crypto: talitos - Refactor the sg in/out chain allocation
[linux/fpc-iii.git] / security / selinux / ss / conditional.c
blob62c6773be0b75f69f4f9c6b579d0205aa602ed5c
1 /* Authors: Karl MacMillan <kmacmillan@tresys.com>
2 * Frank Mayer <mayerf@tresys.com>
4 * Copyright (C) 2003 - 2004 Tresys Technology, LLC
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation, version 2.
8 */
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/string.h>
13 #include <linux/spinlock.h>
14 #include <linux/slab.h>
16 #include "security.h"
17 #include "conditional.h"
20 * cond_evaluate_expr evaluates a conditional expr
21 * in reverse polish notation. It returns true (1), false (0),
22 * or undefined (-1). Undefined occurs when the expression
23 * exceeds the stack depth of COND_EXPR_MAXDEPTH.
25 static int cond_evaluate_expr(struct policydb *p, struct cond_expr *expr)
28 struct cond_expr *cur;
29 int s[COND_EXPR_MAXDEPTH];
30 int sp = -1;
32 for (cur = expr; cur; cur = cur->next) {
33 switch (cur->expr_type) {
34 case COND_BOOL:
35 if (sp == (COND_EXPR_MAXDEPTH - 1))
36 return -1;
37 sp++;
38 s[sp] = p->bool_val_to_struct[cur->bool - 1]->state;
39 break;
40 case COND_NOT:
41 if (sp < 0)
42 return -1;
43 s[sp] = !s[sp];
44 break;
45 case COND_OR:
46 if (sp < 1)
47 return -1;
48 sp--;
49 s[sp] |= s[sp + 1];
50 break;
51 case COND_AND:
52 if (sp < 1)
53 return -1;
54 sp--;
55 s[sp] &= s[sp + 1];
56 break;
57 case COND_XOR:
58 if (sp < 1)
59 return -1;
60 sp--;
61 s[sp] ^= s[sp + 1];
62 break;
63 case COND_EQ:
64 if (sp < 1)
65 return -1;
66 sp--;
67 s[sp] = (s[sp] == s[sp + 1]);
68 break;
69 case COND_NEQ:
70 if (sp < 1)
71 return -1;
72 sp--;
73 s[sp] = (s[sp] != s[sp + 1]);
74 break;
75 default:
76 return -1;
79 return s[0];
83 * evaluate_cond_node evaluates the conditional stored in
84 * a struct cond_node and if the result is different than the
85 * current state of the node it sets the rules in the true/false
86 * list appropriately. If the result of the expression is undefined
87 * all of the rules are disabled for safety.
89 int evaluate_cond_node(struct policydb *p, struct cond_node *node)
91 int new_state;
92 struct cond_av_list *cur;
94 new_state = cond_evaluate_expr(p, node->expr);
95 if (new_state != node->cur_state) {
96 node->cur_state = new_state;
97 if (new_state == -1)
98 printk(KERN_ERR "SELinux: expression result was undefined - disabling all rules.\n");
99 /* turn the rules on or off */
100 for (cur = node->true_list; cur; cur = cur->next) {
101 if (new_state <= 0)
102 cur->node->key.specified &= ~AVTAB_ENABLED;
103 else
104 cur->node->key.specified |= AVTAB_ENABLED;
107 for (cur = node->false_list; cur; cur = cur->next) {
108 /* -1 or 1 */
109 if (new_state)
110 cur->node->key.specified &= ~AVTAB_ENABLED;
111 else
112 cur->node->key.specified |= AVTAB_ENABLED;
115 return 0;
118 int cond_policydb_init(struct policydb *p)
120 int rc;
122 p->bool_val_to_struct = NULL;
123 p->cond_list = NULL;
125 rc = avtab_init(&p->te_cond_avtab);
126 if (rc)
127 return rc;
129 return 0;
132 static void cond_av_list_destroy(struct cond_av_list *list)
134 struct cond_av_list *cur, *next;
135 for (cur = list; cur; cur = next) {
136 next = cur->next;
137 /* the avtab_ptr_t node is destroy by the avtab */
138 kfree(cur);
142 static void cond_node_destroy(struct cond_node *node)
144 struct cond_expr *cur_expr, *next_expr;
146 for (cur_expr = node->expr; cur_expr; cur_expr = next_expr) {
147 next_expr = cur_expr->next;
148 kfree(cur_expr);
150 cond_av_list_destroy(node->true_list);
151 cond_av_list_destroy(node->false_list);
152 kfree(node);
155 static void cond_list_destroy(struct cond_node *list)
157 struct cond_node *next, *cur;
159 if (list == NULL)
160 return;
162 for (cur = list; cur; cur = next) {
163 next = cur->next;
164 cond_node_destroy(cur);
168 void cond_policydb_destroy(struct policydb *p)
170 kfree(p->bool_val_to_struct);
171 avtab_destroy(&p->te_cond_avtab);
172 cond_list_destroy(p->cond_list);
175 int cond_init_bool_indexes(struct policydb *p)
177 kfree(p->bool_val_to_struct);
178 p->bool_val_to_struct =
179 kmalloc(p->p_bools.nprim * sizeof(struct cond_bool_datum *), GFP_KERNEL);
180 if (!p->bool_val_to_struct)
181 return -ENOMEM;
182 return 0;
185 int cond_destroy_bool(void *key, void *datum, void *p)
187 kfree(key);
188 kfree(datum);
189 return 0;
192 int cond_index_bool(void *key, void *datum, void *datap)
194 struct policydb *p;
195 struct cond_bool_datum *booldatum;
196 struct flex_array *fa;
198 booldatum = datum;
199 p = datap;
201 if (!booldatum->value || booldatum->value > p->p_bools.nprim)
202 return -EINVAL;
204 fa = p->sym_val_to_name[SYM_BOOLS];
205 if (flex_array_put_ptr(fa, booldatum->value - 1, key,
206 GFP_KERNEL | __GFP_ZERO))
207 BUG();
208 p->bool_val_to_struct[booldatum->value - 1] = booldatum;
210 return 0;
213 static int bool_isvalid(struct cond_bool_datum *b)
215 if (!(b->state == 0 || b->state == 1))
216 return 0;
217 return 1;
220 int cond_read_bool(struct policydb *p, struct hashtab *h, void *fp)
222 char *key = NULL;
223 struct cond_bool_datum *booldatum;
224 __le32 buf[3];
225 u32 len;
226 int rc;
228 booldatum = kzalloc(sizeof(struct cond_bool_datum), GFP_KERNEL);
229 if (!booldatum)
230 return -ENOMEM;
232 rc = next_entry(buf, fp, sizeof buf);
233 if (rc)
234 goto err;
236 booldatum->value = le32_to_cpu(buf[0]);
237 booldatum->state = le32_to_cpu(buf[1]);
239 rc = -EINVAL;
240 if (!bool_isvalid(booldatum))
241 goto err;
243 len = le32_to_cpu(buf[2]);
245 rc = -ENOMEM;
246 key = kmalloc(len + 1, GFP_KERNEL);
247 if (!key)
248 goto err;
249 rc = next_entry(key, fp, len);
250 if (rc)
251 goto err;
252 key[len] = '\0';
253 rc = hashtab_insert(h, key, booldatum);
254 if (rc)
255 goto err;
257 return 0;
258 err:
259 cond_destroy_bool(key, booldatum, NULL);
260 return rc;
263 struct cond_insertf_data {
264 struct policydb *p;
265 struct cond_av_list *other;
266 struct cond_av_list *head;
267 struct cond_av_list *tail;
270 static int cond_insertf(struct avtab *a, struct avtab_key *k, struct avtab_datum *d, void *ptr)
272 struct cond_insertf_data *data = ptr;
273 struct policydb *p = data->p;
274 struct cond_av_list *other = data->other, *list, *cur;
275 struct avtab_node *node_ptr;
276 u8 found;
277 int rc = -EINVAL;
280 * For type rules we have to make certain there aren't any
281 * conflicting rules by searching the te_avtab and the
282 * cond_te_avtab.
284 if (k->specified & AVTAB_TYPE) {
285 if (avtab_search(&p->te_avtab, k)) {
286 printk(KERN_ERR "SELinux: type rule already exists outside of a conditional.\n");
287 goto err;
290 * If we are reading the false list other will be a pointer to
291 * the true list. We can have duplicate entries if there is only
292 * 1 other entry and it is in our true list.
294 * If we are reading the true list (other == NULL) there shouldn't
295 * be any other entries.
297 if (other) {
298 node_ptr = avtab_search_node(&p->te_cond_avtab, k);
299 if (node_ptr) {
300 if (avtab_search_node_next(node_ptr, k->specified)) {
301 printk(KERN_ERR "SELinux: too many conflicting type rules.\n");
302 goto err;
304 found = 0;
305 for (cur = other; cur; cur = cur->next) {
306 if (cur->node == node_ptr) {
307 found = 1;
308 break;
311 if (!found) {
312 printk(KERN_ERR "SELinux: conflicting type rules.\n");
313 goto err;
316 } else {
317 if (avtab_search(&p->te_cond_avtab, k)) {
318 printk(KERN_ERR "SELinux: conflicting type rules when adding type rule for true.\n");
319 goto err;
324 node_ptr = avtab_insert_nonunique(&p->te_cond_avtab, k, d);
325 if (!node_ptr) {
326 printk(KERN_ERR "SELinux: could not insert rule.\n");
327 rc = -ENOMEM;
328 goto err;
331 list = kzalloc(sizeof(struct cond_av_list), GFP_KERNEL);
332 if (!list) {
333 rc = -ENOMEM;
334 goto err;
337 list->node = node_ptr;
338 if (!data->head)
339 data->head = list;
340 else
341 data->tail->next = list;
342 data->tail = list;
343 return 0;
345 err:
346 cond_av_list_destroy(data->head);
347 data->head = NULL;
348 return rc;
351 static int cond_read_av_list(struct policydb *p, void *fp, struct cond_av_list **ret_list, struct cond_av_list *other)
353 int i, rc;
354 __le32 buf[1];
355 u32 len;
356 struct cond_insertf_data data;
358 *ret_list = NULL;
360 len = 0;
361 rc = next_entry(buf, fp, sizeof(u32));
362 if (rc)
363 return rc;
365 len = le32_to_cpu(buf[0]);
366 if (len == 0)
367 return 0;
369 data.p = p;
370 data.other = other;
371 data.head = NULL;
372 data.tail = NULL;
373 for (i = 0; i < len; i++) {
374 rc = avtab_read_item(&p->te_cond_avtab, fp, p, cond_insertf,
375 &data);
376 if (rc)
377 return rc;
380 *ret_list = data.head;
381 return 0;
384 static int expr_isvalid(struct policydb *p, struct cond_expr *expr)
386 if (expr->expr_type <= 0 || expr->expr_type > COND_LAST) {
387 printk(KERN_ERR "SELinux: conditional expressions uses unknown operator.\n");
388 return 0;
391 if (expr->bool > p->p_bools.nprim) {
392 printk(KERN_ERR "SELinux: conditional expressions uses unknown bool.\n");
393 return 0;
395 return 1;
398 static int cond_read_node(struct policydb *p, struct cond_node *node, void *fp)
400 __le32 buf[2];
401 u32 len, i;
402 int rc;
403 struct cond_expr *expr = NULL, *last = NULL;
405 rc = next_entry(buf, fp, sizeof(u32) * 2);
406 if (rc)
407 goto err;
409 node->cur_state = le32_to_cpu(buf[0]);
411 /* expr */
412 len = le32_to_cpu(buf[1]);
414 for (i = 0; i < len; i++) {
415 rc = next_entry(buf, fp, sizeof(u32) * 2);
416 if (rc)
417 goto err;
419 rc = -ENOMEM;
420 expr = kzalloc(sizeof(struct cond_expr), GFP_KERNEL);
421 if (!expr)
422 goto err;
424 expr->expr_type = le32_to_cpu(buf[0]);
425 expr->bool = le32_to_cpu(buf[1]);
427 if (!expr_isvalid(p, expr)) {
428 rc = -EINVAL;
429 kfree(expr);
430 goto err;
433 if (i == 0)
434 node->expr = expr;
435 else
436 last->next = expr;
437 last = expr;
440 rc = cond_read_av_list(p, fp, &node->true_list, NULL);
441 if (rc)
442 goto err;
443 rc = cond_read_av_list(p, fp, &node->false_list, node->true_list);
444 if (rc)
445 goto err;
446 return 0;
447 err:
448 cond_node_destroy(node);
449 return rc;
452 int cond_read_list(struct policydb *p, void *fp)
454 struct cond_node *node, *last = NULL;
455 __le32 buf[1];
456 u32 i, len;
457 int rc;
459 rc = next_entry(buf, fp, sizeof buf);
460 if (rc)
461 return rc;
463 len = le32_to_cpu(buf[0]);
465 rc = avtab_alloc(&(p->te_cond_avtab), p->te_avtab.nel);
466 if (rc)
467 goto err;
469 for (i = 0; i < len; i++) {
470 rc = -ENOMEM;
471 node = kzalloc(sizeof(struct cond_node), GFP_KERNEL);
472 if (!node)
473 goto err;
475 rc = cond_read_node(p, node, fp);
476 if (rc)
477 goto err;
479 if (i == 0)
480 p->cond_list = node;
481 else
482 last->next = node;
483 last = node;
485 return 0;
486 err:
487 cond_list_destroy(p->cond_list);
488 p->cond_list = NULL;
489 return rc;
492 int cond_write_bool(void *vkey, void *datum, void *ptr)
494 char *key = vkey;
495 struct cond_bool_datum *booldatum = datum;
496 struct policy_data *pd = ptr;
497 void *fp = pd->fp;
498 __le32 buf[3];
499 u32 len;
500 int rc;
502 len = strlen(key);
503 buf[0] = cpu_to_le32(booldatum->value);
504 buf[1] = cpu_to_le32(booldatum->state);
505 buf[2] = cpu_to_le32(len);
506 rc = put_entry(buf, sizeof(u32), 3, fp);
507 if (rc)
508 return rc;
509 rc = put_entry(key, 1, len, fp);
510 if (rc)
511 return rc;
512 return 0;
516 * cond_write_cond_av_list doesn't write out the av_list nodes.
517 * Instead it writes out the key/value pairs from the avtab. This
518 * is necessary because there is no way to uniquely identifying rules
519 * in the avtab so it is not possible to associate individual rules
520 * in the avtab with a conditional without saving them as part of
521 * the conditional. This means that the avtab with the conditional
522 * rules will not be saved but will be rebuilt on policy load.
524 static int cond_write_av_list(struct policydb *p,
525 struct cond_av_list *list, struct policy_file *fp)
527 __le32 buf[1];
528 struct cond_av_list *cur_list;
529 u32 len;
530 int rc;
532 len = 0;
533 for (cur_list = list; cur_list != NULL; cur_list = cur_list->next)
534 len++;
536 buf[0] = cpu_to_le32(len);
537 rc = put_entry(buf, sizeof(u32), 1, fp);
538 if (rc)
539 return rc;
541 if (len == 0)
542 return 0;
544 for (cur_list = list; cur_list != NULL; cur_list = cur_list->next) {
545 rc = avtab_write_item(p, cur_list->node, fp);
546 if (rc)
547 return rc;
550 return 0;
553 static int cond_write_node(struct policydb *p, struct cond_node *node,
554 struct policy_file *fp)
556 struct cond_expr *cur_expr;
557 __le32 buf[2];
558 int rc;
559 u32 len = 0;
561 buf[0] = cpu_to_le32(node->cur_state);
562 rc = put_entry(buf, sizeof(u32), 1, fp);
563 if (rc)
564 return rc;
566 for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next)
567 len++;
569 buf[0] = cpu_to_le32(len);
570 rc = put_entry(buf, sizeof(u32), 1, fp);
571 if (rc)
572 return rc;
574 for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next) {
575 buf[0] = cpu_to_le32(cur_expr->expr_type);
576 buf[1] = cpu_to_le32(cur_expr->bool);
577 rc = put_entry(buf, sizeof(u32), 2, fp);
578 if (rc)
579 return rc;
582 rc = cond_write_av_list(p, node->true_list, fp);
583 if (rc)
584 return rc;
585 rc = cond_write_av_list(p, node->false_list, fp);
586 if (rc)
587 return rc;
589 return 0;
592 int cond_write_list(struct policydb *p, struct cond_node *list, void *fp)
594 struct cond_node *cur;
595 u32 len;
596 __le32 buf[1];
597 int rc;
599 len = 0;
600 for (cur = list; cur != NULL; cur = cur->next)
601 len++;
602 buf[0] = cpu_to_le32(len);
603 rc = put_entry(buf, sizeof(u32), 1, fp);
604 if (rc)
605 return rc;
607 for (cur = list; cur != NULL; cur = cur->next) {
608 rc = cond_write_node(p, cur, fp);
609 if (rc)
610 return rc;
613 return 0;
615 /* Determine whether additional permissions are granted by the conditional
616 * av table, and if so, add them to the result
618 void cond_compute_av(struct avtab *ctab, struct avtab_key *key, struct av_decision *avd)
620 struct avtab_node *node;
622 if (!ctab || !key || !avd)
623 return;
625 for (node = avtab_search_node(ctab, key); node;
626 node = avtab_search_node_next(node, key->specified)) {
627 if ((u16)(AVTAB_ALLOWED|AVTAB_ENABLED) ==
628 (node->key.specified & (AVTAB_ALLOWED|AVTAB_ENABLED)))
629 avd->allowed |= node->datum.data;
630 if ((u16)(AVTAB_AUDITDENY|AVTAB_ENABLED) ==
631 (node->key.specified & (AVTAB_AUDITDENY|AVTAB_ENABLED)))
632 /* Since a '0' in an auditdeny mask represents a
633 * permission we do NOT want to audit (dontaudit), we use
634 * the '&' operand to ensure that all '0's in the mask
635 * are retained (much unlike the allow and auditallow cases).
637 avd->auditdeny &= node->datum.data;
638 if ((u16)(AVTAB_AUDITALLOW|AVTAB_ENABLED) ==
639 (node->key.specified & (AVTAB_AUDITALLOW|AVTAB_ENABLED)))
640 avd->auditallow |= node->datum.data;
642 return;