2 * ip27-irq.c: Highlevel interrupt handling for IP27 architecture.
4 * Copyright (C) 1999, 2000 Ralf Baechle (ralf@gnu.org)
5 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
6 * Copyright (C) 1999 - 2001 Kanoj Sarcar
11 #include <linux/init.h>
12 #include <linux/irq.h>
13 #include <linux/errno.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/interrupt.h>
18 #include <linux/ioport.h>
19 #include <linux/timex.h>
20 #include <linux/smp.h>
21 #include <linux/random.h>
22 #include <linux/kernel.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/delay.h>
25 #include <linux/bitops.h>
27 #include <asm/bootinfo.h>
29 #include <asm/mipsregs.h>
31 #include <asm/processor.h>
32 #include <asm/pci/bridge.h>
33 #include <asm/sn/addrs.h>
34 #include <asm/sn/agent.h>
35 #include <asm/sn/arch.h>
36 #include <asm/sn/hub.h>
37 #include <asm/sn/intr.h>
40 * Linux has a controller-independent x86 interrupt architecture.
41 * every controller has a 'controller-template', that is used
42 * by the main code to do the right thing. Each driver-visible
43 * interrupt source is transparently wired to the appropriate
44 * controller. Thus drivers need not be aware of the
45 * interrupt-controller.
47 * Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC,
48 * PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC.
49 * (IO-APICs assumed to be messaging to Pentium local-APICs)
51 * the code is designed to be easily extended with new/different
52 * interrupt controllers, without having to do assembly magic.
55 extern asmlinkage
void ip27_irq(void);
57 extern struct bridge_controller
*irq_to_bridge
[];
58 extern int irq_to_slot
[];
61 * use these macros to get the encoded nasid and widget id
64 #define IRQ_TO_BRIDGE(i) irq_to_bridge[(i)]
65 #define SLOT_FROM_PCI_IRQ(i) irq_to_slot[i]
67 static inline int alloc_level(int cpu
, int irq
)
69 struct hub_data
*hub
= hub_data(cpu_to_node(cpu
));
70 struct slice_data
*si
= cpu_data
[cpu
].data
;
73 level
= find_first_zero_bit(hub
->irq_alloc_mask
, LEVELS_PER_SLICE
);
74 if (level
>= LEVELS_PER_SLICE
)
75 panic("Cpu %d flooded with devices", cpu
);
77 __set_bit(level
, hub
->irq_alloc_mask
);
78 si
->level_to_irq
[level
] = irq
;
83 static inline int find_level(cpuid_t
*cpunum
, int irq
)
87 for_each_online_cpu(cpu
) {
88 struct slice_data
*si
= cpu_data
[cpu
].data
;
90 for (i
= BASE_PCI_IRQ
; i
< LEVELS_PER_SLICE
; i
++)
91 if (si
->level_to_irq
[i
] == irq
) {
98 panic("Could not identify cpu/level for irq %d", irq
);
104 static int ms1bit(unsigned long x
)
108 s
= 16; if (x
>> 16 == 0) s
= 0; b
+= s
; x
>>= s
;
109 s
= 8; if (x
>> 8 == 0) s
= 0; b
+= s
; x
>>= s
;
110 s
= 4; if (x
>> 4 == 0) s
= 0; b
+= s
; x
>>= s
;
111 s
= 2; if (x
>> 2 == 0) s
= 0; b
+= s
; x
>>= s
;
112 s
= 1; if (x
>> 1 == 0) s
= 0; b
+= s
;
118 * This code is unnecessarily complex, because we do
119 * intr enabling. Basically, once we grab the set of intrs we need
120 * to service, we must mask _all_ these interrupts; firstly, to make
121 * sure the same intr does not intr again, causing recursion that
122 * can lead to stack overflow. Secondly, we can not just mask the
123 * one intr we are do_IRQing, because the non-masked intrs in the
124 * first set might intr again, causing multiple servicings of the
125 * same intr. This effect is mostly seen for intercpu intrs.
129 static void ip27_do_irq_mask0(void)
132 hubreg_t pend0
, mask0
;
133 cpuid_t cpu
= smp_processor_id();
135 (cputoslice(cpu
) == 0) ? PI_INT_MASK0_A
: PI_INT_MASK0_B
;
137 /* copied from Irix intpend0() */
138 pend0
= LOCAL_HUB_L(PI_INT_PEND0
);
139 mask0
= LOCAL_HUB_L(pi_int_mask0
);
141 pend0
&= mask0
; /* Pick intrs we should look at */
145 swlevel
= ms1bit(pend0
);
147 if (pend0
& (1UL << CPU_RESCHED_A_IRQ
)) {
148 LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ
);
150 } else if (pend0
& (1UL << CPU_RESCHED_B_IRQ
)) {
151 LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ
);
153 } else if (pend0
& (1UL << CPU_CALL_A_IRQ
)) {
154 LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ
);
155 smp_call_function_interrupt();
156 } else if (pend0
& (1UL << CPU_CALL_B_IRQ
)) {
157 LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ
);
158 smp_call_function_interrupt();
162 /* "map" swlevel to irq */
163 struct slice_data
*si
= cpu_data
[cpu
].data
;
165 irq
= si
->level_to_irq
[swlevel
];
169 LOCAL_HUB_L(PI_INT_PEND0
);
172 static void ip27_do_irq_mask1(void)
175 hubreg_t pend1
, mask1
;
176 cpuid_t cpu
= smp_processor_id();
177 int pi_int_mask1
= (cputoslice(cpu
) == 0) ? PI_INT_MASK1_A
: PI_INT_MASK1_B
;
178 struct slice_data
*si
= cpu_data
[cpu
].data
;
180 /* copied from Irix intpend0() */
181 pend1
= LOCAL_HUB_L(PI_INT_PEND1
);
182 mask1
= LOCAL_HUB_L(pi_int_mask1
);
184 pend1
&= mask1
; /* Pick intrs we should look at */
188 swlevel
= ms1bit(pend1
);
189 /* "map" swlevel to irq */
190 irq
= si
->level_to_irq
[swlevel
];
191 LOCAL_HUB_CLR_INTR(swlevel
);
194 LOCAL_HUB_L(PI_INT_PEND1
);
197 static void ip27_prof_timer(void)
199 panic("CPU %d got a profiling interrupt", smp_processor_id());
202 static void ip27_hub_error(void)
204 panic("CPU %d got a hub error interrupt", smp_processor_id());
207 static int intr_connect_level(int cpu
, int bit
)
209 nasid_t nasid
= COMPACT_TO_NASID_NODEID(cpu_to_node(cpu
));
210 struct slice_data
*si
= cpu_data
[cpu
].data
;
212 set_bit(bit
, si
->irq_enable_mask
);
214 if (!cputoslice(cpu
)) {
215 REMOTE_HUB_S(nasid
, PI_INT_MASK0_A
, si
->irq_enable_mask
[0]);
216 REMOTE_HUB_S(nasid
, PI_INT_MASK1_A
, si
->irq_enable_mask
[1]);
218 REMOTE_HUB_S(nasid
, PI_INT_MASK0_B
, si
->irq_enable_mask
[0]);
219 REMOTE_HUB_S(nasid
, PI_INT_MASK1_B
, si
->irq_enable_mask
[1]);
225 static int intr_disconnect_level(int cpu
, int bit
)
227 nasid_t nasid
= COMPACT_TO_NASID_NODEID(cpu_to_node(cpu
));
228 struct slice_data
*si
= cpu_data
[cpu
].data
;
230 clear_bit(bit
, si
->irq_enable_mask
);
232 if (!cputoslice(cpu
)) {
233 REMOTE_HUB_S(nasid
, PI_INT_MASK0_A
, si
->irq_enable_mask
[0]);
234 REMOTE_HUB_S(nasid
, PI_INT_MASK1_A
, si
->irq_enable_mask
[1]);
236 REMOTE_HUB_S(nasid
, PI_INT_MASK0_B
, si
->irq_enable_mask
[0]);
237 REMOTE_HUB_S(nasid
, PI_INT_MASK1_B
, si
->irq_enable_mask
[1]);
243 /* Startup one of the (PCI ...) IRQs routes over a bridge. */
244 static unsigned int startup_bridge_irq(struct irq_data
*d
)
246 struct bridge_controller
*bc
;
252 pin
= SLOT_FROM_PCI_IRQ(d
->irq
);
253 bc
= IRQ_TO_BRIDGE(d
->irq
);
256 pr_debug("bridge_startup(): irq= 0x%x pin=%d\n", d
->irq
, pin
);
258 * "map" irq to a swlevel greater than 6 since the first 6 bits
259 * of INT_PEND0 are taken
261 swlevel
= find_level(&cpu
, d
->irq
);
262 bridge
->b_int_addr
[pin
].addr
= (0x20000 | swlevel
| (bc
->nasid
<< 8));
263 bridge
->b_int_enable
|= (1 << pin
);
264 bridge
->b_int_enable
|= 0x7ffffe00; /* more stuff in int_enable */
267 * Enable sending of an interrupt clear packt to the hub on a high to
268 * low transition of the interrupt pin.
270 * IRIX sets additional bits in the address which are documented as
271 * reserved in the bridge docs.
273 bridge
->b_int_mode
|= (1UL << pin
);
276 * We assume the bridge to have a 1:1 mapping between devices
277 * (slots) and intr pins.
279 device
= bridge
->b_int_device
;
280 device
&= ~(7 << (pin
*3));
281 device
|= (pin
<< (pin
*3));
282 bridge
->b_int_device
= device
;
284 bridge
->b_wid_tflush
;
286 intr_connect_level(cpu
, swlevel
);
288 return 0; /* Never anything pending. */
291 /* Shutdown one of the (PCI ...) IRQs routes over a bridge. */
292 static void shutdown_bridge_irq(struct irq_data
*d
)
294 struct bridge_controller
*bc
= IRQ_TO_BRIDGE(d
->irq
);
295 bridge_t
*bridge
= bc
->base
;
299 pr_debug("bridge_shutdown: irq 0x%x\n", d
->irq
);
300 pin
= SLOT_FROM_PCI_IRQ(d
->irq
);
303 * map irq to a swlevel greater than 6 since the first 6 bits
304 * of INT_PEND0 are taken
306 swlevel
= find_level(&cpu
, d
->irq
);
307 intr_disconnect_level(cpu
, swlevel
);
309 bridge
->b_int_enable
&= ~(1 << pin
);
310 bridge
->b_wid_tflush
;
313 static inline void enable_bridge_irq(struct irq_data
*d
)
318 swlevel
= find_level(&cpu
, d
->irq
); /* Criminal offence */
319 intr_connect_level(cpu
, swlevel
);
322 static inline void disable_bridge_irq(struct irq_data
*d
)
327 swlevel
= find_level(&cpu
, d
->irq
); /* Criminal offence */
328 intr_disconnect_level(cpu
, swlevel
);
331 static struct irq_chip bridge_irq_type
= {
333 .irq_startup
= startup_bridge_irq
,
334 .irq_shutdown
= shutdown_bridge_irq
,
335 .irq_mask
= disable_bridge_irq
,
336 .irq_unmask
= enable_bridge_irq
,
339 void register_bridge_irq(unsigned int irq
)
341 irq_set_chip_and_handler(irq
, &bridge_irq_type
, handle_level_irq
);
344 int request_bridge_irq(struct bridge_controller
*bc
)
346 int irq
= allocate_irqno();
354 * "map" irq to a swlevel greater than 6 since the first 6 bits
355 * of INT_PEND0 are taken
358 swlevel
= alloc_level(cpu
, irq
);
359 if (unlikely(swlevel
< 0)) {
365 /* Make sure it's not already pending when we connect it. */
366 nasid
= COMPACT_TO_NASID_NODEID(cpu_to_node(cpu
));
367 REMOTE_HUB_CLR_INTR(nasid
, swlevel
);
369 intr_connect_level(cpu
, swlevel
);
371 register_bridge_irq(irq
);
376 asmlinkage
void plat_irq_dispatch(void)
378 unsigned long pending
= read_c0_cause() & read_c0_status();
379 extern unsigned int rt_timer_irq
;
381 if (pending
& CAUSEF_IP4
)
382 do_IRQ(rt_timer_irq
);
383 else if (pending
& CAUSEF_IP2
) /* PI_INT_PEND_0 or CC_PEND_{A|B} */
385 else if (pending
& CAUSEF_IP3
) /* PI_INT_PEND_1 */
387 else if (pending
& CAUSEF_IP5
)
389 else if (pending
& CAUSEF_IP6
)
393 void __init
arch_init_irq(void)
397 void install_ipi(void)
399 int slice
= LOCAL_HUB_L(PI_CPU_NUM
);
400 int cpu
= smp_processor_id();
401 struct slice_data
*si
= cpu_data
[cpu
].data
;
402 struct hub_data
*hub
= hub_data(cpu_to_node(cpu
));
405 resched
= CPU_RESCHED_A_IRQ
+ slice
;
406 __set_bit(resched
, hub
->irq_alloc_mask
);
407 __set_bit(resched
, si
->irq_enable_mask
);
408 LOCAL_HUB_CLR_INTR(resched
);
410 call
= CPU_CALL_A_IRQ
+ slice
;
411 __set_bit(call
, hub
->irq_alloc_mask
);
412 __set_bit(call
, si
->irq_enable_mask
);
413 LOCAL_HUB_CLR_INTR(call
);
416 LOCAL_HUB_S(PI_INT_MASK0_A
, si
->irq_enable_mask
[0]);
417 LOCAL_HUB_S(PI_INT_MASK1_A
, si
->irq_enable_mask
[1]);
419 LOCAL_HUB_S(PI_INT_MASK0_B
, si
->irq_enable_mask
[0]);
420 LOCAL_HUB_S(PI_INT_MASK1_B
, si
->irq_enable_mask
[1]);