llc2: Remove dead code for state machine
[linux/fpc-iii.git] / arch / sparc / mm / hugetlbpage.c
blob07e14535375cba42a6c23a0d8d78b343bccfcc95
1 /*
2 * SPARC64 Huge TLB page support.
4 * Copyright (C) 2002, 2003, 2006 David S. Miller (davem@davemloft.net)
5 */
7 #include <linux/init.h>
8 #include <linux/fs.h>
9 #include <linux/mm.h>
10 #include <linux/hugetlb.h>
11 #include <linux/pagemap.h>
12 #include <linux/sysctl.h>
14 #include <asm/mman.h>
15 #include <asm/pgalloc.h>
16 #include <asm/tlb.h>
17 #include <asm/tlbflush.h>
18 #include <asm/cacheflush.h>
19 #include <asm/mmu_context.h>
21 /* Slightly simplified from the non-hugepage variant because by
22 * definition we don't have to worry about any page coloring stuff
24 #define VA_EXCLUDE_START (0x0000080000000000UL - (1UL << 32UL))
25 #define VA_EXCLUDE_END (0xfffff80000000000UL + (1UL << 32UL))
27 static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *filp,
28 unsigned long addr,
29 unsigned long len,
30 unsigned long pgoff,
31 unsigned long flags)
33 struct mm_struct *mm = current->mm;
34 struct vm_area_struct * vma;
35 unsigned long task_size = TASK_SIZE;
36 unsigned long start_addr;
38 if (test_thread_flag(TIF_32BIT))
39 task_size = STACK_TOP32;
40 if (unlikely(len >= VA_EXCLUDE_START))
41 return -ENOMEM;
43 if (len > mm->cached_hole_size) {
44 start_addr = addr = mm->free_area_cache;
45 } else {
46 start_addr = addr = TASK_UNMAPPED_BASE;
47 mm->cached_hole_size = 0;
50 task_size -= len;
52 full_search:
53 addr = ALIGN(addr, HPAGE_SIZE);
55 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
56 /* At this point: (!vma || addr < vma->vm_end). */
57 if (addr < VA_EXCLUDE_START &&
58 (addr + len) >= VA_EXCLUDE_START) {
59 addr = VA_EXCLUDE_END;
60 vma = find_vma(mm, VA_EXCLUDE_END);
62 if (unlikely(task_size < addr)) {
63 if (start_addr != TASK_UNMAPPED_BASE) {
64 start_addr = addr = TASK_UNMAPPED_BASE;
65 mm->cached_hole_size = 0;
66 goto full_search;
68 return -ENOMEM;
70 if (likely(!vma || addr + len <= vma->vm_start)) {
72 * Remember the place where we stopped the search:
74 mm->free_area_cache = addr + len;
75 return addr;
77 if (addr + mm->cached_hole_size < vma->vm_start)
78 mm->cached_hole_size = vma->vm_start - addr;
80 addr = ALIGN(vma->vm_end, HPAGE_SIZE);
84 static unsigned long
85 hugetlb_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
86 const unsigned long len,
87 const unsigned long pgoff,
88 const unsigned long flags)
90 struct vm_area_struct *vma;
91 struct mm_struct *mm = current->mm;
92 unsigned long addr = addr0;
94 /* This should only ever run for 32-bit processes. */
95 BUG_ON(!test_thread_flag(TIF_32BIT));
97 /* check if free_area_cache is useful for us */
98 if (len <= mm->cached_hole_size) {
99 mm->cached_hole_size = 0;
100 mm->free_area_cache = mm->mmap_base;
103 /* either no address requested or can't fit in requested address hole */
104 addr = mm->free_area_cache & HPAGE_MASK;
106 /* make sure it can fit in the remaining address space */
107 if (likely(addr > len)) {
108 vma = find_vma(mm, addr-len);
109 if (!vma || addr <= vma->vm_start) {
110 /* remember the address as a hint for next time */
111 return (mm->free_area_cache = addr-len);
115 if (unlikely(mm->mmap_base < len))
116 goto bottomup;
118 addr = (mm->mmap_base-len) & HPAGE_MASK;
120 do {
122 * Lookup failure means no vma is above this address,
123 * else if new region fits below vma->vm_start,
124 * return with success:
126 vma = find_vma(mm, addr);
127 if (likely(!vma || addr+len <= vma->vm_start)) {
128 /* remember the address as a hint for next time */
129 return (mm->free_area_cache = addr);
132 /* remember the largest hole we saw so far */
133 if (addr + mm->cached_hole_size < vma->vm_start)
134 mm->cached_hole_size = vma->vm_start - addr;
136 /* try just below the current vma->vm_start */
137 addr = (vma->vm_start-len) & HPAGE_MASK;
138 } while (likely(len < vma->vm_start));
140 bottomup:
142 * A failed mmap() very likely causes application failure,
143 * so fall back to the bottom-up function here. This scenario
144 * can happen with large stack limits and large mmap()
145 * allocations.
147 mm->cached_hole_size = ~0UL;
148 mm->free_area_cache = TASK_UNMAPPED_BASE;
149 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
151 * Restore the topdown base:
153 mm->free_area_cache = mm->mmap_base;
154 mm->cached_hole_size = ~0UL;
156 return addr;
159 unsigned long
160 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
161 unsigned long len, unsigned long pgoff, unsigned long flags)
163 struct mm_struct *mm = current->mm;
164 struct vm_area_struct *vma;
165 unsigned long task_size = TASK_SIZE;
167 if (test_thread_flag(TIF_32BIT))
168 task_size = STACK_TOP32;
170 if (len & ~HPAGE_MASK)
171 return -EINVAL;
172 if (len > task_size)
173 return -ENOMEM;
175 if (flags & MAP_FIXED) {
176 if (prepare_hugepage_range(file, addr, len))
177 return -EINVAL;
178 return addr;
181 if (addr) {
182 addr = ALIGN(addr, HPAGE_SIZE);
183 vma = find_vma(mm, addr);
184 if (task_size - len >= addr &&
185 (!vma || addr + len <= vma->vm_start))
186 return addr;
188 if (mm->get_unmapped_area == arch_get_unmapped_area)
189 return hugetlb_get_unmapped_area_bottomup(file, addr, len,
190 pgoff, flags);
191 else
192 return hugetlb_get_unmapped_area_topdown(file, addr, len,
193 pgoff, flags);
196 pte_t *huge_pte_alloc(struct mm_struct *mm,
197 unsigned long addr, unsigned long sz)
199 pgd_t *pgd;
200 pud_t *pud;
201 pmd_t *pmd;
202 pte_t *pte = NULL;
204 /* We must align the address, because our caller will run
205 * set_huge_pte_at() on whatever we return, which writes out
206 * all of the sub-ptes for the hugepage range. So we have
207 * to give it the first such sub-pte.
209 addr &= HPAGE_MASK;
211 pgd = pgd_offset(mm, addr);
212 pud = pud_alloc(mm, pgd, addr);
213 if (pud) {
214 pmd = pmd_alloc(mm, pud, addr);
215 if (pmd)
216 pte = pte_alloc_map(mm, NULL, pmd, addr);
218 return pte;
221 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
223 pgd_t *pgd;
224 pud_t *pud;
225 pmd_t *pmd;
226 pte_t *pte = NULL;
228 addr &= HPAGE_MASK;
230 pgd = pgd_offset(mm, addr);
231 if (!pgd_none(*pgd)) {
232 pud = pud_offset(pgd, addr);
233 if (!pud_none(*pud)) {
234 pmd = pmd_offset(pud, addr);
235 if (!pmd_none(*pmd))
236 pte = pte_offset_map(pmd, addr);
239 return pte;
242 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
244 return 0;
247 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
248 pte_t *ptep, pte_t entry)
250 int i;
252 if (!pte_present(*ptep) && pte_present(entry))
253 mm->context.huge_pte_count++;
255 addr &= HPAGE_MASK;
256 for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
257 set_pte_at(mm, addr, ptep, entry);
258 ptep++;
259 addr += PAGE_SIZE;
260 pte_val(entry) += PAGE_SIZE;
264 pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
265 pte_t *ptep)
267 pte_t entry;
268 int i;
270 entry = *ptep;
271 if (pte_present(entry))
272 mm->context.huge_pte_count--;
274 addr &= HPAGE_MASK;
276 for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
277 pte_clear(mm, addr, ptep);
278 addr += PAGE_SIZE;
279 ptep++;
282 return entry;
285 struct page *follow_huge_addr(struct mm_struct *mm,
286 unsigned long address, int write)
288 return ERR_PTR(-EINVAL);
291 int pmd_huge(pmd_t pmd)
293 return 0;
296 int pud_huge(pud_t pud)
298 return 0;
301 struct page *follow_huge_pmd(struct mm_struct *mm, unsigned long address,
302 pmd_t *pmd, int write)
304 return NULL;
307 static void context_reload(void *__data)
309 struct mm_struct *mm = __data;
311 if (mm == current->mm)
312 load_secondary_context(mm);
315 void hugetlb_prefault_arch_hook(struct mm_struct *mm)
317 struct tsb_config *tp = &mm->context.tsb_block[MM_TSB_HUGE];
319 if (likely(tp->tsb != NULL))
320 return;
322 tsb_grow(mm, MM_TSB_HUGE, 0);
323 tsb_context_switch(mm);
324 smp_tsb_sync(mm);
326 /* On UltraSPARC-III+ and later, configure the second half of
327 * the Data-TLB for huge pages.
329 if (tlb_type == cheetah_plus) {
330 unsigned long ctx;
332 spin_lock(&ctx_alloc_lock);
333 ctx = mm->context.sparc64_ctx_val;
334 ctx &= ~CTX_PGSZ_MASK;
335 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
336 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
338 if (ctx != mm->context.sparc64_ctx_val) {
339 /* When changing the page size fields, we
340 * must perform a context flush so that no
341 * stale entries match. This flush must
342 * occur with the original context register
343 * settings.
345 do_flush_tlb_mm(mm);
347 /* Reload the context register of all processors
348 * also executing in this address space.
350 mm->context.sparc64_ctx_val = ctx;
351 on_each_cpu(context_reload, mm, 0);
353 spin_unlock(&ctx_alloc_lock);