2 * srmmu.c: SRMMU specific routines for memory management.
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
11 #include <linux/seq_file.h>
12 #include <linux/spinlock.h>
13 #include <linux/bootmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/kdebug.h>
17 #include <linux/kernel.h>
18 #include <linux/init.h>
19 #include <linux/log2.h>
20 #include <linux/gfp.h>
24 #include <asm/mmu_context.h>
25 #include <asm/cacheflush.h>
26 #include <asm/tlbflush.h>
27 #include <asm/io-unit.h>
28 #include <asm/pgalloc.h>
29 #include <asm/pgtable.h>
30 #include <asm/bitext.h>
31 #include <asm/vaddrs.h>
32 #include <asm/cache.h>
33 #include <asm/traps.h>
34 #include <asm/oplib.h>
42 /* Now the cpu specific definitions. */
43 #include <asm/turbosparc.h>
44 #include <asm/tsunami.h>
45 #include <asm/viking.h>
46 #include <asm/swift.h>
53 enum mbus_module srmmu_modtype
;
54 static unsigned int hwbug_bitmask
;
58 extern struct resource sparc_iomap
;
60 extern unsigned long last_valid_pfn
;
62 static pgd_t
*srmmu_swapper_pg_dir
;
64 const struct sparc32_cachetlb_ops
*sparc32_cachetlb_ops
;
67 const struct sparc32_cachetlb_ops
*local_ops
;
69 #define FLUSH_BEGIN(mm)
72 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
76 int flush_page_for_dma_global
= 1;
80 ctxd_t
*srmmu_ctx_table_phys
;
81 static ctxd_t
*srmmu_context_table
;
83 int viking_mxcc_present
;
84 static DEFINE_SPINLOCK(srmmu_context_spinlock
);
86 static int is_hypersparc
;
88 static int srmmu_cache_pagetables
;
90 /* these will be initialized in srmmu_nocache_calcsize() */
91 static unsigned long srmmu_nocache_size
;
92 static unsigned long srmmu_nocache_end
;
94 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
95 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
97 /* The context table is a nocache user with the biggest alignment needs. */
98 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
100 void *srmmu_nocache_pool
;
101 void *srmmu_nocache_bitmap
;
102 static struct bit_map srmmu_nocache_map
;
104 static inline int srmmu_pmd_none(pmd_t pmd
)
105 { return !(pmd_val(pmd
) & 0xFFFFFFF); }
107 /* XXX should we hyper_flush_whole_icache here - Anton */
108 static inline void srmmu_ctxd_set(ctxd_t
*ctxp
, pgd_t
*pgdp
)
109 { set_pte((pte_t
*)ctxp
, (SRMMU_ET_PTD
| (__nocache_pa((unsigned long) pgdp
) >> 4))); }
111 void pmd_set(pmd_t
*pmdp
, pte_t
*ptep
)
113 unsigned long ptp
; /* Physical address, shifted right by 4 */
116 ptp
= __nocache_pa((unsigned long) ptep
) >> 4;
117 for (i
= 0; i
< PTRS_PER_PTE
/SRMMU_REAL_PTRS_PER_PTE
; i
++) {
118 set_pte((pte_t
*)&pmdp
->pmdv
[i
], SRMMU_ET_PTD
| ptp
);
119 ptp
+= (SRMMU_REAL_PTRS_PER_PTE
*sizeof(pte_t
) >> 4);
123 void pmd_populate(struct mm_struct
*mm
, pmd_t
*pmdp
, struct page
*ptep
)
125 unsigned long ptp
; /* Physical address, shifted right by 4 */
128 ptp
= page_to_pfn(ptep
) << (PAGE_SHIFT
-4); /* watch for overflow */
129 for (i
= 0; i
< PTRS_PER_PTE
/SRMMU_REAL_PTRS_PER_PTE
; i
++) {
130 set_pte((pte_t
*)&pmdp
->pmdv
[i
], SRMMU_ET_PTD
| ptp
);
131 ptp
+= (SRMMU_REAL_PTRS_PER_PTE
*sizeof(pte_t
) >> 4);
135 /* Find an entry in the third-level page table.. */
136 pte_t
*pte_offset_kernel(pmd_t
*dir
, unsigned long address
)
140 pte
= __nocache_va((dir
->pmdv
[0] & SRMMU_PTD_PMASK
) << 4);
141 return (pte_t
*) pte
+
142 ((address
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1));
146 * size: bytes to allocate in the nocache area.
147 * align: bytes, number to align at.
148 * Returns the virtual address of the allocated area.
150 static void *__srmmu_get_nocache(int size
, int align
)
155 if (size
< SRMMU_NOCACHE_BITMAP_SHIFT
) {
156 printk(KERN_ERR
"Size 0x%x too small for nocache request\n",
158 size
= SRMMU_NOCACHE_BITMAP_SHIFT
;
160 if (size
& (SRMMU_NOCACHE_BITMAP_SHIFT
- 1)) {
161 printk(KERN_ERR
"Size 0x%x unaligned int nocache request\n",
163 size
+= SRMMU_NOCACHE_BITMAP_SHIFT
- 1;
165 BUG_ON(align
> SRMMU_NOCACHE_ALIGN_MAX
);
167 offset
= bit_map_string_get(&srmmu_nocache_map
,
168 size
>> SRMMU_NOCACHE_BITMAP_SHIFT
,
169 align
>> SRMMU_NOCACHE_BITMAP_SHIFT
);
171 printk(KERN_ERR
"srmmu: out of nocache %d: %d/%d\n",
172 size
, (int) srmmu_nocache_size
,
173 srmmu_nocache_map
.used
<< SRMMU_NOCACHE_BITMAP_SHIFT
);
177 addr
= SRMMU_NOCACHE_VADDR
+ (offset
<< SRMMU_NOCACHE_BITMAP_SHIFT
);
181 void *srmmu_get_nocache(int size
, int align
)
185 tmp
= __srmmu_get_nocache(size
, align
);
188 memset(tmp
, 0, size
);
193 void srmmu_free_nocache(void *addr
, int size
)
198 vaddr
= (unsigned long)addr
;
199 if (vaddr
< SRMMU_NOCACHE_VADDR
) {
200 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
201 vaddr
, (unsigned long)SRMMU_NOCACHE_VADDR
);
204 if (vaddr
+ size
> srmmu_nocache_end
) {
205 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
206 vaddr
, srmmu_nocache_end
);
209 if (!is_power_of_2(size
)) {
210 printk("Size 0x%x is not a power of 2\n", size
);
213 if (size
< SRMMU_NOCACHE_BITMAP_SHIFT
) {
214 printk("Size 0x%x is too small\n", size
);
217 if (vaddr
& (size
- 1)) {
218 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr
, size
);
222 offset
= (vaddr
- SRMMU_NOCACHE_VADDR
) >> SRMMU_NOCACHE_BITMAP_SHIFT
;
223 size
= size
>> SRMMU_NOCACHE_BITMAP_SHIFT
;
225 bit_map_clear(&srmmu_nocache_map
, offset
, size
);
228 static void srmmu_early_allocate_ptable_skeleton(unsigned long start
,
231 /* Return how much physical memory we have. */
232 static unsigned long __init
probe_memory(void)
234 unsigned long total
= 0;
237 for (i
= 0; sp_banks
[i
].num_bytes
; i
++)
238 total
+= sp_banks
[i
].num_bytes
;
244 * Reserve nocache dynamically proportionally to the amount of
245 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
247 static void __init
srmmu_nocache_calcsize(void)
249 unsigned long sysmemavail
= probe_memory() / 1024;
250 int srmmu_nocache_npages
;
252 srmmu_nocache_npages
=
253 sysmemavail
/ SRMMU_NOCACHE_ALCRATIO
/ 1024 * 256;
255 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
256 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
257 if (srmmu_nocache_npages
< SRMMU_MIN_NOCACHE_PAGES
)
258 srmmu_nocache_npages
= SRMMU_MIN_NOCACHE_PAGES
;
260 /* anything above 1280 blows up */
261 if (srmmu_nocache_npages
> SRMMU_MAX_NOCACHE_PAGES
)
262 srmmu_nocache_npages
= SRMMU_MAX_NOCACHE_PAGES
;
264 srmmu_nocache_size
= srmmu_nocache_npages
* PAGE_SIZE
;
265 srmmu_nocache_end
= SRMMU_NOCACHE_VADDR
+ srmmu_nocache_size
;
268 static void __init
srmmu_nocache_init(void)
270 unsigned int bitmap_bits
;
274 unsigned long paddr
, vaddr
;
275 unsigned long pteval
;
277 bitmap_bits
= srmmu_nocache_size
>> SRMMU_NOCACHE_BITMAP_SHIFT
;
279 srmmu_nocache_pool
= __alloc_bootmem(srmmu_nocache_size
,
280 SRMMU_NOCACHE_ALIGN_MAX
, 0UL);
281 memset(srmmu_nocache_pool
, 0, srmmu_nocache_size
);
283 srmmu_nocache_bitmap
= __alloc_bootmem(bitmap_bits
>> 3, SMP_CACHE_BYTES
, 0UL);
284 bit_map_init(&srmmu_nocache_map
, srmmu_nocache_bitmap
, bitmap_bits
);
286 srmmu_swapper_pg_dir
= __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE
, SRMMU_PGD_TABLE_SIZE
);
287 memset(__nocache_fix(srmmu_swapper_pg_dir
), 0, SRMMU_PGD_TABLE_SIZE
);
288 init_mm
.pgd
= srmmu_swapper_pg_dir
;
290 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR
, srmmu_nocache_end
);
292 paddr
= __pa((unsigned long)srmmu_nocache_pool
);
293 vaddr
= SRMMU_NOCACHE_VADDR
;
295 while (vaddr
< srmmu_nocache_end
) {
296 pgd
= pgd_offset_k(vaddr
);
297 pmd
= pmd_offset(__nocache_fix(pgd
), vaddr
);
298 pte
= pte_offset_kernel(__nocache_fix(pmd
), vaddr
);
300 pteval
= ((paddr
>> 4) | SRMMU_ET_PTE
| SRMMU_PRIV
);
302 if (srmmu_cache_pagetables
)
303 pteval
|= SRMMU_CACHE
;
305 set_pte(__nocache_fix(pte
), __pte(pteval
));
315 pgd_t
*get_pgd_fast(void)
319 pgd
= __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE
, SRMMU_PGD_TABLE_SIZE
);
321 pgd_t
*init
= pgd_offset_k(0);
322 memset(pgd
, 0, USER_PTRS_PER_PGD
* sizeof(pgd_t
));
323 memcpy(pgd
+ USER_PTRS_PER_PGD
, init
+ USER_PTRS_PER_PGD
,
324 (PTRS_PER_PGD
- USER_PTRS_PER_PGD
) * sizeof(pgd_t
));
331 * Hardware needs alignment to 256 only, but we align to whole page size
332 * to reduce fragmentation problems due to the buddy principle.
333 * XXX Provide actual fragmentation statistics in /proc.
335 * Alignments up to the page size are the same for physical and virtual
336 * addresses of the nocache area.
338 pgtable_t
pte_alloc_one(struct mm_struct
*mm
, unsigned long address
)
343 if ((pte
= (unsigned long)pte_alloc_one_kernel(mm
, address
)) == 0)
345 page
= pfn_to_page(__nocache_pa(pte
) >> PAGE_SHIFT
);
346 pgtable_page_ctor(page
);
350 void pte_free(struct mm_struct
*mm
, pgtable_t pte
)
354 pgtable_page_dtor(pte
);
355 p
= (unsigned long)page_address(pte
); /* Cached address (for test) */
358 p
= page_to_pfn(pte
) << PAGE_SHIFT
; /* Physical address */
360 /* free non cached virtual address*/
361 srmmu_free_nocache(__nocache_va(p
), PTE_SIZE
);
364 /* context handling - a dynamically sized pool is used */
365 #define NO_CONTEXT -1
368 struct ctx_list
*next
;
369 struct ctx_list
*prev
;
370 unsigned int ctx_number
;
371 struct mm_struct
*ctx_mm
;
374 static struct ctx_list
*ctx_list_pool
;
375 static struct ctx_list ctx_free
;
376 static struct ctx_list ctx_used
;
378 /* At boot time we determine the number of contexts */
379 static int num_contexts
;
381 static inline void remove_from_ctx_list(struct ctx_list
*entry
)
383 entry
->next
->prev
= entry
->prev
;
384 entry
->prev
->next
= entry
->next
;
387 static inline void add_to_ctx_list(struct ctx_list
*head
, struct ctx_list
*entry
)
390 (entry
->prev
= head
->prev
)->next
= entry
;
393 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
394 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
397 static inline void alloc_context(struct mm_struct
*old_mm
, struct mm_struct
*mm
)
399 struct ctx_list
*ctxp
;
401 ctxp
= ctx_free
.next
;
402 if (ctxp
!= &ctx_free
) {
403 remove_from_ctx_list(ctxp
);
404 add_to_used_ctxlist(ctxp
);
405 mm
->context
= ctxp
->ctx_number
;
409 ctxp
= ctx_used
.next
;
410 if (ctxp
->ctx_mm
== old_mm
)
412 if (ctxp
== &ctx_used
)
413 panic("out of mmu contexts");
414 flush_cache_mm(ctxp
->ctx_mm
);
415 flush_tlb_mm(ctxp
->ctx_mm
);
416 remove_from_ctx_list(ctxp
);
417 add_to_used_ctxlist(ctxp
);
418 ctxp
->ctx_mm
->context
= NO_CONTEXT
;
420 mm
->context
= ctxp
->ctx_number
;
423 static inline void free_context(int context
)
425 struct ctx_list
*ctx_old
;
427 ctx_old
= ctx_list_pool
+ context
;
428 remove_from_ctx_list(ctx_old
);
429 add_to_free_ctxlist(ctx_old
);
432 static void __init
sparc_context_init(int numctx
)
437 size
= numctx
* sizeof(struct ctx_list
);
438 ctx_list_pool
= __alloc_bootmem(size
, SMP_CACHE_BYTES
, 0UL);
440 for (ctx
= 0; ctx
< numctx
; ctx
++) {
441 struct ctx_list
*clist
;
443 clist
= (ctx_list_pool
+ ctx
);
444 clist
->ctx_number
= ctx
;
445 clist
->ctx_mm
= NULL
;
447 ctx_free
.next
= ctx_free
.prev
= &ctx_free
;
448 ctx_used
.next
= ctx_used
.prev
= &ctx_used
;
449 for (ctx
= 0; ctx
< numctx
; ctx
++)
450 add_to_free_ctxlist(ctx_list_pool
+ ctx
);
453 void switch_mm(struct mm_struct
*old_mm
, struct mm_struct
*mm
,
454 struct task_struct
*tsk
)
456 if (mm
->context
== NO_CONTEXT
) {
457 spin_lock(&srmmu_context_spinlock
);
458 alloc_context(old_mm
, mm
);
459 spin_unlock(&srmmu_context_spinlock
);
460 srmmu_ctxd_set(&srmmu_context_table
[mm
->context
], mm
->pgd
);
463 if (sparc_cpu_model
== sparc_leon
)
467 hyper_flush_whole_icache();
469 srmmu_set_context(mm
->context
);
472 /* Low level IO area allocation on the SRMMU. */
473 static inline void srmmu_mapioaddr(unsigned long physaddr
,
474 unsigned long virt_addr
, int bus_type
)
481 physaddr
&= PAGE_MASK
;
482 pgdp
= pgd_offset_k(virt_addr
);
483 pmdp
= pmd_offset(pgdp
, virt_addr
);
484 ptep
= pte_offset_kernel(pmdp
, virt_addr
);
485 tmp
= (physaddr
>> 4) | SRMMU_ET_PTE
;
487 /* I need to test whether this is consistent over all
488 * sun4m's. The bus_type represents the upper 4 bits of
489 * 36-bit physical address on the I/O space lines...
491 tmp
|= (bus_type
<< 28);
493 __flush_page_to_ram(virt_addr
);
494 set_pte(ptep
, __pte(tmp
));
497 void srmmu_mapiorange(unsigned int bus
, unsigned long xpa
,
498 unsigned long xva
, unsigned int len
)
502 srmmu_mapioaddr(xpa
, xva
, bus
);
509 static inline void srmmu_unmapioaddr(unsigned long virt_addr
)
515 pgdp
= pgd_offset_k(virt_addr
);
516 pmdp
= pmd_offset(pgdp
, virt_addr
);
517 ptep
= pte_offset_kernel(pmdp
, virt_addr
);
519 /* No need to flush uncacheable page. */
523 void srmmu_unmapiorange(unsigned long virt_addr
, unsigned int len
)
527 srmmu_unmapioaddr(virt_addr
);
528 virt_addr
+= PAGE_SIZE
;
534 extern void tsunami_flush_cache_all(void);
535 extern void tsunami_flush_cache_mm(struct mm_struct
*mm
);
536 extern void tsunami_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
537 extern void tsunami_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
538 extern void tsunami_flush_page_to_ram(unsigned long page
);
539 extern void tsunami_flush_page_for_dma(unsigned long page
);
540 extern void tsunami_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
);
541 extern void tsunami_flush_tlb_all(void);
542 extern void tsunami_flush_tlb_mm(struct mm_struct
*mm
);
543 extern void tsunami_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
544 extern void tsunami_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
);
545 extern void tsunami_setup_blockops(void);
548 extern void swift_flush_cache_all(void);
549 extern void swift_flush_cache_mm(struct mm_struct
*mm
);
550 extern void swift_flush_cache_range(struct vm_area_struct
*vma
,
551 unsigned long start
, unsigned long end
);
552 extern void swift_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
553 extern void swift_flush_page_to_ram(unsigned long page
);
554 extern void swift_flush_page_for_dma(unsigned long page
);
555 extern void swift_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
);
556 extern void swift_flush_tlb_all(void);
557 extern void swift_flush_tlb_mm(struct mm_struct
*mm
);
558 extern void swift_flush_tlb_range(struct vm_area_struct
*vma
,
559 unsigned long start
, unsigned long end
);
560 extern void swift_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
);
562 #if 0 /* P3: deadwood to debug precise flushes on Swift. */
563 void swift_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
568 if ((ctx1
= vma
->vm_mm
->context
) != -1) {
569 cctx
= srmmu_get_context();
570 /* Is context # ever different from current context? P3 */
572 printk("flush ctx %02x curr %02x\n", ctx1
, cctx
);
573 srmmu_set_context(ctx1
);
574 swift_flush_page(page
);
575 __asm__
__volatile__("sta %%g0, [%0] %1\n\t" : :
576 "r" (page
), "i" (ASI_M_FLUSH_PROBE
));
577 srmmu_set_context(cctx
);
579 /* Rm. prot. bits from virt. c. */
580 /* swift_flush_cache_all(); */
581 /* swift_flush_cache_page(vma, page); */
582 swift_flush_page(page
);
584 __asm__
__volatile__("sta %%g0, [%0] %1\n\t" : :
585 "r" (page
), "i" (ASI_M_FLUSH_PROBE
));
586 /* same as above: srmmu_flush_tlb_page() */
593 * The following are all MBUS based SRMMU modules, and therefore could
594 * be found in a multiprocessor configuration. On the whole, these
595 * chips seems to be much more touchy about DVMA and page tables
596 * with respect to cache coherency.
600 extern void viking_flush_cache_all(void);
601 extern void viking_flush_cache_mm(struct mm_struct
*mm
);
602 extern void viking_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
,
604 extern void viking_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
605 extern void viking_flush_page_to_ram(unsigned long page
);
606 extern void viking_flush_page_for_dma(unsigned long page
);
607 extern void viking_flush_sig_insns(struct mm_struct
*mm
, unsigned long addr
);
608 extern void viking_flush_page(unsigned long page
);
609 extern void viking_mxcc_flush_page(unsigned long page
);
610 extern void viking_flush_tlb_all(void);
611 extern void viking_flush_tlb_mm(struct mm_struct
*mm
);
612 extern void viking_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
,
614 extern void viking_flush_tlb_page(struct vm_area_struct
*vma
,
616 extern void sun4dsmp_flush_tlb_all(void);
617 extern void sun4dsmp_flush_tlb_mm(struct mm_struct
*mm
);
618 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
,
620 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct
*vma
,
624 extern void hypersparc_flush_cache_all(void);
625 extern void hypersparc_flush_cache_mm(struct mm_struct
*mm
);
626 extern void hypersparc_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
627 extern void hypersparc_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
628 extern void hypersparc_flush_page_to_ram(unsigned long page
);
629 extern void hypersparc_flush_page_for_dma(unsigned long page
);
630 extern void hypersparc_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
);
631 extern void hypersparc_flush_tlb_all(void);
632 extern void hypersparc_flush_tlb_mm(struct mm_struct
*mm
);
633 extern void hypersparc_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
634 extern void hypersparc_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
);
635 extern void hypersparc_setup_blockops(void);
638 * NOTE: All of this startup code assumes the low 16mb (approx.) of
639 * kernel mappings are done with one single contiguous chunk of
640 * ram. On small ram machines (classics mainly) we only get
641 * around 8mb mapped for us.
644 static void __init
early_pgtable_allocfail(char *type
)
646 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type
);
650 static void __init
srmmu_early_allocate_ptable_skeleton(unsigned long start
,
657 while (start
< end
) {
658 pgdp
= pgd_offset_k(start
);
659 if (pgd_none(*(pgd_t
*)__nocache_fix(pgdp
))) {
660 pmdp
= __srmmu_get_nocache(
661 SRMMU_PMD_TABLE_SIZE
, SRMMU_PMD_TABLE_SIZE
);
663 early_pgtable_allocfail("pmd");
664 memset(__nocache_fix(pmdp
), 0, SRMMU_PMD_TABLE_SIZE
);
665 pgd_set(__nocache_fix(pgdp
), pmdp
);
667 pmdp
= pmd_offset(__nocache_fix(pgdp
), start
);
668 if (srmmu_pmd_none(*(pmd_t
*)__nocache_fix(pmdp
))) {
669 ptep
= __srmmu_get_nocache(PTE_SIZE
, PTE_SIZE
);
671 early_pgtable_allocfail("pte");
672 memset(__nocache_fix(ptep
), 0, PTE_SIZE
);
673 pmd_set(__nocache_fix(pmdp
), ptep
);
675 if (start
> (0xffffffffUL
- PMD_SIZE
))
677 start
= (start
+ PMD_SIZE
) & PMD_MASK
;
681 static void __init
srmmu_allocate_ptable_skeleton(unsigned long start
,
688 while (start
< end
) {
689 pgdp
= pgd_offset_k(start
);
690 if (pgd_none(*pgdp
)) {
691 pmdp
= __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE
, SRMMU_PMD_TABLE_SIZE
);
693 early_pgtable_allocfail("pmd");
694 memset(pmdp
, 0, SRMMU_PMD_TABLE_SIZE
);
697 pmdp
= pmd_offset(pgdp
, start
);
698 if (srmmu_pmd_none(*pmdp
)) {
699 ptep
= __srmmu_get_nocache(PTE_SIZE
,
702 early_pgtable_allocfail("pte");
703 memset(ptep
, 0, PTE_SIZE
);
706 if (start
> (0xffffffffUL
- PMD_SIZE
))
708 start
= (start
+ PMD_SIZE
) & PMD_MASK
;
712 /* These flush types are not available on all chips... */
713 static inline unsigned long srmmu_probe(unsigned long vaddr
)
715 unsigned long retval
;
717 if (sparc_cpu_model
!= sparc_leon
) {
720 __asm__
__volatile__("lda [%1] %2, %0\n\t" :
722 "r" (vaddr
| 0x400), "i" (ASI_M_FLUSH_PROBE
));
724 retval
= leon_swprobe(vaddr
, 0);
730 * This is much cleaner than poking around physical address space
731 * looking at the prom's page table directly which is what most
732 * other OS's do. Yuck... this is much better.
734 static void __init
srmmu_inherit_prom_mappings(unsigned long start
,
737 unsigned long probed
;
742 int what
; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
744 while (start
<= end
) {
746 break; /* probably wrap around */
747 if (start
== 0xfef00000)
748 start
= KADB_DEBUGGER_BEGVM
;
749 probed
= srmmu_probe(start
);
751 /* continue probing until we find an entry */
756 /* A red snapper, see what it really is. */
758 addr
= start
- PAGE_SIZE
;
760 if (!(start
& ~(SRMMU_REAL_PMD_MASK
))) {
761 if (srmmu_probe(addr
+ SRMMU_REAL_PMD_SIZE
) == probed
)
765 if (!(start
& ~(SRMMU_PGDIR_MASK
))) {
766 if (srmmu_probe(addr
+ SRMMU_PGDIR_SIZE
) == probed
)
770 pgdp
= pgd_offset_k(start
);
772 *(pgd_t
*)__nocache_fix(pgdp
) = __pgd(probed
);
773 start
+= SRMMU_PGDIR_SIZE
;
776 if (pgd_none(*(pgd_t
*)__nocache_fix(pgdp
))) {
777 pmdp
= __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE
,
778 SRMMU_PMD_TABLE_SIZE
);
780 early_pgtable_allocfail("pmd");
781 memset(__nocache_fix(pmdp
), 0, SRMMU_PMD_TABLE_SIZE
);
782 pgd_set(__nocache_fix(pgdp
), pmdp
);
784 pmdp
= pmd_offset(__nocache_fix(pgdp
), start
);
785 if (srmmu_pmd_none(*(pmd_t
*)__nocache_fix(pmdp
))) {
786 ptep
= __srmmu_get_nocache(PTE_SIZE
, PTE_SIZE
);
788 early_pgtable_allocfail("pte");
789 memset(__nocache_fix(ptep
), 0, PTE_SIZE
);
790 pmd_set(__nocache_fix(pmdp
), ptep
);
793 /* We bend the rule where all 16 PTPs in a pmd_t point
794 * inside the same PTE page, and we leak a perfectly
795 * good hardware PTE piece. Alternatives seem worse.
797 unsigned int x
; /* Index of HW PMD in soft cluster */
799 x
= (start
>> PMD_SHIFT
) & 15;
800 val
= &pmdp
->pmdv
[x
];
801 *(unsigned long *)__nocache_fix(val
) = probed
;
802 start
+= SRMMU_REAL_PMD_SIZE
;
805 ptep
= pte_offset_kernel(__nocache_fix(pmdp
), start
);
806 *(pte_t
*)__nocache_fix(ptep
) = __pte(probed
);
811 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
813 /* Create a third-level SRMMU 16MB page mapping. */
814 static void __init
do_large_mapping(unsigned long vaddr
, unsigned long phys_base
)
816 pgd_t
*pgdp
= pgd_offset_k(vaddr
);
817 unsigned long big_pte
;
819 big_pte
= KERNEL_PTE(phys_base
>> 4);
820 *(pgd_t
*)__nocache_fix(pgdp
) = __pgd(big_pte
);
823 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
824 static unsigned long __init
map_spbank(unsigned long vbase
, int sp_entry
)
826 unsigned long pstart
= (sp_banks
[sp_entry
].base_addr
& SRMMU_PGDIR_MASK
);
827 unsigned long vstart
= (vbase
& SRMMU_PGDIR_MASK
);
828 unsigned long vend
= SRMMU_PGDIR_ALIGN(vbase
+ sp_banks
[sp_entry
].num_bytes
);
829 /* Map "low" memory only */
830 const unsigned long min_vaddr
= PAGE_OFFSET
;
831 const unsigned long max_vaddr
= PAGE_OFFSET
+ SRMMU_MAXMEM
;
833 if (vstart
< min_vaddr
|| vstart
>= max_vaddr
)
836 if (vend
> max_vaddr
|| vend
< min_vaddr
)
839 while (vstart
< vend
) {
840 do_large_mapping(vstart
, pstart
);
841 vstart
+= SRMMU_PGDIR_SIZE
; pstart
+= SRMMU_PGDIR_SIZE
;
846 static void __init
map_kernel(void)
851 do_large_mapping(PAGE_OFFSET
, phys_base
);
854 for (i
= 0; sp_banks
[i
].num_bytes
!= 0; i
++) {
855 map_spbank((unsigned long)__va(sp_banks
[i
].base_addr
), i
);
859 void (*poke_srmmu
)(void) __cpuinitdata
= NULL
;
861 extern unsigned long bootmem_init(unsigned long *pages_avail
);
863 void __init
srmmu_paging_init(void)
871 unsigned long pages_avail
;
873 init_mm
.context
= (unsigned long) NO_CONTEXT
;
874 sparc_iomap
.start
= SUN4M_IOBASE_VADDR
; /* 16MB of IOSPACE on all sun4m's. */
876 if (sparc_cpu_model
== sun4d
)
877 num_contexts
= 65536; /* We know it is Viking */
879 /* Find the number of contexts on the srmmu. */
880 cpunode
= prom_getchild(prom_root_node
);
882 while (cpunode
!= 0) {
883 prom_getstring(cpunode
, "device_type", node_str
, sizeof(node_str
));
884 if (!strcmp(node_str
, "cpu")) {
885 num_contexts
= prom_getintdefault(cpunode
, "mmu-nctx", 0x8);
888 cpunode
= prom_getsibling(cpunode
);
893 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
898 last_valid_pfn
= bootmem_init(&pages_avail
);
900 srmmu_nocache_calcsize();
901 srmmu_nocache_init();
902 srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM
- PAGE_SIZE
));
905 /* ctx table has to be physically aligned to its size */
906 srmmu_context_table
= __srmmu_get_nocache(num_contexts
* sizeof(ctxd_t
), num_contexts
* sizeof(ctxd_t
));
907 srmmu_ctx_table_phys
= (ctxd_t
*)__nocache_pa((unsigned long)srmmu_context_table
);
909 for (i
= 0; i
< num_contexts
; i
++)
910 srmmu_ctxd_set((ctxd_t
*)__nocache_fix(&srmmu_context_table
[i
]), srmmu_swapper_pg_dir
);
913 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys
);
915 /* Stop from hanging here... */
916 local_ops
->tlb_all();
922 srmmu_allocate_ptable_skeleton(sparc_iomap
.start
, IOBASE_END
);
923 srmmu_allocate_ptable_skeleton(DVMA_VADDR
, DVMA_END
);
925 srmmu_allocate_ptable_skeleton(
926 __fix_to_virt(__end_of_fixed_addresses
- 1), FIXADDR_TOP
);
927 srmmu_allocate_ptable_skeleton(PKMAP_BASE
, PKMAP_END
);
929 pgd
= pgd_offset_k(PKMAP_BASE
);
930 pmd
= pmd_offset(pgd
, PKMAP_BASE
);
931 pte
= pte_offset_kernel(pmd
, PKMAP_BASE
);
932 pkmap_page_table
= pte
;
937 sparc_context_init(num_contexts
);
942 unsigned long zones_size
[MAX_NR_ZONES
];
943 unsigned long zholes_size
[MAX_NR_ZONES
];
944 unsigned long npages
;
947 for (znum
= 0; znum
< MAX_NR_ZONES
; znum
++)
948 zones_size
[znum
] = zholes_size
[znum
] = 0;
950 npages
= max_low_pfn
- pfn_base
;
952 zones_size
[ZONE_DMA
] = npages
;
953 zholes_size
[ZONE_DMA
] = npages
- pages_avail
;
955 npages
= highend_pfn
- max_low_pfn
;
956 zones_size
[ZONE_HIGHMEM
] = npages
;
957 zholes_size
[ZONE_HIGHMEM
] = npages
- calc_highpages();
959 free_area_init_node(0, zones_size
, pfn_base
, zholes_size
);
963 void mmu_info(struct seq_file
*m
)
968 "nocache total\t: %ld\n"
969 "nocache used\t: %d\n",
973 srmmu_nocache_map
.used
<< SRMMU_NOCACHE_BITMAP_SHIFT
);
976 int init_new_context(struct task_struct
*tsk
, struct mm_struct
*mm
)
978 mm
->context
= NO_CONTEXT
;
982 void destroy_context(struct mm_struct
*mm
)
985 if (mm
->context
!= NO_CONTEXT
) {
987 srmmu_ctxd_set(&srmmu_context_table
[mm
->context
], srmmu_swapper_pg_dir
);
989 spin_lock(&srmmu_context_spinlock
);
990 free_context(mm
->context
);
991 spin_unlock(&srmmu_context_spinlock
);
992 mm
->context
= NO_CONTEXT
;
996 /* Init various srmmu chip types. */
997 static void __init
srmmu_is_bad(void)
999 prom_printf("Could not determine SRMMU chip type.\n");
1003 static void __init
init_vac_layout(void)
1010 unsigned long max_size
= 0;
1011 unsigned long min_line_size
= 0x10000000;
1014 nd
= prom_getchild(prom_root_node
);
1015 while ((nd
= prom_getsibling(nd
)) != 0) {
1016 prom_getstring(nd
, "device_type", node_str
, sizeof(node_str
));
1017 if (!strcmp(node_str
, "cpu")) {
1018 vac_line_size
= prom_getint(nd
, "cache-line-size");
1019 if (vac_line_size
== -1) {
1020 prom_printf("can't determine cache-line-size, halting.\n");
1023 cache_lines
= prom_getint(nd
, "cache-nlines");
1024 if (cache_lines
== -1) {
1025 prom_printf("can't determine cache-nlines, halting.\n");
1029 vac_cache_size
= cache_lines
* vac_line_size
;
1031 if (vac_cache_size
> max_size
)
1032 max_size
= vac_cache_size
;
1033 if (vac_line_size
< min_line_size
)
1034 min_line_size
= vac_line_size
;
1035 //FIXME: cpus not contiguous!!
1037 if (cpu
>= nr_cpu_ids
|| !cpu_online(cpu
))
1045 prom_printf("No CPU nodes found, halting.\n");
1049 vac_cache_size
= max_size
;
1050 vac_line_size
= min_line_size
;
1052 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1053 (int)vac_cache_size
, (int)vac_line_size
);
1056 static void __cpuinit
poke_hypersparc(void)
1058 volatile unsigned long clear
;
1059 unsigned long mreg
= srmmu_get_mmureg();
1061 hyper_flush_unconditional_combined();
1063 mreg
&= ~(HYPERSPARC_CWENABLE
);
1064 mreg
|= (HYPERSPARC_CENABLE
| HYPERSPARC_WBENABLE
);
1065 mreg
|= (HYPERSPARC_CMODE
);
1067 srmmu_set_mmureg(mreg
);
1069 #if 0 /* XXX I think this is bad news... -DaveM */
1070 hyper_clear_all_tags();
1073 put_ross_icr(HYPERSPARC_ICCR_FTD
| HYPERSPARC_ICCR_ICE
);
1074 hyper_flush_whole_icache();
1075 clear
= srmmu_get_faddr();
1076 clear
= srmmu_get_fstatus();
1079 static const struct sparc32_cachetlb_ops hypersparc_ops
= {
1080 .cache_all
= hypersparc_flush_cache_all
,
1081 .cache_mm
= hypersparc_flush_cache_mm
,
1082 .cache_page
= hypersparc_flush_cache_page
,
1083 .cache_range
= hypersparc_flush_cache_range
,
1084 .tlb_all
= hypersparc_flush_tlb_all
,
1085 .tlb_mm
= hypersparc_flush_tlb_mm
,
1086 .tlb_page
= hypersparc_flush_tlb_page
,
1087 .tlb_range
= hypersparc_flush_tlb_range
,
1088 .page_to_ram
= hypersparc_flush_page_to_ram
,
1089 .sig_insns
= hypersparc_flush_sig_insns
,
1090 .page_for_dma
= hypersparc_flush_page_for_dma
,
1093 static void __init
init_hypersparc(void)
1095 srmmu_name
= "ROSS HyperSparc";
1096 srmmu_modtype
= HyperSparc
;
1101 sparc32_cachetlb_ops
= &hypersparc_ops
;
1103 poke_srmmu
= poke_hypersparc
;
1105 hypersparc_setup_blockops();
1108 static void __cpuinit
poke_swift(void)
1112 /* Clear any crap from the cache or else... */
1113 swift_flush_cache_all();
1115 /* Enable I & D caches */
1116 mreg
= srmmu_get_mmureg();
1117 mreg
|= (SWIFT_IE
| SWIFT_DE
);
1119 * The Swift branch folding logic is completely broken. At
1120 * trap time, if things are just right, if can mistakenly
1121 * think that a trap is coming from kernel mode when in fact
1122 * it is coming from user mode (it mis-executes the branch in
1123 * the trap code). So you see things like crashme completely
1124 * hosing your machine which is completely unacceptable. Turn
1125 * this shit off... nice job Fujitsu.
1127 mreg
&= ~(SWIFT_BF
);
1128 srmmu_set_mmureg(mreg
);
1131 static const struct sparc32_cachetlb_ops swift_ops
= {
1132 .cache_all
= swift_flush_cache_all
,
1133 .cache_mm
= swift_flush_cache_mm
,
1134 .cache_page
= swift_flush_cache_page
,
1135 .cache_range
= swift_flush_cache_range
,
1136 .tlb_all
= swift_flush_tlb_all
,
1137 .tlb_mm
= swift_flush_tlb_mm
,
1138 .tlb_page
= swift_flush_tlb_page
,
1139 .tlb_range
= swift_flush_tlb_range
,
1140 .page_to_ram
= swift_flush_page_to_ram
,
1141 .sig_insns
= swift_flush_sig_insns
,
1142 .page_for_dma
= swift_flush_page_for_dma
,
1145 #define SWIFT_MASKID_ADDR 0x10003018
1146 static void __init
init_swift(void)
1148 unsigned long swift_rev
;
1150 __asm__
__volatile__("lda [%1] %2, %0\n\t"
1151 "srl %0, 0x18, %0\n\t" :
1153 "r" (SWIFT_MASKID_ADDR
), "i" (ASI_M_BYPASS
));
1154 srmmu_name
= "Fujitsu Swift";
1155 switch (swift_rev
) {
1160 srmmu_modtype
= Swift_lots_o_bugs
;
1161 hwbug_bitmask
|= (HWBUG_KERN_ACCBROKEN
| HWBUG_KERN_CBITBROKEN
);
1163 * Gee george, I wonder why Sun is so hush hush about
1164 * this hardware bug... really braindamage stuff going
1165 * on here. However I think we can find a way to avoid
1166 * all of the workaround overhead under Linux. Basically,
1167 * any page fault can cause kernel pages to become user
1168 * accessible (the mmu gets confused and clears some of
1169 * the ACC bits in kernel ptes). Aha, sounds pretty
1170 * horrible eh? But wait, after extensive testing it appears
1171 * that if you use pgd_t level large kernel pte's (like the
1172 * 4MB pages on the Pentium) the bug does not get tripped
1173 * at all. This avoids almost all of the major overhead.
1174 * Welcome to a world where your vendor tells you to,
1175 * "apply this kernel patch" instead of "sorry for the
1176 * broken hardware, send it back and we'll give you
1177 * properly functioning parts"
1182 srmmu_modtype
= Swift_bad_c
;
1183 hwbug_bitmask
|= HWBUG_KERN_CBITBROKEN
;
1185 * You see Sun allude to this hardware bug but never
1186 * admit things directly, they'll say things like,
1187 * "the Swift chip cache problems" or similar.
1191 srmmu_modtype
= Swift_ok
;
1195 sparc32_cachetlb_ops
= &swift_ops
;
1196 flush_page_for_dma_global
= 0;
1199 * Are you now convinced that the Swift is one of the
1200 * biggest VLSI abortions of all time? Bravo Fujitsu!
1201 * Fujitsu, the !#?!%$'d up processor people. I bet if
1202 * you examined the microcode of the Swift you'd find
1203 * XXX's all over the place.
1205 poke_srmmu
= poke_swift
;
1208 static void turbosparc_flush_cache_all(void)
1210 flush_user_windows();
1211 turbosparc_idflash_clear();
1214 static void turbosparc_flush_cache_mm(struct mm_struct
*mm
)
1217 flush_user_windows();
1218 turbosparc_idflash_clear();
1222 static void turbosparc_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
1224 FLUSH_BEGIN(vma
->vm_mm
)
1225 flush_user_windows();
1226 turbosparc_idflash_clear();
1230 static void turbosparc_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
)
1232 FLUSH_BEGIN(vma
->vm_mm
)
1233 flush_user_windows();
1234 if (vma
->vm_flags
& VM_EXEC
)
1235 turbosparc_flush_icache();
1236 turbosparc_flush_dcache();
1240 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1241 static void turbosparc_flush_page_to_ram(unsigned long page
)
1243 #ifdef TURBOSPARC_WRITEBACK
1244 volatile unsigned long clear
;
1246 if (srmmu_probe(page
))
1247 turbosparc_flush_page_cache(page
);
1248 clear
= srmmu_get_fstatus();
1252 static void turbosparc_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
)
1256 static void turbosparc_flush_page_for_dma(unsigned long page
)
1258 turbosparc_flush_dcache();
1261 static void turbosparc_flush_tlb_all(void)
1263 srmmu_flush_whole_tlb();
1266 static void turbosparc_flush_tlb_mm(struct mm_struct
*mm
)
1269 srmmu_flush_whole_tlb();
1273 static void turbosparc_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
1275 FLUSH_BEGIN(vma
->vm_mm
)
1276 srmmu_flush_whole_tlb();
1280 static void turbosparc_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
1282 FLUSH_BEGIN(vma
->vm_mm
)
1283 srmmu_flush_whole_tlb();
1288 static void __cpuinit
poke_turbosparc(void)
1290 unsigned long mreg
= srmmu_get_mmureg();
1291 unsigned long ccreg
;
1293 /* Clear any crap from the cache or else... */
1294 turbosparc_flush_cache_all();
1295 /* Temporarily disable I & D caches */
1296 mreg
&= ~(TURBOSPARC_ICENABLE
| TURBOSPARC_DCENABLE
);
1297 mreg
&= ~(TURBOSPARC_PCENABLE
); /* Don't check parity */
1298 srmmu_set_mmureg(mreg
);
1300 ccreg
= turbosparc_get_ccreg();
1302 #ifdef TURBOSPARC_WRITEBACK
1303 ccreg
|= (TURBOSPARC_SNENABLE
); /* Do DVMA snooping in Dcache */
1304 ccreg
&= ~(TURBOSPARC_uS2
| TURBOSPARC_WTENABLE
);
1305 /* Write-back D-cache, emulate VLSI
1306 * abortion number three, not number one */
1308 /* For now let's play safe, optimize later */
1309 ccreg
|= (TURBOSPARC_SNENABLE
| TURBOSPARC_WTENABLE
);
1310 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1311 ccreg
&= ~(TURBOSPARC_uS2
);
1312 /* Emulate VLSI abortion number three, not number one */
1315 switch (ccreg
& 7) {
1316 case 0: /* No SE cache */
1317 case 7: /* Test mode */
1320 ccreg
|= (TURBOSPARC_SCENABLE
);
1322 turbosparc_set_ccreg(ccreg
);
1324 mreg
|= (TURBOSPARC_ICENABLE
| TURBOSPARC_DCENABLE
); /* I & D caches on */
1325 mreg
|= (TURBOSPARC_ICSNOOP
); /* Icache snooping on */
1326 srmmu_set_mmureg(mreg
);
1329 static const struct sparc32_cachetlb_ops turbosparc_ops
= {
1330 .cache_all
= turbosparc_flush_cache_all
,
1331 .cache_mm
= turbosparc_flush_cache_mm
,
1332 .cache_page
= turbosparc_flush_cache_page
,
1333 .cache_range
= turbosparc_flush_cache_range
,
1334 .tlb_all
= turbosparc_flush_tlb_all
,
1335 .tlb_mm
= turbosparc_flush_tlb_mm
,
1336 .tlb_page
= turbosparc_flush_tlb_page
,
1337 .tlb_range
= turbosparc_flush_tlb_range
,
1338 .page_to_ram
= turbosparc_flush_page_to_ram
,
1339 .sig_insns
= turbosparc_flush_sig_insns
,
1340 .page_for_dma
= turbosparc_flush_page_for_dma
,
1343 static void __init
init_turbosparc(void)
1345 srmmu_name
= "Fujitsu TurboSparc";
1346 srmmu_modtype
= TurboSparc
;
1347 sparc32_cachetlb_ops
= &turbosparc_ops
;
1348 poke_srmmu
= poke_turbosparc
;
1351 static void __cpuinit
poke_tsunami(void)
1353 unsigned long mreg
= srmmu_get_mmureg();
1355 tsunami_flush_icache();
1356 tsunami_flush_dcache();
1357 mreg
&= ~TSUNAMI_ITD
;
1358 mreg
|= (TSUNAMI_IENAB
| TSUNAMI_DENAB
);
1359 srmmu_set_mmureg(mreg
);
1362 static const struct sparc32_cachetlb_ops tsunami_ops
= {
1363 .cache_all
= tsunami_flush_cache_all
,
1364 .cache_mm
= tsunami_flush_cache_mm
,
1365 .cache_page
= tsunami_flush_cache_page
,
1366 .cache_range
= tsunami_flush_cache_range
,
1367 .tlb_all
= tsunami_flush_tlb_all
,
1368 .tlb_mm
= tsunami_flush_tlb_mm
,
1369 .tlb_page
= tsunami_flush_tlb_page
,
1370 .tlb_range
= tsunami_flush_tlb_range
,
1371 .page_to_ram
= tsunami_flush_page_to_ram
,
1372 .sig_insns
= tsunami_flush_sig_insns
,
1373 .page_for_dma
= tsunami_flush_page_for_dma
,
1376 static void __init
init_tsunami(void)
1379 * Tsunami's pretty sane, Sun and TI actually got it
1380 * somewhat right this time. Fujitsu should have
1381 * taken some lessons from them.
1384 srmmu_name
= "TI Tsunami";
1385 srmmu_modtype
= Tsunami
;
1386 sparc32_cachetlb_ops
= &tsunami_ops
;
1387 poke_srmmu
= poke_tsunami
;
1389 tsunami_setup_blockops();
1392 static void __cpuinit
poke_viking(void)
1394 unsigned long mreg
= srmmu_get_mmureg();
1395 static int smp_catch
;
1397 if (viking_mxcc_present
) {
1398 unsigned long mxcc_control
= mxcc_get_creg();
1400 mxcc_control
|= (MXCC_CTL_ECE
| MXCC_CTL_PRE
| MXCC_CTL_MCE
);
1401 mxcc_control
&= ~(MXCC_CTL_RRC
);
1402 mxcc_set_creg(mxcc_control
);
1405 * We don't need memory parity checks.
1406 * XXX This is a mess, have to dig out later. ecd.
1407 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1410 /* We do cache ptables on MXCC. */
1411 mreg
|= VIKING_TCENABLE
;
1413 unsigned long bpreg
;
1415 mreg
&= ~(VIKING_TCENABLE
);
1417 /* Must disable mixed-cmd mode here for other cpu's. */
1418 bpreg
= viking_get_bpreg();
1419 bpreg
&= ~(VIKING_ACTION_MIX
);
1420 viking_set_bpreg(bpreg
);
1422 /* Just in case PROM does something funny. */
1427 mreg
|= VIKING_SPENABLE
;
1428 mreg
|= (VIKING_ICENABLE
| VIKING_DCENABLE
);
1429 mreg
|= VIKING_SBENABLE
;
1430 mreg
&= ~(VIKING_ACENABLE
);
1431 srmmu_set_mmureg(mreg
);
1434 static struct sparc32_cachetlb_ops viking_ops
= {
1435 .cache_all
= viking_flush_cache_all
,
1436 .cache_mm
= viking_flush_cache_mm
,
1437 .cache_page
= viking_flush_cache_page
,
1438 .cache_range
= viking_flush_cache_range
,
1439 .tlb_all
= viking_flush_tlb_all
,
1440 .tlb_mm
= viking_flush_tlb_mm
,
1441 .tlb_page
= viking_flush_tlb_page
,
1442 .tlb_range
= viking_flush_tlb_range
,
1443 .page_to_ram
= viking_flush_page_to_ram
,
1444 .sig_insns
= viking_flush_sig_insns
,
1445 .page_for_dma
= viking_flush_page_for_dma
,
1449 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1450 * perform the local TLB flush and all the other cpus will see it.
1451 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1452 * that requires that we add some synchronization to these flushes.
1454 * The bug is that the fifo which keeps track of all the pending TLB
1455 * broadcasts in the system is an entry or two too small, so if we
1456 * have too many going at once we'll overflow that fifo and lose a TLB
1457 * flush resulting in corruption.
1459 * Our workaround is to take a global spinlock around the TLB flushes,
1460 * which guarentees we won't ever have too many pending. It's a big
1461 * hammer, but a semaphore like system to make sure we only have N TLB
1462 * flushes going at once will require SMP locking anyways so there's
1463 * no real value in trying any harder than this.
1465 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops
= {
1466 .cache_all
= viking_flush_cache_all
,
1467 .cache_mm
= viking_flush_cache_mm
,
1468 .cache_page
= viking_flush_cache_page
,
1469 .cache_range
= viking_flush_cache_range
,
1470 .tlb_all
= sun4dsmp_flush_tlb_all
,
1471 .tlb_mm
= sun4dsmp_flush_tlb_mm
,
1472 .tlb_page
= sun4dsmp_flush_tlb_page
,
1473 .tlb_range
= sun4dsmp_flush_tlb_range
,
1474 .page_to_ram
= viking_flush_page_to_ram
,
1475 .sig_insns
= viking_flush_sig_insns
,
1476 .page_for_dma
= viking_flush_page_for_dma
,
1480 static void __init
init_viking(void)
1482 unsigned long mreg
= srmmu_get_mmureg();
1484 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1485 if (mreg
& VIKING_MMODE
) {
1486 srmmu_name
= "TI Viking";
1487 viking_mxcc_present
= 0;
1491 * We need this to make sure old viking takes no hits
1492 * on it's cache for dma snoops to workaround the
1493 * "load from non-cacheable memory" interrupt bug.
1494 * This is only necessary because of the new way in
1495 * which we use the IOMMU.
1497 viking_ops
.page_for_dma
= viking_flush_page
;
1499 viking_sun4d_smp_ops
.page_for_dma
= viking_flush_page
;
1501 flush_page_for_dma_global
= 0;
1503 srmmu_name
= "TI Viking/MXCC";
1504 viking_mxcc_present
= 1;
1505 srmmu_cache_pagetables
= 1;
1508 sparc32_cachetlb_ops
= (const struct sparc32_cachetlb_ops
*)
1511 if (sparc_cpu_model
== sun4d
)
1512 sparc32_cachetlb_ops
= (const struct sparc32_cachetlb_ops
*)
1513 &viking_sun4d_smp_ops
;
1516 poke_srmmu
= poke_viking
;
1519 /* Probe for the srmmu chip version. */
1520 static void __init
get_srmmu_type(void)
1522 unsigned long mreg
, psr
;
1523 unsigned long mod_typ
, mod_rev
, psr_typ
, psr_vers
;
1525 srmmu_modtype
= SRMMU_INVAL_MOD
;
1528 mreg
= srmmu_get_mmureg(); psr
= get_psr();
1529 mod_typ
= (mreg
& 0xf0000000) >> 28;
1530 mod_rev
= (mreg
& 0x0f000000) >> 24;
1531 psr_typ
= (psr
>> 28) & 0xf;
1532 psr_vers
= (psr
>> 24) & 0xf;
1534 /* First, check for sparc-leon. */
1535 if (sparc_cpu_model
== sparc_leon
) {
1540 /* Second, check for HyperSparc or Cypress. */
1544 /* UP or MP Hypersparc */
1556 prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1563 /* Now Fujitsu TurboSparc. It might happen that it is
1564 * in Swift emulation mode, so we will check later...
1566 if (psr_typ
== 0 && psr_vers
== 5) {
1571 /* Next check for Fujitsu Swift. */
1572 if (psr_typ
== 0 && psr_vers
== 4) {
1576 /* Look if it is not a TurboSparc emulating Swift... */
1577 cpunode
= prom_getchild(prom_root_node
);
1578 while ((cpunode
= prom_getsibling(cpunode
)) != 0) {
1579 prom_getstring(cpunode
, "device_type", node_str
, sizeof(node_str
));
1580 if (!strcmp(node_str
, "cpu")) {
1581 if (!prom_getintdefault(cpunode
, "psr-implementation", 1) &&
1582 prom_getintdefault(cpunode
, "psr-version", 1) == 5) {
1594 /* Now the Viking family of srmmu. */
1597 ((psr_vers
== 1) && (mod_typ
== 0) && (mod_rev
== 0)))) {
1602 /* Finally the Tsunami. */
1603 if (psr_typ
== 4 && psr_vers
== 1 && (mod_typ
|| mod_rev
)) {
1613 /* Local cross-calls. */
1614 static void smp_flush_page_for_dma(unsigned long page
)
1616 xc1((smpfunc_t
) local_ops
->page_for_dma
, page
);
1617 local_ops
->page_for_dma(page
);
1620 static void smp_flush_cache_all(void)
1622 xc0((smpfunc_t
) local_ops
->cache_all
);
1623 local_ops
->cache_all();
1626 static void smp_flush_tlb_all(void)
1628 xc0((smpfunc_t
) local_ops
->tlb_all
);
1629 local_ops
->tlb_all();
1632 static void smp_flush_cache_mm(struct mm_struct
*mm
)
1634 if (mm
->context
!= NO_CONTEXT
) {
1636 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1637 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1638 if (!cpumask_empty(&cpu_mask
))
1639 xc1((smpfunc_t
) local_ops
->cache_mm
, (unsigned long) mm
);
1640 local_ops
->cache_mm(mm
);
1644 static void smp_flush_tlb_mm(struct mm_struct
*mm
)
1646 if (mm
->context
!= NO_CONTEXT
) {
1648 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1649 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1650 if (!cpumask_empty(&cpu_mask
)) {
1651 xc1((smpfunc_t
) local_ops
->tlb_mm
, (unsigned long) mm
);
1652 if (atomic_read(&mm
->mm_users
) == 1 && current
->active_mm
== mm
)
1653 cpumask_copy(mm_cpumask(mm
),
1654 cpumask_of(smp_processor_id()));
1656 local_ops
->tlb_mm(mm
);
1660 static void smp_flush_cache_range(struct vm_area_struct
*vma
,
1661 unsigned long start
,
1664 struct mm_struct
*mm
= vma
->vm_mm
;
1666 if (mm
->context
!= NO_CONTEXT
) {
1668 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1669 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1670 if (!cpumask_empty(&cpu_mask
))
1671 xc3((smpfunc_t
) local_ops
->cache_range
,
1672 (unsigned long) vma
, start
, end
);
1673 local_ops
->cache_range(vma
, start
, end
);
1677 static void smp_flush_tlb_range(struct vm_area_struct
*vma
,
1678 unsigned long start
,
1681 struct mm_struct
*mm
= vma
->vm_mm
;
1683 if (mm
->context
!= NO_CONTEXT
) {
1685 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1686 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1687 if (!cpumask_empty(&cpu_mask
))
1688 xc3((smpfunc_t
) local_ops
->tlb_range
,
1689 (unsigned long) vma
, start
, end
);
1690 local_ops
->tlb_range(vma
, start
, end
);
1694 static void smp_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
)
1696 struct mm_struct
*mm
= vma
->vm_mm
;
1698 if (mm
->context
!= NO_CONTEXT
) {
1700 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1701 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1702 if (!cpumask_empty(&cpu_mask
))
1703 xc2((smpfunc_t
) local_ops
->cache_page
,
1704 (unsigned long) vma
, page
);
1705 local_ops
->cache_page(vma
, page
);
1709 static void smp_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
1711 struct mm_struct
*mm
= vma
->vm_mm
;
1713 if (mm
->context
!= NO_CONTEXT
) {
1715 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1716 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1717 if (!cpumask_empty(&cpu_mask
))
1718 xc2((smpfunc_t
) local_ops
->tlb_page
,
1719 (unsigned long) vma
, page
);
1720 local_ops
->tlb_page(vma
, page
);
1724 static void smp_flush_page_to_ram(unsigned long page
)
1726 /* Current theory is that those who call this are the one's
1727 * who have just dirtied their cache with the pages contents
1728 * in kernel space, therefore we only run this on local cpu.
1730 * XXX This experiment failed, research further... -DaveM
1733 xc1((smpfunc_t
) local_ops
->page_to_ram
, page
);
1735 local_ops
->page_to_ram(page
);
1738 static void smp_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
)
1741 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1742 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1743 if (!cpumask_empty(&cpu_mask
))
1744 xc2((smpfunc_t
) local_ops
->sig_insns
,
1745 (unsigned long) mm
, insn_addr
);
1746 local_ops
->sig_insns(mm
, insn_addr
);
1749 static struct sparc32_cachetlb_ops smp_cachetlb_ops
= {
1750 .cache_all
= smp_flush_cache_all
,
1751 .cache_mm
= smp_flush_cache_mm
,
1752 .cache_page
= smp_flush_cache_page
,
1753 .cache_range
= smp_flush_cache_range
,
1754 .tlb_all
= smp_flush_tlb_all
,
1755 .tlb_mm
= smp_flush_tlb_mm
,
1756 .tlb_page
= smp_flush_tlb_page
,
1757 .tlb_range
= smp_flush_tlb_range
,
1758 .page_to_ram
= smp_flush_page_to_ram
,
1759 .sig_insns
= smp_flush_sig_insns
,
1760 .page_for_dma
= smp_flush_page_for_dma
,
1764 /* Load up routines and constants for sun4m and sun4d mmu */
1765 void __init
load_mmu(void)
1767 extern void ld_mmu_iommu(void);
1768 extern void ld_mmu_iounit(void);
1774 /* El switcheroo... */
1775 local_ops
= sparc32_cachetlb_ops
;
1777 if (sparc_cpu_model
== sun4d
|| sparc_cpu_model
== sparc_leon
) {
1778 smp_cachetlb_ops
.tlb_all
= local_ops
->tlb_all
;
1779 smp_cachetlb_ops
.tlb_mm
= local_ops
->tlb_mm
;
1780 smp_cachetlb_ops
.tlb_range
= local_ops
->tlb_range
;
1781 smp_cachetlb_ops
.tlb_page
= local_ops
->tlb_page
;
1784 if (poke_srmmu
== poke_viking
) {
1785 /* Avoid unnecessary cross calls. */
1786 smp_cachetlb_ops
.cache_all
= local_ops
->cache_all
;
1787 smp_cachetlb_ops
.cache_mm
= local_ops
->cache_mm
;
1788 smp_cachetlb_ops
.cache_range
= local_ops
->cache_range
;
1789 smp_cachetlb_ops
.cache_page
= local_ops
->cache_page
;
1791 smp_cachetlb_ops
.page_to_ram
= local_ops
->page_to_ram
;
1792 smp_cachetlb_ops
.sig_insns
= local_ops
->sig_insns
;
1793 smp_cachetlb_ops
.page_for_dma
= local_ops
->page_for_dma
;
1796 /* It really is const after this point. */
1797 sparc32_cachetlb_ops
= (const struct sparc32_cachetlb_ops
*)
1801 if (sparc_cpu_model
== sun4d
)
1806 if (sparc_cpu_model
== sun4d
)
1808 else if (sparc_cpu_model
== sparc_leon
)