2 * Functions related to setting various queue properties from drivers
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
17 unsigned long blk_max_low_pfn
;
18 EXPORT_SYMBOL(blk_max_low_pfn
);
20 unsigned long blk_max_pfn
;
23 * blk_queue_prep_rq - set a prepare_request function for queue
25 * @pfn: prepare_request function
27 * It's possible for a queue to register a prepare_request callback which
28 * is invoked before the request is handed to the request_fn. The goal of
29 * the function is to prepare a request for I/O, it can be used to build a
30 * cdb from the request data for instance.
33 void blk_queue_prep_rq(struct request_queue
*q
, prep_rq_fn
*pfn
)
37 EXPORT_SYMBOL(blk_queue_prep_rq
);
40 * blk_queue_unprep_rq - set an unprepare_request function for queue
42 * @ufn: unprepare_request function
44 * It's possible for a queue to register an unprepare_request callback
45 * which is invoked before the request is finally completed. The goal
46 * of the function is to deallocate any data that was allocated in the
47 * prepare_request callback.
50 void blk_queue_unprep_rq(struct request_queue
*q
, unprep_rq_fn
*ufn
)
52 q
->unprep_rq_fn
= ufn
;
54 EXPORT_SYMBOL(blk_queue_unprep_rq
);
57 * blk_queue_merge_bvec - set a merge_bvec function for queue
59 * @mbfn: merge_bvec_fn
61 * Usually queues have static limitations on the max sectors or segments that
62 * we can put in a request. Stacking drivers may have some settings that
63 * are dynamic, and thus we have to query the queue whether it is ok to
64 * add a new bio_vec to a bio at a given offset or not. If the block device
65 * has such limitations, it needs to register a merge_bvec_fn to control
66 * the size of bio's sent to it. Note that a block device *must* allow a
67 * single page to be added to an empty bio. The block device driver may want
68 * to use the bio_split() function to deal with these bio's. By default
69 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
72 void blk_queue_merge_bvec(struct request_queue
*q
, merge_bvec_fn
*mbfn
)
74 q
->merge_bvec_fn
= mbfn
;
76 EXPORT_SYMBOL(blk_queue_merge_bvec
);
78 void blk_queue_softirq_done(struct request_queue
*q
, softirq_done_fn
*fn
)
80 q
->softirq_done_fn
= fn
;
82 EXPORT_SYMBOL(blk_queue_softirq_done
);
84 void blk_queue_rq_timeout(struct request_queue
*q
, unsigned int timeout
)
86 q
->rq_timeout
= timeout
;
88 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout
);
90 void blk_queue_rq_timed_out(struct request_queue
*q
, rq_timed_out_fn
*fn
)
92 q
->rq_timed_out_fn
= fn
;
94 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out
);
96 void blk_queue_lld_busy(struct request_queue
*q
, lld_busy_fn
*fn
)
100 EXPORT_SYMBOL_GPL(blk_queue_lld_busy
);
103 * blk_set_default_limits - reset limits to default values
104 * @lim: the queue_limits structure to reset
107 * Returns a queue_limit struct to its default state.
109 void blk_set_default_limits(struct queue_limits
*lim
)
111 lim
->max_segments
= BLK_MAX_SEGMENTS
;
112 lim
->max_integrity_segments
= 0;
113 lim
->seg_boundary_mask
= BLK_SEG_BOUNDARY_MASK
;
114 lim
->max_segment_size
= BLK_MAX_SEGMENT_SIZE
;
115 lim
->max_sectors
= lim
->max_hw_sectors
= BLK_SAFE_MAX_SECTORS
;
116 lim
->chunk_sectors
= 0;
117 lim
->max_write_same_sectors
= 0;
118 lim
->max_discard_sectors
= 0;
119 lim
->discard_granularity
= 0;
120 lim
->discard_alignment
= 0;
121 lim
->discard_misaligned
= 0;
122 lim
->discard_zeroes_data
= 0;
123 lim
->logical_block_size
= lim
->physical_block_size
= lim
->io_min
= 512;
124 lim
->bounce_pfn
= (unsigned long)(BLK_BOUNCE_ANY
>> PAGE_SHIFT
);
125 lim
->alignment_offset
= 0;
130 EXPORT_SYMBOL(blk_set_default_limits
);
133 * blk_set_stacking_limits - set default limits for stacking devices
134 * @lim: the queue_limits structure to reset
137 * Returns a queue_limit struct to its default state. Should be used
138 * by stacking drivers like DM that have no internal limits.
140 void blk_set_stacking_limits(struct queue_limits
*lim
)
142 blk_set_default_limits(lim
);
144 /* Inherit limits from component devices */
145 lim
->discard_zeroes_data
= 1;
146 lim
->max_segments
= USHRT_MAX
;
147 lim
->max_hw_sectors
= UINT_MAX
;
148 lim
->max_segment_size
= UINT_MAX
;
149 lim
->max_sectors
= UINT_MAX
;
150 lim
->max_write_same_sectors
= UINT_MAX
;
152 EXPORT_SYMBOL(blk_set_stacking_limits
);
155 * blk_queue_make_request - define an alternate make_request function for a device
156 * @q: the request queue for the device to be affected
157 * @mfn: the alternate make_request function
160 * The normal way for &struct bios to be passed to a device
161 * driver is for them to be collected into requests on a request
162 * queue, and then to allow the device driver to select requests
163 * off that queue when it is ready. This works well for many block
164 * devices. However some block devices (typically virtual devices
165 * such as md or lvm) do not benefit from the processing on the
166 * request queue, and are served best by having the requests passed
167 * directly to them. This can be achieved by providing a function
168 * to blk_queue_make_request().
171 * The driver that does this *must* be able to deal appropriately
172 * with buffers in "highmemory". This can be accomplished by either calling
173 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
174 * blk_queue_bounce() to create a buffer in normal memory.
176 void blk_queue_make_request(struct request_queue
*q
, make_request_fn
*mfn
)
181 q
->nr_requests
= BLKDEV_MAX_RQ
;
183 q
->make_request_fn
= mfn
;
184 blk_queue_dma_alignment(q
, 511);
185 blk_queue_congestion_threshold(q
);
186 q
->nr_batching
= BLK_BATCH_REQ
;
188 blk_set_default_limits(&q
->limits
);
191 * by default assume old behaviour and bounce for any highmem page
193 blk_queue_bounce_limit(q
, BLK_BOUNCE_HIGH
);
195 EXPORT_SYMBOL(blk_queue_make_request
);
198 * blk_queue_bounce_limit - set bounce buffer limit for queue
199 * @q: the request queue for the device
200 * @max_addr: the maximum address the device can handle
203 * Different hardware can have different requirements as to what pages
204 * it can do I/O directly to. A low level driver can call
205 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
206 * buffers for doing I/O to pages residing above @max_addr.
208 void blk_queue_bounce_limit(struct request_queue
*q
, u64 max_addr
)
210 unsigned long b_pfn
= max_addr
>> PAGE_SHIFT
;
213 q
->bounce_gfp
= GFP_NOIO
;
214 #if BITS_PER_LONG == 64
216 * Assume anything <= 4GB can be handled by IOMMU. Actually
217 * some IOMMUs can handle everything, but I don't know of a
218 * way to test this here.
220 if (b_pfn
< (min_t(u64
, 0xffffffffUL
, BLK_BOUNCE_HIGH
) >> PAGE_SHIFT
))
222 q
->limits
.bounce_pfn
= max(max_low_pfn
, b_pfn
);
224 if (b_pfn
< blk_max_low_pfn
)
226 q
->limits
.bounce_pfn
= b_pfn
;
229 init_emergency_isa_pool();
230 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
231 q
->limits
.bounce_pfn
= b_pfn
;
234 EXPORT_SYMBOL(blk_queue_bounce_limit
);
237 * blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request
238 * @limits: the queue limits
239 * @max_hw_sectors: max hardware sectors in the usual 512b unit
242 * Enables a low level driver to set a hard upper limit,
243 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
244 * the device driver based upon the combined capabilities of I/O
245 * controller and storage device.
247 * max_sectors is a soft limit imposed by the block layer for
248 * filesystem type requests. This value can be overridden on a
249 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
250 * The soft limit can not exceed max_hw_sectors.
252 void blk_limits_max_hw_sectors(struct queue_limits
*limits
, unsigned int max_hw_sectors
)
254 if ((max_hw_sectors
<< 9) < PAGE_CACHE_SIZE
) {
255 max_hw_sectors
= 1 << (PAGE_CACHE_SHIFT
- 9);
256 printk(KERN_INFO
"%s: set to minimum %d\n",
257 __func__
, max_hw_sectors
);
260 limits
->max_sectors
= limits
->max_hw_sectors
= max_hw_sectors
;
262 EXPORT_SYMBOL(blk_limits_max_hw_sectors
);
265 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
266 * @q: the request queue for the device
267 * @max_hw_sectors: max hardware sectors in the usual 512b unit
270 * See description for blk_limits_max_hw_sectors().
272 void blk_queue_max_hw_sectors(struct request_queue
*q
, unsigned int max_hw_sectors
)
274 blk_limits_max_hw_sectors(&q
->limits
, max_hw_sectors
);
276 EXPORT_SYMBOL(blk_queue_max_hw_sectors
);
279 * blk_queue_chunk_sectors - set size of the chunk for this queue
280 * @q: the request queue for the device
281 * @chunk_sectors: chunk sectors in the usual 512b unit
284 * If a driver doesn't want IOs to cross a given chunk size, it can set
285 * this limit and prevent merging across chunks. Note that the chunk size
286 * must currently be a power-of-2 in sectors. Also note that the block
287 * layer must accept a page worth of data at any offset. So if the
288 * crossing of chunks is a hard limitation in the driver, it must still be
289 * prepared to split single page bios.
291 void blk_queue_chunk_sectors(struct request_queue
*q
, unsigned int chunk_sectors
)
293 BUG_ON(!is_power_of_2(chunk_sectors
));
294 q
->limits
.chunk_sectors
= chunk_sectors
;
296 EXPORT_SYMBOL(blk_queue_chunk_sectors
);
299 * blk_queue_max_discard_sectors - set max sectors for a single discard
300 * @q: the request queue for the device
301 * @max_discard_sectors: maximum number of sectors to discard
303 void blk_queue_max_discard_sectors(struct request_queue
*q
,
304 unsigned int max_discard_sectors
)
306 q
->limits
.max_discard_sectors
= max_discard_sectors
;
308 EXPORT_SYMBOL(blk_queue_max_discard_sectors
);
311 * blk_queue_max_write_same_sectors - set max sectors for a single write same
312 * @q: the request queue for the device
313 * @max_write_same_sectors: maximum number of sectors to write per command
315 void blk_queue_max_write_same_sectors(struct request_queue
*q
,
316 unsigned int max_write_same_sectors
)
318 q
->limits
.max_write_same_sectors
= max_write_same_sectors
;
320 EXPORT_SYMBOL(blk_queue_max_write_same_sectors
);
323 * blk_queue_max_segments - set max hw segments for a request for this queue
324 * @q: the request queue for the device
325 * @max_segments: max number of segments
328 * Enables a low level driver to set an upper limit on the number of
329 * hw data segments in a request.
331 void blk_queue_max_segments(struct request_queue
*q
, unsigned short max_segments
)
335 printk(KERN_INFO
"%s: set to minimum %d\n",
336 __func__
, max_segments
);
339 q
->limits
.max_segments
= max_segments
;
341 EXPORT_SYMBOL(blk_queue_max_segments
);
344 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
345 * @q: the request queue for the device
346 * @max_size: max size of segment in bytes
349 * Enables a low level driver to set an upper limit on the size of a
352 void blk_queue_max_segment_size(struct request_queue
*q
, unsigned int max_size
)
354 if (max_size
< PAGE_CACHE_SIZE
) {
355 max_size
= PAGE_CACHE_SIZE
;
356 printk(KERN_INFO
"%s: set to minimum %d\n",
360 q
->limits
.max_segment_size
= max_size
;
362 EXPORT_SYMBOL(blk_queue_max_segment_size
);
365 * blk_queue_logical_block_size - set logical block size for the queue
366 * @q: the request queue for the device
367 * @size: the logical block size, in bytes
370 * This should be set to the lowest possible block size that the
371 * storage device can address. The default of 512 covers most
374 void blk_queue_logical_block_size(struct request_queue
*q
, unsigned short size
)
376 q
->limits
.logical_block_size
= size
;
378 if (q
->limits
.physical_block_size
< size
)
379 q
->limits
.physical_block_size
= size
;
381 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
382 q
->limits
.io_min
= q
->limits
.physical_block_size
;
384 EXPORT_SYMBOL(blk_queue_logical_block_size
);
387 * blk_queue_physical_block_size - set physical block size for the queue
388 * @q: the request queue for the device
389 * @size: the physical block size, in bytes
392 * This should be set to the lowest possible sector size that the
393 * hardware can operate on without reverting to read-modify-write
396 void blk_queue_physical_block_size(struct request_queue
*q
, unsigned int size
)
398 q
->limits
.physical_block_size
= size
;
400 if (q
->limits
.physical_block_size
< q
->limits
.logical_block_size
)
401 q
->limits
.physical_block_size
= q
->limits
.logical_block_size
;
403 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
404 q
->limits
.io_min
= q
->limits
.physical_block_size
;
406 EXPORT_SYMBOL(blk_queue_physical_block_size
);
409 * blk_queue_alignment_offset - set physical block alignment offset
410 * @q: the request queue for the device
411 * @offset: alignment offset in bytes
414 * Some devices are naturally misaligned to compensate for things like
415 * the legacy DOS partition table 63-sector offset. Low-level drivers
416 * should call this function for devices whose first sector is not
419 void blk_queue_alignment_offset(struct request_queue
*q
, unsigned int offset
)
421 q
->limits
.alignment_offset
=
422 offset
& (q
->limits
.physical_block_size
- 1);
423 q
->limits
.misaligned
= 0;
425 EXPORT_SYMBOL(blk_queue_alignment_offset
);
428 * blk_limits_io_min - set minimum request size for a device
429 * @limits: the queue limits
430 * @min: smallest I/O size in bytes
433 * Some devices have an internal block size bigger than the reported
434 * hardware sector size. This function can be used to signal the
435 * smallest I/O the device can perform without incurring a performance
438 void blk_limits_io_min(struct queue_limits
*limits
, unsigned int min
)
440 limits
->io_min
= min
;
442 if (limits
->io_min
< limits
->logical_block_size
)
443 limits
->io_min
= limits
->logical_block_size
;
445 if (limits
->io_min
< limits
->physical_block_size
)
446 limits
->io_min
= limits
->physical_block_size
;
448 EXPORT_SYMBOL(blk_limits_io_min
);
451 * blk_queue_io_min - set minimum request size for the queue
452 * @q: the request queue for the device
453 * @min: smallest I/O size in bytes
456 * Storage devices may report a granularity or preferred minimum I/O
457 * size which is the smallest request the device can perform without
458 * incurring a performance penalty. For disk drives this is often the
459 * physical block size. For RAID arrays it is often the stripe chunk
460 * size. A properly aligned multiple of minimum_io_size is the
461 * preferred request size for workloads where a high number of I/O
462 * operations is desired.
464 void blk_queue_io_min(struct request_queue
*q
, unsigned int min
)
466 blk_limits_io_min(&q
->limits
, min
);
468 EXPORT_SYMBOL(blk_queue_io_min
);
471 * blk_limits_io_opt - set optimal request size for a device
472 * @limits: the queue limits
473 * @opt: smallest I/O size in bytes
476 * Storage devices may report an optimal I/O size, which is the
477 * device's preferred unit for sustained I/O. This is rarely reported
478 * for disk drives. For RAID arrays it is usually the stripe width or
479 * the internal track size. A properly aligned multiple of
480 * optimal_io_size is the preferred request size for workloads where
481 * sustained throughput is desired.
483 void blk_limits_io_opt(struct queue_limits
*limits
, unsigned int opt
)
485 limits
->io_opt
= opt
;
487 EXPORT_SYMBOL(blk_limits_io_opt
);
490 * blk_queue_io_opt - set optimal request size for the queue
491 * @q: the request queue for the device
492 * @opt: optimal request size in bytes
495 * Storage devices may report an optimal I/O size, which is the
496 * device's preferred unit for sustained I/O. This is rarely reported
497 * for disk drives. For RAID arrays it is usually the stripe width or
498 * the internal track size. A properly aligned multiple of
499 * optimal_io_size is the preferred request size for workloads where
500 * sustained throughput is desired.
502 void blk_queue_io_opt(struct request_queue
*q
, unsigned int opt
)
504 blk_limits_io_opt(&q
->limits
, opt
);
506 EXPORT_SYMBOL(blk_queue_io_opt
);
509 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
510 * @t: the stacking driver (top)
511 * @b: the underlying device (bottom)
513 void blk_queue_stack_limits(struct request_queue
*t
, struct request_queue
*b
)
515 blk_stack_limits(&t
->limits
, &b
->limits
, 0);
517 EXPORT_SYMBOL(blk_queue_stack_limits
);
520 * blk_stack_limits - adjust queue_limits for stacked devices
521 * @t: the stacking driver limits (top device)
522 * @b: the underlying queue limits (bottom, component device)
523 * @start: first data sector within component device
526 * This function is used by stacking drivers like MD and DM to ensure
527 * that all component devices have compatible block sizes and
528 * alignments. The stacking driver must provide a queue_limits
529 * struct (top) and then iteratively call the stacking function for
530 * all component (bottom) devices. The stacking function will
531 * attempt to combine the values and ensure proper alignment.
533 * Returns 0 if the top and bottom queue_limits are compatible. The
534 * top device's block sizes and alignment offsets may be adjusted to
535 * ensure alignment with the bottom device. If no compatible sizes
536 * and alignments exist, -1 is returned and the resulting top
537 * queue_limits will have the misaligned flag set to indicate that
538 * the alignment_offset is undefined.
540 int blk_stack_limits(struct queue_limits
*t
, struct queue_limits
*b
,
543 unsigned int top
, bottom
, alignment
, ret
= 0;
545 t
->max_sectors
= min_not_zero(t
->max_sectors
, b
->max_sectors
);
546 t
->max_hw_sectors
= min_not_zero(t
->max_hw_sectors
, b
->max_hw_sectors
);
547 t
->max_write_same_sectors
= min(t
->max_write_same_sectors
,
548 b
->max_write_same_sectors
);
549 t
->bounce_pfn
= min_not_zero(t
->bounce_pfn
, b
->bounce_pfn
);
551 t
->seg_boundary_mask
= min_not_zero(t
->seg_boundary_mask
,
552 b
->seg_boundary_mask
);
554 t
->max_segments
= min_not_zero(t
->max_segments
, b
->max_segments
);
555 t
->max_integrity_segments
= min_not_zero(t
->max_integrity_segments
,
556 b
->max_integrity_segments
);
558 t
->max_segment_size
= min_not_zero(t
->max_segment_size
,
559 b
->max_segment_size
);
561 t
->misaligned
|= b
->misaligned
;
563 alignment
= queue_limit_alignment_offset(b
, start
);
565 /* Bottom device has different alignment. Check that it is
566 * compatible with the current top alignment.
568 if (t
->alignment_offset
!= alignment
) {
570 top
= max(t
->physical_block_size
, t
->io_min
)
571 + t
->alignment_offset
;
572 bottom
= max(b
->physical_block_size
, b
->io_min
) + alignment
;
574 /* Verify that top and bottom intervals line up */
575 if (max(top
, bottom
) % min(top
, bottom
)) {
581 t
->logical_block_size
= max(t
->logical_block_size
,
582 b
->logical_block_size
);
584 t
->physical_block_size
= max(t
->physical_block_size
,
585 b
->physical_block_size
);
587 t
->io_min
= max(t
->io_min
, b
->io_min
);
588 t
->io_opt
= lcm_not_zero(t
->io_opt
, b
->io_opt
);
590 t
->cluster
&= b
->cluster
;
591 t
->discard_zeroes_data
&= b
->discard_zeroes_data
;
593 /* Physical block size a multiple of the logical block size? */
594 if (t
->physical_block_size
& (t
->logical_block_size
- 1)) {
595 t
->physical_block_size
= t
->logical_block_size
;
600 /* Minimum I/O a multiple of the physical block size? */
601 if (t
->io_min
& (t
->physical_block_size
- 1)) {
602 t
->io_min
= t
->physical_block_size
;
607 /* Optimal I/O a multiple of the physical block size? */
608 if (t
->io_opt
& (t
->physical_block_size
- 1)) {
614 t
->raid_partial_stripes_expensive
=
615 max(t
->raid_partial_stripes_expensive
,
616 b
->raid_partial_stripes_expensive
);
618 /* Find lowest common alignment_offset */
619 t
->alignment_offset
= lcm_not_zero(t
->alignment_offset
, alignment
)
620 % max(t
->physical_block_size
, t
->io_min
);
622 /* Verify that new alignment_offset is on a logical block boundary */
623 if (t
->alignment_offset
& (t
->logical_block_size
- 1)) {
628 /* Discard alignment and granularity */
629 if (b
->discard_granularity
) {
630 alignment
= queue_limit_discard_alignment(b
, start
);
632 if (t
->discard_granularity
!= 0 &&
633 t
->discard_alignment
!= alignment
) {
634 top
= t
->discard_granularity
+ t
->discard_alignment
;
635 bottom
= b
->discard_granularity
+ alignment
;
637 /* Verify that top and bottom intervals line up */
638 if ((max(top
, bottom
) % min(top
, bottom
)) != 0)
639 t
->discard_misaligned
= 1;
642 t
->max_discard_sectors
= min_not_zero(t
->max_discard_sectors
,
643 b
->max_discard_sectors
);
644 t
->discard_granularity
= max(t
->discard_granularity
,
645 b
->discard_granularity
);
646 t
->discard_alignment
= lcm_not_zero(t
->discard_alignment
, alignment
) %
647 t
->discard_granularity
;
652 EXPORT_SYMBOL(blk_stack_limits
);
655 * bdev_stack_limits - adjust queue limits for stacked drivers
656 * @t: the stacking driver limits (top device)
657 * @bdev: the component block_device (bottom)
658 * @start: first data sector within component device
661 * Merges queue limits for a top device and a block_device. Returns
662 * 0 if alignment didn't change. Returns -1 if adding the bottom
663 * device caused misalignment.
665 int bdev_stack_limits(struct queue_limits
*t
, struct block_device
*bdev
,
668 struct request_queue
*bq
= bdev_get_queue(bdev
);
670 start
+= get_start_sect(bdev
);
672 return blk_stack_limits(t
, &bq
->limits
, start
);
674 EXPORT_SYMBOL(bdev_stack_limits
);
677 * disk_stack_limits - adjust queue limits for stacked drivers
678 * @disk: MD/DM gendisk (top)
679 * @bdev: the underlying block device (bottom)
680 * @offset: offset to beginning of data within component device
683 * Merges the limits for a top level gendisk and a bottom level
686 void disk_stack_limits(struct gendisk
*disk
, struct block_device
*bdev
,
689 struct request_queue
*t
= disk
->queue
;
691 if (bdev_stack_limits(&t
->limits
, bdev
, offset
>> 9) < 0) {
692 char top
[BDEVNAME_SIZE
], bottom
[BDEVNAME_SIZE
];
694 disk_name(disk
, 0, top
);
695 bdevname(bdev
, bottom
);
697 printk(KERN_NOTICE
"%s: Warning: Device %s is misaligned\n",
701 EXPORT_SYMBOL(disk_stack_limits
);
704 * blk_queue_dma_pad - set pad mask
705 * @q: the request queue for the device
710 * Appending pad buffer to a request modifies the last entry of a
711 * scatter list such that it includes the pad buffer.
713 void blk_queue_dma_pad(struct request_queue
*q
, unsigned int mask
)
715 q
->dma_pad_mask
= mask
;
717 EXPORT_SYMBOL(blk_queue_dma_pad
);
720 * blk_queue_update_dma_pad - update pad mask
721 * @q: the request queue for the device
724 * Update dma pad mask.
726 * Appending pad buffer to a request modifies the last entry of a
727 * scatter list such that it includes the pad buffer.
729 void blk_queue_update_dma_pad(struct request_queue
*q
, unsigned int mask
)
731 if (mask
> q
->dma_pad_mask
)
732 q
->dma_pad_mask
= mask
;
734 EXPORT_SYMBOL(blk_queue_update_dma_pad
);
737 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
738 * @q: the request queue for the device
739 * @dma_drain_needed: fn which returns non-zero if drain is necessary
740 * @buf: physically contiguous buffer
741 * @size: size of the buffer in bytes
743 * Some devices have excess DMA problems and can't simply discard (or
744 * zero fill) the unwanted piece of the transfer. They have to have a
745 * real area of memory to transfer it into. The use case for this is
746 * ATAPI devices in DMA mode. If the packet command causes a transfer
747 * bigger than the transfer size some HBAs will lock up if there
748 * aren't DMA elements to contain the excess transfer. What this API
749 * does is adjust the queue so that the buf is always appended
750 * silently to the scatterlist.
752 * Note: This routine adjusts max_hw_segments to make room for appending
753 * the drain buffer. If you call blk_queue_max_segments() after calling
754 * this routine, you must set the limit to one fewer than your device
755 * can support otherwise there won't be room for the drain buffer.
757 int blk_queue_dma_drain(struct request_queue
*q
,
758 dma_drain_needed_fn
*dma_drain_needed
,
759 void *buf
, unsigned int size
)
761 if (queue_max_segments(q
) < 2)
763 /* make room for appending the drain */
764 blk_queue_max_segments(q
, queue_max_segments(q
) - 1);
765 q
->dma_drain_needed
= dma_drain_needed
;
766 q
->dma_drain_buffer
= buf
;
767 q
->dma_drain_size
= size
;
771 EXPORT_SYMBOL_GPL(blk_queue_dma_drain
);
774 * blk_queue_segment_boundary - set boundary rules for segment merging
775 * @q: the request queue for the device
776 * @mask: the memory boundary mask
778 void blk_queue_segment_boundary(struct request_queue
*q
, unsigned long mask
)
780 if (mask
< PAGE_CACHE_SIZE
- 1) {
781 mask
= PAGE_CACHE_SIZE
- 1;
782 printk(KERN_INFO
"%s: set to minimum %lx\n",
786 q
->limits
.seg_boundary_mask
= mask
;
788 EXPORT_SYMBOL(blk_queue_segment_boundary
);
791 * blk_queue_dma_alignment - set dma length and memory alignment
792 * @q: the request queue for the device
793 * @mask: alignment mask
796 * set required memory and length alignment for direct dma transactions.
797 * this is used when building direct io requests for the queue.
800 void blk_queue_dma_alignment(struct request_queue
*q
, int mask
)
802 q
->dma_alignment
= mask
;
804 EXPORT_SYMBOL(blk_queue_dma_alignment
);
807 * blk_queue_update_dma_alignment - update dma length and memory alignment
808 * @q: the request queue for the device
809 * @mask: alignment mask
812 * update required memory and length alignment for direct dma transactions.
813 * If the requested alignment is larger than the current alignment, then
814 * the current queue alignment is updated to the new value, otherwise it
815 * is left alone. The design of this is to allow multiple objects
816 * (driver, device, transport etc) to set their respective
817 * alignments without having them interfere.
820 void blk_queue_update_dma_alignment(struct request_queue
*q
, int mask
)
822 BUG_ON(mask
> PAGE_SIZE
);
824 if (mask
> q
->dma_alignment
)
825 q
->dma_alignment
= mask
;
827 EXPORT_SYMBOL(blk_queue_update_dma_alignment
);
830 * blk_queue_flush - configure queue's cache flush capability
831 * @q: the request queue for the device
832 * @flush: 0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
834 * Tell block layer cache flush capability of @q. If it supports
835 * flushing, REQ_FLUSH should be set. If it supports bypassing
836 * write cache for individual writes, REQ_FUA should be set.
838 void blk_queue_flush(struct request_queue
*q
, unsigned int flush
)
840 WARN_ON_ONCE(flush
& ~(REQ_FLUSH
| REQ_FUA
));
842 if (WARN_ON_ONCE(!(flush
& REQ_FLUSH
) && (flush
& REQ_FUA
)))
845 q
->flush_flags
= flush
& (REQ_FLUSH
| REQ_FUA
);
847 EXPORT_SYMBOL_GPL(blk_queue_flush
);
849 void blk_queue_flush_queueable(struct request_queue
*q
, bool queueable
)
851 q
->flush_not_queueable
= !queueable
;
853 EXPORT_SYMBOL_GPL(blk_queue_flush_queueable
);
855 static int __init
blk_settings_init(void)
857 blk_max_low_pfn
= max_low_pfn
- 1;
858 blk_max_pfn
= max_pfn
- 1;
861 subsys_initcall(blk_settings_init
);