4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/sched/signal.h>
23 #include <linux/syscalls.h>
25 #include <linux/iomap.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/export.h>
35 #include <linux/backing-dev.h>
36 #include <linux/writeback.h>
37 #include <linux/hash.h>
38 #include <linux/suspend.h>
39 #include <linux/buffer_head.h>
40 #include <linux/task_io_accounting_ops.h>
41 #include <linux/bio.h>
42 #include <linux/notifier.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <trace/events/block.h>
50 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
);
51 static int submit_bh_wbc(int op
, int op_flags
, struct buffer_head
*bh
,
52 enum rw_hint hint
, struct writeback_control
*wbc
);
54 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
56 void init_buffer(struct buffer_head
*bh
, bh_end_io_t
*handler
, void *private)
58 bh
->b_end_io
= handler
;
59 bh
->b_private
= private;
61 EXPORT_SYMBOL(init_buffer
);
63 inline void touch_buffer(struct buffer_head
*bh
)
65 trace_block_touch_buffer(bh
);
66 mark_page_accessed(bh
->b_page
);
68 EXPORT_SYMBOL(touch_buffer
);
70 void __lock_buffer(struct buffer_head
*bh
)
72 wait_on_bit_lock_io(&bh
->b_state
, BH_Lock
, TASK_UNINTERRUPTIBLE
);
74 EXPORT_SYMBOL(__lock_buffer
);
76 void unlock_buffer(struct buffer_head
*bh
)
78 clear_bit_unlock(BH_Lock
, &bh
->b_state
);
79 smp_mb__after_atomic();
80 wake_up_bit(&bh
->b_state
, BH_Lock
);
82 EXPORT_SYMBOL(unlock_buffer
);
85 * Returns if the page has dirty or writeback buffers. If all the buffers
86 * are unlocked and clean then the PageDirty information is stale. If
87 * any of the pages are locked, it is assumed they are locked for IO.
89 void buffer_check_dirty_writeback(struct page
*page
,
90 bool *dirty
, bool *writeback
)
92 struct buffer_head
*head
, *bh
;
96 BUG_ON(!PageLocked(page
));
98 if (!page_has_buffers(page
))
101 if (PageWriteback(page
))
104 head
= page_buffers(page
);
107 if (buffer_locked(bh
))
110 if (buffer_dirty(bh
))
113 bh
= bh
->b_this_page
;
114 } while (bh
!= head
);
116 EXPORT_SYMBOL(buffer_check_dirty_writeback
);
119 * Block until a buffer comes unlocked. This doesn't stop it
120 * from becoming locked again - you have to lock it yourself
121 * if you want to preserve its state.
123 void __wait_on_buffer(struct buffer_head
* bh
)
125 wait_on_bit_io(&bh
->b_state
, BH_Lock
, TASK_UNINTERRUPTIBLE
);
127 EXPORT_SYMBOL(__wait_on_buffer
);
130 __clear_page_buffers(struct page
*page
)
132 ClearPagePrivate(page
);
133 set_page_private(page
, 0);
137 static void buffer_io_error(struct buffer_head
*bh
, char *msg
)
139 if (!test_bit(BH_Quiet
, &bh
->b_state
))
140 printk_ratelimited(KERN_ERR
141 "Buffer I/O error on dev %pg, logical block %llu%s\n",
142 bh
->b_bdev
, (unsigned long long)bh
->b_blocknr
, msg
);
146 * End-of-IO handler helper function which does not touch the bh after
148 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
149 * a race there is benign: unlock_buffer() only use the bh's address for
150 * hashing after unlocking the buffer, so it doesn't actually touch the bh
153 static void __end_buffer_read_notouch(struct buffer_head
*bh
, int uptodate
)
156 set_buffer_uptodate(bh
);
158 /* This happens, due to failed read-ahead attempts. */
159 clear_buffer_uptodate(bh
);
165 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
166 * unlock the buffer. This is what ll_rw_block uses too.
168 void end_buffer_read_sync(struct buffer_head
*bh
, int uptodate
)
170 __end_buffer_read_notouch(bh
, uptodate
);
173 EXPORT_SYMBOL(end_buffer_read_sync
);
175 void end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
178 set_buffer_uptodate(bh
);
180 buffer_io_error(bh
, ", lost sync page write");
181 mark_buffer_write_io_error(bh
);
182 clear_buffer_uptodate(bh
);
187 EXPORT_SYMBOL(end_buffer_write_sync
);
190 * Various filesystems appear to want __find_get_block to be non-blocking.
191 * But it's the page lock which protects the buffers. To get around this,
192 * we get exclusion from try_to_free_buffers with the blockdev mapping's
195 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
196 * may be quite high. This code could TryLock the page, and if that
197 * succeeds, there is no need to take private_lock. (But if
198 * private_lock is contended then so is mapping->tree_lock).
200 static struct buffer_head
*
201 __find_get_block_slow(struct block_device
*bdev
, sector_t block
)
203 struct inode
*bd_inode
= bdev
->bd_inode
;
204 struct address_space
*bd_mapping
= bd_inode
->i_mapping
;
205 struct buffer_head
*ret
= NULL
;
207 struct buffer_head
*bh
;
208 struct buffer_head
*head
;
212 index
= block
>> (PAGE_SHIFT
- bd_inode
->i_blkbits
);
213 page
= find_get_page_flags(bd_mapping
, index
, FGP_ACCESSED
);
217 spin_lock(&bd_mapping
->private_lock
);
218 if (!page_has_buffers(page
))
220 head
= page_buffers(page
);
223 if (!buffer_mapped(bh
))
225 else if (bh
->b_blocknr
== block
) {
230 bh
= bh
->b_this_page
;
231 } while (bh
!= head
);
233 /* we might be here because some of the buffers on this page are
234 * not mapped. This is due to various races between
235 * file io on the block device and getblk. It gets dealt with
236 * elsewhere, don't buffer_error if we had some unmapped buffers
239 printk("__find_get_block_slow() failed. "
240 "block=%llu, b_blocknr=%llu\n",
241 (unsigned long long)block
,
242 (unsigned long long)bh
->b_blocknr
);
243 printk("b_state=0x%08lx, b_size=%zu\n",
244 bh
->b_state
, bh
->b_size
);
245 printk("device %pg blocksize: %d\n", bdev
,
246 1 << bd_inode
->i_blkbits
);
249 spin_unlock(&bd_mapping
->private_lock
);
256 * I/O completion handler for block_read_full_page() - pages
257 * which come unlocked at the end of I/O.
259 static void end_buffer_async_read(struct buffer_head
*bh
, int uptodate
)
262 struct buffer_head
*first
;
263 struct buffer_head
*tmp
;
265 int page_uptodate
= 1;
267 BUG_ON(!buffer_async_read(bh
));
271 set_buffer_uptodate(bh
);
273 clear_buffer_uptodate(bh
);
274 buffer_io_error(bh
, ", async page read");
279 * Be _very_ careful from here on. Bad things can happen if
280 * two buffer heads end IO at almost the same time and both
281 * decide that the page is now completely done.
283 first
= page_buffers(page
);
284 local_irq_save(flags
);
285 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
286 clear_buffer_async_read(bh
);
290 if (!buffer_uptodate(tmp
))
292 if (buffer_async_read(tmp
)) {
293 BUG_ON(!buffer_locked(tmp
));
296 tmp
= tmp
->b_this_page
;
298 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
299 local_irq_restore(flags
);
302 * If none of the buffers had errors and they are all
303 * uptodate then we can set the page uptodate.
305 if (page_uptodate
&& !PageError(page
))
306 SetPageUptodate(page
);
311 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
312 local_irq_restore(flags
);
317 * Completion handler for block_write_full_page() - pages which are unlocked
318 * during I/O, and which have PageWriteback cleared upon I/O completion.
320 void end_buffer_async_write(struct buffer_head
*bh
, int uptodate
)
323 struct buffer_head
*first
;
324 struct buffer_head
*tmp
;
327 BUG_ON(!buffer_async_write(bh
));
331 set_buffer_uptodate(bh
);
333 buffer_io_error(bh
, ", lost async page write");
334 mark_buffer_write_io_error(bh
);
335 clear_buffer_uptodate(bh
);
339 first
= page_buffers(page
);
340 local_irq_save(flags
);
341 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
343 clear_buffer_async_write(bh
);
345 tmp
= bh
->b_this_page
;
347 if (buffer_async_write(tmp
)) {
348 BUG_ON(!buffer_locked(tmp
));
351 tmp
= tmp
->b_this_page
;
353 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
354 local_irq_restore(flags
);
355 end_page_writeback(page
);
359 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
360 local_irq_restore(flags
);
363 EXPORT_SYMBOL(end_buffer_async_write
);
366 * If a page's buffers are under async readin (end_buffer_async_read
367 * completion) then there is a possibility that another thread of
368 * control could lock one of the buffers after it has completed
369 * but while some of the other buffers have not completed. This
370 * locked buffer would confuse end_buffer_async_read() into not unlocking
371 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
372 * that this buffer is not under async I/O.
374 * The page comes unlocked when it has no locked buffer_async buffers
377 * PageLocked prevents anyone starting new async I/O reads any of
380 * PageWriteback is used to prevent simultaneous writeout of the same
383 * PageLocked prevents anyone from starting writeback of a page which is
384 * under read I/O (PageWriteback is only ever set against a locked page).
386 static void mark_buffer_async_read(struct buffer_head
*bh
)
388 bh
->b_end_io
= end_buffer_async_read
;
389 set_buffer_async_read(bh
);
392 static void mark_buffer_async_write_endio(struct buffer_head
*bh
,
393 bh_end_io_t
*handler
)
395 bh
->b_end_io
= handler
;
396 set_buffer_async_write(bh
);
399 void mark_buffer_async_write(struct buffer_head
*bh
)
401 mark_buffer_async_write_endio(bh
, end_buffer_async_write
);
403 EXPORT_SYMBOL(mark_buffer_async_write
);
407 * fs/buffer.c contains helper functions for buffer-backed address space's
408 * fsync functions. A common requirement for buffer-based filesystems is
409 * that certain data from the backing blockdev needs to be written out for
410 * a successful fsync(). For example, ext2 indirect blocks need to be
411 * written back and waited upon before fsync() returns.
413 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
414 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
415 * management of a list of dependent buffers at ->i_mapping->private_list.
417 * Locking is a little subtle: try_to_free_buffers() will remove buffers
418 * from their controlling inode's queue when they are being freed. But
419 * try_to_free_buffers() will be operating against the *blockdev* mapping
420 * at the time, not against the S_ISREG file which depends on those buffers.
421 * So the locking for private_list is via the private_lock in the address_space
422 * which backs the buffers. Which is different from the address_space
423 * against which the buffers are listed. So for a particular address_space,
424 * mapping->private_lock does *not* protect mapping->private_list! In fact,
425 * mapping->private_list will always be protected by the backing blockdev's
428 * Which introduces a requirement: all buffers on an address_space's
429 * ->private_list must be from the same address_space: the blockdev's.
431 * address_spaces which do not place buffers at ->private_list via these
432 * utility functions are free to use private_lock and private_list for
433 * whatever they want. The only requirement is that list_empty(private_list)
434 * be true at clear_inode() time.
436 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
437 * filesystems should do that. invalidate_inode_buffers() should just go
438 * BUG_ON(!list_empty).
440 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
441 * take an address_space, not an inode. And it should be called
442 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
445 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
446 * list if it is already on a list. Because if the buffer is on a list,
447 * it *must* already be on the right one. If not, the filesystem is being
448 * silly. This will save a ton of locking. But first we have to ensure
449 * that buffers are taken *off* the old inode's list when they are freed
450 * (presumably in truncate). That requires careful auditing of all
451 * filesystems (do it inside bforget()). It could also be done by bringing
456 * The buffer's backing address_space's private_lock must be held
458 static void __remove_assoc_queue(struct buffer_head
*bh
)
460 list_del_init(&bh
->b_assoc_buffers
);
461 WARN_ON(!bh
->b_assoc_map
);
462 bh
->b_assoc_map
= NULL
;
465 int inode_has_buffers(struct inode
*inode
)
467 return !list_empty(&inode
->i_data
.private_list
);
471 * osync is designed to support O_SYNC io. It waits synchronously for
472 * all already-submitted IO to complete, but does not queue any new
473 * writes to the disk.
475 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
476 * you dirty the buffers, and then use osync_inode_buffers to wait for
477 * completion. Any other dirty buffers which are not yet queued for
478 * write will not be flushed to disk by the osync.
480 static int osync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
482 struct buffer_head
*bh
;
488 list_for_each_prev(p
, list
) {
490 if (buffer_locked(bh
)) {
494 if (!buffer_uptodate(bh
))
505 static void do_thaw_one(struct super_block
*sb
, void *unused
)
507 while (sb
->s_bdev
&& !thaw_bdev(sb
->s_bdev
, sb
))
508 printk(KERN_WARNING
"Emergency Thaw on %pg\n", sb
->s_bdev
);
511 static void do_thaw_all(struct work_struct
*work
)
513 iterate_supers(do_thaw_one
, NULL
);
515 printk(KERN_WARNING
"Emergency Thaw complete\n");
519 * emergency_thaw_all -- forcibly thaw every frozen filesystem
521 * Used for emergency unfreeze of all filesystems via SysRq
523 void emergency_thaw_all(void)
525 struct work_struct
*work
;
527 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
529 INIT_WORK(work
, do_thaw_all
);
535 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
536 * @mapping: the mapping which wants those buffers written
538 * Starts I/O against the buffers at mapping->private_list, and waits upon
541 * Basically, this is a convenience function for fsync().
542 * @mapping is a file or directory which needs those buffers to be written for
543 * a successful fsync().
545 int sync_mapping_buffers(struct address_space
*mapping
)
547 struct address_space
*buffer_mapping
= mapping
->private_data
;
549 if (buffer_mapping
== NULL
|| list_empty(&mapping
->private_list
))
552 return fsync_buffers_list(&buffer_mapping
->private_lock
,
553 &mapping
->private_list
);
555 EXPORT_SYMBOL(sync_mapping_buffers
);
558 * Called when we've recently written block `bblock', and it is known that
559 * `bblock' was for a buffer_boundary() buffer. This means that the block at
560 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
561 * dirty, schedule it for IO. So that indirects merge nicely with their data.
563 void write_boundary_block(struct block_device
*bdev
,
564 sector_t bblock
, unsigned blocksize
)
566 struct buffer_head
*bh
= __find_get_block(bdev
, bblock
+ 1, blocksize
);
568 if (buffer_dirty(bh
))
569 ll_rw_block(REQ_OP_WRITE
, 0, 1, &bh
);
574 void mark_buffer_dirty_inode(struct buffer_head
*bh
, struct inode
*inode
)
576 struct address_space
*mapping
= inode
->i_mapping
;
577 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
579 mark_buffer_dirty(bh
);
580 if (!mapping
->private_data
) {
581 mapping
->private_data
= buffer_mapping
;
583 BUG_ON(mapping
->private_data
!= buffer_mapping
);
585 if (!bh
->b_assoc_map
) {
586 spin_lock(&buffer_mapping
->private_lock
);
587 list_move_tail(&bh
->b_assoc_buffers
,
588 &mapping
->private_list
);
589 bh
->b_assoc_map
= mapping
;
590 spin_unlock(&buffer_mapping
->private_lock
);
593 EXPORT_SYMBOL(mark_buffer_dirty_inode
);
596 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
599 * If warn is true, then emit a warning if the page is not uptodate and has
600 * not been truncated.
602 * The caller must hold lock_page_memcg().
604 static void __set_page_dirty(struct page
*page
, struct address_space
*mapping
,
609 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
610 if (page
->mapping
) { /* Race with truncate? */
611 WARN_ON_ONCE(warn
&& !PageUptodate(page
));
612 account_page_dirtied(page
, mapping
);
613 radix_tree_tag_set(&mapping
->page_tree
,
614 page_index(page
), PAGECACHE_TAG_DIRTY
);
616 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
620 * Add a page to the dirty page list.
622 * It is a sad fact of life that this function is called from several places
623 * deeply under spinlocking. It may not sleep.
625 * If the page has buffers, the uptodate buffers are set dirty, to preserve
626 * dirty-state coherency between the page and the buffers. It the page does
627 * not have buffers then when they are later attached they will all be set
630 * The buffers are dirtied before the page is dirtied. There's a small race
631 * window in which a writepage caller may see the page cleanness but not the
632 * buffer dirtiness. That's fine. If this code were to set the page dirty
633 * before the buffers, a concurrent writepage caller could clear the page dirty
634 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
635 * page on the dirty page list.
637 * We use private_lock to lock against try_to_free_buffers while using the
638 * page's buffer list. Also use this to protect against clean buffers being
639 * added to the page after it was set dirty.
641 * FIXME: may need to call ->reservepage here as well. That's rather up to the
642 * address_space though.
644 int __set_page_dirty_buffers(struct page
*page
)
647 struct address_space
*mapping
= page_mapping(page
);
649 if (unlikely(!mapping
))
650 return !TestSetPageDirty(page
);
652 spin_lock(&mapping
->private_lock
);
653 if (page_has_buffers(page
)) {
654 struct buffer_head
*head
= page_buffers(page
);
655 struct buffer_head
*bh
= head
;
658 set_buffer_dirty(bh
);
659 bh
= bh
->b_this_page
;
660 } while (bh
!= head
);
663 * Lock out page->mem_cgroup migration to keep PageDirty
664 * synchronized with per-memcg dirty page counters.
666 lock_page_memcg(page
);
667 newly_dirty
= !TestSetPageDirty(page
);
668 spin_unlock(&mapping
->private_lock
);
671 __set_page_dirty(page
, mapping
, 1);
673 unlock_page_memcg(page
);
676 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
680 EXPORT_SYMBOL(__set_page_dirty_buffers
);
683 * Write out and wait upon a list of buffers.
685 * We have conflicting pressures: we want to make sure that all
686 * initially dirty buffers get waited on, but that any subsequently
687 * dirtied buffers don't. After all, we don't want fsync to last
688 * forever if somebody is actively writing to the file.
690 * Do this in two main stages: first we copy dirty buffers to a
691 * temporary inode list, queueing the writes as we go. Then we clean
692 * up, waiting for those writes to complete.
694 * During this second stage, any subsequent updates to the file may end
695 * up refiling the buffer on the original inode's dirty list again, so
696 * there is a chance we will end up with a buffer queued for write but
697 * not yet completed on that list. So, as a final cleanup we go through
698 * the osync code to catch these locked, dirty buffers without requeuing
699 * any newly dirty buffers for write.
701 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
703 struct buffer_head
*bh
;
704 struct list_head tmp
;
705 struct address_space
*mapping
;
707 struct blk_plug plug
;
709 INIT_LIST_HEAD(&tmp
);
710 blk_start_plug(&plug
);
713 while (!list_empty(list
)) {
714 bh
= BH_ENTRY(list
->next
);
715 mapping
= bh
->b_assoc_map
;
716 __remove_assoc_queue(bh
);
717 /* Avoid race with mark_buffer_dirty_inode() which does
718 * a lockless check and we rely on seeing the dirty bit */
720 if (buffer_dirty(bh
) || buffer_locked(bh
)) {
721 list_add(&bh
->b_assoc_buffers
, &tmp
);
722 bh
->b_assoc_map
= mapping
;
723 if (buffer_dirty(bh
)) {
727 * Ensure any pending I/O completes so that
728 * write_dirty_buffer() actually writes the
729 * current contents - it is a noop if I/O is
730 * still in flight on potentially older
733 write_dirty_buffer(bh
, REQ_SYNC
);
736 * Kick off IO for the previous mapping. Note
737 * that we will not run the very last mapping,
738 * wait_on_buffer() will do that for us
739 * through sync_buffer().
748 blk_finish_plug(&plug
);
751 while (!list_empty(&tmp
)) {
752 bh
= BH_ENTRY(tmp
.prev
);
754 mapping
= bh
->b_assoc_map
;
755 __remove_assoc_queue(bh
);
756 /* Avoid race with mark_buffer_dirty_inode() which does
757 * a lockless check and we rely on seeing the dirty bit */
759 if (buffer_dirty(bh
)) {
760 list_add(&bh
->b_assoc_buffers
,
761 &mapping
->private_list
);
762 bh
->b_assoc_map
= mapping
;
766 if (!buffer_uptodate(bh
))
773 err2
= osync_buffers_list(lock
, list
);
781 * Invalidate any and all dirty buffers on a given inode. We are
782 * probably unmounting the fs, but that doesn't mean we have already
783 * done a sync(). Just drop the buffers from the inode list.
785 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
786 * assumes that all the buffers are against the blockdev. Not true
789 void invalidate_inode_buffers(struct inode
*inode
)
791 if (inode_has_buffers(inode
)) {
792 struct address_space
*mapping
= &inode
->i_data
;
793 struct list_head
*list
= &mapping
->private_list
;
794 struct address_space
*buffer_mapping
= mapping
->private_data
;
796 spin_lock(&buffer_mapping
->private_lock
);
797 while (!list_empty(list
))
798 __remove_assoc_queue(BH_ENTRY(list
->next
));
799 spin_unlock(&buffer_mapping
->private_lock
);
802 EXPORT_SYMBOL(invalidate_inode_buffers
);
805 * Remove any clean buffers from the inode's buffer list. This is called
806 * when we're trying to free the inode itself. Those buffers can pin it.
808 * Returns true if all buffers were removed.
810 int remove_inode_buffers(struct inode
*inode
)
814 if (inode_has_buffers(inode
)) {
815 struct address_space
*mapping
= &inode
->i_data
;
816 struct list_head
*list
= &mapping
->private_list
;
817 struct address_space
*buffer_mapping
= mapping
->private_data
;
819 spin_lock(&buffer_mapping
->private_lock
);
820 while (!list_empty(list
)) {
821 struct buffer_head
*bh
= BH_ENTRY(list
->next
);
822 if (buffer_dirty(bh
)) {
826 __remove_assoc_queue(bh
);
828 spin_unlock(&buffer_mapping
->private_lock
);
834 * Create the appropriate buffers when given a page for data area and
835 * the size of each buffer.. Use the bh->b_this_page linked list to
836 * follow the buffers created. Return NULL if unable to create more
839 * The retry flag is used to differentiate async IO (paging, swapping)
840 * which may not fail from ordinary buffer allocations.
842 struct buffer_head
*alloc_page_buffers(struct page
*page
, unsigned long size
,
845 struct buffer_head
*bh
, *head
;
846 gfp_t gfp
= GFP_NOFS
;
854 while ((offset
-= size
) >= 0) {
855 bh
= alloc_buffer_head(gfp
);
859 bh
->b_this_page
= head
;
865 /* Link the buffer to its page */
866 set_bh_page(bh
, page
, offset
);
870 * In case anything failed, we just free everything we got.
876 head
= head
->b_this_page
;
877 free_buffer_head(bh
);
883 EXPORT_SYMBOL_GPL(alloc_page_buffers
);
886 link_dev_buffers(struct page
*page
, struct buffer_head
*head
)
888 struct buffer_head
*bh
, *tail
;
893 bh
= bh
->b_this_page
;
895 tail
->b_this_page
= head
;
896 attach_page_buffers(page
, head
);
899 static sector_t
blkdev_max_block(struct block_device
*bdev
, unsigned int size
)
901 sector_t retval
= ~((sector_t
)0);
902 loff_t sz
= i_size_read(bdev
->bd_inode
);
905 unsigned int sizebits
= blksize_bits(size
);
906 retval
= (sz
>> sizebits
);
912 * Initialise the state of a blockdev page's buffers.
915 init_page_buffers(struct page
*page
, struct block_device
*bdev
,
916 sector_t block
, int size
)
918 struct buffer_head
*head
= page_buffers(page
);
919 struct buffer_head
*bh
= head
;
920 int uptodate
= PageUptodate(page
);
921 sector_t end_block
= blkdev_max_block(I_BDEV(bdev
->bd_inode
), size
);
924 if (!buffer_mapped(bh
)) {
925 init_buffer(bh
, NULL
, NULL
);
927 bh
->b_blocknr
= block
;
929 set_buffer_uptodate(bh
);
930 if (block
< end_block
)
931 set_buffer_mapped(bh
);
934 bh
= bh
->b_this_page
;
935 } while (bh
!= head
);
938 * Caller needs to validate requested block against end of device.
944 * Create the page-cache page that contains the requested block.
946 * This is used purely for blockdev mappings.
949 grow_dev_page(struct block_device
*bdev
, sector_t block
,
950 pgoff_t index
, int size
, int sizebits
, gfp_t gfp
)
952 struct inode
*inode
= bdev
->bd_inode
;
954 struct buffer_head
*bh
;
956 int ret
= 0; /* Will call free_more_memory() */
959 gfp_mask
= mapping_gfp_constraint(inode
->i_mapping
, ~__GFP_FS
) | gfp
;
962 * XXX: __getblk_slow() can not really deal with failure and
963 * will endlessly loop on improvised global reclaim. Prefer
964 * looping in the allocator rather than here, at least that
965 * code knows what it's doing.
967 gfp_mask
|= __GFP_NOFAIL
;
969 page
= find_or_create_page(inode
->i_mapping
, index
, gfp_mask
);
971 BUG_ON(!PageLocked(page
));
973 if (page_has_buffers(page
)) {
974 bh
= page_buffers(page
);
975 if (bh
->b_size
== size
) {
976 end_block
= init_page_buffers(page
, bdev
,
977 (sector_t
)index
<< sizebits
,
981 if (!try_to_free_buffers(page
))
986 * Allocate some buffers for this page
988 bh
= alloc_page_buffers(page
, size
, true);
991 * Link the page to the buffers and initialise them. Take the
992 * lock to be atomic wrt __find_get_block(), which does not
993 * run under the page lock.
995 spin_lock(&inode
->i_mapping
->private_lock
);
996 link_dev_buffers(page
, bh
);
997 end_block
= init_page_buffers(page
, bdev
, (sector_t
)index
<< sizebits
,
999 spin_unlock(&inode
->i_mapping
->private_lock
);
1001 ret
= (block
< end_block
) ? 1 : -ENXIO
;
1009 * Create buffers for the specified block device block's page. If
1010 * that page was dirty, the buffers are set dirty also.
1013 grow_buffers(struct block_device
*bdev
, sector_t block
, int size
, gfp_t gfp
)
1021 } while ((size
<< sizebits
) < PAGE_SIZE
);
1023 index
= block
>> sizebits
;
1026 * Check for a block which wants to lie outside our maximum possible
1027 * pagecache index. (this comparison is done using sector_t types).
1029 if (unlikely(index
!= block
>> sizebits
)) {
1030 printk(KERN_ERR
"%s: requested out-of-range block %llu for "
1032 __func__
, (unsigned long long)block
,
1037 /* Create a page with the proper size buffers.. */
1038 return grow_dev_page(bdev
, block
, index
, size
, sizebits
, gfp
);
1041 static struct buffer_head
*
1042 __getblk_slow(struct block_device
*bdev
, sector_t block
,
1043 unsigned size
, gfp_t gfp
)
1045 /* Size must be multiple of hard sectorsize */
1046 if (unlikely(size
& (bdev_logical_block_size(bdev
)-1) ||
1047 (size
< 512 || size
> PAGE_SIZE
))) {
1048 printk(KERN_ERR
"getblk(): invalid block size %d requested\n",
1050 printk(KERN_ERR
"logical block size: %d\n",
1051 bdev_logical_block_size(bdev
));
1058 struct buffer_head
*bh
;
1061 bh
= __find_get_block(bdev
, block
, size
);
1065 ret
= grow_buffers(bdev
, block
, size
, gfp
);
1072 * The relationship between dirty buffers and dirty pages:
1074 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1075 * the page is tagged dirty in its radix tree.
1077 * At all times, the dirtiness of the buffers represents the dirtiness of
1078 * subsections of the page. If the page has buffers, the page dirty bit is
1079 * merely a hint about the true dirty state.
1081 * When a page is set dirty in its entirety, all its buffers are marked dirty
1082 * (if the page has buffers).
1084 * When a buffer is marked dirty, its page is dirtied, but the page's other
1087 * Also. When blockdev buffers are explicitly read with bread(), they
1088 * individually become uptodate. But their backing page remains not
1089 * uptodate - even if all of its buffers are uptodate. A subsequent
1090 * block_read_full_page() against that page will discover all the uptodate
1091 * buffers, will set the page uptodate and will perform no I/O.
1095 * mark_buffer_dirty - mark a buffer_head as needing writeout
1096 * @bh: the buffer_head to mark dirty
1098 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1099 * backing page dirty, then tag the page as dirty in its address_space's radix
1100 * tree and then attach the address_space's inode to its superblock's dirty
1103 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1104 * mapping->tree_lock and mapping->host->i_lock.
1106 void mark_buffer_dirty(struct buffer_head
*bh
)
1108 WARN_ON_ONCE(!buffer_uptodate(bh
));
1110 trace_block_dirty_buffer(bh
);
1113 * Very *carefully* optimize the it-is-already-dirty case.
1115 * Don't let the final "is it dirty" escape to before we
1116 * perhaps modified the buffer.
1118 if (buffer_dirty(bh
)) {
1120 if (buffer_dirty(bh
))
1124 if (!test_set_buffer_dirty(bh
)) {
1125 struct page
*page
= bh
->b_page
;
1126 struct address_space
*mapping
= NULL
;
1128 lock_page_memcg(page
);
1129 if (!TestSetPageDirty(page
)) {
1130 mapping
= page_mapping(page
);
1132 __set_page_dirty(page
, mapping
, 0);
1134 unlock_page_memcg(page
);
1136 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
1139 EXPORT_SYMBOL(mark_buffer_dirty
);
1141 void mark_buffer_write_io_error(struct buffer_head
*bh
)
1143 set_buffer_write_io_error(bh
);
1144 /* FIXME: do we need to set this in both places? */
1145 if (bh
->b_page
&& bh
->b_page
->mapping
)
1146 mapping_set_error(bh
->b_page
->mapping
, -EIO
);
1147 if (bh
->b_assoc_map
)
1148 mapping_set_error(bh
->b_assoc_map
, -EIO
);
1150 EXPORT_SYMBOL(mark_buffer_write_io_error
);
1153 * Decrement a buffer_head's reference count. If all buffers against a page
1154 * have zero reference count, are clean and unlocked, and if the page is clean
1155 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1156 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1157 * a page but it ends up not being freed, and buffers may later be reattached).
1159 void __brelse(struct buffer_head
* buf
)
1161 if (atomic_read(&buf
->b_count
)) {
1165 WARN(1, KERN_ERR
"VFS: brelse: Trying to free free buffer\n");
1167 EXPORT_SYMBOL(__brelse
);
1170 * bforget() is like brelse(), except it discards any
1171 * potentially dirty data.
1173 void __bforget(struct buffer_head
*bh
)
1175 clear_buffer_dirty(bh
);
1176 if (bh
->b_assoc_map
) {
1177 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
1179 spin_lock(&buffer_mapping
->private_lock
);
1180 list_del_init(&bh
->b_assoc_buffers
);
1181 bh
->b_assoc_map
= NULL
;
1182 spin_unlock(&buffer_mapping
->private_lock
);
1186 EXPORT_SYMBOL(__bforget
);
1188 static struct buffer_head
*__bread_slow(struct buffer_head
*bh
)
1191 if (buffer_uptodate(bh
)) {
1196 bh
->b_end_io
= end_buffer_read_sync
;
1197 submit_bh(REQ_OP_READ
, 0, bh
);
1199 if (buffer_uptodate(bh
))
1207 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1208 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1209 * refcount elevated by one when they're in an LRU. A buffer can only appear
1210 * once in a particular CPU's LRU. A single buffer can be present in multiple
1211 * CPU's LRUs at the same time.
1213 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1214 * sb_find_get_block().
1216 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1217 * a local interrupt disable for that.
1220 #define BH_LRU_SIZE 16
1223 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1226 static DEFINE_PER_CPU(struct bh_lru
, bh_lrus
) = {{ NULL
}};
1229 #define bh_lru_lock() local_irq_disable()
1230 #define bh_lru_unlock() local_irq_enable()
1232 #define bh_lru_lock() preempt_disable()
1233 #define bh_lru_unlock() preempt_enable()
1236 static inline void check_irqs_on(void)
1238 #ifdef irqs_disabled
1239 BUG_ON(irqs_disabled());
1244 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1245 * inserted at the front, and the buffer_head at the back if any is evicted.
1246 * Or, if already in the LRU it is moved to the front.
1248 static void bh_lru_install(struct buffer_head
*bh
)
1250 struct buffer_head
*evictee
= bh
;
1257 b
= this_cpu_ptr(&bh_lrus
);
1258 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1259 swap(evictee
, b
->bhs
[i
]);
1260 if (evictee
== bh
) {
1272 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1274 static struct buffer_head
*
1275 lookup_bh_lru(struct block_device
*bdev
, sector_t block
, unsigned size
)
1277 struct buffer_head
*ret
= NULL
;
1282 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1283 struct buffer_head
*bh
= __this_cpu_read(bh_lrus
.bhs
[i
]);
1285 if (bh
&& bh
->b_blocknr
== block
&& bh
->b_bdev
== bdev
&&
1286 bh
->b_size
== size
) {
1289 __this_cpu_write(bh_lrus
.bhs
[i
],
1290 __this_cpu_read(bh_lrus
.bhs
[i
- 1]));
1293 __this_cpu_write(bh_lrus
.bhs
[0], bh
);
1305 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1306 * it in the LRU and mark it as accessed. If it is not present then return
1309 struct buffer_head
*
1310 __find_get_block(struct block_device
*bdev
, sector_t block
, unsigned size
)
1312 struct buffer_head
*bh
= lookup_bh_lru(bdev
, block
, size
);
1315 /* __find_get_block_slow will mark the page accessed */
1316 bh
= __find_get_block_slow(bdev
, block
);
1324 EXPORT_SYMBOL(__find_get_block
);
1327 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1328 * which corresponds to the passed block_device, block and size. The
1329 * returned buffer has its reference count incremented.
1331 * __getblk_gfp() will lock up the machine if grow_dev_page's
1332 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1334 struct buffer_head
*
1335 __getblk_gfp(struct block_device
*bdev
, sector_t block
,
1336 unsigned size
, gfp_t gfp
)
1338 struct buffer_head
*bh
= __find_get_block(bdev
, block
, size
);
1342 bh
= __getblk_slow(bdev
, block
, size
, gfp
);
1345 EXPORT_SYMBOL(__getblk_gfp
);
1348 * Do async read-ahead on a buffer..
1350 void __breadahead(struct block_device
*bdev
, sector_t block
, unsigned size
)
1352 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1354 ll_rw_block(REQ_OP_READ
, REQ_RAHEAD
, 1, &bh
);
1358 EXPORT_SYMBOL(__breadahead
);
1361 * __bread_gfp() - reads a specified block and returns the bh
1362 * @bdev: the block_device to read from
1363 * @block: number of block
1364 * @size: size (in bytes) to read
1365 * @gfp: page allocation flag
1367 * Reads a specified block, and returns buffer head that contains it.
1368 * The page cache can be allocated from non-movable area
1369 * not to prevent page migration if you set gfp to zero.
1370 * It returns NULL if the block was unreadable.
1372 struct buffer_head
*
1373 __bread_gfp(struct block_device
*bdev
, sector_t block
,
1374 unsigned size
, gfp_t gfp
)
1376 struct buffer_head
*bh
= __getblk_gfp(bdev
, block
, size
, gfp
);
1378 if (likely(bh
) && !buffer_uptodate(bh
))
1379 bh
= __bread_slow(bh
);
1382 EXPORT_SYMBOL(__bread_gfp
);
1385 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1386 * This doesn't race because it runs in each cpu either in irq
1387 * or with preempt disabled.
1389 static void invalidate_bh_lru(void *arg
)
1391 struct bh_lru
*b
= &get_cpu_var(bh_lrus
);
1394 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1398 put_cpu_var(bh_lrus
);
1401 static bool has_bh_in_lru(int cpu
, void *dummy
)
1403 struct bh_lru
*b
= per_cpu_ptr(&bh_lrus
, cpu
);
1406 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1414 void invalidate_bh_lrus(void)
1416 on_each_cpu_cond(has_bh_in_lru
, invalidate_bh_lru
, NULL
, 1, GFP_KERNEL
);
1418 EXPORT_SYMBOL_GPL(invalidate_bh_lrus
);
1420 void set_bh_page(struct buffer_head
*bh
,
1421 struct page
*page
, unsigned long offset
)
1424 BUG_ON(offset
>= PAGE_SIZE
);
1425 if (PageHighMem(page
))
1427 * This catches illegal uses and preserves the offset:
1429 bh
->b_data
= (char *)(0 + offset
);
1431 bh
->b_data
= page_address(page
) + offset
;
1433 EXPORT_SYMBOL(set_bh_page
);
1436 * Called when truncating a buffer on a page completely.
1439 /* Bits that are cleared during an invalidate */
1440 #define BUFFER_FLAGS_DISCARD \
1441 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1442 1 << BH_Delay | 1 << BH_Unwritten)
1444 static void discard_buffer(struct buffer_head
* bh
)
1446 unsigned long b_state
, b_state_old
;
1449 clear_buffer_dirty(bh
);
1451 b_state
= bh
->b_state
;
1453 b_state_old
= cmpxchg(&bh
->b_state
, b_state
,
1454 (b_state
& ~BUFFER_FLAGS_DISCARD
));
1455 if (b_state_old
== b_state
)
1457 b_state
= b_state_old
;
1463 * block_invalidatepage - invalidate part or all of a buffer-backed page
1465 * @page: the page which is affected
1466 * @offset: start of the range to invalidate
1467 * @length: length of the range to invalidate
1469 * block_invalidatepage() is called when all or part of the page has become
1470 * invalidated by a truncate operation.
1472 * block_invalidatepage() does not have to release all buffers, but it must
1473 * ensure that no dirty buffer is left outside @offset and that no I/O
1474 * is underway against any of the blocks which are outside the truncation
1475 * point. Because the caller is about to free (and possibly reuse) those
1478 void block_invalidatepage(struct page
*page
, unsigned int offset
,
1479 unsigned int length
)
1481 struct buffer_head
*head
, *bh
, *next
;
1482 unsigned int curr_off
= 0;
1483 unsigned int stop
= length
+ offset
;
1485 BUG_ON(!PageLocked(page
));
1486 if (!page_has_buffers(page
))
1490 * Check for overflow
1492 BUG_ON(stop
> PAGE_SIZE
|| stop
< length
);
1494 head
= page_buffers(page
);
1497 unsigned int next_off
= curr_off
+ bh
->b_size
;
1498 next
= bh
->b_this_page
;
1501 * Are we still fully in range ?
1503 if (next_off
> stop
)
1507 * is this block fully invalidated?
1509 if (offset
<= curr_off
)
1511 curr_off
= next_off
;
1513 } while (bh
!= head
);
1516 * We release buffers only if the entire page is being invalidated.
1517 * The get_block cached value has been unconditionally invalidated,
1518 * so real IO is not possible anymore.
1521 try_to_release_page(page
, 0);
1525 EXPORT_SYMBOL(block_invalidatepage
);
1529 * We attach and possibly dirty the buffers atomically wrt
1530 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1531 * is already excluded via the page lock.
1533 void create_empty_buffers(struct page
*page
,
1534 unsigned long blocksize
, unsigned long b_state
)
1536 struct buffer_head
*bh
, *head
, *tail
;
1538 head
= alloc_page_buffers(page
, blocksize
, true);
1541 bh
->b_state
|= b_state
;
1543 bh
= bh
->b_this_page
;
1545 tail
->b_this_page
= head
;
1547 spin_lock(&page
->mapping
->private_lock
);
1548 if (PageUptodate(page
) || PageDirty(page
)) {
1551 if (PageDirty(page
))
1552 set_buffer_dirty(bh
);
1553 if (PageUptodate(page
))
1554 set_buffer_uptodate(bh
);
1555 bh
= bh
->b_this_page
;
1556 } while (bh
!= head
);
1558 attach_page_buffers(page
, head
);
1559 spin_unlock(&page
->mapping
->private_lock
);
1561 EXPORT_SYMBOL(create_empty_buffers
);
1564 * clean_bdev_aliases: clean a range of buffers in block device
1565 * @bdev: Block device to clean buffers in
1566 * @block: Start of a range of blocks to clean
1567 * @len: Number of blocks to clean
1569 * We are taking a range of blocks for data and we don't want writeback of any
1570 * buffer-cache aliases starting from return from this function and until the
1571 * moment when something will explicitly mark the buffer dirty (hopefully that
1572 * will not happen until we will free that block ;-) We don't even need to mark
1573 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1574 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1575 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1576 * would confuse anyone who might pick it with bread() afterwards...
1578 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1579 * writeout I/O going on against recently-freed buffers. We don't wait on that
1580 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1581 * need to. That happens here.
1583 void clean_bdev_aliases(struct block_device
*bdev
, sector_t block
, sector_t len
)
1585 struct inode
*bd_inode
= bdev
->bd_inode
;
1586 struct address_space
*bd_mapping
= bd_inode
->i_mapping
;
1587 struct pagevec pvec
;
1588 pgoff_t index
= block
>> (PAGE_SHIFT
- bd_inode
->i_blkbits
);
1591 struct buffer_head
*bh
;
1592 struct buffer_head
*head
;
1594 end
= (block
+ len
- 1) >> (PAGE_SHIFT
- bd_inode
->i_blkbits
);
1595 pagevec_init(&pvec
);
1596 while (pagevec_lookup_range(&pvec
, bd_mapping
, &index
, end
)) {
1597 count
= pagevec_count(&pvec
);
1598 for (i
= 0; i
< count
; i
++) {
1599 struct page
*page
= pvec
.pages
[i
];
1601 if (!page_has_buffers(page
))
1604 * We use page lock instead of bd_mapping->private_lock
1605 * to pin buffers here since we can afford to sleep and
1606 * it scales better than a global spinlock lock.
1609 /* Recheck when the page is locked which pins bhs */
1610 if (!page_has_buffers(page
))
1612 head
= page_buffers(page
);
1615 if (!buffer_mapped(bh
) || (bh
->b_blocknr
< block
))
1617 if (bh
->b_blocknr
>= block
+ len
)
1619 clear_buffer_dirty(bh
);
1621 clear_buffer_req(bh
);
1623 bh
= bh
->b_this_page
;
1624 } while (bh
!= head
);
1628 pagevec_release(&pvec
);
1630 /* End of range already reached? */
1631 if (index
> end
|| !index
)
1635 EXPORT_SYMBOL(clean_bdev_aliases
);
1638 * Size is a power-of-two in the range 512..PAGE_SIZE,
1639 * and the case we care about most is PAGE_SIZE.
1641 * So this *could* possibly be written with those
1642 * constraints in mind (relevant mostly if some
1643 * architecture has a slow bit-scan instruction)
1645 static inline int block_size_bits(unsigned int blocksize
)
1647 return ilog2(blocksize
);
1650 static struct buffer_head
*create_page_buffers(struct page
*page
, struct inode
*inode
, unsigned int b_state
)
1652 BUG_ON(!PageLocked(page
));
1654 if (!page_has_buffers(page
))
1655 create_empty_buffers(page
, 1 << READ_ONCE(inode
->i_blkbits
),
1657 return page_buffers(page
);
1661 * NOTE! All mapped/uptodate combinations are valid:
1663 * Mapped Uptodate Meaning
1665 * No No "unknown" - must do get_block()
1666 * No Yes "hole" - zero-filled
1667 * Yes No "allocated" - allocated on disk, not read in
1668 * Yes Yes "valid" - allocated and up-to-date in memory.
1670 * "Dirty" is valid only with the last case (mapped+uptodate).
1674 * While block_write_full_page is writing back the dirty buffers under
1675 * the page lock, whoever dirtied the buffers may decide to clean them
1676 * again at any time. We handle that by only looking at the buffer
1677 * state inside lock_buffer().
1679 * If block_write_full_page() is called for regular writeback
1680 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1681 * locked buffer. This only can happen if someone has written the buffer
1682 * directly, with submit_bh(). At the address_space level PageWriteback
1683 * prevents this contention from occurring.
1685 * If block_write_full_page() is called with wbc->sync_mode ==
1686 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1687 * causes the writes to be flagged as synchronous writes.
1689 int __block_write_full_page(struct inode
*inode
, struct page
*page
,
1690 get_block_t
*get_block
, struct writeback_control
*wbc
,
1691 bh_end_io_t
*handler
)
1695 sector_t last_block
;
1696 struct buffer_head
*bh
, *head
;
1697 unsigned int blocksize
, bbits
;
1698 int nr_underway
= 0;
1699 int write_flags
= wbc_to_write_flags(wbc
);
1701 head
= create_page_buffers(page
, inode
,
1702 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1705 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1706 * here, and the (potentially unmapped) buffers may become dirty at
1707 * any time. If a buffer becomes dirty here after we've inspected it
1708 * then we just miss that fact, and the page stays dirty.
1710 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1711 * handle that here by just cleaning them.
1715 blocksize
= bh
->b_size
;
1716 bbits
= block_size_bits(blocksize
);
1718 block
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
1719 last_block
= (i_size_read(inode
) - 1) >> bbits
;
1722 * Get all the dirty buffers mapped to disk addresses and
1723 * handle any aliases from the underlying blockdev's mapping.
1726 if (block
> last_block
) {
1728 * mapped buffers outside i_size will occur, because
1729 * this page can be outside i_size when there is a
1730 * truncate in progress.
1733 * The buffer was zeroed by block_write_full_page()
1735 clear_buffer_dirty(bh
);
1736 set_buffer_uptodate(bh
);
1737 } else if ((!buffer_mapped(bh
) || buffer_delay(bh
)) &&
1739 WARN_ON(bh
->b_size
!= blocksize
);
1740 err
= get_block(inode
, block
, bh
, 1);
1743 clear_buffer_delay(bh
);
1744 if (buffer_new(bh
)) {
1745 /* blockdev mappings never come here */
1746 clear_buffer_new(bh
);
1747 clean_bdev_bh_alias(bh
);
1750 bh
= bh
->b_this_page
;
1752 } while (bh
!= head
);
1755 if (!buffer_mapped(bh
))
1758 * If it's a fully non-blocking write attempt and we cannot
1759 * lock the buffer then redirty the page. Note that this can
1760 * potentially cause a busy-wait loop from writeback threads
1761 * and kswapd activity, but those code paths have their own
1762 * higher-level throttling.
1764 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
1766 } else if (!trylock_buffer(bh
)) {
1767 redirty_page_for_writepage(wbc
, page
);
1770 if (test_clear_buffer_dirty(bh
)) {
1771 mark_buffer_async_write_endio(bh
, handler
);
1775 } while ((bh
= bh
->b_this_page
) != head
);
1778 * The page and its buffers are protected by PageWriteback(), so we can
1779 * drop the bh refcounts early.
1781 BUG_ON(PageWriteback(page
));
1782 set_page_writeback(page
);
1785 struct buffer_head
*next
= bh
->b_this_page
;
1786 if (buffer_async_write(bh
)) {
1787 submit_bh_wbc(REQ_OP_WRITE
, write_flags
, bh
,
1788 inode
->i_write_hint
, wbc
);
1792 } while (bh
!= head
);
1797 if (nr_underway
== 0) {
1799 * The page was marked dirty, but the buffers were
1800 * clean. Someone wrote them back by hand with
1801 * ll_rw_block/submit_bh. A rare case.
1803 end_page_writeback(page
);
1806 * The page and buffer_heads can be released at any time from
1814 * ENOSPC, or some other error. We may already have added some
1815 * blocks to the file, so we need to write these out to avoid
1816 * exposing stale data.
1817 * The page is currently locked and not marked for writeback
1820 /* Recovery: lock and submit the mapped buffers */
1822 if (buffer_mapped(bh
) && buffer_dirty(bh
) &&
1823 !buffer_delay(bh
)) {
1825 mark_buffer_async_write_endio(bh
, handler
);
1828 * The buffer may have been set dirty during
1829 * attachment to a dirty page.
1831 clear_buffer_dirty(bh
);
1833 } while ((bh
= bh
->b_this_page
) != head
);
1835 BUG_ON(PageWriteback(page
));
1836 mapping_set_error(page
->mapping
, err
);
1837 set_page_writeback(page
);
1839 struct buffer_head
*next
= bh
->b_this_page
;
1840 if (buffer_async_write(bh
)) {
1841 clear_buffer_dirty(bh
);
1842 submit_bh_wbc(REQ_OP_WRITE
, write_flags
, bh
,
1843 inode
->i_write_hint
, wbc
);
1847 } while (bh
!= head
);
1851 EXPORT_SYMBOL(__block_write_full_page
);
1854 * If a page has any new buffers, zero them out here, and mark them uptodate
1855 * and dirty so they'll be written out (in order to prevent uninitialised
1856 * block data from leaking). And clear the new bit.
1858 void page_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
1860 unsigned int block_start
, block_end
;
1861 struct buffer_head
*head
, *bh
;
1863 BUG_ON(!PageLocked(page
));
1864 if (!page_has_buffers(page
))
1867 bh
= head
= page_buffers(page
);
1870 block_end
= block_start
+ bh
->b_size
;
1872 if (buffer_new(bh
)) {
1873 if (block_end
> from
&& block_start
< to
) {
1874 if (!PageUptodate(page
)) {
1875 unsigned start
, size
;
1877 start
= max(from
, block_start
);
1878 size
= min(to
, block_end
) - start
;
1880 zero_user(page
, start
, size
);
1881 set_buffer_uptodate(bh
);
1884 clear_buffer_new(bh
);
1885 mark_buffer_dirty(bh
);
1889 block_start
= block_end
;
1890 bh
= bh
->b_this_page
;
1891 } while (bh
!= head
);
1893 EXPORT_SYMBOL(page_zero_new_buffers
);
1896 iomap_to_bh(struct inode
*inode
, sector_t block
, struct buffer_head
*bh
,
1897 struct iomap
*iomap
)
1899 loff_t offset
= block
<< inode
->i_blkbits
;
1901 bh
->b_bdev
= iomap
->bdev
;
1904 * Block points to offset in file we need to map, iomap contains
1905 * the offset at which the map starts. If the map ends before the
1906 * current block, then do not map the buffer and let the caller
1909 BUG_ON(offset
>= iomap
->offset
+ iomap
->length
);
1911 switch (iomap
->type
) {
1914 * If the buffer is not up to date or beyond the current EOF,
1915 * we need to mark it as new to ensure sub-block zeroing is
1916 * executed if necessary.
1918 if (!buffer_uptodate(bh
) ||
1919 (offset
>= i_size_read(inode
)))
1922 case IOMAP_DELALLOC
:
1923 if (!buffer_uptodate(bh
) ||
1924 (offset
>= i_size_read(inode
)))
1926 set_buffer_uptodate(bh
);
1927 set_buffer_mapped(bh
);
1928 set_buffer_delay(bh
);
1930 case IOMAP_UNWRITTEN
:
1932 * For unwritten regions, we always need to ensure that
1933 * sub-block writes cause the regions in the block we are not
1934 * writing to are zeroed. Set the buffer as new to ensure this.
1937 set_buffer_unwritten(bh
);
1940 if (offset
>= i_size_read(inode
))
1942 bh
->b_blocknr
= (iomap
->addr
+ offset
- iomap
->offset
) >>
1944 set_buffer_mapped(bh
);
1949 int __block_write_begin_int(struct page
*page
, loff_t pos
, unsigned len
,
1950 get_block_t
*get_block
, struct iomap
*iomap
)
1952 unsigned from
= pos
& (PAGE_SIZE
- 1);
1953 unsigned to
= from
+ len
;
1954 struct inode
*inode
= page
->mapping
->host
;
1955 unsigned block_start
, block_end
;
1958 unsigned blocksize
, bbits
;
1959 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
=wait
;
1961 BUG_ON(!PageLocked(page
));
1962 BUG_ON(from
> PAGE_SIZE
);
1963 BUG_ON(to
> PAGE_SIZE
);
1966 head
= create_page_buffers(page
, inode
, 0);
1967 blocksize
= head
->b_size
;
1968 bbits
= block_size_bits(blocksize
);
1970 block
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
1972 for(bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
1973 block
++, block_start
=block_end
, bh
= bh
->b_this_page
) {
1974 block_end
= block_start
+ blocksize
;
1975 if (block_end
<= from
|| block_start
>= to
) {
1976 if (PageUptodate(page
)) {
1977 if (!buffer_uptodate(bh
))
1978 set_buffer_uptodate(bh
);
1983 clear_buffer_new(bh
);
1984 if (!buffer_mapped(bh
)) {
1985 WARN_ON(bh
->b_size
!= blocksize
);
1987 err
= get_block(inode
, block
, bh
, 1);
1991 iomap_to_bh(inode
, block
, bh
, iomap
);
1994 if (buffer_new(bh
)) {
1995 clean_bdev_bh_alias(bh
);
1996 if (PageUptodate(page
)) {
1997 clear_buffer_new(bh
);
1998 set_buffer_uptodate(bh
);
1999 mark_buffer_dirty(bh
);
2002 if (block_end
> to
|| block_start
< from
)
2003 zero_user_segments(page
,
2009 if (PageUptodate(page
)) {
2010 if (!buffer_uptodate(bh
))
2011 set_buffer_uptodate(bh
);
2014 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
2015 !buffer_unwritten(bh
) &&
2016 (block_start
< from
|| block_end
> to
)) {
2017 ll_rw_block(REQ_OP_READ
, 0, 1, &bh
);
2022 * If we issued read requests - let them complete.
2024 while(wait_bh
> wait
) {
2025 wait_on_buffer(*--wait_bh
);
2026 if (!buffer_uptodate(*wait_bh
))
2030 page_zero_new_buffers(page
, from
, to
);
2034 int __block_write_begin(struct page
*page
, loff_t pos
, unsigned len
,
2035 get_block_t
*get_block
)
2037 return __block_write_begin_int(page
, pos
, len
, get_block
, NULL
);
2039 EXPORT_SYMBOL(__block_write_begin
);
2041 static int __block_commit_write(struct inode
*inode
, struct page
*page
,
2042 unsigned from
, unsigned to
)
2044 unsigned block_start
, block_end
;
2047 struct buffer_head
*bh
, *head
;
2049 bh
= head
= page_buffers(page
);
2050 blocksize
= bh
->b_size
;
2054 block_end
= block_start
+ blocksize
;
2055 if (block_end
<= from
|| block_start
>= to
) {
2056 if (!buffer_uptodate(bh
))
2059 set_buffer_uptodate(bh
);
2060 mark_buffer_dirty(bh
);
2062 clear_buffer_new(bh
);
2064 block_start
= block_end
;
2065 bh
= bh
->b_this_page
;
2066 } while (bh
!= head
);
2069 * If this is a partial write which happened to make all buffers
2070 * uptodate then we can optimize away a bogus readpage() for
2071 * the next read(). Here we 'discover' whether the page went
2072 * uptodate as a result of this (potentially partial) write.
2075 SetPageUptodate(page
);
2080 * block_write_begin takes care of the basic task of block allocation and
2081 * bringing partial write blocks uptodate first.
2083 * The filesystem needs to handle block truncation upon failure.
2085 int block_write_begin(struct address_space
*mapping
, loff_t pos
, unsigned len
,
2086 unsigned flags
, struct page
**pagep
, get_block_t
*get_block
)
2088 pgoff_t index
= pos
>> PAGE_SHIFT
;
2092 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2096 status
= __block_write_begin(page
, pos
, len
, get_block
);
2097 if (unlikely(status
)) {
2106 EXPORT_SYMBOL(block_write_begin
);
2108 int block_write_end(struct file
*file
, struct address_space
*mapping
,
2109 loff_t pos
, unsigned len
, unsigned copied
,
2110 struct page
*page
, void *fsdata
)
2112 struct inode
*inode
= mapping
->host
;
2115 start
= pos
& (PAGE_SIZE
- 1);
2117 if (unlikely(copied
< len
)) {
2119 * The buffers that were written will now be uptodate, so we
2120 * don't have to worry about a readpage reading them and
2121 * overwriting a partial write. However if we have encountered
2122 * a short write and only partially written into a buffer, it
2123 * will not be marked uptodate, so a readpage might come in and
2124 * destroy our partial write.
2126 * Do the simplest thing, and just treat any short write to a
2127 * non uptodate page as a zero-length write, and force the
2128 * caller to redo the whole thing.
2130 if (!PageUptodate(page
))
2133 page_zero_new_buffers(page
, start
+copied
, start
+len
);
2135 flush_dcache_page(page
);
2137 /* This could be a short (even 0-length) commit */
2138 __block_commit_write(inode
, page
, start
, start
+copied
);
2142 EXPORT_SYMBOL(block_write_end
);
2144 int generic_write_end(struct file
*file
, struct address_space
*mapping
,
2145 loff_t pos
, unsigned len
, unsigned copied
,
2146 struct page
*page
, void *fsdata
)
2148 struct inode
*inode
= mapping
->host
;
2149 loff_t old_size
= inode
->i_size
;
2150 int i_size_changed
= 0;
2152 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2155 * No need to use i_size_read() here, the i_size
2156 * cannot change under us because we hold i_mutex.
2158 * But it's important to update i_size while still holding page lock:
2159 * page writeout could otherwise come in and zero beyond i_size.
2161 if (pos
+copied
> inode
->i_size
) {
2162 i_size_write(inode
, pos
+copied
);
2170 pagecache_isize_extended(inode
, old_size
, pos
);
2172 * Don't mark the inode dirty under page lock. First, it unnecessarily
2173 * makes the holding time of page lock longer. Second, it forces lock
2174 * ordering of page lock and transaction start for journaling
2178 mark_inode_dirty(inode
);
2182 EXPORT_SYMBOL(generic_write_end
);
2185 * block_is_partially_uptodate checks whether buffers within a page are
2188 * Returns true if all buffers which correspond to a file portion
2189 * we want to read are uptodate.
2191 int block_is_partially_uptodate(struct page
*page
, unsigned long from
,
2192 unsigned long count
)
2194 unsigned block_start
, block_end
, blocksize
;
2196 struct buffer_head
*bh
, *head
;
2199 if (!page_has_buffers(page
))
2202 head
= page_buffers(page
);
2203 blocksize
= head
->b_size
;
2204 to
= min_t(unsigned, PAGE_SIZE
- from
, count
);
2206 if (from
< blocksize
&& to
> PAGE_SIZE
- blocksize
)
2212 block_end
= block_start
+ blocksize
;
2213 if (block_end
> from
&& block_start
< to
) {
2214 if (!buffer_uptodate(bh
)) {
2218 if (block_end
>= to
)
2221 block_start
= block_end
;
2222 bh
= bh
->b_this_page
;
2223 } while (bh
!= head
);
2227 EXPORT_SYMBOL(block_is_partially_uptodate
);
2230 * Generic "read page" function for block devices that have the normal
2231 * get_block functionality. This is most of the block device filesystems.
2232 * Reads the page asynchronously --- the unlock_buffer() and
2233 * set/clear_buffer_uptodate() functions propagate buffer state into the
2234 * page struct once IO has completed.
2236 int block_read_full_page(struct page
*page
, get_block_t
*get_block
)
2238 struct inode
*inode
= page
->mapping
->host
;
2239 sector_t iblock
, lblock
;
2240 struct buffer_head
*bh
, *head
, *arr
[MAX_BUF_PER_PAGE
];
2241 unsigned int blocksize
, bbits
;
2243 int fully_mapped
= 1;
2245 head
= create_page_buffers(page
, inode
, 0);
2246 blocksize
= head
->b_size
;
2247 bbits
= block_size_bits(blocksize
);
2249 iblock
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
2250 lblock
= (i_size_read(inode
)+blocksize
-1) >> bbits
;
2256 if (buffer_uptodate(bh
))
2259 if (!buffer_mapped(bh
)) {
2263 if (iblock
< lblock
) {
2264 WARN_ON(bh
->b_size
!= blocksize
);
2265 err
= get_block(inode
, iblock
, bh
, 0);
2269 if (!buffer_mapped(bh
)) {
2270 zero_user(page
, i
* blocksize
, blocksize
);
2272 set_buffer_uptodate(bh
);
2276 * get_block() might have updated the buffer
2279 if (buffer_uptodate(bh
))
2283 } while (i
++, iblock
++, (bh
= bh
->b_this_page
) != head
);
2286 SetPageMappedToDisk(page
);
2290 * All buffers are uptodate - we can set the page uptodate
2291 * as well. But not if get_block() returned an error.
2293 if (!PageError(page
))
2294 SetPageUptodate(page
);
2299 /* Stage two: lock the buffers */
2300 for (i
= 0; i
< nr
; i
++) {
2303 mark_buffer_async_read(bh
);
2307 * Stage 3: start the IO. Check for uptodateness
2308 * inside the buffer lock in case another process reading
2309 * the underlying blockdev brought it uptodate (the sct fix).
2311 for (i
= 0; i
< nr
; i
++) {
2313 if (buffer_uptodate(bh
))
2314 end_buffer_async_read(bh
, 1);
2316 submit_bh(REQ_OP_READ
, 0, bh
);
2320 EXPORT_SYMBOL(block_read_full_page
);
2322 /* utility function for filesystems that need to do work on expanding
2323 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2324 * deal with the hole.
2326 int generic_cont_expand_simple(struct inode
*inode
, loff_t size
)
2328 struct address_space
*mapping
= inode
->i_mapping
;
2333 err
= inode_newsize_ok(inode
, size
);
2337 err
= pagecache_write_begin(NULL
, mapping
, size
, 0,
2338 AOP_FLAG_CONT_EXPAND
, &page
, &fsdata
);
2342 err
= pagecache_write_end(NULL
, mapping
, size
, 0, 0, page
, fsdata
);
2348 EXPORT_SYMBOL(generic_cont_expand_simple
);
2350 static int cont_expand_zero(struct file
*file
, struct address_space
*mapping
,
2351 loff_t pos
, loff_t
*bytes
)
2353 struct inode
*inode
= mapping
->host
;
2354 unsigned int blocksize
= i_blocksize(inode
);
2357 pgoff_t index
, curidx
;
2359 unsigned zerofrom
, offset
, len
;
2362 index
= pos
>> PAGE_SHIFT
;
2363 offset
= pos
& ~PAGE_MASK
;
2365 while (index
> (curidx
= (curpos
= *bytes
)>>PAGE_SHIFT
)) {
2366 zerofrom
= curpos
& ~PAGE_MASK
;
2367 if (zerofrom
& (blocksize
-1)) {
2368 *bytes
|= (blocksize
-1);
2371 len
= PAGE_SIZE
- zerofrom
;
2373 err
= pagecache_write_begin(file
, mapping
, curpos
, len
, 0,
2377 zero_user(page
, zerofrom
, len
);
2378 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2385 balance_dirty_pages_ratelimited(mapping
);
2387 if (unlikely(fatal_signal_pending(current
))) {
2393 /* page covers the boundary, find the boundary offset */
2394 if (index
== curidx
) {
2395 zerofrom
= curpos
& ~PAGE_MASK
;
2396 /* if we will expand the thing last block will be filled */
2397 if (offset
<= zerofrom
) {
2400 if (zerofrom
& (blocksize
-1)) {
2401 *bytes
|= (blocksize
-1);
2404 len
= offset
- zerofrom
;
2406 err
= pagecache_write_begin(file
, mapping
, curpos
, len
, 0,
2410 zero_user(page
, zerofrom
, len
);
2411 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2423 * For moronic filesystems that do not allow holes in file.
2424 * We may have to extend the file.
2426 int cont_write_begin(struct file
*file
, struct address_space
*mapping
,
2427 loff_t pos
, unsigned len
, unsigned flags
,
2428 struct page
**pagep
, void **fsdata
,
2429 get_block_t
*get_block
, loff_t
*bytes
)
2431 struct inode
*inode
= mapping
->host
;
2432 unsigned int blocksize
= i_blocksize(inode
);
2433 unsigned int zerofrom
;
2436 err
= cont_expand_zero(file
, mapping
, pos
, bytes
);
2440 zerofrom
= *bytes
& ~PAGE_MASK
;
2441 if (pos
+len
> *bytes
&& zerofrom
& (blocksize
-1)) {
2442 *bytes
|= (blocksize
-1);
2446 return block_write_begin(mapping
, pos
, len
, flags
, pagep
, get_block
);
2448 EXPORT_SYMBOL(cont_write_begin
);
2450 int block_commit_write(struct page
*page
, unsigned from
, unsigned to
)
2452 struct inode
*inode
= page
->mapping
->host
;
2453 __block_commit_write(inode
,page
,from
,to
);
2456 EXPORT_SYMBOL(block_commit_write
);
2459 * block_page_mkwrite() is not allowed to change the file size as it gets
2460 * called from a page fault handler when a page is first dirtied. Hence we must
2461 * be careful to check for EOF conditions here. We set the page up correctly
2462 * for a written page which means we get ENOSPC checking when writing into
2463 * holes and correct delalloc and unwritten extent mapping on filesystems that
2464 * support these features.
2466 * We are not allowed to take the i_mutex here so we have to play games to
2467 * protect against truncate races as the page could now be beyond EOF. Because
2468 * truncate writes the inode size before removing pages, once we have the
2469 * page lock we can determine safely if the page is beyond EOF. If it is not
2470 * beyond EOF, then the page is guaranteed safe against truncation until we
2473 * Direct callers of this function should protect against filesystem freezing
2474 * using sb_start_pagefault() - sb_end_pagefault() functions.
2476 int block_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
2477 get_block_t get_block
)
2479 struct page
*page
= vmf
->page
;
2480 struct inode
*inode
= file_inode(vma
->vm_file
);
2486 size
= i_size_read(inode
);
2487 if ((page
->mapping
!= inode
->i_mapping
) ||
2488 (page_offset(page
) > size
)) {
2489 /* We overload EFAULT to mean page got truncated */
2494 /* page is wholly or partially inside EOF */
2495 if (((page
->index
+ 1) << PAGE_SHIFT
) > size
)
2496 end
= size
& ~PAGE_MASK
;
2500 ret
= __block_write_begin(page
, 0, end
, get_block
);
2502 ret
= block_commit_write(page
, 0, end
);
2504 if (unlikely(ret
< 0))
2506 set_page_dirty(page
);
2507 wait_for_stable_page(page
);
2513 EXPORT_SYMBOL(block_page_mkwrite
);
2516 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2517 * immediately, while under the page lock. So it needs a special end_io
2518 * handler which does not touch the bh after unlocking it.
2520 static void end_buffer_read_nobh(struct buffer_head
*bh
, int uptodate
)
2522 __end_buffer_read_notouch(bh
, uptodate
);
2526 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2527 * the page (converting it to circular linked list and taking care of page
2530 static void attach_nobh_buffers(struct page
*page
, struct buffer_head
*head
)
2532 struct buffer_head
*bh
;
2534 BUG_ON(!PageLocked(page
));
2536 spin_lock(&page
->mapping
->private_lock
);
2539 if (PageDirty(page
))
2540 set_buffer_dirty(bh
);
2541 if (!bh
->b_this_page
)
2542 bh
->b_this_page
= head
;
2543 bh
= bh
->b_this_page
;
2544 } while (bh
!= head
);
2545 attach_page_buffers(page
, head
);
2546 spin_unlock(&page
->mapping
->private_lock
);
2550 * On entry, the page is fully not uptodate.
2551 * On exit the page is fully uptodate in the areas outside (from,to)
2552 * The filesystem needs to handle block truncation upon failure.
2554 int nobh_write_begin(struct address_space
*mapping
,
2555 loff_t pos
, unsigned len
, unsigned flags
,
2556 struct page
**pagep
, void **fsdata
,
2557 get_block_t
*get_block
)
2559 struct inode
*inode
= mapping
->host
;
2560 const unsigned blkbits
= inode
->i_blkbits
;
2561 const unsigned blocksize
= 1 << blkbits
;
2562 struct buffer_head
*head
, *bh
;
2566 unsigned block_in_page
;
2567 unsigned block_start
, block_end
;
2568 sector_t block_in_file
;
2571 int is_mapped_to_disk
= 1;
2573 index
= pos
>> PAGE_SHIFT
;
2574 from
= pos
& (PAGE_SIZE
- 1);
2577 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2583 if (page_has_buffers(page
)) {
2584 ret
= __block_write_begin(page
, pos
, len
, get_block
);
2590 if (PageMappedToDisk(page
))
2594 * Allocate buffers so that we can keep track of state, and potentially
2595 * attach them to the page if an error occurs. In the common case of
2596 * no error, they will just be freed again without ever being attached
2597 * to the page (which is all OK, because we're under the page lock).
2599 * Be careful: the buffer linked list is a NULL terminated one, rather
2600 * than the circular one we're used to.
2602 head
= alloc_page_buffers(page
, blocksize
, false);
2608 block_in_file
= (sector_t
)page
->index
<< (PAGE_SHIFT
- blkbits
);
2611 * We loop across all blocks in the page, whether or not they are
2612 * part of the affected region. This is so we can discover if the
2613 * page is fully mapped-to-disk.
2615 for (block_start
= 0, block_in_page
= 0, bh
= head
;
2616 block_start
< PAGE_SIZE
;
2617 block_in_page
++, block_start
+= blocksize
, bh
= bh
->b_this_page
) {
2620 block_end
= block_start
+ blocksize
;
2623 if (block_start
>= to
)
2625 ret
= get_block(inode
, block_in_file
+ block_in_page
,
2629 if (!buffer_mapped(bh
))
2630 is_mapped_to_disk
= 0;
2632 clean_bdev_bh_alias(bh
);
2633 if (PageUptodate(page
)) {
2634 set_buffer_uptodate(bh
);
2637 if (buffer_new(bh
) || !buffer_mapped(bh
)) {
2638 zero_user_segments(page
, block_start
, from
,
2642 if (buffer_uptodate(bh
))
2643 continue; /* reiserfs does this */
2644 if (block_start
< from
|| block_end
> to
) {
2646 bh
->b_end_io
= end_buffer_read_nobh
;
2647 submit_bh(REQ_OP_READ
, 0, bh
);
2654 * The page is locked, so these buffers are protected from
2655 * any VM or truncate activity. Hence we don't need to care
2656 * for the buffer_head refcounts.
2658 for (bh
= head
; bh
; bh
= bh
->b_this_page
) {
2660 if (!buffer_uptodate(bh
))
2667 if (is_mapped_to_disk
)
2668 SetPageMappedToDisk(page
);
2670 *fsdata
= head
; /* to be released by nobh_write_end */
2677 * Error recovery is a bit difficult. We need to zero out blocks that
2678 * were newly allocated, and dirty them to ensure they get written out.
2679 * Buffers need to be attached to the page at this point, otherwise
2680 * the handling of potential IO errors during writeout would be hard
2681 * (could try doing synchronous writeout, but what if that fails too?)
2683 attach_nobh_buffers(page
, head
);
2684 page_zero_new_buffers(page
, from
, to
);
2693 EXPORT_SYMBOL(nobh_write_begin
);
2695 int nobh_write_end(struct file
*file
, struct address_space
*mapping
,
2696 loff_t pos
, unsigned len
, unsigned copied
,
2697 struct page
*page
, void *fsdata
)
2699 struct inode
*inode
= page
->mapping
->host
;
2700 struct buffer_head
*head
= fsdata
;
2701 struct buffer_head
*bh
;
2702 BUG_ON(fsdata
!= NULL
&& page_has_buffers(page
));
2704 if (unlikely(copied
< len
) && head
)
2705 attach_nobh_buffers(page
, head
);
2706 if (page_has_buffers(page
))
2707 return generic_write_end(file
, mapping
, pos
, len
,
2708 copied
, page
, fsdata
);
2710 SetPageUptodate(page
);
2711 set_page_dirty(page
);
2712 if (pos
+copied
> inode
->i_size
) {
2713 i_size_write(inode
, pos
+copied
);
2714 mark_inode_dirty(inode
);
2722 head
= head
->b_this_page
;
2723 free_buffer_head(bh
);
2728 EXPORT_SYMBOL(nobh_write_end
);
2731 * nobh_writepage() - based on block_full_write_page() except
2732 * that it tries to operate without attaching bufferheads to
2735 int nobh_writepage(struct page
*page
, get_block_t
*get_block
,
2736 struct writeback_control
*wbc
)
2738 struct inode
* const inode
= page
->mapping
->host
;
2739 loff_t i_size
= i_size_read(inode
);
2740 const pgoff_t end_index
= i_size
>> PAGE_SHIFT
;
2744 /* Is the page fully inside i_size? */
2745 if (page
->index
< end_index
)
2748 /* Is the page fully outside i_size? (truncate in progress) */
2749 offset
= i_size
& (PAGE_SIZE
-1);
2750 if (page
->index
>= end_index
+1 || !offset
) {
2752 * The page may have dirty, unmapped buffers. For example,
2753 * they may have been added in ext3_writepage(). Make them
2754 * freeable here, so the page does not leak.
2757 /* Not really sure about this - do we need this ? */
2758 if (page
->mapping
->a_ops
->invalidatepage
)
2759 page
->mapping
->a_ops
->invalidatepage(page
, offset
);
2762 return 0; /* don't care */
2766 * The page straddles i_size. It must be zeroed out on each and every
2767 * writepage invocation because it may be mmapped. "A file is mapped
2768 * in multiples of the page size. For a file that is not a multiple of
2769 * the page size, the remaining memory is zeroed when mapped, and
2770 * writes to that region are not written out to the file."
2772 zero_user_segment(page
, offset
, PAGE_SIZE
);
2774 ret
= mpage_writepage(page
, get_block
, wbc
);
2776 ret
= __block_write_full_page(inode
, page
, get_block
, wbc
,
2777 end_buffer_async_write
);
2780 EXPORT_SYMBOL(nobh_writepage
);
2782 int nobh_truncate_page(struct address_space
*mapping
,
2783 loff_t from
, get_block_t
*get_block
)
2785 pgoff_t index
= from
>> PAGE_SHIFT
;
2786 unsigned offset
= from
& (PAGE_SIZE
-1);
2789 unsigned length
, pos
;
2790 struct inode
*inode
= mapping
->host
;
2792 struct buffer_head map_bh
;
2795 blocksize
= i_blocksize(inode
);
2796 length
= offset
& (blocksize
- 1);
2798 /* Block boundary? Nothing to do */
2802 length
= blocksize
- length
;
2803 iblock
= (sector_t
)index
<< (PAGE_SHIFT
- inode
->i_blkbits
);
2805 page
= grab_cache_page(mapping
, index
);
2810 if (page_has_buffers(page
)) {
2814 return block_truncate_page(mapping
, from
, get_block
);
2817 /* Find the buffer that contains "offset" */
2819 while (offset
>= pos
) {
2824 map_bh
.b_size
= blocksize
;
2826 err
= get_block(inode
, iblock
, &map_bh
, 0);
2829 /* unmapped? It's a hole - nothing to do */
2830 if (!buffer_mapped(&map_bh
))
2833 /* Ok, it's mapped. Make sure it's up-to-date */
2834 if (!PageUptodate(page
)) {
2835 err
= mapping
->a_ops
->readpage(NULL
, page
);
2841 if (!PageUptodate(page
)) {
2845 if (page_has_buffers(page
))
2848 zero_user(page
, offset
, length
);
2849 set_page_dirty(page
);
2858 EXPORT_SYMBOL(nobh_truncate_page
);
2860 int block_truncate_page(struct address_space
*mapping
,
2861 loff_t from
, get_block_t
*get_block
)
2863 pgoff_t index
= from
>> PAGE_SHIFT
;
2864 unsigned offset
= from
& (PAGE_SIZE
-1);
2867 unsigned length
, pos
;
2868 struct inode
*inode
= mapping
->host
;
2870 struct buffer_head
*bh
;
2873 blocksize
= i_blocksize(inode
);
2874 length
= offset
& (blocksize
- 1);
2876 /* Block boundary? Nothing to do */
2880 length
= blocksize
- length
;
2881 iblock
= (sector_t
)index
<< (PAGE_SHIFT
- inode
->i_blkbits
);
2883 page
= grab_cache_page(mapping
, index
);
2888 if (!page_has_buffers(page
))
2889 create_empty_buffers(page
, blocksize
, 0);
2891 /* Find the buffer that contains "offset" */
2892 bh
= page_buffers(page
);
2894 while (offset
>= pos
) {
2895 bh
= bh
->b_this_page
;
2901 if (!buffer_mapped(bh
)) {
2902 WARN_ON(bh
->b_size
!= blocksize
);
2903 err
= get_block(inode
, iblock
, bh
, 0);
2906 /* unmapped? It's a hole - nothing to do */
2907 if (!buffer_mapped(bh
))
2911 /* Ok, it's mapped. Make sure it's up-to-date */
2912 if (PageUptodate(page
))
2913 set_buffer_uptodate(bh
);
2915 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) && !buffer_unwritten(bh
)) {
2917 ll_rw_block(REQ_OP_READ
, 0, 1, &bh
);
2919 /* Uhhuh. Read error. Complain and punt. */
2920 if (!buffer_uptodate(bh
))
2924 zero_user(page
, offset
, length
);
2925 mark_buffer_dirty(bh
);
2934 EXPORT_SYMBOL(block_truncate_page
);
2937 * The generic ->writepage function for buffer-backed address_spaces
2939 int block_write_full_page(struct page
*page
, get_block_t
*get_block
,
2940 struct writeback_control
*wbc
)
2942 struct inode
* const inode
= page
->mapping
->host
;
2943 loff_t i_size
= i_size_read(inode
);
2944 const pgoff_t end_index
= i_size
>> PAGE_SHIFT
;
2947 /* Is the page fully inside i_size? */
2948 if (page
->index
< end_index
)
2949 return __block_write_full_page(inode
, page
, get_block
, wbc
,
2950 end_buffer_async_write
);
2952 /* Is the page fully outside i_size? (truncate in progress) */
2953 offset
= i_size
& (PAGE_SIZE
-1);
2954 if (page
->index
>= end_index
+1 || !offset
) {
2956 * The page may have dirty, unmapped buffers. For example,
2957 * they may have been added in ext3_writepage(). Make them
2958 * freeable here, so the page does not leak.
2960 do_invalidatepage(page
, 0, PAGE_SIZE
);
2962 return 0; /* don't care */
2966 * The page straddles i_size. It must be zeroed out on each and every
2967 * writepage invocation because it may be mmapped. "A file is mapped
2968 * in multiples of the page size. For a file that is not a multiple of
2969 * the page size, the remaining memory is zeroed when mapped, and
2970 * writes to that region are not written out to the file."
2972 zero_user_segment(page
, offset
, PAGE_SIZE
);
2973 return __block_write_full_page(inode
, page
, get_block
, wbc
,
2974 end_buffer_async_write
);
2976 EXPORT_SYMBOL(block_write_full_page
);
2978 sector_t
generic_block_bmap(struct address_space
*mapping
, sector_t block
,
2979 get_block_t
*get_block
)
2981 struct inode
*inode
= mapping
->host
;
2982 struct buffer_head tmp
= {
2983 .b_size
= i_blocksize(inode
),
2986 get_block(inode
, block
, &tmp
, 0);
2987 return tmp
.b_blocknr
;
2989 EXPORT_SYMBOL(generic_block_bmap
);
2991 static void end_bio_bh_io_sync(struct bio
*bio
)
2993 struct buffer_head
*bh
= bio
->bi_private
;
2995 if (unlikely(bio_flagged(bio
, BIO_QUIET
)))
2996 set_bit(BH_Quiet
, &bh
->b_state
);
2998 bh
->b_end_io(bh
, !bio
->bi_status
);
3003 * This allows us to do IO even on the odd last sectors
3004 * of a device, even if the block size is some multiple
3005 * of the physical sector size.
3007 * We'll just truncate the bio to the size of the device,
3008 * and clear the end of the buffer head manually.
3010 * Truly out-of-range accesses will turn into actual IO
3011 * errors, this only handles the "we need to be able to
3012 * do IO at the final sector" case.
3014 void guard_bio_eod(int op
, struct bio
*bio
)
3017 struct bio_vec
*bvec
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
3018 unsigned truncated_bytes
;
3019 struct hd_struct
*part
;
3022 part
= __disk_get_part(bio
->bi_disk
, bio
->bi_partno
);
3024 maxsector
= part_nr_sects_read(part
);
3026 maxsector
= get_capacity(bio
->bi_disk
);
3033 * If the *whole* IO is past the end of the device,
3034 * let it through, and the IO layer will turn it into
3037 if (unlikely(bio
->bi_iter
.bi_sector
>= maxsector
))
3040 maxsector
-= bio
->bi_iter
.bi_sector
;
3041 if (likely((bio
->bi_iter
.bi_size
>> 9) <= maxsector
))
3044 /* Uhhuh. We've got a bio that straddles the device size! */
3045 truncated_bytes
= bio
->bi_iter
.bi_size
- (maxsector
<< 9);
3047 /* Truncate the bio.. */
3048 bio
->bi_iter
.bi_size
-= truncated_bytes
;
3049 bvec
->bv_len
-= truncated_bytes
;
3051 /* ..and clear the end of the buffer for reads */
3052 if (op
== REQ_OP_READ
) {
3053 zero_user(bvec
->bv_page
, bvec
->bv_offset
+ bvec
->bv_len
,
3058 static int submit_bh_wbc(int op
, int op_flags
, struct buffer_head
*bh
,
3059 enum rw_hint write_hint
, struct writeback_control
*wbc
)
3063 BUG_ON(!buffer_locked(bh
));
3064 BUG_ON(!buffer_mapped(bh
));
3065 BUG_ON(!bh
->b_end_io
);
3066 BUG_ON(buffer_delay(bh
));
3067 BUG_ON(buffer_unwritten(bh
));
3070 * Only clear out a write error when rewriting
3072 if (test_set_buffer_req(bh
) && (op
== REQ_OP_WRITE
))
3073 clear_buffer_write_io_error(bh
);
3076 * from here on down, it's all bio -- do the initial mapping,
3077 * submit_bio -> generic_make_request may further map this bio around
3079 bio
= bio_alloc(GFP_NOIO
, 1);
3082 wbc_init_bio(wbc
, bio
);
3083 wbc_account_io(wbc
, bh
->b_page
, bh
->b_size
);
3086 bio
->bi_iter
.bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
3087 bio_set_dev(bio
, bh
->b_bdev
);
3088 bio
->bi_write_hint
= write_hint
;
3090 bio_add_page(bio
, bh
->b_page
, bh
->b_size
, bh_offset(bh
));
3091 BUG_ON(bio
->bi_iter
.bi_size
!= bh
->b_size
);
3093 bio
->bi_end_io
= end_bio_bh_io_sync
;
3094 bio
->bi_private
= bh
;
3096 /* Take care of bh's that straddle the end of the device */
3097 guard_bio_eod(op
, bio
);
3099 if (buffer_meta(bh
))
3100 op_flags
|= REQ_META
;
3101 if (buffer_prio(bh
))
3102 op_flags
|= REQ_PRIO
;
3103 bio_set_op_attrs(bio
, op
, op_flags
);
3109 int submit_bh(int op
, int op_flags
, struct buffer_head
*bh
)
3111 return submit_bh_wbc(op
, op_flags
, bh
, 0, NULL
);
3113 EXPORT_SYMBOL(submit_bh
);
3116 * ll_rw_block: low-level access to block devices (DEPRECATED)
3117 * @op: whether to %READ or %WRITE
3118 * @op_flags: req_flag_bits
3119 * @nr: number of &struct buffer_heads in the array
3120 * @bhs: array of pointers to &struct buffer_head
3122 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3123 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3124 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3127 * This function drops any buffer that it cannot get a lock on (with the
3128 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3129 * request, and any buffer that appears to be up-to-date when doing read
3130 * request. Further it marks as clean buffers that are processed for
3131 * writing (the buffer cache won't assume that they are actually clean
3132 * until the buffer gets unlocked).
3134 * ll_rw_block sets b_end_io to simple completion handler that marks
3135 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3138 * All of the buffers must be for the same device, and must also be a
3139 * multiple of the current approved size for the device.
3141 void ll_rw_block(int op
, int op_flags
, int nr
, struct buffer_head
*bhs
[])
3145 for (i
= 0; i
< nr
; i
++) {
3146 struct buffer_head
*bh
= bhs
[i
];
3148 if (!trylock_buffer(bh
))
3151 if (test_clear_buffer_dirty(bh
)) {
3152 bh
->b_end_io
= end_buffer_write_sync
;
3154 submit_bh(op
, op_flags
, bh
);
3158 if (!buffer_uptodate(bh
)) {
3159 bh
->b_end_io
= end_buffer_read_sync
;
3161 submit_bh(op
, op_flags
, bh
);
3168 EXPORT_SYMBOL(ll_rw_block
);
3170 void write_dirty_buffer(struct buffer_head
*bh
, int op_flags
)
3173 if (!test_clear_buffer_dirty(bh
)) {
3177 bh
->b_end_io
= end_buffer_write_sync
;
3179 submit_bh(REQ_OP_WRITE
, op_flags
, bh
);
3181 EXPORT_SYMBOL(write_dirty_buffer
);
3184 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3185 * and then start new I/O and then wait upon it. The caller must have a ref on
3188 int __sync_dirty_buffer(struct buffer_head
*bh
, int op_flags
)
3192 WARN_ON(atomic_read(&bh
->b_count
) < 1);
3194 if (test_clear_buffer_dirty(bh
)) {
3196 bh
->b_end_io
= end_buffer_write_sync
;
3197 ret
= submit_bh(REQ_OP_WRITE
, op_flags
, bh
);
3199 if (!ret
&& !buffer_uptodate(bh
))
3206 EXPORT_SYMBOL(__sync_dirty_buffer
);
3208 int sync_dirty_buffer(struct buffer_head
*bh
)
3210 return __sync_dirty_buffer(bh
, REQ_SYNC
);
3212 EXPORT_SYMBOL(sync_dirty_buffer
);
3215 * try_to_free_buffers() checks if all the buffers on this particular page
3216 * are unused, and releases them if so.
3218 * Exclusion against try_to_free_buffers may be obtained by either
3219 * locking the page or by holding its mapping's private_lock.
3221 * If the page is dirty but all the buffers are clean then we need to
3222 * be sure to mark the page clean as well. This is because the page
3223 * may be against a block device, and a later reattachment of buffers
3224 * to a dirty page will set *all* buffers dirty. Which would corrupt
3225 * filesystem data on the same device.
3227 * The same applies to regular filesystem pages: if all the buffers are
3228 * clean then we set the page clean and proceed. To do that, we require
3229 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3232 * try_to_free_buffers() is non-blocking.
3234 static inline int buffer_busy(struct buffer_head
*bh
)
3236 return atomic_read(&bh
->b_count
) |
3237 (bh
->b_state
& ((1 << BH_Dirty
) | (1 << BH_Lock
)));
3241 drop_buffers(struct page
*page
, struct buffer_head
**buffers_to_free
)
3243 struct buffer_head
*head
= page_buffers(page
);
3244 struct buffer_head
*bh
;
3248 if (buffer_busy(bh
))
3250 bh
= bh
->b_this_page
;
3251 } while (bh
!= head
);
3254 struct buffer_head
*next
= bh
->b_this_page
;
3256 if (bh
->b_assoc_map
)
3257 __remove_assoc_queue(bh
);
3259 } while (bh
!= head
);
3260 *buffers_to_free
= head
;
3261 __clear_page_buffers(page
);
3267 int try_to_free_buffers(struct page
*page
)
3269 struct address_space
* const mapping
= page
->mapping
;
3270 struct buffer_head
*buffers_to_free
= NULL
;
3273 BUG_ON(!PageLocked(page
));
3274 if (PageWriteback(page
))
3277 if (mapping
== NULL
) { /* can this still happen? */
3278 ret
= drop_buffers(page
, &buffers_to_free
);
3282 spin_lock(&mapping
->private_lock
);
3283 ret
= drop_buffers(page
, &buffers_to_free
);
3286 * If the filesystem writes its buffers by hand (eg ext3)
3287 * then we can have clean buffers against a dirty page. We
3288 * clean the page here; otherwise the VM will never notice
3289 * that the filesystem did any IO at all.
3291 * Also, during truncate, discard_buffer will have marked all
3292 * the page's buffers clean. We discover that here and clean
3295 * private_lock must be held over this entire operation in order
3296 * to synchronise against __set_page_dirty_buffers and prevent the
3297 * dirty bit from being lost.
3300 cancel_dirty_page(page
);
3301 spin_unlock(&mapping
->private_lock
);
3303 if (buffers_to_free
) {
3304 struct buffer_head
*bh
= buffers_to_free
;
3307 struct buffer_head
*next
= bh
->b_this_page
;
3308 free_buffer_head(bh
);
3310 } while (bh
!= buffers_to_free
);
3314 EXPORT_SYMBOL(try_to_free_buffers
);
3317 * There are no bdflush tunables left. But distributions are
3318 * still running obsolete flush daemons, so we terminate them here.
3320 * Use of bdflush() is deprecated and will be removed in a future kernel.
3321 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3323 SYSCALL_DEFINE2(bdflush
, int, func
, long, data
)
3325 static int msg_count
;
3327 if (!capable(CAP_SYS_ADMIN
))
3330 if (msg_count
< 5) {
3333 "warning: process `%s' used the obsolete bdflush"
3334 " system call\n", current
->comm
);
3335 printk(KERN_INFO
"Fix your initscripts?\n");
3344 * Buffer-head allocation
3346 static struct kmem_cache
*bh_cachep __read_mostly
;
3349 * Once the number of bh's in the machine exceeds this level, we start
3350 * stripping them in writeback.
3352 static unsigned long max_buffer_heads
;
3354 int buffer_heads_over_limit
;
3356 struct bh_accounting
{
3357 int nr
; /* Number of live bh's */
3358 int ratelimit
; /* Limit cacheline bouncing */
3361 static DEFINE_PER_CPU(struct bh_accounting
, bh_accounting
) = {0, 0};
3363 static void recalc_bh_state(void)
3368 if (__this_cpu_inc_return(bh_accounting
.ratelimit
) - 1 < 4096)
3370 __this_cpu_write(bh_accounting
.ratelimit
, 0);
3371 for_each_online_cpu(i
)
3372 tot
+= per_cpu(bh_accounting
, i
).nr
;
3373 buffer_heads_over_limit
= (tot
> max_buffer_heads
);
3376 struct buffer_head
*alloc_buffer_head(gfp_t gfp_flags
)
3378 struct buffer_head
*ret
= kmem_cache_zalloc(bh_cachep
, gfp_flags
);
3380 INIT_LIST_HEAD(&ret
->b_assoc_buffers
);
3382 __this_cpu_inc(bh_accounting
.nr
);
3388 EXPORT_SYMBOL(alloc_buffer_head
);
3390 void free_buffer_head(struct buffer_head
*bh
)
3392 BUG_ON(!list_empty(&bh
->b_assoc_buffers
));
3393 kmem_cache_free(bh_cachep
, bh
);
3395 __this_cpu_dec(bh_accounting
.nr
);
3399 EXPORT_SYMBOL(free_buffer_head
);
3401 static int buffer_exit_cpu_dead(unsigned int cpu
)
3404 struct bh_lru
*b
= &per_cpu(bh_lrus
, cpu
);
3406 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
3410 this_cpu_add(bh_accounting
.nr
, per_cpu(bh_accounting
, cpu
).nr
);
3411 per_cpu(bh_accounting
, cpu
).nr
= 0;
3416 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3417 * @bh: struct buffer_head
3419 * Return true if the buffer is up-to-date and false,
3420 * with the buffer locked, if not.
3422 int bh_uptodate_or_lock(struct buffer_head
*bh
)
3424 if (!buffer_uptodate(bh
)) {
3426 if (!buffer_uptodate(bh
))
3432 EXPORT_SYMBOL(bh_uptodate_or_lock
);
3435 * bh_submit_read - Submit a locked buffer for reading
3436 * @bh: struct buffer_head
3438 * Returns zero on success and -EIO on error.
3440 int bh_submit_read(struct buffer_head
*bh
)
3442 BUG_ON(!buffer_locked(bh
));
3444 if (buffer_uptodate(bh
)) {
3450 bh
->b_end_io
= end_buffer_read_sync
;
3451 submit_bh(REQ_OP_READ
, 0, bh
);
3453 if (buffer_uptodate(bh
))
3457 EXPORT_SYMBOL(bh_submit_read
);
3460 * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
3462 * Returns the offset within the file on success, and -ENOENT otherwise.
3465 page_seek_hole_data(struct page
*page
, loff_t lastoff
, int whence
)
3467 loff_t offset
= page_offset(page
);
3468 struct buffer_head
*bh
, *head
;
3469 bool seek_data
= whence
== SEEK_DATA
;
3471 if (lastoff
< offset
)
3474 bh
= head
= page_buffers(page
);
3476 offset
+= bh
->b_size
;
3477 if (lastoff
>= offset
)
3481 * Unwritten extents that have data in the page cache covering
3482 * them can be identified by the BH_Unwritten state flag.
3483 * Pages with multiple buffers might have a mix of holes, data
3484 * and unwritten extents - any buffer with valid data in it
3485 * should have BH_Uptodate flag set on it.
3488 if ((buffer_unwritten(bh
) || buffer_uptodate(bh
)) == seek_data
)
3492 } while ((bh
= bh
->b_this_page
) != head
);
3497 * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3499 * Within unwritten extents, the page cache determines which parts are holes
3500 * and which are data: unwritten and uptodate buffer heads count as data;
3501 * everything else counts as a hole.
3503 * Returns the resulting offset on successs, and -ENOENT otherwise.
3506 page_cache_seek_hole_data(struct inode
*inode
, loff_t offset
, loff_t length
,
3509 pgoff_t index
= offset
>> PAGE_SHIFT
;
3510 pgoff_t end
= DIV_ROUND_UP(offset
+ length
, PAGE_SIZE
);
3511 loff_t lastoff
= offset
;
3512 struct pagevec pvec
;
3517 pagevec_init(&pvec
);
3520 unsigned nr_pages
, i
;
3522 nr_pages
= pagevec_lookup_range(&pvec
, inode
->i_mapping
, &index
,
3527 for (i
= 0; i
< nr_pages
; i
++) {
3528 struct page
*page
= pvec
.pages
[i
];
3531 * At this point, the page may be truncated or
3532 * invalidated (changing page->mapping to NULL), or
3533 * even swizzled back from swapper_space to tmpfs file
3534 * mapping. However, page->index will not change
3535 * because we have a reference on the page.
3537 * If current page offset is beyond where we've ended,
3538 * we've found a hole.
3540 if (whence
== SEEK_HOLE
&&
3541 lastoff
< page_offset(page
))
3545 if (likely(page
->mapping
== inode
->i_mapping
) &&
3546 page_has_buffers(page
)) {
3547 lastoff
= page_seek_hole_data(page
, lastoff
, whence
);
3554 lastoff
= page_offset(page
) + PAGE_SIZE
;
3556 pagevec_release(&pvec
);
3557 } while (index
< end
);
3559 /* When no page at lastoff and we are not done, we found a hole. */
3560 if (whence
!= SEEK_HOLE
)
3564 if (lastoff
< offset
+ length
)
3569 pagevec_release(&pvec
);
3573 void __init
buffer_init(void)
3575 unsigned long nrpages
;
3578 bh_cachep
= kmem_cache_create("buffer_head",
3579 sizeof(struct buffer_head
), 0,
3580 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
3585 * Limit the bh occupancy to 10% of ZONE_NORMAL
3587 nrpages
= (nr_free_buffer_pages() * 10) / 100;
3588 max_buffer_heads
= nrpages
* (PAGE_SIZE
/ sizeof(struct buffer_head
));
3589 ret
= cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD
, "fs/buffer:dead",
3590 NULL
, buffer_exit_cpu_dead
);