees store
168 * &struct ubi_wl_prot_entry objects.
170 * Each physical eraseblock has 2 main states: free and used. The former state
171 * corresponds to the @wl->free tree. The latter state is split up on several
173 * o the WL movement is allowed (@wl->used tree);
174 * o the WL movement is temporarily prohibited (@wl->prot.pnum and
175 * @wl->prot.aec trees);
176 * o scrubbing is needed (@wl->scrub tree).
178 * Depending on the sub-state, wear-leveling entries of the used physical
179 * eraseblocks may be kept in one of those trees.
181 struct ubi_wl_prot_entry
{
182 struct rb_node rb_pnum
;
183 struct rb_node rb_aec
;
184 unsigned long long abs_ec
;
185 struct ubi_wl_entry
*e
;
189 * struct ubi_work - UBI work description data structure.
190 * @list: a link in the list of pending works
191 * @func: worker function
192 * @priv: private data of the worker function
194 * @e: physical eraseblock to erase
195 * @torture: if the physical eraseblock has to be tortured
197 * The @func pointer points to the worker function. If the @cancel argument is
198 * not zero, the worker has to free the resources and exit immediately. The
199 * worker has to return zero in case of success and a negative error code in
203 struct list_head list
;
204 int (*func
)(struct ubi_device
*ubi
, struct ubi_work
*wrk
, int cancel
);
205 /* The below fields are only relevant to erasure works */
206 struct ubi_wl_entry
*e
;
210 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
211 static int paranoid_check_ec(struct ubi_device
*ubi
, int pnum
, int ec
);
212 static int paranoid_check_in_wl_tree(struct ubi_wl_entry
*e
,
213 struct rb_root
*root
);
215 #define paranoid_check_ec(ubi, pnum, ec) 0
216 #define paranoid_check_in_wl_tree(e, root)
219 /* Slab cache for wear-leveling entries */
220 static struct kmem_cache
*wl_entries_slab
;
223 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
224 * @e: the wear-leveling entry to add
225 * @root: the root of the tree
227 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
228 * the @ubi->used and @ubi->free RB-trees.
230 static void wl_tree_add(struct ubi_wl_entry
*e
, struct rb_root
*root
)
232 struct rb_node
**p
, *parent
= NULL
;
236 struct ubi_wl_entry
*e1
;
239 e1
= rb_entry(parent
, struct ubi_wl_entry
, rb
);
243 else if (e
->ec
> e1
->ec
)
246 ubi_assert(e
->pnum
!= e1
->pnum
);
247 if (e
->pnum
< e1
->pnum
)
254 rb_link_node(&e
->rb
, parent
, p
);
255 rb_insert_color(&e
->rb
, root
);
259 * do_work - do one pending work.
260 * @ubi: UBI device description object
262 * This function returns zero in case of success and a negative error code in
265 static int do_work(struct ubi_device
*ubi
)
268 struct ubi_work
*wrk
;
270 spin_lock(&ubi
->wl_lock
);
272 if (list_empty(&ubi
->works
)) {
273 spin_unlock(&ubi
->wl_lock
);
277 wrk
= list_entry(ubi
->works
.next
, struct ubi_work
, list
);
278 list_del(&wrk
->list
);
279 spin_unlock(&ubi
->wl_lock
);
282 * Call the worker function. Do not touch the work structure
283 * after this call as it will have been freed or reused by that
284 * time by the worker function.
286 err
= wrk
->func(ubi
, wrk
, 0);
288 ubi_err("work failed with error code %d", err
);
290 spin_lock(&ubi
->wl_lock
);
291 ubi
->works_count
-= 1;
292 ubi_assert(ubi
->works_count
>= 0);
293 spin_unlock(&ubi
->wl_lock
);
298 * produce_free_peb - produce a free physical eraseblock.
299 * @ubi: UBI device description object
301 * This function tries to make a free PEB by means of synchronous execution of
302 * pending works. This may be needed if, for example the background thread is
303 * disabled. Returns zero in case of success and a negative error code in case
306 static int produce_free_peb(struct ubi_device
*ubi
)
310 spin_lock(&ubi
->wl_lock
);
311 while (!ubi
->free
.rb_node
) {
312 spin_unlock(&ubi
->wl_lock
);
314 dbg_wl("do one work synchronously");
319 spin_lock(&ubi
->wl_lock
);
321 spin_unlock(&ubi
->wl_lock
);
327 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
328 * @e: the wear-leveling entry to check
329 * @root: the root of the tree
331 * This function returns non-zero if @e is in the @root RB-tree and zero if it
334 static int in_wl_tree(struct ubi_wl_entry
*e
, struct rb_root
*root
)
340 struct ubi_wl_entry
*e1
;
342 e1
= rb_entry(p
, struct ubi_wl_entry
, rb
);
344 if (e
->pnum
== e1
->pnum
) {
351 else if (e
->ec
> e1
->ec
)
354 ubi_assert(e
->pnum
!= e1
->pnum
);
355 if (e
->pnum
< e1
->pnum
)
366 * prot_tree_add - add physical eraseblock to protection trees.
367 * @ubi: UBI device description object
368 * @e: the physical eraseblock to add
369 * @pe: protection entry object to use
370 * @abs_ec: absolute erase counter value when this physical eraseblock has
371 * to be removed from the protection trees.
373 * @wl->lock has to be locked.
375 static void prot_tree_add(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
,
376 struct ubi_wl_prot_entry
*pe
, int abs_ec
)
378 struct rb_node
**p
, *parent
= NULL
;
379 struct ubi_wl_prot_entry
*pe1
;
382 pe
->abs_ec
= ubi
->abs_ec
+ abs_ec
;
384 p
= &ubi
->prot
.pnum
.rb_node
;
387 pe1
= rb_entry(parent
, struct ubi_wl_prot_entry
, rb_pnum
);
389 if (e
->pnum
< pe1
->e
->pnum
)
394 rb_link_node(&pe
->rb_pnum
, parent
, p
);
395 rb_insert_color(&pe
->rb_pnum
, &ubi
->prot
.pnum
);
397 p
= &ubi
->prot
.aec
.rb_node
;
401 pe1
= rb_entry(parent
, struct ubi_wl_prot_entry
, rb_aec
);
403 if (pe
->abs_ec
< pe1
->abs_ec
)
408 rb_link_node(&pe
->rb_aec
, parent
, p
);
409 rb_insert_color(&pe
->rb_aec
, &ubi
->prot
.aec
);
413 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
414 * @root: the RB-tree where to look for
415 * @max: highest possible erase counter
417 * This function looks for a wear leveling entry with erase counter closest to
418 * @max and less then @max.
420 static struct ubi_wl_entry
*find_wl_entry(struct rb_root
*root
, int max
)
423 struct ubi_wl_entry
*e
;
425 e
= rb_entry(rb_first(root
), struct ubi_wl_entry
, rb
);
430 struct ubi_wl_entry
*e1
;
432 e1
= rb_entry(p
, struct ubi_wl_entry
, rb
);
445 * ubi_wl_get_peb - get a physical eraseblock.
446 * @ubi: UBI device description object
447 * @dtype: type of data which will be stored in this physical eraseblock
449 * This function returns a physical eraseblock in case of success and a
450 * negative error code in case of failure. Might sleep.
452 int ubi_wl_get_peb(struct ubi_device
*ubi
, int dtype
)
454 int err
, protect
, medium_ec
;
455 struct ubi_wl_entry
*e
, *first
, *last
;
456 struct ubi_wl_prot_entry
*pe
;
458 ubi_assert(dtype
== UBI_LONGTERM
|| dtype
== UBI_SHORTTERM
||
459 dtype
== UBI_UNKNOWN
);
461 pe
= kmalloc(sizeof(struct ubi_wl_prot_entry
), GFP_NOFS
);
466 spin_lock(&ubi
->wl_lock
);
467 if (!ubi
->free
.rb_node
) {
468 if (ubi
->works_count
== 0) {
469 ubi_assert(list_empty(&ubi
->works
));
470 ubi_err("no free eraseblocks");
471 spin_unlock(&ubi
->wl_lock
);
475 spin_unlock(&ubi
->wl_lock
);
477 err
= produce_free_peb(ubi
);
488 * For long term data we pick a physical eraseblock
489 * with high erase counter. But the highest erase
490 * counter we can pick is bounded by the the lowest
491 * erase counter plus %WL_FREE_MAX_DIFF.
493 e
= find_wl_entry(&ubi
->free
, WL_FREE_MAX_DIFF
);
494 protect
= LT_PROTECTION
;
498 * For unknown data we pick a physical eraseblock with
499 * medium erase counter. But we by no means can pick a
500 * physical eraseblock with erase counter greater or
501 * equivalent than the lowest erase counter plus
504 first
= rb_entry(rb_first(&ubi
->free
),
505 struct ubi_wl_entry
, rb
);
506 last
= rb_entry(rb_last(&ubi
->free
),
507 struct ubi_wl_entry
, rb
);
509 if (last
->ec
- first
->ec
< WL_FREE_MAX_DIFF
)
510 e
= rb_entry(ubi
->free
.rb_node
,
511 struct ubi_wl_entry
, rb
);
513 medium_ec
= (first
->ec
+ WL_FREE_MAX_DIFF
)/2;
514 e
= find_wl_entry(&ubi
->free
, medium_ec
);
516 protect
= U_PROTECTION
;
520 * For short term data we pick a physical eraseblock
521 * with the lowest erase counter as we expect it will
524 e
= rb_entry(rb_first(&ubi
->free
),
525 struct ubi_wl_entry
, rb
);
526 protect
= ST_PROTECTION
;
535 * Move the physical eraseblock to the protection trees where it will
536 * be protected from being moved for some time.
538 paranoid_check_in_wl_tree(e
, &ubi
->free
);
539 rb_erase(&e
->rb
, &ubi
->free
);
540 prot_tree_add(ubi
, e
, pe
, protect
);
542 dbg_wl("PEB %d EC %d, protection %d", e
->pnum
, e
->ec
, protect
);
543 spin_unlock(&ubi
->wl_lock
);
549 * prot_tree_del - remove a physical eraseblock from the protection trees
550 * @ubi: UBI device description object
551 * @pnum: the physical eraseblock to remove
553 static void prot_tree_del(struct ubi_device
*ubi
, int pnum
)
556 struct ubi_wl_prot_entry
*pe
= NULL
;
558 p
= ubi
->prot
.pnum
.rb_node
;
561 pe
= rb_entry(p
, struct ubi_wl_prot_entry
, rb_pnum
);
563 if (pnum
== pe
->e
->pnum
)
566 if (pnum
< pe
->e
->pnum
)
572 ubi_assert(pe
->e
->pnum
== pnum
);
573 rb_erase(&pe
->rb_aec
, &ubi
->prot
.aec
);
574 rb_erase(&pe
->rb_pnum
, &ubi
->prot
.pnum
);
579 * sync_erase - synchronously erase a physical eraseblock.
580 * @ubi: UBI device description object
581 * @e: the the physical eraseblock to erase
582 * @torture: if the physical eraseblock has to be tortured
584 * This function returns zero in case of success and a negative error code in
587 static int sync_erase(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
, int torture
)
590 struct ubi_ec_hdr
*ec_hdr
;
591 unsigned long long ec
= e
->ec
;
593 dbg_wl("erase PEB %d, old EC %llu", e
->pnum
, ec
);
595 err
= paranoid_check_ec(ubi
, e
->pnum
, e
->ec
);
599 ec_hdr
= kzalloc(ubi
->ec_hdr_alsize
, GFP_NOFS
);
603 err
= ubi_io_sync_erase(ubi
, e
->pnum
, torture
);
608 if (ec
> UBI_MAX_ERASECOUNTER
) {
610 * Erase counter overflow. Upgrade UBI and use 64-bit
611 * erase counters internally.
613 ubi_err("erase counter overflow at PEB %d, EC %llu",
619 dbg_wl("erased PEB %d, new EC %llu", e
->pnum
, ec
);
621 ec_hdr
->ec
= cpu_to_be64(ec
);
623 err
= ubi_io_write_ec_hdr(ubi
, e
->pnum
, ec_hdr
);
628 spin_lock(&ubi
->wl_lock
);
629 if (e
->ec
> ubi
->max_ec
)
631 spin_unlock(&ubi
->wl_lock
);
639 * check_protection_over - check if it is time to stop protecting some
640 * physical eraseblocks.
641 * @ubi: UBI device description object
643 * This function is called after each erase operation, when the absolute erase
644 * counter is incremented, to check if some physical eraseblock have not to be
645 * protected any longer. These physical eraseblocks are moved from the
646 * protection trees to the used tree.
648 static void check_protection_over(struct ubi_device
*ubi
)
650 struct ubi_wl_prot_entry
*pe
;
653 * There may be several protected physical eraseblock to remove,
657 spin_lock(&ubi
->wl_lock
);
658 if (!ubi
->prot
.aec
.rb_node
) {
659 spin_unlock(&ubi
->wl_lock
);
663 pe
= rb_entry(rb_first(&ubi
->prot
.aec
),
664 struct ubi_wl_prot_entry
, rb_aec
);
666 if (pe
->abs_ec
> ubi
->abs_ec
) {
667 spin_unlock(&ubi
->wl_lock
);
671 dbg_wl("PEB %d protection over, abs_ec %llu, PEB abs_ec %llu",
672 pe
->e
->pnum
, ubi
->abs_ec
, pe
->abs_ec
);
673 rb_erase(&pe
->rb_aec
, &ubi
->prot
.aec
);
674 rb_erase(&pe
->rb_pnum
, &ubi
->prot
.pnum
);
675 wl_tree_add(pe
->e
, &ubi
->used
);
676 spin_unlock(&ubi
->wl_lock
);
684 * schedule_ubi_work - schedule a work.
685 * @ubi: UBI device description object
686 * @wrk: the work to schedule
688 * This function enqueues a work defined by @wrk to the tail of the pending
691 static void schedule_ubi_work(struct ubi_device
*ubi
, struct ubi_work
*wrk
)
693 spin_lock(&ubi
->wl_lock
);
694 list_add_tail(&wrk
->list
, &ubi
->works
);
695 ubi_assert(ubi
->works_count
>= 0);
696 ubi
->works_count
+= 1;
697 if (ubi
->thread_enabled
)
698 wake_up_process(ubi
->bgt_thread
);
699 spin_unlock(&ubi
->wl_lock
);
702 static int erase_worker(struct ubi_device
*ubi
, struct ubi_work
*wl_wrk
,
706 * schedule_erase - schedule an erase work.
707 * @ubi: UBI device description object
708 * @e: the WL entry of the physical eraseblock to erase
709 * @torture: if the physical eraseblock has to be tortured
711 * This function returns zero in case of success and a %-ENOMEM in case of
714 static int schedule_erase(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
,
717 struct ubi_work
*wl_wrk
;
719 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
720 e
->pnum
, e
->ec
, torture
);
722 wl_wrk
= kmalloc(sizeof(struct ubi_work
), GFP_NOFS
);
726 wl_wrk
->func
= &erase_worker
;
728 wl_wrk
->torture
= torture
;
730 schedule_ubi_work(ubi
, wl_wrk
);
735 * wear_leveling_worker - wear-leveling worker function.
736 * @ubi: UBI device description object
737 * @wrk: the work object
738 * @cancel: non-zero if the worker has to free memory and exit
740 * This function copies a more worn out physical eraseblock to a less worn out
741 * one. Returns zero in case of success and a negative error code in case of
744 static int wear_leveling_worker(struct ubi_device
*ubi
, struct ubi_work
*wrk
,
748 struct ubi_wl_entry
*e1
, *e2
;
749 struct ubi_vid_hdr
*vid_hdr
;
756 vid_hdr
= ubi_zalloc_vid_hdr(ubi
, GFP_NOFS
);
760 spin_lock(&ubi
->wl_lock
);
763 * Only one WL worker at a time is supported at this implementation, so
764 * make sure a PEB is not being moved already.
766 if (ubi
->move_to
|| !ubi
->free
.rb_node
||
767 (!ubi
->used
.rb_node
&& !ubi
->scrub
.rb_node
)) {
769 * Only one WL worker at a time is supported at this
770 * implementation, so if a LEB is already being moved, cancel.
772 * No free physical eraseblocks? Well, we cancel wear-leveling
773 * then. It will be triggered again when a free physical
774 * eraseblock appears.
776 * No used physical eraseblocks? They must be temporarily
777 * protected from being moved. They will be moved to the
778 * @ubi->used tree later and the wear-leveling will be
781 dbg_wl("cancel WL, a list is empty: free %d, used %d",
782 !ubi
->free
.rb_node
, !ubi
->used
.rb_node
);
783 ubi
->wl_scheduled
= 0;
784 spin_unlock(&ubi
->wl_lock
);
785 ubi_free_vid_hdr(ubi
, vid_hdr
);
789 if (!ubi
->scrub
.rb_node
) {
791 * Now pick the least worn-out used physical eraseblock and a
792 * highly worn-out free physical eraseblock. If the erase
793 * counters differ much enough, start wear-leveling.
795 e1
= rb_entry(rb_first(&ubi
->used
), struct ubi_wl_entry
, rb
);
796 e2
= find_wl_entry(&ubi
->free
, WL_FREE_MAX_DIFF
);
798 if (!(e2
->ec
- e1
->ec
>= UBI_WL_THRESHOLD
)) {
799 dbg_wl("no WL needed: min used EC %d, max free EC %d",
801 ubi
->wl_scheduled
= 0;
802 spin_unlock(&ubi
->wl_lock
);
803 ubi_free_vid_hdr(ubi
, vid_hdr
);
806 paranoid_check_in_wl_tree(e1
, &ubi
->used
);
807 rb_erase(&e1
->rb
, &ubi
->used
);
808 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
809 e1
->pnum
, e1
->ec
, e2
->pnum
, e2
->ec
);
811 e1
= rb_entry(rb_first(&ubi
->scrub
), struct ubi_wl_entry
, rb
);
812 e2
= find_wl_entry(&ubi
->free
, WL_FREE_MAX_DIFF
);
813 paranoid_check_in_wl_tree(e1
, &ubi
->scrub
);
814 rb_erase(&e1
->rb
, &ubi
->scrub
);
815 dbg_wl("scrub PEB %d to PEB %d", e1
->pnum
, e2
->pnum
);
818 paranoid_check_in_wl_tree(e2
, &ubi
->free
);
819 rb_erase(&e2
->rb
, &ubi
->free
);
820 ubi_assert(!ubi
->move_from
&& !ubi
->move_to
);
821 ubi_assert(!ubi
->move_to_put
&& !ubi
->move_from_put
);
824 spin_unlock(&ubi
->wl_lock
);
827 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
828 * We so far do not know which logical eraseblock our physical
829 * eraseblock (@e1) belongs to. We have to read the volume identifier
833 err
= ubi_io_read_vid_hdr(ubi
, e1
->pnum
, vid_hdr
, 0);
834 if (err
&& err
!= UBI_IO_BITFLIPS
) {
835 if (err
== UBI_IO_PEB_FREE
) {
837 * We are trying to move PEB without a VID header. UBI
838 * always write VID headers shortly after the PEB was
839 * given, so we have a situation when it did not have
840 * chance to write it down because it was preempted.
841 * Just re-schedule the work, so that next time it will
842 * likely have the VID header in place.
844 dbg_wl("PEB %d has no VID header", e1
->pnum
);
847 ubi_err("error %d while reading VID header from PEB %d",
855 err
= ubi_eba_copy_leb(ubi
, e1
->pnum
, e2
->pnum
, vid_hdr
);
857 if (err
== UBI_IO_BITFLIPS
)
862 ubi_free_vid_hdr(ubi
, vid_hdr
);
863 spin_lock(&ubi
->wl_lock
);
864 if (!ubi
->move_to_put
)
865 wl_tree_add(e2
, &ubi
->used
);
868 ubi
->move_from
= ubi
->move_to
= NULL
;
869 ubi
->move_from_put
= ubi
->move_to_put
= 0;
870 ubi
->wl_scheduled
= 0;
871 spin_unlock(&ubi
->wl_lock
);
875 * Well, the target PEB was put meanwhile, schedule it for
878 dbg_wl("PEB %d was put meanwhile, erase", e2
->pnum
);
879 err
= schedule_erase(ubi
, e2
, 0);
881 kmem_cache_free(wl_entries_slab
, e2
);
886 err
= schedule_erase(ubi
, e1
, 0);
888 kmem_cache_free(wl_entries_slab
, e1
);
896 * Some error occurred. @e1 was not changed, so return it back. @e2
897 * might be changed, schedule it for erasure.
901 dbg_wl("error %d occurred, cancel operation", err
);
902 ubi_assert(err
<= 0);
904 ubi_free_vid_hdr(ubi
, vid_hdr
);
905 spin_lock(&ubi
->wl_lock
);
906 ubi
->wl_scheduled
= 0;
907 if (ubi
->move_from_put
)
910 wl_tree_add(e1
, &ubi
->used
);
911 ubi
->move_from
= ubi
->move_to
= NULL
;
912 ubi
->move_from_put
= ubi
->move_to_put
= 0;
913 spin_unlock(&ubi
->wl_lock
);
917 * Well, the target PEB was put meanwhile, schedule it for
920 dbg_wl("PEB %d was put meanwhile, erase", e1
->pnum
);
921 err
= schedule_erase(ubi
, e1
, 0);
923 kmem_cache_free(wl_entries_slab
, e1
);
928 err
= schedule_erase(ubi
, e2
, 0);
930 kmem_cache_free(wl_entries_slab
, e2
);
939 * ensure_wear_leveling - schedule wear-leveling if it is needed.
940 * @ubi: UBI device description object
942 * This function checks if it is time to start wear-leveling and schedules it
943 * if yes. This function returns zero in case of success and a negative error
944 * code in case of failure.
946 static int ensure_wear_leveling(struct ubi_device
*ubi
)
949 struct ubi_wl_entry
*e1
;
950 struct ubi_wl_entry
*e2
;
951 struct ubi_work
*wrk
;
953 spin_lock(&ubi
->wl_lock
);
954 if (ubi
->wl_scheduled
)
955 /* Wear-leveling is already in the work queue */
959 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
960 * the WL worker has to be scheduled anyway.
962 if (!ubi
->scrub
.rb_node
) {
963 if (!ubi
->used
.rb_node
|| !ubi
->free
.rb_node
)
964 /* No physical eraseblocks - no deal */
968 * We schedule wear-leveling only if the difference between the
969 * lowest erase counter of used physical eraseblocks and a high
970 * erase counter of free physical eraseblocks is greater then
973 e1
= rb_entry(rb_first(&ubi
->used
), struct ubi_wl_entry
, rb
);
974 e2
= find_wl_entry(&ubi
->free
, WL_FREE_MAX_DIFF
);
976 if (!(e2
->ec
- e1
->ec
>= UBI_WL_THRESHOLD
))
978 dbg_wl("schedule wear-leveling");
980 dbg_wl("schedule scrubbing");
982 ubi
->wl_scheduled
= 1;
983 spin_unlock(&ubi
->wl_lock
);
985 wrk
= kmalloc(sizeof(struct ubi_work
), GFP_NOFS
);
991 wrk
->func
= &wear_leveling_worker
;
992 schedule_ubi_work(ubi
, wrk
);
996 spin_lock(&ubi
->wl_lock
);
997 ubi
->wl_scheduled
= 0;
999 spin_unlock(&ubi
->wl_lock
);
1004 * erase_worker - physical eraseblock erase worker function.
1005 * @ubi: UBI device description object
1006 * @wl_wrk: the work object
1007 * @cancel: non-zero if the worker has to free memory and exit
1009 * This function erases a physical eraseblock and perform torture testing if
1010 * needed. It also takes care about marking the physical eraseblock bad if
1011 * needed. Returns zero in case of success and a negative error code in case of
1014 static int erase_worker(struct ubi_device
*ubi
, struct ubi_work
*wl_wrk
,
1017 struct ubi_wl_entry
*e
= wl_wrk
->e
;
1018 int pnum
= e
->pnum
, err
, need
;
1021 dbg_wl("cancel erasure of PEB %d EC %d", pnum
, e
->ec
);
1023 kmem_cache_free(wl_entries_slab
, e
);
1027 dbg_wl("erase PEB %d EC %d", pnum
, e
->ec
);
1029 err
= sync_erase(ubi
, e
, wl_wrk
->torture
);
1031 /* Fine, we've erased it successfully */
1034 spin_lock(&ubi
->wl_lock
);
1036 wl_tree_add(e
, &ubi
->free
);
1037 spin_unlock(&ubi
->wl_lock
);
1040 * One more erase operation has happened, take care about protected
1041 * physical eraseblocks.
1043 check_protection_over(ubi
);
1045 /* And take care about wear-leveling */
1046 err
= ensure_wear_leveling(ubi
);
1050 ubi_err("failed to erase PEB %d, error %d", pnum
, err
);
1052 kmem_cache_free(wl_entries_slab
, e
);
1054 if (err
== -EINTR
|| err
== -ENOMEM
|| err
== -EAGAIN
||
1058 /* Re-schedule the LEB for erasure */
1059 err1
= schedule_erase(ubi
, e
, 0);
1065 } else if (err
!= -EIO
) {
1067 * If this is not %-EIO, we have no idea what to do. Scheduling
1068 * this physical eraseblock for erasure again would cause
1069 * errors again and again. Well, lets switch to RO mode.
1074 /* It is %-EIO, the PEB went bad */
1076 if (!ubi
->bad_allowed
) {
1077 ubi_err("bad physical eraseblock %d detected", pnum
);
1081 spin_lock(&ubi
->volumes_lock
);
1082 need
= ubi
->beb_rsvd_level
- ubi
->beb_rsvd_pebs
+ 1;
1084 need
= ubi
->avail_pebs
>= need
? need
: ubi
->avail_pebs
;
1085 ubi
->avail_pebs
-= need
;
1086 ubi
->rsvd_pebs
+= need
;
1087 ubi
->beb_rsvd_pebs
+= need
;
1089 ubi_msg("reserve more %d PEBs", need
);
1092 if (ubi
->beb_rsvd_pebs
== 0) {
1093 spin_unlock(&ubi
->volumes_lock
);
1094 ubi_err("no reserved physical eraseblocks");
1098 spin_unlock(&ubi
->volumes_lock
);
1099 ubi_msg("mark PEB %d as bad", pnum
);
1101 err
= ubi_io_mark_bad(ubi
, pnum
);
1105 spin_lock(&ubi
->volumes_lock
);
1106 ubi
->beb_rsvd_pebs
-= 1;
1107 ubi
->bad_peb_count
+= 1;
1108 ubi
->good_peb_count
-= 1;
1109 ubi_calculate_reserved(ubi
);
1110 if (ubi
->beb_rsvd_pebs
== 0)
1111 ubi_warn("last PEB from the reserved pool was used");
1112 spin_unlock(&ubi
->volumes_lock
);
1122 * ubi_wl_put_peb - return a physical eraseblock to the wear-leveling
1124 * @ubi: UBI device description object
1125 * @pnum: physical eraseblock to return
1126 * @torture: if this physical eraseblock has to be tortured
1128 * This function is called to return physical eraseblock @pnum to the pool of
1129 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1130 * occurred to this @pnum and it has to be tested. This function returns zero
1131 * in case of success and a negative error code in case of failure.
1133 int ubi_wl_put_peb(struct ubi_device
*ubi
, int pnum
, int torture
)
1136 struct ubi_wl_entry
*e
;
1138 dbg_wl("PEB %d", pnum
);
1139 ubi_assert(pnum
>= 0);
1140 ubi_assert(pnum
< ubi
->peb_count
);
1142 spin_lock(&ubi
->wl_lock
);
1144 e
= ubi
->lookuptbl
[pnum
];
1145 if (e
== ubi
->move_from
) {
1147 * User is putting the physical eraseblock which was selected to
1148 * be moved. It will be scheduled for erasure in the
1149 * wear-leveling worker.
1151 dbg_wl("PEB %d is being moved", pnum
);
1152 ubi_assert(!ubi
->move_from_put
);
1153 ubi
->move_from_put
= 1;
1154 spin_unlock(&ubi
->wl_lock
);
1156 } else if (e
== ubi
->move_to
) {
1158 * User is putting the physical eraseblock which was selected
1159 * as the target the data is moved to. It may happen if the EBA
1160 * unit already re-mapped the LEB but the WL unit did has not
1161 * put the PEB to the "used" tree.
1163 dbg_wl("PEB %d is the target of data moving", pnum
);
1164 ubi_assert(!ubi
->move_to_put
);
1165 ubi
->move_to_put
= 1;
1166 spin_unlock(&ubi
->wl_lock
);
1169 if (in_wl_tree(e
, &ubi
->used
)) {
1170 paranoid_check_in_wl_tree(e
, &ubi
->used
);
1171 rb_erase(&e
->rb
, &ubi
->used
);
1172 } else if (in_wl_tree(e
, &ubi
->scrub
)) {
1173 paranoid_check_in_wl_tree(e
, &ubi
->scrub
);
1174 rb_erase(&e
->rb
, &ubi
->scrub
);
1176 prot_tree_del(ubi
, e
->pnum
);
1178 spin_unlock(&ubi
->wl_lock
);
1180 err
= schedule_erase(ubi
, e
, torture
);
1182 spin_lock(&ubi
->wl_lock
);
1183 wl_tree_add(e
, &ubi
->used
);
1184 spin_unlock(&ubi
->wl_lock
);
1191 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1192 * @ubi: UBI device description object
1193 * @pnum: the physical eraseblock to schedule
1195 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1196 * needs scrubbing. This function schedules a physical eraseblock for
1197 * scrubbing which is done in background. This function returns zero in case of
1198 * success and a negative error code in case of failure.
1200 int ubi_wl_scrub_peb(struct ubi_device
*ubi
, int pnum
)
1202 struct ubi_wl_entry
*e
;
1204 ubi_msg("schedule PEB %d for scrubbing", pnum
);
1207 spin_lock(&ubi
->wl_lock
);
1208 e
= ubi
->lookuptbl
[pnum
];
1209 if (e
== ubi
->move_from
|| in_wl_tree(e
, &ubi
->scrub
)) {
1210 spin_unlock(&ubi
->wl_lock
);
1214 if (e
== ubi
->move_to
) {
1216 * This physical eraseblock was used to move data to. The data
1217 * was moved but the PEB was not yet inserted to the proper
1218 * tree. We should just wait a little and let the WL worker
1221 spin_unlock(&ubi
->wl_lock
);
1222 dbg_wl("the PEB %d is not in proper tree, retry", pnum
);
1227 if (in_wl_tree(e
, &ubi
->used
)) {
1228 paranoid_check_in_wl_tree(e
, &ubi
->used
);
1229 rb_erase(&e
->rb
, &ubi
->used
);
1231 prot_tree_del(ubi
, pnum
);
1233 wl_tree_add(e
, &ubi
->scrub
);
1234 spin_unlock(&ubi
->wl_lock
);
1237 * Technically scrubbing is the same as wear-leveling, so it is done
1240 return ensure_wear_leveling(ubi
);
1244 * ubi_wl_flush - flush all pending works.
1245 * @ubi: UBI device description object
1247 * This function returns zero in case of success and a negative error code in
1250 int ubi_wl_flush(struct ubi_device
*ubi
)
1252 int err
, pending_count
;
1254 pending_count
= ubi
->works_count
;
1256 dbg_wl("flush (%d pending works)", pending_count
);
1259 * Erase while the pending works queue is not empty, but not more then
1260 * the number of currently pending works.
1262 while (pending_count
-- > 0) {
1272 * tree_destroy - destroy an RB-tree.
1273 * @root: the root of the tree to destroy
1275 static void tree_destroy(struct rb_root
*root
)
1278 struct ubi_wl_entry
*e
;
1284 else if (rb
->rb_right
)
1287 e
= rb_entry(rb
, struct ubi_wl_entry
, rb
);
1291 if (rb
->rb_left
== &e
->rb
)
1294 rb
->rb_right
= NULL
;
1297 kmem_cache_free(wl_entries_slab
, e
);
1303 * ubi_thread - UBI background thread.
1304 * @u: the UBI device description object pointer
1306 static int ubi_thread(void *u
)
1309 struct ubi_device
*ubi
= u
;
1311 ubi_msg("background thread \"%s\" started, PID %d",
1312 ubi
->bgt_name
, task_pid_nr(current
));
1318 if (kthread_should_stop())
1321 if (try_to_freeze())
1324 spin_lock(&ubi
->wl_lock
);
1325 if (list_empty(&ubi
->works
) || ubi
->ro_mode
||
1326 !ubi
->thread_enabled
) {
1327 set_current_state(TASK_INTERRUPTIBLE
);
1328 spin_unlock(&ubi
->wl_lock
);
1332 spin_unlock(&ubi
->wl_lock
);
1336 ubi_err("%s: work failed with error code %d",
1337 ubi
->bgt_name
, err
);
1338 if (failures
++ > WL_MAX_FAILURES
) {
1340 * Too many failures, disable the thread and
1341 * switch to read-only mode.
1343 ubi_msg("%s: %d consecutive failures",
1344 ubi
->bgt_name
, WL_MAX_FAILURES
);
1355 dbg_wl("background thread \"%s\" is killed", ubi
->bgt_name
);
1360 * cancel_pending - cancel all pending works.
1361 * @ubi: UBI device description object
1363 static void cancel_pending(struct ubi_device
*ubi
)
1365 while (!list_empty(&ubi
->works
)) {
1366 struct ubi_work
*wrk
;
1368 wrk
= list_entry(ubi
->works
.next
, struct ubi_work
, list
);
1369 list_del(&wrk
->list
);
1370 wrk
->func(ubi
, wrk
, 1);
1371 ubi
->works_count
-= 1;
1372 ubi_assert(ubi
->works_count
>= 0);
1377 * ubi_wl_init_scan - initialize the wear-leveling unit using scanning
1379 * @ubi: UBI device description object
1380 * @si: scanning information
1382 * This function returns zero in case of success, and a negative error code in
1385 int ubi_wl_init_scan(struct ubi_device
*ubi
, struct ubi_scan_info
*si
)
1388 struct rb_node
*rb1
, *rb2
;
1389 struct ubi_scan_volume
*sv
;
1390 struct ubi_scan_leb
*seb
, *tmp
;
1391 struct ubi_wl_entry
*e
;
1394 ubi
->used
= ubi
->free
= ubi
->scrub
= RB_ROOT
;
1395 ubi
->prot
.pnum
= ubi
->prot
.aec
= RB_ROOT
;
1396 spin_lock_init(&ubi
->wl_lock
);
1397 ubi
->max_ec
= si
->max_ec
;
1398 INIT_LIST_HEAD(&ubi
->works
);
1400 sprintf(ubi
->bgt_name
, UBI_BGT_NAME_PATTERN
, ubi
->ubi_num
);
1402 ubi
->bgt_thread
= kthread_create(ubi_thread
, ubi
, ubi
->bgt_name
);
1403 if (IS_ERR(ubi
->bgt_thread
)) {
1404 err
= PTR_ERR(ubi
->bgt_thread
);
1405 ubi_err("cannot spawn \"%s\", error %d", ubi
->bgt_name
,
1410 if (ubi_devices_cnt
== 0) {
1411 wl_entries_slab
= kmem_cache_create("ubi_wl_entry_slab",
1412 sizeof(struct ubi_wl_entry
),
1414 if (!wl_entries_slab
)
1419 ubi
->lookuptbl
= kzalloc(ubi
->peb_count
* sizeof(void *), GFP_KERNEL
);
1420 if (!ubi
->lookuptbl
)
1423 list_for_each_entry_safe(seb
, tmp
, &si
->erase
, u
.list
) {
1426 e
= kmem_cache_alloc(wl_entries_slab
, GFP_KERNEL
);
1430 e
->pnum
= seb
->pnum
;
1432 ubi
->lookuptbl
[e
->pnum
] = e
;
1433 if (schedule_erase(ubi
, e
, 0)) {
1434 kmem_cache_free(wl_entries_slab
, e
);
1439 list_for_each_entry(seb
, &si
->free
, u
.list
) {
1442 e
= kmem_cache_alloc(wl_entries_slab
, GFP_KERNEL
);
1446 e
->pnum
= seb
->pnum
;
1448 ubi_assert(e
->ec
>= 0);
1449 wl_tree_add(e
, &ubi
->free
);
1450 ubi
->lookuptbl
[e
->pnum
] = e
;
1453 list_for_each_entry(seb
, &si
->corr
, u
.list
) {
1456 e
= kmem_cache_alloc(wl_entries_slab
, GFP_KERNEL
);
1460 e
->pnum
= seb
->pnum
;
1462 ubi
->lookuptbl
[e
->pnum
] = e
;
1463 if (schedule_erase(ubi
, e
, 0)) {
1464 kmem_cache_free(wl_entries_slab
, e
);
1469 ubi_rb_for_each_entry(rb1
, sv
, &si
->volumes
, rb
) {
1470 ubi_rb_for_each_entry(rb2
, seb
, &sv
->root
, u
.rb
) {
1473 e
= kmem_cache_alloc(wl_entries_slab
, GFP_KERNEL
);
1477 e
->pnum
= seb
->pnum
;
1479 ubi
->lookuptbl
[e
->pnum
] = e
;
1481 dbg_wl("add PEB %d EC %d to the used tree",
1483 wl_tree_add(e
, &ubi
->used
);
1485 dbg_wl("add PEB %d EC %d to the scrub tree",
1487 wl_tree_add(e
, &ubi
->scrub
);
1492 if (ubi
->avail_pebs
< WL_RESERVED_PEBS
) {
1493 ubi_err("no enough physical eraseblocks (%d, need %d)",
1494 ubi
->avail_pebs
, WL_RESERVED_PEBS
);
1497 ubi
->avail_pebs
-= WL_RESERVED_PEBS
;
1498 ubi
->rsvd_pebs
+= WL_RESERVED_PEBS
;
1500 /* Schedule wear-leveling if needed */
1501 err
= ensure_wear_leveling(ubi
);
1508 cancel_pending(ubi
);
1509 tree_destroy(&ubi
->used
);
1510 tree_destroy(&ubi
->free
);
1511 tree_destroy(&ubi
->scrub
);
1512 kfree(ubi
->lookuptbl
);
1513 if (ubi_devices_cnt
== 0)
1514 kmem_cache_destroy(wl_entries_slab
);
1519 * protection_trees_destroy - destroy the protection RB-trees.
1520 * @ubi: UBI device description object
1522 static void protection_trees_destroy(struct ubi_device
*ubi
)
1525 struct ubi_wl_prot_entry
*pe
;
1527 rb
= ubi
->prot
.aec
.rb_node
;
1531 else if (rb
->rb_right
)
1534 pe
= rb_entry(rb
, struct ubi_wl_prot_entry
, rb_aec
);
1538 if (rb
->rb_left
== &pe
->rb_aec
)
1541 rb
->rb_right
= NULL
;
1544 kmem_cache_free(wl_entries_slab
, pe
->e
);
1551 * ubi_wl_close - close the wear-leveling unit.
1552 * @ubi: UBI device description object
1554 void ubi_wl_close(struct ubi_device
*ubi
)
1556 dbg_wl("disable \"%s\"", ubi
->bgt_name
);
1557 if (ubi
->bgt_thread
)
1558 kthread_stop(ubi
->bgt_thread
);
1560 dbg_wl("close the UBI wear-leveling unit");
1562 cancel_pending(ubi
);
1563 protection_trees_destroy(ubi
);
1564 tree_destroy(&ubi
->used
);
1565 tree_destroy(&ubi
->free
);
1566 tree_destroy(&ubi
->scrub
);
1567 kfree(ubi
->lookuptbl
);
1568 if (ubi_devices_cnt
== 1)
1569 kmem_cache_destroy(wl_entries_slab
);
1572 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1575 * paranoid_check_ec - make sure that the erase counter of a physical eraseblock
1577 * @ubi: UBI device description object
1578 * @pnum: the physical eraseblock number to check
1579 * @ec: the erase counter to check
1581 * This function returns zero if the erase counter of physical eraseblock @pnum
1582 * is equivalent to @ec, %1 if not, and a negative error code if an error
1585 static int paranoid_check_ec(struct ubi_device
*ubi
, int pnum
, int ec
)
1589 struct ubi_ec_hdr
*ec_hdr
;
1591 ec_hdr
= kzalloc(ubi
->ec_hdr_alsize
, GFP_NOFS
);
1595 err
= ubi_io_read_ec_hdr(ubi
, pnum
, ec_hdr
, 0);
1596 if (err
&& err
!= UBI_IO_BITFLIPS
) {
1597 /* The header does not have to exist */
1602 read_ec
= be64_to_cpu(ec_hdr
->ec
);
1603 if (ec
!= read_ec
) {
1604 ubi_err("paranoid check failed for PEB %d", pnum
);
1605 ubi_err("read EC is %lld, should be %d", read_ec
, ec
);
1606 ubi_dbg_dump_stack();
1617 * paranoid_check_in_wl_tree - make sure that a wear-leveling entry is present
1619 * @e: the wear-leveling entry to check
1620 * @root: the root of the tree
1622 * This function returns zero if @e is in the @root RB-tree and %1 if it
1625 static int paranoid_check_in_wl_tree(struct ubi_wl_entry
*e
,
1626 struct rb_root
*root
)
1628 if (in_wl_tree(e
, root
))
1631 ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
1632 e
->pnum
, e
->ec
, root
);
1633 ubi_dbg_dump_stack();
1637 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */