llc2: Remove dead code for state machine
[linux/fpc-iii.git] / arch / sparc / mm / srmmu.c
blobc38bb72e3e80e4c122ea469a4edaba8e18cc3939
1 /*
2 * srmmu.c: SRMMU specific routines for memory management.
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9 */
11 #include <linux/seq_file.h>
12 #include <linux/spinlock.h>
13 #include <linux/bootmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/kdebug.h>
17 #include <linux/kernel.h>
18 #include <linux/init.h>
19 #include <linux/log2.h>
20 #include <linux/gfp.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
24 #include <asm/mmu_context.h>
25 #include <asm/cacheflush.h>
26 #include <asm/tlbflush.h>
27 #include <asm/io-unit.h>
28 #include <asm/pgalloc.h>
29 #include <asm/pgtable.h>
30 #include <asm/bitext.h>
31 #include <asm/vaddrs.h>
32 #include <asm/cache.h>
33 #include <asm/traps.h>
34 #include <asm/oplib.h>
35 #include <asm/mbus.h>
36 #include <asm/page.h>
37 #include <asm/asi.h>
38 #include <asm/msi.h>
39 #include <asm/smp.h>
40 #include <asm/io.h>
42 /* Now the cpu specific definitions. */
43 #include <asm/turbosparc.h>
44 #include <asm/tsunami.h>
45 #include <asm/viking.h>
46 #include <asm/swift.h>
47 #include <asm/leon.h>
48 #include <asm/mxcc.h>
49 #include <asm/ross.h>
51 #include "srmmu.h"
53 enum mbus_module srmmu_modtype;
54 static unsigned int hwbug_bitmask;
55 int vac_cache_size;
56 int vac_line_size;
58 extern struct resource sparc_iomap;
60 extern unsigned long last_valid_pfn;
62 static pgd_t *srmmu_swapper_pg_dir;
64 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
66 #ifdef CONFIG_SMP
67 const struct sparc32_cachetlb_ops *local_ops;
69 #define FLUSH_BEGIN(mm)
70 #define FLUSH_END
71 #else
72 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
73 #define FLUSH_END }
74 #endif
76 int flush_page_for_dma_global = 1;
78 char *srmmu_name;
80 ctxd_t *srmmu_ctx_table_phys;
81 static ctxd_t *srmmu_context_table;
83 int viking_mxcc_present;
84 static DEFINE_SPINLOCK(srmmu_context_spinlock);
86 static int is_hypersparc;
88 static int srmmu_cache_pagetables;
90 /* these will be initialized in srmmu_nocache_calcsize() */
91 static unsigned long srmmu_nocache_size;
92 static unsigned long srmmu_nocache_end;
94 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
95 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
97 /* The context table is a nocache user with the biggest alignment needs. */
98 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
100 void *srmmu_nocache_pool;
101 void *srmmu_nocache_bitmap;
102 static struct bit_map srmmu_nocache_map;
104 static inline int srmmu_pmd_none(pmd_t pmd)
105 { return !(pmd_val(pmd) & 0xFFFFFFF); }
107 /* XXX should we hyper_flush_whole_icache here - Anton */
108 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
109 { set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
111 void pmd_set(pmd_t *pmdp, pte_t *ptep)
113 unsigned long ptp; /* Physical address, shifted right by 4 */
114 int i;
116 ptp = __nocache_pa((unsigned long) ptep) >> 4;
117 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
118 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
119 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
123 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
125 unsigned long ptp; /* Physical address, shifted right by 4 */
126 int i;
128 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
129 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
130 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
131 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
135 /* Find an entry in the third-level page table.. */
136 pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
138 void *pte;
140 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
141 return (pte_t *) pte +
142 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
146 * size: bytes to allocate in the nocache area.
147 * align: bytes, number to align at.
148 * Returns the virtual address of the allocated area.
150 static void *__srmmu_get_nocache(int size, int align)
152 int offset;
153 unsigned long addr;
155 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
156 printk(KERN_ERR "Size 0x%x too small for nocache request\n",
157 size);
158 size = SRMMU_NOCACHE_BITMAP_SHIFT;
160 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
161 printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
162 size);
163 size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
165 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
167 offset = bit_map_string_get(&srmmu_nocache_map,
168 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
169 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
170 if (offset == -1) {
171 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
172 size, (int) srmmu_nocache_size,
173 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
174 return 0;
177 addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
178 return (void *)addr;
181 void *srmmu_get_nocache(int size, int align)
183 void *tmp;
185 tmp = __srmmu_get_nocache(size, align);
187 if (tmp)
188 memset(tmp, 0, size);
190 return tmp;
193 void srmmu_free_nocache(void *addr, int size)
195 unsigned long vaddr;
196 int offset;
198 vaddr = (unsigned long)addr;
199 if (vaddr < SRMMU_NOCACHE_VADDR) {
200 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
201 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
202 BUG();
204 if (vaddr + size > srmmu_nocache_end) {
205 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
206 vaddr, srmmu_nocache_end);
207 BUG();
209 if (!is_power_of_2(size)) {
210 printk("Size 0x%x is not a power of 2\n", size);
211 BUG();
213 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
214 printk("Size 0x%x is too small\n", size);
215 BUG();
217 if (vaddr & (size - 1)) {
218 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
219 BUG();
222 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
223 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
225 bit_map_clear(&srmmu_nocache_map, offset, size);
228 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
229 unsigned long end);
231 /* Return how much physical memory we have. */
232 static unsigned long __init probe_memory(void)
234 unsigned long total = 0;
235 int i;
237 for (i = 0; sp_banks[i].num_bytes; i++)
238 total += sp_banks[i].num_bytes;
240 return total;
244 * Reserve nocache dynamically proportionally to the amount of
245 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
247 static void __init srmmu_nocache_calcsize(void)
249 unsigned long sysmemavail = probe_memory() / 1024;
250 int srmmu_nocache_npages;
252 srmmu_nocache_npages =
253 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
255 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
256 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
257 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
258 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
260 /* anything above 1280 blows up */
261 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
262 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
264 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
265 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
268 static void __init srmmu_nocache_init(void)
270 unsigned int bitmap_bits;
271 pgd_t *pgd;
272 pmd_t *pmd;
273 pte_t *pte;
274 unsigned long paddr, vaddr;
275 unsigned long pteval;
277 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
279 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
280 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
281 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
283 srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
284 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
286 srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
287 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
288 init_mm.pgd = srmmu_swapper_pg_dir;
290 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
292 paddr = __pa((unsigned long)srmmu_nocache_pool);
293 vaddr = SRMMU_NOCACHE_VADDR;
295 while (vaddr < srmmu_nocache_end) {
296 pgd = pgd_offset_k(vaddr);
297 pmd = pmd_offset(__nocache_fix(pgd), vaddr);
298 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
300 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
302 if (srmmu_cache_pagetables)
303 pteval |= SRMMU_CACHE;
305 set_pte(__nocache_fix(pte), __pte(pteval));
307 vaddr += PAGE_SIZE;
308 paddr += PAGE_SIZE;
311 flush_cache_all();
312 flush_tlb_all();
315 pgd_t *get_pgd_fast(void)
317 pgd_t *pgd = NULL;
319 pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
320 if (pgd) {
321 pgd_t *init = pgd_offset_k(0);
322 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
323 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
324 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
327 return pgd;
331 * Hardware needs alignment to 256 only, but we align to whole page size
332 * to reduce fragmentation problems due to the buddy principle.
333 * XXX Provide actual fragmentation statistics in /proc.
335 * Alignments up to the page size are the same for physical and virtual
336 * addresses of the nocache area.
338 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
340 unsigned long pte;
341 struct page *page;
343 if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
344 return NULL;
345 page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
346 pgtable_page_ctor(page);
347 return page;
350 void pte_free(struct mm_struct *mm, pgtable_t pte)
352 unsigned long p;
354 pgtable_page_dtor(pte);
355 p = (unsigned long)page_address(pte); /* Cached address (for test) */
356 if (p == 0)
357 BUG();
358 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
360 /* free non cached virtual address*/
361 srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
364 /* context handling - a dynamically sized pool is used */
365 #define NO_CONTEXT -1
367 struct ctx_list {
368 struct ctx_list *next;
369 struct ctx_list *prev;
370 unsigned int ctx_number;
371 struct mm_struct *ctx_mm;
374 static struct ctx_list *ctx_list_pool;
375 static struct ctx_list ctx_free;
376 static struct ctx_list ctx_used;
378 /* At boot time we determine the number of contexts */
379 static int num_contexts;
381 static inline void remove_from_ctx_list(struct ctx_list *entry)
383 entry->next->prev = entry->prev;
384 entry->prev->next = entry->next;
387 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
389 entry->next = head;
390 (entry->prev = head->prev)->next = entry;
391 head->prev = entry;
393 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
394 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
397 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
399 struct ctx_list *ctxp;
401 ctxp = ctx_free.next;
402 if (ctxp != &ctx_free) {
403 remove_from_ctx_list(ctxp);
404 add_to_used_ctxlist(ctxp);
405 mm->context = ctxp->ctx_number;
406 ctxp->ctx_mm = mm;
407 return;
409 ctxp = ctx_used.next;
410 if (ctxp->ctx_mm == old_mm)
411 ctxp = ctxp->next;
412 if (ctxp == &ctx_used)
413 panic("out of mmu contexts");
414 flush_cache_mm(ctxp->ctx_mm);
415 flush_tlb_mm(ctxp->ctx_mm);
416 remove_from_ctx_list(ctxp);
417 add_to_used_ctxlist(ctxp);
418 ctxp->ctx_mm->context = NO_CONTEXT;
419 ctxp->ctx_mm = mm;
420 mm->context = ctxp->ctx_number;
423 static inline void free_context(int context)
425 struct ctx_list *ctx_old;
427 ctx_old = ctx_list_pool + context;
428 remove_from_ctx_list(ctx_old);
429 add_to_free_ctxlist(ctx_old);
432 static void __init sparc_context_init(int numctx)
434 int ctx;
435 unsigned long size;
437 size = numctx * sizeof(struct ctx_list);
438 ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
440 for (ctx = 0; ctx < numctx; ctx++) {
441 struct ctx_list *clist;
443 clist = (ctx_list_pool + ctx);
444 clist->ctx_number = ctx;
445 clist->ctx_mm = NULL;
447 ctx_free.next = ctx_free.prev = &ctx_free;
448 ctx_used.next = ctx_used.prev = &ctx_used;
449 for (ctx = 0; ctx < numctx; ctx++)
450 add_to_free_ctxlist(ctx_list_pool + ctx);
453 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
454 struct task_struct *tsk)
456 if (mm->context == NO_CONTEXT) {
457 spin_lock(&srmmu_context_spinlock);
458 alloc_context(old_mm, mm);
459 spin_unlock(&srmmu_context_spinlock);
460 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
463 if (sparc_cpu_model == sparc_leon)
464 leon_switch_mm();
466 if (is_hypersparc)
467 hyper_flush_whole_icache();
469 srmmu_set_context(mm->context);
472 /* Low level IO area allocation on the SRMMU. */
473 static inline void srmmu_mapioaddr(unsigned long physaddr,
474 unsigned long virt_addr, int bus_type)
476 pgd_t *pgdp;
477 pmd_t *pmdp;
478 pte_t *ptep;
479 unsigned long tmp;
481 physaddr &= PAGE_MASK;
482 pgdp = pgd_offset_k(virt_addr);
483 pmdp = pmd_offset(pgdp, virt_addr);
484 ptep = pte_offset_kernel(pmdp, virt_addr);
485 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
487 /* I need to test whether this is consistent over all
488 * sun4m's. The bus_type represents the upper 4 bits of
489 * 36-bit physical address on the I/O space lines...
491 tmp |= (bus_type << 28);
492 tmp |= SRMMU_PRIV;
493 __flush_page_to_ram(virt_addr);
494 set_pte(ptep, __pte(tmp));
497 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
498 unsigned long xva, unsigned int len)
500 while (len != 0) {
501 len -= PAGE_SIZE;
502 srmmu_mapioaddr(xpa, xva, bus);
503 xva += PAGE_SIZE;
504 xpa += PAGE_SIZE;
506 flush_tlb_all();
509 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
511 pgd_t *pgdp;
512 pmd_t *pmdp;
513 pte_t *ptep;
515 pgdp = pgd_offset_k(virt_addr);
516 pmdp = pmd_offset(pgdp, virt_addr);
517 ptep = pte_offset_kernel(pmdp, virt_addr);
519 /* No need to flush uncacheable page. */
520 __pte_clear(ptep);
523 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
525 while (len != 0) {
526 len -= PAGE_SIZE;
527 srmmu_unmapioaddr(virt_addr);
528 virt_addr += PAGE_SIZE;
530 flush_tlb_all();
533 /* tsunami.S */
534 extern void tsunami_flush_cache_all(void);
535 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
536 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
537 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
538 extern void tsunami_flush_page_to_ram(unsigned long page);
539 extern void tsunami_flush_page_for_dma(unsigned long page);
540 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
541 extern void tsunami_flush_tlb_all(void);
542 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
543 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
544 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
545 extern void tsunami_setup_blockops(void);
547 /* swift.S */
548 extern void swift_flush_cache_all(void);
549 extern void swift_flush_cache_mm(struct mm_struct *mm);
550 extern void swift_flush_cache_range(struct vm_area_struct *vma,
551 unsigned long start, unsigned long end);
552 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
553 extern void swift_flush_page_to_ram(unsigned long page);
554 extern void swift_flush_page_for_dma(unsigned long page);
555 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
556 extern void swift_flush_tlb_all(void);
557 extern void swift_flush_tlb_mm(struct mm_struct *mm);
558 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
559 unsigned long start, unsigned long end);
560 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
562 #if 0 /* P3: deadwood to debug precise flushes on Swift. */
563 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
565 int cctx, ctx1;
567 page &= PAGE_MASK;
568 if ((ctx1 = vma->vm_mm->context) != -1) {
569 cctx = srmmu_get_context();
570 /* Is context # ever different from current context? P3 */
571 if (cctx != ctx1) {
572 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
573 srmmu_set_context(ctx1);
574 swift_flush_page(page);
575 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
576 "r" (page), "i" (ASI_M_FLUSH_PROBE));
577 srmmu_set_context(cctx);
578 } else {
579 /* Rm. prot. bits from virt. c. */
580 /* swift_flush_cache_all(); */
581 /* swift_flush_cache_page(vma, page); */
582 swift_flush_page(page);
584 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
585 "r" (page), "i" (ASI_M_FLUSH_PROBE));
586 /* same as above: srmmu_flush_tlb_page() */
590 #endif
593 * The following are all MBUS based SRMMU modules, and therefore could
594 * be found in a multiprocessor configuration. On the whole, these
595 * chips seems to be much more touchy about DVMA and page tables
596 * with respect to cache coherency.
599 /* viking.S */
600 extern void viking_flush_cache_all(void);
601 extern void viking_flush_cache_mm(struct mm_struct *mm);
602 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
603 unsigned long end);
604 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
605 extern void viking_flush_page_to_ram(unsigned long page);
606 extern void viking_flush_page_for_dma(unsigned long page);
607 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
608 extern void viking_flush_page(unsigned long page);
609 extern void viking_mxcc_flush_page(unsigned long page);
610 extern void viking_flush_tlb_all(void);
611 extern void viking_flush_tlb_mm(struct mm_struct *mm);
612 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
613 unsigned long end);
614 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
615 unsigned long page);
616 extern void sun4dsmp_flush_tlb_all(void);
617 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
618 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
619 unsigned long end);
620 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
621 unsigned long page);
623 /* hypersparc.S */
624 extern void hypersparc_flush_cache_all(void);
625 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
626 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
627 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
628 extern void hypersparc_flush_page_to_ram(unsigned long page);
629 extern void hypersparc_flush_page_for_dma(unsigned long page);
630 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
631 extern void hypersparc_flush_tlb_all(void);
632 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
633 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
634 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
635 extern void hypersparc_setup_blockops(void);
638 * NOTE: All of this startup code assumes the low 16mb (approx.) of
639 * kernel mappings are done with one single contiguous chunk of
640 * ram. On small ram machines (classics mainly) we only get
641 * around 8mb mapped for us.
644 static void __init early_pgtable_allocfail(char *type)
646 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
647 prom_halt();
650 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
651 unsigned long end)
653 pgd_t *pgdp;
654 pmd_t *pmdp;
655 pte_t *ptep;
657 while (start < end) {
658 pgdp = pgd_offset_k(start);
659 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
660 pmdp = __srmmu_get_nocache(
661 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
662 if (pmdp == NULL)
663 early_pgtable_allocfail("pmd");
664 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
665 pgd_set(__nocache_fix(pgdp), pmdp);
667 pmdp = pmd_offset(__nocache_fix(pgdp), start);
668 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
669 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
670 if (ptep == NULL)
671 early_pgtable_allocfail("pte");
672 memset(__nocache_fix(ptep), 0, PTE_SIZE);
673 pmd_set(__nocache_fix(pmdp), ptep);
675 if (start > (0xffffffffUL - PMD_SIZE))
676 break;
677 start = (start + PMD_SIZE) & PMD_MASK;
681 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
682 unsigned long end)
684 pgd_t *pgdp;
685 pmd_t *pmdp;
686 pte_t *ptep;
688 while (start < end) {
689 pgdp = pgd_offset_k(start);
690 if (pgd_none(*pgdp)) {
691 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
692 if (pmdp == NULL)
693 early_pgtable_allocfail("pmd");
694 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
695 pgd_set(pgdp, pmdp);
697 pmdp = pmd_offset(pgdp, start);
698 if (srmmu_pmd_none(*pmdp)) {
699 ptep = __srmmu_get_nocache(PTE_SIZE,
700 PTE_SIZE);
701 if (ptep == NULL)
702 early_pgtable_allocfail("pte");
703 memset(ptep, 0, PTE_SIZE);
704 pmd_set(pmdp, ptep);
706 if (start > (0xffffffffUL - PMD_SIZE))
707 break;
708 start = (start + PMD_SIZE) & PMD_MASK;
712 /* These flush types are not available on all chips... */
713 static inline unsigned long srmmu_probe(unsigned long vaddr)
715 unsigned long retval;
717 if (sparc_cpu_model != sparc_leon) {
719 vaddr &= PAGE_MASK;
720 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
721 "=r" (retval) :
722 "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
723 } else {
724 retval = leon_swprobe(vaddr, 0);
726 return retval;
730 * This is much cleaner than poking around physical address space
731 * looking at the prom's page table directly which is what most
732 * other OS's do. Yuck... this is much better.
734 static void __init srmmu_inherit_prom_mappings(unsigned long start,
735 unsigned long end)
737 unsigned long probed;
738 unsigned long addr;
739 pgd_t *pgdp;
740 pmd_t *pmdp;
741 pte_t *ptep;
742 int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
744 while (start <= end) {
745 if (start == 0)
746 break; /* probably wrap around */
747 if (start == 0xfef00000)
748 start = KADB_DEBUGGER_BEGVM;
749 probed = srmmu_probe(start);
750 if (!probed) {
751 /* continue probing until we find an entry */
752 start += PAGE_SIZE;
753 continue;
756 /* A red snapper, see what it really is. */
757 what = 0;
758 addr = start - PAGE_SIZE;
760 if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
761 if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
762 what = 1;
765 if (!(start & ~(SRMMU_PGDIR_MASK))) {
766 if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
767 what = 2;
770 pgdp = pgd_offset_k(start);
771 if (what == 2) {
772 *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
773 start += SRMMU_PGDIR_SIZE;
774 continue;
776 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
777 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
778 SRMMU_PMD_TABLE_SIZE);
779 if (pmdp == NULL)
780 early_pgtable_allocfail("pmd");
781 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
782 pgd_set(__nocache_fix(pgdp), pmdp);
784 pmdp = pmd_offset(__nocache_fix(pgdp), start);
785 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
786 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
787 if (ptep == NULL)
788 early_pgtable_allocfail("pte");
789 memset(__nocache_fix(ptep), 0, PTE_SIZE);
790 pmd_set(__nocache_fix(pmdp), ptep);
792 if (what == 1) {
793 /* We bend the rule where all 16 PTPs in a pmd_t point
794 * inside the same PTE page, and we leak a perfectly
795 * good hardware PTE piece. Alternatives seem worse.
797 unsigned int x; /* Index of HW PMD in soft cluster */
798 unsigned long *val;
799 x = (start >> PMD_SHIFT) & 15;
800 val = &pmdp->pmdv[x];
801 *(unsigned long *)__nocache_fix(val) = probed;
802 start += SRMMU_REAL_PMD_SIZE;
803 continue;
805 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
806 *(pte_t *)__nocache_fix(ptep) = __pte(probed);
807 start += PAGE_SIZE;
811 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
813 /* Create a third-level SRMMU 16MB page mapping. */
814 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
816 pgd_t *pgdp = pgd_offset_k(vaddr);
817 unsigned long big_pte;
819 big_pte = KERNEL_PTE(phys_base >> 4);
820 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
823 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
824 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
826 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
827 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
828 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
829 /* Map "low" memory only */
830 const unsigned long min_vaddr = PAGE_OFFSET;
831 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
833 if (vstart < min_vaddr || vstart >= max_vaddr)
834 return vstart;
836 if (vend > max_vaddr || vend < min_vaddr)
837 vend = max_vaddr;
839 while (vstart < vend) {
840 do_large_mapping(vstart, pstart);
841 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
843 return vstart;
846 static void __init map_kernel(void)
848 int i;
850 if (phys_base > 0) {
851 do_large_mapping(PAGE_OFFSET, phys_base);
854 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
855 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
859 void (*poke_srmmu)(void) __cpuinitdata = NULL;
861 extern unsigned long bootmem_init(unsigned long *pages_avail);
863 void __init srmmu_paging_init(void)
865 int i;
866 phandle cpunode;
867 char node_str[128];
868 pgd_t *pgd;
869 pmd_t *pmd;
870 pte_t *pte;
871 unsigned long pages_avail;
873 init_mm.context = (unsigned long) NO_CONTEXT;
874 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
876 if (sparc_cpu_model == sun4d)
877 num_contexts = 65536; /* We know it is Viking */
878 else {
879 /* Find the number of contexts on the srmmu. */
880 cpunode = prom_getchild(prom_root_node);
881 num_contexts = 0;
882 while (cpunode != 0) {
883 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
884 if (!strcmp(node_str, "cpu")) {
885 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
886 break;
888 cpunode = prom_getsibling(cpunode);
892 if (!num_contexts) {
893 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
894 prom_halt();
897 pages_avail = 0;
898 last_valid_pfn = bootmem_init(&pages_avail);
900 srmmu_nocache_calcsize();
901 srmmu_nocache_init();
902 srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
903 map_kernel();
905 /* ctx table has to be physically aligned to its size */
906 srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
907 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
909 for (i = 0; i < num_contexts; i++)
910 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
912 flush_cache_all();
913 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
914 #ifdef CONFIG_SMP
915 /* Stop from hanging here... */
916 local_ops->tlb_all();
917 #else
918 flush_tlb_all();
919 #endif
920 poke_srmmu();
922 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
923 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
925 srmmu_allocate_ptable_skeleton(
926 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
927 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
929 pgd = pgd_offset_k(PKMAP_BASE);
930 pmd = pmd_offset(pgd, PKMAP_BASE);
931 pte = pte_offset_kernel(pmd, PKMAP_BASE);
932 pkmap_page_table = pte;
934 flush_cache_all();
935 flush_tlb_all();
937 sparc_context_init(num_contexts);
939 kmap_init();
942 unsigned long zones_size[MAX_NR_ZONES];
943 unsigned long zholes_size[MAX_NR_ZONES];
944 unsigned long npages;
945 int znum;
947 for (znum = 0; znum < MAX_NR_ZONES; znum++)
948 zones_size[znum] = zholes_size[znum] = 0;
950 npages = max_low_pfn - pfn_base;
952 zones_size[ZONE_DMA] = npages;
953 zholes_size[ZONE_DMA] = npages - pages_avail;
955 npages = highend_pfn - max_low_pfn;
956 zones_size[ZONE_HIGHMEM] = npages;
957 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
959 free_area_init_node(0, zones_size, pfn_base, zholes_size);
963 void mmu_info(struct seq_file *m)
965 seq_printf(m,
966 "MMU type\t: %s\n"
967 "contexts\t: %d\n"
968 "nocache total\t: %ld\n"
969 "nocache used\t: %d\n",
970 srmmu_name,
971 num_contexts,
972 srmmu_nocache_size,
973 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
976 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
978 mm->context = NO_CONTEXT;
979 return 0;
982 void destroy_context(struct mm_struct *mm)
985 if (mm->context != NO_CONTEXT) {
986 flush_cache_mm(mm);
987 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
988 flush_tlb_mm(mm);
989 spin_lock(&srmmu_context_spinlock);
990 free_context(mm->context);
991 spin_unlock(&srmmu_context_spinlock);
992 mm->context = NO_CONTEXT;
996 /* Init various srmmu chip types. */
997 static void __init srmmu_is_bad(void)
999 prom_printf("Could not determine SRMMU chip type.\n");
1000 prom_halt();
1003 static void __init init_vac_layout(void)
1005 phandle nd;
1006 int cache_lines;
1007 char node_str[128];
1008 #ifdef CONFIG_SMP
1009 int cpu = 0;
1010 unsigned long max_size = 0;
1011 unsigned long min_line_size = 0x10000000;
1012 #endif
1014 nd = prom_getchild(prom_root_node);
1015 while ((nd = prom_getsibling(nd)) != 0) {
1016 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1017 if (!strcmp(node_str, "cpu")) {
1018 vac_line_size = prom_getint(nd, "cache-line-size");
1019 if (vac_line_size == -1) {
1020 prom_printf("can't determine cache-line-size, halting.\n");
1021 prom_halt();
1023 cache_lines = prom_getint(nd, "cache-nlines");
1024 if (cache_lines == -1) {
1025 prom_printf("can't determine cache-nlines, halting.\n");
1026 prom_halt();
1029 vac_cache_size = cache_lines * vac_line_size;
1030 #ifdef CONFIG_SMP
1031 if (vac_cache_size > max_size)
1032 max_size = vac_cache_size;
1033 if (vac_line_size < min_line_size)
1034 min_line_size = vac_line_size;
1035 //FIXME: cpus not contiguous!!
1036 cpu++;
1037 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1038 break;
1039 #else
1040 break;
1041 #endif
1044 if (nd == 0) {
1045 prom_printf("No CPU nodes found, halting.\n");
1046 prom_halt();
1048 #ifdef CONFIG_SMP
1049 vac_cache_size = max_size;
1050 vac_line_size = min_line_size;
1051 #endif
1052 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1053 (int)vac_cache_size, (int)vac_line_size);
1056 static void __cpuinit poke_hypersparc(void)
1058 volatile unsigned long clear;
1059 unsigned long mreg = srmmu_get_mmureg();
1061 hyper_flush_unconditional_combined();
1063 mreg &= ~(HYPERSPARC_CWENABLE);
1064 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1065 mreg |= (HYPERSPARC_CMODE);
1067 srmmu_set_mmureg(mreg);
1069 #if 0 /* XXX I think this is bad news... -DaveM */
1070 hyper_clear_all_tags();
1071 #endif
1073 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1074 hyper_flush_whole_icache();
1075 clear = srmmu_get_faddr();
1076 clear = srmmu_get_fstatus();
1079 static const struct sparc32_cachetlb_ops hypersparc_ops = {
1080 .cache_all = hypersparc_flush_cache_all,
1081 .cache_mm = hypersparc_flush_cache_mm,
1082 .cache_page = hypersparc_flush_cache_page,
1083 .cache_range = hypersparc_flush_cache_range,
1084 .tlb_all = hypersparc_flush_tlb_all,
1085 .tlb_mm = hypersparc_flush_tlb_mm,
1086 .tlb_page = hypersparc_flush_tlb_page,
1087 .tlb_range = hypersparc_flush_tlb_range,
1088 .page_to_ram = hypersparc_flush_page_to_ram,
1089 .sig_insns = hypersparc_flush_sig_insns,
1090 .page_for_dma = hypersparc_flush_page_for_dma,
1093 static void __init init_hypersparc(void)
1095 srmmu_name = "ROSS HyperSparc";
1096 srmmu_modtype = HyperSparc;
1098 init_vac_layout();
1100 is_hypersparc = 1;
1101 sparc32_cachetlb_ops = &hypersparc_ops;
1103 poke_srmmu = poke_hypersparc;
1105 hypersparc_setup_blockops();
1108 static void __cpuinit poke_swift(void)
1110 unsigned long mreg;
1112 /* Clear any crap from the cache or else... */
1113 swift_flush_cache_all();
1115 /* Enable I & D caches */
1116 mreg = srmmu_get_mmureg();
1117 mreg |= (SWIFT_IE | SWIFT_DE);
1119 * The Swift branch folding logic is completely broken. At
1120 * trap time, if things are just right, if can mistakenly
1121 * think that a trap is coming from kernel mode when in fact
1122 * it is coming from user mode (it mis-executes the branch in
1123 * the trap code). So you see things like crashme completely
1124 * hosing your machine which is completely unacceptable. Turn
1125 * this shit off... nice job Fujitsu.
1127 mreg &= ~(SWIFT_BF);
1128 srmmu_set_mmureg(mreg);
1131 static const struct sparc32_cachetlb_ops swift_ops = {
1132 .cache_all = swift_flush_cache_all,
1133 .cache_mm = swift_flush_cache_mm,
1134 .cache_page = swift_flush_cache_page,
1135 .cache_range = swift_flush_cache_range,
1136 .tlb_all = swift_flush_tlb_all,
1137 .tlb_mm = swift_flush_tlb_mm,
1138 .tlb_page = swift_flush_tlb_page,
1139 .tlb_range = swift_flush_tlb_range,
1140 .page_to_ram = swift_flush_page_to_ram,
1141 .sig_insns = swift_flush_sig_insns,
1142 .page_for_dma = swift_flush_page_for_dma,
1145 #define SWIFT_MASKID_ADDR 0x10003018
1146 static void __init init_swift(void)
1148 unsigned long swift_rev;
1150 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1151 "srl %0, 0x18, %0\n\t" :
1152 "=r" (swift_rev) :
1153 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1154 srmmu_name = "Fujitsu Swift";
1155 switch (swift_rev) {
1156 case 0x11:
1157 case 0x20:
1158 case 0x23:
1159 case 0x30:
1160 srmmu_modtype = Swift_lots_o_bugs;
1161 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1163 * Gee george, I wonder why Sun is so hush hush about
1164 * this hardware bug... really braindamage stuff going
1165 * on here. However I think we can find a way to avoid
1166 * all of the workaround overhead under Linux. Basically,
1167 * any page fault can cause kernel pages to become user
1168 * accessible (the mmu gets confused and clears some of
1169 * the ACC bits in kernel ptes). Aha, sounds pretty
1170 * horrible eh? But wait, after extensive testing it appears
1171 * that if you use pgd_t level large kernel pte's (like the
1172 * 4MB pages on the Pentium) the bug does not get tripped
1173 * at all. This avoids almost all of the major overhead.
1174 * Welcome to a world where your vendor tells you to,
1175 * "apply this kernel patch" instead of "sorry for the
1176 * broken hardware, send it back and we'll give you
1177 * properly functioning parts"
1179 break;
1180 case 0x25:
1181 case 0x31:
1182 srmmu_modtype = Swift_bad_c;
1183 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1185 * You see Sun allude to this hardware bug but never
1186 * admit things directly, they'll say things like,
1187 * "the Swift chip cache problems" or similar.
1189 break;
1190 default:
1191 srmmu_modtype = Swift_ok;
1192 break;
1195 sparc32_cachetlb_ops = &swift_ops;
1196 flush_page_for_dma_global = 0;
1199 * Are you now convinced that the Swift is one of the
1200 * biggest VLSI abortions of all time? Bravo Fujitsu!
1201 * Fujitsu, the !#?!%$'d up processor people. I bet if
1202 * you examined the microcode of the Swift you'd find
1203 * XXX's all over the place.
1205 poke_srmmu = poke_swift;
1208 static void turbosparc_flush_cache_all(void)
1210 flush_user_windows();
1211 turbosparc_idflash_clear();
1214 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1216 FLUSH_BEGIN(mm)
1217 flush_user_windows();
1218 turbosparc_idflash_clear();
1219 FLUSH_END
1222 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1224 FLUSH_BEGIN(vma->vm_mm)
1225 flush_user_windows();
1226 turbosparc_idflash_clear();
1227 FLUSH_END
1230 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1232 FLUSH_BEGIN(vma->vm_mm)
1233 flush_user_windows();
1234 if (vma->vm_flags & VM_EXEC)
1235 turbosparc_flush_icache();
1236 turbosparc_flush_dcache();
1237 FLUSH_END
1240 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1241 static void turbosparc_flush_page_to_ram(unsigned long page)
1243 #ifdef TURBOSPARC_WRITEBACK
1244 volatile unsigned long clear;
1246 if (srmmu_probe(page))
1247 turbosparc_flush_page_cache(page);
1248 clear = srmmu_get_fstatus();
1249 #endif
1252 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1256 static void turbosparc_flush_page_for_dma(unsigned long page)
1258 turbosparc_flush_dcache();
1261 static void turbosparc_flush_tlb_all(void)
1263 srmmu_flush_whole_tlb();
1266 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1268 FLUSH_BEGIN(mm)
1269 srmmu_flush_whole_tlb();
1270 FLUSH_END
1273 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1275 FLUSH_BEGIN(vma->vm_mm)
1276 srmmu_flush_whole_tlb();
1277 FLUSH_END
1280 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1282 FLUSH_BEGIN(vma->vm_mm)
1283 srmmu_flush_whole_tlb();
1284 FLUSH_END
1288 static void __cpuinit poke_turbosparc(void)
1290 unsigned long mreg = srmmu_get_mmureg();
1291 unsigned long ccreg;
1293 /* Clear any crap from the cache or else... */
1294 turbosparc_flush_cache_all();
1295 /* Temporarily disable I & D caches */
1296 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1297 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1298 srmmu_set_mmureg(mreg);
1300 ccreg = turbosparc_get_ccreg();
1302 #ifdef TURBOSPARC_WRITEBACK
1303 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1304 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1305 /* Write-back D-cache, emulate VLSI
1306 * abortion number three, not number one */
1307 #else
1308 /* For now let's play safe, optimize later */
1309 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1310 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1311 ccreg &= ~(TURBOSPARC_uS2);
1312 /* Emulate VLSI abortion number three, not number one */
1313 #endif
1315 switch (ccreg & 7) {
1316 case 0: /* No SE cache */
1317 case 7: /* Test mode */
1318 break;
1319 default:
1320 ccreg |= (TURBOSPARC_SCENABLE);
1322 turbosparc_set_ccreg(ccreg);
1324 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1325 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1326 srmmu_set_mmureg(mreg);
1329 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1330 .cache_all = turbosparc_flush_cache_all,
1331 .cache_mm = turbosparc_flush_cache_mm,
1332 .cache_page = turbosparc_flush_cache_page,
1333 .cache_range = turbosparc_flush_cache_range,
1334 .tlb_all = turbosparc_flush_tlb_all,
1335 .tlb_mm = turbosparc_flush_tlb_mm,
1336 .tlb_page = turbosparc_flush_tlb_page,
1337 .tlb_range = turbosparc_flush_tlb_range,
1338 .page_to_ram = turbosparc_flush_page_to_ram,
1339 .sig_insns = turbosparc_flush_sig_insns,
1340 .page_for_dma = turbosparc_flush_page_for_dma,
1343 static void __init init_turbosparc(void)
1345 srmmu_name = "Fujitsu TurboSparc";
1346 srmmu_modtype = TurboSparc;
1347 sparc32_cachetlb_ops = &turbosparc_ops;
1348 poke_srmmu = poke_turbosparc;
1351 static void __cpuinit poke_tsunami(void)
1353 unsigned long mreg = srmmu_get_mmureg();
1355 tsunami_flush_icache();
1356 tsunami_flush_dcache();
1357 mreg &= ~TSUNAMI_ITD;
1358 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1359 srmmu_set_mmureg(mreg);
1362 static const struct sparc32_cachetlb_ops tsunami_ops = {
1363 .cache_all = tsunami_flush_cache_all,
1364 .cache_mm = tsunami_flush_cache_mm,
1365 .cache_page = tsunami_flush_cache_page,
1366 .cache_range = tsunami_flush_cache_range,
1367 .tlb_all = tsunami_flush_tlb_all,
1368 .tlb_mm = tsunami_flush_tlb_mm,
1369 .tlb_page = tsunami_flush_tlb_page,
1370 .tlb_range = tsunami_flush_tlb_range,
1371 .page_to_ram = tsunami_flush_page_to_ram,
1372 .sig_insns = tsunami_flush_sig_insns,
1373 .page_for_dma = tsunami_flush_page_for_dma,
1376 static void __init init_tsunami(void)
1379 * Tsunami's pretty sane, Sun and TI actually got it
1380 * somewhat right this time. Fujitsu should have
1381 * taken some lessons from them.
1384 srmmu_name = "TI Tsunami";
1385 srmmu_modtype = Tsunami;
1386 sparc32_cachetlb_ops = &tsunami_ops;
1387 poke_srmmu = poke_tsunami;
1389 tsunami_setup_blockops();
1392 static void __cpuinit poke_viking(void)
1394 unsigned long mreg = srmmu_get_mmureg();
1395 static int smp_catch;
1397 if (viking_mxcc_present) {
1398 unsigned long mxcc_control = mxcc_get_creg();
1400 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1401 mxcc_control &= ~(MXCC_CTL_RRC);
1402 mxcc_set_creg(mxcc_control);
1405 * We don't need memory parity checks.
1406 * XXX This is a mess, have to dig out later. ecd.
1407 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1410 /* We do cache ptables on MXCC. */
1411 mreg |= VIKING_TCENABLE;
1412 } else {
1413 unsigned long bpreg;
1415 mreg &= ~(VIKING_TCENABLE);
1416 if (smp_catch++) {
1417 /* Must disable mixed-cmd mode here for other cpu's. */
1418 bpreg = viking_get_bpreg();
1419 bpreg &= ~(VIKING_ACTION_MIX);
1420 viking_set_bpreg(bpreg);
1422 /* Just in case PROM does something funny. */
1423 msi_set_sync();
1427 mreg |= VIKING_SPENABLE;
1428 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1429 mreg |= VIKING_SBENABLE;
1430 mreg &= ~(VIKING_ACENABLE);
1431 srmmu_set_mmureg(mreg);
1434 static struct sparc32_cachetlb_ops viking_ops = {
1435 .cache_all = viking_flush_cache_all,
1436 .cache_mm = viking_flush_cache_mm,
1437 .cache_page = viking_flush_cache_page,
1438 .cache_range = viking_flush_cache_range,
1439 .tlb_all = viking_flush_tlb_all,
1440 .tlb_mm = viking_flush_tlb_mm,
1441 .tlb_page = viking_flush_tlb_page,
1442 .tlb_range = viking_flush_tlb_range,
1443 .page_to_ram = viking_flush_page_to_ram,
1444 .sig_insns = viking_flush_sig_insns,
1445 .page_for_dma = viking_flush_page_for_dma,
1448 #ifdef CONFIG_SMP
1449 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1450 * perform the local TLB flush and all the other cpus will see it.
1451 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1452 * that requires that we add some synchronization to these flushes.
1454 * The bug is that the fifo which keeps track of all the pending TLB
1455 * broadcasts in the system is an entry or two too small, so if we
1456 * have too many going at once we'll overflow that fifo and lose a TLB
1457 * flush resulting in corruption.
1459 * Our workaround is to take a global spinlock around the TLB flushes,
1460 * which guarentees we won't ever have too many pending. It's a big
1461 * hammer, but a semaphore like system to make sure we only have N TLB
1462 * flushes going at once will require SMP locking anyways so there's
1463 * no real value in trying any harder than this.
1465 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops = {
1466 .cache_all = viking_flush_cache_all,
1467 .cache_mm = viking_flush_cache_mm,
1468 .cache_page = viking_flush_cache_page,
1469 .cache_range = viking_flush_cache_range,
1470 .tlb_all = sun4dsmp_flush_tlb_all,
1471 .tlb_mm = sun4dsmp_flush_tlb_mm,
1472 .tlb_page = sun4dsmp_flush_tlb_page,
1473 .tlb_range = sun4dsmp_flush_tlb_range,
1474 .page_to_ram = viking_flush_page_to_ram,
1475 .sig_insns = viking_flush_sig_insns,
1476 .page_for_dma = viking_flush_page_for_dma,
1478 #endif
1480 static void __init init_viking(void)
1482 unsigned long mreg = srmmu_get_mmureg();
1484 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1485 if (mreg & VIKING_MMODE) {
1486 srmmu_name = "TI Viking";
1487 viking_mxcc_present = 0;
1488 msi_set_sync();
1491 * We need this to make sure old viking takes no hits
1492 * on it's cache for dma snoops to workaround the
1493 * "load from non-cacheable memory" interrupt bug.
1494 * This is only necessary because of the new way in
1495 * which we use the IOMMU.
1497 viking_ops.page_for_dma = viking_flush_page;
1498 #ifdef CONFIG_SMP
1499 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1500 #endif
1501 flush_page_for_dma_global = 0;
1502 } else {
1503 srmmu_name = "TI Viking/MXCC";
1504 viking_mxcc_present = 1;
1505 srmmu_cache_pagetables = 1;
1508 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1509 &viking_ops;
1510 #ifdef CONFIG_SMP
1511 if (sparc_cpu_model == sun4d)
1512 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1513 &viking_sun4d_smp_ops;
1514 #endif
1516 poke_srmmu = poke_viking;
1519 /* Probe for the srmmu chip version. */
1520 static void __init get_srmmu_type(void)
1522 unsigned long mreg, psr;
1523 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1525 srmmu_modtype = SRMMU_INVAL_MOD;
1526 hwbug_bitmask = 0;
1528 mreg = srmmu_get_mmureg(); psr = get_psr();
1529 mod_typ = (mreg & 0xf0000000) >> 28;
1530 mod_rev = (mreg & 0x0f000000) >> 24;
1531 psr_typ = (psr >> 28) & 0xf;
1532 psr_vers = (psr >> 24) & 0xf;
1534 /* First, check for sparc-leon. */
1535 if (sparc_cpu_model == sparc_leon) {
1536 init_leon();
1537 return;
1540 /* Second, check for HyperSparc or Cypress. */
1541 if (mod_typ == 1) {
1542 switch (mod_rev) {
1543 case 7:
1544 /* UP or MP Hypersparc */
1545 init_hypersparc();
1546 break;
1547 case 0:
1548 case 2:
1549 case 10:
1550 case 11:
1551 case 12:
1552 case 13:
1553 case 14:
1554 case 15:
1555 default:
1556 prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1557 prom_halt();
1558 break;
1560 return;
1563 /* Now Fujitsu TurboSparc. It might happen that it is
1564 * in Swift emulation mode, so we will check later...
1566 if (psr_typ == 0 && psr_vers == 5) {
1567 init_turbosparc();
1568 return;
1571 /* Next check for Fujitsu Swift. */
1572 if (psr_typ == 0 && psr_vers == 4) {
1573 phandle cpunode;
1574 char node_str[128];
1576 /* Look if it is not a TurboSparc emulating Swift... */
1577 cpunode = prom_getchild(prom_root_node);
1578 while ((cpunode = prom_getsibling(cpunode)) != 0) {
1579 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1580 if (!strcmp(node_str, "cpu")) {
1581 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1582 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1583 init_turbosparc();
1584 return;
1586 break;
1590 init_swift();
1591 return;
1594 /* Now the Viking family of srmmu. */
1595 if (psr_typ == 4 &&
1596 ((psr_vers == 0) ||
1597 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1598 init_viking();
1599 return;
1602 /* Finally the Tsunami. */
1603 if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1604 init_tsunami();
1605 return;
1608 /* Oh well */
1609 srmmu_is_bad();
1612 #ifdef CONFIG_SMP
1613 /* Local cross-calls. */
1614 static void smp_flush_page_for_dma(unsigned long page)
1616 xc1((smpfunc_t) local_ops->page_for_dma, page);
1617 local_ops->page_for_dma(page);
1620 static void smp_flush_cache_all(void)
1622 xc0((smpfunc_t) local_ops->cache_all);
1623 local_ops->cache_all();
1626 static void smp_flush_tlb_all(void)
1628 xc0((smpfunc_t) local_ops->tlb_all);
1629 local_ops->tlb_all();
1632 static void smp_flush_cache_mm(struct mm_struct *mm)
1634 if (mm->context != NO_CONTEXT) {
1635 cpumask_t cpu_mask;
1636 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1637 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1638 if (!cpumask_empty(&cpu_mask))
1639 xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1640 local_ops->cache_mm(mm);
1644 static void smp_flush_tlb_mm(struct mm_struct *mm)
1646 if (mm->context != NO_CONTEXT) {
1647 cpumask_t cpu_mask;
1648 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1649 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1650 if (!cpumask_empty(&cpu_mask)) {
1651 xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1652 if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1653 cpumask_copy(mm_cpumask(mm),
1654 cpumask_of(smp_processor_id()));
1656 local_ops->tlb_mm(mm);
1660 static void smp_flush_cache_range(struct vm_area_struct *vma,
1661 unsigned long start,
1662 unsigned long end)
1664 struct mm_struct *mm = vma->vm_mm;
1666 if (mm->context != NO_CONTEXT) {
1667 cpumask_t cpu_mask;
1668 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1669 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1670 if (!cpumask_empty(&cpu_mask))
1671 xc3((smpfunc_t) local_ops->cache_range,
1672 (unsigned long) vma, start, end);
1673 local_ops->cache_range(vma, start, end);
1677 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1678 unsigned long start,
1679 unsigned long end)
1681 struct mm_struct *mm = vma->vm_mm;
1683 if (mm->context != NO_CONTEXT) {
1684 cpumask_t cpu_mask;
1685 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1686 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1687 if (!cpumask_empty(&cpu_mask))
1688 xc3((smpfunc_t) local_ops->tlb_range,
1689 (unsigned long) vma, start, end);
1690 local_ops->tlb_range(vma, start, end);
1694 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1696 struct mm_struct *mm = vma->vm_mm;
1698 if (mm->context != NO_CONTEXT) {
1699 cpumask_t cpu_mask;
1700 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1701 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1702 if (!cpumask_empty(&cpu_mask))
1703 xc2((smpfunc_t) local_ops->cache_page,
1704 (unsigned long) vma, page);
1705 local_ops->cache_page(vma, page);
1709 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1711 struct mm_struct *mm = vma->vm_mm;
1713 if (mm->context != NO_CONTEXT) {
1714 cpumask_t cpu_mask;
1715 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1716 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1717 if (!cpumask_empty(&cpu_mask))
1718 xc2((smpfunc_t) local_ops->tlb_page,
1719 (unsigned long) vma, page);
1720 local_ops->tlb_page(vma, page);
1724 static void smp_flush_page_to_ram(unsigned long page)
1726 /* Current theory is that those who call this are the one's
1727 * who have just dirtied their cache with the pages contents
1728 * in kernel space, therefore we only run this on local cpu.
1730 * XXX This experiment failed, research further... -DaveM
1732 #if 1
1733 xc1((smpfunc_t) local_ops->page_to_ram, page);
1734 #endif
1735 local_ops->page_to_ram(page);
1738 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1740 cpumask_t cpu_mask;
1741 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1742 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1743 if (!cpumask_empty(&cpu_mask))
1744 xc2((smpfunc_t) local_ops->sig_insns,
1745 (unsigned long) mm, insn_addr);
1746 local_ops->sig_insns(mm, insn_addr);
1749 static struct sparc32_cachetlb_ops smp_cachetlb_ops = {
1750 .cache_all = smp_flush_cache_all,
1751 .cache_mm = smp_flush_cache_mm,
1752 .cache_page = smp_flush_cache_page,
1753 .cache_range = smp_flush_cache_range,
1754 .tlb_all = smp_flush_tlb_all,
1755 .tlb_mm = smp_flush_tlb_mm,
1756 .tlb_page = smp_flush_tlb_page,
1757 .tlb_range = smp_flush_tlb_range,
1758 .page_to_ram = smp_flush_page_to_ram,
1759 .sig_insns = smp_flush_sig_insns,
1760 .page_for_dma = smp_flush_page_for_dma,
1762 #endif
1764 /* Load up routines and constants for sun4m and sun4d mmu */
1765 void __init load_mmu(void)
1767 extern void ld_mmu_iommu(void);
1768 extern void ld_mmu_iounit(void);
1770 /* Functions */
1771 get_srmmu_type();
1773 #ifdef CONFIG_SMP
1774 /* El switcheroo... */
1775 local_ops = sparc32_cachetlb_ops;
1777 if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1778 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1779 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1780 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1781 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1784 if (poke_srmmu == poke_viking) {
1785 /* Avoid unnecessary cross calls. */
1786 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1787 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1788 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1789 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1791 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1792 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1793 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1796 /* It really is const after this point. */
1797 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1798 &smp_cachetlb_ops;
1799 #endif
1801 if (sparc_cpu_model == sun4d)
1802 ld_mmu_iounit();
1803 else
1804 ld_mmu_iommu();
1805 #ifdef CONFIG_SMP
1806 if (sparc_cpu_model == sun4d)
1807 sun4d_init_smp();
1808 else if (sparc_cpu_model == sparc_leon)
1809 leon_init_smp();
1810 else
1811 sun4m_init_smp();
1812 #endif