2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/kthread.h>
20 #include <linux/khugepaged.h>
21 #include <linux/freezer.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/migrate.h>
25 #include <linux/hashtable.h>
28 #include <asm/pgalloc.h>
32 * By default transparent hugepage support is disabled in order that avoid
33 * to risk increase the memory footprint of applications without a guaranteed
34 * benefit. When transparent hugepage support is enabled, is for all mappings,
35 * and khugepaged scans all mappings.
36 * Defrag is invoked by khugepaged hugepage allocations and by page faults
37 * for all hugepage allocations.
39 unsigned long transparent_hugepage_flags __read_mostly
=
40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
41 (1<<TRANSPARENT_HUGEPAGE_FLAG
)|
43 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
44 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
)|
46 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG
)|
47 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
)|
48 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
50 /* default scan 8*512 pte (or vmas) every 30 second */
51 static unsigned int khugepaged_pages_to_scan __read_mostly
= HPAGE_PMD_NR
*8;
52 static unsigned int khugepaged_pages_collapsed
;
53 static unsigned int khugepaged_full_scans
;
54 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly
= 10000;
55 /* during fragmentation poll the hugepage allocator once every minute */
56 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly
= 60000;
57 static struct task_struct
*khugepaged_thread __read_mostly
;
58 static DEFINE_MUTEX(khugepaged_mutex
);
59 static DEFINE_SPINLOCK(khugepaged_mm_lock
);
60 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait
);
62 * default collapse hugepages if there is at least one pte mapped like
63 * it would have happened if the vma was large enough during page
66 static unsigned int khugepaged_max_ptes_none __read_mostly
= HPAGE_PMD_NR
-1;
68 static int khugepaged(void *none
);
69 static int khugepaged_slab_init(void);
71 #define MM_SLOTS_HASH_BITS 10
72 static __read_mostly
DEFINE_HASHTABLE(mm_slots_hash
, MM_SLOTS_HASH_BITS
);
74 static struct kmem_cache
*mm_slot_cache __read_mostly
;
77 * struct mm_slot - hash lookup from mm to mm_slot
78 * @hash: hash collision list
79 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
80 * @mm: the mm that this information is valid for
83 struct hlist_node hash
;
84 struct list_head mm_node
;
89 * struct khugepaged_scan - cursor for scanning
90 * @mm_head: the head of the mm list to scan
91 * @mm_slot: the current mm_slot we are scanning
92 * @address: the next address inside that to be scanned
94 * There is only the one khugepaged_scan instance of this cursor structure.
96 struct khugepaged_scan
{
97 struct list_head mm_head
;
98 struct mm_slot
*mm_slot
;
99 unsigned long address
;
101 static struct khugepaged_scan khugepaged_scan
= {
102 .mm_head
= LIST_HEAD_INIT(khugepaged_scan
.mm_head
),
106 static int set_recommended_min_free_kbytes(void)
110 unsigned long recommended_min
;
112 if (!khugepaged_enabled())
115 for_each_populated_zone(zone
)
118 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
119 recommended_min
= pageblock_nr_pages
* nr_zones
* 2;
122 * Make sure that on average at least two pageblocks are almost free
123 * of another type, one for a migratetype to fall back to and a
124 * second to avoid subsequent fallbacks of other types There are 3
125 * MIGRATE_TYPES we care about.
127 recommended_min
+= pageblock_nr_pages
* nr_zones
*
128 MIGRATE_PCPTYPES
* MIGRATE_PCPTYPES
;
130 /* don't ever allow to reserve more than 5% of the lowmem */
131 recommended_min
= min(recommended_min
,
132 (unsigned long) nr_free_buffer_pages() / 20);
133 recommended_min
<<= (PAGE_SHIFT
-10);
135 if (recommended_min
> min_free_kbytes
) {
136 if (user_min_free_kbytes
>= 0)
137 pr_info("raising min_free_kbytes from %d to %lu "
138 "to help transparent hugepage allocations\n",
139 min_free_kbytes
, recommended_min
);
141 min_free_kbytes
= recommended_min
;
143 setup_per_zone_wmarks();
146 late_initcall(set_recommended_min_free_kbytes
);
148 static int start_khugepaged(void)
151 if (khugepaged_enabled()) {
152 if (!khugepaged_thread
)
153 khugepaged_thread
= kthread_run(khugepaged
, NULL
,
155 if (unlikely(IS_ERR(khugepaged_thread
))) {
156 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
157 err
= PTR_ERR(khugepaged_thread
);
158 khugepaged_thread
= NULL
;
161 if (!list_empty(&khugepaged_scan
.mm_head
))
162 wake_up_interruptible(&khugepaged_wait
);
164 set_recommended_min_free_kbytes();
165 } else if (khugepaged_thread
) {
166 kthread_stop(khugepaged_thread
);
167 khugepaged_thread
= NULL
;
173 static atomic_t huge_zero_refcount
;
174 static struct page
*huge_zero_page __read_mostly
;
176 static inline bool is_huge_zero_page(struct page
*page
)
178 return ACCESS_ONCE(huge_zero_page
) == page
;
181 static inline bool is_huge_zero_pmd(pmd_t pmd
)
183 return is_huge_zero_page(pmd_page(pmd
));
186 static struct page
*get_huge_zero_page(void)
188 struct page
*zero_page
;
190 if (likely(atomic_inc_not_zero(&huge_zero_refcount
)))
191 return ACCESS_ONCE(huge_zero_page
);
193 zero_page
= alloc_pages((GFP_TRANSHUGE
| __GFP_ZERO
) & ~__GFP_MOVABLE
,
196 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED
);
199 count_vm_event(THP_ZERO_PAGE_ALLOC
);
201 if (cmpxchg(&huge_zero_page
, NULL
, zero_page
)) {
203 __free_page(zero_page
);
207 /* We take additional reference here. It will be put back by shrinker */
208 atomic_set(&huge_zero_refcount
, 2);
210 return ACCESS_ONCE(huge_zero_page
);
213 static void put_huge_zero_page(void)
216 * Counter should never go to zero here. Only shrinker can put
219 BUG_ON(atomic_dec_and_test(&huge_zero_refcount
));
222 static unsigned long shrink_huge_zero_page_count(struct shrinker
*shrink
,
223 struct shrink_control
*sc
)
225 /* we can free zero page only if last reference remains */
226 return atomic_read(&huge_zero_refcount
) == 1 ? HPAGE_PMD_NR
: 0;
229 static unsigned long shrink_huge_zero_page_scan(struct shrinker
*shrink
,
230 struct shrink_control
*sc
)
232 if (atomic_cmpxchg(&huge_zero_refcount
, 1, 0) == 1) {
233 struct page
*zero_page
= xchg(&huge_zero_page
, NULL
);
234 BUG_ON(zero_page
== NULL
);
235 __free_page(zero_page
);
242 static struct shrinker huge_zero_page_shrinker
= {
243 .count_objects
= shrink_huge_zero_page_count
,
244 .scan_objects
= shrink_huge_zero_page_scan
,
245 .seeks
= DEFAULT_SEEKS
,
250 static ssize_t
double_flag_show(struct kobject
*kobj
,
251 struct kobj_attribute
*attr
, char *buf
,
252 enum transparent_hugepage_flag enabled
,
253 enum transparent_hugepage_flag req_madv
)
255 if (test_bit(enabled
, &transparent_hugepage_flags
)) {
256 VM_BUG_ON(test_bit(req_madv
, &transparent_hugepage_flags
));
257 return sprintf(buf
, "[always] madvise never\n");
258 } else if (test_bit(req_madv
, &transparent_hugepage_flags
))
259 return sprintf(buf
, "always [madvise] never\n");
261 return sprintf(buf
, "always madvise [never]\n");
263 static ssize_t
double_flag_store(struct kobject
*kobj
,
264 struct kobj_attribute
*attr
,
265 const char *buf
, size_t count
,
266 enum transparent_hugepage_flag enabled
,
267 enum transparent_hugepage_flag req_madv
)
269 if (!memcmp("always", buf
,
270 min(sizeof("always")-1, count
))) {
271 set_bit(enabled
, &transparent_hugepage_flags
);
272 clear_bit(req_madv
, &transparent_hugepage_flags
);
273 } else if (!memcmp("madvise", buf
,
274 min(sizeof("madvise")-1, count
))) {
275 clear_bit(enabled
, &transparent_hugepage_flags
);
276 set_bit(req_madv
, &transparent_hugepage_flags
);
277 } else if (!memcmp("never", buf
,
278 min(sizeof("never")-1, count
))) {
279 clear_bit(enabled
, &transparent_hugepage_flags
);
280 clear_bit(req_madv
, &transparent_hugepage_flags
);
287 static ssize_t
enabled_show(struct kobject
*kobj
,
288 struct kobj_attribute
*attr
, char *buf
)
290 return double_flag_show(kobj
, attr
, buf
,
291 TRANSPARENT_HUGEPAGE_FLAG
,
292 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
);
294 static ssize_t
enabled_store(struct kobject
*kobj
,
295 struct kobj_attribute
*attr
,
296 const char *buf
, size_t count
)
300 ret
= double_flag_store(kobj
, attr
, buf
, count
,
301 TRANSPARENT_HUGEPAGE_FLAG
,
302 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
);
307 mutex_lock(&khugepaged_mutex
);
308 err
= start_khugepaged();
309 mutex_unlock(&khugepaged_mutex
);
317 static struct kobj_attribute enabled_attr
=
318 __ATTR(enabled
, 0644, enabled_show
, enabled_store
);
320 static ssize_t
single_flag_show(struct kobject
*kobj
,
321 struct kobj_attribute
*attr
, char *buf
,
322 enum transparent_hugepage_flag flag
)
324 return sprintf(buf
, "%d\n",
325 !!test_bit(flag
, &transparent_hugepage_flags
));
328 static ssize_t
single_flag_store(struct kobject
*kobj
,
329 struct kobj_attribute
*attr
,
330 const char *buf
, size_t count
,
331 enum transparent_hugepage_flag flag
)
336 ret
= kstrtoul(buf
, 10, &value
);
343 set_bit(flag
, &transparent_hugepage_flags
);
345 clear_bit(flag
, &transparent_hugepage_flags
);
351 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
352 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
353 * memory just to allocate one more hugepage.
355 static ssize_t
defrag_show(struct kobject
*kobj
,
356 struct kobj_attribute
*attr
, char *buf
)
358 return double_flag_show(kobj
, attr
, buf
,
359 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG
,
360 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
);
362 static ssize_t
defrag_store(struct kobject
*kobj
,
363 struct kobj_attribute
*attr
,
364 const char *buf
, size_t count
)
366 return double_flag_store(kobj
, attr
, buf
, count
,
367 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG
,
368 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
);
370 static struct kobj_attribute defrag_attr
=
371 __ATTR(defrag
, 0644, defrag_show
, defrag_store
);
373 static ssize_t
use_zero_page_show(struct kobject
*kobj
,
374 struct kobj_attribute
*attr
, char *buf
)
376 return single_flag_show(kobj
, attr
, buf
,
377 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
379 static ssize_t
use_zero_page_store(struct kobject
*kobj
,
380 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
382 return single_flag_store(kobj
, attr
, buf
, count
,
383 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
385 static struct kobj_attribute use_zero_page_attr
=
386 __ATTR(use_zero_page
, 0644, use_zero_page_show
, use_zero_page_store
);
387 #ifdef CONFIG_DEBUG_VM
388 static ssize_t
debug_cow_show(struct kobject
*kobj
,
389 struct kobj_attribute
*attr
, char *buf
)
391 return single_flag_show(kobj
, attr
, buf
,
392 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
394 static ssize_t
debug_cow_store(struct kobject
*kobj
,
395 struct kobj_attribute
*attr
,
396 const char *buf
, size_t count
)
398 return single_flag_store(kobj
, attr
, buf
, count
,
399 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
401 static struct kobj_attribute debug_cow_attr
=
402 __ATTR(debug_cow
, 0644, debug_cow_show
, debug_cow_store
);
403 #endif /* CONFIG_DEBUG_VM */
405 static struct attribute
*hugepage_attr
[] = {
408 &use_zero_page_attr
.attr
,
409 #ifdef CONFIG_DEBUG_VM
410 &debug_cow_attr
.attr
,
415 static struct attribute_group hugepage_attr_group
= {
416 .attrs
= hugepage_attr
,
419 static ssize_t
scan_sleep_millisecs_show(struct kobject
*kobj
,
420 struct kobj_attribute
*attr
,
423 return sprintf(buf
, "%u\n", khugepaged_scan_sleep_millisecs
);
426 static ssize_t
scan_sleep_millisecs_store(struct kobject
*kobj
,
427 struct kobj_attribute
*attr
,
428 const char *buf
, size_t count
)
433 err
= kstrtoul(buf
, 10, &msecs
);
434 if (err
|| msecs
> UINT_MAX
)
437 khugepaged_scan_sleep_millisecs
= msecs
;
438 wake_up_interruptible(&khugepaged_wait
);
442 static struct kobj_attribute scan_sleep_millisecs_attr
=
443 __ATTR(scan_sleep_millisecs
, 0644, scan_sleep_millisecs_show
,
444 scan_sleep_millisecs_store
);
446 static ssize_t
alloc_sleep_millisecs_show(struct kobject
*kobj
,
447 struct kobj_attribute
*attr
,
450 return sprintf(buf
, "%u\n", khugepaged_alloc_sleep_millisecs
);
453 static ssize_t
alloc_sleep_millisecs_store(struct kobject
*kobj
,
454 struct kobj_attribute
*attr
,
455 const char *buf
, size_t count
)
460 err
= kstrtoul(buf
, 10, &msecs
);
461 if (err
|| msecs
> UINT_MAX
)
464 khugepaged_alloc_sleep_millisecs
= msecs
;
465 wake_up_interruptible(&khugepaged_wait
);
469 static struct kobj_attribute alloc_sleep_millisecs_attr
=
470 __ATTR(alloc_sleep_millisecs
, 0644, alloc_sleep_millisecs_show
,
471 alloc_sleep_millisecs_store
);
473 static ssize_t
pages_to_scan_show(struct kobject
*kobj
,
474 struct kobj_attribute
*attr
,
477 return sprintf(buf
, "%u\n", khugepaged_pages_to_scan
);
479 static ssize_t
pages_to_scan_store(struct kobject
*kobj
,
480 struct kobj_attribute
*attr
,
481 const char *buf
, size_t count
)
486 err
= kstrtoul(buf
, 10, &pages
);
487 if (err
|| !pages
|| pages
> UINT_MAX
)
490 khugepaged_pages_to_scan
= pages
;
494 static struct kobj_attribute pages_to_scan_attr
=
495 __ATTR(pages_to_scan
, 0644, pages_to_scan_show
,
496 pages_to_scan_store
);
498 static ssize_t
pages_collapsed_show(struct kobject
*kobj
,
499 struct kobj_attribute
*attr
,
502 return sprintf(buf
, "%u\n", khugepaged_pages_collapsed
);
504 static struct kobj_attribute pages_collapsed_attr
=
505 __ATTR_RO(pages_collapsed
);
507 static ssize_t
full_scans_show(struct kobject
*kobj
,
508 struct kobj_attribute
*attr
,
511 return sprintf(buf
, "%u\n", khugepaged_full_scans
);
513 static struct kobj_attribute full_scans_attr
=
514 __ATTR_RO(full_scans
);
516 static ssize_t
khugepaged_defrag_show(struct kobject
*kobj
,
517 struct kobj_attribute
*attr
, char *buf
)
519 return single_flag_show(kobj
, attr
, buf
,
520 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
);
522 static ssize_t
khugepaged_defrag_store(struct kobject
*kobj
,
523 struct kobj_attribute
*attr
,
524 const char *buf
, size_t count
)
526 return single_flag_store(kobj
, attr
, buf
, count
,
527 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
);
529 static struct kobj_attribute khugepaged_defrag_attr
=
530 __ATTR(defrag
, 0644, khugepaged_defrag_show
,
531 khugepaged_defrag_store
);
534 * max_ptes_none controls if khugepaged should collapse hugepages over
535 * any unmapped ptes in turn potentially increasing the memory
536 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
537 * reduce the available free memory in the system as it
538 * runs. Increasing max_ptes_none will instead potentially reduce the
539 * free memory in the system during the khugepaged scan.
541 static ssize_t
khugepaged_max_ptes_none_show(struct kobject
*kobj
,
542 struct kobj_attribute
*attr
,
545 return sprintf(buf
, "%u\n", khugepaged_max_ptes_none
);
547 static ssize_t
khugepaged_max_ptes_none_store(struct kobject
*kobj
,
548 struct kobj_attribute
*attr
,
549 const char *buf
, size_t count
)
552 unsigned long max_ptes_none
;
554 err
= kstrtoul(buf
, 10, &max_ptes_none
);
555 if (err
|| max_ptes_none
> HPAGE_PMD_NR
-1)
558 khugepaged_max_ptes_none
= max_ptes_none
;
562 static struct kobj_attribute khugepaged_max_ptes_none_attr
=
563 __ATTR(max_ptes_none
, 0644, khugepaged_max_ptes_none_show
,
564 khugepaged_max_ptes_none_store
);
566 static struct attribute
*khugepaged_attr
[] = {
567 &khugepaged_defrag_attr
.attr
,
568 &khugepaged_max_ptes_none_attr
.attr
,
569 &pages_to_scan_attr
.attr
,
570 &pages_collapsed_attr
.attr
,
571 &full_scans_attr
.attr
,
572 &scan_sleep_millisecs_attr
.attr
,
573 &alloc_sleep_millisecs_attr
.attr
,
577 static struct attribute_group khugepaged_attr_group
= {
578 .attrs
= khugepaged_attr
,
579 .name
= "khugepaged",
582 static int __init
hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
586 *hugepage_kobj
= kobject_create_and_add("transparent_hugepage", mm_kobj
);
587 if (unlikely(!*hugepage_kobj
)) {
588 pr_err("failed to create transparent hugepage kobject\n");
592 err
= sysfs_create_group(*hugepage_kobj
, &hugepage_attr_group
);
594 pr_err("failed to register transparent hugepage group\n");
598 err
= sysfs_create_group(*hugepage_kobj
, &khugepaged_attr_group
);
600 pr_err("failed to register transparent hugepage group\n");
601 goto remove_hp_group
;
607 sysfs_remove_group(*hugepage_kobj
, &hugepage_attr_group
);
609 kobject_put(*hugepage_kobj
);
613 static void __init
hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
615 sysfs_remove_group(hugepage_kobj
, &khugepaged_attr_group
);
616 sysfs_remove_group(hugepage_kobj
, &hugepage_attr_group
);
617 kobject_put(hugepage_kobj
);
620 static inline int hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
625 static inline void hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
628 #endif /* CONFIG_SYSFS */
630 static int __init
hugepage_init(void)
633 struct kobject
*hugepage_kobj
;
635 if (!has_transparent_hugepage()) {
636 transparent_hugepage_flags
= 0;
640 err
= hugepage_init_sysfs(&hugepage_kobj
);
644 err
= khugepaged_slab_init();
648 register_shrinker(&huge_zero_page_shrinker
);
651 * By default disable transparent hugepages on smaller systems,
652 * where the extra memory used could hurt more than TLB overhead
653 * is likely to save. The admin can still enable it through /sys.
655 if (totalram_pages
< (512 << (20 - PAGE_SHIFT
)))
656 transparent_hugepage_flags
= 0;
662 hugepage_exit_sysfs(hugepage_kobj
);
665 subsys_initcall(hugepage_init
);
667 static int __init
setup_transparent_hugepage(char *str
)
672 if (!strcmp(str
, "always")) {
673 set_bit(TRANSPARENT_HUGEPAGE_FLAG
,
674 &transparent_hugepage_flags
);
675 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
676 &transparent_hugepage_flags
);
678 } else if (!strcmp(str
, "madvise")) {
679 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
680 &transparent_hugepage_flags
);
681 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
682 &transparent_hugepage_flags
);
684 } else if (!strcmp(str
, "never")) {
685 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
686 &transparent_hugepage_flags
);
687 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
688 &transparent_hugepage_flags
);
693 pr_warn("transparent_hugepage= cannot parse, ignored\n");
696 __setup("transparent_hugepage=", setup_transparent_hugepage
);
698 pmd_t
maybe_pmd_mkwrite(pmd_t pmd
, struct vm_area_struct
*vma
)
700 if (likely(vma
->vm_flags
& VM_WRITE
))
701 pmd
= pmd_mkwrite(pmd
);
705 static inline pmd_t
mk_huge_pmd(struct page
*page
, pgprot_t prot
)
708 entry
= mk_pmd(page
, prot
);
709 entry
= pmd_mkhuge(entry
);
713 static int __do_huge_pmd_anonymous_page(struct mm_struct
*mm
,
714 struct vm_area_struct
*vma
,
715 unsigned long haddr
, pmd_t
*pmd
,
721 VM_BUG_ON_PAGE(!PageCompound(page
), page
);
722 pgtable
= pte_alloc_one(mm
, haddr
);
723 if (unlikely(!pgtable
))
726 clear_huge_page(page
, haddr
, HPAGE_PMD_NR
);
728 * The memory barrier inside __SetPageUptodate makes sure that
729 * clear_huge_page writes become visible before the set_pmd_at()
732 __SetPageUptodate(page
);
734 ptl
= pmd_lock(mm
, pmd
);
735 if (unlikely(!pmd_none(*pmd
))) {
737 mem_cgroup_uncharge_page(page
);
739 pte_free(mm
, pgtable
);
742 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
743 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
744 page_add_new_anon_rmap(page
, vma
, haddr
);
745 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
746 set_pmd_at(mm
, haddr
, pmd
, entry
);
747 add_mm_counter(mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
748 atomic_long_inc(&mm
->nr_ptes
);
755 static inline gfp_t
alloc_hugepage_gfpmask(int defrag
, gfp_t extra_gfp
)
757 return (GFP_TRANSHUGE
& ~(defrag
? 0 : __GFP_WAIT
)) | extra_gfp
;
760 static inline struct page
*alloc_hugepage_vma(int defrag
,
761 struct vm_area_struct
*vma
,
762 unsigned long haddr
, int nd
,
765 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag
, extra_gfp
),
766 HPAGE_PMD_ORDER
, vma
, haddr
, nd
);
769 /* Caller must hold page table lock. */
770 static bool set_huge_zero_page(pgtable_t pgtable
, struct mm_struct
*mm
,
771 struct vm_area_struct
*vma
, unsigned long haddr
, pmd_t
*pmd
,
772 struct page
*zero_page
)
777 entry
= mk_pmd(zero_page
, vma
->vm_page_prot
);
778 entry
= pmd_wrprotect(entry
);
779 entry
= pmd_mkhuge(entry
);
780 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
781 set_pmd_at(mm
, haddr
, pmd
, entry
);
782 atomic_long_inc(&mm
->nr_ptes
);
786 int do_huge_pmd_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
787 unsigned long address
, pmd_t
*pmd
,
791 unsigned long haddr
= address
& HPAGE_PMD_MASK
;
793 if (haddr
< vma
->vm_start
|| haddr
+ HPAGE_PMD_SIZE
> vma
->vm_end
)
794 return VM_FAULT_FALLBACK
;
795 if (unlikely(anon_vma_prepare(vma
)))
797 if (unlikely(khugepaged_enter(vma
)))
799 if (!(flags
& FAULT_FLAG_WRITE
) &&
800 transparent_hugepage_use_zero_page()) {
803 struct page
*zero_page
;
805 pgtable
= pte_alloc_one(mm
, haddr
);
806 if (unlikely(!pgtable
))
808 zero_page
= get_huge_zero_page();
809 if (unlikely(!zero_page
)) {
810 pte_free(mm
, pgtable
);
811 count_vm_event(THP_FAULT_FALLBACK
);
812 return VM_FAULT_FALLBACK
;
814 ptl
= pmd_lock(mm
, pmd
);
815 set
= set_huge_zero_page(pgtable
, mm
, vma
, haddr
, pmd
,
819 pte_free(mm
, pgtable
);
820 put_huge_zero_page();
824 page
= alloc_hugepage_vma(transparent_hugepage_defrag(vma
),
825 vma
, haddr
, numa_node_id(), 0);
826 if (unlikely(!page
)) {
827 count_vm_event(THP_FAULT_FALLBACK
);
828 return VM_FAULT_FALLBACK
;
830 if (unlikely(mem_cgroup_charge_anon(page
, mm
, GFP_KERNEL
))) {
832 count_vm_event(THP_FAULT_FALLBACK
);
833 return VM_FAULT_FALLBACK
;
835 if (unlikely(__do_huge_pmd_anonymous_page(mm
, vma
, haddr
, pmd
, page
))) {
836 mem_cgroup_uncharge_page(page
);
838 count_vm_event(THP_FAULT_FALLBACK
);
839 return VM_FAULT_FALLBACK
;
842 count_vm_event(THP_FAULT_ALLOC
);
846 int copy_huge_pmd(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
847 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, unsigned long addr
,
848 struct vm_area_struct
*vma
)
850 spinlock_t
*dst_ptl
, *src_ptl
;
851 struct page
*src_page
;
857 pgtable
= pte_alloc_one(dst_mm
, addr
);
858 if (unlikely(!pgtable
))
861 dst_ptl
= pmd_lock(dst_mm
, dst_pmd
);
862 src_ptl
= pmd_lockptr(src_mm
, src_pmd
);
863 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
867 if (unlikely(!pmd_trans_huge(pmd
))) {
868 pte_free(dst_mm
, pgtable
);
872 * When page table lock is held, the huge zero pmd should not be
873 * under splitting since we don't split the page itself, only pmd to
876 if (is_huge_zero_pmd(pmd
)) {
877 struct page
*zero_page
;
880 * get_huge_zero_page() will never allocate a new page here,
881 * since we already have a zero page to copy. It just takes a
884 zero_page
= get_huge_zero_page();
885 set
= set_huge_zero_page(pgtable
, dst_mm
, vma
, addr
, dst_pmd
,
887 BUG_ON(!set
); /* unexpected !pmd_none(dst_pmd) */
892 if (unlikely(pmd_trans_splitting(pmd
))) {
893 /* split huge page running from under us */
894 spin_unlock(src_ptl
);
895 spin_unlock(dst_ptl
);
896 pte_free(dst_mm
, pgtable
);
898 wait_split_huge_page(vma
->anon_vma
, src_pmd
); /* src_vma */
901 src_page
= pmd_page(pmd
);
902 VM_BUG_ON_PAGE(!PageHead(src_page
), src_page
);
904 page_dup_rmap(src_page
);
905 add_mm_counter(dst_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
907 pmdp_set_wrprotect(src_mm
, addr
, src_pmd
);
908 pmd
= pmd_mkold(pmd_wrprotect(pmd
));
909 pgtable_trans_huge_deposit(dst_mm
, dst_pmd
, pgtable
);
910 set_pmd_at(dst_mm
, addr
, dst_pmd
, pmd
);
911 atomic_long_inc(&dst_mm
->nr_ptes
);
915 spin_unlock(src_ptl
);
916 spin_unlock(dst_ptl
);
921 void huge_pmd_set_accessed(struct mm_struct
*mm
,
922 struct vm_area_struct
*vma
,
923 unsigned long address
,
924 pmd_t
*pmd
, pmd_t orig_pmd
,
931 ptl
= pmd_lock(mm
, pmd
);
932 if (unlikely(!pmd_same(*pmd
, orig_pmd
)))
935 entry
= pmd_mkyoung(orig_pmd
);
936 haddr
= address
& HPAGE_PMD_MASK
;
937 if (pmdp_set_access_flags(vma
, haddr
, pmd
, entry
, dirty
))
938 update_mmu_cache_pmd(vma
, address
, pmd
);
945 * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
946 * during copy_user_huge_page()'s copy_page_rep(): in the case when
947 * the source page gets split and a tail freed before copy completes.
948 * Called under pmd_lock of checked pmd, so safe from splitting itself.
950 static void get_user_huge_page(struct page
*page
)
952 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC
)) {
953 struct page
*endpage
= page
+ HPAGE_PMD_NR
;
955 atomic_add(HPAGE_PMD_NR
, &page
->_count
);
956 while (++page
< endpage
)
957 get_huge_page_tail(page
);
963 static void put_user_huge_page(struct page
*page
)
965 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC
)) {
966 struct page
*endpage
= page
+ HPAGE_PMD_NR
;
968 while (page
< endpage
)
975 static int do_huge_pmd_wp_page_fallback(struct mm_struct
*mm
,
976 struct vm_area_struct
*vma
,
977 unsigned long address
,
978 pmd_t
*pmd
, pmd_t orig_pmd
,
987 unsigned long mmun_start
; /* For mmu_notifiers */
988 unsigned long mmun_end
; /* For mmu_notifiers */
990 pages
= kmalloc(sizeof(struct page
*) * HPAGE_PMD_NR
,
992 if (unlikely(!pages
)) {
997 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
998 pages
[i
] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE
|
1000 vma
, address
, page_to_nid(page
));
1001 if (unlikely(!pages
[i
] ||
1002 mem_cgroup_charge_anon(pages
[i
], mm
,
1006 mem_cgroup_uncharge_start();
1008 mem_cgroup_uncharge_page(pages
[i
]);
1011 mem_cgroup_uncharge_end();
1013 ret
|= VM_FAULT_OOM
;
1018 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1019 copy_user_highpage(pages
[i
], page
+ i
,
1020 haddr
+ PAGE_SIZE
* i
, vma
);
1021 __SetPageUptodate(pages
[i
]);
1026 mmun_end
= haddr
+ HPAGE_PMD_SIZE
;
1027 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1029 ptl
= pmd_lock(mm
, pmd
);
1030 if (unlikely(!pmd_same(*pmd
, orig_pmd
)))
1031 goto out_free_pages
;
1032 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1034 pmdp_clear_flush(vma
, haddr
, pmd
);
1035 /* leave pmd empty until pte is filled */
1037 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
1038 pmd_populate(mm
, &_pmd
, pgtable
);
1040 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
1042 entry
= mk_pte(pages
[i
], vma
->vm_page_prot
);
1043 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1044 page_add_new_anon_rmap(pages
[i
], vma
, haddr
);
1045 pte
= pte_offset_map(&_pmd
, haddr
);
1046 VM_BUG_ON(!pte_none(*pte
));
1047 set_pte_at(mm
, haddr
, pte
, entry
);
1052 smp_wmb(); /* make pte visible before pmd */
1053 pmd_populate(mm
, pmd
, pgtable
);
1054 page_remove_rmap(page
);
1057 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1059 ret
|= VM_FAULT_WRITE
;
1067 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1068 mem_cgroup_uncharge_start();
1069 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1070 mem_cgroup_uncharge_page(pages
[i
]);
1073 mem_cgroup_uncharge_end();
1078 int do_huge_pmd_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1079 unsigned long address
, pmd_t
*pmd
, pmd_t orig_pmd
)
1083 struct page
*page
= NULL
, *new_page
;
1084 unsigned long haddr
;
1085 unsigned long mmun_start
; /* For mmu_notifiers */
1086 unsigned long mmun_end
; /* For mmu_notifiers */
1088 ptl
= pmd_lockptr(mm
, pmd
);
1089 VM_BUG_ON(!vma
->anon_vma
);
1090 haddr
= address
& HPAGE_PMD_MASK
;
1091 if (is_huge_zero_pmd(orig_pmd
))
1094 if (unlikely(!pmd_same(*pmd
, orig_pmd
)))
1097 page
= pmd_page(orig_pmd
);
1098 VM_BUG_ON_PAGE(!PageCompound(page
) || !PageHead(page
), page
);
1099 if (page_mapcount(page
) == 1) {
1101 entry
= pmd_mkyoung(orig_pmd
);
1102 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1103 if (pmdp_set_access_flags(vma
, haddr
, pmd
, entry
, 1))
1104 update_mmu_cache_pmd(vma
, address
, pmd
);
1105 ret
|= VM_FAULT_WRITE
;
1108 get_user_huge_page(page
);
1111 if (transparent_hugepage_enabled(vma
) &&
1112 !transparent_hugepage_debug_cow())
1113 new_page
= alloc_hugepage_vma(transparent_hugepage_defrag(vma
),
1114 vma
, haddr
, numa_node_id(), 0);
1118 if (unlikely(!new_page
)) {
1120 split_huge_page_pmd(vma
, address
, pmd
);
1121 ret
|= VM_FAULT_FALLBACK
;
1123 ret
= do_huge_pmd_wp_page_fallback(mm
, vma
, address
,
1124 pmd
, orig_pmd
, page
, haddr
);
1125 if (ret
& VM_FAULT_OOM
) {
1126 split_huge_page(page
);
1127 ret
|= VM_FAULT_FALLBACK
;
1129 put_user_huge_page(page
);
1131 count_vm_event(THP_FAULT_FALLBACK
);
1135 if (unlikely(mem_cgroup_charge_anon(new_page
, mm
, GFP_KERNEL
))) {
1138 split_huge_page(page
);
1139 put_user_huge_page(page
);
1141 split_huge_page_pmd(vma
, address
, pmd
);
1142 ret
|= VM_FAULT_FALLBACK
;
1143 count_vm_event(THP_FAULT_FALLBACK
);
1147 count_vm_event(THP_FAULT_ALLOC
);
1150 clear_huge_page(new_page
, haddr
, HPAGE_PMD_NR
);
1152 copy_user_huge_page(new_page
, page
, haddr
, vma
, HPAGE_PMD_NR
);
1153 __SetPageUptodate(new_page
);
1156 mmun_end
= haddr
+ HPAGE_PMD_SIZE
;
1157 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1161 put_user_huge_page(page
);
1162 if (unlikely(!pmd_same(*pmd
, orig_pmd
))) {
1164 mem_cgroup_uncharge_page(new_page
);
1169 entry
= mk_huge_pmd(new_page
, vma
->vm_page_prot
);
1170 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1171 pmdp_clear_flush(vma
, haddr
, pmd
);
1172 page_add_new_anon_rmap(new_page
, vma
, haddr
);
1173 set_pmd_at(mm
, haddr
, pmd
, entry
);
1174 update_mmu_cache_pmd(vma
, address
, pmd
);
1176 add_mm_counter(mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
1177 put_huge_zero_page();
1179 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1180 page_remove_rmap(page
);
1183 ret
|= VM_FAULT_WRITE
;
1187 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1195 struct page
*follow_trans_huge_pmd(struct vm_area_struct
*vma
,
1200 struct mm_struct
*mm
= vma
->vm_mm
;
1201 struct page
*page
= NULL
;
1203 assert_spin_locked(pmd_lockptr(mm
, pmd
));
1205 if (flags
& FOLL_WRITE
&& !pmd_write(*pmd
))
1208 /* Avoid dumping huge zero page */
1209 if ((flags
& FOLL_DUMP
) && is_huge_zero_pmd(*pmd
))
1210 return ERR_PTR(-EFAULT
);
1212 /* Full NUMA hinting faults to serialise migration in fault paths */
1213 if ((flags
& FOLL_NUMA
) && pmd_numa(*pmd
))
1216 page
= pmd_page(*pmd
);
1217 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1218 if (flags
& FOLL_TOUCH
) {
1221 * We should set the dirty bit only for FOLL_WRITE but
1222 * for now the dirty bit in the pmd is meaningless.
1223 * And if the dirty bit will become meaningful and
1224 * we'll only set it with FOLL_WRITE, an atomic
1225 * set_bit will be required on the pmd to set the
1226 * young bit, instead of the current set_pmd_at.
1228 _pmd
= pmd_mkyoung(pmd_mkdirty(*pmd
));
1229 if (pmdp_set_access_flags(vma
, addr
& HPAGE_PMD_MASK
,
1231 update_mmu_cache_pmd(vma
, addr
, pmd
);
1233 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
1234 if (page
->mapping
&& trylock_page(page
)) {
1237 mlock_vma_page(page
);
1241 page
+= (addr
& ~HPAGE_PMD_MASK
) >> PAGE_SHIFT
;
1242 VM_BUG_ON_PAGE(!PageCompound(page
), page
);
1243 if (flags
& FOLL_GET
)
1244 get_page_foll(page
);
1250 /* NUMA hinting page fault entry point for trans huge pmds */
1251 int do_huge_pmd_numa_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1252 unsigned long addr
, pmd_t pmd
, pmd_t
*pmdp
)
1255 struct anon_vma
*anon_vma
= NULL
;
1257 unsigned long haddr
= addr
& HPAGE_PMD_MASK
;
1258 int page_nid
= -1, this_nid
= numa_node_id();
1259 int target_nid
, last_cpupid
= -1;
1261 bool migrated
= false;
1264 ptl
= pmd_lock(mm
, pmdp
);
1265 if (unlikely(!pmd_same(pmd
, *pmdp
)))
1269 * If there are potential migrations, wait for completion and retry
1270 * without disrupting NUMA hinting information. Do not relock and
1271 * check_same as the page may no longer be mapped.
1273 if (unlikely(pmd_trans_migrating(*pmdp
))) {
1275 wait_migrate_huge_page(vma
->anon_vma
, pmdp
);
1279 page
= pmd_page(pmd
);
1280 BUG_ON(is_huge_zero_page(page
));
1281 page_nid
= page_to_nid(page
);
1282 last_cpupid
= page_cpupid_last(page
);
1283 count_vm_numa_event(NUMA_HINT_FAULTS
);
1284 if (page_nid
== this_nid
) {
1285 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
1286 flags
|= TNF_FAULT_LOCAL
;
1290 * Avoid grouping on DSO/COW pages in specific and RO pages
1291 * in general, RO pages shouldn't hurt as much anyway since
1292 * they can be in shared cache state.
1294 if (!pmd_write(pmd
))
1295 flags
|= TNF_NO_GROUP
;
1298 * Acquire the page lock to serialise THP migrations but avoid dropping
1299 * page_table_lock if at all possible
1301 page_locked
= trylock_page(page
);
1302 target_nid
= mpol_misplaced(page
, vma
, haddr
);
1303 if (target_nid
== -1) {
1304 /* If the page was locked, there are no parallel migrations */
1309 /* Migration could have started since the pmd_trans_migrating check */
1312 wait_on_page_locked(page
);
1318 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1319 * to serialises splits
1323 anon_vma
= page_lock_anon_vma_read(page
);
1325 /* Confirm the PMD did not change while page_table_lock was released */
1327 if (unlikely(!pmd_same(pmd
, *pmdp
))) {
1334 /* Bail if we fail to protect against THP splits for any reason */
1335 if (unlikely(!anon_vma
)) {
1342 * Migrate the THP to the requested node, returns with page unlocked
1343 * and pmd_numa cleared.
1346 migrated
= migrate_misplaced_transhuge_page(mm
, vma
,
1347 pmdp
, pmd
, addr
, page
, target_nid
);
1349 flags
|= TNF_MIGRATED
;
1350 page_nid
= target_nid
;
1355 BUG_ON(!PageLocked(page
));
1356 pmd
= pmd_mknonnuma(pmd
);
1357 set_pmd_at(mm
, haddr
, pmdp
, pmd
);
1358 VM_BUG_ON(pmd_numa(*pmdp
));
1359 update_mmu_cache_pmd(vma
, addr
, pmdp
);
1366 page_unlock_anon_vma_read(anon_vma
);
1369 task_numa_fault(last_cpupid
, page_nid
, HPAGE_PMD_NR
, flags
);
1374 int zap_huge_pmd(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1375 pmd_t
*pmd
, unsigned long addr
)
1380 if (__pmd_trans_huge_lock(pmd
, vma
, &ptl
) == 1) {
1385 * For architectures like ppc64 we look at deposited pgtable
1386 * when calling pmdp_get_and_clear. So do the
1387 * pgtable_trans_huge_withdraw after finishing pmdp related
1390 orig_pmd
= pmdp_get_and_clear(tlb
->mm
, addr
, pmd
);
1391 tlb_remove_pmd_tlb_entry(tlb
, pmd
, addr
);
1392 pgtable
= pgtable_trans_huge_withdraw(tlb
->mm
, pmd
);
1393 if (is_huge_zero_pmd(orig_pmd
)) {
1394 atomic_long_dec(&tlb
->mm
->nr_ptes
);
1396 put_huge_zero_page();
1398 page
= pmd_page(orig_pmd
);
1399 page_remove_rmap(page
);
1400 VM_BUG_ON_PAGE(page_mapcount(page
) < 0, page
);
1401 add_mm_counter(tlb
->mm
, MM_ANONPAGES
, -HPAGE_PMD_NR
);
1402 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1403 atomic_long_dec(&tlb
->mm
->nr_ptes
);
1405 tlb_remove_page(tlb
, page
);
1407 pte_free(tlb
->mm
, pgtable
);
1413 int mincore_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1414 unsigned long addr
, unsigned long end
,
1420 if (__pmd_trans_huge_lock(pmd
, vma
, &ptl
) == 1) {
1422 * All logical pages in the range are present
1423 * if backed by a huge page.
1426 memset(vec
, 1, (end
- addr
) >> PAGE_SHIFT
);
1433 int move_huge_pmd(struct vm_area_struct
*vma
, struct vm_area_struct
*new_vma
,
1434 unsigned long old_addr
,
1435 unsigned long new_addr
, unsigned long old_end
,
1436 pmd_t
*old_pmd
, pmd_t
*new_pmd
)
1438 spinlock_t
*old_ptl
, *new_ptl
;
1442 struct mm_struct
*mm
= vma
->vm_mm
;
1444 if ((old_addr
& ~HPAGE_PMD_MASK
) ||
1445 (new_addr
& ~HPAGE_PMD_MASK
) ||
1446 old_end
- old_addr
< HPAGE_PMD_SIZE
||
1447 (new_vma
->vm_flags
& VM_NOHUGEPAGE
))
1451 * The destination pmd shouldn't be established, free_pgtables()
1452 * should have release it.
1454 if (WARN_ON(!pmd_none(*new_pmd
))) {
1455 VM_BUG_ON(pmd_trans_huge(*new_pmd
));
1460 * We don't have to worry about the ordering of src and dst
1461 * ptlocks because exclusive mmap_sem prevents deadlock.
1463 ret
= __pmd_trans_huge_lock(old_pmd
, vma
, &old_ptl
);
1465 new_ptl
= pmd_lockptr(mm
, new_pmd
);
1466 if (new_ptl
!= old_ptl
)
1467 spin_lock_nested(new_ptl
, SINGLE_DEPTH_NESTING
);
1468 pmd
= pmdp_get_and_clear(mm
, old_addr
, old_pmd
);
1469 VM_BUG_ON(!pmd_none(*new_pmd
));
1471 if (pmd_move_must_withdraw(new_ptl
, old_ptl
)) {
1473 pgtable
= pgtable_trans_huge_withdraw(mm
, old_pmd
);
1474 pgtable_trans_huge_deposit(mm
, new_pmd
, pgtable
);
1476 set_pmd_at(mm
, new_addr
, new_pmd
, pmd_mksoft_dirty(pmd
));
1477 if (new_ptl
!= old_ptl
)
1478 spin_unlock(new_ptl
);
1479 spin_unlock(old_ptl
);
1487 * - 0 if PMD could not be locked
1488 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1489 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1491 int change_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1492 unsigned long addr
, pgprot_t newprot
, int prot_numa
)
1494 struct mm_struct
*mm
= vma
->vm_mm
;
1498 if (__pmd_trans_huge_lock(pmd
, vma
, &ptl
) == 1) {
1502 entry
= pmdp_get_and_clear(mm
, addr
, pmd
);
1503 if (pmd_numa(entry
))
1504 entry
= pmd_mknonnuma(entry
);
1505 entry
= pmd_modify(entry
, newprot
);
1507 set_pmd_at(mm
, addr
, pmd
, entry
);
1508 BUG_ON(pmd_write(entry
));
1510 struct page
*page
= pmd_page(*pmd
);
1513 * Do not trap faults against the zero page. The
1514 * read-only data is likely to be read-cached on the
1515 * local CPU cache and it is less useful to know about
1516 * local vs remote hits on the zero page.
1518 if (!is_huge_zero_page(page
) &&
1520 pmdp_set_numa(mm
, addr
, pmd
);
1531 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1532 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1534 * Note that if it returns 1, this routine returns without unlocking page
1535 * table locks. So callers must unlock them.
1537 int __pmd_trans_huge_lock(pmd_t
*pmd
, struct vm_area_struct
*vma
,
1540 *ptl
= pmd_lock(vma
->vm_mm
, pmd
);
1541 if (likely(pmd_trans_huge(*pmd
))) {
1542 if (unlikely(pmd_trans_splitting(*pmd
))) {
1544 wait_split_huge_page(vma
->anon_vma
, pmd
);
1547 /* Thp mapped by 'pmd' is stable, so we can
1548 * handle it as it is. */
1557 * This function returns whether a given @page is mapped onto the @address
1558 * in the virtual space of @mm.
1560 * When it's true, this function returns *pmd with holding the page table lock
1561 * and passing it back to the caller via @ptl.
1562 * If it's false, returns NULL without holding the page table lock.
1564 pmd_t
*page_check_address_pmd(struct page
*page
,
1565 struct mm_struct
*mm
,
1566 unsigned long address
,
1567 enum page_check_address_pmd_flag flag
,
1574 if (address
& ~HPAGE_PMD_MASK
)
1577 pgd
= pgd_offset(mm
, address
);
1578 if (!pgd_present(*pgd
))
1580 pud
= pud_offset(pgd
, address
);
1581 if (!pud_present(*pud
))
1583 pmd
= pmd_offset(pud
, address
);
1585 *ptl
= pmd_lock(mm
, pmd
);
1586 if (!pmd_present(*pmd
))
1588 if (pmd_page(*pmd
) != page
)
1591 * split_vma() may create temporary aliased mappings. There is
1592 * no risk as long as all huge pmd are found and have their
1593 * splitting bit set before __split_huge_page_refcount
1594 * runs. Finding the same huge pmd more than once during the
1595 * same rmap walk is not a problem.
1597 if (flag
== PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG
&&
1598 pmd_trans_splitting(*pmd
))
1600 if (pmd_trans_huge(*pmd
)) {
1601 VM_BUG_ON(flag
== PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG
&&
1602 !pmd_trans_splitting(*pmd
));
1610 static int __split_huge_page_splitting(struct page
*page
,
1611 struct vm_area_struct
*vma
,
1612 unsigned long address
)
1614 struct mm_struct
*mm
= vma
->vm_mm
;
1618 /* For mmu_notifiers */
1619 const unsigned long mmun_start
= address
;
1620 const unsigned long mmun_end
= address
+ HPAGE_PMD_SIZE
;
1622 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1623 pmd
= page_check_address_pmd(page
, mm
, address
,
1624 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG
, &ptl
);
1627 * We can't temporarily set the pmd to null in order
1628 * to split it, the pmd must remain marked huge at all
1629 * times or the VM won't take the pmd_trans_huge paths
1630 * and it won't wait on the anon_vma->root->rwsem to
1631 * serialize against split_huge_page*.
1633 pmdp_splitting_flush(vma
, address
, pmd
);
1637 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1642 static void __split_huge_page_refcount(struct page
*page
,
1643 struct list_head
*list
)
1646 struct zone
*zone
= page_zone(page
);
1647 struct lruvec
*lruvec
;
1650 /* prevent PageLRU to go away from under us, and freeze lru stats */
1651 spin_lock_irq(&zone
->lru_lock
);
1652 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
1654 compound_lock(page
);
1655 /* complete memcg works before add pages to LRU */
1656 mem_cgroup_split_huge_fixup(page
);
1658 for (i
= HPAGE_PMD_NR
- 1; i
>= 1; i
--) {
1659 struct page
*page_tail
= page
+ i
;
1661 /* tail_page->_mapcount cannot change */
1662 BUG_ON(page_mapcount(page_tail
) < 0);
1663 tail_count
+= page_mapcount(page_tail
);
1664 /* check for overflow */
1665 BUG_ON(tail_count
< 0);
1666 BUG_ON(atomic_read(&page_tail
->_count
) != 0);
1668 * tail_page->_count is zero and not changing from
1669 * under us. But get_page_unless_zero() may be running
1670 * from under us on the tail_page. If we used
1671 * atomic_set() below instead of atomic_add(), we
1672 * would then run atomic_set() concurrently with
1673 * get_page_unless_zero(), and atomic_set() is
1674 * implemented in C not using locked ops. spin_unlock
1675 * on x86 sometime uses locked ops because of PPro
1676 * errata 66, 92, so unless somebody can guarantee
1677 * atomic_set() here would be safe on all archs (and
1678 * not only on x86), it's safer to use atomic_add().
1680 atomic_add(page_mapcount(page
) + page_mapcount(page_tail
) + 1,
1681 &page_tail
->_count
);
1683 /* after clearing PageTail the gup refcount can be released */
1687 * retain hwpoison flag of the poisoned tail page:
1688 * fix for the unsuitable process killed on Guest Machine(KVM)
1689 * by the memory-failure.
1691 page_tail
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
| __PG_HWPOISON
;
1692 page_tail
->flags
|= (page
->flags
&
1693 ((1L << PG_referenced
) |
1694 (1L << PG_swapbacked
) |
1695 (1L << PG_mlocked
) |
1696 (1L << PG_uptodate
) |
1698 (1L << PG_unevictable
)));
1699 page_tail
->flags
|= (1L << PG_dirty
);
1701 /* clear PageTail before overwriting first_page */
1705 * __split_huge_page_splitting() already set the
1706 * splitting bit in all pmd that could map this
1707 * hugepage, that will ensure no CPU can alter the
1708 * mapcount on the head page. The mapcount is only
1709 * accounted in the head page and it has to be
1710 * transferred to all tail pages in the below code. So
1711 * for this code to be safe, the split the mapcount
1712 * can't change. But that doesn't mean userland can't
1713 * keep changing and reading the page contents while
1714 * we transfer the mapcount, so the pmd splitting
1715 * status is achieved setting a reserved bit in the
1716 * pmd, not by clearing the present bit.
1718 page_tail
->_mapcount
= page
->_mapcount
;
1720 BUG_ON(page_tail
->mapping
);
1721 page_tail
->mapping
= page
->mapping
;
1723 page_tail
->index
= page
->index
+ i
;
1724 page_cpupid_xchg_last(page_tail
, page_cpupid_last(page
));
1726 BUG_ON(!PageAnon(page_tail
));
1727 BUG_ON(!PageUptodate(page_tail
));
1728 BUG_ON(!PageDirty(page_tail
));
1729 BUG_ON(!PageSwapBacked(page_tail
));
1731 lru_add_page_tail(page
, page_tail
, lruvec
, list
);
1733 atomic_sub(tail_count
, &page
->_count
);
1734 BUG_ON(atomic_read(&page
->_count
) <= 0);
1736 __mod_zone_page_state(zone
, NR_ANON_TRANSPARENT_HUGEPAGES
, -1);
1738 ClearPageCompound(page
);
1739 compound_unlock(page
);
1740 spin_unlock_irq(&zone
->lru_lock
);
1742 for (i
= 1; i
< HPAGE_PMD_NR
; i
++) {
1743 struct page
*page_tail
= page
+ i
;
1744 BUG_ON(page_count(page_tail
) <= 0);
1746 * Tail pages may be freed if there wasn't any mapping
1747 * like if add_to_swap() is running on a lru page that
1748 * had its mapping zapped. And freeing these pages
1749 * requires taking the lru_lock so we do the put_page
1750 * of the tail pages after the split is complete.
1752 put_page(page_tail
);
1756 * Only the head page (now become a regular page) is required
1757 * to be pinned by the caller.
1759 BUG_ON(page_count(page
) <= 0);
1762 static int __split_huge_page_map(struct page
*page
,
1763 struct vm_area_struct
*vma
,
1764 unsigned long address
)
1766 struct mm_struct
*mm
= vma
->vm_mm
;
1771 unsigned long haddr
;
1773 pmd
= page_check_address_pmd(page
, mm
, address
,
1774 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG
, &ptl
);
1776 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
1777 pmd_populate(mm
, &_pmd
, pgtable
);
1780 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
1782 BUG_ON(PageCompound(page
+i
));
1783 entry
= mk_pte(page
+ i
, vma
->vm_page_prot
);
1784 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1785 if (!pmd_write(*pmd
))
1786 entry
= pte_wrprotect(entry
);
1788 BUG_ON(page_mapcount(page
) != 1);
1789 if (!pmd_young(*pmd
))
1790 entry
= pte_mkold(entry
);
1792 entry
= pte_mknuma(entry
);
1793 pte
= pte_offset_map(&_pmd
, haddr
);
1794 BUG_ON(!pte_none(*pte
));
1795 set_pte_at(mm
, haddr
, pte
, entry
);
1799 smp_wmb(); /* make pte visible before pmd */
1801 * Up to this point the pmd is present and huge and
1802 * userland has the whole access to the hugepage
1803 * during the split (which happens in place). If we
1804 * overwrite the pmd with the not-huge version
1805 * pointing to the pte here (which of course we could
1806 * if all CPUs were bug free), userland could trigger
1807 * a small page size TLB miss on the small sized TLB
1808 * while the hugepage TLB entry is still established
1809 * in the huge TLB. Some CPU doesn't like that. See
1810 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1811 * Erratum 383 on page 93. Intel should be safe but is
1812 * also warns that it's only safe if the permission
1813 * and cache attributes of the two entries loaded in
1814 * the two TLB is identical (which should be the case
1815 * here). But it is generally safer to never allow
1816 * small and huge TLB entries for the same virtual
1817 * address to be loaded simultaneously. So instead of
1818 * doing "pmd_populate(); flush_tlb_range();" we first
1819 * mark the current pmd notpresent (atomically because
1820 * here the pmd_trans_huge and pmd_trans_splitting
1821 * must remain set at all times on the pmd until the
1822 * split is complete for this pmd), then we flush the
1823 * SMP TLB and finally we write the non-huge version
1824 * of the pmd entry with pmd_populate.
1826 pmdp_invalidate(vma
, address
, pmd
);
1827 pmd_populate(mm
, pmd
, pgtable
);
1835 /* must be called with anon_vma->root->rwsem held */
1836 static void __split_huge_page(struct page
*page
,
1837 struct anon_vma
*anon_vma
,
1838 struct list_head
*list
)
1840 int mapcount
, mapcount2
;
1841 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1842 struct anon_vma_chain
*avc
;
1844 BUG_ON(!PageHead(page
));
1845 BUG_ON(PageTail(page
));
1848 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
, pgoff
, pgoff
) {
1849 struct vm_area_struct
*vma
= avc
->vma
;
1850 unsigned long addr
= vma_address(page
, vma
);
1851 BUG_ON(is_vma_temporary_stack(vma
));
1852 mapcount
+= __split_huge_page_splitting(page
, vma
, addr
);
1855 * It is critical that new vmas are added to the tail of the
1856 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1857 * and establishes a child pmd before
1858 * __split_huge_page_splitting() freezes the parent pmd (so if
1859 * we fail to prevent copy_huge_pmd() from running until the
1860 * whole __split_huge_page() is complete), we will still see
1861 * the newly established pmd of the child later during the
1862 * walk, to be able to set it as pmd_trans_splitting too.
1864 if (mapcount
!= page_mapcount(page
)) {
1865 pr_err("mapcount %d page_mapcount %d\n",
1866 mapcount
, page_mapcount(page
));
1870 __split_huge_page_refcount(page
, list
);
1873 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
, pgoff
, pgoff
) {
1874 struct vm_area_struct
*vma
= avc
->vma
;
1875 unsigned long addr
= vma_address(page
, vma
);
1876 BUG_ON(is_vma_temporary_stack(vma
));
1877 mapcount2
+= __split_huge_page_map(page
, vma
, addr
);
1879 if (mapcount
!= mapcount2
) {
1880 pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1881 mapcount
, mapcount2
, page_mapcount(page
));
1887 * Split a hugepage into normal pages. This doesn't change the position of head
1888 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1889 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1890 * from the hugepage.
1891 * Return 0 if the hugepage is split successfully otherwise return 1.
1893 int split_huge_page_to_list(struct page
*page
, struct list_head
*list
)
1895 struct anon_vma
*anon_vma
;
1898 BUG_ON(is_huge_zero_page(page
));
1899 BUG_ON(!PageAnon(page
));
1902 * The caller does not necessarily hold an mmap_sem that would prevent
1903 * the anon_vma disappearing so we first we take a reference to it
1904 * and then lock the anon_vma for write. This is similar to
1905 * page_lock_anon_vma_read except the write lock is taken to serialise
1906 * against parallel split or collapse operations.
1908 anon_vma
= page_get_anon_vma(page
);
1911 anon_vma_lock_write(anon_vma
);
1914 if (!PageCompound(page
))
1917 BUG_ON(!PageSwapBacked(page
));
1918 __split_huge_page(page
, anon_vma
, list
);
1919 count_vm_event(THP_SPLIT
);
1921 BUG_ON(PageCompound(page
));
1923 anon_vma_unlock_write(anon_vma
);
1924 put_anon_vma(anon_vma
);
1929 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1931 int hugepage_madvise(struct vm_area_struct
*vma
,
1932 unsigned long *vm_flags
, int advice
)
1938 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1939 * can't handle this properly after s390_enable_sie, so we simply
1940 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1942 if (mm_has_pgste(vma
->vm_mm
))
1946 * Be somewhat over-protective like KSM for now!
1948 if (*vm_flags
& (VM_HUGEPAGE
| VM_NO_THP
))
1950 *vm_flags
&= ~VM_NOHUGEPAGE
;
1951 *vm_flags
|= VM_HUGEPAGE
;
1953 * If the vma become good for khugepaged to scan,
1954 * register it here without waiting a page fault that
1955 * may not happen any time soon.
1957 if (unlikely(khugepaged_enter_vma_merge(vma
)))
1960 case MADV_NOHUGEPAGE
:
1962 * Be somewhat over-protective like KSM for now!
1964 if (*vm_flags
& (VM_NOHUGEPAGE
| VM_NO_THP
))
1966 *vm_flags
&= ~VM_HUGEPAGE
;
1967 *vm_flags
|= VM_NOHUGEPAGE
;
1969 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1970 * this vma even if we leave the mm registered in khugepaged if
1971 * it got registered before VM_NOHUGEPAGE was set.
1979 static int __init
khugepaged_slab_init(void)
1981 mm_slot_cache
= kmem_cache_create("khugepaged_mm_slot",
1982 sizeof(struct mm_slot
),
1983 __alignof__(struct mm_slot
), 0, NULL
);
1990 static inline struct mm_slot
*alloc_mm_slot(void)
1992 if (!mm_slot_cache
) /* initialization failed */
1994 return kmem_cache_zalloc(mm_slot_cache
, GFP_KERNEL
);
1997 static inline void free_mm_slot(struct mm_slot
*mm_slot
)
1999 kmem_cache_free(mm_slot_cache
, mm_slot
);
2002 static struct mm_slot
*get_mm_slot(struct mm_struct
*mm
)
2004 struct mm_slot
*mm_slot
;
2006 hash_for_each_possible(mm_slots_hash
, mm_slot
, hash
, (unsigned long)mm
)
2007 if (mm
== mm_slot
->mm
)
2013 static void insert_to_mm_slots_hash(struct mm_struct
*mm
,
2014 struct mm_slot
*mm_slot
)
2017 hash_add(mm_slots_hash
, &mm_slot
->hash
, (long)mm
);
2020 static inline int khugepaged_test_exit(struct mm_struct
*mm
)
2022 return atomic_read(&mm
->mm_users
) == 0;
2025 int __khugepaged_enter(struct mm_struct
*mm
)
2027 struct mm_slot
*mm_slot
;
2030 mm_slot
= alloc_mm_slot();
2034 /* __khugepaged_exit() must not run from under us */
2035 VM_BUG_ON(khugepaged_test_exit(mm
));
2036 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE
, &mm
->flags
))) {
2037 free_mm_slot(mm_slot
);
2041 spin_lock(&khugepaged_mm_lock
);
2042 insert_to_mm_slots_hash(mm
, mm_slot
);
2044 * Insert just behind the scanning cursor, to let the area settle
2047 wakeup
= list_empty(&khugepaged_scan
.mm_head
);
2048 list_add_tail(&mm_slot
->mm_node
, &khugepaged_scan
.mm_head
);
2049 spin_unlock(&khugepaged_mm_lock
);
2051 atomic_inc(&mm
->mm_count
);
2053 wake_up_interruptible(&khugepaged_wait
);
2058 int khugepaged_enter_vma_merge(struct vm_area_struct
*vma
)
2060 unsigned long hstart
, hend
;
2063 * Not yet faulted in so we will register later in the
2064 * page fault if needed.
2068 /* khugepaged not yet working on file or special mappings */
2070 VM_BUG_ON(vma
->vm_flags
& VM_NO_THP
);
2071 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
2072 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
2074 return khugepaged_enter(vma
);
2078 void __khugepaged_exit(struct mm_struct
*mm
)
2080 struct mm_slot
*mm_slot
;
2083 spin_lock(&khugepaged_mm_lock
);
2084 mm_slot
= get_mm_slot(mm
);
2085 if (mm_slot
&& khugepaged_scan
.mm_slot
!= mm_slot
) {
2086 hash_del(&mm_slot
->hash
);
2087 list_del(&mm_slot
->mm_node
);
2090 spin_unlock(&khugepaged_mm_lock
);
2093 clear_bit(MMF_VM_HUGEPAGE
, &mm
->flags
);
2094 free_mm_slot(mm_slot
);
2096 } else if (mm_slot
) {
2098 * This is required to serialize against
2099 * khugepaged_test_exit() (which is guaranteed to run
2100 * under mmap sem read mode). Stop here (after we
2101 * return all pagetables will be destroyed) until
2102 * khugepaged has finished working on the pagetables
2103 * under the mmap_sem.
2105 down_write(&mm
->mmap_sem
);
2106 up_write(&mm
->mmap_sem
);
2110 static void release_pte_page(struct page
*page
)
2112 /* 0 stands for page_is_file_cache(page) == false */
2113 dec_zone_page_state(page
, NR_ISOLATED_ANON
+ 0);
2115 putback_lru_page(page
);
2118 static void release_pte_pages(pte_t
*pte
, pte_t
*_pte
)
2120 while (--_pte
>= pte
) {
2121 pte_t pteval
= *_pte
;
2122 if (!pte_none(pteval
))
2123 release_pte_page(pte_page(pteval
));
2127 static int __collapse_huge_page_isolate(struct vm_area_struct
*vma
,
2128 unsigned long address
,
2133 int referenced
= 0, none
= 0;
2134 for (_pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
;
2135 _pte
++, address
+= PAGE_SIZE
) {
2136 pte_t pteval
= *_pte
;
2137 if (pte_none(pteval
)) {
2138 if (++none
<= khugepaged_max_ptes_none
)
2143 if (!pte_present(pteval
) || !pte_write(pteval
))
2145 page
= vm_normal_page(vma
, address
, pteval
);
2146 if (unlikely(!page
))
2149 VM_BUG_ON_PAGE(PageCompound(page
), page
);
2150 VM_BUG_ON_PAGE(!PageAnon(page
), page
);
2151 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
2153 /* cannot use mapcount: can't collapse if there's a gup pin */
2154 if (page_count(page
) != 1)
2157 * We can do it before isolate_lru_page because the
2158 * page can't be freed from under us. NOTE: PG_lock
2159 * is needed to serialize against split_huge_page
2160 * when invoked from the VM.
2162 if (!trylock_page(page
))
2165 * Isolate the page to avoid collapsing an hugepage
2166 * currently in use by the VM.
2168 if (isolate_lru_page(page
)) {
2172 /* 0 stands for page_is_file_cache(page) == false */
2173 inc_zone_page_state(page
, NR_ISOLATED_ANON
+ 0);
2174 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2175 VM_BUG_ON_PAGE(PageLRU(page
), page
);
2177 /* If there is no mapped pte young don't collapse the page */
2178 if (pte_young(pteval
) || PageReferenced(page
) ||
2179 mmu_notifier_test_young(vma
->vm_mm
, address
))
2182 if (likely(referenced
))
2185 release_pte_pages(pte
, _pte
);
2189 static void __collapse_huge_page_copy(pte_t
*pte
, struct page
*page
,
2190 struct vm_area_struct
*vma
,
2191 unsigned long address
,
2195 for (_pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
; _pte
++) {
2196 pte_t pteval
= *_pte
;
2197 struct page
*src_page
;
2199 if (pte_none(pteval
)) {
2200 clear_user_highpage(page
, address
);
2201 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, 1);
2203 src_page
= pte_page(pteval
);
2204 copy_user_highpage(page
, src_page
, address
, vma
);
2205 VM_BUG_ON_PAGE(page_mapcount(src_page
) != 1, src_page
);
2206 release_pte_page(src_page
);
2208 * ptl mostly unnecessary, but preempt has to
2209 * be disabled to update the per-cpu stats
2210 * inside page_remove_rmap().
2214 * paravirt calls inside pte_clear here are
2217 pte_clear(vma
->vm_mm
, address
, _pte
);
2218 page_remove_rmap(src_page
);
2220 free_page_and_swap_cache(src_page
);
2223 address
+= PAGE_SIZE
;
2228 static void khugepaged_alloc_sleep(void)
2230 wait_event_freezable_timeout(khugepaged_wait
, false,
2231 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs
));
2234 static int khugepaged_node_load
[MAX_NUMNODES
];
2237 static int khugepaged_find_target_node(void)
2239 static int last_khugepaged_target_node
= NUMA_NO_NODE
;
2240 int nid
, target_node
= 0, max_value
= 0;
2242 /* find first node with max normal pages hit */
2243 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
2244 if (khugepaged_node_load
[nid
] > max_value
) {
2245 max_value
= khugepaged_node_load
[nid
];
2249 /* do some balance if several nodes have the same hit record */
2250 if (target_node
<= last_khugepaged_target_node
)
2251 for (nid
= last_khugepaged_target_node
+ 1; nid
< MAX_NUMNODES
;
2253 if (max_value
== khugepaged_node_load
[nid
]) {
2258 last_khugepaged_target_node
= target_node
;
2262 static bool khugepaged_prealloc_page(struct page
**hpage
, bool *wait
)
2264 if (IS_ERR(*hpage
)) {
2270 khugepaged_alloc_sleep();
2271 } else if (*hpage
) {
2280 *khugepaged_alloc_page(struct page
**hpage
, struct mm_struct
*mm
,
2281 struct vm_area_struct
*vma
, unsigned long address
,
2284 VM_BUG_ON_PAGE(*hpage
, *hpage
);
2286 * Allocate the page while the vma is still valid and under
2287 * the mmap_sem read mode so there is no memory allocation
2288 * later when we take the mmap_sem in write mode. This is more
2289 * friendly behavior (OTOH it may actually hide bugs) to
2290 * filesystems in userland with daemons allocating memory in
2291 * the userland I/O paths. Allocating memory with the
2292 * mmap_sem in read mode is good idea also to allow greater
2295 *hpage
= alloc_pages_exact_node(node
, alloc_hugepage_gfpmask(
2296 khugepaged_defrag(), __GFP_OTHER_NODE
), HPAGE_PMD_ORDER
);
2298 * After allocating the hugepage, release the mmap_sem read lock in
2299 * preparation for taking it in write mode.
2301 up_read(&mm
->mmap_sem
);
2302 if (unlikely(!*hpage
)) {
2303 count_vm_event(THP_COLLAPSE_ALLOC_FAILED
);
2304 *hpage
= ERR_PTR(-ENOMEM
);
2308 count_vm_event(THP_COLLAPSE_ALLOC
);
2312 static int khugepaged_find_target_node(void)
2317 static inline struct page
*alloc_hugepage(int defrag
)
2319 return alloc_pages(alloc_hugepage_gfpmask(defrag
, 0),
2323 static struct page
*khugepaged_alloc_hugepage(bool *wait
)
2328 hpage
= alloc_hugepage(khugepaged_defrag());
2330 count_vm_event(THP_COLLAPSE_ALLOC_FAILED
);
2335 khugepaged_alloc_sleep();
2337 count_vm_event(THP_COLLAPSE_ALLOC
);
2338 } while (unlikely(!hpage
) && likely(khugepaged_enabled()));
2343 static bool khugepaged_prealloc_page(struct page
**hpage
, bool *wait
)
2346 *hpage
= khugepaged_alloc_hugepage(wait
);
2348 if (unlikely(!*hpage
))
2355 *khugepaged_alloc_page(struct page
**hpage
, struct mm_struct
*mm
,
2356 struct vm_area_struct
*vma
, unsigned long address
,
2359 up_read(&mm
->mmap_sem
);
2365 static bool hugepage_vma_check(struct vm_area_struct
*vma
)
2367 if ((!(vma
->vm_flags
& VM_HUGEPAGE
) && !khugepaged_always()) ||
2368 (vma
->vm_flags
& VM_NOHUGEPAGE
))
2371 if (!vma
->anon_vma
|| vma
->vm_ops
)
2373 if (is_vma_temporary_stack(vma
))
2375 VM_BUG_ON(vma
->vm_flags
& VM_NO_THP
);
2379 static void collapse_huge_page(struct mm_struct
*mm
,
2380 unsigned long address
,
2381 struct page
**hpage
,
2382 struct vm_area_struct
*vma
,
2388 struct page
*new_page
;
2389 spinlock_t
*pmd_ptl
, *pte_ptl
;
2391 unsigned long hstart
, hend
;
2392 unsigned long mmun_start
; /* For mmu_notifiers */
2393 unsigned long mmun_end
; /* For mmu_notifiers */
2395 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
2397 /* release the mmap_sem read lock. */
2398 new_page
= khugepaged_alloc_page(hpage
, mm
, vma
, address
, node
);
2402 if (unlikely(mem_cgroup_charge_anon(new_page
, mm
, GFP_KERNEL
)))
2406 * Prevent all access to pagetables with the exception of
2407 * gup_fast later hanlded by the ptep_clear_flush and the VM
2408 * handled by the anon_vma lock + PG_lock.
2410 down_write(&mm
->mmap_sem
);
2411 if (unlikely(khugepaged_test_exit(mm
)))
2414 vma
= find_vma(mm
, address
);
2417 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
2418 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
2419 if (address
< hstart
|| address
+ HPAGE_PMD_SIZE
> hend
)
2421 if (!hugepage_vma_check(vma
))
2423 pmd
= mm_find_pmd(mm
, address
);
2427 anon_vma_lock_write(vma
->anon_vma
);
2429 pte
= pte_offset_map(pmd
, address
);
2430 pte_ptl
= pte_lockptr(mm
, pmd
);
2432 mmun_start
= address
;
2433 mmun_end
= address
+ HPAGE_PMD_SIZE
;
2434 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2435 pmd_ptl
= pmd_lock(mm
, pmd
); /* probably unnecessary */
2437 * After this gup_fast can't run anymore. This also removes
2438 * any huge TLB entry from the CPU so we won't allow
2439 * huge and small TLB entries for the same virtual address
2440 * to avoid the risk of CPU bugs in that area.
2442 _pmd
= pmdp_clear_flush(vma
, address
, pmd
);
2443 spin_unlock(pmd_ptl
);
2444 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2447 isolated
= __collapse_huge_page_isolate(vma
, address
, pte
);
2448 spin_unlock(pte_ptl
);
2450 if (unlikely(!isolated
)) {
2453 BUG_ON(!pmd_none(*pmd
));
2455 * We can only use set_pmd_at when establishing
2456 * hugepmds and never for establishing regular pmds that
2457 * points to regular pagetables. Use pmd_populate for that
2459 pmd_populate(mm
, pmd
, pmd_pgtable(_pmd
));
2460 spin_unlock(pmd_ptl
);
2461 anon_vma_unlock_write(vma
->anon_vma
);
2466 * All pages are isolated and locked so anon_vma rmap
2467 * can't run anymore.
2469 anon_vma_unlock_write(vma
->anon_vma
);
2471 __collapse_huge_page_copy(pte
, new_page
, vma
, address
, pte_ptl
);
2473 __SetPageUptodate(new_page
);
2474 pgtable
= pmd_pgtable(_pmd
);
2476 _pmd
= mk_huge_pmd(new_page
, vma
->vm_page_prot
);
2477 _pmd
= maybe_pmd_mkwrite(pmd_mkdirty(_pmd
), vma
);
2480 * spin_lock() below is not the equivalent of smp_wmb(), so
2481 * this is needed to avoid the copy_huge_page writes to become
2482 * visible after the set_pmd_at() write.
2487 BUG_ON(!pmd_none(*pmd
));
2488 page_add_new_anon_rmap(new_page
, vma
, address
);
2489 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
2490 set_pmd_at(mm
, address
, pmd
, _pmd
);
2491 update_mmu_cache_pmd(vma
, address
, pmd
);
2492 spin_unlock(pmd_ptl
);
2496 khugepaged_pages_collapsed
++;
2498 up_write(&mm
->mmap_sem
);
2502 mem_cgroup_uncharge_page(new_page
);
2506 static int khugepaged_scan_pmd(struct mm_struct
*mm
,
2507 struct vm_area_struct
*vma
,
2508 unsigned long address
,
2509 struct page
**hpage
)
2513 int ret
= 0, referenced
= 0, none
= 0;
2515 unsigned long _address
;
2517 int node
= NUMA_NO_NODE
;
2519 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
2521 pmd
= mm_find_pmd(mm
, address
);
2525 memset(khugepaged_node_load
, 0, sizeof(khugepaged_node_load
));
2526 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2527 for (_address
= address
, _pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
;
2528 _pte
++, _address
+= PAGE_SIZE
) {
2529 pte_t pteval
= *_pte
;
2530 if (pte_none(pteval
)) {
2531 if (++none
<= khugepaged_max_ptes_none
)
2536 if (!pte_present(pteval
) || !pte_write(pteval
))
2538 page
= vm_normal_page(vma
, _address
, pteval
);
2539 if (unlikely(!page
))
2542 * Record which node the original page is from and save this
2543 * information to khugepaged_node_load[].
2544 * Khupaged will allocate hugepage from the node has the max
2547 node
= page_to_nid(page
);
2548 khugepaged_node_load
[node
]++;
2549 VM_BUG_ON_PAGE(PageCompound(page
), page
);
2550 if (!PageLRU(page
) || PageLocked(page
) || !PageAnon(page
))
2552 /* cannot use mapcount: can't collapse if there's a gup pin */
2553 if (page_count(page
) != 1)
2555 if (pte_young(pteval
) || PageReferenced(page
) ||
2556 mmu_notifier_test_young(vma
->vm_mm
, address
))
2562 pte_unmap_unlock(pte
, ptl
);
2564 node
= khugepaged_find_target_node();
2565 /* collapse_huge_page will return with the mmap_sem released */
2566 collapse_huge_page(mm
, address
, hpage
, vma
, node
);
2572 static void collect_mm_slot(struct mm_slot
*mm_slot
)
2574 struct mm_struct
*mm
= mm_slot
->mm
;
2576 VM_BUG_ON(NR_CPUS
!= 1 && !spin_is_locked(&khugepaged_mm_lock
));
2578 if (khugepaged_test_exit(mm
)) {
2580 hash_del(&mm_slot
->hash
);
2581 list_del(&mm_slot
->mm_node
);
2584 * Not strictly needed because the mm exited already.
2586 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2589 /* khugepaged_mm_lock actually not necessary for the below */
2590 free_mm_slot(mm_slot
);
2595 static unsigned int khugepaged_scan_mm_slot(unsigned int pages
,
2596 struct page
**hpage
)
2597 __releases(&khugepaged_mm_lock
)
2598 __acquires(&khugepaged_mm_lock
)
2600 struct mm_slot
*mm_slot
;
2601 struct mm_struct
*mm
;
2602 struct vm_area_struct
*vma
;
2606 VM_BUG_ON(NR_CPUS
!= 1 && !spin_is_locked(&khugepaged_mm_lock
));
2608 if (khugepaged_scan
.mm_slot
)
2609 mm_slot
= khugepaged_scan
.mm_slot
;
2611 mm_slot
= list_entry(khugepaged_scan
.mm_head
.next
,
2612 struct mm_slot
, mm_node
);
2613 khugepaged_scan
.address
= 0;
2614 khugepaged_scan
.mm_slot
= mm_slot
;
2616 spin_unlock(&khugepaged_mm_lock
);
2619 down_read(&mm
->mmap_sem
);
2620 if (unlikely(khugepaged_test_exit(mm
)))
2623 vma
= find_vma(mm
, khugepaged_scan
.address
);
2626 for (; vma
; vma
= vma
->vm_next
) {
2627 unsigned long hstart
, hend
;
2630 if (unlikely(khugepaged_test_exit(mm
))) {
2634 if (!hugepage_vma_check(vma
)) {
2639 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
2640 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
2643 if (khugepaged_scan
.address
> hend
)
2645 if (khugepaged_scan
.address
< hstart
)
2646 khugepaged_scan
.address
= hstart
;
2647 VM_BUG_ON(khugepaged_scan
.address
& ~HPAGE_PMD_MASK
);
2649 while (khugepaged_scan
.address
< hend
) {
2652 if (unlikely(khugepaged_test_exit(mm
)))
2653 goto breakouterloop
;
2655 VM_BUG_ON(khugepaged_scan
.address
< hstart
||
2656 khugepaged_scan
.address
+ HPAGE_PMD_SIZE
>
2658 ret
= khugepaged_scan_pmd(mm
, vma
,
2659 khugepaged_scan
.address
,
2661 /* move to next address */
2662 khugepaged_scan
.address
+= HPAGE_PMD_SIZE
;
2663 progress
+= HPAGE_PMD_NR
;
2665 /* we released mmap_sem so break loop */
2666 goto breakouterloop_mmap_sem
;
2667 if (progress
>= pages
)
2668 goto breakouterloop
;
2672 up_read(&mm
->mmap_sem
); /* exit_mmap will destroy ptes after this */
2673 breakouterloop_mmap_sem
:
2675 spin_lock(&khugepaged_mm_lock
);
2676 VM_BUG_ON(khugepaged_scan
.mm_slot
!= mm_slot
);
2678 * Release the current mm_slot if this mm is about to die, or
2679 * if we scanned all vmas of this mm.
2681 if (khugepaged_test_exit(mm
) || !vma
) {
2683 * Make sure that if mm_users is reaching zero while
2684 * khugepaged runs here, khugepaged_exit will find
2685 * mm_slot not pointing to the exiting mm.
2687 if (mm_slot
->mm_node
.next
!= &khugepaged_scan
.mm_head
) {
2688 khugepaged_scan
.mm_slot
= list_entry(
2689 mm_slot
->mm_node
.next
,
2690 struct mm_slot
, mm_node
);
2691 khugepaged_scan
.address
= 0;
2693 khugepaged_scan
.mm_slot
= NULL
;
2694 khugepaged_full_scans
++;
2697 collect_mm_slot(mm_slot
);
2703 static int khugepaged_has_work(void)
2705 return !list_empty(&khugepaged_scan
.mm_head
) &&
2706 khugepaged_enabled();
2709 static int khugepaged_wait_event(void)
2711 return !list_empty(&khugepaged_scan
.mm_head
) ||
2712 kthread_should_stop();
2715 static void khugepaged_do_scan(void)
2717 struct page
*hpage
= NULL
;
2718 unsigned int progress
= 0, pass_through_head
= 0;
2719 unsigned int pages
= khugepaged_pages_to_scan
;
2722 barrier(); /* write khugepaged_pages_to_scan to local stack */
2724 while (progress
< pages
) {
2725 if (!khugepaged_prealloc_page(&hpage
, &wait
))
2730 if (unlikely(kthread_should_stop() || freezing(current
)))
2733 spin_lock(&khugepaged_mm_lock
);
2734 if (!khugepaged_scan
.mm_slot
)
2735 pass_through_head
++;
2736 if (khugepaged_has_work() &&
2737 pass_through_head
< 2)
2738 progress
+= khugepaged_scan_mm_slot(pages
- progress
,
2742 spin_unlock(&khugepaged_mm_lock
);
2745 if (!IS_ERR_OR_NULL(hpage
))
2749 static void khugepaged_wait_work(void)
2753 if (khugepaged_has_work()) {
2754 if (!khugepaged_scan_sleep_millisecs
)
2757 wait_event_freezable_timeout(khugepaged_wait
,
2758 kthread_should_stop(),
2759 msecs_to_jiffies(khugepaged_scan_sleep_millisecs
));
2763 if (khugepaged_enabled())
2764 wait_event_freezable(khugepaged_wait
, khugepaged_wait_event());
2767 static int khugepaged(void *none
)
2769 struct mm_slot
*mm_slot
;
2772 set_user_nice(current
, MAX_NICE
);
2774 while (!kthread_should_stop()) {
2775 khugepaged_do_scan();
2776 khugepaged_wait_work();
2779 spin_lock(&khugepaged_mm_lock
);
2780 mm_slot
= khugepaged_scan
.mm_slot
;
2781 khugepaged_scan
.mm_slot
= NULL
;
2783 collect_mm_slot(mm_slot
);
2784 spin_unlock(&khugepaged_mm_lock
);
2788 static void __split_huge_zero_page_pmd(struct vm_area_struct
*vma
,
2789 unsigned long haddr
, pmd_t
*pmd
)
2791 struct mm_struct
*mm
= vma
->vm_mm
;
2796 pmdp_clear_flush(vma
, haddr
, pmd
);
2797 /* leave pmd empty until pte is filled */
2799 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
2800 pmd_populate(mm
, &_pmd
, pgtable
);
2802 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
2804 entry
= pfn_pte(my_zero_pfn(haddr
), vma
->vm_page_prot
);
2805 entry
= pte_mkspecial(entry
);
2806 pte
= pte_offset_map(&_pmd
, haddr
);
2807 VM_BUG_ON(!pte_none(*pte
));
2808 set_pte_at(mm
, haddr
, pte
, entry
);
2811 smp_wmb(); /* make pte visible before pmd */
2812 pmd_populate(mm
, pmd
, pgtable
);
2813 put_huge_zero_page();
2816 void __split_huge_page_pmd(struct vm_area_struct
*vma
, unsigned long address
,
2821 struct mm_struct
*mm
= vma
->vm_mm
;
2822 unsigned long haddr
= address
& HPAGE_PMD_MASK
;
2823 unsigned long mmun_start
; /* For mmu_notifiers */
2824 unsigned long mmun_end
; /* For mmu_notifiers */
2826 BUG_ON(vma
->vm_start
> haddr
|| vma
->vm_end
< haddr
+ HPAGE_PMD_SIZE
);
2829 mmun_end
= haddr
+ HPAGE_PMD_SIZE
;
2831 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2832 ptl
= pmd_lock(mm
, pmd
);
2833 if (unlikely(!pmd_trans_huge(*pmd
))) {
2835 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2838 if (is_huge_zero_pmd(*pmd
)) {
2839 __split_huge_zero_page_pmd(vma
, haddr
, pmd
);
2841 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2844 page
= pmd_page(*pmd
);
2845 VM_BUG_ON_PAGE(!page_count(page
), page
);
2848 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2850 split_huge_page(page
);
2855 * We don't always have down_write of mmap_sem here: a racing
2856 * do_huge_pmd_wp_page() might have copied-on-write to another
2857 * huge page before our split_huge_page() got the anon_vma lock.
2859 if (unlikely(pmd_trans_huge(*pmd
)))
2863 void split_huge_page_pmd_mm(struct mm_struct
*mm
, unsigned long address
,
2866 struct vm_area_struct
*vma
;
2868 vma
= find_vma(mm
, address
);
2869 BUG_ON(vma
== NULL
);
2870 split_huge_page_pmd(vma
, address
, pmd
);
2873 static void split_huge_page_address(struct mm_struct
*mm
,
2874 unsigned long address
)
2880 VM_BUG_ON(!(address
& ~HPAGE_PMD_MASK
));
2882 pgd
= pgd_offset(mm
, address
);
2883 if (!pgd_present(*pgd
))
2886 pud
= pud_offset(pgd
, address
);
2887 if (!pud_present(*pud
))
2890 pmd
= pmd_offset(pud
, address
);
2891 if (!pmd_present(*pmd
))
2894 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2895 * materialize from under us.
2897 split_huge_page_pmd_mm(mm
, address
, pmd
);
2900 void __vma_adjust_trans_huge(struct vm_area_struct
*vma
,
2901 unsigned long start
,
2906 * If the new start address isn't hpage aligned and it could
2907 * previously contain an hugepage: check if we need to split
2910 if (start
& ~HPAGE_PMD_MASK
&&
2911 (start
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2912 (start
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2913 split_huge_page_address(vma
->vm_mm
, start
);
2916 * If the new end address isn't hpage aligned and it could
2917 * previously contain an hugepage: check if we need to split
2920 if (end
& ~HPAGE_PMD_MASK
&&
2921 (end
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2922 (end
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2923 split_huge_page_address(vma
->vm_mm
, end
);
2926 * If we're also updating the vma->vm_next->vm_start, if the new
2927 * vm_next->vm_start isn't page aligned and it could previously
2928 * contain an hugepage: check if we need to split an huge pmd.
2930 if (adjust_next
> 0) {
2931 struct vm_area_struct
*next
= vma
->vm_next
;
2932 unsigned long nstart
= next
->vm_start
;
2933 nstart
+= adjust_next
<< PAGE_SHIFT
;
2934 if (nstart
& ~HPAGE_PMD_MASK
&&
2935 (nstart
& HPAGE_PMD_MASK
) >= next
->vm_start
&&
2936 (nstart
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= next
->vm_end
)
2937 split_huge_page_address(next
->vm_mm
, nstart
);