1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
68 #include <net/tcp_memcontrol.h>
71 #include <asm/uaccess.h>
73 #include <trace/events/vmscan.h>
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly
;
76 EXPORT_SYMBOL(memory_cgrp_subsys
);
78 #define MEM_CGROUP_RECLAIM_RETRIES 5
79 static struct mem_cgroup
*root_mem_cgroup __read_mostly
;
80 struct cgroup_subsys_state
*mem_cgroup_root_css __read_mostly
;
82 /* Whether the swap controller is active */
83 #ifdef CONFIG_MEMCG_SWAP
84 int do_swap_account __read_mostly
;
86 #define do_swap_account 0
89 static const char * const mem_cgroup_stat_names
[] = {
99 static const char * const mem_cgroup_events_names
[] = {
106 static const char * const mem_cgroup_lru_names
[] = {
115 * Per memcg event counter is incremented at every pagein/pageout. With THP,
116 * it will be incremated by the number of pages. This counter is used for
117 * for trigger some periodic events. This is straightforward and better
118 * than using jiffies etc. to handle periodic memcg event.
120 enum mem_cgroup_events_target
{
121 MEM_CGROUP_TARGET_THRESH
,
122 MEM_CGROUP_TARGET_SOFTLIMIT
,
123 MEM_CGROUP_TARGET_NUMAINFO
,
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
130 struct mem_cgroup_stat_cpu
{
131 long count
[MEM_CGROUP_STAT_NSTATS
];
132 unsigned long events
[MEMCG_NR_EVENTS
];
133 unsigned long nr_page_events
;
134 unsigned long targets
[MEM_CGROUP_NTARGETS
];
137 struct reclaim_iter
{
138 struct mem_cgroup
*position
;
139 /* scan generation, increased every round-trip */
140 unsigned int generation
;
144 * per-zone information in memory controller.
146 struct mem_cgroup_per_zone
{
147 struct lruvec lruvec
;
148 unsigned long lru_size
[NR_LRU_LISTS
];
150 struct reclaim_iter iter
[DEF_PRIORITY
+ 1];
152 struct rb_node tree_node
; /* RB tree node */
153 unsigned long usage_in_excess
;/* Set to the value by which */
154 /* the soft limit is exceeded*/
156 struct mem_cgroup
*memcg
; /* Back pointer, we cannot */
157 /* use container_of */
160 struct mem_cgroup_per_node
{
161 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
165 * Cgroups above their limits are maintained in a RB-Tree, independent of
166 * their hierarchy representation
169 struct mem_cgroup_tree_per_zone
{
170 struct rb_root rb_root
;
174 struct mem_cgroup_tree_per_node
{
175 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
178 struct mem_cgroup_tree
{
179 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
182 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
184 struct mem_cgroup_threshold
{
185 struct eventfd_ctx
*eventfd
;
186 unsigned long threshold
;
190 struct mem_cgroup_threshold_ary
{
191 /* An array index points to threshold just below or equal to usage. */
192 int current_threshold
;
193 /* Size of entries[] */
195 /* Array of thresholds */
196 struct mem_cgroup_threshold entries
[0];
199 struct mem_cgroup_thresholds
{
200 /* Primary thresholds array */
201 struct mem_cgroup_threshold_ary
*primary
;
203 * Spare threshold array.
204 * This is needed to make mem_cgroup_unregister_event() "never fail".
205 * It must be able to store at least primary->size - 1 entries.
207 struct mem_cgroup_threshold_ary
*spare
;
211 struct mem_cgroup_eventfd_list
{
212 struct list_head list
;
213 struct eventfd_ctx
*eventfd
;
217 * cgroup_event represents events which userspace want to receive.
219 struct mem_cgroup_event
{
221 * memcg which the event belongs to.
223 struct mem_cgroup
*memcg
;
225 * eventfd to signal userspace about the event.
227 struct eventfd_ctx
*eventfd
;
229 * Each of these stored in a list by the cgroup.
231 struct list_head list
;
233 * register_event() callback will be used to add new userspace
234 * waiter for changes related to this event. Use eventfd_signal()
235 * on eventfd to send notification to userspace.
237 int (*register_event
)(struct mem_cgroup
*memcg
,
238 struct eventfd_ctx
*eventfd
, const char *args
);
240 * unregister_event() callback will be called when userspace closes
241 * the eventfd or on cgroup removing. This callback must be set,
242 * if you want provide notification functionality.
244 void (*unregister_event
)(struct mem_cgroup
*memcg
,
245 struct eventfd_ctx
*eventfd
);
247 * All fields below needed to unregister event when
248 * userspace closes eventfd.
251 wait_queue_head_t
*wqh
;
253 struct work_struct remove
;
256 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
257 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
260 * The memory controller data structure. The memory controller controls both
261 * page cache and RSS per cgroup. We would eventually like to provide
262 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
263 * to help the administrator determine what knobs to tune.
266 struct cgroup_subsys_state css
;
268 /* Accounted resources */
269 struct page_counter memory
;
270 struct page_counter memsw
;
271 struct page_counter kmem
;
273 /* Normal memory consumption range */
277 unsigned long soft_limit
;
279 /* vmpressure notifications */
280 struct vmpressure vmpressure
;
282 /* css_online() has been completed */
286 * Should the accounting and control be hierarchical, per subtree?
290 /* protected by memcg_oom_lock */
295 /* OOM-Killer disable */
296 int oom_kill_disable
;
298 /* protect arrays of thresholds */
299 struct mutex thresholds_lock
;
301 /* thresholds for memory usage. RCU-protected */
302 struct mem_cgroup_thresholds thresholds
;
304 /* thresholds for mem+swap usage. RCU-protected */
305 struct mem_cgroup_thresholds memsw_thresholds
;
307 /* For oom notifier event fd */
308 struct list_head oom_notify
;
311 * Should we move charges of a task when a task is moved into this
312 * mem_cgroup ? And what type of charges should we move ?
314 unsigned long move_charge_at_immigrate
;
316 * set > 0 if pages under this cgroup are moving to other cgroup.
318 atomic_t moving_account
;
319 /* taken only while moving_account > 0 */
320 spinlock_t move_lock
;
321 struct task_struct
*move_lock_task
;
322 unsigned long move_lock_flags
;
326 struct mem_cgroup_stat_cpu __percpu
*stat
;
327 spinlock_t pcp_counter_lock
;
329 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
330 struct cg_proto tcp_mem
;
332 #if defined(CONFIG_MEMCG_KMEM)
333 /* Index in the kmem_cache->memcg_params.memcg_caches array */
335 bool kmem_acct_activated
;
336 bool kmem_acct_active
;
339 int last_scanned_node
;
341 nodemask_t scan_nodes
;
342 atomic_t numainfo_events
;
343 atomic_t numainfo_updating
;
346 #ifdef CONFIG_CGROUP_WRITEBACK
347 struct list_head cgwb_list
;
348 struct wb_domain cgwb_domain
;
351 /* List of events which userspace want to receive */
352 struct list_head event_list
;
353 spinlock_t event_list_lock
;
355 struct mem_cgroup_per_node
*nodeinfo
[0];
356 /* WARNING: nodeinfo must be the last member here */
359 #ifdef CONFIG_MEMCG_KMEM
360 bool memcg_kmem_is_active(struct mem_cgroup
*memcg
)
362 return memcg
->kmem_acct_active
;
366 /* Stuffs for move charges at task migration. */
368 * Types of charges to be moved.
370 #define MOVE_ANON 0x1U
371 #define MOVE_FILE 0x2U
372 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
374 /* "mc" and its members are protected by cgroup_mutex */
375 static struct move_charge_struct
{
376 spinlock_t lock
; /* for from, to */
377 struct mem_cgroup
*from
;
378 struct mem_cgroup
*to
;
380 unsigned long precharge
;
381 unsigned long moved_charge
;
382 unsigned long moved_swap
;
383 struct task_struct
*moving_task
; /* a task moving charges */
384 wait_queue_head_t waitq
; /* a waitq for other context */
386 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
387 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
391 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
392 * limit reclaim to prevent infinite loops, if they ever occur.
394 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
395 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
398 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
399 MEM_CGROUP_CHARGE_TYPE_ANON
,
400 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
401 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
405 /* for encoding cft->private value on file */
413 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
414 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
415 #define MEMFILE_ATTR(val) ((val) & 0xffff)
416 /* Used for OOM nofiier */
417 #define OOM_CONTROL (0)
420 * The memcg_create_mutex will be held whenever a new cgroup is created.
421 * As a consequence, any change that needs to protect against new child cgroups
422 * appearing has to hold it as well.
424 static DEFINE_MUTEX(memcg_create_mutex
);
426 struct mem_cgroup
*mem_cgroup_from_css(struct cgroup_subsys_state
*s
)
428 return s
? container_of(s
, struct mem_cgroup
, css
) : NULL
;
431 /* Some nice accessors for the vmpressure. */
432 struct vmpressure
*memcg_to_vmpressure(struct mem_cgroup
*memcg
)
435 memcg
= root_mem_cgroup
;
436 return &memcg
->vmpressure
;
439 struct cgroup_subsys_state
*vmpressure_to_css(struct vmpressure
*vmpr
)
441 return &container_of(vmpr
, struct mem_cgroup
, vmpressure
)->css
;
444 static inline bool mem_cgroup_is_root(struct mem_cgroup
*memcg
)
446 return (memcg
== root_mem_cgroup
);
450 * We restrict the id in the range of [1, 65535], so it can fit into
453 #define MEM_CGROUP_ID_MAX USHRT_MAX
455 static inline unsigned short mem_cgroup_id(struct mem_cgroup
*memcg
)
457 return memcg
->css
.id
;
461 * A helper function to get mem_cgroup from ID. must be called under
462 * rcu_read_lock(). The caller is responsible for calling
463 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
464 * refcnt from swap can be called against removed memcg.)
466 static inline struct mem_cgroup
*mem_cgroup_from_id(unsigned short id
)
468 struct cgroup_subsys_state
*css
;
470 css
= css_from_id(id
, &memory_cgrp_subsys
);
471 return mem_cgroup_from_css(css
);
474 /* Writing them here to avoid exposing memcg's inner layout */
475 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
477 void sock_update_memcg(struct sock
*sk
)
479 if (mem_cgroup_sockets_enabled
) {
480 struct mem_cgroup
*memcg
;
481 struct cg_proto
*cg_proto
;
483 BUG_ON(!sk
->sk_prot
->proto_cgroup
);
485 /* Socket cloning can throw us here with sk_cgrp already
486 * filled. It won't however, necessarily happen from
487 * process context. So the test for root memcg given
488 * the current task's memcg won't help us in this case.
490 * Respecting the original socket's memcg is a better
491 * decision in this case.
494 BUG_ON(mem_cgroup_is_root(sk
->sk_cgrp
->memcg
));
495 css_get(&sk
->sk_cgrp
->memcg
->css
);
500 memcg
= mem_cgroup_from_task(current
);
501 cg_proto
= sk
->sk_prot
->proto_cgroup(memcg
);
502 if (!mem_cgroup_is_root(memcg
) &&
503 memcg_proto_active(cg_proto
) &&
504 css_tryget_online(&memcg
->css
)) {
505 sk
->sk_cgrp
= cg_proto
;
510 EXPORT_SYMBOL(sock_update_memcg
);
512 void sock_release_memcg(struct sock
*sk
)
514 if (mem_cgroup_sockets_enabled
&& sk
->sk_cgrp
) {
515 struct mem_cgroup
*memcg
;
516 WARN_ON(!sk
->sk_cgrp
->memcg
);
517 memcg
= sk
->sk_cgrp
->memcg
;
518 css_put(&sk
->sk_cgrp
->memcg
->css
);
522 struct cg_proto
*tcp_proto_cgroup(struct mem_cgroup
*memcg
)
524 if (!memcg
|| mem_cgroup_is_root(memcg
))
527 return &memcg
->tcp_mem
;
529 EXPORT_SYMBOL(tcp_proto_cgroup
);
533 #ifdef CONFIG_MEMCG_KMEM
535 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
536 * The main reason for not using cgroup id for this:
537 * this works better in sparse environments, where we have a lot of memcgs,
538 * but only a few kmem-limited. Or also, if we have, for instance, 200
539 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
540 * 200 entry array for that.
542 * The current size of the caches array is stored in memcg_nr_cache_ids. It
543 * will double each time we have to increase it.
545 static DEFINE_IDA(memcg_cache_ida
);
546 int memcg_nr_cache_ids
;
548 /* Protects memcg_nr_cache_ids */
549 static DECLARE_RWSEM(memcg_cache_ids_sem
);
551 void memcg_get_cache_ids(void)
553 down_read(&memcg_cache_ids_sem
);
556 void memcg_put_cache_ids(void)
558 up_read(&memcg_cache_ids_sem
);
562 * MIN_SIZE is different than 1, because we would like to avoid going through
563 * the alloc/free process all the time. In a small machine, 4 kmem-limited
564 * cgroups is a reasonable guess. In the future, it could be a parameter or
565 * tunable, but that is strictly not necessary.
567 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
568 * this constant directly from cgroup, but it is understandable that this is
569 * better kept as an internal representation in cgroup.c. In any case, the
570 * cgrp_id space is not getting any smaller, and we don't have to necessarily
571 * increase ours as well if it increases.
573 #define MEMCG_CACHES_MIN_SIZE 4
574 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
577 * A lot of the calls to the cache allocation functions are expected to be
578 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
579 * conditional to this static branch, we'll have to allow modules that does
580 * kmem_cache_alloc and the such to see this symbol as well
582 struct static_key memcg_kmem_enabled_key
;
583 EXPORT_SYMBOL(memcg_kmem_enabled_key
);
585 #endif /* CONFIG_MEMCG_KMEM */
587 static struct mem_cgroup_per_zone
*
588 mem_cgroup_zone_zoneinfo(struct mem_cgroup
*memcg
, struct zone
*zone
)
590 int nid
= zone_to_nid(zone
);
591 int zid
= zone_idx(zone
);
593 return &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
596 struct cgroup_subsys_state
*mem_cgroup_css(struct mem_cgroup
*memcg
)
602 * mem_cgroup_css_from_page - css of the memcg associated with a page
603 * @page: page of interest
605 * If memcg is bound to the default hierarchy, css of the memcg associated
606 * with @page is returned. The returned css remains associated with @page
607 * until it is released.
609 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
612 * XXX: The above description of behavior on the default hierarchy isn't
613 * strictly true yet as replace_page_cache_page() can modify the
614 * association before @page is released even on the default hierarchy;
615 * however, the current and planned usages don't mix the the two functions
616 * and replace_page_cache_page() will soon be updated to make the invariant
619 struct cgroup_subsys_state
*mem_cgroup_css_from_page(struct page
*page
)
621 struct mem_cgroup
*memcg
;
625 memcg
= page
->mem_cgroup
;
627 if (!memcg
|| !cgroup_on_dfl(memcg
->css
.cgroup
))
628 memcg
= root_mem_cgroup
;
634 static struct mem_cgroup_per_zone
*
635 mem_cgroup_page_zoneinfo(struct mem_cgroup
*memcg
, struct page
*page
)
637 int nid
= page_to_nid(page
);
638 int zid
= page_zonenum(page
);
640 return &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
643 static struct mem_cgroup_tree_per_zone
*
644 soft_limit_tree_node_zone(int nid
, int zid
)
646 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
649 static struct mem_cgroup_tree_per_zone
*
650 soft_limit_tree_from_page(struct page
*page
)
652 int nid
= page_to_nid(page
);
653 int zid
= page_zonenum(page
);
655 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
658 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone
*mz
,
659 struct mem_cgroup_tree_per_zone
*mctz
,
660 unsigned long new_usage_in_excess
)
662 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
663 struct rb_node
*parent
= NULL
;
664 struct mem_cgroup_per_zone
*mz_node
;
669 mz
->usage_in_excess
= new_usage_in_excess
;
670 if (!mz
->usage_in_excess
)
674 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
676 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
679 * We can't avoid mem cgroups that are over their soft
680 * limit by the same amount
682 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
685 rb_link_node(&mz
->tree_node
, parent
, p
);
686 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
690 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone
*mz
,
691 struct mem_cgroup_tree_per_zone
*mctz
)
695 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
699 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone
*mz
,
700 struct mem_cgroup_tree_per_zone
*mctz
)
704 spin_lock_irqsave(&mctz
->lock
, flags
);
705 __mem_cgroup_remove_exceeded(mz
, mctz
);
706 spin_unlock_irqrestore(&mctz
->lock
, flags
);
709 static unsigned long soft_limit_excess(struct mem_cgroup
*memcg
)
711 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
712 unsigned long soft_limit
= READ_ONCE(memcg
->soft_limit
);
713 unsigned long excess
= 0;
715 if (nr_pages
> soft_limit
)
716 excess
= nr_pages
- soft_limit
;
721 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
723 unsigned long excess
;
724 struct mem_cgroup_per_zone
*mz
;
725 struct mem_cgroup_tree_per_zone
*mctz
;
727 mctz
= soft_limit_tree_from_page(page
);
729 * Necessary to update all ancestors when hierarchy is used.
730 * because their event counter is not touched.
732 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
733 mz
= mem_cgroup_page_zoneinfo(memcg
, page
);
734 excess
= soft_limit_excess(memcg
);
736 * We have to update the tree if mz is on RB-tree or
737 * mem is over its softlimit.
739 if (excess
|| mz
->on_tree
) {
742 spin_lock_irqsave(&mctz
->lock
, flags
);
743 /* if on-tree, remove it */
745 __mem_cgroup_remove_exceeded(mz
, mctz
);
747 * Insert again. mz->usage_in_excess will be updated.
748 * If excess is 0, no tree ops.
750 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
751 spin_unlock_irqrestore(&mctz
->lock
, flags
);
756 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
758 struct mem_cgroup_tree_per_zone
*mctz
;
759 struct mem_cgroup_per_zone
*mz
;
763 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
764 mz
= &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
765 mctz
= soft_limit_tree_node_zone(nid
, zid
);
766 mem_cgroup_remove_exceeded(mz
, mctz
);
771 static struct mem_cgroup_per_zone
*
772 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
774 struct rb_node
*rightmost
= NULL
;
775 struct mem_cgroup_per_zone
*mz
;
779 rightmost
= rb_last(&mctz
->rb_root
);
781 goto done
; /* Nothing to reclaim from */
783 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
785 * Remove the node now but someone else can add it back,
786 * we will to add it back at the end of reclaim to its correct
787 * position in the tree.
789 __mem_cgroup_remove_exceeded(mz
, mctz
);
790 if (!soft_limit_excess(mz
->memcg
) ||
791 !css_tryget_online(&mz
->memcg
->css
))
797 static struct mem_cgroup_per_zone
*
798 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
800 struct mem_cgroup_per_zone
*mz
;
802 spin_lock_irq(&mctz
->lock
);
803 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
804 spin_unlock_irq(&mctz
->lock
);
809 * Implementation Note: reading percpu statistics for memcg.
811 * Both of vmstat[] and percpu_counter has threshold and do periodic
812 * synchronization to implement "quick" read. There are trade-off between
813 * reading cost and precision of value. Then, we may have a chance to implement
814 * a periodic synchronizion of counter in memcg's counter.
816 * But this _read() function is used for user interface now. The user accounts
817 * memory usage by memory cgroup and he _always_ requires exact value because
818 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
819 * have to visit all online cpus and make sum. So, for now, unnecessary
820 * synchronization is not implemented. (just implemented for cpu hotplug)
822 * If there are kernel internal actions which can make use of some not-exact
823 * value, and reading all cpu value can be performance bottleneck in some
824 * common workload, threashold and synchonization as vmstat[] should be
827 static long mem_cgroup_read_stat(struct mem_cgroup
*memcg
,
828 enum mem_cgroup_stat_index idx
)
833 for_each_possible_cpu(cpu
)
834 val
+= per_cpu(memcg
->stat
->count
[idx
], cpu
);
838 static unsigned long mem_cgroup_read_events(struct mem_cgroup
*memcg
,
839 enum mem_cgroup_events_index idx
)
841 unsigned long val
= 0;
844 for_each_possible_cpu(cpu
)
845 val
+= per_cpu(memcg
->stat
->events
[idx
], cpu
);
849 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
854 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
855 * counted as CACHE even if it's on ANON LRU.
858 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
],
861 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
],
864 if (PageTransHuge(page
))
865 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
],
868 /* pagein of a big page is an event. So, ignore page size */
870 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGIN
]);
872 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
]);
873 nr_pages
= -nr_pages
; /* for event */
876 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_pages
);
879 unsigned long mem_cgroup_get_lru_size(struct lruvec
*lruvec
, enum lru_list lru
)
881 struct mem_cgroup_per_zone
*mz
;
883 mz
= container_of(lruvec
, struct mem_cgroup_per_zone
, lruvec
);
884 return mz
->lru_size
[lru
];
887 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
889 unsigned int lru_mask
)
891 unsigned long nr
= 0;
894 VM_BUG_ON((unsigned)nid
>= nr_node_ids
);
896 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
897 struct mem_cgroup_per_zone
*mz
;
901 if (!(BIT(lru
) & lru_mask
))
903 mz
= &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
904 nr
+= mz
->lru_size
[lru
];
910 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
911 unsigned int lru_mask
)
913 unsigned long nr
= 0;
916 for_each_node_state(nid
, N_MEMORY
)
917 nr
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
, lru_mask
);
921 static bool mem_cgroup_event_ratelimit(struct mem_cgroup
*memcg
,
922 enum mem_cgroup_events_target target
)
924 unsigned long val
, next
;
926 val
= __this_cpu_read(memcg
->stat
->nr_page_events
);
927 next
= __this_cpu_read(memcg
->stat
->targets
[target
]);
928 /* from time_after() in jiffies.h */
929 if ((long)next
- (long)val
< 0) {
931 case MEM_CGROUP_TARGET_THRESH
:
932 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
934 case MEM_CGROUP_TARGET_SOFTLIMIT
:
935 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
937 case MEM_CGROUP_TARGET_NUMAINFO
:
938 next
= val
+ NUMAINFO_EVENTS_TARGET
;
943 __this_cpu_write(memcg
->stat
->targets
[target
], next
);
950 * Check events in order.
953 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
955 /* threshold event is triggered in finer grain than soft limit */
956 if (unlikely(mem_cgroup_event_ratelimit(memcg
,
957 MEM_CGROUP_TARGET_THRESH
))) {
959 bool do_numainfo __maybe_unused
;
961 do_softlimit
= mem_cgroup_event_ratelimit(memcg
,
962 MEM_CGROUP_TARGET_SOFTLIMIT
);
964 do_numainfo
= mem_cgroup_event_ratelimit(memcg
,
965 MEM_CGROUP_TARGET_NUMAINFO
);
967 mem_cgroup_threshold(memcg
);
968 if (unlikely(do_softlimit
))
969 mem_cgroup_update_tree(memcg
, page
);
971 if (unlikely(do_numainfo
))
972 atomic_inc(&memcg
->numainfo_events
);
977 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
980 * mm_update_next_owner() may clear mm->owner to NULL
981 * if it races with swapoff, page migration, etc.
982 * So this can be called with p == NULL.
987 return mem_cgroup_from_css(task_css(p
, memory_cgrp_id
));
990 static struct mem_cgroup
*get_mem_cgroup_from_mm(struct mm_struct
*mm
)
992 struct mem_cgroup
*memcg
= NULL
;
997 * Page cache insertions can happen withou an
998 * actual mm context, e.g. during disk probing
999 * on boot, loopback IO, acct() writes etc.
1002 memcg
= root_mem_cgroup
;
1004 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
1005 if (unlikely(!memcg
))
1006 memcg
= root_mem_cgroup
;
1008 } while (!css_tryget_online(&memcg
->css
));
1014 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1015 * @root: hierarchy root
1016 * @prev: previously returned memcg, NULL on first invocation
1017 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1019 * Returns references to children of the hierarchy below @root, or
1020 * @root itself, or %NULL after a full round-trip.
1022 * Caller must pass the return value in @prev on subsequent
1023 * invocations for reference counting, or use mem_cgroup_iter_break()
1024 * to cancel a hierarchy walk before the round-trip is complete.
1026 * Reclaimers can specify a zone and a priority level in @reclaim to
1027 * divide up the memcgs in the hierarchy among all concurrent
1028 * reclaimers operating on the same zone and priority.
1030 struct mem_cgroup
*mem_cgroup_iter(struct mem_cgroup
*root
,
1031 struct mem_cgroup
*prev
,
1032 struct mem_cgroup_reclaim_cookie
*reclaim
)
1034 struct reclaim_iter
*uninitialized_var(iter
);
1035 struct cgroup_subsys_state
*css
= NULL
;
1036 struct mem_cgroup
*memcg
= NULL
;
1037 struct mem_cgroup
*pos
= NULL
;
1039 if (mem_cgroup_disabled())
1043 root
= root_mem_cgroup
;
1045 if (prev
&& !reclaim
)
1048 if (!root
->use_hierarchy
&& root
!= root_mem_cgroup
) {
1057 struct mem_cgroup_per_zone
*mz
;
1059 mz
= mem_cgroup_zone_zoneinfo(root
, reclaim
->zone
);
1060 iter
= &mz
->iter
[reclaim
->priority
];
1062 if (prev
&& reclaim
->generation
!= iter
->generation
)
1066 pos
= READ_ONCE(iter
->position
);
1068 * A racing update may change the position and
1069 * put the last reference, hence css_tryget(),
1070 * or retry to see the updated position.
1072 } while (pos
&& !css_tryget(&pos
->css
));
1079 css
= css_next_descendant_pre(css
, &root
->css
);
1082 * Reclaimers share the hierarchy walk, and a
1083 * new one might jump in right at the end of
1084 * the hierarchy - make sure they see at least
1085 * one group and restart from the beginning.
1093 * Verify the css and acquire a reference. The root
1094 * is provided by the caller, so we know it's alive
1095 * and kicking, and don't take an extra reference.
1097 memcg
= mem_cgroup_from_css(css
);
1099 if (css
== &root
->css
)
1102 if (css_tryget(css
)) {
1104 * Make sure the memcg is initialized:
1105 * mem_cgroup_css_online() orders the the
1106 * initialization against setting the flag.
1108 if (smp_load_acquire(&memcg
->initialized
))
1118 if (cmpxchg(&iter
->position
, pos
, memcg
) == pos
) {
1120 css_get(&memcg
->css
);
1126 * pairs with css_tryget when dereferencing iter->position
1135 reclaim
->generation
= iter
->generation
;
1141 if (prev
&& prev
!= root
)
1142 css_put(&prev
->css
);
1148 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1149 * @root: hierarchy root
1150 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1152 void mem_cgroup_iter_break(struct mem_cgroup
*root
,
1153 struct mem_cgroup
*prev
)
1156 root
= root_mem_cgroup
;
1157 if (prev
&& prev
!= root
)
1158 css_put(&prev
->css
);
1162 * Iteration constructs for visiting all cgroups (under a tree). If
1163 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1164 * be used for reference counting.
1166 #define for_each_mem_cgroup_tree(iter, root) \
1167 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1169 iter = mem_cgroup_iter(root, iter, NULL))
1171 #define for_each_mem_cgroup(iter) \
1172 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1174 iter = mem_cgroup_iter(NULL, iter, NULL))
1176 void __mem_cgroup_count_vm_event(struct mm_struct
*mm
, enum vm_event_item idx
)
1178 struct mem_cgroup
*memcg
;
1181 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
1182 if (unlikely(!memcg
))
1187 this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGFAULT
]);
1190 this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGMAJFAULT
]);
1198 EXPORT_SYMBOL(__mem_cgroup_count_vm_event
);
1201 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1202 * @zone: zone of the wanted lruvec
1203 * @memcg: memcg of the wanted lruvec
1205 * Returns the lru list vector holding pages for the given @zone and
1206 * @mem. This can be the global zone lruvec, if the memory controller
1209 struct lruvec
*mem_cgroup_zone_lruvec(struct zone
*zone
,
1210 struct mem_cgroup
*memcg
)
1212 struct mem_cgroup_per_zone
*mz
;
1213 struct lruvec
*lruvec
;
1215 if (mem_cgroup_disabled()) {
1216 lruvec
= &zone
->lruvec
;
1220 mz
= mem_cgroup_zone_zoneinfo(memcg
, zone
);
1221 lruvec
= &mz
->lruvec
;
1224 * Since a node can be onlined after the mem_cgroup was created,
1225 * we have to be prepared to initialize lruvec->zone here;
1226 * and if offlined then reonlined, we need to reinitialize it.
1228 if (unlikely(lruvec
->zone
!= zone
))
1229 lruvec
->zone
= zone
;
1234 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1236 * @zone: zone of the page
1238 * This function is only safe when following the LRU page isolation
1239 * and putback protocol: the LRU lock must be held, and the page must
1240 * either be PageLRU() or the caller must have isolated/allocated it.
1242 struct lruvec
*mem_cgroup_page_lruvec(struct page
*page
, struct zone
*zone
)
1244 struct mem_cgroup_per_zone
*mz
;
1245 struct mem_cgroup
*memcg
;
1246 struct lruvec
*lruvec
;
1248 if (mem_cgroup_disabled()) {
1249 lruvec
= &zone
->lruvec
;
1253 memcg
= page
->mem_cgroup
;
1255 * Swapcache readahead pages are added to the LRU - and
1256 * possibly migrated - before they are charged.
1259 memcg
= root_mem_cgroup
;
1261 mz
= mem_cgroup_page_zoneinfo(memcg
, page
);
1262 lruvec
= &mz
->lruvec
;
1265 * Since a node can be onlined after the mem_cgroup was created,
1266 * we have to be prepared to initialize lruvec->zone here;
1267 * and if offlined then reonlined, we need to reinitialize it.
1269 if (unlikely(lruvec
->zone
!= zone
))
1270 lruvec
->zone
= zone
;
1275 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1276 * @lruvec: mem_cgroup per zone lru vector
1277 * @lru: index of lru list the page is sitting on
1278 * @nr_pages: positive when adding or negative when removing
1280 * This function must be called when a page is added to or removed from an
1283 void mem_cgroup_update_lru_size(struct lruvec
*lruvec
, enum lru_list lru
,
1286 struct mem_cgroup_per_zone
*mz
;
1287 unsigned long *lru_size
;
1289 if (mem_cgroup_disabled())
1292 mz
= container_of(lruvec
, struct mem_cgroup_per_zone
, lruvec
);
1293 lru_size
= mz
->lru_size
+ lru
;
1294 *lru_size
+= nr_pages
;
1295 VM_BUG_ON((long)(*lru_size
) < 0);
1298 bool mem_cgroup_is_descendant(struct mem_cgroup
*memcg
, struct mem_cgroup
*root
)
1302 if (!root
->use_hierarchy
)
1304 return cgroup_is_descendant(memcg
->css
.cgroup
, root
->css
.cgroup
);
1307 bool task_in_mem_cgroup(struct task_struct
*task
, struct mem_cgroup
*memcg
)
1309 struct mem_cgroup
*task_memcg
;
1310 struct task_struct
*p
;
1313 p
= find_lock_task_mm(task
);
1315 task_memcg
= get_mem_cgroup_from_mm(p
->mm
);
1319 * All threads may have already detached their mm's, but the oom
1320 * killer still needs to detect if they have already been oom
1321 * killed to prevent needlessly killing additional tasks.
1324 task_memcg
= mem_cgroup_from_task(task
);
1325 css_get(&task_memcg
->css
);
1328 ret
= mem_cgroup_is_descendant(task_memcg
, memcg
);
1329 css_put(&task_memcg
->css
);
1333 int mem_cgroup_inactive_anon_is_low(struct lruvec
*lruvec
)
1335 unsigned long inactive_ratio
;
1336 unsigned long inactive
;
1337 unsigned long active
;
1340 inactive
= mem_cgroup_get_lru_size(lruvec
, LRU_INACTIVE_ANON
);
1341 active
= mem_cgroup_get_lru_size(lruvec
, LRU_ACTIVE_ANON
);
1343 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
1345 inactive_ratio
= int_sqrt(10 * gb
);
1349 return inactive
* inactive_ratio
< active
;
1352 bool mem_cgroup_lruvec_online(struct lruvec
*lruvec
)
1354 struct mem_cgroup_per_zone
*mz
;
1355 struct mem_cgroup
*memcg
;
1357 if (mem_cgroup_disabled())
1360 mz
= container_of(lruvec
, struct mem_cgroup_per_zone
, lruvec
);
1363 return !!(memcg
->css
.flags
& CSS_ONLINE
);
1366 #define mem_cgroup_from_counter(counter, member) \
1367 container_of(counter, struct mem_cgroup, member)
1370 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1371 * @memcg: the memory cgroup
1373 * Returns the maximum amount of memory @mem can be charged with, in
1376 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1378 unsigned long margin
= 0;
1379 unsigned long count
;
1380 unsigned long limit
;
1382 count
= page_counter_read(&memcg
->memory
);
1383 limit
= READ_ONCE(memcg
->memory
.limit
);
1385 margin
= limit
- count
;
1387 if (do_swap_account
) {
1388 count
= page_counter_read(&memcg
->memsw
);
1389 limit
= READ_ONCE(memcg
->memsw
.limit
);
1391 margin
= min(margin
, limit
- count
);
1397 int mem_cgroup_swappiness(struct mem_cgroup
*memcg
)
1400 if (mem_cgroup_disabled() || !memcg
->css
.parent
)
1401 return vm_swappiness
;
1403 return memcg
->swappiness
;
1407 * A routine for checking "mem" is under move_account() or not.
1409 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1410 * moving cgroups. This is for waiting at high-memory pressure
1413 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1415 struct mem_cgroup
*from
;
1416 struct mem_cgroup
*to
;
1419 * Unlike task_move routines, we access mc.to, mc.from not under
1420 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1422 spin_lock(&mc
.lock
);
1428 ret
= mem_cgroup_is_descendant(from
, memcg
) ||
1429 mem_cgroup_is_descendant(to
, memcg
);
1431 spin_unlock(&mc
.lock
);
1435 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1437 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1438 if (mem_cgroup_under_move(memcg
)) {
1440 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1441 /* moving charge context might have finished. */
1444 finish_wait(&mc
.waitq
, &wait
);
1451 #define K(x) ((x) << (PAGE_SHIFT-10))
1453 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1454 * @memcg: The memory cgroup that went over limit
1455 * @p: Task that is going to be killed
1457 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1460 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1462 /* oom_info_lock ensures that parallel ooms do not interleave */
1463 static DEFINE_MUTEX(oom_info_lock
);
1464 struct mem_cgroup
*iter
;
1467 mutex_lock(&oom_info_lock
);
1471 pr_info("Task in ");
1472 pr_cont_cgroup_path(task_cgroup(p
, memory_cgrp_id
));
1473 pr_cont(" killed as a result of limit of ");
1475 pr_info("Memory limit reached of cgroup ");
1478 pr_cont_cgroup_path(memcg
->css
.cgroup
);
1483 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1484 K((u64
)page_counter_read(&memcg
->memory
)),
1485 K((u64
)memcg
->memory
.limit
), memcg
->memory
.failcnt
);
1486 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1487 K((u64
)page_counter_read(&memcg
->memsw
)),
1488 K((u64
)memcg
->memsw
.limit
), memcg
->memsw
.failcnt
);
1489 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1490 K((u64
)page_counter_read(&memcg
->kmem
)),
1491 K((u64
)memcg
->kmem
.limit
), memcg
->kmem
.failcnt
);
1493 for_each_mem_cgroup_tree(iter
, memcg
) {
1494 pr_info("Memory cgroup stats for ");
1495 pr_cont_cgroup_path(iter
->css
.cgroup
);
1498 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
1499 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
1501 pr_cont(" %s:%ldKB", mem_cgroup_stat_names
[i
],
1502 K(mem_cgroup_read_stat(iter
, i
)));
1505 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
1506 pr_cont(" %s:%luKB", mem_cgroup_lru_names
[i
],
1507 K(mem_cgroup_nr_lru_pages(iter
, BIT(i
))));
1511 mutex_unlock(&oom_info_lock
);
1515 * This function returns the number of memcg under hierarchy tree. Returns
1516 * 1(self count) if no children.
1518 static int mem_cgroup_count_children(struct mem_cgroup
*memcg
)
1521 struct mem_cgroup
*iter
;
1523 for_each_mem_cgroup_tree(iter
, memcg
)
1529 * Return the memory (and swap, if configured) limit for a memcg.
1531 static unsigned long mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1533 unsigned long limit
;
1535 limit
= memcg
->memory
.limit
;
1536 if (mem_cgroup_swappiness(memcg
)) {
1537 unsigned long memsw_limit
;
1539 memsw_limit
= memcg
->memsw
.limit
;
1540 limit
= min(limit
+ total_swap_pages
, memsw_limit
);
1545 static void mem_cgroup_out_of_memory(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1548 struct mem_cgroup
*iter
;
1549 unsigned long chosen_points
= 0;
1550 unsigned long totalpages
;
1551 unsigned int points
= 0;
1552 struct task_struct
*chosen
= NULL
;
1554 mutex_lock(&oom_lock
);
1557 * If current has a pending SIGKILL or is exiting, then automatically
1558 * select it. The goal is to allow it to allocate so that it may
1559 * quickly exit and free its memory.
1561 if (fatal_signal_pending(current
) || task_will_free_mem(current
)) {
1562 mark_oom_victim(current
);
1566 check_panic_on_oom(CONSTRAINT_MEMCG
, gfp_mask
, order
, NULL
, memcg
);
1567 totalpages
= mem_cgroup_get_limit(memcg
) ? : 1;
1568 for_each_mem_cgroup_tree(iter
, memcg
) {
1569 struct css_task_iter it
;
1570 struct task_struct
*task
;
1572 css_task_iter_start(&iter
->css
, &it
);
1573 while ((task
= css_task_iter_next(&it
))) {
1574 switch (oom_scan_process_thread(task
, totalpages
, NULL
,
1576 case OOM_SCAN_SELECT
:
1578 put_task_struct(chosen
);
1580 chosen_points
= ULONG_MAX
;
1581 get_task_struct(chosen
);
1583 case OOM_SCAN_CONTINUE
:
1585 case OOM_SCAN_ABORT
:
1586 css_task_iter_end(&it
);
1587 mem_cgroup_iter_break(memcg
, iter
);
1589 put_task_struct(chosen
);
1594 points
= oom_badness(task
, memcg
, NULL
, totalpages
);
1595 if (!points
|| points
< chosen_points
)
1597 /* Prefer thread group leaders for display purposes */
1598 if (points
== chosen_points
&&
1599 thread_group_leader(chosen
))
1603 put_task_struct(chosen
);
1605 chosen_points
= points
;
1606 get_task_struct(chosen
);
1608 css_task_iter_end(&it
);
1612 points
= chosen_points
* 1000 / totalpages
;
1613 oom_kill_process(chosen
, gfp_mask
, order
, points
, totalpages
,
1614 memcg
, NULL
, "Memory cgroup out of memory");
1617 mutex_unlock(&oom_lock
);
1620 #if MAX_NUMNODES > 1
1623 * test_mem_cgroup_node_reclaimable
1624 * @memcg: the target memcg
1625 * @nid: the node ID to be checked.
1626 * @noswap : specify true here if the user wants flle only information.
1628 * This function returns whether the specified memcg contains any
1629 * reclaimable pages on a node. Returns true if there are any reclaimable
1630 * pages in the node.
1632 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*memcg
,
1633 int nid
, bool noswap
)
1635 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_FILE
))
1637 if (noswap
|| !total_swap_pages
)
1639 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_ANON
))
1646 * Always updating the nodemask is not very good - even if we have an empty
1647 * list or the wrong list here, we can start from some node and traverse all
1648 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1651 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*memcg
)
1655 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1656 * pagein/pageout changes since the last update.
1658 if (!atomic_read(&memcg
->numainfo_events
))
1660 if (atomic_inc_return(&memcg
->numainfo_updating
) > 1)
1663 /* make a nodemask where this memcg uses memory from */
1664 memcg
->scan_nodes
= node_states
[N_MEMORY
];
1666 for_each_node_mask(nid
, node_states
[N_MEMORY
]) {
1668 if (!test_mem_cgroup_node_reclaimable(memcg
, nid
, false))
1669 node_clear(nid
, memcg
->scan_nodes
);
1672 atomic_set(&memcg
->numainfo_events
, 0);
1673 atomic_set(&memcg
->numainfo_updating
, 0);
1677 * Selecting a node where we start reclaim from. Because what we need is just
1678 * reducing usage counter, start from anywhere is O,K. Considering
1679 * memory reclaim from current node, there are pros. and cons.
1681 * Freeing memory from current node means freeing memory from a node which
1682 * we'll use or we've used. So, it may make LRU bad. And if several threads
1683 * hit limits, it will see a contention on a node. But freeing from remote
1684 * node means more costs for memory reclaim because of memory latency.
1686 * Now, we use round-robin. Better algorithm is welcomed.
1688 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1692 mem_cgroup_may_update_nodemask(memcg
);
1693 node
= memcg
->last_scanned_node
;
1695 node
= next_node(node
, memcg
->scan_nodes
);
1696 if (node
== MAX_NUMNODES
)
1697 node
= first_node(memcg
->scan_nodes
);
1699 * We call this when we hit limit, not when pages are added to LRU.
1700 * No LRU may hold pages because all pages are UNEVICTABLE or
1701 * memcg is too small and all pages are not on LRU. In that case,
1702 * we use curret node.
1704 if (unlikely(node
== MAX_NUMNODES
))
1705 node
= numa_node_id();
1707 memcg
->last_scanned_node
= node
;
1711 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1717 static int mem_cgroup_soft_reclaim(struct mem_cgroup
*root_memcg
,
1720 unsigned long *total_scanned
)
1722 struct mem_cgroup
*victim
= NULL
;
1725 unsigned long excess
;
1726 unsigned long nr_scanned
;
1727 struct mem_cgroup_reclaim_cookie reclaim
= {
1732 excess
= soft_limit_excess(root_memcg
);
1735 victim
= mem_cgroup_iter(root_memcg
, victim
, &reclaim
);
1740 * If we have not been able to reclaim
1741 * anything, it might because there are
1742 * no reclaimable pages under this hierarchy
1747 * We want to do more targeted reclaim.
1748 * excess >> 2 is not to excessive so as to
1749 * reclaim too much, nor too less that we keep
1750 * coming back to reclaim from this cgroup
1752 if (total
>= (excess
>> 2) ||
1753 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
))
1758 total
+= mem_cgroup_shrink_node_zone(victim
, gfp_mask
, false,
1760 *total_scanned
+= nr_scanned
;
1761 if (!soft_limit_excess(root_memcg
))
1764 mem_cgroup_iter_break(root_memcg
, victim
);
1768 #ifdef CONFIG_LOCKDEP
1769 static struct lockdep_map memcg_oom_lock_dep_map
= {
1770 .name
= "memcg_oom_lock",
1774 static DEFINE_SPINLOCK(memcg_oom_lock
);
1777 * Check OOM-Killer is already running under our hierarchy.
1778 * If someone is running, return false.
1780 static bool mem_cgroup_oom_trylock(struct mem_cgroup
*memcg
)
1782 struct mem_cgroup
*iter
, *failed
= NULL
;
1784 spin_lock(&memcg_oom_lock
);
1786 for_each_mem_cgroup_tree(iter
, memcg
) {
1787 if (iter
->oom_lock
) {
1789 * this subtree of our hierarchy is already locked
1790 * so we cannot give a lock.
1793 mem_cgroup_iter_break(memcg
, iter
);
1796 iter
->oom_lock
= true;
1801 * OK, we failed to lock the whole subtree so we have
1802 * to clean up what we set up to the failing subtree
1804 for_each_mem_cgroup_tree(iter
, memcg
) {
1805 if (iter
== failed
) {
1806 mem_cgroup_iter_break(memcg
, iter
);
1809 iter
->oom_lock
= false;
1812 mutex_acquire(&memcg_oom_lock_dep_map
, 0, 1, _RET_IP_
);
1814 spin_unlock(&memcg_oom_lock
);
1819 static void mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
1821 struct mem_cgroup
*iter
;
1823 spin_lock(&memcg_oom_lock
);
1824 mutex_release(&memcg_oom_lock_dep_map
, 1, _RET_IP_
);
1825 for_each_mem_cgroup_tree(iter
, memcg
)
1826 iter
->oom_lock
= false;
1827 spin_unlock(&memcg_oom_lock
);
1830 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
1832 struct mem_cgroup
*iter
;
1834 spin_lock(&memcg_oom_lock
);
1835 for_each_mem_cgroup_tree(iter
, memcg
)
1837 spin_unlock(&memcg_oom_lock
);
1840 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
1842 struct mem_cgroup
*iter
;
1845 * When a new child is created while the hierarchy is under oom,
1846 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1848 spin_lock(&memcg_oom_lock
);
1849 for_each_mem_cgroup_tree(iter
, memcg
)
1850 if (iter
->under_oom
> 0)
1852 spin_unlock(&memcg_oom_lock
);
1855 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1857 struct oom_wait_info
{
1858 struct mem_cgroup
*memcg
;
1862 static int memcg_oom_wake_function(wait_queue_t
*wait
,
1863 unsigned mode
, int sync
, void *arg
)
1865 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
;
1866 struct mem_cgroup
*oom_wait_memcg
;
1867 struct oom_wait_info
*oom_wait_info
;
1869 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1870 oom_wait_memcg
= oom_wait_info
->memcg
;
1872 if (!mem_cgroup_is_descendant(wake_memcg
, oom_wait_memcg
) &&
1873 !mem_cgroup_is_descendant(oom_wait_memcg
, wake_memcg
))
1875 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1878 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
1881 * For the following lockless ->under_oom test, the only required
1882 * guarantee is that it must see the state asserted by an OOM when
1883 * this function is called as a result of userland actions
1884 * triggered by the notification of the OOM. This is trivially
1885 * achieved by invoking mem_cgroup_mark_under_oom() before
1886 * triggering notification.
1888 if (memcg
&& memcg
->under_oom
)
1889 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
1892 static void mem_cgroup_oom(struct mem_cgroup
*memcg
, gfp_t mask
, int order
)
1894 if (!current
->memcg_oom
.may_oom
)
1897 * We are in the middle of the charge context here, so we
1898 * don't want to block when potentially sitting on a callstack
1899 * that holds all kinds of filesystem and mm locks.
1901 * Also, the caller may handle a failed allocation gracefully
1902 * (like optional page cache readahead) and so an OOM killer
1903 * invocation might not even be necessary.
1905 * That's why we don't do anything here except remember the
1906 * OOM context and then deal with it at the end of the page
1907 * fault when the stack is unwound, the locks are released,
1908 * and when we know whether the fault was overall successful.
1910 css_get(&memcg
->css
);
1911 current
->memcg_oom
.memcg
= memcg
;
1912 current
->memcg_oom
.gfp_mask
= mask
;
1913 current
->memcg_oom
.order
= order
;
1917 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1918 * @handle: actually kill/wait or just clean up the OOM state
1920 * This has to be called at the end of a page fault if the memcg OOM
1921 * handler was enabled.
1923 * Memcg supports userspace OOM handling where failed allocations must
1924 * sleep on a waitqueue until the userspace task resolves the
1925 * situation. Sleeping directly in the charge context with all kinds
1926 * of locks held is not a good idea, instead we remember an OOM state
1927 * in the task and mem_cgroup_oom_synchronize() has to be called at
1928 * the end of the page fault to complete the OOM handling.
1930 * Returns %true if an ongoing memcg OOM situation was detected and
1931 * completed, %false otherwise.
1933 bool mem_cgroup_oom_synchronize(bool handle
)
1935 struct mem_cgroup
*memcg
= current
->memcg_oom
.memcg
;
1936 struct oom_wait_info owait
;
1939 /* OOM is global, do not handle */
1943 if (!handle
|| oom_killer_disabled
)
1946 owait
.memcg
= memcg
;
1947 owait
.wait
.flags
= 0;
1948 owait
.wait
.func
= memcg_oom_wake_function
;
1949 owait
.wait
.private = current
;
1950 INIT_LIST_HEAD(&owait
.wait
.task_list
);
1952 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1953 mem_cgroup_mark_under_oom(memcg
);
1955 locked
= mem_cgroup_oom_trylock(memcg
);
1958 mem_cgroup_oom_notify(memcg
);
1960 if (locked
&& !memcg
->oom_kill_disable
) {
1961 mem_cgroup_unmark_under_oom(memcg
);
1962 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1963 mem_cgroup_out_of_memory(memcg
, current
->memcg_oom
.gfp_mask
,
1964 current
->memcg_oom
.order
);
1967 mem_cgroup_unmark_under_oom(memcg
);
1968 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1972 mem_cgroup_oom_unlock(memcg
);
1974 * There is no guarantee that an OOM-lock contender
1975 * sees the wakeups triggered by the OOM kill
1976 * uncharges. Wake any sleepers explicitely.
1978 memcg_oom_recover(memcg
);
1981 current
->memcg_oom
.memcg
= NULL
;
1982 css_put(&memcg
->css
);
1987 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1988 * @page: page that is going to change accounted state
1990 * This function must mark the beginning of an accounted page state
1991 * change to prevent double accounting when the page is concurrently
1992 * being moved to another memcg:
1994 * memcg = mem_cgroup_begin_page_stat(page);
1995 * if (TestClearPageState(page))
1996 * mem_cgroup_update_page_stat(memcg, state, -1);
1997 * mem_cgroup_end_page_stat(memcg);
1999 struct mem_cgroup
*mem_cgroup_begin_page_stat(struct page
*page
)
2001 struct mem_cgroup
*memcg
;
2002 unsigned long flags
;
2005 * The RCU lock is held throughout the transaction. The fast
2006 * path can get away without acquiring the memcg->move_lock
2007 * because page moving starts with an RCU grace period.
2009 * The RCU lock also protects the memcg from being freed when
2010 * the page state that is going to change is the only thing
2011 * preventing the page from being uncharged.
2012 * E.g. end-writeback clearing PageWriteback(), which allows
2013 * migration to go ahead and uncharge the page before the
2014 * account transaction might be complete.
2018 if (mem_cgroup_disabled())
2021 memcg
= page
->mem_cgroup
;
2022 if (unlikely(!memcg
))
2025 if (atomic_read(&memcg
->moving_account
) <= 0)
2028 spin_lock_irqsave(&memcg
->move_lock
, flags
);
2029 if (memcg
!= page
->mem_cgroup
) {
2030 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
2035 * When charge migration first begins, we can have locked and
2036 * unlocked page stat updates happening concurrently. Track
2037 * the task who has the lock for mem_cgroup_end_page_stat().
2039 memcg
->move_lock_task
= current
;
2040 memcg
->move_lock_flags
= flags
;
2044 EXPORT_SYMBOL(mem_cgroup_begin_page_stat
);
2047 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2048 * @memcg: the memcg that was accounted against
2050 void mem_cgroup_end_page_stat(struct mem_cgroup
*memcg
)
2052 if (memcg
&& memcg
->move_lock_task
== current
) {
2053 unsigned long flags
= memcg
->move_lock_flags
;
2055 memcg
->move_lock_task
= NULL
;
2056 memcg
->move_lock_flags
= 0;
2058 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
2063 EXPORT_SYMBOL(mem_cgroup_end_page_stat
);
2066 * mem_cgroup_update_page_stat - update page state statistics
2067 * @memcg: memcg to account against
2068 * @idx: page state item to account
2069 * @val: number of pages (positive or negative)
2071 * See mem_cgroup_begin_page_stat() for locking requirements.
2073 void mem_cgroup_update_page_stat(struct mem_cgroup
*memcg
,
2074 enum mem_cgroup_stat_index idx
, int val
)
2076 VM_BUG_ON(!rcu_read_lock_held());
2079 this_cpu_add(memcg
->stat
->count
[idx
], val
);
2083 * size of first charge trial. "32" comes from vmscan.c's magic value.
2084 * TODO: maybe necessary to use big numbers in big irons.
2086 #define CHARGE_BATCH 32U
2087 struct memcg_stock_pcp
{
2088 struct mem_cgroup
*cached
; /* this never be root cgroup */
2089 unsigned int nr_pages
;
2090 struct work_struct work
;
2091 unsigned long flags
;
2092 #define FLUSHING_CACHED_CHARGE 0
2094 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
2095 static DEFINE_MUTEX(percpu_charge_mutex
);
2098 * consume_stock: Try to consume stocked charge on this cpu.
2099 * @memcg: memcg to consume from.
2100 * @nr_pages: how many pages to charge.
2102 * The charges will only happen if @memcg matches the current cpu's memcg
2103 * stock, and at least @nr_pages are available in that stock. Failure to
2104 * service an allocation will refill the stock.
2106 * returns true if successful, false otherwise.
2108 static bool consume_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2110 struct memcg_stock_pcp
*stock
;
2113 if (nr_pages
> CHARGE_BATCH
)
2116 stock
= &get_cpu_var(memcg_stock
);
2117 if (memcg
== stock
->cached
&& stock
->nr_pages
>= nr_pages
) {
2118 stock
->nr_pages
-= nr_pages
;
2121 put_cpu_var(memcg_stock
);
2126 * Returns stocks cached in percpu and reset cached information.
2128 static void drain_stock(struct memcg_stock_pcp
*stock
)
2130 struct mem_cgroup
*old
= stock
->cached
;
2132 if (stock
->nr_pages
) {
2133 page_counter_uncharge(&old
->memory
, stock
->nr_pages
);
2134 if (do_swap_account
)
2135 page_counter_uncharge(&old
->memsw
, stock
->nr_pages
);
2136 css_put_many(&old
->css
, stock
->nr_pages
);
2137 stock
->nr_pages
= 0;
2139 stock
->cached
= NULL
;
2143 * This must be called under preempt disabled or must be called by
2144 * a thread which is pinned to local cpu.
2146 static void drain_local_stock(struct work_struct
*dummy
)
2148 struct memcg_stock_pcp
*stock
= this_cpu_ptr(&memcg_stock
);
2150 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
2154 * Cache charges(val) to local per_cpu area.
2155 * This will be consumed by consume_stock() function, later.
2157 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2159 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
2161 if (stock
->cached
!= memcg
) { /* reset if necessary */
2163 stock
->cached
= memcg
;
2165 stock
->nr_pages
+= nr_pages
;
2166 put_cpu_var(memcg_stock
);
2170 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2171 * of the hierarchy under it.
2173 static void drain_all_stock(struct mem_cgroup
*root_memcg
)
2177 /* If someone's already draining, avoid adding running more workers. */
2178 if (!mutex_trylock(&percpu_charge_mutex
))
2180 /* Notify other cpus that system-wide "drain" is running */
2183 for_each_online_cpu(cpu
) {
2184 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2185 struct mem_cgroup
*memcg
;
2187 memcg
= stock
->cached
;
2188 if (!memcg
|| !stock
->nr_pages
)
2190 if (!mem_cgroup_is_descendant(memcg
, root_memcg
))
2192 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
2194 drain_local_stock(&stock
->work
);
2196 schedule_work_on(cpu
, &stock
->work
);
2201 mutex_unlock(&percpu_charge_mutex
);
2204 static int memcg_cpu_hotplug_callback(struct notifier_block
*nb
,
2205 unsigned long action
,
2208 int cpu
= (unsigned long)hcpu
;
2209 struct memcg_stock_pcp
*stock
;
2211 if (action
== CPU_ONLINE
)
2214 if (action
!= CPU_DEAD
&& action
!= CPU_DEAD_FROZEN
)
2217 stock
= &per_cpu(memcg_stock
, cpu
);
2222 static int try_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
2223 unsigned int nr_pages
)
2225 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
2226 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2227 struct mem_cgroup
*mem_over_limit
;
2228 struct page_counter
*counter
;
2229 unsigned long nr_reclaimed
;
2230 bool may_swap
= true;
2231 bool drained
= false;
2234 if (mem_cgroup_is_root(memcg
))
2237 if (consume_stock(memcg
, nr_pages
))
2240 if (!do_swap_account
||
2241 !page_counter_try_charge(&memcg
->memsw
, batch
, &counter
)) {
2242 if (!page_counter_try_charge(&memcg
->memory
, batch
, &counter
))
2244 if (do_swap_account
)
2245 page_counter_uncharge(&memcg
->memsw
, batch
);
2246 mem_over_limit
= mem_cgroup_from_counter(counter
, memory
);
2248 mem_over_limit
= mem_cgroup_from_counter(counter
, memsw
);
2252 if (batch
> nr_pages
) {
2258 * Unlike in global OOM situations, memcg is not in a physical
2259 * memory shortage. Allow dying and OOM-killed tasks to
2260 * bypass the last charges so that they can exit quickly and
2261 * free their memory.
2263 if (unlikely(test_thread_flag(TIF_MEMDIE
) ||
2264 fatal_signal_pending(current
) ||
2265 current
->flags
& PF_EXITING
))
2268 if (unlikely(task_in_memcg_oom(current
)))
2271 if (!(gfp_mask
& __GFP_WAIT
))
2274 mem_cgroup_events(mem_over_limit
, MEMCG_MAX
, 1);
2276 nr_reclaimed
= try_to_free_mem_cgroup_pages(mem_over_limit
, nr_pages
,
2277 gfp_mask
, may_swap
);
2279 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
2283 drain_all_stock(mem_over_limit
);
2288 if (gfp_mask
& __GFP_NORETRY
)
2291 * Even though the limit is exceeded at this point, reclaim
2292 * may have been able to free some pages. Retry the charge
2293 * before killing the task.
2295 * Only for regular pages, though: huge pages are rather
2296 * unlikely to succeed so close to the limit, and we fall back
2297 * to regular pages anyway in case of failure.
2299 if (nr_reclaimed
&& nr_pages
<= (1 << PAGE_ALLOC_COSTLY_ORDER
))
2302 * At task move, charge accounts can be doubly counted. So, it's
2303 * better to wait until the end of task_move if something is going on.
2305 if (mem_cgroup_wait_acct_move(mem_over_limit
))
2311 if (gfp_mask
& __GFP_NOFAIL
)
2314 if (fatal_signal_pending(current
))
2317 mem_cgroup_events(mem_over_limit
, MEMCG_OOM
, 1);
2319 mem_cgroup_oom(mem_over_limit
, gfp_mask
, get_order(nr_pages
));
2321 if (!(gfp_mask
& __GFP_NOFAIL
))
2327 css_get_many(&memcg
->css
, batch
);
2328 if (batch
> nr_pages
)
2329 refill_stock(memcg
, batch
- nr_pages
);
2330 if (!(gfp_mask
& __GFP_WAIT
))
2333 * If the hierarchy is above the normal consumption range,
2334 * make the charging task trim their excess contribution.
2337 if (page_counter_read(&memcg
->memory
) <= memcg
->high
)
2339 mem_cgroup_events(memcg
, MEMCG_HIGH
, 1);
2340 try_to_free_mem_cgroup_pages(memcg
, nr_pages
, gfp_mask
, true);
2341 } while ((memcg
= parent_mem_cgroup(memcg
)));
2346 static void cancel_charge(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2348 if (mem_cgroup_is_root(memcg
))
2351 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2352 if (do_swap_account
)
2353 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2355 css_put_many(&memcg
->css
, nr_pages
);
2359 * try_get_mem_cgroup_from_page - look up page's memcg association
2362 * Look up, get a css reference, and return the memcg that owns @page.
2364 * The page must be locked to prevent racing with swap-in and page
2365 * cache charges. If coming from an unlocked page table, the caller
2366 * must ensure the page is on the LRU or this can race with charging.
2368 struct mem_cgroup
*try_get_mem_cgroup_from_page(struct page
*page
)
2370 struct mem_cgroup
*memcg
;
2374 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2376 memcg
= page
->mem_cgroup
;
2378 if (!css_tryget_online(&memcg
->css
))
2380 } else if (PageSwapCache(page
)) {
2381 ent
.val
= page_private(page
);
2382 id
= lookup_swap_cgroup_id(ent
);
2384 memcg
= mem_cgroup_from_id(id
);
2385 if (memcg
&& !css_tryget_online(&memcg
->css
))
2392 static void lock_page_lru(struct page
*page
, int *isolated
)
2394 struct zone
*zone
= page_zone(page
);
2396 spin_lock_irq(&zone
->lru_lock
);
2397 if (PageLRU(page
)) {
2398 struct lruvec
*lruvec
;
2400 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
2402 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
2408 static void unlock_page_lru(struct page
*page
, int isolated
)
2410 struct zone
*zone
= page_zone(page
);
2413 struct lruvec
*lruvec
;
2415 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
2416 VM_BUG_ON_PAGE(PageLRU(page
), page
);
2418 add_page_to_lru_list(page
, lruvec
, page_lru(page
));
2420 spin_unlock_irq(&zone
->lru_lock
);
2423 static void commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
2428 VM_BUG_ON_PAGE(page
->mem_cgroup
, page
);
2431 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2432 * may already be on some other mem_cgroup's LRU. Take care of it.
2435 lock_page_lru(page
, &isolated
);
2438 * Nobody should be changing or seriously looking at
2439 * page->mem_cgroup at this point:
2441 * - the page is uncharged
2443 * - the page is off-LRU
2445 * - an anonymous fault has exclusive page access, except for
2446 * a locked page table
2448 * - a page cache insertion, a swapin fault, or a migration
2449 * have the page locked
2451 page
->mem_cgroup
= memcg
;
2454 unlock_page_lru(page
, isolated
);
2457 #ifdef CONFIG_MEMCG_KMEM
2458 int memcg_charge_kmem(struct mem_cgroup
*memcg
, gfp_t gfp
,
2459 unsigned long nr_pages
)
2461 struct page_counter
*counter
;
2464 ret
= page_counter_try_charge(&memcg
->kmem
, nr_pages
, &counter
);
2468 ret
= try_charge(memcg
, gfp
, nr_pages
);
2469 if (ret
== -EINTR
) {
2471 * try_charge() chose to bypass to root due to OOM kill or
2472 * fatal signal. Since our only options are to either fail
2473 * the allocation or charge it to this cgroup, do it as a
2474 * temporary condition. But we can't fail. From a kmem/slab
2475 * perspective, the cache has already been selected, by
2476 * mem_cgroup_kmem_get_cache(), so it is too late to change
2479 * This condition will only trigger if the task entered
2480 * memcg_charge_kmem in a sane state, but was OOM-killed
2481 * during try_charge() above. Tasks that were already dying
2482 * when the allocation triggers should have been already
2483 * directed to the root cgroup in memcontrol.h
2485 page_counter_charge(&memcg
->memory
, nr_pages
);
2486 if (do_swap_account
)
2487 page_counter_charge(&memcg
->memsw
, nr_pages
);
2488 css_get_many(&memcg
->css
, nr_pages
);
2491 page_counter_uncharge(&memcg
->kmem
, nr_pages
);
2496 void memcg_uncharge_kmem(struct mem_cgroup
*memcg
, unsigned long nr_pages
)
2498 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2499 if (do_swap_account
)
2500 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2502 page_counter_uncharge(&memcg
->kmem
, nr_pages
);
2504 css_put_many(&memcg
->css
, nr_pages
);
2508 * helper for acessing a memcg's index. It will be used as an index in the
2509 * child cache array in kmem_cache, and also to derive its name. This function
2510 * will return -1 when this is not a kmem-limited memcg.
2512 int memcg_cache_id(struct mem_cgroup
*memcg
)
2514 return memcg
? memcg
->kmemcg_id
: -1;
2517 static int memcg_alloc_cache_id(void)
2522 id
= ida_simple_get(&memcg_cache_ida
,
2523 0, MEMCG_CACHES_MAX_SIZE
, GFP_KERNEL
);
2527 if (id
< memcg_nr_cache_ids
)
2531 * There's no space for the new id in memcg_caches arrays,
2532 * so we have to grow them.
2534 down_write(&memcg_cache_ids_sem
);
2536 size
= 2 * (id
+ 1);
2537 if (size
< MEMCG_CACHES_MIN_SIZE
)
2538 size
= MEMCG_CACHES_MIN_SIZE
;
2539 else if (size
> MEMCG_CACHES_MAX_SIZE
)
2540 size
= MEMCG_CACHES_MAX_SIZE
;
2542 err
= memcg_update_all_caches(size
);
2544 err
= memcg_update_all_list_lrus(size
);
2546 memcg_nr_cache_ids
= size
;
2548 up_write(&memcg_cache_ids_sem
);
2551 ida_simple_remove(&memcg_cache_ida
, id
);
2557 static void memcg_free_cache_id(int id
)
2559 ida_simple_remove(&memcg_cache_ida
, id
);
2562 struct memcg_kmem_cache_create_work
{
2563 struct mem_cgroup
*memcg
;
2564 struct kmem_cache
*cachep
;
2565 struct work_struct work
;
2568 static void memcg_kmem_cache_create_func(struct work_struct
*w
)
2570 struct memcg_kmem_cache_create_work
*cw
=
2571 container_of(w
, struct memcg_kmem_cache_create_work
, work
);
2572 struct mem_cgroup
*memcg
= cw
->memcg
;
2573 struct kmem_cache
*cachep
= cw
->cachep
;
2575 memcg_create_kmem_cache(memcg
, cachep
);
2577 css_put(&memcg
->css
);
2582 * Enqueue the creation of a per-memcg kmem_cache.
2584 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup
*memcg
,
2585 struct kmem_cache
*cachep
)
2587 struct memcg_kmem_cache_create_work
*cw
;
2589 cw
= kmalloc(sizeof(*cw
), GFP_NOWAIT
);
2593 css_get(&memcg
->css
);
2596 cw
->cachep
= cachep
;
2597 INIT_WORK(&cw
->work
, memcg_kmem_cache_create_func
);
2599 schedule_work(&cw
->work
);
2602 static void memcg_schedule_kmem_cache_create(struct mem_cgroup
*memcg
,
2603 struct kmem_cache
*cachep
)
2606 * We need to stop accounting when we kmalloc, because if the
2607 * corresponding kmalloc cache is not yet created, the first allocation
2608 * in __memcg_schedule_kmem_cache_create will recurse.
2610 * However, it is better to enclose the whole function. Depending on
2611 * the debugging options enabled, INIT_WORK(), for instance, can
2612 * trigger an allocation. This too, will make us recurse. Because at
2613 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2614 * the safest choice is to do it like this, wrapping the whole function.
2616 current
->memcg_kmem_skip_account
= 1;
2617 __memcg_schedule_kmem_cache_create(memcg
, cachep
);
2618 current
->memcg_kmem_skip_account
= 0;
2622 * Return the kmem_cache we're supposed to use for a slab allocation.
2623 * We try to use the current memcg's version of the cache.
2625 * If the cache does not exist yet, if we are the first user of it,
2626 * we either create it immediately, if possible, or create it asynchronously
2628 * In the latter case, we will let the current allocation go through with
2629 * the original cache.
2631 * Can't be called in interrupt context or from kernel threads.
2632 * This function needs to be called with rcu_read_lock() held.
2634 struct kmem_cache
*__memcg_kmem_get_cache(struct kmem_cache
*cachep
)
2636 struct mem_cgroup
*memcg
;
2637 struct kmem_cache
*memcg_cachep
;
2640 VM_BUG_ON(!is_root_cache(cachep
));
2642 if (current
->memcg_kmem_skip_account
)
2645 memcg
= get_mem_cgroup_from_mm(current
->mm
);
2646 kmemcg_id
= READ_ONCE(memcg
->kmemcg_id
);
2650 memcg_cachep
= cache_from_memcg_idx(cachep
, kmemcg_id
);
2651 if (likely(memcg_cachep
))
2652 return memcg_cachep
;
2655 * If we are in a safe context (can wait, and not in interrupt
2656 * context), we could be be predictable and return right away.
2657 * This would guarantee that the allocation being performed
2658 * already belongs in the new cache.
2660 * However, there are some clashes that can arrive from locking.
2661 * For instance, because we acquire the slab_mutex while doing
2662 * memcg_create_kmem_cache, this means no further allocation
2663 * could happen with the slab_mutex held. So it's better to
2666 memcg_schedule_kmem_cache_create(memcg
, cachep
);
2668 css_put(&memcg
->css
);
2672 void __memcg_kmem_put_cache(struct kmem_cache
*cachep
)
2674 if (!is_root_cache(cachep
))
2675 css_put(&cachep
->memcg_params
.memcg
->css
);
2679 * We need to verify if the allocation against current->mm->owner's memcg is
2680 * possible for the given order. But the page is not allocated yet, so we'll
2681 * need a further commit step to do the final arrangements.
2683 * It is possible for the task to switch cgroups in this mean time, so at
2684 * commit time, we can't rely on task conversion any longer. We'll then use
2685 * the handle argument to return to the caller which cgroup we should commit
2686 * against. We could also return the memcg directly and avoid the pointer
2687 * passing, but a boolean return value gives better semantics considering
2688 * the compiled-out case as well.
2690 * Returning true means the allocation is possible.
2693 __memcg_kmem_newpage_charge(gfp_t gfp
, struct mem_cgroup
**_memcg
, int order
)
2695 struct mem_cgroup
*memcg
;
2700 memcg
= get_mem_cgroup_from_mm(current
->mm
);
2702 if (!memcg_kmem_is_active(memcg
)) {
2703 css_put(&memcg
->css
);
2707 ret
= memcg_charge_kmem(memcg
, gfp
, 1 << order
);
2711 css_put(&memcg
->css
);
2715 void __memcg_kmem_commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
2718 VM_BUG_ON(mem_cgroup_is_root(memcg
));
2720 /* The page allocation failed. Revert */
2722 memcg_uncharge_kmem(memcg
, 1 << order
);
2725 page
->mem_cgroup
= memcg
;
2728 void __memcg_kmem_uncharge_pages(struct page
*page
, int order
)
2730 struct mem_cgroup
*memcg
= page
->mem_cgroup
;
2735 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg
), page
);
2737 memcg_uncharge_kmem(memcg
, 1 << order
);
2738 page
->mem_cgroup
= NULL
;
2741 struct mem_cgroup
*__mem_cgroup_from_kmem(void *ptr
)
2743 struct mem_cgroup
*memcg
= NULL
;
2744 struct kmem_cache
*cachep
;
2747 page
= virt_to_head_page(ptr
);
2748 if (PageSlab(page
)) {
2749 cachep
= page
->slab_cache
;
2750 if (!is_root_cache(cachep
))
2751 memcg
= cachep
->memcg_params
.memcg
;
2753 /* page allocated by alloc_kmem_pages */
2754 memcg
= page
->mem_cgroup
;
2758 #endif /* CONFIG_MEMCG_KMEM */
2760 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2763 * Because tail pages are not marked as "used", set it. We're under
2764 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2765 * charge/uncharge will be never happen and move_account() is done under
2766 * compound_lock(), so we don't have to take care of races.
2768 void mem_cgroup_split_huge_fixup(struct page
*head
)
2772 if (mem_cgroup_disabled())
2775 for (i
= 1; i
< HPAGE_PMD_NR
; i
++)
2776 head
[i
].mem_cgroup
= head
->mem_cgroup
;
2778 __this_cpu_sub(head
->mem_cgroup
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
],
2781 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2783 #ifdef CONFIG_MEMCG_SWAP
2784 static void mem_cgroup_swap_statistics(struct mem_cgroup
*memcg
,
2787 int val
= (charge
) ? 1 : -1;
2788 this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_SWAP
], val
);
2792 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2793 * @entry: swap entry to be moved
2794 * @from: mem_cgroup which the entry is moved from
2795 * @to: mem_cgroup which the entry is moved to
2797 * It succeeds only when the swap_cgroup's record for this entry is the same
2798 * as the mem_cgroup's id of @from.
2800 * Returns 0 on success, -EINVAL on failure.
2802 * The caller must have charged to @to, IOW, called page_counter_charge() about
2803 * both res and memsw, and called css_get().
2805 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
2806 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2808 unsigned short old_id
, new_id
;
2810 old_id
= mem_cgroup_id(from
);
2811 new_id
= mem_cgroup_id(to
);
2813 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
2814 mem_cgroup_swap_statistics(from
, false);
2815 mem_cgroup_swap_statistics(to
, true);
2821 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
2822 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2828 static DEFINE_MUTEX(memcg_limit_mutex
);
2830 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
2831 unsigned long limit
)
2833 unsigned long curusage
;
2834 unsigned long oldusage
;
2835 bool enlarge
= false;
2840 * For keeping hierarchical_reclaim simple, how long we should retry
2841 * is depends on callers. We set our retry-count to be function
2842 * of # of children which we should visit in this loop.
2844 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
*
2845 mem_cgroup_count_children(memcg
);
2847 oldusage
= page_counter_read(&memcg
->memory
);
2850 if (signal_pending(current
)) {
2855 mutex_lock(&memcg_limit_mutex
);
2856 if (limit
> memcg
->memsw
.limit
) {
2857 mutex_unlock(&memcg_limit_mutex
);
2861 if (limit
> memcg
->memory
.limit
)
2863 ret
= page_counter_limit(&memcg
->memory
, limit
);
2864 mutex_unlock(&memcg_limit_mutex
);
2869 try_to_free_mem_cgroup_pages(memcg
, 1, GFP_KERNEL
, true);
2871 curusage
= page_counter_read(&memcg
->memory
);
2872 /* Usage is reduced ? */
2873 if (curusage
>= oldusage
)
2876 oldusage
= curusage
;
2877 } while (retry_count
);
2879 if (!ret
&& enlarge
)
2880 memcg_oom_recover(memcg
);
2885 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
2886 unsigned long limit
)
2888 unsigned long curusage
;
2889 unsigned long oldusage
;
2890 bool enlarge
= false;
2894 /* see mem_cgroup_resize_res_limit */
2895 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
*
2896 mem_cgroup_count_children(memcg
);
2898 oldusage
= page_counter_read(&memcg
->memsw
);
2901 if (signal_pending(current
)) {
2906 mutex_lock(&memcg_limit_mutex
);
2907 if (limit
< memcg
->memory
.limit
) {
2908 mutex_unlock(&memcg_limit_mutex
);
2912 if (limit
> memcg
->memsw
.limit
)
2914 ret
= page_counter_limit(&memcg
->memsw
, limit
);
2915 mutex_unlock(&memcg_limit_mutex
);
2920 try_to_free_mem_cgroup_pages(memcg
, 1, GFP_KERNEL
, false);
2922 curusage
= page_counter_read(&memcg
->memsw
);
2923 /* Usage is reduced ? */
2924 if (curusage
>= oldusage
)
2927 oldusage
= curusage
;
2928 } while (retry_count
);
2930 if (!ret
&& enlarge
)
2931 memcg_oom_recover(memcg
);
2936 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
2938 unsigned long *total_scanned
)
2940 unsigned long nr_reclaimed
= 0;
2941 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
2942 unsigned long reclaimed
;
2944 struct mem_cgroup_tree_per_zone
*mctz
;
2945 unsigned long excess
;
2946 unsigned long nr_scanned
;
2951 mctz
= soft_limit_tree_node_zone(zone_to_nid(zone
), zone_idx(zone
));
2953 * This loop can run a while, specially if mem_cgroup's continuously
2954 * keep exceeding their soft limit and putting the system under
2961 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
2966 reclaimed
= mem_cgroup_soft_reclaim(mz
->memcg
, zone
,
2967 gfp_mask
, &nr_scanned
);
2968 nr_reclaimed
+= reclaimed
;
2969 *total_scanned
+= nr_scanned
;
2970 spin_lock_irq(&mctz
->lock
);
2971 __mem_cgroup_remove_exceeded(mz
, mctz
);
2974 * If we failed to reclaim anything from this memory cgroup
2975 * it is time to move on to the next cgroup
2979 next_mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
2981 excess
= soft_limit_excess(mz
->memcg
);
2983 * One school of thought says that we should not add
2984 * back the node to the tree if reclaim returns 0.
2985 * But our reclaim could return 0, simply because due
2986 * to priority we are exposing a smaller subset of
2987 * memory to reclaim from. Consider this as a longer
2990 /* If excess == 0, no tree ops */
2991 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
2992 spin_unlock_irq(&mctz
->lock
);
2993 css_put(&mz
->memcg
->css
);
2996 * Could not reclaim anything and there are no more
2997 * mem cgroups to try or we seem to be looping without
2998 * reclaiming anything.
3000 if (!nr_reclaimed
&&
3002 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
3004 } while (!nr_reclaimed
);
3006 css_put(&next_mz
->memcg
->css
);
3007 return nr_reclaimed
;
3011 * Test whether @memcg has children, dead or alive. Note that this
3012 * function doesn't care whether @memcg has use_hierarchy enabled and
3013 * returns %true if there are child csses according to the cgroup
3014 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3016 static inline bool memcg_has_children(struct mem_cgroup
*memcg
)
3021 * The lock does not prevent addition or deletion of children, but
3022 * it prevents a new child from being initialized based on this
3023 * parent in css_online(), so it's enough to decide whether
3024 * hierarchically inherited attributes can still be changed or not.
3026 lockdep_assert_held(&memcg_create_mutex
);
3029 ret
= css_next_child(NULL
, &memcg
->css
);
3035 * Reclaims as many pages from the given memcg as possible and moves
3036 * the rest to the parent.
3038 * Caller is responsible for holding css reference for memcg.
3040 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
)
3042 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
3044 /* we call try-to-free pages for make this cgroup empty */
3045 lru_add_drain_all();
3046 /* try to free all pages in this cgroup */
3047 while (nr_retries
&& page_counter_read(&memcg
->memory
)) {
3050 if (signal_pending(current
))
3053 progress
= try_to_free_mem_cgroup_pages(memcg
, 1,
3057 /* maybe some writeback is necessary */
3058 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3066 static ssize_t
mem_cgroup_force_empty_write(struct kernfs_open_file
*of
,
3067 char *buf
, size_t nbytes
,
3070 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
3072 if (mem_cgroup_is_root(memcg
))
3074 return mem_cgroup_force_empty(memcg
) ?: nbytes
;
3077 static u64
mem_cgroup_hierarchy_read(struct cgroup_subsys_state
*css
,
3080 return mem_cgroup_from_css(css
)->use_hierarchy
;
3083 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state
*css
,
3084 struct cftype
*cft
, u64 val
)
3087 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3088 struct mem_cgroup
*parent_memcg
= mem_cgroup_from_css(memcg
->css
.parent
);
3090 mutex_lock(&memcg_create_mutex
);
3092 if (memcg
->use_hierarchy
== val
)
3096 * If parent's use_hierarchy is set, we can't make any modifications
3097 * in the child subtrees. If it is unset, then the change can
3098 * occur, provided the current cgroup has no children.
3100 * For the root cgroup, parent_mem is NULL, we allow value to be
3101 * set if there are no children.
3103 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
3104 (val
== 1 || val
== 0)) {
3105 if (!memcg_has_children(memcg
))
3106 memcg
->use_hierarchy
= val
;
3113 mutex_unlock(&memcg_create_mutex
);
3118 static unsigned long tree_stat(struct mem_cgroup
*memcg
,
3119 enum mem_cgroup_stat_index idx
)
3121 struct mem_cgroup
*iter
;
3124 /* Per-cpu values can be negative, use a signed accumulator */
3125 for_each_mem_cgroup_tree(iter
, memcg
)
3126 val
+= mem_cgroup_read_stat(iter
, idx
);
3128 if (val
< 0) /* race ? */
3133 static inline u64
mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
3137 if (mem_cgroup_is_root(memcg
)) {
3138 val
= tree_stat(memcg
, MEM_CGROUP_STAT_CACHE
);
3139 val
+= tree_stat(memcg
, MEM_CGROUP_STAT_RSS
);
3141 val
+= tree_stat(memcg
, MEM_CGROUP_STAT_SWAP
);
3144 val
= page_counter_read(&memcg
->memory
);
3146 val
= page_counter_read(&memcg
->memsw
);
3148 return val
<< PAGE_SHIFT
;
3159 static u64
mem_cgroup_read_u64(struct cgroup_subsys_state
*css
,
3162 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3163 struct page_counter
*counter
;
3165 switch (MEMFILE_TYPE(cft
->private)) {
3167 counter
= &memcg
->memory
;
3170 counter
= &memcg
->memsw
;
3173 counter
= &memcg
->kmem
;
3179 switch (MEMFILE_ATTR(cft
->private)) {
3181 if (counter
== &memcg
->memory
)
3182 return mem_cgroup_usage(memcg
, false);
3183 if (counter
== &memcg
->memsw
)
3184 return mem_cgroup_usage(memcg
, true);
3185 return (u64
)page_counter_read(counter
) * PAGE_SIZE
;
3187 return (u64
)counter
->limit
* PAGE_SIZE
;
3189 return (u64
)counter
->watermark
* PAGE_SIZE
;
3191 return counter
->failcnt
;
3192 case RES_SOFT_LIMIT
:
3193 return (u64
)memcg
->soft_limit
* PAGE_SIZE
;
3199 #ifdef CONFIG_MEMCG_KMEM
3200 static int memcg_activate_kmem(struct mem_cgroup
*memcg
,
3201 unsigned long nr_pages
)
3206 BUG_ON(memcg
->kmemcg_id
>= 0);
3207 BUG_ON(memcg
->kmem_acct_activated
);
3208 BUG_ON(memcg
->kmem_acct_active
);
3211 * For simplicity, we won't allow this to be disabled. It also can't
3212 * be changed if the cgroup has children already, or if tasks had
3215 * If tasks join before we set the limit, a person looking at
3216 * kmem.usage_in_bytes will have no way to determine when it took
3217 * place, which makes the value quite meaningless.
3219 * After it first became limited, changes in the value of the limit are
3220 * of course permitted.
3222 mutex_lock(&memcg_create_mutex
);
3223 if (cgroup_has_tasks(memcg
->css
.cgroup
) ||
3224 (memcg
->use_hierarchy
&& memcg_has_children(memcg
)))
3226 mutex_unlock(&memcg_create_mutex
);
3230 memcg_id
= memcg_alloc_cache_id();
3237 * We couldn't have accounted to this cgroup, because it hasn't got
3238 * activated yet, so this should succeed.
3240 err
= page_counter_limit(&memcg
->kmem
, nr_pages
);
3243 static_key_slow_inc(&memcg_kmem_enabled_key
);
3245 * A memory cgroup is considered kmem-active as soon as it gets
3246 * kmemcg_id. Setting the id after enabling static branching will
3247 * guarantee no one starts accounting before all call sites are
3250 memcg
->kmemcg_id
= memcg_id
;
3251 memcg
->kmem_acct_activated
= true;
3252 memcg
->kmem_acct_active
= true;
3257 static int memcg_update_kmem_limit(struct mem_cgroup
*memcg
,
3258 unsigned long limit
)
3262 mutex_lock(&memcg_limit_mutex
);
3263 if (!memcg_kmem_is_active(memcg
))
3264 ret
= memcg_activate_kmem(memcg
, limit
);
3266 ret
= page_counter_limit(&memcg
->kmem
, limit
);
3267 mutex_unlock(&memcg_limit_mutex
);
3271 static int memcg_propagate_kmem(struct mem_cgroup
*memcg
)
3274 struct mem_cgroup
*parent
= parent_mem_cgroup(memcg
);
3279 mutex_lock(&memcg_limit_mutex
);
3281 * If the parent cgroup is not kmem-active now, it cannot be activated
3282 * after this point, because it has at least one child already.
3284 if (memcg_kmem_is_active(parent
))
3285 ret
= memcg_activate_kmem(memcg
, PAGE_COUNTER_MAX
);
3286 mutex_unlock(&memcg_limit_mutex
);
3290 static int memcg_update_kmem_limit(struct mem_cgroup
*memcg
,
3291 unsigned long limit
)
3295 #endif /* CONFIG_MEMCG_KMEM */
3298 * The user of this function is...
3301 static ssize_t
mem_cgroup_write(struct kernfs_open_file
*of
,
3302 char *buf
, size_t nbytes
, loff_t off
)
3304 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
3305 unsigned long nr_pages
;
3308 buf
= strstrip(buf
);
3309 ret
= page_counter_memparse(buf
, "-1", &nr_pages
);
3313 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
3315 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
3319 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
3321 ret
= mem_cgroup_resize_limit(memcg
, nr_pages
);
3324 ret
= mem_cgroup_resize_memsw_limit(memcg
, nr_pages
);
3327 ret
= memcg_update_kmem_limit(memcg
, nr_pages
);
3331 case RES_SOFT_LIMIT
:
3332 memcg
->soft_limit
= nr_pages
;
3336 return ret
?: nbytes
;
3339 static ssize_t
mem_cgroup_reset(struct kernfs_open_file
*of
, char *buf
,
3340 size_t nbytes
, loff_t off
)
3342 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
3343 struct page_counter
*counter
;
3345 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
3347 counter
= &memcg
->memory
;
3350 counter
= &memcg
->memsw
;
3353 counter
= &memcg
->kmem
;
3359 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
3361 page_counter_reset_watermark(counter
);
3364 counter
->failcnt
= 0;
3373 static u64
mem_cgroup_move_charge_read(struct cgroup_subsys_state
*css
,
3376 return mem_cgroup_from_css(css
)->move_charge_at_immigrate
;
3380 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3381 struct cftype
*cft
, u64 val
)
3383 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3385 if (val
& ~MOVE_MASK
)
3389 * No kind of locking is needed in here, because ->can_attach() will
3390 * check this value once in the beginning of the process, and then carry
3391 * on with stale data. This means that changes to this value will only
3392 * affect task migrations starting after the change.
3394 memcg
->move_charge_at_immigrate
= val
;
3398 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3399 struct cftype
*cft
, u64 val
)
3406 static int memcg_numa_stat_show(struct seq_file
*m
, void *v
)
3410 unsigned int lru_mask
;
3413 static const struct numa_stat stats
[] = {
3414 { "total", LRU_ALL
},
3415 { "file", LRU_ALL_FILE
},
3416 { "anon", LRU_ALL_ANON
},
3417 { "unevictable", BIT(LRU_UNEVICTABLE
) },
3419 const struct numa_stat
*stat
;
3422 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
3424 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3425 nr
= mem_cgroup_nr_lru_pages(memcg
, stat
->lru_mask
);
3426 seq_printf(m
, "%s=%lu", stat
->name
, nr
);
3427 for_each_node_state(nid
, N_MEMORY
) {
3428 nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
3430 seq_printf(m
, " N%d=%lu", nid
, nr
);
3435 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3436 struct mem_cgroup
*iter
;
3439 for_each_mem_cgroup_tree(iter
, memcg
)
3440 nr
+= mem_cgroup_nr_lru_pages(iter
, stat
->lru_mask
);
3441 seq_printf(m
, "hierarchical_%s=%lu", stat
->name
, nr
);
3442 for_each_node_state(nid
, N_MEMORY
) {
3444 for_each_mem_cgroup_tree(iter
, memcg
)
3445 nr
+= mem_cgroup_node_nr_lru_pages(
3446 iter
, nid
, stat
->lru_mask
);
3447 seq_printf(m
, " N%d=%lu", nid
, nr
);
3454 #endif /* CONFIG_NUMA */
3456 static int memcg_stat_show(struct seq_file
*m
, void *v
)
3458 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
3459 unsigned long memory
, memsw
;
3460 struct mem_cgroup
*mi
;
3463 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names
) !=
3464 MEM_CGROUP_STAT_NSTATS
);
3465 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names
) !=
3466 MEM_CGROUP_EVENTS_NSTATS
);
3467 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names
) != NR_LRU_LISTS
);
3469 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
3470 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
3472 seq_printf(m
, "%s %ld\n", mem_cgroup_stat_names
[i
],
3473 mem_cgroup_read_stat(memcg
, i
) * PAGE_SIZE
);
3476 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++)
3477 seq_printf(m
, "%s %lu\n", mem_cgroup_events_names
[i
],
3478 mem_cgroup_read_events(memcg
, i
));
3480 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
3481 seq_printf(m
, "%s %lu\n", mem_cgroup_lru_names
[i
],
3482 mem_cgroup_nr_lru_pages(memcg
, BIT(i
)) * PAGE_SIZE
);
3484 /* Hierarchical information */
3485 memory
= memsw
= PAGE_COUNTER_MAX
;
3486 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
)) {
3487 memory
= min(memory
, mi
->memory
.limit
);
3488 memsw
= min(memsw
, mi
->memsw
.limit
);
3490 seq_printf(m
, "hierarchical_memory_limit %llu\n",
3491 (u64
)memory
* PAGE_SIZE
);
3492 if (do_swap_account
)
3493 seq_printf(m
, "hierarchical_memsw_limit %llu\n",
3494 (u64
)memsw
* PAGE_SIZE
);
3496 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
3499 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
3501 for_each_mem_cgroup_tree(mi
, memcg
)
3502 val
+= mem_cgroup_read_stat(mi
, i
) * PAGE_SIZE
;
3503 seq_printf(m
, "total_%s %lld\n", mem_cgroup_stat_names
[i
], val
);
3506 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
3507 unsigned long long val
= 0;
3509 for_each_mem_cgroup_tree(mi
, memcg
)
3510 val
+= mem_cgroup_read_events(mi
, i
);
3511 seq_printf(m
, "total_%s %llu\n",
3512 mem_cgroup_events_names
[i
], val
);
3515 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
3516 unsigned long long val
= 0;
3518 for_each_mem_cgroup_tree(mi
, memcg
)
3519 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
)) * PAGE_SIZE
;
3520 seq_printf(m
, "total_%s %llu\n", mem_cgroup_lru_names
[i
], val
);
3523 #ifdef CONFIG_DEBUG_VM
3526 struct mem_cgroup_per_zone
*mz
;
3527 struct zone_reclaim_stat
*rstat
;
3528 unsigned long recent_rotated
[2] = {0, 0};
3529 unsigned long recent_scanned
[2] = {0, 0};
3531 for_each_online_node(nid
)
3532 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
3533 mz
= &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
3534 rstat
= &mz
->lruvec
.reclaim_stat
;
3536 recent_rotated
[0] += rstat
->recent_rotated
[0];
3537 recent_rotated
[1] += rstat
->recent_rotated
[1];
3538 recent_scanned
[0] += rstat
->recent_scanned
[0];
3539 recent_scanned
[1] += rstat
->recent_scanned
[1];
3541 seq_printf(m
, "recent_rotated_anon %lu\n", recent_rotated
[0]);
3542 seq_printf(m
, "recent_rotated_file %lu\n", recent_rotated
[1]);
3543 seq_printf(m
, "recent_scanned_anon %lu\n", recent_scanned
[0]);
3544 seq_printf(m
, "recent_scanned_file %lu\n", recent_scanned
[1]);
3551 static u64
mem_cgroup_swappiness_read(struct cgroup_subsys_state
*css
,
3554 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3556 return mem_cgroup_swappiness(memcg
);
3559 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state
*css
,
3560 struct cftype
*cft
, u64 val
)
3562 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3568 memcg
->swappiness
= val
;
3570 vm_swappiness
= val
;
3575 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
3577 struct mem_cgroup_threshold_ary
*t
;
3578 unsigned long usage
;
3583 t
= rcu_dereference(memcg
->thresholds
.primary
);
3585 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
3590 usage
= mem_cgroup_usage(memcg
, swap
);
3593 * current_threshold points to threshold just below or equal to usage.
3594 * If it's not true, a threshold was crossed after last
3595 * call of __mem_cgroup_threshold().
3597 i
= t
->current_threshold
;
3600 * Iterate backward over array of thresholds starting from
3601 * current_threshold and check if a threshold is crossed.
3602 * If none of thresholds below usage is crossed, we read
3603 * only one element of the array here.
3605 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
3606 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3608 /* i = current_threshold + 1 */
3612 * Iterate forward over array of thresholds starting from
3613 * current_threshold+1 and check if a threshold is crossed.
3614 * If none of thresholds above usage is crossed, we read
3615 * only one element of the array here.
3617 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
3618 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3620 /* Update current_threshold */
3621 t
->current_threshold
= i
- 1;
3626 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
3629 __mem_cgroup_threshold(memcg
, false);
3630 if (do_swap_account
)
3631 __mem_cgroup_threshold(memcg
, true);
3633 memcg
= parent_mem_cgroup(memcg
);
3637 static int compare_thresholds(const void *a
, const void *b
)
3639 const struct mem_cgroup_threshold
*_a
= a
;
3640 const struct mem_cgroup_threshold
*_b
= b
;
3642 if (_a
->threshold
> _b
->threshold
)
3645 if (_a
->threshold
< _b
->threshold
)
3651 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
3653 struct mem_cgroup_eventfd_list
*ev
;
3655 spin_lock(&memcg_oom_lock
);
3657 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
3658 eventfd_signal(ev
->eventfd
, 1);
3660 spin_unlock(&memcg_oom_lock
);
3664 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
3666 struct mem_cgroup
*iter
;
3668 for_each_mem_cgroup_tree(iter
, memcg
)
3669 mem_cgroup_oom_notify_cb(iter
);
3672 static int __mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3673 struct eventfd_ctx
*eventfd
, const char *args
, enum res_type type
)
3675 struct mem_cgroup_thresholds
*thresholds
;
3676 struct mem_cgroup_threshold_ary
*new;
3677 unsigned long threshold
;
3678 unsigned long usage
;
3681 ret
= page_counter_memparse(args
, "-1", &threshold
);
3685 mutex_lock(&memcg
->thresholds_lock
);
3688 thresholds
= &memcg
->thresholds
;
3689 usage
= mem_cgroup_usage(memcg
, false);
3690 } else if (type
== _MEMSWAP
) {
3691 thresholds
= &memcg
->memsw_thresholds
;
3692 usage
= mem_cgroup_usage(memcg
, true);
3696 /* Check if a threshold crossed before adding a new one */
3697 if (thresholds
->primary
)
3698 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3700 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
3702 /* Allocate memory for new array of thresholds */
3703 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
3711 /* Copy thresholds (if any) to new array */
3712 if (thresholds
->primary
) {
3713 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
3714 sizeof(struct mem_cgroup_threshold
));
3717 /* Add new threshold */
3718 new->entries
[size
- 1].eventfd
= eventfd
;
3719 new->entries
[size
- 1].threshold
= threshold
;
3721 /* Sort thresholds. Registering of new threshold isn't time-critical */
3722 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
3723 compare_thresholds
, NULL
);
3725 /* Find current threshold */
3726 new->current_threshold
= -1;
3727 for (i
= 0; i
< size
; i
++) {
3728 if (new->entries
[i
].threshold
<= usage
) {
3730 * new->current_threshold will not be used until
3731 * rcu_assign_pointer(), so it's safe to increment
3734 ++new->current_threshold
;
3739 /* Free old spare buffer and save old primary buffer as spare */
3740 kfree(thresholds
->spare
);
3741 thresholds
->spare
= thresholds
->primary
;
3743 rcu_assign_pointer(thresholds
->primary
, new);
3745 /* To be sure that nobody uses thresholds */
3749 mutex_unlock(&memcg
->thresholds_lock
);
3754 static int mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3755 struct eventfd_ctx
*eventfd
, const char *args
)
3757 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEM
);
3760 static int memsw_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3761 struct eventfd_ctx
*eventfd
, const char *args
)
3763 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEMSWAP
);
3766 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3767 struct eventfd_ctx
*eventfd
, enum res_type type
)
3769 struct mem_cgroup_thresholds
*thresholds
;
3770 struct mem_cgroup_threshold_ary
*new;
3771 unsigned long usage
;
3774 mutex_lock(&memcg
->thresholds_lock
);
3777 thresholds
= &memcg
->thresholds
;
3778 usage
= mem_cgroup_usage(memcg
, false);
3779 } else if (type
== _MEMSWAP
) {
3780 thresholds
= &memcg
->memsw_thresholds
;
3781 usage
= mem_cgroup_usage(memcg
, true);
3785 if (!thresholds
->primary
)
3788 /* Check if a threshold crossed before removing */
3789 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3791 /* Calculate new number of threshold */
3793 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
3794 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
3798 new = thresholds
->spare
;
3800 /* Set thresholds array to NULL if we don't have thresholds */
3809 /* Copy thresholds and find current threshold */
3810 new->current_threshold
= -1;
3811 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
3812 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
3815 new->entries
[j
] = thresholds
->primary
->entries
[i
];
3816 if (new->entries
[j
].threshold
<= usage
) {
3818 * new->current_threshold will not be used
3819 * until rcu_assign_pointer(), so it's safe to increment
3822 ++new->current_threshold
;
3828 /* Swap primary and spare array */
3829 thresholds
->spare
= thresholds
->primary
;
3830 /* If all events are unregistered, free the spare array */
3832 kfree(thresholds
->spare
);
3833 thresholds
->spare
= NULL
;
3836 rcu_assign_pointer(thresholds
->primary
, new);
3838 /* To be sure that nobody uses thresholds */
3841 mutex_unlock(&memcg
->thresholds_lock
);
3844 static void mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3845 struct eventfd_ctx
*eventfd
)
3847 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEM
);
3850 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3851 struct eventfd_ctx
*eventfd
)
3853 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEMSWAP
);
3856 static int mem_cgroup_oom_register_event(struct mem_cgroup
*memcg
,
3857 struct eventfd_ctx
*eventfd
, const char *args
)
3859 struct mem_cgroup_eventfd_list
*event
;
3861 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
3865 spin_lock(&memcg_oom_lock
);
3867 event
->eventfd
= eventfd
;
3868 list_add(&event
->list
, &memcg
->oom_notify
);
3870 /* already in OOM ? */
3871 if (memcg
->under_oom
)
3872 eventfd_signal(eventfd
, 1);
3873 spin_unlock(&memcg_oom_lock
);
3878 static void mem_cgroup_oom_unregister_event(struct mem_cgroup
*memcg
,
3879 struct eventfd_ctx
*eventfd
)
3881 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
3883 spin_lock(&memcg_oom_lock
);
3885 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
3886 if (ev
->eventfd
== eventfd
) {
3887 list_del(&ev
->list
);
3892 spin_unlock(&memcg_oom_lock
);
3895 static int mem_cgroup_oom_control_read(struct seq_file
*sf
, void *v
)
3897 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(sf
));
3899 seq_printf(sf
, "oom_kill_disable %d\n", memcg
->oom_kill_disable
);
3900 seq_printf(sf
, "under_oom %d\n", (bool)memcg
->under_oom
);
3904 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state
*css
,
3905 struct cftype
*cft
, u64 val
)
3907 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3909 /* cannot set to root cgroup and only 0 and 1 are allowed */
3910 if (!css
->parent
|| !((val
== 0) || (val
== 1)))
3913 memcg
->oom_kill_disable
= val
;
3915 memcg_oom_recover(memcg
);
3920 #ifdef CONFIG_MEMCG_KMEM
3921 static int memcg_init_kmem(struct mem_cgroup
*memcg
, struct cgroup_subsys
*ss
)
3925 ret
= memcg_propagate_kmem(memcg
);
3929 return mem_cgroup_sockets_init(memcg
, ss
);
3932 static void memcg_deactivate_kmem(struct mem_cgroup
*memcg
)
3934 struct cgroup_subsys_state
*css
;
3935 struct mem_cgroup
*parent
, *child
;
3938 if (!memcg
->kmem_acct_active
)
3942 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3943 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3944 * guarantees no cache will be created for this cgroup after we are
3945 * done (see memcg_create_kmem_cache()).
3947 memcg
->kmem_acct_active
= false;
3949 memcg_deactivate_kmem_caches(memcg
);
3951 kmemcg_id
= memcg
->kmemcg_id
;
3952 BUG_ON(kmemcg_id
< 0);
3954 parent
= parent_mem_cgroup(memcg
);
3956 parent
= root_mem_cgroup
;
3959 * Change kmemcg_id of this cgroup and all its descendants to the
3960 * parent's id, and then move all entries from this cgroup's list_lrus
3961 * to ones of the parent. After we have finished, all list_lrus
3962 * corresponding to this cgroup are guaranteed to remain empty. The
3963 * ordering is imposed by list_lru_node->lock taken by
3964 * memcg_drain_all_list_lrus().
3966 css_for_each_descendant_pre(css
, &memcg
->css
) {
3967 child
= mem_cgroup_from_css(css
);
3968 BUG_ON(child
->kmemcg_id
!= kmemcg_id
);
3969 child
->kmemcg_id
= parent
->kmemcg_id
;
3970 if (!memcg
->use_hierarchy
)
3973 memcg_drain_all_list_lrus(kmemcg_id
, parent
->kmemcg_id
);
3975 memcg_free_cache_id(kmemcg_id
);
3978 static void memcg_destroy_kmem(struct mem_cgroup
*memcg
)
3980 if (memcg
->kmem_acct_activated
) {
3981 memcg_destroy_kmem_caches(memcg
);
3982 static_key_slow_dec(&memcg_kmem_enabled_key
);
3983 WARN_ON(page_counter_read(&memcg
->kmem
));
3985 mem_cgroup_sockets_destroy(memcg
);
3988 static int memcg_init_kmem(struct mem_cgroup
*memcg
, struct cgroup_subsys
*ss
)
3993 static void memcg_deactivate_kmem(struct mem_cgroup
*memcg
)
3997 static void memcg_destroy_kmem(struct mem_cgroup
*memcg
)
4002 #ifdef CONFIG_CGROUP_WRITEBACK
4004 struct list_head
*mem_cgroup_cgwb_list(struct mem_cgroup
*memcg
)
4006 return &memcg
->cgwb_list
;
4009 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
4011 return wb_domain_init(&memcg
->cgwb_domain
, gfp
);
4014 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
4016 wb_domain_exit(&memcg
->cgwb_domain
);
4019 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
4021 wb_domain_size_changed(&memcg
->cgwb_domain
);
4024 struct wb_domain
*mem_cgroup_wb_domain(struct bdi_writeback
*wb
)
4026 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
4028 if (!memcg
->css
.parent
)
4031 return &memcg
->cgwb_domain
;
4035 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4036 * @wb: bdi_writeback in question
4037 * @pavail: out parameter for number of available pages
4038 * @pdirty: out parameter for number of dirty pages
4039 * @pwriteback: out parameter for number of pages under writeback
4041 * Determine the numbers of available, dirty, and writeback pages in @wb's
4042 * memcg. Dirty and writeback are self-explanatory. Available is a bit
4045 * A memcg's headroom is "min(max, high) - used". The available memory is
4046 * calculated as the lowest headroom of itself and the ancestors plus the
4047 * number of pages already being used for file pages. Note that this
4048 * doesn't consider the actual amount of available memory in the system.
4049 * The caller should further cap *@pavail accordingly.
4051 void mem_cgroup_wb_stats(struct bdi_writeback
*wb
, unsigned long *pavail
,
4052 unsigned long *pdirty
, unsigned long *pwriteback
)
4054 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
4055 struct mem_cgroup
*parent
;
4056 unsigned long head_room
= PAGE_COUNTER_MAX
;
4057 unsigned long file_pages
;
4059 *pdirty
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_DIRTY
);
4061 /* this should eventually include NR_UNSTABLE_NFS */
4062 *pwriteback
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_WRITEBACK
);
4064 file_pages
= mem_cgroup_nr_lru_pages(memcg
, (1 << LRU_INACTIVE_FILE
) |
4065 (1 << LRU_ACTIVE_FILE
));
4066 while ((parent
= parent_mem_cgroup(memcg
))) {
4067 unsigned long ceiling
= min(memcg
->memory
.limit
, memcg
->high
);
4068 unsigned long used
= page_counter_read(&memcg
->memory
);
4070 head_room
= min(head_room
, ceiling
- min(ceiling
, used
));
4074 *pavail
= file_pages
+ head_room
;
4077 #else /* CONFIG_CGROUP_WRITEBACK */
4079 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
4084 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
4088 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
4092 #endif /* CONFIG_CGROUP_WRITEBACK */
4095 * DO NOT USE IN NEW FILES.
4097 * "cgroup.event_control" implementation.
4099 * This is way over-engineered. It tries to support fully configurable
4100 * events for each user. Such level of flexibility is completely
4101 * unnecessary especially in the light of the planned unified hierarchy.
4103 * Please deprecate this and replace with something simpler if at all
4108 * Unregister event and free resources.
4110 * Gets called from workqueue.
4112 static void memcg_event_remove(struct work_struct
*work
)
4114 struct mem_cgroup_event
*event
=
4115 container_of(work
, struct mem_cgroup_event
, remove
);
4116 struct mem_cgroup
*memcg
= event
->memcg
;
4118 remove_wait_queue(event
->wqh
, &event
->wait
);
4120 event
->unregister_event(memcg
, event
->eventfd
);
4122 /* Notify userspace the event is going away. */
4123 eventfd_signal(event
->eventfd
, 1);
4125 eventfd_ctx_put(event
->eventfd
);
4127 css_put(&memcg
->css
);
4131 * Gets called on POLLHUP on eventfd when user closes it.
4133 * Called with wqh->lock held and interrupts disabled.
4135 static int memcg_event_wake(wait_queue_t
*wait
, unsigned mode
,
4136 int sync
, void *key
)
4138 struct mem_cgroup_event
*event
=
4139 container_of(wait
, struct mem_cgroup_event
, wait
);
4140 struct mem_cgroup
*memcg
= event
->memcg
;
4141 unsigned long flags
= (unsigned long)key
;
4143 if (flags
& POLLHUP
) {
4145 * If the event has been detached at cgroup removal, we
4146 * can simply return knowing the other side will cleanup
4149 * We can't race against event freeing since the other
4150 * side will require wqh->lock via remove_wait_queue(),
4153 spin_lock(&memcg
->event_list_lock
);
4154 if (!list_empty(&event
->list
)) {
4155 list_del_init(&event
->list
);
4157 * We are in atomic context, but cgroup_event_remove()
4158 * may sleep, so we have to call it in workqueue.
4160 schedule_work(&event
->remove
);
4162 spin_unlock(&memcg
->event_list_lock
);
4168 static void memcg_event_ptable_queue_proc(struct file
*file
,
4169 wait_queue_head_t
*wqh
, poll_table
*pt
)
4171 struct mem_cgroup_event
*event
=
4172 container_of(pt
, struct mem_cgroup_event
, pt
);
4175 add_wait_queue(wqh
, &event
->wait
);
4179 * DO NOT USE IN NEW FILES.
4181 * Parse input and register new cgroup event handler.
4183 * Input must be in format '<event_fd> <control_fd> <args>'.
4184 * Interpretation of args is defined by control file implementation.
4186 static ssize_t
memcg_write_event_control(struct kernfs_open_file
*of
,
4187 char *buf
, size_t nbytes
, loff_t off
)
4189 struct cgroup_subsys_state
*css
= of_css(of
);
4190 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4191 struct mem_cgroup_event
*event
;
4192 struct cgroup_subsys_state
*cfile_css
;
4193 unsigned int efd
, cfd
;
4200 buf
= strstrip(buf
);
4202 efd
= simple_strtoul(buf
, &endp
, 10);
4207 cfd
= simple_strtoul(buf
, &endp
, 10);
4208 if ((*endp
!= ' ') && (*endp
!= '\0'))
4212 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
4216 event
->memcg
= memcg
;
4217 INIT_LIST_HEAD(&event
->list
);
4218 init_poll_funcptr(&event
->pt
, memcg_event_ptable_queue_proc
);
4219 init_waitqueue_func_entry(&event
->wait
, memcg_event_wake
);
4220 INIT_WORK(&event
->remove
, memcg_event_remove
);
4228 event
->eventfd
= eventfd_ctx_fileget(efile
.file
);
4229 if (IS_ERR(event
->eventfd
)) {
4230 ret
= PTR_ERR(event
->eventfd
);
4237 goto out_put_eventfd
;
4240 /* the process need read permission on control file */
4241 /* AV: shouldn't we check that it's been opened for read instead? */
4242 ret
= inode_permission(file_inode(cfile
.file
), MAY_READ
);
4247 * Determine the event callbacks and set them in @event. This used
4248 * to be done via struct cftype but cgroup core no longer knows
4249 * about these events. The following is crude but the whole thing
4250 * is for compatibility anyway.
4252 * DO NOT ADD NEW FILES.
4254 name
= cfile
.file
->f_path
.dentry
->d_name
.name
;
4256 if (!strcmp(name
, "memory.usage_in_bytes")) {
4257 event
->register_event
= mem_cgroup_usage_register_event
;
4258 event
->unregister_event
= mem_cgroup_usage_unregister_event
;
4259 } else if (!strcmp(name
, "memory.oom_control")) {
4260 event
->register_event
= mem_cgroup_oom_register_event
;
4261 event
->unregister_event
= mem_cgroup_oom_unregister_event
;
4262 } else if (!strcmp(name
, "memory.pressure_level")) {
4263 event
->register_event
= vmpressure_register_event
;
4264 event
->unregister_event
= vmpressure_unregister_event
;
4265 } else if (!strcmp(name
, "memory.memsw.usage_in_bytes")) {
4266 event
->register_event
= memsw_cgroup_usage_register_event
;
4267 event
->unregister_event
= memsw_cgroup_usage_unregister_event
;
4274 * Verify @cfile should belong to @css. Also, remaining events are
4275 * automatically removed on cgroup destruction but the removal is
4276 * asynchronous, so take an extra ref on @css.
4278 cfile_css
= css_tryget_online_from_dir(cfile
.file
->f_path
.dentry
->d_parent
,
4279 &memory_cgrp_subsys
);
4281 if (IS_ERR(cfile_css
))
4283 if (cfile_css
!= css
) {
4288 ret
= event
->register_event(memcg
, event
->eventfd
, buf
);
4292 efile
.file
->f_op
->poll(efile
.file
, &event
->pt
);
4294 spin_lock(&memcg
->event_list_lock
);
4295 list_add(&event
->list
, &memcg
->event_list
);
4296 spin_unlock(&memcg
->event_list_lock
);
4308 eventfd_ctx_put(event
->eventfd
);
4317 static struct cftype mem_cgroup_legacy_files
[] = {
4319 .name
= "usage_in_bytes",
4320 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
4321 .read_u64
= mem_cgroup_read_u64
,
4324 .name
= "max_usage_in_bytes",
4325 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
4326 .write
= mem_cgroup_reset
,
4327 .read_u64
= mem_cgroup_read_u64
,
4330 .name
= "limit_in_bytes",
4331 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
4332 .write
= mem_cgroup_write
,
4333 .read_u64
= mem_cgroup_read_u64
,
4336 .name
= "soft_limit_in_bytes",
4337 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
4338 .write
= mem_cgroup_write
,
4339 .read_u64
= mem_cgroup_read_u64
,
4343 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
4344 .write
= mem_cgroup_reset
,
4345 .read_u64
= mem_cgroup_read_u64
,
4349 .seq_show
= memcg_stat_show
,
4352 .name
= "force_empty",
4353 .write
= mem_cgroup_force_empty_write
,
4356 .name
= "use_hierarchy",
4357 .write_u64
= mem_cgroup_hierarchy_write
,
4358 .read_u64
= mem_cgroup_hierarchy_read
,
4361 .name
= "cgroup.event_control", /* XXX: for compat */
4362 .write
= memcg_write_event_control
,
4363 .flags
= CFTYPE_NO_PREFIX
,
4367 .name
= "swappiness",
4368 .read_u64
= mem_cgroup_swappiness_read
,
4369 .write_u64
= mem_cgroup_swappiness_write
,
4372 .name
= "move_charge_at_immigrate",
4373 .read_u64
= mem_cgroup_move_charge_read
,
4374 .write_u64
= mem_cgroup_move_charge_write
,
4377 .name
= "oom_control",
4378 .seq_show
= mem_cgroup_oom_control_read
,
4379 .write_u64
= mem_cgroup_oom_control_write
,
4380 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
4383 .name
= "pressure_level",
4387 .name
= "numa_stat",
4388 .seq_show
= memcg_numa_stat_show
,
4391 #ifdef CONFIG_MEMCG_KMEM
4393 .name
= "kmem.limit_in_bytes",
4394 .private = MEMFILE_PRIVATE(_KMEM
, RES_LIMIT
),
4395 .write
= mem_cgroup_write
,
4396 .read_u64
= mem_cgroup_read_u64
,
4399 .name
= "kmem.usage_in_bytes",
4400 .private = MEMFILE_PRIVATE(_KMEM
, RES_USAGE
),
4401 .read_u64
= mem_cgroup_read_u64
,
4404 .name
= "kmem.failcnt",
4405 .private = MEMFILE_PRIVATE(_KMEM
, RES_FAILCNT
),
4406 .write
= mem_cgroup_reset
,
4407 .read_u64
= mem_cgroup_read_u64
,
4410 .name
= "kmem.max_usage_in_bytes",
4411 .private = MEMFILE_PRIVATE(_KMEM
, RES_MAX_USAGE
),
4412 .write
= mem_cgroup_reset
,
4413 .read_u64
= mem_cgroup_read_u64
,
4415 #ifdef CONFIG_SLABINFO
4417 .name
= "kmem.slabinfo",
4418 .seq_start
= slab_start
,
4419 .seq_next
= slab_next
,
4420 .seq_stop
= slab_stop
,
4421 .seq_show
= memcg_slab_show
,
4425 { }, /* terminate */
4428 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
4430 struct mem_cgroup_per_node
*pn
;
4431 struct mem_cgroup_per_zone
*mz
;
4432 int zone
, tmp
= node
;
4434 * This routine is called against possible nodes.
4435 * But it's BUG to call kmalloc() against offline node.
4437 * TODO: this routine can waste much memory for nodes which will
4438 * never be onlined. It's better to use memory hotplug callback
4441 if (!node_state(node
, N_NORMAL_MEMORY
))
4443 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4447 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4448 mz
= &pn
->zoneinfo
[zone
];
4449 lruvec_init(&mz
->lruvec
);
4450 mz
->usage_in_excess
= 0;
4451 mz
->on_tree
= false;
4454 memcg
->nodeinfo
[node
] = pn
;
4458 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
4460 kfree(memcg
->nodeinfo
[node
]);
4463 static struct mem_cgroup
*mem_cgroup_alloc(void)
4465 struct mem_cgroup
*memcg
;
4468 size
= sizeof(struct mem_cgroup
);
4469 size
+= nr_node_ids
* sizeof(struct mem_cgroup_per_node
*);
4471 memcg
= kzalloc(size
, GFP_KERNEL
);
4475 memcg
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
4479 if (memcg_wb_domain_init(memcg
, GFP_KERNEL
))
4482 spin_lock_init(&memcg
->pcp_counter_lock
);
4486 free_percpu(memcg
->stat
);
4493 * At destroying mem_cgroup, references from swap_cgroup can remain.
4494 * (scanning all at force_empty is too costly...)
4496 * Instead of clearing all references at force_empty, we remember
4497 * the number of reference from swap_cgroup and free mem_cgroup when
4498 * it goes down to 0.
4500 * Removal of cgroup itself succeeds regardless of refs from swap.
4503 static void __mem_cgroup_free(struct mem_cgroup
*memcg
)
4507 mem_cgroup_remove_from_trees(memcg
);
4510 free_mem_cgroup_per_zone_info(memcg
, node
);
4512 free_percpu(memcg
->stat
);
4513 memcg_wb_domain_exit(memcg
);
4518 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4520 struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*memcg
)
4522 if (!memcg
->memory
.parent
)
4524 return mem_cgroup_from_counter(memcg
->memory
.parent
, memory
);
4526 EXPORT_SYMBOL(parent_mem_cgroup
);
4528 static struct cgroup_subsys_state
* __ref
4529 mem_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
4531 struct mem_cgroup
*memcg
;
4532 long error
= -ENOMEM
;
4535 memcg
= mem_cgroup_alloc();
4537 return ERR_PTR(error
);
4540 if (alloc_mem_cgroup_per_zone_info(memcg
, node
))
4544 if (parent_css
== NULL
) {
4545 root_mem_cgroup
= memcg
;
4546 mem_cgroup_root_css
= &memcg
->css
;
4547 page_counter_init(&memcg
->memory
, NULL
);
4548 memcg
->high
= PAGE_COUNTER_MAX
;
4549 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4550 page_counter_init(&memcg
->memsw
, NULL
);
4551 page_counter_init(&memcg
->kmem
, NULL
);
4554 memcg
->last_scanned_node
= MAX_NUMNODES
;
4555 INIT_LIST_HEAD(&memcg
->oom_notify
);
4556 memcg
->move_charge_at_immigrate
= 0;
4557 mutex_init(&memcg
->thresholds_lock
);
4558 spin_lock_init(&memcg
->move_lock
);
4559 vmpressure_init(&memcg
->vmpressure
);
4560 INIT_LIST_HEAD(&memcg
->event_list
);
4561 spin_lock_init(&memcg
->event_list_lock
);
4562 #ifdef CONFIG_MEMCG_KMEM
4563 memcg
->kmemcg_id
= -1;
4565 #ifdef CONFIG_CGROUP_WRITEBACK
4566 INIT_LIST_HEAD(&memcg
->cgwb_list
);
4571 __mem_cgroup_free(memcg
);
4572 return ERR_PTR(error
);
4576 mem_cgroup_css_online(struct cgroup_subsys_state
*css
)
4578 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4579 struct mem_cgroup
*parent
= mem_cgroup_from_css(css
->parent
);
4582 if (css
->id
> MEM_CGROUP_ID_MAX
)
4588 mutex_lock(&memcg_create_mutex
);
4590 memcg
->use_hierarchy
= parent
->use_hierarchy
;
4591 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
4592 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
4594 if (parent
->use_hierarchy
) {
4595 page_counter_init(&memcg
->memory
, &parent
->memory
);
4596 memcg
->high
= PAGE_COUNTER_MAX
;
4597 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4598 page_counter_init(&memcg
->memsw
, &parent
->memsw
);
4599 page_counter_init(&memcg
->kmem
, &parent
->kmem
);
4602 * No need to take a reference to the parent because cgroup
4603 * core guarantees its existence.
4606 page_counter_init(&memcg
->memory
, NULL
);
4607 memcg
->high
= PAGE_COUNTER_MAX
;
4608 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4609 page_counter_init(&memcg
->memsw
, NULL
);
4610 page_counter_init(&memcg
->kmem
, NULL
);
4612 * Deeper hierachy with use_hierarchy == false doesn't make
4613 * much sense so let cgroup subsystem know about this
4614 * unfortunate state in our controller.
4616 if (parent
!= root_mem_cgroup
)
4617 memory_cgrp_subsys
.broken_hierarchy
= true;
4619 mutex_unlock(&memcg_create_mutex
);
4621 ret
= memcg_init_kmem(memcg
, &memory_cgrp_subsys
);
4626 * Make sure the memcg is initialized: mem_cgroup_iter()
4627 * orders reading memcg->initialized against its callers
4628 * reading the memcg members.
4630 smp_store_release(&memcg
->initialized
, 1);
4635 static void mem_cgroup_css_offline(struct cgroup_subsys_state
*css
)
4637 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4638 struct mem_cgroup_event
*event
, *tmp
;
4641 * Unregister events and notify userspace.
4642 * Notify userspace about cgroup removing only after rmdir of cgroup
4643 * directory to avoid race between userspace and kernelspace.
4645 spin_lock(&memcg
->event_list_lock
);
4646 list_for_each_entry_safe(event
, tmp
, &memcg
->event_list
, list
) {
4647 list_del_init(&event
->list
);
4648 schedule_work(&event
->remove
);
4650 spin_unlock(&memcg
->event_list_lock
);
4652 vmpressure_cleanup(&memcg
->vmpressure
);
4654 memcg_deactivate_kmem(memcg
);
4656 wb_memcg_offline(memcg
);
4659 static void mem_cgroup_css_free(struct cgroup_subsys_state
*css
)
4661 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4663 memcg_destroy_kmem(memcg
);
4664 __mem_cgroup_free(memcg
);
4668 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4669 * @css: the target css
4671 * Reset the states of the mem_cgroup associated with @css. This is
4672 * invoked when the userland requests disabling on the default hierarchy
4673 * but the memcg is pinned through dependency. The memcg should stop
4674 * applying policies and should revert to the vanilla state as it may be
4675 * made visible again.
4677 * The current implementation only resets the essential configurations.
4678 * This needs to be expanded to cover all the visible parts.
4680 static void mem_cgroup_css_reset(struct cgroup_subsys_state
*css
)
4682 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4684 mem_cgroup_resize_limit(memcg
, PAGE_COUNTER_MAX
);
4685 mem_cgroup_resize_memsw_limit(memcg
, PAGE_COUNTER_MAX
);
4686 memcg_update_kmem_limit(memcg
, PAGE_COUNTER_MAX
);
4688 memcg
->high
= PAGE_COUNTER_MAX
;
4689 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4690 memcg_wb_domain_size_changed(memcg
);
4694 /* Handlers for move charge at task migration. */
4695 static int mem_cgroup_do_precharge(unsigned long count
)
4699 /* Try a single bulk charge without reclaim first */
4700 ret
= try_charge(mc
.to
, GFP_KERNEL
& ~__GFP_WAIT
, count
);
4702 mc
.precharge
+= count
;
4705 if (ret
== -EINTR
) {
4706 cancel_charge(root_mem_cgroup
, count
);
4710 /* Try charges one by one with reclaim */
4712 ret
= try_charge(mc
.to
, GFP_KERNEL
& ~__GFP_NORETRY
, 1);
4714 * In case of failure, any residual charges against
4715 * mc.to will be dropped by mem_cgroup_clear_mc()
4716 * later on. However, cancel any charges that are
4717 * bypassed to root right away or they'll be lost.
4720 cancel_charge(root_mem_cgroup
, 1);
4730 * get_mctgt_type - get target type of moving charge
4731 * @vma: the vma the pte to be checked belongs
4732 * @addr: the address corresponding to the pte to be checked
4733 * @ptent: the pte to be checked
4734 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4737 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4738 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4739 * move charge. if @target is not NULL, the page is stored in target->page
4740 * with extra refcnt got(Callers should handle it).
4741 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4742 * target for charge migration. if @target is not NULL, the entry is stored
4745 * Called with pte lock held.
4752 enum mc_target_type
{
4758 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
4759 unsigned long addr
, pte_t ptent
)
4761 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
4763 if (!page
|| !page_mapped(page
))
4765 if (PageAnon(page
)) {
4766 if (!(mc
.flags
& MOVE_ANON
))
4769 if (!(mc
.flags
& MOVE_FILE
))
4772 if (!get_page_unless_zero(page
))
4779 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4780 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4782 struct page
*page
= NULL
;
4783 swp_entry_t ent
= pte_to_swp_entry(ptent
);
4785 if (!(mc
.flags
& MOVE_ANON
) || non_swap_entry(ent
))
4788 * Because lookup_swap_cache() updates some statistics counter,
4789 * we call find_get_page() with swapper_space directly.
4791 page
= find_get_page(swap_address_space(ent
), ent
.val
);
4792 if (do_swap_account
)
4793 entry
->val
= ent
.val
;
4798 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4799 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4805 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
4806 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4808 struct page
*page
= NULL
;
4809 struct address_space
*mapping
;
4812 if (!vma
->vm_file
) /* anonymous vma */
4814 if (!(mc
.flags
& MOVE_FILE
))
4817 mapping
= vma
->vm_file
->f_mapping
;
4818 pgoff
= linear_page_index(vma
, addr
);
4820 /* page is moved even if it's not RSS of this task(page-faulted). */
4822 /* shmem/tmpfs may report page out on swap: account for that too. */
4823 if (shmem_mapping(mapping
)) {
4824 page
= find_get_entry(mapping
, pgoff
);
4825 if (radix_tree_exceptional_entry(page
)) {
4826 swp_entry_t swp
= radix_to_swp_entry(page
);
4827 if (do_swap_account
)
4829 page
= find_get_page(swap_address_space(swp
), swp
.val
);
4832 page
= find_get_page(mapping
, pgoff
);
4834 page
= find_get_page(mapping
, pgoff
);
4840 * mem_cgroup_move_account - move account of the page
4842 * @nr_pages: number of regular pages (>1 for huge pages)
4843 * @from: mem_cgroup which the page is moved from.
4844 * @to: mem_cgroup which the page is moved to. @from != @to.
4846 * The caller must confirm following.
4847 * - page is not on LRU (isolate_page() is useful.)
4848 * - compound_lock is held when nr_pages > 1
4850 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4853 static int mem_cgroup_move_account(struct page
*page
,
4854 unsigned int nr_pages
,
4855 struct mem_cgroup
*from
,
4856 struct mem_cgroup
*to
)
4858 unsigned long flags
;
4862 VM_BUG_ON(from
== to
);
4863 VM_BUG_ON_PAGE(PageLRU(page
), page
);
4865 * The page is isolated from LRU. So, collapse function
4866 * will not handle this page. But page splitting can happen.
4867 * Do this check under compound_page_lock(). The caller should
4871 if (nr_pages
> 1 && !PageTransHuge(page
))
4875 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
4876 * of its source page while we change it: page migration takes
4877 * both pages off the LRU, but page cache replacement doesn't.
4879 if (!trylock_page(page
))
4883 if (page
->mem_cgroup
!= from
)
4886 anon
= PageAnon(page
);
4888 spin_lock_irqsave(&from
->move_lock
, flags
);
4890 if (!anon
&& page_mapped(page
)) {
4891 __this_cpu_sub(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
],
4893 __this_cpu_add(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
],
4898 * move_lock grabbed above and caller set from->moving_account, so
4899 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4900 * So mapping should be stable for dirty pages.
4902 if (!anon
&& PageDirty(page
)) {
4903 struct address_space
*mapping
= page_mapping(page
);
4905 if (mapping_cap_account_dirty(mapping
)) {
4906 __this_cpu_sub(from
->stat
->count
[MEM_CGROUP_STAT_DIRTY
],
4908 __this_cpu_add(to
->stat
->count
[MEM_CGROUP_STAT_DIRTY
],
4913 if (PageWriteback(page
)) {
4914 __this_cpu_sub(from
->stat
->count
[MEM_CGROUP_STAT_WRITEBACK
],
4916 __this_cpu_add(to
->stat
->count
[MEM_CGROUP_STAT_WRITEBACK
],
4921 * It is safe to change page->mem_cgroup here because the page
4922 * is referenced, charged, and isolated - we can't race with
4923 * uncharging, charging, migration, or LRU putback.
4926 /* caller should have done css_get */
4927 page
->mem_cgroup
= to
;
4928 spin_unlock_irqrestore(&from
->move_lock
, flags
);
4932 local_irq_disable();
4933 mem_cgroup_charge_statistics(to
, page
, nr_pages
);
4934 memcg_check_events(to
, page
);
4935 mem_cgroup_charge_statistics(from
, page
, -nr_pages
);
4936 memcg_check_events(from
, page
);
4944 static enum mc_target_type
get_mctgt_type(struct vm_area_struct
*vma
,
4945 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
4947 struct page
*page
= NULL
;
4948 enum mc_target_type ret
= MC_TARGET_NONE
;
4949 swp_entry_t ent
= { .val
= 0 };
4951 if (pte_present(ptent
))
4952 page
= mc_handle_present_pte(vma
, addr
, ptent
);
4953 else if (is_swap_pte(ptent
))
4954 page
= mc_handle_swap_pte(vma
, addr
, ptent
, &ent
);
4955 else if (pte_none(ptent
))
4956 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
4958 if (!page
&& !ent
.val
)
4962 * Do only loose check w/o serialization.
4963 * mem_cgroup_move_account() checks the page is valid or
4964 * not under LRU exclusion.
4966 if (page
->mem_cgroup
== mc
.from
) {
4967 ret
= MC_TARGET_PAGE
;
4969 target
->page
= page
;
4971 if (!ret
|| !target
)
4974 /* There is a swap entry and a page doesn't exist or isn't charged */
4975 if (ent
.val
&& !ret
&&
4976 mem_cgroup_id(mc
.from
) == lookup_swap_cgroup_id(ent
)) {
4977 ret
= MC_TARGET_SWAP
;
4984 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4986 * We don't consider swapping or file mapped pages because THP does not
4987 * support them for now.
4988 * Caller should make sure that pmd_trans_huge(pmd) is true.
4990 static enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
4991 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
4993 struct page
*page
= NULL
;
4994 enum mc_target_type ret
= MC_TARGET_NONE
;
4996 page
= pmd_page(pmd
);
4997 VM_BUG_ON_PAGE(!page
|| !PageHead(page
), page
);
4998 if (!(mc
.flags
& MOVE_ANON
))
5000 if (page
->mem_cgroup
== mc
.from
) {
5001 ret
= MC_TARGET_PAGE
;
5004 target
->page
= page
;
5010 static inline enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
5011 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
5013 return MC_TARGET_NONE
;
5017 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
5018 unsigned long addr
, unsigned long end
,
5019 struct mm_walk
*walk
)
5021 struct vm_area_struct
*vma
= walk
->vma
;
5025 if (pmd_trans_huge_lock(pmd
, vma
, &ptl
) == 1) {
5026 if (get_mctgt_type_thp(vma
, addr
, *pmd
, NULL
) == MC_TARGET_PAGE
)
5027 mc
.precharge
+= HPAGE_PMD_NR
;
5032 if (pmd_trans_unstable(pmd
))
5034 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5035 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
5036 if (get_mctgt_type(vma
, addr
, *pte
, NULL
))
5037 mc
.precharge
++; /* increment precharge temporarily */
5038 pte_unmap_unlock(pte
- 1, ptl
);
5044 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
5046 unsigned long precharge
;
5048 struct mm_walk mem_cgroup_count_precharge_walk
= {
5049 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
5052 down_read(&mm
->mmap_sem
);
5053 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk
);
5054 up_read(&mm
->mmap_sem
);
5056 precharge
= mc
.precharge
;
5062 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
5064 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
5066 VM_BUG_ON(mc
.moving_task
);
5067 mc
.moving_task
= current
;
5068 return mem_cgroup_do_precharge(precharge
);
5071 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5072 static void __mem_cgroup_clear_mc(void)
5074 struct mem_cgroup
*from
= mc
.from
;
5075 struct mem_cgroup
*to
= mc
.to
;
5077 /* we must uncharge all the leftover precharges from mc.to */
5079 cancel_charge(mc
.to
, mc
.precharge
);
5083 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5084 * we must uncharge here.
5086 if (mc
.moved_charge
) {
5087 cancel_charge(mc
.from
, mc
.moved_charge
);
5088 mc
.moved_charge
= 0;
5090 /* we must fixup refcnts and charges */
5091 if (mc
.moved_swap
) {
5092 /* uncharge swap account from the old cgroup */
5093 if (!mem_cgroup_is_root(mc
.from
))
5094 page_counter_uncharge(&mc
.from
->memsw
, mc
.moved_swap
);
5097 * we charged both to->memory and to->memsw, so we
5098 * should uncharge to->memory.
5100 if (!mem_cgroup_is_root(mc
.to
))
5101 page_counter_uncharge(&mc
.to
->memory
, mc
.moved_swap
);
5103 css_put_many(&mc
.from
->css
, mc
.moved_swap
);
5105 /* we've already done css_get(mc.to) */
5108 memcg_oom_recover(from
);
5109 memcg_oom_recover(to
);
5110 wake_up_all(&mc
.waitq
);
5113 static void mem_cgroup_clear_mc(void)
5116 * we must clear moving_task before waking up waiters at the end of
5119 mc
.moving_task
= NULL
;
5120 __mem_cgroup_clear_mc();
5121 spin_lock(&mc
.lock
);
5124 spin_unlock(&mc
.lock
);
5127 static int mem_cgroup_can_attach(struct cgroup_subsys_state
*css
,
5128 struct cgroup_taskset
*tset
)
5130 struct task_struct
*p
= cgroup_taskset_first(tset
);
5132 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5133 unsigned long move_flags
;
5136 * We are now commited to this value whatever it is. Changes in this
5137 * tunable will only affect upcoming migrations, not the current one.
5138 * So we need to save it, and keep it going.
5140 move_flags
= READ_ONCE(memcg
->move_charge_at_immigrate
);
5142 struct mm_struct
*mm
;
5143 struct mem_cgroup
*from
= mem_cgroup_from_task(p
);
5145 VM_BUG_ON(from
== memcg
);
5147 mm
= get_task_mm(p
);
5150 /* We move charges only when we move a owner of the mm */
5151 if (mm
->owner
== p
) {
5154 VM_BUG_ON(mc
.precharge
);
5155 VM_BUG_ON(mc
.moved_charge
);
5156 VM_BUG_ON(mc
.moved_swap
);
5158 spin_lock(&mc
.lock
);
5161 mc
.flags
= move_flags
;
5162 spin_unlock(&mc
.lock
);
5163 /* We set mc.moving_task later */
5165 ret
= mem_cgroup_precharge_mc(mm
);
5167 mem_cgroup_clear_mc();
5174 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state
*css
,
5175 struct cgroup_taskset
*tset
)
5178 mem_cgroup_clear_mc();
5181 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
5182 unsigned long addr
, unsigned long end
,
5183 struct mm_walk
*walk
)
5186 struct vm_area_struct
*vma
= walk
->vma
;
5189 enum mc_target_type target_type
;
5190 union mc_target target
;
5194 * We don't take compound_lock() here but no race with splitting thp
5196 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5197 * under splitting, which means there's no concurrent thp split,
5198 * - if another thread runs into split_huge_page() just after we
5199 * entered this if-block, the thread must wait for page table lock
5200 * to be unlocked in __split_huge_page_splitting(), where the main
5201 * part of thp split is not executed yet.
5203 if (pmd_trans_huge_lock(pmd
, vma
, &ptl
) == 1) {
5204 if (mc
.precharge
< HPAGE_PMD_NR
) {
5208 target_type
= get_mctgt_type_thp(vma
, addr
, *pmd
, &target
);
5209 if (target_type
== MC_TARGET_PAGE
) {
5211 if (!isolate_lru_page(page
)) {
5212 if (!mem_cgroup_move_account(page
, HPAGE_PMD_NR
,
5214 mc
.precharge
-= HPAGE_PMD_NR
;
5215 mc
.moved_charge
+= HPAGE_PMD_NR
;
5217 putback_lru_page(page
);
5225 if (pmd_trans_unstable(pmd
))
5228 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5229 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
5230 pte_t ptent
= *(pte
++);
5236 switch (get_mctgt_type(vma
, addr
, ptent
, &target
)) {
5237 case MC_TARGET_PAGE
:
5239 if (isolate_lru_page(page
))
5241 if (!mem_cgroup_move_account(page
, 1, mc
.from
, mc
.to
)) {
5243 /* we uncharge from mc.from later. */
5246 putback_lru_page(page
);
5247 put
: /* get_mctgt_type() gets the page */
5250 case MC_TARGET_SWAP
:
5252 if (!mem_cgroup_move_swap_account(ent
, mc
.from
, mc
.to
)) {
5254 /* we fixup refcnts and charges later. */
5262 pte_unmap_unlock(pte
- 1, ptl
);
5267 * We have consumed all precharges we got in can_attach().
5268 * We try charge one by one, but don't do any additional
5269 * charges to mc.to if we have failed in charge once in attach()
5272 ret
= mem_cgroup_do_precharge(1);
5280 static void mem_cgroup_move_charge(struct mm_struct
*mm
)
5282 struct mm_walk mem_cgroup_move_charge_walk
= {
5283 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
5287 lru_add_drain_all();
5289 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5290 * move_lock while we're moving its pages to another memcg.
5291 * Then wait for already started RCU-only updates to finish.
5293 atomic_inc(&mc
.from
->moving_account
);
5296 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
5298 * Someone who are holding the mmap_sem might be waiting in
5299 * waitq. So we cancel all extra charges, wake up all waiters,
5300 * and retry. Because we cancel precharges, we might not be able
5301 * to move enough charges, but moving charge is a best-effort
5302 * feature anyway, so it wouldn't be a big problem.
5304 __mem_cgroup_clear_mc();
5309 * When we have consumed all precharges and failed in doing
5310 * additional charge, the page walk just aborts.
5312 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk
);
5313 up_read(&mm
->mmap_sem
);
5314 atomic_dec(&mc
.from
->moving_account
);
5317 static void mem_cgroup_move_task(struct cgroup_subsys_state
*css
,
5318 struct cgroup_taskset
*tset
)
5320 struct task_struct
*p
= cgroup_taskset_first(tset
);
5321 struct mm_struct
*mm
= get_task_mm(p
);
5325 mem_cgroup_move_charge(mm
);
5329 mem_cgroup_clear_mc();
5331 #else /* !CONFIG_MMU */
5332 static int mem_cgroup_can_attach(struct cgroup_subsys_state
*css
,
5333 struct cgroup_taskset
*tset
)
5337 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state
*css
,
5338 struct cgroup_taskset
*tset
)
5341 static void mem_cgroup_move_task(struct cgroup_subsys_state
*css
,
5342 struct cgroup_taskset
*tset
)
5348 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5349 * to verify whether we're attached to the default hierarchy on each mount
5352 static void mem_cgroup_bind(struct cgroup_subsys_state
*root_css
)
5355 * use_hierarchy is forced on the default hierarchy. cgroup core
5356 * guarantees that @root doesn't have any children, so turning it
5357 * on for the root memcg is enough.
5359 if (cgroup_on_dfl(root_css
->cgroup
))
5360 root_mem_cgroup
->use_hierarchy
= true;
5362 root_mem_cgroup
->use_hierarchy
= false;
5365 static u64
memory_current_read(struct cgroup_subsys_state
*css
,
5368 return mem_cgroup_usage(mem_cgroup_from_css(css
), false);
5371 static int memory_low_show(struct seq_file
*m
, void *v
)
5373 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5374 unsigned long low
= READ_ONCE(memcg
->low
);
5376 if (low
== PAGE_COUNTER_MAX
)
5377 seq_puts(m
, "max\n");
5379 seq_printf(m
, "%llu\n", (u64
)low
* PAGE_SIZE
);
5384 static ssize_t
memory_low_write(struct kernfs_open_file
*of
,
5385 char *buf
, size_t nbytes
, loff_t off
)
5387 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5391 buf
= strstrip(buf
);
5392 err
= page_counter_memparse(buf
, "max", &low
);
5401 static int memory_high_show(struct seq_file
*m
, void *v
)
5403 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5404 unsigned long high
= READ_ONCE(memcg
->high
);
5406 if (high
== PAGE_COUNTER_MAX
)
5407 seq_puts(m
, "max\n");
5409 seq_printf(m
, "%llu\n", (u64
)high
* PAGE_SIZE
);
5414 static ssize_t
memory_high_write(struct kernfs_open_file
*of
,
5415 char *buf
, size_t nbytes
, loff_t off
)
5417 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5421 buf
= strstrip(buf
);
5422 err
= page_counter_memparse(buf
, "max", &high
);
5428 memcg_wb_domain_size_changed(memcg
);
5432 static int memory_max_show(struct seq_file
*m
, void *v
)
5434 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5435 unsigned long max
= READ_ONCE(memcg
->memory
.limit
);
5437 if (max
== PAGE_COUNTER_MAX
)
5438 seq_puts(m
, "max\n");
5440 seq_printf(m
, "%llu\n", (u64
)max
* PAGE_SIZE
);
5445 static ssize_t
memory_max_write(struct kernfs_open_file
*of
,
5446 char *buf
, size_t nbytes
, loff_t off
)
5448 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5452 buf
= strstrip(buf
);
5453 err
= page_counter_memparse(buf
, "max", &max
);
5457 err
= mem_cgroup_resize_limit(memcg
, max
);
5461 memcg_wb_domain_size_changed(memcg
);
5465 static int memory_events_show(struct seq_file
*m
, void *v
)
5467 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5469 seq_printf(m
, "low %lu\n", mem_cgroup_read_events(memcg
, MEMCG_LOW
));
5470 seq_printf(m
, "high %lu\n", mem_cgroup_read_events(memcg
, MEMCG_HIGH
));
5471 seq_printf(m
, "max %lu\n", mem_cgroup_read_events(memcg
, MEMCG_MAX
));
5472 seq_printf(m
, "oom %lu\n", mem_cgroup_read_events(memcg
, MEMCG_OOM
));
5477 static struct cftype memory_files
[] = {
5480 .read_u64
= memory_current_read
,
5484 .flags
= CFTYPE_NOT_ON_ROOT
,
5485 .seq_show
= memory_low_show
,
5486 .write
= memory_low_write
,
5490 .flags
= CFTYPE_NOT_ON_ROOT
,
5491 .seq_show
= memory_high_show
,
5492 .write
= memory_high_write
,
5496 .flags
= CFTYPE_NOT_ON_ROOT
,
5497 .seq_show
= memory_max_show
,
5498 .write
= memory_max_write
,
5502 .flags
= CFTYPE_NOT_ON_ROOT
,
5503 .seq_show
= memory_events_show
,
5508 struct cgroup_subsys memory_cgrp_subsys
= {
5509 .css_alloc
= mem_cgroup_css_alloc
,
5510 .css_online
= mem_cgroup_css_online
,
5511 .css_offline
= mem_cgroup_css_offline
,
5512 .css_free
= mem_cgroup_css_free
,
5513 .css_reset
= mem_cgroup_css_reset
,
5514 .can_attach
= mem_cgroup_can_attach
,
5515 .cancel_attach
= mem_cgroup_cancel_attach
,
5516 .attach
= mem_cgroup_move_task
,
5517 .bind
= mem_cgroup_bind
,
5518 .dfl_cftypes
= memory_files
,
5519 .legacy_cftypes
= mem_cgroup_legacy_files
,
5524 * mem_cgroup_events - count memory events against a cgroup
5525 * @memcg: the memory cgroup
5526 * @idx: the event index
5527 * @nr: the number of events to account for
5529 void mem_cgroup_events(struct mem_cgroup
*memcg
,
5530 enum mem_cgroup_events_index idx
,
5533 this_cpu_add(memcg
->stat
->events
[idx
], nr
);
5537 * mem_cgroup_low - check if memory consumption is below the normal range
5538 * @root: the highest ancestor to consider
5539 * @memcg: the memory cgroup to check
5541 * Returns %true if memory consumption of @memcg, and that of all
5542 * configurable ancestors up to @root, is below the normal range.
5544 bool mem_cgroup_low(struct mem_cgroup
*root
, struct mem_cgroup
*memcg
)
5546 if (mem_cgroup_disabled())
5550 * The toplevel group doesn't have a configurable range, so
5551 * it's never low when looked at directly, and it is not
5552 * considered an ancestor when assessing the hierarchy.
5555 if (memcg
== root_mem_cgroup
)
5558 if (page_counter_read(&memcg
->memory
) >= memcg
->low
)
5561 while (memcg
!= root
) {
5562 memcg
= parent_mem_cgroup(memcg
);
5564 if (memcg
== root_mem_cgroup
)
5567 if (page_counter_read(&memcg
->memory
) >= memcg
->low
)
5574 * mem_cgroup_try_charge - try charging a page
5575 * @page: page to charge
5576 * @mm: mm context of the victim
5577 * @gfp_mask: reclaim mode
5578 * @memcgp: charged memcg return
5580 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5581 * pages according to @gfp_mask if necessary.
5583 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5584 * Otherwise, an error code is returned.
5586 * After page->mapping has been set up, the caller must finalize the
5587 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5588 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5590 int mem_cgroup_try_charge(struct page
*page
, struct mm_struct
*mm
,
5591 gfp_t gfp_mask
, struct mem_cgroup
**memcgp
)
5593 struct mem_cgroup
*memcg
= NULL
;
5594 unsigned int nr_pages
= 1;
5597 if (mem_cgroup_disabled())
5600 if (PageSwapCache(page
)) {
5602 * Every swap fault against a single page tries to charge the
5603 * page, bail as early as possible. shmem_unuse() encounters
5604 * already charged pages, too. The USED bit is protected by
5605 * the page lock, which serializes swap cache removal, which
5606 * in turn serializes uncharging.
5608 if (page
->mem_cgroup
)
5612 if (PageTransHuge(page
)) {
5613 nr_pages
<<= compound_order(page
);
5614 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
5617 if (do_swap_account
&& PageSwapCache(page
))
5618 memcg
= try_get_mem_cgroup_from_page(page
);
5620 memcg
= get_mem_cgroup_from_mm(mm
);
5622 ret
= try_charge(memcg
, gfp_mask
, nr_pages
);
5624 css_put(&memcg
->css
);
5626 if (ret
== -EINTR
) {
5627 memcg
= root_mem_cgroup
;
5636 * mem_cgroup_commit_charge - commit a page charge
5637 * @page: page to charge
5638 * @memcg: memcg to charge the page to
5639 * @lrucare: page might be on LRU already
5641 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5642 * after page->mapping has been set up. This must happen atomically
5643 * as part of the page instantiation, i.e. under the page table lock
5644 * for anonymous pages, under the page lock for page and swap cache.
5646 * In addition, the page must not be on the LRU during the commit, to
5647 * prevent racing with task migration. If it might be, use @lrucare.
5649 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5651 void mem_cgroup_commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
5654 unsigned int nr_pages
= 1;
5656 VM_BUG_ON_PAGE(!page
->mapping
, page
);
5657 VM_BUG_ON_PAGE(PageLRU(page
) && !lrucare
, page
);
5659 if (mem_cgroup_disabled())
5662 * Swap faults will attempt to charge the same page multiple
5663 * times. But reuse_swap_page() might have removed the page
5664 * from swapcache already, so we can't check PageSwapCache().
5669 commit_charge(page
, memcg
, lrucare
);
5671 if (PageTransHuge(page
)) {
5672 nr_pages
<<= compound_order(page
);
5673 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
5676 local_irq_disable();
5677 mem_cgroup_charge_statistics(memcg
, page
, nr_pages
);
5678 memcg_check_events(memcg
, page
);
5681 if (do_swap_account
&& PageSwapCache(page
)) {
5682 swp_entry_t entry
= { .val
= page_private(page
) };
5684 * The swap entry might not get freed for a long time,
5685 * let's not wait for it. The page already received a
5686 * memory+swap charge, drop the swap entry duplicate.
5688 mem_cgroup_uncharge_swap(entry
);
5693 * mem_cgroup_cancel_charge - cancel a page charge
5694 * @page: page to charge
5695 * @memcg: memcg to charge the page to
5697 * Cancel a charge transaction started by mem_cgroup_try_charge().
5699 void mem_cgroup_cancel_charge(struct page
*page
, struct mem_cgroup
*memcg
)
5701 unsigned int nr_pages
= 1;
5703 if (mem_cgroup_disabled())
5706 * Swap faults will attempt to charge the same page multiple
5707 * times. But reuse_swap_page() might have removed the page
5708 * from swapcache already, so we can't check PageSwapCache().
5713 if (PageTransHuge(page
)) {
5714 nr_pages
<<= compound_order(page
);
5715 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
5718 cancel_charge(memcg
, nr_pages
);
5721 static void uncharge_batch(struct mem_cgroup
*memcg
, unsigned long pgpgout
,
5722 unsigned long nr_anon
, unsigned long nr_file
,
5723 unsigned long nr_huge
, struct page
*dummy_page
)
5725 unsigned long nr_pages
= nr_anon
+ nr_file
;
5726 unsigned long flags
;
5728 if (!mem_cgroup_is_root(memcg
)) {
5729 page_counter_uncharge(&memcg
->memory
, nr_pages
);
5730 if (do_swap_account
)
5731 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
5732 memcg_oom_recover(memcg
);
5735 local_irq_save(flags
);
5736 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
], nr_anon
);
5737 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
], nr_file
);
5738 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
], nr_huge
);
5739 __this_cpu_add(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
], pgpgout
);
5740 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_pages
);
5741 memcg_check_events(memcg
, dummy_page
);
5742 local_irq_restore(flags
);
5744 if (!mem_cgroup_is_root(memcg
))
5745 css_put_many(&memcg
->css
, nr_pages
);
5748 static void uncharge_list(struct list_head
*page_list
)
5750 struct mem_cgroup
*memcg
= NULL
;
5751 unsigned long nr_anon
= 0;
5752 unsigned long nr_file
= 0;
5753 unsigned long nr_huge
= 0;
5754 unsigned long pgpgout
= 0;
5755 struct list_head
*next
;
5758 next
= page_list
->next
;
5760 unsigned int nr_pages
= 1;
5762 page
= list_entry(next
, struct page
, lru
);
5763 next
= page
->lru
.next
;
5765 VM_BUG_ON_PAGE(PageLRU(page
), page
);
5766 VM_BUG_ON_PAGE(page_count(page
), page
);
5768 if (!page
->mem_cgroup
)
5772 * Nobody should be changing or seriously looking at
5773 * page->mem_cgroup at this point, we have fully
5774 * exclusive access to the page.
5777 if (memcg
!= page
->mem_cgroup
) {
5779 uncharge_batch(memcg
, pgpgout
, nr_anon
, nr_file
,
5781 pgpgout
= nr_anon
= nr_file
= nr_huge
= 0;
5783 memcg
= page
->mem_cgroup
;
5786 if (PageTransHuge(page
)) {
5787 nr_pages
<<= compound_order(page
);
5788 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
5789 nr_huge
+= nr_pages
;
5793 nr_anon
+= nr_pages
;
5795 nr_file
+= nr_pages
;
5797 page
->mem_cgroup
= NULL
;
5800 } while (next
!= page_list
);
5803 uncharge_batch(memcg
, pgpgout
, nr_anon
, nr_file
,
5808 * mem_cgroup_uncharge - uncharge a page
5809 * @page: page to uncharge
5811 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5812 * mem_cgroup_commit_charge().
5814 void mem_cgroup_uncharge(struct page
*page
)
5816 if (mem_cgroup_disabled())
5819 /* Don't touch page->lru of any random page, pre-check: */
5820 if (!page
->mem_cgroup
)
5823 INIT_LIST_HEAD(&page
->lru
);
5824 uncharge_list(&page
->lru
);
5828 * mem_cgroup_uncharge_list - uncharge a list of page
5829 * @page_list: list of pages to uncharge
5831 * Uncharge a list of pages previously charged with
5832 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5834 void mem_cgroup_uncharge_list(struct list_head
*page_list
)
5836 if (mem_cgroup_disabled())
5839 if (!list_empty(page_list
))
5840 uncharge_list(page_list
);
5844 * mem_cgroup_migrate - migrate a charge to another page
5845 * @oldpage: currently charged page
5846 * @newpage: page to transfer the charge to
5847 * @lrucare: either or both pages might be on the LRU already
5849 * Migrate the charge from @oldpage to @newpage.
5851 * Both pages must be locked, @newpage->mapping must be set up.
5853 void mem_cgroup_migrate(struct page
*oldpage
, struct page
*newpage
,
5856 struct mem_cgroup
*memcg
;
5859 VM_BUG_ON_PAGE(!PageLocked(oldpage
), oldpage
);
5860 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
5861 VM_BUG_ON_PAGE(!lrucare
&& PageLRU(oldpage
), oldpage
);
5862 VM_BUG_ON_PAGE(!lrucare
&& PageLRU(newpage
), newpage
);
5863 VM_BUG_ON_PAGE(PageAnon(oldpage
) != PageAnon(newpage
), newpage
);
5864 VM_BUG_ON_PAGE(PageTransHuge(oldpage
) != PageTransHuge(newpage
),
5867 if (mem_cgroup_disabled())
5870 /* Page cache replacement: new page already charged? */
5871 if (newpage
->mem_cgroup
)
5875 * Swapcache readahead pages can get migrated before being
5876 * charged, and migration from compaction can happen to an
5877 * uncharged page when the PFN walker finds a page that
5878 * reclaim just put back on the LRU but has not released yet.
5880 memcg
= oldpage
->mem_cgroup
;
5885 lock_page_lru(oldpage
, &isolated
);
5887 oldpage
->mem_cgroup
= NULL
;
5890 unlock_page_lru(oldpage
, isolated
);
5892 commit_charge(newpage
, memcg
, lrucare
);
5896 * subsys_initcall() for memory controller.
5898 * Some parts like hotcpu_notifier() have to be initialized from this context
5899 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5900 * everything that doesn't depend on a specific mem_cgroup structure should
5901 * be initialized from here.
5903 static int __init
mem_cgroup_init(void)
5907 hotcpu_notifier(memcg_cpu_hotplug_callback
, 0);
5909 for_each_possible_cpu(cpu
)
5910 INIT_WORK(&per_cpu_ptr(&memcg_stock
, cpu
)->work
,
5913 for_each_node(node
) {
5914 struct mem_cgroup_tree_per_node
*rtpn
;
5917 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
,
5918 node_online(node
) ? node
: NUMA_NO_NODE
);
5920 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
5921 struct mem_cgroup_tree_per_zone
*rtpz
;
5923 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
5924 rtpz
->rb_root
= RB_ROOT
;
5925 spin_lock_init(&rtpz
->lock
);
5927 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
5932 subsys_initcall(mem_cgroup_init
);
5934 #ifdef CONFIG_MEMCG_SWAP
5936 * mem_cgroup_swapout - transfer a memsw charge to swap
5937 * @page: page whose memsw charge to transfer
5938 * @entry: swap entry to move the charge to
5940 * Transfer the memsw charge of @page to @entry.
5942 void mem_cgroup_swapout(struct page
*page
, swp_entry_t entry
)
5944 struct mem_cgroup
*memcg
;
5945 unsigned short oldid
;
5947 VM_BUG_ON_PAGE(PageLRU(page
), page
);
5948 VM_BUG_ON_PAGE(page_count(page
), page
);
5950 if (!do_swap_account
)
5953 memcg
= page
->mem_cgroup
;
5955 /* Readahead page, never charged */
5959 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(memcg
));
5960 VM_BUG_ON_PAGE(oldid
, page
);
5961 mem_cgroup_swap_statistics(memcg
, true);
5963 page
->mem_cgroup
= NULL
;
5965 if (!mem_cgroup_is_root(memcg
))
5966 page_counter_uncharge(&memcg
->memory
, 1);
5968 /* Caller disabled preemption with mapping->tree_lock */
5969 mem_cgroup_charge_statistics(memcg
, page
, -1);
5970 memcg_check_events(memcg
, page
);
5974 * mem_cgroup_uncharge_swap - uncharge a swap entry
5975 * @entry: swap entry to uncharge
5977 * Drop the memsw charge associated with @entry.
5979 void mem_cgroup_uncharge_swap(swp_entry_t entry
)
5981 struct mem_cgroup
*memcg
;
5984 if (!do_swap_account
)
5987 id
= swap_cgroup_record(entry
, 0);
5989 memcg
= mem_cgroup_from_id(id
);
5991 if (!mem_cgroup_is_root(memcg
))
5992 page_counter_uncharge(&memcg
->memsw
, 1);
5993 mem_cgroup_swap_statistics(memcg
, false);
5994 css_put(&memcg
->css
);
5999 /* for remember boot option*/
6000 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6001 static int really_do_swap_account __initdata
= 1;
6003 static int really_do_swap_account __initdata
;
6006 static int __init
enable_swap_account(char *s
)
6008 if (!strcmp(s
, "1"))
6009 really_do_swap_account
= 1;
6010 else if (!strcmp(s
, "0"))
6011 really_do_swap_account
= 0;
6014 __setup("swapaccount=", enable_swap_account
);
6016 static struct cftype memsw_cgroup_files
[] = {
6018 .name
= "memsw.usage_in_bytes",
6019 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
6020 .read_u64
= mem_cgroup_read_u64
,
6023 .name
= "memsw.max_usage_in_bytes",
6024 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
6025 .write
= mem_cgroup_reset
,
6026 .read_u64
= mem_cgroup_read_u64
,
6029 .name
= "memsw.limit_in_bytes",
6030 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
6031 .write
= mem_cgroup_write
,
6032 .read_u64
= mem_cgroup_read_u64
,
6035 .name
= "memsw.failcnt",
6036 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
6037 .write
= mem_cgroup_reset
,
6038 .read_u64
= mem_cgroup_read_u64
,
6040 { }, /* terminate */
6043 static int __init
mem_cgroup_swap_init(void)
6045 if (!mem_cgroup_disabled() && really_do_swap_account
) {
6046 do_swap_account
= 1;
6047 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys
,
6048 memsw_cgroup_files
));
6052 subsys_initcall(mem_cgroup_swap_init
);
6054 #endif /* CONFIG_MEMCG_SWAP */