tracing/ftrace: fix the check on nopped sites
[linux/fpc-iii.git] / drivers / md / raid5.c
bloba5ba080d303b93bb3a4d764ea621f4bf9bc191d0
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 * BITMAP UNPLUGGING:
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
46 #include <linux/kthread.h>
47 #include "raid6.h"
49 #include <linux/raid/bitmap.h>
50 #include <linux/async_tx.h>
53 * Stripe cache
56 #define NR_STRIPES 256
57 #define STRIPE_SIZE PAGE_SIZE
58 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
59 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
60 #define IO_THRESHOLD 1
61 #define BYPASS_THRESHOLD 1
62 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
63 #define HASH_MASK (NR_HASH - 1)
65 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
67 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
68 * order without overlap. There may be several bio's per stripe+device, and
69 * a bio could span several devices.
70 * When walking this list for a particular stripe+device, we must never proceed
71 * beyond a bio that extends past this device, as the next bio might no longer
72 * be valid.
73 * This macro is used to determine the 'next' bio in the list, given the sector
74 * of the current stripe+device
76 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
78 * The following can be used to debug the driver
80 #define RAID5_PARANOIA 1
81 #if RAID5_PARANOIA && defined(CONFIG_SMP)
82 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
83 #else
84 # define CHECK_DEVLOCK()
85 #endif
87 #ifdef DEBUG
88 #define inline
89 #define __inline__
90 #endif
92 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
94 #if !RAID6_USE_EMPTY_ZERO_PAGE
95 /* In .bss so it's zeroed */
96 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
97 #endif
100 * We maintain a biased count of active stripes in the bottom 16 bits of
101 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103 static inline int raid5_bi_phys_segments(struct bio *bio)
105 return bio->bi_phys_segments & 0xffff;
108 static inline int raid5_bi_hw_segments(struct bio *bio)
110 return (bio->bi_phys_segments >> 16) & 0xffff;
113 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
115 --bio->bi_phys_segments;
116 return raid5_bi_phys_segments(bio);
119 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
121 unsigned short val = raid5_bi_hw_segments(bio);
123 --val;
124 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
125 return val;
128 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
130 bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
133 static inline int raid6_next_disk(int disk, int raid_disks)
135 disk++;
136 return (disk < raid_disks) ? disk : 0;
139 static void return_io(struct bio *return_bi)
141 struct bio *bi = return_bi;
142 while (bi) {
144 return_bi = bi->bi_next;
145 bi->bi_next = NULL;
146 bi->bi_size = 0;
147 bio_endio(bi, 0);
148 bi = return_bi;
152 static void print_raid5_conf (raid5_conf_t *conf);
154 static int stripe_operations_active(struct stripe_head *sh)
156 return sh->check_state || sh->reconstruct_state ||
157 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
158 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
161 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
163 if (atomic_dec_and_test(&sh->count)) {
164 BUG_ON(!list_empty(&sh->lru));
165 BUG_ON(atomic_read(&conf->active_stripes)==0);
166 if (test_bit(STRIPE_HANDLE, &sh->state)) {
167 if (test_bit(STRIPE_DELAYED, &sh->state)) {
168 list_add_tail(&sh->lru, &conf->delayed_list);
169 blk_plug_device(conf->mddev->queue);
170 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
171 sh->bm_seq - conf->seq_write > 0) {
172 list_add_tail(&sh->lru, &conf->bitmap_list);
173 blk_plug_device(conf->mddev->queue);
174 } else {
175 clear_bit(STRIPE_BIT_DELAY, &sh->state);
176 list_add_tail(&sh->lru, &conf->handle_list);
178 md_wakeup_thread(conf->mddev->thread);
179 } else {
180 BUG_ON(stripe_operations_active(sh));
181 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
182 atomic_dec(&conf->preread_active_stripes);
183 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
184 md_wakeup_thread(conf->mddev->thread);
186 atomic_dec(&conf->active_stripes);
187 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
188 list_add_tail(&sh->lru, &conf->inactive_list);
189 wake_up(&conf->wait_for_stripe);
190 if (conf->retry_read_aligned)
191 md_wakeup_thread(conf->mddev->thread);
196 static void release_stripe(struct stripe_head *sh)
198 raid5_conf_t *conf = sh->raid_conf;
199 unsigned long flags;
201 spin_lock_irqsave(&conf->device_lock, flags);
202 __release_stripe(conf, sh);
203 spin_unlock_irqrestore(&conf->device_lock, flags);
206 static inline void remove_hash(struct stripe_head *sh)
208 pr_debug("remove_hash(), stripe %llu\n",
209 (unsigned long long)sh->sector);
211 hlist_del_init(&sh->hash);
214 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
216 struct hlist_head *hp = stripe_hash(conf, sh->sector);
218 pr_debug("insert_hash(), stripe %llu\n",
219 (unsigned long long)sh->sector);
221 CHECK_DEVLOCK();
222 hlist_add_head(&sh->hash, hp);
226 /* find an idle stripe, make sure it is unhashed, and return it. */
227 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
229 struct stripe_head *sh = NULL;
230 struct list_head *first;
232 CHECK_DEVLOCK();
233 if (list_empty(&conf->inactive_list))
234 goto out;
235 first = conf->inactive_list.next;
236 sh = list_entry(first, struct stripe_head, lru);
237 list_del_init(first);
238 remove_hash(sh);
239 atomic_inc(&conf->active_stripes);
240 out:
241 return sh;
244 static void shrink_buffers(struct stripe_head *sh, int num)
246 struct page *p;
247 int i;
249 for (i=0; i<num ; i++) {
250 p = sh->dev[i].page;
251 if (!p)
252 continue;
253 sh->dev[i].page = NULL;
254 put_page(p);
258 static int grow_buffers(struct stripe_head *sh, int num)
260 int i;
262 for (i=0; i<num; i++) {
263 struct page *page;
265 if (!(page = alloc_page(GFP_KERNEL))) {
266 return 1;
268 sh->dev[i].page = page;
270 return 0;
273 static void raid5_build_block(struct stripe_head *sh, int i);
275 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
277 raid5_conf_t *conf = sh->raid_conf;
278 int i;
280 BUG_ON(atomic_read(&sh->count) != 0);
281 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
282 BUG_ON(stripe_operations_active(sh));
284 CHECK_DEVLOCK();
285 pr_debug("init_stripe called, stripe %llu\n",
286 (unsigned long long)sh->sector);
288 remove_hash(sh);
290 sh->sector = sector;
291 sh->pd_idx = pd_idx;
292 sh->state = 0;
294 sh->disks = disks;
296 for (i = sh->disks; i--; ) {
297 struct r5dev *dev = &sh->dev[i];
299 if (dev->toread || dev->read || dev->towrite || dev->written ||
300 test_bit(R5_LOCKED, &dev->flags)) {
301 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
302 (unsigned long long)sh->sector, i, dev->toread,
303 dev->read, dev->towrite, dev->written,
304 test_bit(R5_LOCKED, &dev->flags));
305 BUG();
307 dev->flags = 0;
308 raid5_build_block(sh, i);
310 insert_hash(conf, sh);
313 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
315 struct stripe_head *sh;
316 struct hlist_node *hn;
318 CHECK_DEVLOCK();
319 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
320 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
321 if (sh->sector == sector && sh->disks == disks)
322 return sh;
323 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
324 return NULL;
327 static void unplug_slaves(mddev_t *mddev);
328 static void raid5_unplug_device(struct request_queue *q);
330 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
331 int pd_idx, int noblock)
333 struct stripe_head *sh;
335 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
337 spin_lock_irq(&conf->device_lock);
339 do {
340 wait_event_lock_irq(conf->wait_for_stripe,
341 conf->quiesce == 0,
342 conf->device_lock, /* nothing */);
343 sh = __find_stripe(conf, sector, disks);
344 if (!sh) {
345 if (!conf->inactive_blocked)
346 sh = get_free_stripe(conf);
347 if (noblock && sh == NULL)
348 break;
349 if (!sh) {
350 conf->inactive_blocked = 1;
351 wait_event_lock_irq(conf->wait_for_stripe,
352 !list_empty(&conf->inactive_list) &&
353 (atomic_read(&conf->active_stripes)
354 < (conf->max_nr_stripes *3/4)
355 || !conf->inactive_blocked),
356 conf->device_lock,
357 raid5_unplug_device(conf->mddev->queue)
359 conf->inactive_blocked = 0;
360 } else
361 init_stripe(sh, sector, pd_idx, disks);
362 } else {
363 if (atomic_read(&sh->count)) {
364 BUG_ON(!list_empty(&sh->lru));
365 } else {
366 if (!test_bit(STRIPE_HANDLE, &sh->state))
367 atomic_inc(&conf->active_stripes);
368 if (list_empty(&sh->lru) &&
369 !test_bit(STRIPE_EXPANDING, &sh->state))
370 BUG();
371 list_del_init(&sh->lru);
374 } while (sh == NULL);
376 if (sh)
377 atomic_inc(&sh->count);
379 spin_unlock_irq(&conf->device_lock);
380 return sh;
383 static void
384 raid5_end_read_request(struct bio *bi, int error);
385 static void
386 raid5_end_write_request(struct bio *bi, int error);
388 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
390 raid5_conf_t *conf = sh->raid_conf;
391 int i, disks = sh->disks;
393 might_sleep();
395 for (i = disks; i--; ) {
396 int rw;
397 struct bio *bi;
398 mdk_rdev_t *rdev;
399 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
400 rw = WRITE;
401 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
402 rw = READ;
403 else
404 continue;
406 bi = &sh->dev[i].req;
408 bi->bi_rw = rw;
409 if (rw == WRITE)
410 bi->bi_end_io = raid5_end_write_request;
411 else
412 bi->bi_end_io = raid5_end_read_request;
414 rcu_read_lock();
415 rdev = rcu_dereference(conf->disks[i].rdev);
416 if (rdev && test_bit(Faulty, &rdev->flags))
417 rdev = NULL;
418 if (rdev)
419 atomic_inc(&rdev->nr_pending);
420 rcu_read_unlock();
422 if (rdev) {
423 if (s->syncing || s->expanding || s->expanded)
424 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
426 set_bit(STRIPE_IO_STARTED, &sh->state);
428 bi->bi_bdev = rdev->bdev;
429 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
430 __func__, (unsigned long long)sh->sector,
431 bi->bi_rw, i);
432 atomic_inc(&sh->count);
433 bi->bi_sector = sh->sector + rdev->data_offset;
434 bi->bi_flags = 1 << BIO_UPTODATE;
435 bi->bi_vcnt = 1;
436 bi->bi_max_vecs = 1;
437 bi->bi_idx = 0;
438 bi->bi_io_vec = &sh->dev[i].vec;
439 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
440 bi->bi_io_vec[0].bv_offset = 0;
441 bi->bi_size = STRIPE_SIZE;
442 bi->bi_next = NULL;
443 if (rw == WRITE &&
444 test_bit(R5_ReWrite, &sh->dev[i].flags))
445 atomic_add(STRIPE_SECTORS,
446 &rdev->corrected_errors);
447 generic_make_request(bi);
448 } else {
449 if (rw == WRITE)
450 set_bit(STRIPE_DEGRADED, &sh->state);
451 pr_debug("skip op %ld on disc %d for sector %llu\n",
452 bi->bi_rw, i, (unsigned long long)sh->sector);
453 clear_bit(R5_LOCKED, &sh->dev[i].flags);
454 set_bit(STRIPE_HANDLE, &sh->state);
459 static struct dma_async_tx_descriptor *
460 async_copy_data(int frombio, struct bio *bio, struct page *page,
461 sector_t sector, struct dma_async_tx_descriptor *tx)
463 struct bio_vec *bvl;
464 struct page *bio_page;
465 int i;
466 int page_offset;
468 if (bio->bi_sector >= sector)
469 page_offset = (signed)(bio->bi_sector - sector) * 512;
470 else
471 page_offset = (signed)(sector - bio->bi_sector) * -512;
472 bio_for_each_segment(bvl, bio, i) {
473 int len = bio_iovec_idx(bio, i)->bv_len;
474 int clen;
475 int b_offset = 0;
477 if (page_offset < 0) {
478 b_offset = -page_offset;
479 page_offset += b_offset;
480 len -= b_offset;
483 if (len > 0 && page_offset + len > STRIPE_SIZE)
484 clen = STRIPE_SIZE - page_offset;
485 else
486 clen = len;
488 if (clen > 0) {
489 b_offset += bio_iovec_idx(bio, i)->bv_offset;
490 bio_page = bio_iovec_idx(bio, i)->bv_page;
491 if (frombio)
492 tx = async_memcpy(page, bio_page, page_offset,
493 b_offset, clen,
494 ASYNC_TX_DEP_ACK,
495 tx, NULL, NULL);
496 else
497 tx = async_memcpy(bio_page, page, b_offset,
498 page_offset, clen,
499 ASYNC_TX_DEP_ACK,
500 tx, NULL, NULL);
502 if (clen < len) /* hit end of page */
503 break;
504 page_offset += len;
507 return tx;
510 static void ops_complete_biofill(void *stripe_head_ref)
512 struct stripe_head *sh = stripe_head_ref;
513 struct bio *return_bi = NULL;
514 raid5_conf_t *conf = sh->raid_conf;
515 int i;
517 pr_debug("%s: stripe %llu\n", __func__,
518 (unsigned long long)sh->sector);
520 /* clear completed biofills */
521 spin_lock_irq(&conf->device_lock);
522 for (i = sh->disks; i--; ) {
523 struct r5dev *dev = &sh->dev[i];
525 /* acknowledge completion of a biofill operation */
526 /* and check if we need to reply to a read request,
527 * new R5_Wantfill requests are held off until
528 * !STRIPE_BIOFILL_RUN
530 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
531 struct bio *rbi, *rbi2;
533 BUG_ON(!dev->read);
534 rbi = dev->read;
535 dev->read = NULL;
536 while (rbi && rbi->bi_sector <
537 dev->sector + STRIPE_SECTORS) {
538 rbi2 = r5_next_bio(rbi, dev->sector);
539 if (!raid5_dec_bi_phys_segments(rbi)) {
540 rbi->bi_next = return_bi;
541 return_bi = rbi;
543 rbi = rbi2;
547 spin_unlock_irq(&conf->device_lock);
548 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
550 return_io(return_bi);
552 set_bit(STRIPE_HANDLE, &sh->state);
553 release_stripe(sh);
556 static void ops_run_biofill(struct stripe_head *sh)
558 struct dma_async_tx_descriptor *tx = NULL;
559 raid5_conf_t *conf = sh->raid_conf;
560 int i;
562 pr_debug("%s: stripe %llu\n", __func__,
563 (unsigned long long)sh->sector);
565 for (i = sh->disks; i--; ) {
566 struct r5dev *dev = &sh->dev[i];
567 if (test_bit(R5_Wantfill, &dev->flags)) {
568 struct bio *rbi;
569 spin_lock_irq(&conf->device_lock);
570 dev->read = rbi = dev->toread;
571 dev->toread = NULL;
572 spin_unlock_irq(&conf->device_lock);
573 while (rbi && rbi->bi_sector <
574 dev->sector + STRIPE_SECTORS) {
575 tx = async_copy_data(0, rbi, dev->page,
576 dev->sector, tx);
577 rbi = r5_next_bio(rbi, dev->sector);
582 atomic_inc(&sh->count);
583 async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
584 ops_complete_biofill, sh);
587 static void ops_complete_compute5(void *stripe_head_ref)
589 struct stripe_head *sh = stripe_head_ref;
590 int target = sh->ops.target;
591 struct r5dev *tgt = &sh->dev[target];
593 pr_debug("%s: stripe %llu\n", __func__,
594 (unsigned long long)sh->sector);
596 set_bit(R5_UPTODATE, &tgt->flags);
597 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
598 clear_bit(R5_Wantcompute, &tgt->flags);
599 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
600 if (sh->check_state == check_state_compute_run)
601 sh->check_state = check_state_compute_result;
602 set_bit(STRIPE_HANDLE, &sh->state);
603 release_stripe(sh);
606 static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh)
608 /* kernel stack size limits the total number of disks */
609 int disks = sh->disks;
610 struct page *xor_srcs[disks];
611 int target = sh->ops.target;
612 struct r5dev *tgt = &sh->dev[target];
613 struct page *xor_dest = tgt->page;
614 int count = 0;
615 struct dma_async_tx_descriptor *tx;
616 int i;
618 pr_debug("%s: stripe %llu block: %d\n",
619 __func__, (unsigned long long)sh->sector, target);
620 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
622 for (i = disks; i--; )
623 if (i != target)
624 xor_srcs[count++] = sh->dev[i].page;
626 atomic_inc(&sh->count);
628 if (unlikely(count == 1))
629 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
630 0, NULL, ops_complete_compute5, sh);
631 else
632 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
633 ASYNC_TX_XOR_ZERO_DST, NULL,
634 ops_complete_compute5, sh);
636 return tx;
639 static void ops_complete_prexor(void *stripe_head_ref)
641 struct stripe_head *sh = stripe_head_ref;
643 pr_debug("%s: stripe %llu\n", __func__,
644 (unsigned long long)sh->sector);
647 static struct dma_async_tx_descriptor *
648 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
650 /* kernel stack size limits the total number of disks */
651 int disks = sh->disks;
652 struct page *xor_srcs[disks];
653 int count = 0, pd_idx = sh->pd_idx, i;
655 /* existing parity data subtracted */
656 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
658 pr_debug("%s: stripe %llu\n", __func__,
659 (unsigned long long)sh->sector);
661 for (i = disks; i--; ) {
662 struct r5dev *dev = &sh->dev[i];
663 /* Only process blocks that are known to be uptodate */
664 if (test_bit(R5_Wantdrain, &dev->flags))
665 xor_srcs[count++] = dev->page;
668 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
669 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
670 ops_complete_prexor, sh);
672 return tx;
675 static struct dma_async_tx_descriptor *
676 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
678 int disks = sh->disks;
679 int i;
681 pr_debug("%s: stripe %llu\n", __func__,
682 (unsigned long long)sh->sector);
684 for (i = disks; i--; ) {
685 struct r5dev *dev = &sh->dev[i];
686 struct bio *chosen;
688 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
689 struct bio *wbi;
691 spin_lock(&sh->lock);
692 chosen = dev->towrite;
693 dev->towrite = NULL;
694 BUG_ON(dev->written);
695 wbi = dev->written = chosen;
696 spin_unlock(&sh->lock);
698 while (wbi && wbi->bi_sector <
699 dev->sector + STRIPE_SECTORS) {
700 tx = async_copy_data(1, wbi, dev->page,
701 dev->sector, tx);
702 wbi = r5_next_bio(wbi, dev->sector);
707 return tx;
710 static void ops_complete_postxor(void *stripe_head_ref)
712 struct stripe_head *sh = stripe_head_ref;
713 int disks = sh->disks, i, pd_idx = sh->pd_idx;
715 pr_debug("%s: stripe %llu\n", __func__,
716 (unsigned long long)sh->sector);
718 for (i = disks; i--; ) {
719 struct r5dev *dev = &sh->dev[i];
720 if (dev->written || i == pd_idx)
721 set_bit(R5_UPTODATE, &dev->flags);
724 if (sh->reconstruct_state == reconstruct_state_drain_run)
725 sh->reconstruct_state = reconstruct_state_drain_result;
726 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
727 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
728 else {
729 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
730 sh->reconstruct_state = reconstruct_state_result;
733 set_bit(STRIPE_HANDLE, &sh->state);
734 release_stripe(sh);
737 static void
738 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
740 /* kernel stack size limits the total number of disks */
741 int disks = sh->disks;
742 struct page *xor_srcs[disks];
744 int count = 0, pd_idx = sh->pd_idx, i;
745 struct page *xor_dest;
746 int prexor = 0;
747 unsigned long flags;
749 pr_debug("%s: stripe %llu\n", __func__,
750 (unsigned long long)sh->sector);
752 /* check if prexor is active which means only process blocks
753 * that are part of a read-modify-write (written)
755 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
756 prexor = 1;
757 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
758 for (i = disks; i--; ) {
759 struct r5dev *dev = &sh->dev[i];
760 if (dev->written)
761 xor_srcs[count++] = dev->page;
763 } else {
764 xor_dest = sh->dev[pd_idx].page;
765 for (i = disks; i--; ) {
766 struct r5dev *dev = &sh->dev[i];
767 if (i != pd_idx)
768 xor_srcs[count++] = dev->page;
772 /* 1/ if we prexor'd then the dest is reused as a source
773 * 2/ if we did not prexor then we are redoing the parity
774 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
775 * for the synchronous xor case
777 flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
778 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
780 atomic_inc(&sh->count);
782 if (unlikely(count == 1)) {
783 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
784 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
785 flags, tx, ops_complete_postxor, sh);
786 } else
787 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
788 flags, tx, ops_complete_postxor, sh);
791 static void ops_complete_check(void *stripe_head_ref)
793 struct stripe_head *sh = stripe_head_ref;
795 pr_debug("%s: stripe %llu\n", __func__,
796 (unsigned long long)sh->sector);
798 sh->check_state = check_state_check_result;
799 set_bit(STRIPE_HANDLE, &sh->state);
800 release_stripe(sh);
803 static void ops_run_check(struct stripe_head *sh)
805 /* kernel stack size limits the total number of disks */
806 int disks = sh->disks;
807 struct page *xor_srcs[disks];
808 struct dma_async_tx_descriptor *tx;
810 int count = 0, pd_idx = sh->pd_idx, i;
811 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
813 pr_debug("%s: stripe %llu\n", __func__,
814 (unsigned long long)sh->sector);
816 for (i = disks; i--; ) {
817 struct r5dev *dev = &sh->dev[i];
818 if (i != pd_idx)
819 xor_srcs[count++] = dev->page;
822 tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
823 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
825 atomic_inc(&sh->count);
826 tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
827 ops_complete_check, sh);
830 static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
832 int overlap_clear = 0, i, disks = sh->disks;
833 struct dma_async_tx_descriptor *tx = NULL;
835 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
836 ops_run_biofill(sh);
837 overlap_clear++;
840 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
841 tx = ops_run_compute5(sh);
842 /* terminate the chain if postxor is not set to be run */
843 if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
844 async_tx_ack(tx);
847 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
848 tx = ops_run_prexor(sh, tx);
850 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
851 tx = ops_run_biodrain(sh, tx);
852 overlap_clear++;
855 if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
856 ops_run_postxor(sh, tx);
858 if (test_bit(STRIPE_OP_CHECK, &ops_request))
859 ops_run_check(sh);
861 if (overlap_clear)
862 for (i = disks; i--; ) {
863 struct r5dev *dev = &sh->dev[i];
864 if (test_and_clear_bit(R5_Overlap, &dev->flags))
865 wake_up(&sh->raid_conf->wait_for_overlap);
869 static int grow_one_stripe(raid5_conf_t *conf)
871 struct stripe_head *sh;
872 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
873 if (!sh)
874 return 0;
875 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
876 sh->raid_conf = conf;
877 spin_lock_init(&sh->lock);
879 if (grow_buffers(sh, conf->raid_disks)) {
880 shrink_buffers(sh, conf->raid_disks);
881 kmem_cache_free(conf->slab_cache, sh);
882 return 0;
884 sh->disks = conf->raid_disks;
885 /* we just created an active stripe so... */
886 atomic_set(&sh->count, 1);
887 atomic_inc(&conf->active_stripes);
888 INIT_LIST_HEAD(&sh->lru);
889 release_stripe(sh);
890 return 1;
893 static int grow_stripes(raid5_conf_t *conf, int num)
895 struct kmem_cache *sc;
896 int devs = conf->raid_disks;
898 sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
899 sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
900 conf->active_name = 0;
901 sc = kmem_cache_create(conf->cache_name[conf->active_name],
902 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
903 0, 0, NULL);
904 if (!sc)
905 return 1;
906 conf->slab_cache = sc;
907 conf->pool_size = devs;
908 while (num--)
909 if (!grow_one_stripe(conf))
910 return 1;
911 return 0;
914 #ifdef CONFIG_MD_RAID5_RESHAPE
915 static int resize_stripes(raid5_conf_t *conf, int newsize)
917 /* Make all the stripes able to hold 'newsize' devices.
918 * New slots in each stripe get 'page' set to a new page.
920 * This happens in stages:
921 * 1/ create a new kmem_cache and allocate the required number of
922 * stripe_heads.
923 * 2/ gather all the old stripe_heads and tranfer the pages across
924 * to the new stripe_heads. This will have the side effect of
925 * freezing the array as once all stripe_heads have been collected,
926 * no IO will be possible. Old stripe heads are freed once their
927 * pages have been transferred over, and the old kmem_cache is
928 * freed when all stripes are done.
929 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
930 * we simple return a failre status - no need to clean anything up.
931 * 4/ allocate new pages for the new slots in the new stripe_heads.
932 * If this fails, we don't bother trying the shrink the
933 * stripe_heads down again, we just leave them as they are.
934 * As each stripe_head is processed the new one is released into
935 * active service.
937 * Once step2 is started, we cannot afford to wait for a write,
938 * so we use GFP_NOIO allocations.
940 struct stripe_head *osh, *nsh;
941 LIST_HEAD(newstripes);
942 struct disk_info *ndisks;
943 int err;
944 struct kmem_cache *sc;
945 int i;
947 if (newsize <= conf->pool_size)
948 return 0; /* never bother to shrink */
950 err = md_allow_write(conf->mddev);
951 if (err)
952 return err;
954 /* Step 1 */
955 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
956 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
957 0, 0, NULL);
958 if (!sc)
959 return -ENOMEM;
961 for (i = conf->max_nr_stripes; i; i--) {
962 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
963 if (!nsh)
964 break;
966 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
968 nsh->raid_conf = conf;
969 spin_lock_init(&nsh->lock);
971 list_add(&nsh->lru, &newstripes);
973 if (i) {
974 /* didn't get enough, give up */
975 while (!list_empty(&newstripes)) {
976 nsh = list_entry(newstripes.next, struct stripe_head, lru);
977 list_del(&nsh->lru);
978 kmem_cache_free(sc, nsh);
980 kmem_cache_destroy(sc);
981 return -ENOMEM;
983 /* Step 2 - Must use GFP_NOIO now.
984 * OK, we have enough stripes, start collecting inactive
985 * stripes and copying them over
987 list_for_each_entry(nsh, &newstripes, lru) {
988 spin_lock_irq(&conf->device_lock);
989 wait_event_lock_irq(conf->wait_for_stripe,
990 !list_empty(&conf->inactive_list),
991 conf->device_lock,
992 unplug_slaves(conf->mddev)
994 osh = get_free_stripe(conf);
995 spin_unlock_irq(&conf->device_lock);
996 atomic_set(&nsh->count, 1);
997 for(i=0; i<conf->pool_size; i++)
998 nsh->dev[i].page = osh->dev[i].page;
999 for( ; i<newsize; i++)
1000 nsh->dev[i].page = NULL;
1001 kmem_cache_free(conf->slab_cache, osh);
1003 kmem_cache_destroy(conf->slab_cache);
1005 /* Step 3.
1006 * At this point, we are holding all the stripes so the array
1007 * is completely stalled, so now is a good time to resize
1008 * conf->disks.
1010 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1011 if (ndisks) {
1012 for (i=0; i<conf->raid_disks; i++)
1013 ndisks[i] = conf->disks[i];
1014 kfree(conf->disks);
1015 conf->disks = ndisks;
1016 } else
1017 err = -ENOMEM;
1019 /* Step 4, return new stripes to service */
1020 while(!list_empty(&newstripes)) {
1021 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1022 list_del_init(&nsh->lru);
1023 for (i=conf->raid_disks; i < newsize; i++)
1024 if (nsh->dev[i].page == NULL) {
1025 struct page *p = alloc_page(GFP_NOIO);
1026 nsh->dev[i].page = p;
1027 if (!p)
1028 err = -ENOMEM;
1030 release_stripe(nsh);
1032 /* critical section pass, GFP_NOIO no longer needed */
1034 conf->slab_cache = sc;
1035 conf->active_name = 1-conf->active_name;
1036 conf->pool_size = newsize;
1037 return err;
1039 #endif
1041 static int drop_one_stripe(raid5_conf_t *conf)
1043 struct stripe_head *sh;
1045 spin_lock_irq(&conf->device_lock);
1046 sh = get_free_stripe(conf);
1047 spin_unlock_irq(&conf->device_lock);
1048 if (!sh)
1049 return 0;
1050 BUG_ON(atomic_read(&sh->count));
1051 shrink_buffers(sh, conf->pool_size);
1052 kmem_cache_free(conf->slab_cache, sh);
1053 atomic_dec(&conf->active_stripes);
1054 return 1;
1057 static void shrink_stripes(raid5_conf_t *conf)
1059 while (drop_one_stripe(conf))
1062 if (conf->slab_cache)
1063 kmem_cache_destroy(conf->slab_cache);
1064 conf->slab_cache = NULL;
1067 static void raid5_end_read_request(struct bio * bi, int error)
1069 struct stripe_head *sh = bi->bi_private;
1070 raid5_conf_t *conf = sh->raid_conf;
1071 int disks = sh->disks, i;
1072 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1073 char b[BDEVNAME_SIZE];
1074 mdk_rdev_t *rdev;
1077 for (i=0 ; i<disks; i++)
1078 if (bi == &sh->dev[i].req)
1079 break;
1081 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1082 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1083 uptodate);
1084 if (i == disks) {
1085 BUG();
1086 return;
1089 if (uptodate) {
1090 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1091 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1092 rdev = conf->disks[i].rdev;
1093 printk_rl(KERN_INFO "raid5:%s: read error corrected"
1094 " (%lu sectors at %llu on %s)\n",
1095 mdname(conf->mddev), STRIPE_SECTORS,
1096 (unsigned long long)(sh->sector
1097 + rdev->data_offset),
1098 bdevname(rdev->bdev, b));
1099 clear_bit(R5_ReadError, &sh->dev[i].flags);
1100 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1102 if (atomic_read(&conf->disks[i].rdev->read_errors))
1103 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1104 } else {
1105 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1106 int retry = 0;
1107 rdev = conf->disks[i].rdev;
1109 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1110 atomic_inc(&rdev->read_errors);
1111 if (conf->mddev->degraded)
1112 printk_rl(KERN_WARNING
1113 "raid5:%s: read error not correctable "
1114 "(sector %llu on %s).\n",
1115 mdname(conf->mddev),
1116 (unsigned long long)(sh->sector
1117 + rdev->data_offset),
1118 bdn);
1119 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1120 /* Oh, no!!! */
1121 printk_rl(KERN_WARNING
1122 "raid5:%s: read error NOT corrected!! "
1123 "(sector %llu on %s).\n",
1124 mdname(conf->mddev),
1125 (unsigned long long)(sh->sector
1126 + rdev->data_offset),
1127 bdn);
1128 else if (atomic_read(&rdev->read_errors)
1129 > conf->max_nr_stripes)
1130 printk(KERN_WARNING
1131 "raid5:%s: Too many read errors, failing device %s.\n",
1132 mdname(conf->mddev), bdn);
1133 else
1134 retry = 1;
1135 if (retry)
1136 set_bit(R5_ReadError, &sh->dev[i].flags);
1137 else {
1138 clear_bit(R5_ReadError, &sh->dev[i].flags);
1139 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1140 md_error(conf->mddev, rdev);
1143 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1144 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1145 set_bit(STRIPE_HANDLE, &sh->state);
1146 release_stripe(sh);
1149 static void raid5_end_write_request(struct bio *bi, int error)
1151 struct stripe_head *sh = bi->bi_private;
1152 raid5_conf_t *conf = sh->raid_conf;
1153 int disks = sh->disks, i;
1154 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1156 for (i=0 ; i<disks; i++)
1157 if (bi == &sh->dev[i].req)
1158 break;
1160 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1161 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1162 uptodate);
1163 if (i == disks) {
1164 BUG();
1165 return;
1168 if (!uptodate)
1169 md_error(conf->mddev, conf->disks[i].rdev);
1171 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1173 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1174 set_bit(STRIPE_HANDLE, &sh->state);
1175 release_stripe(sh);
1179 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1181 static void raid5_build_block(struct stripe_head *sh, int i)
1183 struct r5dev *dev = &sh->dev[i];
1185 bio_init(&dev->req);
1186 dev->req.bi_io_vec = &dev->vec;
1187 dev->req.bi_vcnt++;
1188 dev->req.bi_max_vecs++;
1189 dev->vec.bv_page = dev->page;
1190 dev->vec.bv_len = STRIPE_SIZE;
1191 dev->vec.bv_offset = 0;
1193 dev->req.bi_sector = sh->sector;
1194 dev->req.bi_private = sh;
1196 dev->flags = 0;
1197 dev->sector = compute_blocknr(sh, i);
1200 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1202 char b[BDEVNAME_SIZE];
1203 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1204 pr_debug("raid5: error called\n");
1206 if (!test_bit(Faulty, &rdev->flags)) {
1207 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1208 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1209 unsigned long flags;
1210 spin_lock_irqsave(&conf->device_lock, flags);
1211 mddev->degraded++;
1212 spin_unlock_irqrestore(&conf->device_lock, flags);
1214 * if recovery was running, make sure it aborts.
1216 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1218 set_bit(Faulty, &rdev->flags);
1219 printk(KERN_ALERT
1220 "raid5: Disk failure on %s, disabling device.\n"
1221 "raid5: Operation continuing on %d devices.\n",
1222 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1227 * Input: a 'big' sector number,
1228 * Output: index of the data and parity disk, and the sector # in them.
1230 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1231 unsigned int data_disks, unsigned int * dd_idx,
1232 unsigned int * pd_idx, raid5_conf_t *conf)
1234 long stripe;
1235 unsigned long chunk_number;
1236 unsigned int chunk_offset;
1237 sector_t new_sector;
1238 int sectors_per_chunk = conf->chunk_size >> 9;
1240 /* First compute the information on this sector */
1243 * Compute the chunk number and the sector offset inside the chunk
1245 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1246 chunk_number = r_sector;
1247 BUG_ON(r_sector != chunk_number);
1250 * Compute the stripe number
1252 stripe = chunk_number / data_disks;
1255 * Compute the data disk and parity disk indexes inside the stripe
1257 *dd_idx = chunk_number % data_disks;
1260 * Select the parity disk based on the user selected algorithm.
1262 switch(conf->level) {
1263 case 4:
1264 *pd_idx = data_disks;
1265 break;
1266 case 5:
1267 switch (conf->algorithm) {
1268 case ALGORITHM_LEFT_ASYMMETRIC:
1269 *pd_idx = data_disks - stripe % raid_disks;
1270 if (*dd_idx >= *pd_idx)
1271 (*dd_idx)++;
1272 break;
1273 case ALGORITHM_RIGHT_ASYMMETRIC:
1274 *pd_idx = stripe % raid_disks;
1275 if (*dd_idx >= *pd_idx)
1276 (*dd_idx)++;
1277 break;
1278 case ALGORITHM_LEFT_SYMMETRIC:
1279 *pd_idx = data_disks - stripe % raid_disks;
1280 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1281 break;
1282 case ALGORITHM_RIGHT_SYMMETRIC:
1283 *pd_idx = stripe % raid_disks;
1284 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1285 break;
1286 default:
1287 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1288 conf->algorithm);
1290 break;
1291 case 6:
1293 /**** FIX THIS ****/
1294 switch (conf->algorithm) {
1295 case ALGORITHM_LEFT_ASYMMETRIC:
1296 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1297 if (*pd_idx == raid_disks-1)
1298 (*dd_idx)++; /* Q D D D P */
1299 else if (*dd_idx >= *pd_idx)
1300 (*dd_idx) += 2; /* D D P Q D */
1301 break;
1302 case ALGORITHM_RIGHT_ASYMMETRIC:
1303 *pd_idx = stripe % raid_disks;
1304 if (*pd_idx == raid_disks-1)
1305 (*dd_idx)++; /* Q D D D P */
1306 else if (*dd_idx >= *pd_idx)
1307 (*dd_idx) += 2; /* D D P Q D */
1308 break;
1309 case ALGORITHM_LEFT_SYMMETRIC:
1310 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1311 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1312 break;
1313 case ALGORITHM_RIGHT_SYMMETRIC:
1314 *pd_idx = stripe % raid_disks;
1315 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1316 break;
1317 default:
1318 printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1319 conf->algorithm);
1321 break;
1325 * Finally, compute the new sector number
1327 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1328 return new_sector;
1332 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1334 raid5_conf_t *conf = sh->raid_conf;
1335 int raid_disks = sh->disks;
1336 int data_disks = raid_disks - conf->max_degraded;
1337 sector_t new_sector = sh->sector, check;
1338 int sectors_per_chunk = conf->chunk_size >> 9;
1339 sector_t stripe;
1340 int chunk_offset;
1341 int chunk_number, dummy1, dummy2, dd_idx = i;
1342 sector_t r_sector;
1345 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1346 stripe = new_sector;
1347 BUG_ON(new_sector != stripe);
1349 if (i == sh->pd_idx)
1350 return 0;
1351 switch(conf->level) {
1352 case 4: break;
1353 case 5:
1354 switch (conf->algorithm) {
1355 case ALGORITHM_LEFT_ASYMMETRIC:
1356 case ALGORITHM_RIGHT_ASYMMETRIC:
1357 if (i > sh->pd_idx)
1358 i--;
1359 break;
1360 case ALGORITHM_LEFT_SYMMETRIC:
1361 case ALGORITHM_RIGHT_SYMMETRIC:
1362 if (i < sh->pd_idx)
1363 i += raid_disks;
1364 i -= (sh->pd_idx + 1);
1365 break;
1366 default:
1367 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1368 conf->algorithm);
1370 break;
1371 case 6:
1372 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1373 return 0; /* It is the Q disk */
1374 switch (conf->algorithm) {
1375 case ALGORITHM_LEFT_ASYMMETRIC:
1376 case ALGORITHM_RIGHT_ASYMMETRIC:
1377 if (sh->pd_idx == raid_disks-1)
1378 i--; /* Q D D D P */
1379 else if (i > sh->pd_idx)
1380 i -= 2; /* D D P Q D */
1381 break;
1382 case ALGORITHM_LEFT_SYMMETRIC:
1383 case ALGORITHM_RIGHT_SYMMETRIC:
1384 if (sh->pd_idx == raid_disks-1)
1385 i--; /* Q D D D P */
1386 else {
1387 /* D D P Q D */
1388 if (i < sh->pd_idx)
1389 i += raid_disks;
1390 i -= (sh->pd_idx + 2);
1392 break;
1393 default:
1394 printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1395 conf->algorithm);
1397 break;
1400 chunk_number = stripe * data_disks + i;
1401 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1403 check = raid5_compute_sector(r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1404 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
1405 printk(KERN_ERR "compute_blocknr: map not correct\n");
1406 return 0;
1408 return r_sector;
1414 * Copy data between a page in the stripe cache, and one or more bion
1415 * The page could align with the middle of the bio, or there could be
1416 * several bion, each with several bio_vecs, which cover part of the page
1417 * Multiple bion are linked together on bi_next. There may be extras
1418 * at the end of this list. We ignore them.
1420 static void copy_data(int frombio, struct bio *bio,
1421 struct page *page,
1422 sector_t sector)
1424 char *pa = page_address(page);
1425 struct bio_vec *bvl;
1426 int i;
1427 int page_offset;
1429 if (bio->bi_sector >= sector)
1430 page_offset = (signed)(bio->bi_sector - sector) * 512;
1431 else
1432 page_offset = (signed)(sector - bio->bi_sector) * -512;
1433 bio_for_each_segment(bvl, bio, i) {
1434 int len = bio_iovec_idx(bio,i)->bv_len;
1435 int clen;
1436 int b_offset = 0;
1438 if (page_offset < 0) {
1439 b_offset = -page_offset;
1440 page_offset += b_offset;
1441 len -= b_offset;
1444 if (len > 0 && page_offset + len > STRIPE_SIZE)
1445 clen = STRIPE_SIZE - page_offset;
1446 else clen = len;
1448 if (clen > 0) {
1449 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1450 if (frombio)
1451 memcpy(pa+page_offset, ba+b_offset, clen);
1452 else
1453 memcpy(ba+b_offset, pa+page_offset, clen);
1454 __bio_kunmap_atomic(ba, KM_USER0);
1456 if (clen < len) /* hit end of page */
1457 break;
1458 page_offset += len;
1462 #define check_xor() do { \
1463 if (count == MAX_XOR_BLOCKS) { \
1464 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1465 count = 0; \
1467 } while(0)
1469 static void compute_parity6(struct stripe_head *sh, int method)
1471 raid6_conf_t *conf = sh->raid_conf;
1472 int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1473 struct bio *chosen;
1474 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1475 void *ptrs[disks];
1477 qd_idx = raid6_next_disk(pd_idx, disks);
1478 d0_idx = raid6_next_disk(qd_idx, disks);
1480 pr_debug("compute_parity, stripe %llu, method %d\n",
1481 (unsigned long long)sh->sector, method);
1483 switch(method) {
1484 case READ_MODIFY_WRITE:
1485 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1486 case RECONSTRUCT_WRITE:
1487 for (i= disks; i-- ;)
1488 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1489 chosen = sh->dev[i].towrite;
1490 sh->dev[i].towrite = NULL;
1492 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1493 wake_up(&conf->wait_for_overlap);
1495 BUG_ON(sh->dev[i].written);
1496 sh->dev[i].written = chosen;
1498 break;
1499 case CHECK_PARITY:
1500 BUG(); /* Not implemented yet */
1503 for (i = disks; i--;)
1504 if (sh->dev[i].written) {
1505 sector_t sector = sh->dev[i].sector;
1506 struct bio *wbi = sh->dev[i].written;
1507 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1508 copy_data(1, wbi, sh->dev[i].page, sector);
1509 wbi = r5_next_bio(wbi, sector);
1512 set_bit(R5_LOCKED, &sh->dev[i].flags);
1513 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1516 // switch(method) {
1517 // case RECONSTRUCT_WRITE:
1518 // case CHECK_PARITY:
1519 // case UPDATE_PARITY:
1520 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1521 /* FIX: Is this ordering of drives even remotely optimal? */
1522 count = 0;
1523 i = d0_idx;
1524 do {
1525 ptrs[count++] = page_address(sh->dev[i].page);
1526 if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1527 printk("block %d/%d not uptodate on parity calc\n", i,count);
1528 i = raid6_next_disk(i, disks);
1529 } while ( i != d0_idx );
1530 // break;
1531 // }
1533 raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1535 switch(method) {
1536 case RECONSTRUCT_WRITE:
1537 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1538 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1539 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1540 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1541 break;
1542 case UPDATE_PARITY:
1543 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1544 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1545 break;
1550 /* Compute one missing block */
1551 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1553 int i, count, disks = sh->disks;
1554 void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1555 int pd_idx = sh->pd_idx;
1556 int qd_idx = raid6_next_disk(pd_idx, disks);
1558 pr_debug("compute_block_1, stripe %llu, idx %d\n",
1559 (unsigned long long)sh->sector, dd_idx);
1561 if ( dd_idx == qd_idx ) {
1562 /* We're actually computing the Q drive */
1563 compute_parity6(sh, UPDATE_PARITY);
1564 } else {
1565 dest = page_address(sh->dev[dd_idx].page);
1566 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1567 count = 0;
1568 for (i = disks ; i--; ) {
1569 if (i == dd_idx || i == qd_idx)
1570 continue;
1571 p = page_address(sh->dev[i].page);
1572 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1573 ptr[count++] = p;
1574 else
1575 printk("compute_block() %d, stripe %llu, %d"
1576 " not present\n", dd_idx,
1577 (unsigned long long)sh->sector, i);
1579 check_xor();
1581 if (count)
1582 xor_blocks(count, STRIPE_SIZE, dest, ptr);
1583 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1584 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1588 /* Compute two missing blocks */
1589 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1591 int i, count, disks = sh->disks;
1592 int pd_idx = sh->pd_idx;
1593 int qd_idx = raid6_next_disk(pd_idx, disks);
1594 int d0_idx = raid6_next_disk(qd_idx, disks);
1595 int faila, failb;
1597 /* faila and failb are disk numbers relative to d0_idx */
1598 /* pd_idx become disks-2 and qd_idx become disks-1 */
1599 faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1600 failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1602 BUG_ON(faila == failb);
1603 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1605 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1606 (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1608 if ( failb == disks-1 ) {
1609 /* Q disk is one of the missing disks */
1610 if ( faila == disks-2 ) {
1611 /* Missing P+Q, just recompute */
1612 compute_parity6(sh, UPDATE_PARITY);
1613 return;
1614 } else {
1615 /* We're missing D+Q; recompute D from P */
1616 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1617 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1618 return;
1622 /* We're missing D+P or D+D; build pointer table */
1624 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1625 void *ptrs[disks];
1627 count = 0;
1628 i = d0_idx;
1629 do {
1630 ptrs[count++] = page_address(sh->dev[i].page);
1631 i = raid6_next_disk(i, disks);
1632 if (i != dd_idx1 && i != dd_idx2 &&
1633 !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1634 printk("compute_2 with missing block %d/%d\n", count, i);
1635 } while ( i != d0_idx );
1637 if ( failb == disks-2 ) {
1638 /* We're missing D+P. */
1639 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1640 } else {
1641 /* We're missing D+D. */
1642 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1645 /* Both the above update both missing blocks */
1646 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1647 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1651 static void
1652 schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
1653 int rcw, int expand)
1655 int i, pd_idx = sh->pd_idx, disks = sh->disks;
1657 if (rcw) {
1658 /* if we are not expanding this is a proper write request, and
1659 * there will be bios with new data to be drained into the
1660 * stripe cache
1662 if (!expand) {
1663 sh->reconstruct_state = reconstruct_state_drain_run;
1664 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1665 } else
1666 sh->reconstruct_state = reconstruct_state_run;
1668 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1670 for (i = disks; i--; ) {
1671 struct r5dev *dev = &sh->dev[i];
1673 if (dev->towrite) {
1674 set_bit(R5_LOCKED, &dev->flags);
1675 set_bit(R5_Wantdrain, &dev->flags);
1676 if (!expand)
1677 clear_bit(R5_UPTODATE, &dev->flags);
1678 s->locked++;
1681 if (s->locked + 1 == disks)
1682 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1683 atomic_inc(&sh->raid_conf->pending_full_writes);
1684 } else {
1685 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1686 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1688 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
1689 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
1690 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1691 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1693 for (i = disks; i--; ) {
1694 struct r5dev *dev = &sh->dev[i];
1695 if (i == pd_idx)
1696 continue;
1698 if (dev->towrite &&
1699 (test_bit(R5_UPTODATE, &dev->flags) ||
1700 test_bit(R5_Wantcompute, &dev->flags))) {
1701 set_bit(R5_Wantdrain, &dev->flags);
1702 set_bit(R5_LOCKED, &dev->flags);
1703 clear_bit(R5_UPTODATE, &dev->flags);
1704 s->locked++;
1709 /* keep the parity disk locked while asynchronous operations
1710 * are in flight
1712 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1713 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1714 s->locked++;
1716 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
1717 __func__, (unsigned long long)sh->sector,
1718 s->locked, s->ops_request);
1722 * Each stripe/dev can have one or more bion attached.
1723 * toread/towrite point to the first in a chain.
1724 * The bi_next chain must be in order.
1726 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1728 struct bio **bip;
1729 raid5_conf_t *conf = sh->raid_conf;
1730 int firstwrite=0;
1732 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1733 (unsigned long long)bi->bi_sector,
1734 (unsigned long long)sh->sector);
1737 spin_lock(&sh->lock);
1738 spin_lock_irq(&conf->device_lock);
1739 if (forwrite) {
1740 bip = &sh->dev[dd_idx].towrite;
1741 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1742 firstwrite = 1;
1743 } else
1744 bip = &sh->dev[dd_idx].toread;
1745 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1746 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1747 goto overlap;
1748 bip = & (*bip)->bi_next;
1750 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1751 goto overlap;
1753 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1754 if (*bip)
1755 bi->bi_next = *bip;
1756 *bip = bi;
1757 bi->bi_phys_segments++;
1758 spin_unlock_irq(&conf->device_lock);
1759 spin_unlock(&sh->lock);
1761 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1762 (unsigned long long)bi->bi_sector,
1763 (unsigned long long)sh->sector, dd_idx);
1765 if (conf->mddev->bitmap && firstwrite) {
1766 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1767 STRIPE_SECTORS, 0);
1768 sh->bm_seq = conf->seq_flush+1;
1769 set_bit(STRIPE_BIT_DELAY, &sh->state);
1772 if (forwrite) {
1773 /* check if page is covered */
1774 sector_t sector = sh->dev[dd_idx].sector;
1775 for (bi=sh->dev[dd_idx].towrite;
1776 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1777 bi && bi->bi_sector <= sector;
1778 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1779 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1780 sector = bi->bi_sector + (bi->bi_size>>9);
1782 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1783 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1785 return 1;
1787 overlap:
1788 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1789 spin_unlock_irq(&conf->device_lock);
1790 spin_unlock(&sh->lock);
1791 return 0;
1794 static void end_reshape(raid5_conf_t *conf);
1796 static int page_is_zero(struct page *p)
1798 char *a = page_address(p);
1799 return ((*(u32*)a) == 0 &&
1800 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1803 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1805 int sectors_per_chunk = conf->chunk_size >> 9;
1806 int pd_idx, dd_idx;
1807 int chunk_offset = sector_div(stripe, sectors_per_chunk);
1809 raid5_compute_sector(stripe * (disks - conf->max_degraded)
1810 *sectors_per_chunk + chunk_offset,
1811 disks, disks - conf->max_degraded,
1812 &dd_idx, &pd_idx, conf);
1813 return pd_idx;
1816 static void
1817 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
1818 struct stripe_head_state *s, int disks,
1819 struct bio **return_bi)
1821 int i;
1822 for (i = disks; i--; ) {
1823 struct bio *bi;
1824 int bitmap_end = 0;
1826 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1827 mdk_rdev_t *rdev;
1828 rcu_read_lock();
1829 rdev = rcu_dereference(conf->disks[i].rdev);
1830 if (rdev && test_bit(In_sync, &rdev->flags))
1831 /* multiple read failures in one stripe */
1832 md_error(conf->mddev, rdev);
1833 rcu_read_unlock();
1835 spin_lock_irq(&conf->device_lock);
1836 /* fail all writes first */
1837 bi = sh->dev[i].towrite;
1838 sh->dev[i].towrite = NULL;
1839 if (bi) {
1840 s->to_write--;
1841 bitmap_end = 1;
1844 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1845 wake_up(&conf->wait_for_overlap);
1847 while (bi && bi->bi_sector <
1848 sh->dev[i].sector + STRIPE_SECTORS) {
1849 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1850 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1851 if (!raid5_dec_bi_phys_segments(bi)) {
1852 md_write_end(conf->mddev);
1853 bi->bi_next = *return_bi;
1854 *return_bi = bi;
1856 bi = nextbi;
1858 /* and fail all 'written' */
1859 bi = sh->dev[i].written;
1860 sh->dev[i].written = NULL;
1861 if (bi) bitmap_end = 1;
1862 while (bi && bi->bi_sector <
1863 sh->dev[i].sector + STRIPE_SECTORS) {
1864 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1865 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1866 if (!raid5_dec_bi_phys_segments(bi)) {
1867 md_write_end(conf->mddev);
1868 bi->bi_next = *return_bi;
1869 *return_bi = bi;
1871 bi = bi2;
1874 /* fail any reads if this device is non-operational and
1875 * the data has not reached the cache yet.
1877 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1878 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1879 test_bit(R5_ReadError, &sh->dev[i].flags))) {
1880 bi = sh->dev[i].toread;
1881 sh->dev[i].toread = NULL;
1882 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1883 wake_up(&conf->wait_for_overlap);
1884 if (bi) s->to_read--;
1885 while (bi && bi->bi_sector <
1886 sh->dev[i].sector + STRIPE_SECTORS) {
1887 struct bio *nextbi =
1888 r5_next_bio(bi, sh->dev[i].sector);
1889 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1890 if (!raid5_dec_bi_phys_segments(bi)) {
1891 bi->bi_next = *return_bi;
1892 *return_bi = bi;
1894 bi = nextbi;
1897 spin_unlock_irq(&conf->device_lock);
1898 if (bitmap_end)
1899 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1900 STRIPE_SECTORS, 0, 0);
1903 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
1904 if (atomic_dec_and_test(&conf->pending_full_writes))
1905 md_wakeup_thread(conf->mddev->thread);
1908 /* fetch_block5 - checks the given member device to see if its data needs
1909 * to be read or computed to satisfy a request.
1911 * Returns 1 when no more member devices need to be checked, otherwise returns
1912 * 0 to tell the loop in handle_stripe_fill5 to continue
1914 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
1915 int disk_idx, int disks)
1917 struct r5dev *dev = &sh->dev[disk_idx];
1918 struct r5dev *failed_dev = &sh->dev[s->failed_num];
1920 /* is the data in this block needed, and can we get it? */
1921 if (!test_bit(R5_LOCKED, &dev->flags) &&
1922 !test_bit(R5_UPTODATE, &dev->flags) &&
1923 (dev->toread ||
1924 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1925 s->syncing || s->expanding ||
1926 (s->failed &&
1927 (failed_dev->toread ||
1928 (failed_dev->towrite &&
1929 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
1930 /* We would like to get this block, possibly by computing it,
1931 * otherwise read it if the backing disk is insync
1933 if ((s->uptodate == disks - 1) &&
1934 (s->failed && disk_idx == s->failed_num)) {
1935 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
1936 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
1937 set_bit(R5_Wantcompute, &dev->flags);
1938 sh->ops.target = disk_idx;
1939 s->req_compute = 1;
1940 /* Careful: from this point on 'uptodate' is in the eye
1941 * of raid5_run_ops which services 'compute' operations
1942 * before writes. R5_Wantcompute flags a block that will
1943 * be R5_UPTODATE by the time it is needed for a
1944 * subsequent operation.
1946 s->uptodate++;
1947 return 1; /* uptodate + compute == disks */
1948 } else if (test_bit(R5_Insync, &dev->flags)) {
1949 set_bit(R5_LOCKED, &dev->flags);
1950 set_bit(R5_Wantread, &dev->flags);
1951 s->locked++;
1952 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
1953 s->syncing);
1957 return 0;
1961 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
1963 static void handle_stripe_fill5(struct stripe_head *sh,
1964 struct stripe_head_state *s, int disks)
1966 int i;
1968 /* look for blocks to read/compute, skip this if a compute
1969 * is already in flight, or if the stripe contents are in the
1970 * midst of changing due to a write
1972 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
1973 !sh->reconstruct_state)
1974 for (i = disks; i--; )
1975 if (fetch_block5(sh, s, i, disks))
1976 break;
1977 set_bit(STRIPE_HANDLE, &sh->state);
1980 static void handle_stripe_fill6(struct stripe_head *sh,
1981 struct stripe_head_state *s, struct r6_state *r6s,
1982 int disks)
1984 int i;
1985 for (i = disks; i--; ) {
1986 struct r5dev *dev = &sh->dev[i];
1987 if (!test_bit(R5_LOCKED, &dev->flags) &&
1988 !test_bit(R5_UPTODATE, &dev->flags) &&
1989 (dev->toread || (dev->towrite &&
1990 !test_bit(R5_OVERWRITE, &dev->flags)) ||
1991 s->syncing || s->expanding ||
1992 (s->failed >= 1 &&
1993 (sh->dev[r6s->failed_num[0]].toread ||
1994 s->to_write)) ||
1995 (s->failed >= 2 &&
1996 (sh->dev[r6s->failed_num[1]].toread ||
1997 s->to_write)))) {
1998 /* we would like to get this block, possibly
1999 * by computing it, but we might not be able to
2001 if ((s->uptodate == disks - 1) &&
2002 (s->failed && (i == r6s->failed_num[0] ||
2003 i == r6s->failed_num[1]))) {
2004 pr_debug("Computing stripe %llu block %d\n",
2005 (unsigned long long)sh->sector, i);
2006 compute_block_1(sh, i, 0);
2007 s->uptodate++;
2008 } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2009 /* Computing 2-failure is *very* expensive; only
2010 * do it if failed >= 2
2012 int other;
2013 for (other = disks; other--; ) {
2014 if (other == i)
2015 continue;
2016 if (!test_bit(R5_UPTODATE,
2017 &sh->dev[other].flags))
2018 break;
2020 BUG_ON(other < 0);
2021 pr_debug("Computing stripe %llu blocks %d,%d\n",
2022 (unsigned long long)sh->sector,
2023 i, other);
2024 compute_block_2(sh, i, other);
2025 s->uptodate += 2;
2026 } else if (test_bit(R5_Insync, &dev->flags)) {
2027 set_bit(R5_LOCKED, &dev->flags);
2028 set_bit(R5_Wantread, &dev->flags);
2029 s->locked++;
2030 pr_debug("Reading block %d (sync=%d)\n",
2031 i, s->syncing);
2035 set_bit(STRIPE_HANDLE, &sh->state);
2039 /* handle_stripe_clean_event
2040 * any written block on an uptodate or failed drive can be returned.
2041 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2042 * never LOCKED, so we don't need to test 'failed' directly.
2044 static void handle_stripe_clean_event(raid5_conf_t *conf,
2045 struct stripe_head *sh, int disks, struct bio **return_bi)
2047 int i;
2048 struct r5dev *dev;
2050 for (i = disks; i--; )
2051 if (sh->dev[i].written) {
2052 dev = &sh->dev[i];
2053 if (!test_bit(R5_LOCKED, &dev->flags) &&
2054 test_bit(R5_UPTODATE, &dev->flags)) {
2055 /* We can return any write requests */
2056 struct bio *wbi, *wbi2;
2057 int bitmap_end = 0;
2058 pr_debug("Return write for disc %d\n", i);
2059 spin_lock_irq(&conf->device_lock);
2060 wbi = dev->written;
2061 dev->written = NULL;
2062 while (wbi && wbi->bi_sector <
2063 dev->sector + STRIPE_SECTORS) {
2064 wbi2 = r5_next_bio(wbi, dev->sector);
2065 if (!raid5_dec_bi_phys_segments(wbi)) {
2066 md_write_end(conf->mddev);
2067 wbi->bi_next = *return_bi;
2068 *return_bi = wbi;
2070 wbi = wbi2;
2072 if (dev->towrite == NULL)
2073 bitmap_end = 1;
2074 spin_unlock_irq(&conf->device_lock);
2075 if (bitmap_end)
2076 bitmap_endwrite(conf->mddev->bitmap,
2077 sh->sector,
2078 STRIPE_SECTORS,
2079 !test_bit(STRIPE_DEGRADED, &sh->state),
2084 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2085 if (atomic_dec_and_test(&conf->pending_full_writes))
2086 md_wakeup_thread(conf->mddev->thread);
2089 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2090 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2092 int rmw = 0, rcw = 0, i;
2093 for (i = disks; i--; ) {
2094 /* would I have to read this buffer for read_modify_write */
2095 struct r5dev *dev = &sh->dev[i];
2096 if ((dev->towrite || i == sh->pd_idx) &&
2097 !test_bit(R5_LOCKED, &dev->flags) &&
2098 !(test_bit(R5_UPTODATE, &dev->flags) ||
2099 test_bit(R5_Wantcompute, &dev->flags))) {
2100 if (test_bit(R5_Insync, &dev->flags))
2101 rmw++;
2102 else
2103 rmw += 2*disks; /* cannot read it */
2105 /* Would I have to read this buffer for reconstruct_write */
2106 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2107 !test_bit(R5_LOCKED, &dev->flags) &&
2108 !(test_bit(R5_UPTODATE, &dev->flags) ||
2109 test_bit(R5_Wantcompute, &dev->flags))) {
2110 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2111 else
2112 rcw += 2*disks;
2115 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2116 (unsigned long long)sh->sector, rmw, rcw);
2117 set_bit(STRIPE_HANDLE, &sh->state);
2118 if (rmw < rcw && rmw > 0)
2119 /* prefer read-modify-write, but need to get some data */
2120 for (i = disks; i--; ) {
2121 struct r5dev *dev = &sh->dev[i];
2122 if ((dev->towrite || i == sh->pd_idx) &&
2123 !test_bit(R5_LOCKED, &dev->flags) &&
2124 !(test_bit(R5_UPTODATE, &dev->flags) ||
2125 test_bit(R5_Wantcompute, &dev->flags)) &&
2126 test_bit(R5_Insync, &dev->flags)) {
2127 if (
2128 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2129 pr_debug("Read_old block "
2130 "%d for r-m-w\n", i);
2131 set_bit(R5_LOCKED, &dev->flags);
2132 set_bit(R5_Wantread, &dev->flags);
2133 s->locked++;
2134 } else {
2135 set_bit(STRIPE_DELAYED, &sh->state);
2136 set_bit(STRIPE_HANDLE, &sh->state);
2140 if (rcw <= rmw && rcw > 0)
2141 /* want reconstruct write, but need to get some data */
2142 for (i = disks; i--; ) {
2143 struct r5dev *dev = &sh->dev[i];
2144 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2145 i != sh->pd_idx &&
2146 !test_bit(R5_LOCKED, &dev->flags) &&
2147 !(test_bit(R5_UPTODATE, &dev->flags) ||
2148 test_bit(R5_Wantcompute, &dev->flags)) &&
2149 test_bit(R5_Insync, &dev->flags)) {
2150 if (
2151 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2152 pr_debug("Read_old block "
2153 "%d for Reconstruct\n", i);
2154 set_bit(R5_LOCKED, &dev->flags);
2155 set_bit(R5_Wantread, &dev->flags);
2156 s->locked++;
2157 } else {
2158 set_bit(STRIPE_DELAYED, &sh->state);
2159 set_bit(STRIPE_HANDLE, &sh->state);
2163 /* now if nothing is locked, and if we have enough data,
2164 * we can start a write request
2166 /* since handle_stripe can be called at any time we need to handle the
2167 * case where a compute block operation has been submitted and then a
2168 * subsequent call wants to start a write request. raid5_run_ops only
2169 * handles the case where compute block and postxor are requested
2170 * simultaneously. If this is not the case then new writes need to be
2171 * held off until the compute completes.
2173 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2174 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2175 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2176 schedule_reconstruction5(sh, s, rcw == 0, 0);
2179 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2180 struct stripe_head *sh, struct stripe_head_state *s,
2181 struct r6_state *r6s, int disks)
2183 int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2184 int qd_idx = r6s->qd_idx;
2185 for (i = disks; i--; ) {
2186 struct r5dev *dev = &sh->dev[i];
2187 /* Would I have to read this buffer for reconstruct_write */
2188 if (!test_bit(R5_OVERWRITE, &dev->flags)
2189 && i != pd_idx && i != qd_idx
2190 && (!test_bit(R5_LOCKED, &dev->flags)
2191 ) &&
2192 !test_bit(R5_UPTODATE, &dev->flags)) {
2193 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2194 else {
2195 pr_debug("raid6: must_compute: "
2196 "disk %d flags=%#lx\n", i, dev->flags);
2197 must_compute++;
2201 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2202 (unsigned long long)sh->sector, rcw, must_compute);
2203 set_bit(STRIPE_HANDLE, &sh->state);
2205 if (rcw > 0)
2206 /* want reconstruct write, but need to get some data */
2207 for (i = disks; i--; ) {
2208 struct r5dev *dev = &sh->dev[i];
2209 if (!test_bit(R5_OVERWRITE, &dev->flags)
2210 && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2211 && !test_bit(R5_LOCKED, &dev->flags) &&
2212 !test_bit(R5_UPTODATE, &dev->flags) &&
2213 test_bit(R5_Insync, &dev->flags)) {
2214 if (
2215 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2216 pr_debug("Read_old stripe %llu "
2217 "block %d for Reconstruct\n",
2218 (unsigned long long)sh->sector, i);
2219 set_bit(R5_LOCKED, &dev->flags);
2220 set_bit(R5_Wantread, &dev->flags);
2221 s->locked++;
2222 } else {
2223 pr_debug("Request delayed stripe %llu "
2224 "block %d for Reconstruct\n",
2225 (unsigned long long)sh->sector, i);
2226 set_bit(STRIPE_DELAYED, &sh->state);
2227 set_bit(STRIPE_HANDLE, &sh->state);
2231 /* now if nothing is locked, and if we have enough data, we can start a
2232 * write request
2234 if (s->locked == 0 && rcw == 0 &&
2235 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2236 if (must_compute > 0) {
2237 /* We have failed blocks and need to compute them */
2238 switch (s->failed) {
2239 case 0:
2240 BUG();
2241 case 1:
2242 compute_block_1(sh, r6s->failed_num[0], 0);
2243 break;
2244 case 2:
2245 compute_block_2(sh, r6s->failed_num[0],
2246 r6s->failed_num[1]);
2247 break;
2248 default: /* This request should have been failed? */
2249 BUG();
2253 pr_debug("Computing parity for stripe %llu\n",
2254 (unsigned long long)sh->sector);
2255 compute_parity6(sh, RECONSTRUCT_WRITE);
2256 /* now every locked buffer is ready to be written */
2257 for (i = disks; i--; )
2258 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2259 pr_debug("Writing stripe %llu block %d\n",
2260 (unsigned long long)sh->sector, i);
2261 s->locked++;
2262 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2264 if (s->locked == disks)
2265 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2266 atomic_inc(&conf->pending_full_writes);
2267 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2268 set_bit(STRIPE_INSYNC, &sh->state);
2270 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2271 atomic_dec(&conf->preread_active_stripes);
2272 if (atomic_read(&conf->preread_active_stripes) <
2273 IO_THRESHOLD)
2274 md_wakeup_thread(conf->mddev->thread);
2279 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2280 struct stripe_head_state *s, int disks)
2282 struct r5dev *dev = NULL;
2284 set_bit(STRIPE_HANDLE, &sh->state);
2286 switch (sh->check_state) {
2287 case check_state_idle:
2288 /* start a new check operation if there are no failures */
2289 if (s->failed == 0) {
2290 BUG_ON(s->uptodate != disks);
2291 sh->check_state = check_state_run;
2292 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2293 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2294 s->uptodate--;
2295 break;
2297 dev = &sh->dev[s->failed_num];
2298 /* fall through */
2299 case check_state_compute_result:
2300 sh->check_state = check_state_idle;
2301 if (!dev)
2302 dev = &sh->dev[sh->pd_idx];
2304 /* check that a write has not made the stripe insync */
2305 if (test_bit(STRIPE_INSYNC, &sh->state))
2306 break;
2308 /* either failed parity check, or recovery is happening */
2309 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2310 BUG_ON(s->uptodate != disks);
2312 set_bit(R5_LOCKED, &dev->flags);
2313 s->locked++;
2314 set_bit(R5_Wantwrite, &dev->flags);
2316 clear_bit(STRIPE_DEGRADED, &sh->state);
2317 set_bit(STRIPE_INSYNC, &sh->state);
2318 break;
2319 case check_state_run:
2320 break; /* we will be called again upon completion */
2321 case check_state_check_result:
2322 sh->check_state = check_state_idle;
2324 /* if a failure occurred during the check operation, leave
2325 * STRIPE_INSYNC not set and let the stripe be handled again
2327 if (s->failed)
2328 break;
2330 /* handle a successful check operation, if parity is correct
2331 * we are done. Otherwise update the mismatch count and repair
2332 * parity if !MD_RECOVERY_CHECK
2334 if (sh->ops.zero_sum_result == 0)
2335 /* parity is correct (on disc,
2336 * not in buffer any more)
2338 set_bit(STRIPE_INSYNC, &sh->state);
2339 else {
2340 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2341 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2342 /* don't try to repair!! */
2343 set_bit(STRIPE_INSYNC, &sh->state);
2344 else {
2345 sh->check_state = check_state_compute_run;
2346 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2347 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2348 set_bit(R5_Wantcompute,
2349 &sh->dev[sh->pd_idx].flags);
2350 sh->ops.target = sh->pd_idx;
2351 s->uptodate++;
2354 break;
2355 case check_state_compute_run:
2356 break;
2357 default:
2358 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2359 __func__, sh->check_state,
2360 (unsigned long long) sh->sector);
2361 BUG();
2366 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2367 struct stripe_head_state *s,
2368 struct r6_state *r6s, struct page *tmp_page,
2369 int disks)
2371 int update_p = 0, update_q = 0;
2372 struct r5dev *dev;
2373 int pd_idx = sh->pd_idx;
2374 int qd_idx = r6s->qd_idx;
2376 set_bit(STRIPE_HANDLE, &sh->state);
2378 BUG_ON(s->failed > 2);
2379 BUG_ON(s->uptodate < disks);
2380 /* Want to check and possibly repair P and Q.
2381 * However there could be one 'failed' device, in which
2382 * case we can only check one of them, possibly using the
2383 * other to generate missing data
2386 /* If !tmp_page, we cannot do the calculations,
2387 * but as we have set STRIPE_HANDLE, we will soon be called
2388 * by stripe_handle with a tmp_page - just wait until then.
2390 if (tmp_page) {
2391 if (s->failed == r6s->q_failed) {
2392 /* The only possible failed device holds 'Q', so it
2393 * makes sense to check P (If anything else were failed,
2394 * we would have used P to recreate it).
2396 compute_block_1(sh, pd_idx, 1);
2397 if (!page_is_zero(sh->dev[pd_idx].page)) {
2398 compute_block_1(sh, pd_idx, 0);
2399 update_p = 1;
2402 if (!r6s->q_failed && s->failed < 2) {
2403 /* q is not failed, and we didn't use it to generate
2404 * anything, so it makes sense to check it
2406 memcpy(page_address(tmp_page),
2407 page_address(sh->dev[qd_idx].page),
2408 STRIPE_SIZE);
2409 compute_parity6(sh, UPDATE_PARITY);
2410 if (memcmp(page_address(tmp_page),
2411 page_address(sh->dev[qd_idx].page),
2412 STRIPE_SIZE) != 0) {
2413 clear_bit(STRIPE_INSYNC, &sh->state);
2414 update_q = 1;
2417 if (update_p || update_q) {
2418 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2419 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2420 /* don't try to repair!! */
2421 update_p = update_q = 0;
2424 /* now write out any block on a failed drive,
2425 * or P or Q if they need it
2428 if (s->failed == 2) {
2429 dev = &sh->dev[r6s->failed_num[1]];
2430 s->locked++;
2431 set_bit(R5_LOCKED, &dev->flags);
2432 set_bit(R5_Wantwrite, &dev->flags);
2434 if (s->failed >= 1) {
2435 dev = &sh->dev[r6s->failed_num[0]];
2436 s->locked++;
2437 set_bit(R5_LOCKED, &dev->flags);
2438 set_bit(R5_Wantwrite, &dev->flags);
2441 if (update_p) {
2442 dev = &sh->dev[pd_idx];
2443 s->locked++;
2444 set_bit(R5_LOCKED, &dev->flags);
2445 set_bit(R5_Wantwrite, &dev->flags);
2447 if (update_q) {
2448 dev = &sh->dev[qd_idx];
2449 s->locked++;
2450 set_bit(R5_LOCKED, &dev->flags);
2451 set_bit(R5_Wantwrite, &dev->flags);
2453 clear_bit(STRIPE_DEGRADED, &sh->state);
2455 set_bit(STRIPE_INSYNC, &sh->state);
2459 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2460 struct r6_state *r6s)
2462 int i;
2464 /* We have read all the blocks in this stripe and now we need to
2465 * copy some of them into a target stripe for expand.
2467 struct dma_async_tx_descriptor *tx = NULL;
2468 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2469 for (i = 0; i < sh->disks; i++)
2470 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2471 int dd_idx, pd_idx, j;
2472 struct stripe_head *sh2;
2474 sector_t bn = compute_blocknr(sh, i);
2475 sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2476 conf->raid_disks -
2477 conf->max_degraded, &dd_idx,
2478 &pd_idx, conf);
2479 sh2 = get_active_stripe(conf, s, conf->raid_disks,
2480 pd_idx, 1);
2481 if (sh2 == NULL)
2482 /* so far only the early blocks of this stripe
2483 * have been requested. When later blocks
2484 * get requested, we will try again
2486 continue;
2487 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2488 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2489 /* must have already done this block */
2490 release_stripe(sh2);
2491 continue;
2494 /* place all the copies on one channel */
2495 tx = async_memcpy(sh2->dev[dd_idx].page,
2496 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2497 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2499 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2500 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2501 for (j = 0; j < conf->raid_disks; j++)
2502 if (j != sh2->pd_idx &&
2503 (!r6s || j != raid6_next_disk(sh2->pd_idx,
2504 sh2->disks)) &&
2505 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2506 break;
2507 if (j == conf->raid_disks) {
2508 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2509 set_bit(STRIPE_HANDLE, &sh2->state);
2511 release_stripe(sh2);
2514 /* done submitting copies, wait for them to complete */
2515 if (tx) {
2516 async_tx_ack(tx);
2517 dma_wait_for_async_tx(tx);
2523 * handle_stripe - do things to a stripe.
2525 * We lock the stripe and then examine the state of various bits
2526 * to see what needs to be done.
2527 * Possible results:
2528 * return some read request which now have data
2529 * return some write requests which are safely on disc
2530 * schedule a read on some buffers
2531 * schedule a write of some buffers
2532 * return confirmation of parity correctness
2534 * buffers are taken off read_list or write_list, and bh_cache buffers
2535 * get BH_Lock set before the stripe lock is released.
2539 static bool handle_stripe5(struct stripe_head *sh)
2541 raid5_conf_t *conf = sh->raid_conf;
2542 int disks = sh->disks, i;
2543 struct bio *return_bi = NULL;
2544 struct stripe_head_state s;
2545 struct r5dev *dev;
2546 mdk_rdev_t *blocked_rdev = NULL;
2547 int prexor;
2549 memset(&s, 0, sizeof(s));
2550 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2551 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2552 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2553 sh->reconstruct_state);
2555 spin_lock(&sh->lock);
2556 clear_bit(STRIPE_HANDLE, &sh->state);
2557 clear_bit(STRIPE_DELAYED, &sh->state);
2559 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2560 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2561 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2563 /* Now to look around and see what can be done */
2564 rcu_read_lock();
2565 for (i=disks; i--; ) {
2566 mdk_rdev_t *rdev;
2567 struct r5dev *dev = &sh->dev[i];
2568 clear_bit(R5_Insync, &dev->flags);
2570 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2571 "written %p\n", i, dev->flags, dev->toread, dev->read,
2572 dev->towrite, dev->written);
2574 /* maybe we can request a biofill operation
2576 * new wantfill requests are only permitted while
2577 * ops_complete_biofill is guaranteed to be inactive
2579 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2580 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2581 set_bit(R5_Wantfill, &dev->flags);
2583 /* now count some things */
2584 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2585 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2586 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2588 if (test_bit(R5_Wantfill, &dev->flags))
2589 s.to_fill++;
2590 else if (dev->toread)
2591 s.to_read++;
2592 if (dev->towrite) {
2593 s.to_write++;
2594 if (!test_bit(R5_OVERWRITE, &dev->flags))
2595 s.non_overwrite++;
2597 if (dev->written)
2598 s.written++;
2599 rdev = rcu_dereference(conf->disks[i].rdev);
2600 if (blocked_rdev == NULL &&
2601 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2602 blocked_rdev = rdev;
2603 atomic_inc(&rdev->nr_pending);
2605 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2606 /* The ReadError flag will just be confusing now */
2607 clear_bit(R5_ReadError, &dev->flags);
2608 clear_bit(R5_ReWrite, &dev->flags);
2610 if (!rdev || !test_bit(In_sync, &rdev->flags)
2611 || test_bit(R5_ReadError, &dev->flags)) {
2612 s.failed++;
2613 s.failed_num = i;
2614 } else
2615 set_bit(R5_Insync, &dev->flags);
2617 rcu_read_unlock();
2619 if (unlikely(blocked_rdev)) {
2620 if (s.syncing || s.expanding || s.expanded ||
2621 s.to_write || s.written) {
2622 set_bit(STRIPE_HANDLE, &sh->state);
2623 goto unlock;
2625 /* There is nothing for the blocked_rdev to block */
2626 rdev_dec_pending(blocked_rdev, conf->mddev);
2627 blocked_rdev = NULL;
2630 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2631 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2632 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2635 pr_debug("locked=%d uptodate=%d to_read=%d"
2636 " to_write=%d failed=%d failed_num=%d\n",
2637 s.locked, s.uptodate, s.to_read, s.to_write,
2638 s.failed, s.failed_num);
2639 /* check if the array has lost two devices and, if so, some requests might
2640 * need to be failed
2642 if (s.failed > 1 && s.to_read+s.to_write+s.written)
2643 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2644 if (s.failed > 1 && s.syncing) {
2645 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2646 clear_bit(STRIPE_SYNCING, &sh->state);
2647 s.syncing = 0;
2650 /* might be able to return some write requests if the parity block
2651 * is safe, or on a failed drive
2653 dev = &sh->dev[sh->pd_idx];
2654 if ( s.written &&
2655 ((test_bit(R5_Insync, &dev->flags) &&
2656 !test_bit(R5_LOCKED, &dev->flags) &&
2657 test_bit(R5_UPTODATE, &dev->flags)) ||
2658 (s.failed == 1 && s.failed_num == sh->pd_idx)))
2659 handle_stripe_clean_event(conf, sh, disks, &return_bi);
2661 /* Now we might consider reading some blocks, either to check/generate
2662 * parity, or to satisfy requests
2663 * or to load a block that is being partially written.
2665 if (s.to_read || s.non_overwrite ||
2666 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
2667 handle_stripe_fill5(sh, &s, disks);
2669 /* Now we check to see if any write operations have recently
2670 * completed
2672 prexor = 0;
2673 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
2674 prexor = 1;
2675 if (sh->reconstruct_state == reconstruct_state_drain_result ||
2676 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
2677 sh->reconstruct_state = reconstruct_state_idle;
2679 /* All the 'written' buffers and the parity block are ready to
2680 * be written back to disk
2682 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2683 for (i = disks; i--; ) {
2684 dev = &sh->dev[i];
2685 if (test_bit(R5_LOCKED, &dev->flags) &&
2686 (i == sh->pd_idx || dev->written)) {
2687 pr_debug("Writing block %d\n", i);
2688 set_bit(R5_Wantwrite, &dev->flags);
2689 if (prexor)
2690 continue;
2691 if (!test_bit(R5_Insync, &dev->flags) ||
2692 (i == sh->pd_idx && s.failed == 0))
2693 set_bit(STRIPE_INSYNC, &sh->state);
2696 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2697 atomic_dec(&conf->preread_active_stripes);
2698 if (atomic_read(&conf->preread_active_stripes) <
2699 IO_THRESHOLD)
2700 md_wakeup_thread(conf->mddev->thread);
2704 /* Now to consider new write requests and what else, if anything
2705 * should be read. We do not handle new writes when:
2706 * 1/ A 'write' operation (copy+xor) is already in flight.
2707 * 2/ A 'check' operation is in flight, as it may clobber the parity
2708 * block.
2710 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
2711 handle_stripe_dirtying5(conf, sh, &s, disks);
2713 /* maybe we need to check and possibly fix the parity for this stripe
2714 * Any reads will already have been scheduled, so we just see if enough
2715 * data is available. The parity check is held off while parity
2716 * dependent operations are in flight.
2718 if (sh->check_state ||
2719 (s.syncing && s.locked == 0 &&
2720 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
2721 !test_bit(STRIPE_INSYNC, &sh->state)))
2722 handle_parity_checks5(conf, sh, &s, disks);
2724 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2725 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2726 clear_bit(STRIPE_SYNCING, &sh->state);
2729 /* If the failed drive is just a ReadError, then we might need to progress
2730 * the repair/check process
2732 if (s.failed == 1 && !conf->mddev->ro &&
2733 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2734 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2735 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2737 dev = &sh->dev[s.failed_num];
2738 if (!test_bit(R5_ReWrite, &dev->flags)) {
2739 set_bit(R5_Wantwrite, &dev->flags);
2740 set_bit(R5_ReWrite, &dev->flags);
2741 set_bit(R5_LOCKED, &dev->flags);
2742 s.locked++;
2743 } else {
2744 /* let's read it back */
2745 set_bit(R5_Wantread, &dev->flags);
2746 set_bit(R5_LOCKED, &dev->flags);
2747 s.locked++;
2751 /* Finish reconstruct operations initiated by the expansion process */
2752 if (sh->reconstruct_state == reconstruct_state_result) {
2753 sh->reconstruct_state = reconstruct_state_idle;
2754 clear_bit(STRIPE_EXPANDING, &sh->state);
2755 for (i = conf->raid_disks; i--; ) {
2756 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2757 set_bit(R5_LOCKED, &sh->dev[i].flags);
2758 s.locked++;
2762 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2763 !sh->reconstruct_state) {
2764 /* Need to write out all blocks after computing parity */
2765 sh->disks = conf->raid_disks;
2766 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2767 conf->raid_disks);
2768 schedule_reconstruction5(sh, &s, 1, 1);
2769 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
2770 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2771 atomic_dec(&conf->reshape_stripes);
2772 wake_up(&conf->wait_for_overlap);
2773 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2776 if (s.expanding && s.locked == 0 &&
2777 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
2778 handle_stripe_expansion(conf, sh, NULL);
2780 unlock:
2781 spin_unlock(&sh->lock);
2783 /* wait for this device to become unblocked */
2784 if (unlikely(blocked_rdev))
2785 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2787 if (s.ops_request)
2788 raid5_run_ops(sh, s.ops_request);
2790 ops_run_io(sh, &s);
2792 return_io(return_bi);
2794 return blocked_rdev == NULL;
2797 static bool handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2799 raid6_conf_t *conf = sh->raid_conf;
2800 int disks = sh->disks;
2801 struct bio *return_bi = NULL;
2802 int i, pd_idx = sh->pd_idx;
2803 struct stripe_head_state s;
2804 struct r6_state r6s;
2805 struct r5dev *dev, *pdev, *qdev;
2806 mdk_rdev_t *blocked_rdev = NULL;
2808 r6s.qd_idx = raid6_next_disk(pd_idx, disks);
2809 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2810 "pd_idx=%d, qd_idx=%d\n",
2811 (unsigned long long)sh->sector, sh->state,
2812 atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2813 memset(&s, 0, sizeof(s));
2815 spin_lock(&sh->lock);
2816 clear_bit(STRIPE_HANDLE, &sh->state);
2817 clear_bit(STRIPE_DELAYED, &sh->state);
2819 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2820 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2821 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2822 /* Now to look around and see what can be done */
2824 rcu_read_lock();
2825 for (i=disks; i--; ) {
2826 mdk_rdev_t *rdev;
2827 dev = &sh->dev[i];
2828 clear_bit(R5_Insync, &dev->flags);
2830 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2831 i, dev->flags, dev->toread, dev->towrite, dev->written);
2832 /* maybe we can reply to a read */
2833 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2834 struct bio *rbi, *rbi2;
2835 pr_debug("Return read for disc %d\n", i);
2836 spin_lock_irq(&conf->device_lock);
2837 rbi = dev->toread;
2838 dev->toread = NULL;
2839 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2840 wake_up(&conf->wait_for_overlap);
2841 spin_unlock_irq(&conf->device_lock);
2842 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2843 copy_data(0, rbi, dev->page, dev->sector);
2844 rbi2 = r5_next_bio(rbi, dev->sector);
2845 spin_lock_irq(&conf->device_lock);
2846 if (!raid5_dec_bi_phys_segments(rbi)) {
2847 rbi->bi_next = return_bi;
2848 return_bi = rbi;
2850 spin_unlock_irq(&conf->device_lock);
2851 rbi = rbi2;
2855 /* now count some things */
2856 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2857 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2860 if (dev->toread)
2861 s.to_read++;
2862 if (dev->towrite) {
2863 s.to_write++;
2864 if (!test_bit(R5_OVERWRITE, &dev->flags))
2865 s.non_overwrite++;
2867 if (dev->written)
2868 s.written++;
2869 rdev = rcu_dereference(conf->disks[i].rdev);
2870 if (blocked_rdev == NULL &&
2871 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2872 blocked_rdev = rdev;
2873 atomic_inc(&rdev->nr_pending);
2875 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2876 /* The ReadError flag will just be confusing now */
2877 clear_bit(R5_ReadError, &dev->flags);
2878 clear_bit(R5_ReWrite, &dev->flags);
2880 if (!rdev || !test_bit(In_sync, &rdev->flags)
2881 || test_bit(R5_ReadError, &dev->flags)) {
2882 if (s.failed < 2)
2883 r6s.failed_num[s.failed] = i;
2884 s.failed++;
2885 } else
2886 set_bit(R5_Insync, &dev->flags);
2888 rcu_read_unlock();
2890 if (unlikely(blocked_rdev)) {
2891 if (s.syncing || s.expanding || s.expanded ||
2892 s.to_write || s.written) {
2893 set_bit(STRIPE_HANDLE, &sh->state);
2894 goto unlock;
2896 /* There is nothing for the blocked_rdev to block */
2897 rdev_dec_pending(blocked_rdev, conf->mddev);
2898 blocked_rdev = NULL;
2901 pr_debug("locked=%d uptodate=%d to_read=%d"
2902 " to_write=%d failed=%d failed_num=%d,%d\n",
2903 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
2904 r6s.failed_num[0], r6s.failed_num[1]);
2905 /* check if the array has lost >2 devices and, if so, some requests
2906 * might need to be failed
2908 if (s.failed > 2 && s.to_read+s.to_write+s.written)
2909 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2910 if (s.failed > 2 && s.syncing) {
2911 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2912 clear_bit(STRIPE_SYNCING, &sh->state);
2913 s.syncing = 0;
2917 * might be able to return some write requests if the parity blocks
2918 * are safe, or on a failed drive
2920 pdev = &sh->dev[pd_idx];
2921 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
2922 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
2923 qdev = &sh->dev[r6s.qd_idx];
2924 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
2925 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
2927 if ( s.written &&
2928 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
2929 && !test_bit(R5_LOCKED, &pdev->flags)
2930 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
2931 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
2932 && !test_bit(R5_LOCKED, &qdev->flags)
2933 && test_bit(R5_UPTODATE, &qdev->flags)))))
2934 handle_stripe_clean_event(conf, sh, disks, &return_bi);
2936 /* Now we might consider reading some blocks, either to check/generate
2937 * parity, or to satisfy requests
2938 * or to load a block that is being partially written.
2940 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
2941 (s.syncing && (s.uptodate < disks)) || s.expanding)
2942 handle_stripe_fill6(sh, &s, &r6s, disks);
2944 /* now to consider writing and what else, if anything should be read */
2945 if (s.to_write)
2946 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
2948 /* maybe we need to check and possibly fix the parity for this stripe
2949 * Any reads will already have been scheduled, so we just see if enough
2950 * data is available
2952 if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
2953 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
2955 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2956 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2957 clear_bit(STRIPE_SYNCING, &sh->state);
2960 /* If the failed drives are just a ReadError, then we might need
2961 * to progress the repair/check process
2963 if (s.failed <= 2 && !conf->mddev->ro)
2964 for (i = 0; i < s.failed; i++) {
2965 dev = &sh->dev[r6s.failed_num[i]];
2966 if (test_bit(R5_ReadError, &dev->flags)
2967 && !test_bit(R5_LOCKED, &dev->flags)
2968 && test_bit(R5_UPTODATE, &dev->flags)
2970 if (!test_bit(R5_ReWrite, &dev->flags)) {
2971 set_bit(R5_Wantwrite, &dev->flags);
2972 set_bit(R5_ReWrite, &dev->flags);
2973 set_bit(R5_LOCKED, &dev->flags);
2974 } else {
2975 /* let's read it back */
2976 set_bit(R5_Wantread, &dev->flags);
2977 set_bit(R5_LOCKED, &dev->flags);
2982 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
2983 /* Need to write out all blocks after computing P&Q */
2984 sh->disks = conf->raid_disks;
2985 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2986 conf->raid_disks);
2987 compute_parity6(sh, RECONSTRUCT_WRITE);
2988 for (i = conf->raid_disks ; i-- ; ) {
2989 set_bit(R5_LOCKED, &sh->dev[i].flags);
2990 s.locked++;
2991 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2993 clear_bit(STRIPE_EXPANDING, &sh->state);
2994 } else if (s.expanded) {
2995 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2996 atomic_dec(&conf->reshape_stripes);
2997 wake_up(&conf->wait_for_overlap);
2998 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3001 if (s.expanding && s.locked == 0 &&
3002 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3003 handle_stripe_expansion(conf, sh, &r6s);
3005 unlock:
3006 spin_unlock(&sh->lock);
3008 /* wait for this device to become unblocked */
3009 if (unlikely(blocked_rdev))
3010 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3012 ops_run_io(sh, &s);
3014 return_io(return_bi);
3016 return blocked_rdev == NULL;
3019 /* returns true if the stripe was handled */
3020 static bool handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3022 if (sh->raid_conf->level == 6)
3023 return handle_stripe6(sh, tmp_page);
3024 else
3025 return handle_stripe5(sh);
3030 static void raid5_activate_delayed(raid5_conf_t *conf)
3032 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3033 while (!list_empty(&conf->delayed_list)) {
3034 struct list_head *l = conf->delayed_list.next;
3035 struct stripe_head *sh;
3036 sh = list_entry(l, struct stripe_head, lru);
3037 list_del_init(l);
3038 clear_bit(STRIPE_DELAYED, &sh->state);
3039 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3040 atomic_inc(&conf->preread_active_stripes);
3041 list_add_tail(&sh->lru, &conf->hold_list);
3043 } else
3044 blk_plug_device(conf->mddev->queue);
3047 static void activate_bit_delay(raid5_conf_t *conf)
3049 /* device_lock is held */
3050 struct list_head head;
3051 list_add(&head, &conf->bitmap_list);
3052 list_del_init(&conf->bitmap_list);
3053 while (!list_empty(&head)) {
3054 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3055 list_del_init(&sh->lru);
3056 atomic_inc(&sh->count);
3057 __release_stripe(conf, sh);
3061 static void unplug_slaves(mddev_t *mddev)
3063 raid5_conf_t *conf = mddev_to_conf(mddev);
3064 int i;
3066 rcu_read_lock();
3067 for (i=0; i<mddev->raid_disks; i++) {
3068 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3069 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3070 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3072 atomic_inc(&rdev->nr_pending);
3073 rcu_read_unlock();
3075 blk_unplug(r_queue);
3077 rdev_dec_pending(rdev, mddev);
3078 rcu_read_lock();
3081 rcu_read_unlock();
3084 static void raid5_unplug_device(struct request_queue *q)
3086 mddev_t *mddev = q->queuedata;
3087 raid5_conf_t *conf = mddev_to_conf(mddev);
3088 unsigned long flags;
3090 spin_lock_irqsave(&conf->device_lock, flags);
3092 if (blk_remove_plug(q)) {
3093 conf->seq_flush++;
3094 raid5_activate_delayed(conf);
3096 md_wakeup_thread(mddev->thread);
3098 spin_unlock_irqrestore(&conf->device_lock, flags);
3100 unplug_slaves(mddev);
3103 static int raid5_congested(void *data, int bits)
3105 mddev_t *mddev = data;
3106 raid5_conf_t *conf = mddev_to_conf(mddev);
3108 /* No difference between reads and writes. Just check
3109 * how busy the stripe_cache is
3111 if (conf->inactive_blocked)
3112 return 1;
3113 if (conf->quiesce)
3114 return 1;
3115 if (list_empty_careful(&conf->inactive_list))
3116 return 1;
3118 return 0;
3121 /* We want read requests to align with chunks where possible,
3122 * but write requests don't need to.
3124 static int raid5_mergeable_bvec(struct request_queue *q,
3125 struct bvec_merge_data *bvm,
3126 struct bio_vec *biovec)
3128 mddev_t *mddev = q->queuedata;
3129 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3130 int max;
3131 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3132 unsigned int bio_sectors = bvm->bi_size >> 9;
3134 if ((bvm->bi_rw & 1) == WRITE)
3135 return biovec->bv_len; /* always allow writes to be mergeable */
3137 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3138 if (max < 0) max = 0;
3139 if (max <= biovec->bv_len && bio_sectors == 0)
3140 return biovec->bv_len;
3141 else
3142 return max;
3146 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3148 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3149 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3150 unsigned int bio_sectors = bio->bi_size >> 9;
3152 return chunk_sectors >=
3153 ((sector & (chunk_sectors - 1)) + bio_sectors);
3157 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3158 * later sampled by raid5d.
3160 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3162 unsigned long flags;
3164 spin_lock_irqsave(&conf->device_lock, flags);
3166 bi->bi_next = conf->retry_read_aligned_list;
3167 conf->retry_read_aligned_list = bi;
3169 spin_unlock_irqrestore(&conf->device_lock, flags);
3170 md_wakeup_thread(conf->mddev->thread);
3174 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3176 struct bio *bi;
3178 bi = conf->retry_read_aligned;
3179 if (bi) {
3180 conf->retry_read_aligned = NULL;
3181 return bi;
3183 bi = conf->retry_read_aligned_list;
3184 if(bi) {
3185 conf->retry_read_aligned_list = bi->bi_next;
3186 bi->bi_next = NULL;
3188 * this sets the active strip count to 1 and the processed
3189 * strip count to zero (upper 8 bits)
3191 bi->bi_phys_segments = 1; /* biased count of active stripes */
3194 return bi;
3199 * The "raid5_align_endio" should check if the read succeeded and if it
3200 * did, call bio_endio on the original bio (having bio_put the new bio
3201 * first).
3202 * If the read failed..
3204 static void raid5_align_endio(struct bio *bi, int error)
3206 struct bio* raid_bi = bi->bi_private;
3207 mddev_t *mddev;
3208 raid5_conf_t *conf;
3209 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3210 mdk_rdev_t *rdev;
3212 bio_put(bi);
3214 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3215 conf = mddev_to_conf(mddev);
3216 rdev = (void*)raid_bi->bi_next;
3217 raid_bi->bi_next = NULL;
3219 rdev_dec_pending(rdev, conf->mddev);
3221 if (!error && uptodate) {
3222 bio_endio(raid_bi, 0);
3223 if (atomic_dec_and_test(&conf->active_aligned_reads))
3224 wake_up(&conf->wait_for_stripe);
3225 return;
3229 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3231 add_bio_to_retry(raid_bi, conf);
3234 static int bio_fits_rdev(struct bio *bi)
3236 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3238 if ((bi->bi_size>>9) > q->max_sectors)
3239 return 0;
3240 blk_recount_segments(q, bi);
3241 if (bi->bi_phys_segments > q->max_phys_segments)
3242 return 0;
3244 if (q->merge_bvec_fn)
3245 /* it's too hard to apply the merge_bvec_fn at this stage,
3246 * just just give up
3248 return 0;
3250 return 1;
3254 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3256 mddev_t *mddev = q->queuedata;
3257 raid5_conf_t *conf = mddev_to_conf(mddev);
3258 const unsigned int raid_disks = conf->raid_disks;
3259 const unsigned int data_disks = raid_disks - conf->max_degraded;
3260 unsigned int dd_idx, pd_idx;
3261 struct bio* align_bi;
3262 mdk_rdev_t *rdev;
3264 if (!in_chunk_boundary(mddev, raid_bio)) {
3265 pr_debug("chunk_aligned_read : non aligned\n");
3266 return 0;
3269 * use bio_clone to make a copy of the bio
3271 align_bi = bio_clone(raid_bio, GFP_NOIO);
3272 if (!align_bi)
3273 return 0;
3275 * set bi_end_io to a new function, and set bi_private to the
3276 * original bio.
3278 align_bi->bi_end_io = raid5_align_endio;
3279 align_bi->bi_private = raid_bio;
3281 * compute position
3283 align_bi->bi_sector = raid5_compute_sector(raid_bio->bi_sector,
3284 raid_disks,
3285 data_disks,
3286 &dd_idx,
3287 &pd_idx,
3288 conf);
3290 rcu_read_lock();
3291 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3292 if (rdev && test_bit(In_sync, &rdev->flags)) {
3293 atomic_inc(&rdev->nr_pending);
3294 rcu_read_unlock();
3295 raid_bio->bi_next = (void*)rdev;
3296 align_bi->bi_bdev = rdev->bdev;
3297 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3298 align_bi->bi_sector += rdev->data_offset;
3300 if (!bio_fits_rdev(align_bi)) {
3301 /* too big in some way */
3302 bio_put(align_bi);
3303 rdev_dec_pending(rdev, mddev);
3304 return 0;
3307 spin_lock_irq(&conf->device_lock);
3308 wait_event_lock_irq(conf->wait_for_stripe,
3309 conf->quiesce == 0,
3310 conf->device_lock, /* nothing */);
3311 atomic_inc(&conf->active_aligned_reads);
3312 spin_unlock_irq(&conf->device_lock);
3314 generic_make_request(align_bi);
3315 return 1;
3316 } else {
3317 rcu_read_unlock();
3318 bio_put(align_bi);
3319 return 0;
3323 /* __get_priority_stripe - get the next stripe to process
3325 * Full stripe writes are allowed to pass preread active stripes up until
3326 * the bypass_threshold is exceeded. In general the bypass_count
3327 * increments when the handle_list is handled before the hold_list; however, it
3328 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3329 * stripe with in flight i/o. The bypass_count will be reset when the
3330 * head of the hold_list has changed, i.e. the head was promoted to the
3331 * handle_list.
3333 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3335 struct stripe_head *sh;
3337 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3338 __func__,
3339 list_empty(&conf->handle_list) ? "empty" : "busy",
3340 list_empty(&conf->hold_list) ? "empty" : "busy",
3341 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3343 if (!list_empty(&conf->handle_list)) {
3344 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3346 if (list_empty(&conf->hold_list))
3347 conf->bypass_count = 0;
3348 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3349 if (conf->hold_list.next == conf->last_hold)
3350 conf->bypass_count++;
3351 else {
3352 conf->last_hold = conf->hold_list.next;
3353 conf->bypass_count -= conf->bypass_threshold;
3354 if (conf->bypass_count < 0)
3355 conf->bypass_count = 0;
3358 } else if (!list_empty(&conf->hold_list) &&
3359 ((conf->bypass_threshold &&
3360 conf->bypass_count > conf->bypass_threshold) ||
3361 atomic_read(&conf->pending_full_writes) == 0)) {
3362 sh = list_entry(conf->hold_list.next,
3363 typeof(*sh), lru);
3364 conf->bypass_count -= conf->bypass_threshold;
3365 if (conf->bypass_count < 0)
3366 conf->bypass_count = 0;
3367 } else
3368 return NULL;
3370 list_del_init(&sh->lru);
3371 atomic_inc(&sh->count);
3372 BUG_ON(atomic_read(&sh->count) != 1);
3373 return sh;
3376 static int make_request(struct request_queue *q, struct bio * bi)
3378 mddev_t *mddev = q->queuedata;
3379 raid5_conf_t *conf = mddev_to_conf(mddev);
3380 unsigned int dd_idx, pd_idx;
3381 sector_t new_sector;
3382 sector_t logical_sector, last_sector;
3383 struct stripe_head *sh;
3384 const int rw = bio_data_dir(bi);
3385 int cpu, remaining;
3387 if (unlikely(bio_barrier(bi))) {
3388 bio_endio(bi, -EOPNOTSUPP);
3389 return 0;
3392 md_write_start(mddev, bi);
3394 cpu = part_stat_lock();
3395 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3396 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3397 bio_sectors(bi));
3398 part_stat_unlock();
3400 if (rw == READ &&
3401 mddev->reshape_position == MaxSector &&
3402 chunk_aligned_read(q,bi))
3403 return 0;
3405 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3406 last_sector = bi->bi_sector + (bi->bi_size>>9);
3407 bi->bi_next = NULL;
3408 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3410 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3411 DEFINE_WAIT(w);
3412 int disks, data_disks;
3414 retry:
3415 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3416 if (likely(conf->expand_progress == MaxSector))
3417 disks = conf->raid_disks;
3418 else {
3419 /* spinlock is needed as expand_progress may be
3420 * 64bit on a 32bit platform, and so it might be
3421 * possible to see a half-updated value
3422 * Ofcourse expand_progress could change after
3423 * the lock is dropped, so once we get a reference
3424 * to the stripe that we think it is, we will have
3425 * to check again.
3427 spin_lock_irq(&conf->device_lock);
3428 disks = conf->raid_disks;
3429 if (logical_sector >= conf->expand_progress)
3430 disks = conf->previous_raid_disks;
3431 else {
3432 if (logical_sector >= conf->expand_lo) {
3433 spin_unlock_irq(&conf->device_lock);
3434 schedule();
3435 goto retry;
3438 spin_unlock_irq(&conf->device_lock);
3440 data_disks = disks - conf->max_degraded;
3442 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
3443 &dd_idx, &pd_idx, conf);
3444 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3445 (unsigned long long)new_sector,
3446 (unsigned long long)logical_sector);
3448 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
3449 if (sh) {
3450 if (unlikely(conf->expand_progress != MaxSector)) {
3451 /* expansion might have moved on while waiting for a
3452 * stripe, so we must do the range check again.
3453 * Expansion could still move past after this
3454 * test, but as we are holding a reference to
3455 * 'sh', we know that if that happens,
3456 * STRIPE_EXPANDING will get set and the expansion
3457 * won't proceed until we finish with the stripe.
3459 int must_retry = 0;
3460 spin_lock_irq(&conf->device_lock);
3461 if (logical_sector < conf->expand_progress &&
3462 disks == conf->previous_raid_disks)
3463 /* mismatch, need to try again */
3464 must_retry = 1;
3465 spin_unlock_irq(&conf->device_lock);
3466 if (must_retry) {
3467 release_stripe(sh);
3468 goto retry;
3471 /* FIXME what if we get a false positive because these
3472 * are being updated.
3474 if (logical_sector >= mddev->suspend_lo &&
3475 logical_sector < mddev->suspend_hi) {
3476 release_stripe(sh);
3477 schedule();
3478 goto retry;
3481 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3482 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3483 /* Stripe is busy expanding or
3484 * add failed due to overlap. Flush everything
3485 * and wait a while
3487 raid5_unplug_device(mddev->queue);
3488 release_stripe(sh);
3489 schedule();
3490 goto retry;
3492 finish_wait(&conf->wait_for_overlap, &w);
3493 set_bit(STRIPE_HANDLE, &sh->state);
3494 clear_bit(STRIPE_DELAYED, &sh->state);
3495 release_stripe(sh);
3496 } else {
3497 /* cannot get stripe for read-ahead, just give-up */
3498 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3499 finish_wait(&conf->wait_for_overlap, &w);
3500 break;
3504 spin_lock_irq(&conf->device_lock);
3505 remaining = raid5_dec_bi_phys_segments(bi);
3506 spin_unlock_irq(&conf->device_lock);
3507 if (remaining == 0) {
3509 if ( rw == WRITE )
3510 md_write_end(mddev);
3512 bio_endio(bi, 0);
3514 return 0;
3517 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3519 /* reshaping is quite different to recovery/resync so it is
3520 * handled quite separately ... here.
3522 * On each call to sync_request, we gather one chunk worth of
3523 * destination stripes and flag them as expanding.
3524 * Then we find all the source stripes and request reads.
3525 * As the reads complete, handle_stripe will copy the data
3526 * into the destination stripe and release that stripe.
3528 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3529 struct stripe_head *sh;
3530 int pd_idx;
3531 sector_t first_sector, last_sector;
3532 int raid_disks = conf->previous_raid_disks;
3533 int data_disks = raid_disks - conf->max_degraded;
3534 int new_data_disks = conf->raid_disks - conf->max_degraded;
3535 int i;
3536 int dd_idx;
3537 sector_t writepos, safepos, gap;
3539 if (sector_nr == 0 &&
3540 conf->expand_progress != 0) {
3541 /* restarting in the middle, skip the initial sectors */
3542 sector_nr = conf->expand_progress;
3543 sector_div(sector_nr, new_data_disks);
3544 *skipped = 1;
3545 return sector_nr;
3548 /* we update the metadata when there is more than 3Meg
3549 * in the block range (that is rather arbitrary, should
3550 * probably be time based) or when the data about to be
3551 * copied would over-write the source of the data at
3552 * the front of the range.
3553 * i.e. one new_stripe forward from expand_progress new_maps
3554 * to after where expand_lo old_maps to
3556 writepos = conf->expand_progress +
3557 conf->chunk_size/512*(new_data_disks);
3558 sector_div(writepos, new_data_disks);
3559 safepos = conf->expand_lo;
3560 sector_div(safepos, data_disks);
3561 gap = conf->expand_progress - conf->expand_lo;
3563 if (writepos >= safepos ||
3564 gap > (new_data_disks)*3000*2 /*3Meg*/) {
3565 /* Cannot proceed until we've updated the superblock... */
3566 wait_event(conf->wait_for_overlap,
3567 atomic_read(&conf->reshape_stripes)==0);
3568 mddev->reshape_position = conf->expand_progress;
3569 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3570 md_wakeup_thread(mddev->thread);
3571 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3572 kthread_should_stop());
3573 spin_lock_irq(&conf->device_lock);
3574 conf->expand_lo = mddev->reshape_position;
3575 spin_unlock_irq(&conf->device_lock);
3576 wake_up(&conf->wait_for_overlap);
3579 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3580 int j;
3581 int skipped = 0;
3582 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3583 sh = get_active_stripe(conf, sector_nr+i,
3584 conf->raid_disks, pd_idx, 0);
3585 set_bit(STRIPE_EXPANDING, &sh->state);
3586 atomic_inc(&conf->reshape_stripes);
3587 /* If any of this stripe is beyond the end of the old
3588 * array, then we need to zero those blocks
3590 for (j=sh->disks; j--;) {
3591 sector_t s;
3592 if (j == sh->pd_idx)
3593 continue;
3594 if (conf->level == 6 &&
3595 j == raid6_next_disk(sh->pd_idx, sh->disks))
3596 continue;
3597 s = compute_blocknr(sh, j);
3598 if (s < mddev->array_sectors) {
3599 skipped = 1;
3600 continue;
3602 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3603 set_bit(R5_Expanded, &sh->dev[j].flags);
3604 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3606 if (!skipped) {
3607 set_bit(STRIPE_EXPAND_READY, &sh->state);
3608 set_bit(STRIPE_HANDLE, &sh->state);
3610 release_stripe(sh);
3612 spin_lock_irq(&conf->device_lock);
3613 conf->expand_progress = (sector_nr + i) * new_data_disks;
3614 spin_unlock_irq(&conf->device_lock);
3615 /* Ok, those stripe are ready. We can start scheduling
3616 * reads on the source stripes.
3617 * The source stripes are determined by mapping the first and last
3618 * block on the destination stripes.
3620 first_sector =
3621 raid5_compute_sector(sector_nr*(new_data_disks),
3622 raid_disks, data_disks,
3623 &dd_idx, &pd_idx, conf);
3624 last_sector =
3625 raid5_compute_sector((sector_nr+conf->chunk_size/512)
3626 *(new_data_disks) -1,
3627 raid_disks, data_disks,
3628 &dd_idx, &pd_idx, conf);
3629 if (last_sector >= (mddev->size<<1))
3630 last_sector = (mddev->size<<1)-1;
3631 while (first_sector <= last_sector) {
3632 pd_idx = stripe_to_pdidx(first_sector, conf,
3633 conf->previous_raid_disks);
3634 sh = get_active_stripe(conf, first_sector,
3635 conf->previous_raid_disks, pd_idx, 0);
3636 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3637 set_bit(STRIPE_HANDLE, &sh->state);
3638 release_stripe(sh);
3639 first_sector += STRIPE_SECTORS;
3641 /* If this takes us to the resync_max point where we have to pause,
3642 * then we need to write out the superblock.
3644 sector_nr += conf->chunk_size>>9;
3645 if (sector_nr >= mddev->resync_max) {
3646 /* Cannot proceed until we've updated the superblock... */
3647 wait_event(conf->wait_for_overlap,
3648 atomic_read(&conf->reshape_stripes) == 0);
3649 mddev->reshape_position = conf->expand_progress;
3650 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3651 md_wakeup_thread(mddev->thread);
3652 wait_event(mddev->sb_wait,
3653 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3654 || kthread_should_stop());
3655 spin_lock_irq(&conf->device_lock);
3656 conf->expand_lo = mddev->reshape_position;
3657 spin_unlock_irq(&conf->device_lock);
3658 wake_up(&conf->wait_for_overlap);
3660 return conf->chunk_size>>9;
3663 /* FIXME go_faster isn't used */
3664 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3666 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3667 struct stripe_head *sh;
3668 int pd_idx;
3669 int raid_disks = conf->raid_disks;
3670 sector_t max_sector = mddev->size << 1;
3671 int sync_blocks;
3672 int still_degraded = 0;
3673 int i;
3675 if (sector_nr >= max_sector) {
3676 /* just being told to finish up .. nothing much to do */
3677 unplug_slaves(mddev);
3678 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3679 end_reshape(conf);
3680 return 0;
3683 if (mddev->curr_resync < max_sector) /* aborted */
3684 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3685 &sync_blocks, 1);
3686 else /* completed sync */
3687 conf->fullsync = 0;
3688 bitmap_close_sync(mddev->bitmap);
3690 return 0;
3693 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3694 return reshape_request(mddev, sector_nr, skipped);
3696 /* No need to check resync_max as we never do more than one
3697 * stripe, and as resync_max will always be on a chunk boundary,
3698 * if the check in md_do_sync didn't fire, there is no chance
3699 * of overstepping resync_max here
3702 /* if there is too many failed drives and we are trying
3703 * to resync, then assert that we are finished, because there is
3704 * nothing we can do.
3706 if (mddev->degraded >= conf->max_degraded &&
3707 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3708 sector_t rv = (mddev->size << 1) - sector_nr;
3709 *skipped = 1;
3710 return rv;
3712 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3713 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3714 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3715 /* we can skip this block, and probably more */
3716 sync_blocks /= STRIPE_SECTORS;
3717 *skipped = 1;
3718 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3722 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3724 pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3725 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
3726 if (sh == NULL) {
3727 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
3728 /* make sure we don't swamp the stripe cache if someone else
3729 * is trying to get access
3731 schedule_timeout_uninterruptible(1);
3733 /* Need to check if array will still be degraded after recovery/resync
3734 * We don't need to check the 'failed' flag as when that gets set,
3735 * recovery aborts.
3737 for (i=0; i<mddev->raid_disks; i++)
3738 if (conf->disks[i].rdev == NULL)
3739 still_degraded = 1;
3741 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3743 spin_lock(&sh->lock);
3744 set_bit(STRIPE_SYNCING, &sh->state);
3745 clear_bit(STRIPE_INSYNC, &sh->state);
3746 spin_unlock(&sh->lock);
3748 /* wait for any blocked device to be handled */
3749 while(unlikely(!handle_stripe(sh, NULL)))
3751 release_stripe(sh);
3753 return STRIPE_SECTORS;
3756 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3758 /* We may not be able to submit a whole bio at once as there
3759 * may not be enough stripe_heads available.
3760 * We cannot pre-allocate enough stripe_heads as we may need
3761 * more than exist in the cache (if we allow ever large chunks).
3762 * So we do one stripe head at a time and record in
3763 * ->bi_hw_segments how many have been done.
3765 * We *know* that this entire raid_bio is in one chunk, so
3766 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3768 struct stripe_head *sh;
3769 int dd_idx, pd_idx;
3770 sector_t sector, logical_sector, last_sector;
3771 int scnt = 0;
3772 int remaining;
3773 int handled = 0;
3775 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3776 sector = raid5_compute_sector( logical_sector,
3777 conf->raid_disks,
3778 conf->raid_disks - conf->max_degraded,
3779 &dd_idx,
3780 &pd_idx,
3781 conf);
3782 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3784 for (; logical_sector < last_sector;
3785 logical_sector += STRIPE_SECTORS,
3786 sector += STRIPE_SECTORS,
3787 scnt++) {
3789 if (scnt < raid5_bi_hw_segments(raid_bio))
3790 /* already done this stripe */
3791 continue;
3793 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3795 if (!sh) {
3796 /* failed to get a stripe - must wait */
3797 raid5_set_bi_hw_segments(raid_bio, scnt);
3798 conf->retry_read_aligned = raid_bio;
3799 return handled;
3802 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3803 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3804 release_stripe(sh);
3805 raid5_set_bi_hw_segments(raid_bio, scnt);
3806 conf->retry_read_aligned = raid_bio;
3807 return handled;
3810 handle_stripe(sh, NULL);
3811 release_stripe(sh);
3812 handled++;
3814 spin_lock_irq(&conf->device_lock);
3815 remaining = raid5_dec_bi_phys_segments(raid_bio);
3816 spin_unlock_irq(&conf->device_lock);
3817 if (remaining == 0)
3818 bio_endio(raid_bio, 0);
3819 if (atomic_dec_and_test(&conf->active_aligned_reads))
3820 wake_up(&conf->wait_for_stripe);
3821 return handled;
3827 * This is our raid5 kernel thread.
3829 * We scan the hash table for stripes which can be handled now.
3830 * During the scan, completed stripes are saved for us by the interrupt
3831 * handler, so that they will not have to wait for our next wakeup.
3833 static void raid5d(mddev_t *mddev)
3835 struct stripe_head *sh;
3836 raid5_conf_t *conf = mddev_to_conf(mddev);
3837 int handled;
3839 pr_debug("+++ raid5d active\n");
3841 md_check_recovery(mddev);
3843 handled = 0;
3844 spin_lock_irq(&conf->device_lock);
3845 while (1) {
3846 struct bio *bio;
3848 if (conf->seq_flush != conf->seq_write) {
3849 int seq = conf->seq_flush;
3850 spin_unlock_irq(&conf->device_lock);
3851 bitmap_unplug(mddev->bitmap);
3852 spin_lock_irq(&conf->device_lock);
3853 conf->seq_write = seq;
3854 activate_bit_delay(conf);
3857 while ((bio = remove_bio_from_retry(conf))) {
3858 int ok;
3859 spin_unlock_irq(&conf->device_lock);
3860 ok = retry_aligned_read(conf, bio);
3861 spin_lock_irq(&conf->device_lock);
3862 if (!ok)
3863 break;
3864 handled++;
3867 sh = __get_priority_stripe(conf);
3869 if (!sh)
3870 break;
3871 spin_unlock_irq(&conf->device_lock);
3873 handled++;
3874 handle_stripe(sh, conf->spare_page);
3875 release_stripe(sh);
3877 spin_lock_irq(&conf->device_lock);
3879 pr_debug("%d stripes handled\n", handled);
3881 spin_unlock_irq(&conf->device_lock);
3883 async_tx_issue_pending_all();
3884 unplug_slaves(mddev);
3886 pr_debug("--- raid5d inactive\n");
3889 static ssize_t
3890 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3892 raid5_conf_t *conf = mddev_to_conf(mddev);
3893 if (conf)
3894 return sprintf(page, "%d\n", conf->max_nr_stripes);
3895 else
3896 return 0;
3899 static ssize_t
3900 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3902 raid5_conf_t *conf = mddev_to_conf(mddev);
3903 unsigned long new;
3904 int err;
3906 if (len >= PAGE_SIZE)
3907 return -EINVAL;
3908 if (!conf)
3909 return -ENODEV;
3911 if (strict_strtoul(page, 10, &new))
3912 return -EINVAL;
3913 if (new <= 16 || new > 32768)
3914 return -EINVAL;
3915 while (new < conf->max_nr_stripes) {
3916 if (drop_one_stripe(conf))
3917 conf->max_nr_stripes--;
3918 else
3919 break;
3921 err = md_allow_write(mddev);
3922 if (err)
3923 return err;
3924 while (new > conf->max_nr_stripes) {
3925 if (grow_one_stripe(conf))
3926 conf->max_nr_stripes++;
3927 else break;
3929 return len;
3932 static struct md_sysfs_entry
3933 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
3934 raid5_show_stripe_cache_size,
3935 raid5_store_stripe_cache_size);
3937 static ssize_t
3938 raid5_show_preread_threshold(mddev_t *mddev, char *page)
3940 raid5_conf_t *conf = mddev_to_conf(mddev);
3941 if (conf)
3942 return sprintf(page, "%d\n", conf->bypass_threshold);
3943 else
3944 return 0;
3947 static ssize_t
3948 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
3950 raid5_conf_t *conf = mddev_to_conf(mddev);
3951 unsigned long new;
3952 if (len >= PAGE_SIZE)
3953 return -EINVAL;
3954 if (!conf)
3955 return -ENODEV;
3957 if (strict_strtoul(page, 10, &new))
3958 return -EINVAL;
3959 if (new > conf->max_nr_stripes)
3960 return -EINVAL;
3961 conf->bypass_threshold = new;
3962 return len;
3965 static struct md_sysfs_entry
3966 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
3967 S_IRUGO | S_IWUSR,
3968 raid5_show_preread_threshold,
3969 raid5_store_preread_threshold);
3971 static ssize_t
3972 stripe_cache_active_show(mddev_t *mddev, char *page)
3974 raid5_conf_t *conf = mddev_to_conf(mddev);
3975 if (conf)
3976 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
3977 else
3978 return 0;
3981 static struct md_sysfs_entry
3982 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3984 static struct attribute *raid5_attrs[] = {
3985 &raid5_stripecache_size.attr,
3986 &raid5_stripecache_active.attr,
3987 &raid5_preread_bypass_threshold.attr,
3988 NULL,
3990 static struct attribute_group raid5_attrs_group = {
3991 .name = NULL,
3992 .attrs = raid5_attrs,
3995 static int run(mddev_t *mddev)
3997 raid5_conf_t *conf;
3998 int raid_disk, memory;
3999 mdk_rdev_t *rdev;
4000 struct disk_info *disk;
4001 int working_disks = 0;
4003 if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4004 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4005 mdname(mddev), mddev->level);
4006 return -EIO;
4009 if (mddev->chunk_size < PAGE_SIZE) {
4010 printk(KERN_ERR "md/raid5: chunk_size must be at least "
4011 "PAGE_SIZE but %d < %ld\n",
4012 mddev->chunk_size, PAGE_SIZE);
4013 return -EINVAL;
4016 if (mddev->reshape_position != MaxSector) {
4017 /* Check that we can continue the reshape.
4018 * Currently only disks can change, it must
4019 * increase, and we must be past the point where
4020 * a stripe over-writes itself
4022 sector_t here_new, here_old;
4023 int old_disks;
4024 int max_degraded = (mddev->level == 5 ? 1 : 2);
4026 if (mddev->new_level != mddev->level ||
4027 mddev->new_layout != mddev->layout ||
4028 mddev->new_chunk != mddev->chunk_size) {
4029 printk(KERN_ERR "raid5: %s: unsupported reshape "
4030 "required - aborting.\n",
4031 mdname(mddev));
4032 return -EINVAL;
4034 if (mddev->delta_disks <= 0) {
4035 printk(KERN_ERR "raid5: %s: unsupported reshape "
4036 "(reduce disks) required - aborting.\n",
4037 mdname(mddev));
4038 return -EINVAL;
4040 old_disks = mddev->raid_disks - mddev->delta_disks;
4041 /* reshape_position must be on a new-stripe boundary, and one
4042 * further up in new geometry must map after here in old
4043 * geometry.
4045 here_new = mddev->reshape_position;
4046 if (sector_div(here_new, (mddev->chunk_size>>9)*
4047 (mddev->raid_disks - max_degraded))) {
4048 printk(KERN_ERR "raid5: reshape_position not "
4049 "on a stripe boundary\n");
4050 return -EINVAL;
4052 /* here_new is the stripe we will write to */
4053 here_old = mddev->reshape_position;
4054 sector_div(here_old, (mddev->chunk_size>>9)*
4055 (old_disks-max_degraded));
4056 /* here_old is the first stripe that we might need to read
4057 * from */
4058 if (here_new >= here_old) {
4059 /* Reading from the same stripe as writing to - bad */
4060 printk(KERN_ERR "raid5: reshape_position too early for "
4061 "auto-recovery - aborting.\n");
4062 return -EINVAL;
4064 printk(KERN_INFO "raid5: reshape will continue\n");
4065 /* OK, we should be able to continue; */
4069 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4070 if ((conf = mddev->private) == NULL)
4071 goto abort;
4072 if (mddev->reshape_position == MaxSector) {
4073 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4074 } else {
4075 conf->raid_disks = mddev->raid_disks;
4076 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4079 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4080 GFP_KERNEL);
4081 if (!conf->disks)
4082 goto abort;
4084 conf->mddev = mddev;
4086 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4087 goto abort;
4089 if (mddev->level == 6) {
4090 conf->spare_page = alloc_page(GFP_KERNEL);
4091 if (!conf->spare_page)
4092 goto abort;
4094 spin_lock_init(&conf->device_lock);
4095 mddev->queue->queue_lock = &conf->device_lock;
4096 init_waitqueue_head(&conf->wait_for_stripe);
4097 init_waitqueue_head(&conf->wait_for_overlap);
4098 INIT_LIST_HEAD(&conf->handle_list);
4099 INIT_LIST_HEAD(&conf->hold_list);
4100 INIT_LIST_HEAD(&conf->delayed_list);
4101 INIT_LIST_HEAD(&conf->bitmap_list);
4102 INIT_LIST_HEAD(&conf->inactive_list);
4103 atomic_set(&conf->active_stripes, 0);
4104 atomic_set(&conf->preread_active_stripes, 0);
4105 atomic_set(&conf->active_aligned_reads, 0);
4106 conf->bypass_threshold = BYPASS_THRESHOLD;
4108 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4110 list_for_each_entry(rdev, &mddev->disks, same_set) {
4111 raid_disk = rdev->raid_disk;
4112 if (raid_disk >= conf->raid_disks
4113 || raid_disk < 0)
4114 continue;
4115 disk = conf->disks + raid_disk;
4117 disk->rdev = rdev;
4119 if (test_bit(In_sync, &rdev->flags)) {
4120 char b[BDEVNAME_SIZE];
4121 printk(KERN_INFO "raid5: device %s operational as raid"
4122 " disk %d\n", bdevname(rdev->bdev,b),
4123 raid_disk);
4124 working_disks++;
4125 } else
4126 /* Cannot rely on bitmap to complete recovery */
4127 conf->fullsync = 1;
4131 * 0 for a fully functional array, 1 or 2 for a degraded array.
4133 mddev->degraded = conf->raid_disks - working_disks;
4134 conf->mddev = mddev;
4135 conf->chunk_size = mddev->chunk_size;
4136 conf->level = mddev->level;
4137 if (conf->level == 6)
4138 conf->max_degraded = 2;
4139 else
4140 conf->max_degraded = 1;
4141 conf->algorithm = mddev->layout;
4142 conf->max_nr_stripes = NR_STRIPES;
4143 conf->expand_progress = mddev->reshape_position;
4145 /* device size must be a multiple of chunk size */
4146 mddev->size &= ~(mddev->chunk_size/1024 -1);
4147 mddev->resync_max_sectors = mddev->size << 1;
4149 if (conf->level == 6 && conf->raid_disks < 4) {
4150 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4151 mdname(mddev), conf->raid_disks);
4152 goto abort;
4154 if (!conf->chunk_size || conf->chunk_size % 4) {
4155 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4156 conf->chunk_size, mdname(mddev));
4157 goto abort;
4159 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4160 printk(KERN_ERR
4161 "raid5: unsupported parity algorithm %d for %s\n",
4162 conf->algorithm, mdname(mddev));
4163 goto abort;
4165 if (mddev->degraded > conf->max_degraded) {
4166 printk(KERN_ERR "raid5: not enough operational devices for %s"
4167 " (%d/%d failed)\n",
4168 mdname(mddev), mddev->degraded, conf->raid_disks);
4169 goto abort;
4172 if (mddev->degraded > 0 &&
4173 mddev->recovery_cp != MaxSector) {
4174 if (mddev->ok_start_degraded)
4175 printk(KERN_WARNING
4176 "raid5: starting dirty degraded array: %s"
4177 "- data corruption possible.\n",
4178 mdname(mddev));
4179 else {
4180 printk(KERN_ERR
4181 "raid5: cannot start dirty degraded array for %s\n",
4182 mdname(mddev));
4183 goto abort;
4188 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4189 if (!mddev->thread) {
4190 printk(KERN_ERR
4191 "raid5: couldn't allocate thread for %s\n",
4192 mdname(mddev));
4193 goto abort;
4196 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4197 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4198 if (grow_stripes(conf, conf->max_nr_stripes)) {
4199 printk(KERN_ERR
4200 "raid5: couldn't allocate %dkB for buffers\n", memory);
4201 shrink_stripes(conf);
4202 md_unregister_thread(mddev->thread);
4203 goto abort;
4204 } else
4205 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4206 memory, mdname(mddev));
4208 if (mddev->degraded == 0)
4209 printk("raid5: raid level %d set %s active with %d out of %d"
4210 " devices, algorithm %d\n", conf->level, mdname(mddev),
4211 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4212 conf->algorithm);
4213 else
4214 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4215 " out of %d devices, algorithm %d\n", conf->level,
4216 mdname(mddev), mddev->raid_disks - mddev->degraded,
4217 mddev->raid_disks, conf->algorithm);
4219 print_raid5_conf(conf);
4221 if (conf->expand_progress != MaxSector) {
4222 printk("...ok start reshape thread\n");
4223 conf->expand_lo = conf->expand_progress;
4224 atomic_set(&conf->reshape_stripes, 0);
4225 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4226 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4227 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4228 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4229 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4230 "%s_reshape");
4233 /* read-ahead size must cover two whole stripes, which is
4234 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4237 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4238 int stripe = data_disks *
4239 (mddev->chunk_size / PAGE_SIZE);
4240 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4241 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4244 /* Ok, everything is just fine now */
4245 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4246 printk(KERN_WARNING
4247 "raid5: failed to create sysfs attributes for %s\n",
4248 mdname(mddev));
4250 mddev->queue->unplug_fn = raid5_unplug_device;
4251 mddev->queue->backing_dev_info.congested_data = mddev;
4252 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4254 mddev->array_sectors = 2 * mddev->size * (conf->previous_raid_disks -
4255 conf->max_degraded);
4257 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4259 return 0;
4260 abort:
4261 if (conf) {
4262 print_raid5_conf(conf);
4263 safe_put_page(conf->spare_page);
4264 kfree(conf->disks);
4265 kfree(conf->stripe_hashtbl);
4266 kfree(conf);
4268 mddev->private = NULL;
4269 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4270 return -EIO;
4275 static int stop(mddev_t *mddev)
4277 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4279 md_unregister_thread(mddev->thread);
4280 mddev->thread = NULL;
4281 shrink_stripes(conf);
4282 kfree(conf->stripe_hashtbl);
4283 mddev->queue->backing_dev_info.congested_fn = NULL;
4284 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4285 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4286 kfree(conf->disks);
4287 kfree(conf);
4288 mddev->private = NULL;
4289 return 0;
4292 #ifdef DEBUG
4293 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
4295 int i;
4297 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4298 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4299 seq_printf(seq, "sh %llu, count %d.\n",
4300 (unsigned long long)sh->sector, atomic_read(&sh->count));
4301 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4302 for (i = 0; i < sh->disks; i++) {
4303 seq_printf(seq, "(cache%d: %p %ld) ",
4304 i, sh->dev[i].page, sh->dev[i].flags);
4306 seq_printf(seq, "\n");
4309 static void printall(struct seq_file *seq, raid5_conf_t *conf)
4311 struct stripe_head *sh;
4312 struct hlist_node *hn;
4313 int i;
4315 spin_lock_irq(&conf->device_lock);
4316 for (i = 0; i < NR_HASH; i++) {
4317 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4318 if (sh->raid_conf != conf)
4319 continue;
4320 print_sh(seq, sh);
4323 spin_unlock_irq(&conf->device_lock);
4325 #endif
4327 static void status(struct seq_file *seq, mddev_t *mddev)
4329 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4330 int i;
4332 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4333 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4334 for (i = 0; i < conf->raid_disks; i++)
4335 seq_printf (seq, "%s",
4336 conf->disks[i].rdev &&
4337 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4338 seq_printf (seq, "]");
4339 #ifdef DEBUG
4340 seq_printf (seq, "\n");
4341 printall(seq, conf);
4342 #endif
4345 static void print_raid5_conf (raid5_conf_t *conf)
4347 int i;
4348 struct disk_info *tmp;
4350 printk("RAID5 conf printout:\n");
4351 if (!conf) {
4352 printk("(conf==NULL)\n");
4353 return;
4355 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4356 conf->raid_disks - conf->mddev->degraded);
4358 for (i = 0; i < conf->raid_disks; i++) {
4359 char b[BDEVNAME_SIZE];
4360 tmp = conf->disks + i;
4361 if (tmp->rdev)
4362 printk(" disk %d, o:%d, dev:%s\n",
4363 i, !test_bit(Faulty, &tmp->rdev->flags),
4364 bdevname(tmp->rdev->bdev,b));
4368 static int raid5_spare_active(mddev_t *mddev)
4370 int i;
4371 raid5_conf_t *conf = mddev->private;
4372 struct disk_info *tmp;
4374 for (i = 0; i < conf->raid_disks; i++) {
4375 tmp = conf->disks + i;
4376 if (tmp->rdev
4377 && !test_bit(Faulty, &tmp->rdev->flags)
4378 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4379 unsigned long flags;
4380 spin_lock_irqsave(&conf->device_lock, flags);
4381 mddev->degraded--;
4382 spin_unlock_irqrestore(&conf->device_lock, flags);
4385 print_raid5_conf(conf);
4386 return 0;
4389 static int raid5_remove_disk(mddev_t *mddev, int number)
4391 raid5_conf_t *conf = mddev->private;
4392 int err = 0;
4393 mdk_rdev_t *rdev;
4394 struct disk_info *p = conf->disks + number;
4396 print_raid5_conf(conf);
4397 rdev = p->rdev;
4398 if (rdev) {
4399 if (test_bit(In_sync, &rdev->flags) ||
4400 atomic_read(&rdev->nr_pending)) {
4401 err = -EBUSY;
4402 goto abort;
4404 /* Only remove non-faulty devices if recovery
4405 * isn't possible.
4407 if (!test_bit(Faulty, &rdev->flags) &&
4408 mddev->degraded <= conf->max_degraded) {
4409 err = -EBUSY;
4410 goto abort;
4412 p->rdev = NULL;
4413 synchronize_rcu();
4414 if (atomic_read(&rdev->nr_pending)) {
4415 /* lost the race, try later */
4416 err = -EBUSY;
4417 p->rdev = rdev;
4420 abort:
4422 print_raid5_conf(conf);
4423 return err;
4426 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4428 raid5_conf_t *conf = mddev->private;
4429 int err = -EEXIST;
4430 int disk;
4431 struct disk_info *p;
4432 int first = 0;
4433 int last = conf->raid_disks - 1;
4435 if (mddev->degraded > conf->max_degraded)
4436 /* no point adding a device */
4437 return -EINVAL;
4439 if (rdev->raid_disk >= 0)
4440 first = last = rdev->raid_disk;
4443 * find the disk ... but prefer rdev->saved_raid_disk
4444 * if possible.
4446 if (rdev->saved_raid_disk >= 0 &&
4447 rdev->saved_raid_disk >= first &&
4448 conf->disks[rdev->saved_raid_disk].rdev == NULL)
4449 disk = rdev->saved_raid_disk;
4450 else
4451 disk = first;
4452 for ( ; disk <= last ; disk++)
4453 if ((p=conf->disks + disk)->rdev == NULL) {
4454 clear_bit(In_sync, &rdev->flags);
4455 rdev->raid_disk = disk;
4456 err = 0;
4457 if (rdev->saved_raid_disk != disk)
4458 conf->fullsync = 1;
4459 rcu_assign_pointer(p->rdev, rdev);
4460 break;
4462 print_raid5_conf(conf);
4463 return err;
4466 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4468 /* no resync is happening, and there is enough space
4469 * on all devices, so we can resize.
4470 * We need to make sure resync covers any new space.
4471 * If the array is shrinking we should possibly wait until
4472 * any io in the removed space completes, but it hardly seems
4473 * worth it.
4475 raid5_conf_t *conf = mddev_to_conf(mddev);
4477 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4478 mddev->array_sectors = sectors * (mddev->raid_disks
4479 - conf->max_degraded);
4480 set_capacity(mddev->gendisk, mddev->array_sectors);
4481 mddev->changed = 1;
4482 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
4483 mddev->recovery_cp = mddev->size << 1;
4484 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4486 mddev->size = sectors /2;
4487 mddev->resync_max_sectors = sectors;
4488 return 0;
4491 #ifdef CONFIG_MD_RAID5_RESHAPE
4492 static int raid5_check_reshape(mddev_t *mddev)
4494 raid5_conf_t *conf = mddev_to_conf(mddev);
4495 int err;
4497 if (mddev->delta_disks < 0 ||
4498 mddev->new_level != mddev->level)
4499 return -EINVAL; /* Cannot shrink array or change level yet */
4500 if (mddev->delta_disks == 0)
4501 return 0; /* nothing to do */
4502 if (mddev->bitmap)
4503 /* Cannot grow a bitmap yet */
4504 return -EBUSY;
4506 /* Can only proceed if there are plenty of stripe_heads.
4507 * We need a minimum of one full stripe,, and for sensible progress
4508 * it is best to have about 4 times that.
4509 * If we require 4 times, then the default 256 4K stripe_heads will
4510 * allow for chunk sizes up to 256K, which is probably OK.
4511 * If the chunk size is greater, user-space should request more
4512 * stripe_heads first.
4514 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4515 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4516 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
4517 (mddev->chunk_size / STRIPE_SIZE)*4);
4518 return -ENOSPC;
4521 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4522 if (err)
4523 return err;
4525 if (mddev->degraded > conf->max_degraded)
4526 return -EINVAL;
4527 /* looks like we might be able to manage this */
4528 return 0;
4531 static int raid5_start_reshape(mddev_t *mddev)
4533 raid5_conf_t *conf = mddev_to_conf(mddev);
4534 mdk_rdev_t *rdev;
4535 int spares = 0;
4536 int added_devices = 0;
4537 unsigned long flags;
4539 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4540 return -EBUSY;
4542 list_for_each_entry(rdev, &mddev->disks, same_set)
4543 if (rdev->raid_disk < 0 &&
4544 !test_bit(Faulty, &rdev->flags))
4545 spares++;
4547 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4548 /* Not enough devices even to make a degraded array
4549 * of that size
4551 return -EINVAL;
4553 atomic_set(&conf->reshape_stripes, 0);
4554 spin_lock_irq(&conf->device_lock);
4555 conf->previous_raid_disks = conf->raid_disks;
4556 conf->raid_disks += mddev->delta_disks;
4557 conf->expand_progress = 0;
4558 conf->expand_lo = 0;
4559 spin_unlock_irq(&conf->device_lock);
4561 /* Add some new drives, as many as will fit.
4562 * We know there are enough to make the newly sized array work.
4564 list_for_each_entry(rdev, &mddev->disks, same_set)
4565 if (rdev->raid_disk < 0 &&
4566 !test_bit(Faulty, &rdev->flags)) {
4567 if (raid5_add_disk(mddev, rdev) == 0) {
4568 char nm[20];
4569 set_bit(In_sync, &rdev->flags);
4570 added_devices++;
4571 rdev->recovery_offset = 0;
4572 sprintf(nm, "rd%d", rdev->raid_disk);
4573 if (sysfs_create_link(&mddev->kobj,
4574 &rdev->kobj, nm))
4575 printk(KERN_WARNING
4576 "raid5: failed to create "
4577 " link %s for %s\n",
4578 nm, mdname(mddev));
4579 } else
4580 break;
4583 spin_lock_irqsave(&conf->device_lock, flags);
4584 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4585 spin_unlock_irqrestore(&conf->device_lock, flags);
4586 mddev->raid_disks = conf->raid_disks;
4587 mddev->reshape_position = 0;
4588 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4590 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4591 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4592 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4593 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4594 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4595 "%s_reshape");
4596 if (!mddev->sync_thread) {
4597 mddev->recovery = 0;
4598 spin_lock_irq(&conf->device_lock);
4599 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4600 conf->expand_progress = MaxSector;
4601 spin_unlock_irq(&conf->device_lock);
4602 return -EAGAIN;
4604 md_wakeup_thread(mddev->sync_thread);
4605 md_new_event(mddev);
4606 return 0;
4608 #endif
4610 static void end_reshape(raid5_conf_t *conf)
4612 struct block_device *bdev;
4614 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4615 conf->mddev->array_sectors = 2 * conf->mddev->size *
4616 (conf->raid_disks - conf->max_degraded);
4617 set_capacity(conf->mddev->gendisk, conf->mddev->array_sectors);
4618 conf->mddev->changed = 1;
4620 bdev = bdget_disk(conf->mddev->gendisk, 0);
4621 if (bdev) {
4622 mutex_lock(&bdev->bd_inode->i_mutex);
4623 i_size_write(bdev->bd_inode,
4624 (loff_t)conf->mddev->array_sectors << 9);
4625 mutex_unlock(&bdev->bd_inode->i_mutex);
4626 bdput(bdev);
4628 spin_lock_irq(&conf->device_lock);
4629 conf->expand_progress = MaxSector;
4630 spin_unlock_irq(&conf->device_lock);
4631 conf->mddev->reshape_position = MaxSector;
4633 /* read-ahead size must cover two whole stripes, which is
4634 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4637 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4638 int stripe = data_disks *
4639 (conf->mddev->chunk_size / PAGE_SIZE);
4640 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4641 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4646 static void raid5_quiesce(mddev_t *mddev, int state)
4648 raid5_conf_t *conf = mddev_to_conf(mddev);
4650 switch(state) {
4651 case 2: /* resume for a suspend */
4652 wake_up(&conf->wait_for_overlap);
4653 break;
4655 case 1: /* stop all writes */
4656 spin_lock_irq(&conf->device_lock);
4657 conf->quiesce = 1;
4658 wait_event_lock_irq(conf->wait_for_stripe,
4659 atomic_read(&conf->active_stripes) == 0 &&
4660 atomic_read(&conf->active_aligned_reads) == 0,
4661 conf->device_lock, /* nothing */);
4662 spin_unlock_irq(&conf->device_lock);
4663 break;
4665 case 0: /* re-enable writes */
4666 spin_lock_irq(&conf->device_lock);
4667 conf->quiesce = 0;
4668 wake_up(&conf->wait_for_stripe);
4669 wake_up(&conf->wait_for_overlap);
4670 spin_unlock_irq(&conf->device_lock);
4671 break;
4675 static struct mdk_personality raid6_personality =
4677 .name = "raid6",
4678 .level = 6,
4679 .owner = THIS_MODULE,
4680 .make_request = make_request,
4681 .run = run,
4682 .stop = stop,
4683 .status = status,
4684 .error_handler = error,
4685 .hot_add_disk = raid5_add_disk,
4686 .hot_remove_disk= raid5_remove_disk,
4687 .spare_active = raid5_spare_active,
4688 .sync_request = sync_request,
4689 .resize = raid5_resize,
4690 #ifdef CONFIG_MD_RAID5_RESHAPE
4691 .check_reshape = raid5_check_reshape,
4692 .start_reshape = raid5_start_reshape,
4693 #endif
4694 .quiesce = raid5_quiesce,
4696 static struct mdk_personality raid5_personality =
4698 .name = "raid5",
4699 .level = 5,
4700 .owner = THIS_MODULE,
4701 .make_request = make_request,
4702 .run = run,
4703 .stop = stop,
4704 .status = status,
4705 .error_handler = error,
4706 .hot_add_disk = raid5_add_disk,
4707 .hot_remove_disk= raid5_remove_disk,
4708 .spare_active = raid5_spare_active,
4709 .sync_request = sync_request,
4710 .resize = raid5_resize,
4711 #ifdef CONFIG_MD_RAID5_RESHAPE
4712 .check_reshape = raid5_check_reshape,
4713 .start_reshape = raid5_start_reshape,
4714 #endif
4715 .quiesce = raid5_quiesce,
4718 static struct mdk_personality raid4_personality =
4720 .name = "raid4",
4721 .level = 4,
4722 .owner = THIS_MODULE,
4723 .make_request = make_request,
4724 .run = run,
4725 .stop = stop,
4726 .status = status,
4727 .error_handler = error,
4728 .hot_add_disk = raid5_add_disk,
4729 .hot_remove_disk= raid5_remove_disk,
4730 .spare_active = raid5_spare_active,
4731 .sync_request = sync_request,
4732 .resize = raid5_resize,
4733 #ifdef CONFIG_MD_RAID5_RESHAPE
4734 .check_reshape = raid5_check_reshape,
4735 .start_reshape = raid5_start_reshape,
4736 #endif
4737 .quiesce = raid5_quiesce,
4740 static int __init raid5_init(void)
4742 int e;
4744 e = raid6_select_algo();
4745 if ( e )
4746 return e;
4747 register_md_personality(&raid6_personality);
4748 register_md_personality(&raid5_personality);
4749 register_md_personality(&raid4_personality);
4750 return 0;
4753 static void raid5_exit(void)
4755 unregister_md_personality(&raid6_personality);
4756 unregister_md_personality(&raid5_personality);
4757 unregister_md_personality(&raid4_personality);
4760 module_init(raid5_init);
4761 module_exit(raid5_exit);
4762 MODULE_LICENSE("GPL");
4763 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4764 MODULE_ALIAS("md-raid5");
4765 MODULE_ALIAS("md-raid4");
4766 MODULE_ALIAS("md-level-5");
4767 MODULE_ALIAS("md-level-4");
4768 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4769 MODULE_ALIAS("md-raid6");
4770 MODULE_ALIAS("md-level-6");
4772 /* This used to be two separate modules, they were: */
4773 MODULE_ALIAS("raid5");
4774 MODULE_ALIAS("raid6");