2 * fs/kernfs/mount.c - kernfs mount implementation
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 * This file is released under the GPLv2.
12 #include <linux/mount.h>
13 #include <linux/init.h>
14 #include <linux/magic.h>
15 #include <linux/slab.h>
16 #include <linux/pagemap.h>
17 #include <linux/namei.h>
18 #include <linux/seq_file.h>
19 #include <linux/exportfs.h>
21 #include "kernfs-internal.h"
23 struct kmem_cache
*kernfs_node_cache
;
25 static int kernfs_sop_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
27 struct kernfs_root
*root
= kernfs_info(sb
)->root
;
28 struct kernfs_syscall_ops
*scops
= root
->syscall_ops
;
30 if (scops
&& scops
->remount_fs
)
31 return scops
->remount_fs(root
, flags
, data
);
35 static int kernfs_sop_show_options(struct seq_file
*sf
, struct dentry
*dentry
)
37 struct kernfs_root
*root
= kernfs_root(kernfs_dentry_node(dentry
));
38 struct kernfs_syscall_ops
*scops
= root
->syscall_ops
;
40 if (scops
&& scops
->show_options
)
41 return scops
->show_options(sf
, root
);
45 static int kernfs_sop_show_path(struct seq_file
*sf
, struct dentry
*dentry
)
47 struct kernfs_node
*node
= kernfs_dentry_node(dentry
);
48 struct kernfs_root
*root
= kernfs_root(node
);
49 struct kernfs_syscall_ops
*scops
= root
->syscall_ops
;
51 if (scops
&& scops
->show_path
)
52 return scops
->show_path(sf
, node
, root
);
54 seq_dentry(sf
, dentry
, " \t\n\\");
58 const struct super_operations kernfs_sops
= {
59 .statfs
= simple_statfs
,
60 .drop_inode
= generic_delete_inode
,
61 .evict_inode
= kernfs_evict_inode
,
63 .remount_fs
= kernfs_sop_remount_fs
,
64 .show_options
= kernfs_sop_show_options
,
65 .show_path
= kernfs_sop_show_path
,
69 * Similar to kernfs_fh_get_inode, this one gets kernfs node from inode
70 * number and generation
72 struct kernfs_node
*kernfs_get_node_by_id(struct kernfs_root
*root
,
73 const union kernfs_node_id
*id
)
75 struct kernfs_node
*kn
;
77 kn
= kernfs_find_and_get_node_by_ino(root
, id
->ino
);
80 if (kn
->id
.generation
!= id
->generation
) {
87 static struct inode
*kernfs_fh_get_inode(struct super_block
*sb
,
88 u64 ino
, u32 generation
)
90 struct kernfs_super_info
*info
= kernfs_info(sb
);
92 struct kernfs_node
*kn
;
95 return ERR_PTR(-ESTALE
);
97 kn
= kernfs_find_and_get_node_by_ino(info
->root
, ino
);
99 return ERR_PTR(-ESTALE
);
100 inode
= kernfs_get_inode(sb
, kn
);
103 return ERR_PTR(-ESTALE
);
105 if (generation
&& inode
->i_generation
!= generation
) {
106 /* we didn't find the right inode.. */
108 return ERR_PTR(-ESTALE
);
113 static struct dentry
*kernfs_fh_to_dentry(struct super_block
*sb
, struct fid
*fid
,
114 int fh_len
, int fh_type
)
116 return generic_fh_to_dentry(sb
, fid
, fh_len
, fh_type
,
117 kernfs_fh_get_inode
);
120 static struct dentry
*kernfs_fh_to_parent(struct super_block
*sb
, struct fid
*fid
,
121 int fh_len
, int fh_type
)
123 return generic_fh_to_parent(sb
, fid
, fh_len
, fh_type
,
124 kernfs_fh_get_inode
);
127 static struct dentry
*kernfs_get_parent_dentry(struct dentry
*child
)
129 struct kernfs_node
*kn
= kernfs_dentry_node(child
);
131 return d_obtain_alias(kernfs_get_inode(child
->d_sb
, kn
->parent
));
134 static const struct export_operations kernfs_export_ops
= {
135 .fh_to_dentry
= kernfs_fh_to_dentry
,
136 .fh_to_parent
= kernfs_fh_to_parent
,
137 .get_parent
= kernfs_get_parent_dentry
,
141 * kernfs_root_from_sb - determine kernfs_root associated with a super_block
142 * @sb: the super_block in question
144 * Return the kernfs_root associated with @sb. If @sb is not a kernfs one,
147 struct kernfs_root
*kernfs_root_from_sb(struct super_block
*sb
)
149 if (sb
->s_op
== &kernfs_sops
)
150 return kernfs_info(sb
)->root
;
155 * find the next ancestor in the path down to @child, where @parent was the
156 * ancestor whose descendant we want to find.
158 * Say the path is /a/b/c/d. @child is d, @parent is NULL. We return the root
159 * node. If @parent is b, then we return the node for c.
160 * Passing in d as @parent is not ok.
162 static struct kernfs_node
*find_next_ancestor(struct kernfs_node
*child
,
163 struct kernfs_node
*parent
)
165 if (child
== parent
) {
166 pr_crit_once("BUG in find_next_ancestor: called with parent == child");
170 while (child
->parent
!= parent
) {
173 child
= child
->parent
;
180 * kernfs_node_dentry - get a dentry for the given kernfs_node
181 * @kn: kernfs_node for which a dentry is needed
182 * @sb: the kernfs super_block
184 struct dentry
*kernfs_node_dentry(struct kernfs_node
*kn
,
185 struct super_block
*sb
)
187 struct dentry
*dentry
;
188 struct kernfs_node
*knparent
= NULL
;
190 BUG_ON(sb
->s_op
!= &kernfs_sops
);
192 dentry
= dget(sb
->s_root
);
194 /* Check if this is the root kernfs_node */
198 knparent
= find_next_ancestor(kn
, NULL
);
199 if (WARN_ON(!knparent
))
200 return ERR_PTR(-EINVAL
);
204 struct kernfs_node
*kntmp
;
208 kntmp
= find_next_ancestor(kn
, knparent
);
210 return ERR_PTR(-EINVAL
);
211 dtmp
= lookup_one_len_unlocked(kntmp
->name
, dentry
,
212 strlen(kntmp
->name
));
221 static int kernfs_fill_super(struct super_block
*sb
, unsigned long magic
)
223 struct kernfs_super_info
*info
= kernfs_info(sb
);
228 /* Userspace would break if executables or devices appear on sysfs */
229 sb
->s_iflags
|= SB_I_NOEXEC
| SB_I_NODEV
;
230 sb
->s_blocksize
= PAGE_SIZE
;
231 sb
->s_blocksize_bits
= PAGE_SHIFT
;
233 sb
->s_op
= &kernfs_sops
;
234 sb
->s_xattr
= kernfs_xattr_handlers
;
235 if (info
->root
->flags
& KERNFS_ROOT_SUPPORT_EXPORTOP
)
236 sb
->s_export_op
= &kernfs_export_ops
;
239 /* sysfs dentries and inodes don't require IO to create */
240 sb
->s_shrink
.seeks
= 0;
242 /* get root inode, initialize and unlock it */
243 mutex_lock(&kernfs_mutex
);
244 inode
= kernfs_get_inode(sb
, info
->root
->kn
);
245 mutex_unlock(&kernfs_mutex
);
247 pr_debug("kernfs: could not get root inode\n");
251 /* instantiate and link root dentry */
252 root
= d_make_root(inode
);
254 pr_debug("%s: could not get root dentry!\n", __func__
);
258 sb
->s_d_op
= &kernfs_dops
;
262 static int kernfs_test_super(struct super_block
*sb
, void *data
)
264 struct kernfs_super_info
*sb_info
= kernfs_info(sb
);
265 struct kernfs_super_info
*info
= data
;
267 return sb_info
->root
== info
->root
&& sb_info
->ns
== info
->ns
;
270 static int kernfs_set_super(struct super_block
*sb
, void *data
)
273 error
= set_anon_super(sb
, data
);
275 sb
->s_fs_info
= data
;
280 * kernfs_super_ns - determine the namespace tag of a kernfs super_block
281 * @sb: super_block of interest
283 * Return the namespace tag associated with kernfs super_block @sb.
285 const void *kernfs_super_ns(struct super_block
*sb
)
287 struct kernfs_super_info
*info
= kernfs_info(sb
);
293 * kernfs_mount_ns - kernfs mount helper
294 * @fs_type: file_system_type of the fs being mounted
295 * @flags: mount flags specified for the mount
296 * @root: kernfs_root of the hierarchy being mounted
297 * @magic: file system specific magic number
298 * @new_sb_created: tell the caller if we allocated a new superblock
299 * @ns: optional namespace tag of the mount
301 * This is to be called from each kernfs user's file_system_type->mount()
302 * implementation, which should pass through the specified @fs_type and
303 * @flags, and specify the hierarchy and namespace tag to mount via @root
304 * and @ns, respectively.
306 * The return value can be passed to the vfs layer verbatim.
308 struct dentry
*kernfs_mount_ns(struct file_system_type
*fs_type
, int flags
,
309 struct kernfs_root
*root
, unsigned long magic
,
310 bool *new_sb_created
, const void *ns
)
312 struct super_block
*sb
;
313 struct kernfs_super_info
*info
;
316 info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
318 return ERR_PTR(-ENOMEM
);
322 INIT_LIST_HEAD(&info
->node
);
324 sb
= sget_userns(fs_type
, kernfs_test_super
, kernfs_set_super
, flags
,
325 &init_user_ns
, info
);
326 if (IS_ERR(sb
) || sb
->s_fs_info
!= info
)
332 *new_sb_created
= !sb
->s_root
;
335 struct kernfs_super_info
*info
= kernfs_info(sb
);
337 error
= kernfs_fill_super(sb
, magic
);
339 deactivate_locked_super(sb
);
340 return ERR_PTR(error
);
342 sb
->s_flags
|= SB_ACTIVE
;
344 mutex_lock(&kernfs_mutex
);
345 list_add(&info
->node
, &root
->supers
);
346 mutex_unlock(&kernfs_mutex
);
349 return dget(sb
->s_root
);
353 * kernfs_kill_sb - kill_sb for kernfs
354 * @sb: super_block being killed
356 * This can be used directly for file_system_type->kill_sb(). If a kernfs
357 * user needs extra cleanup, it can implement its own kill_sb() and call
358 * this function at the end.
360 void kernfs_kill_sb(struct super_block
*sb
)
362 struct kernfs_super_info
*info
= kernfs_info(sb
);
364 mutex_lock(&kernfs_mutex
);
365 list_del(&info
->node
);
366 mutex_unlock(&kernfs_mutex
);
369 * Remove the superblock from fs_supers/s_instances
370 * so we can't find it, before freeing kernfs_super_info.
377 * kernfs_pin_sb: try to pin the superblock associated with a kernfs_root
378 * @kernfs_root: the kernfs_root in question
379 * @ns: the namespace tag
381 * Pin the superblock so the superblock won't be destroyed in subsequent
382 * operations. This can be used to block ->kill_sb() which may be useful
383 * for kernfs users which dynamically manage superblocks.
385 * Returns NULL if there's no superblock associated to this kernfs_root, or
386 * -EINVAL if the superblock is being freed.
388 struct super_block
*kernfs_pin_sb(struct kernfs_root
*root
, const void *ns
)
390 struct kernfs_super_info
*info
;
391 struct super_block
*sb
= NULL
;
393 mutex_lock(&kernfs_mutex
);
394 list_for_each_entry(info
, &root
->supers
, node
) {
395 if (info
->ns
== ns
) {
397 if (!atomic_inc_not_zero(&info
->sb
->s_active
))
398 sb
= ERR_PTR(-EINVAL
);
402 mutex_unlock(&kernfs_mutex
);
406 void __init
kernfs_init(void)
410 * the slab is freed in RCU context, so kernfs_find_and_get_node_by_ino
411 * can access the slab lock free. This could introduce stale nodes,
412 * please see how kernfs_find_and_get_node_by_ino filters out stale
415 kernfs_node_cache
= kmem_cache_create("kernfs_node_cache",
416 sizeof(struct kernfs_node
),
418 SLAB_PANIC
| SLAB_TYPESAFE_BY_RCU
,