2 * SPARC64 Huge TLB page support.
4 * Copyright (C) 2002, 2003, 2006 David S. Miller (davem@davemloft.net)
7 #include <linux/init.h>
10 #include <linux/hugetlb.h>
11 #include <linux/pagemap.h>
12 #include <linux/sysctl.h>
15 #include <asm/pgalloc.h>
17 #include <asm/tlbflush.h>
18 #include <asm/cacheflush.h>
19 #include <asm/mmu_context.h>
21 /* Slightly simplified from the non-hugepage variant because by
22 * definition we don't have to worry about any page coloring stuff
24 #define VA_EXCLUDE_START (0x0000080000000000UL - (1UL << 32UL))
25 #define VA_EXCLUDE_END (0xfffff80000000000UL + (1UL << 32UL))
27 static unsigned long hugetlb_get_unmapped_area_bottomup(struct file
*filp
,
33 struct mm_struct
*mm
= current
->mm
;
34 struct vm_area_struct
* vma
;
35 unsigned long task_size
= TASK_SIZE
;
36 unsigned long start_addr
;
38 if (test_thread_flag(TIF_32BIT
))
39 task_size
= STACK_TOP32
;
40 if (unlikely(len
>= VA_EXCLUDE_START
))
43 if (len
> mm
->cached_hole_size
) {
44 start_addr
= addr
= mm
->free_area_cache
;
46 start_addr
= addr
= TASK_UNMAPPED_BASE
;
47 mm
->cached_hole_size
= 0;
53 addr
= ALIGN(addr
, HPAGE_SIZE
);
55 for (vma
= find_vma(mm
, addr
); ; vma
= vma
->vm_next
) {
56 /* At this point: (!vma || addr < vma->vm_end). */
57 if (addr
< VA_EXCLUDE_START
&&
58 (addr
+ len
) >= VA_EXCLUDE_START
) {
59 addr
= VA_EXCLUDE_END
;
60 vma
= find_vma(mm
, VA_EXCLUDE_END
);
62 if (unlikely(task_size
< addr
)) {
63 if (start_addr
!= TASK_UNMAPPED_BASE
) {
64 start_addr
= addr
= TASK_UNMAPPED_BASE
;
65 mm
->cached_hole_size
= 0;
70 if (likely(!vma
|| addr
+ len
<= vma
->vm_start
)) {
72 * Remember the place where we stopped the search:
74 mm
->free_area_cache
= addr
+ len
;
77 if (addr
+ mm
->cached_hole_size
< vma
->vm_start
)
78 mm
->cached_hole_size
= vma
->vm_start
- addr
;
80 addr
= ALIGN(vma
->vm_end
, HPAGE_SIZE
);
85 hugetlb_get_unmapped_area_topdown(struct file
*filp
, const unsigned long addr0
,
86 const unsigned long len
,
87 const unsigned long pgoff
,
88 const unsigned long flags
)
90 struct vm_area_struct
*vma
;
91 struct mm_struct
*mm
= current
->mm
;
92 unsigned long addr
= addr0
;
94 /* This should only ever run for 32-bit processes. */
95 BUG_ON(!test_thread_flag(TIF_32BIT
));
97 /* check if free_area_cache is useful for us */
98 if (len
<= mm
->cached_hole_size
) {
99 mm
->cached_hole_size
= 0;
100 mm
->free_area_cache
= mm
->mmap_base
;
103 /* either no address requested or can't fit in requested address hole */
104 addr
= mm
->free_area_cache
& HPAGE_MASK
;
106 /* make sure it can fit in the remaining address space */
107 if (likely(addr
> len
)) {
108 vma
= find_vma(mm
, addr
-len
);
109 if (!vma
|| addr
<= vma
->vm_start
) {
110 /* remember the address as a hint for next time */
111 return (mm
->free_area_cache
= addr
-len
);
115 if (unlikely(mm
->mmap_base
< len
))
118 addr
= (mm
->mmap_base
-len
) & HPAGE_MASK
;
122 * Lookup failure means no vma is above this address,
123 * else if new region fits below vma->vm_start,
124 * return with success:
126 vma
= find_vma(mm
, addr
);
127 if (likely(!vma
|| addr
+len
<= vma
->vm_start
)) {
128 /* remember the address as a hint for next time */
129 return (mm
->free_area_cache
= addr
);
132 /* remember the largest hole we saw so far */
133 if (addr
+ mm
->cached_hole_size
< vma
->vm_start
)
134 mm
->cached_hole_size
= vma
->vm_start
- addr
;
136 /* try just below the current vma->vm_start */
137 addr
= (vma
->vm_start
-len
) & HPAGE_MASK
;
138 } while (likely(len
< vma
->vm_start
));
142 * A failed mmap() very likely causes application failure,
143 * so fall back to the bottom-up function here. This scenario
144 * can happen with large stack limits and large mmap()
147 mm
->cached_hole_size
= ~0UL;
148 mm
->free_area_cache
= TASK_UNMAPPED_BASE
;
149 addr
= arch_get_unmapped_area(filp
, addr0
, len
, pgoff
, flags
);
151 * Restore the topdown base:
153 mm
->free_area_cache
= mm
->mmap_base
;
154 mm
->cached_hole_size
= ~0UL;
160 hugetlb_get_unmapped_area(struct file
*file
, unsigned long addr
,
161 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
163 struct mm_struct
*mm
= current
->mm
;
164 struct vm_area_struct
*vma
;
165 unsigned long task_size
= TASK_SIZE
;
167 if (test_thread_flag(TIF_32BIT
))
168 task_size
= STACK_TOP32
;
170 if (len
& ~HPAGE_MASK
)
175 if (flags
& MAP_FIXED
) {
176 if (prepare_hugepage_range(file
, addr
, len
))
182 addr
= ALIGN(addr
, HPAGE_SIZE
);
183 vma
= find_vma(mm
, addr
);
184 if (task_size
- len
>= addr
&&
185 (!vma
|| addr
+ len
<= vma
->vm_start
))
188 if (mm
->get_unmapped_area
== arch_get_unmapped_area
)
189 return hugetlb_get_unmapped_area_bottomup(file
, addr
, len
,
192 return hugetlb_get_unmapped_area_topdown(file
, addr
, len
,
196 pte_t
*huge_pte_alloc(struct mm_struct
*mm
,
197 unsigned long addr
, unsigned long sz
)
204 /* We must align the address, because our caller will run
205 * set_huge_pte_at() on whatever we return, which writes out
206 * all of the sub-ptes for the hugepage range. So we have
207 * to give it the first such sub-pte.
211 pgd
= pgd_offset(mm
, addr
);
212 pud
= pud_alloc(mm
, pgd
, addr
);
214 pmd
= pmd_alloc(mm
, pud
, addr
);
216 pte
= pte_alloc_map(mm
, NULL
, pmd
, addr
);
221 pte_t
*huge_pte_offset(struct mm_struct
*mm
, unsigned long addr
)
230 pgd
= pgd_offset(mm
, addr
);
231 if (!pgd_none(*pgd
)) {
232 pud
= pud_offset(pgd
, addr
);
233 if (!pud_none(*pud
)) {
234 pmd
= pmd_offset(pud
, addr
);
236 pte
= pte_offset_map(pmd
, addr
);
242 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
247 void set_huge_pte_at(struct mm_struct
*mm
, unsigned long addr
,
248 pte_t
*ptep
, pte_t entry
)
252 if (!pte_present(*ptep
) && pte_present(entry
))
253 mm
->context
.huge_pte_count
++;
256 for (i
= 0; i
< (1 << HUGETLB_PAGE_ORDER
); i
++) {
257 set_pte_at(mm
, addr
, ptep
, entry
);
260 pte_val(entry
) += PAGE_SIZE
;
264 pte_t
huge_ptep_get_and_clear(struct mm_struct
*mm
, unsigned long addr
,
271 if (pte_present(entry
))
272 mm
->context
.huge_pte_count
--;
276 for (i
= 0; i
< (1 << HUGETLB_PAGE_ORDER
); i
++) {
277 pte_clear(mm
, addr
, ptep
);
285 struct page
*follow_huge_addr(struct mm_struct
*mm
,
286 unsigned long address
, int write
)
288 return ERR_PTR(-EINVAL
);
291 int pmd_huge(pmd_t pmd
)
296 int pud_huge(pud_t pud
)
301 struct page
*follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
302 pmd_t
*pmd
, int write
)
307 static void context_reload(void *__data
)
309 struct mm_struct
*mm
= __data
;
311 if (mm
== current
->mm
)
312 load_secondary_context(mm
);
315 void hugetlb_prefault_arch_hook(struct mm_struct
*mm
)
317 struct tsb_config
*tp
= &mm
->context
.tsb_block
[MM_TSB_HUGE
];
319 if (likely(tp
->tsb
!= NULL
))
322 tsb_grow(mm
, MM_TSB_HUGE
, 0);
323 tsb_context_switch(mm
);
326 /* On UltraSPARC-III+ and later, configure the second half of
327 * the Data-TLB for huge pages.
329 if (tlb_type
== cheetah_plus
) {
332 spin_lock(&ctx_alloc_lock
);
333 ctx
= mm
->context
.sparc64_ctx_val
;
334 ctx
&= ~CTX_PGSZ_MASK
;
335 ctx
|= CTX_PGSZ_BASE
<< CTX_PGSZ0_SHIFT
;
336 ctx
|= CTX_PGSZ_HUGE
<< CTX_PGSZ1_SHIFT
;
338 if (ctx
!= mm
->context
.sparc64_ctx_val
) {
339 /* When changing the page size fields, we
340 * must perform a context flush so that no
341 * stale entries match. This flush must
342 * occur with the original context register
347 /* Reload the context register of all processors
348 * also executing in this address space.
350 mm
->context
.sparc64_ctx_val
= ctx
;
351 on_each_cpu(context_reload
, mm
, 0);
353 spin_unlock(&ctx_alloc_lock
);