3 * Intel Management Engine Interface (Intel MEI) Linux driver
4 * Copyright (c) 2013-2014, Intel Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 #include <linux/pci.h>
18 #include <linux/jiffies.h>
19 #include <linux/ktime.h>
20 #include <linux/delay.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/pm_runtime.h>
25 #include <linux/mei.h>
32 #include "mei-trace.h"
34 #define TXE_HBUF_DEPTH (PAYLOAD_SIZE / MEI_SLOT_SIZE)
37 * mei_txe_reg_read - Reads 32bit data from the txe device
39 * @base_addr: registers base address
40 * @offset: register offset
42 * Return: register value
44 static inline u32
mei_txe_reg_read(void __iomem
*base_addr
,
47 return ioread32(base_addr
+ offset
);
51 * mei_txe_reg_write - Writes 32bit data to the txe device
53 * @base_addr: registers base address
54 * @offset: register offset
55 * @value: the value to write
57 static inline void mei_txe_reg_write(void __iomem
*base_addr
,
58 unsigned long offset
, u32 value
)
60 iowrite32(value
, base_addr
+ offset
);
64 * mei_txe_sec_reg_read_silent - Reads 32bit data from the SeC BAR
66 * @hw: the txe hardware structure
67 * @offset: register offset
69 * Doesn't check for aliveness while Reads 32bit data from the SeC BAR
71 * Return: register value
73 static inline u32
mei_txe_sec_reg_read_silent(struct mei_txe_hw
*hw
,
76 return mei_txe_reg_read(hw
->mem_addr
[SEC_BAR
], offset
);
80 * mei_txe_sec_reg_read - Reads 32bit data from the SeC BAR
82 * @hw: the txe hardware structure
83 * @offset: register offset
85 * Reads 32bit data from the SeC BAR and shout loud if aliveness is not set
87 * Return: register value
89 static inline u32
mei_txe_sec_reg_read(struct mei_txe_hw
*hw
,
92 WARN(!hw
->aliveness
, "sec read: aliveness not asserted\n");
93 return mei_txe_sec_reg_read_silent(hw
, offset
);
96 * mei_txe_sec_reg_write_silent - Writes 32bit data to the SeC BAR
97 * doesn't check for aliveness
99 * @hw: the txe hardware structure
100 * @offset: register offset
101 * @value: value to write
103 * Doesn't check for aliveness while writes 32bit data from to the SeC BAR
105 static inline void mei_txe_sec_reg_write_silent(struct mei_txe_hw
*hw
,
106 unsigned long offset
, u32 value
)
108 mei_txe_reg_write(hw
->mem_addr
[SEC_BAR
], offset
, value
);
112 * mei_txe_sec_reg_write - Writes 32bit data to the SeC BAR
114 * @hw: the txe hardware structure
115 * @offset: register offset
116 * @value: value to write
118 * Writes 32bit data from the SeC BAR and shout loud if aliveness is not set
120 static inline void mei_txe_sec_reg_write(struct mei_txe_hw
*hw
,
121 unsigned long offset
, u32 value
)
123 WARN(!hw
->aliveness
, "sec write: aliveness not asserted\n");
124 mei_txe_sec_reg_write_silent(hw
, offset
, value
);
127 * mei_txe_br_reg_read - Reads 32bit data from the Bridge BAR
129 * @hw: the txe hardware structure
130 * @offset: offset from which to read the data
132 * Return: the byte read.
134 static inline u32
mei_txe_br_reg_read(struct mei_txe_hw
*hw
,
135 unsigned long offset
)
137 return mei_txe_reg_read(hw
->mem_addr
[BRIDGE_BAR
], offset
);
141 * mei_txe_br_reg_write - Writes 32bit data to the Bridge BAR
143 * @hw: the txe hardware structure
144 * @offset: offset from which to write the data
145 * @value: the byte to write
147 static inline void mei_txe_br_reg_write(struct mei_txe_hw
*hw
,
148 unsigned long offset
, u32 value
)
150 mei_txe_reg_write(hw
->mem_addr
[BRIDGE_BAR
], offset
, value
);
154 * mei_txe_aliveness_set - request for aliveness change
156 * @dev: the device structure
157 * @req: requested aliveness value
159 * Request for aliveness change and returns true if the change is
160 * really needed and false if aliveness is already
161 * in the requested state
163 * Locking: called under "dev->device_lock" lock
165 * Return: true if request was send
167 static bool mei_txe_aliveness_set(struct mei_device
*dev
, u32 req
)
170 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
171 bool do_req
= hw
->aliveness
!= req
;
173 dev_dbg(dev
->dev
, "Aliveness current=%d request=%d\n",
176 dev
->pg_event
= MEI_PG_EVENT_WAIT
;
177 mei_txe_br_reg_write(hw
, SICR_HOST_ALIVENESS_REQ_REG
, req
);
184 * mei_txe_aliveness_req_get - get aliveness requested register value
186 * @dev: the device structure
188 * Extract HICR_HOST_ALIVENESS_RESP_ACK bit from
189 * from HICR_HOST_ALIVENESS_REQ register value
191 * Return: SICR_HOST_ALIVENESS_REQ_REQUESTED bit value
193 static u32
mei_txe_aliveness_req_get(struct mei_device
*dev
)
195 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
198 reg
= mei_txe_br_reg_read(hw
, SICR_HOST_ALIVENESS_REQ_REG
);
199 return reg
& SICR_HOST_ALIVENESS_REQ_REQUESTED
;
203 * mei_txe_aliveness_get - get aliveness response register value
205 * @dev: the device structure
207 * Return: HICR_HOST_ALIVENESS_RESP_ACK bit from HICR_HOST_ALIVENESS_RESP
210 static u32
mei_txe_aliveness_get(struct mei_device
*dev
)
212 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
215 reg
= mei_txe_br_reg_read(hw
, HICR_HOST_ALIVENESS_RESP_REG
);
216 return reg
& HICR_HOST_ALIVENESS_RESP_ACK
;
220 * mei_txe_aliveness_poll - waits for aliveness to settle
222 * @dev: the device structure
223 * @expected: expected aliveness value
225 * Polls for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
227 * Return: 0 if the expected value was received, -ETIME otherwise
229 static int mei_txe_aliveness_poll(struct mei_device
*dev
, u32 expected
)
231 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
235 stop
= ktime_add(start
, ms_to_ktime(SEC_ALIVENESS_WAIT_TIMEOUT
));
237 hw
->aliveness
= mei_txe_aliveness_get(dev
);
238 if (hw
->aliveness
== expected
) {
239 dev
->pg_event
= MEI_PG_EVENT_IDLE
;
240 dev_dbg(dev
->dev
, "aliveness settled after %lld usecs\n",
241 ktime_to_us(ktime_sub(ktime_get(), start
)));
244 usleep_range(20, 50);
245 } while (ktime_before(ktime_get(), stop
));
247 dev
->pg_event
= MEI_PG_EVENT_IDLE
;
248 dev_err(dev
->dev
, "aliveness timed out\n");
253 * mei_txe_aliveness_wait - waits for aliveness to settle
255 * @dev: the device structure
256 * @expected: expected aliveness value
258 * Waits for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
260 * Return: 0 on success and < 0 otherwise
262 static int mei_txe_aliveness_wait(struct mei_device
*dev
, u32 expected
)
264 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
265 const unsigned long timeout
=
266 msecs_to_jiffies(SEC_ALIVENESS_WAIT_TIMEOUT
);
270 hw
->aliveness
= mei_txe_aliveness_get(dev
);
271 if (hw
->aliveness
== expected
)
274 mutex_unlock(&dev
->device_lock
);
275 err
= wait_event_timeout(hw
->wait_aliveness_resp
,
276 dev
->pg_event
== MEI_PG_EVENT_RECEIVED
, timeout
);
277 mutex_lock(&dev
->device_lock
);
279 hw
->aliveness
= mei_txe_aliveness_get(dev
);
280 ret
= hw
->aliveness
== expected
? 0 : -ETIME
;
283 dev_warn(dev
->dev
, "aliveness timed out = %ld aliveness = %d event = %d\n",
284 err
, hw
->aliveness
, dev
->pg_event
);
286 dev_dbg(dev
->dev
, "aliveness settled after = %d msec aliveness = %d event = %d\n",
287 jiffies_to_msecs(timeout
- err
),
288 hw
->aliveness
, dev
->pg_event
);
290 dev
->pg_event
= MEI_PG_EVENT_IDLE
;
295 * mei_txe_aliveness_set_sync - sets an wait for aliveness to complete
297 * @dev: the device structure
298 * @req: requested aliveness value
300 * Return: 0 on success and < 0 otherwise
302 int mei_txe_aliveness_set_sync(struct mei_device
*dev
, u32 req
)
304 if (mei_txe_aliveness_set(dev
, req
))
305 return mei_txe_aliveness_wait(dev
, req
);
310 * mei_txe_pg_in_transition - is device now in pg transition
312 * @dev: the device structure
314 * Return: true if in pg transition, false otherwise
316 static bool mei_txe_pg_in_transition(struct mei_device
*dev
)
318 return dev
->pg_event
== MEI_PG_EVENT_WAIT
;
322 * mei_txe_pg_is_enabled - detect if PG is supported by HW
324 * @dev: the device structure
326 * Return: true is pg supported, false otherwise
328 static bool mei_txe_pg_is_enabled(struct mei_device
*dev
)
334 * mei_txe_pg_state - translate aliveness register value
335 * to the mei power gating state
337 * @dev: the device structure
339 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
341 static inline enum mei_pg_state
mei_txe_pg_state(struct mei_device
*dev
)
343 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
345 return hw
->aliveness
? MEI_PG_OFF
: MEI_PG_ON
;
349 * mei_txe_input_ready_interrupt_enable - sets the Input Ready Interrupt
351 * @dev: the device structure
353 static void mei_txe_input_ready_interrupt_enable(struct mei_device
*dev
)
355 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
357 /* Enable the SEC_IPC_HOST_INT_MASK_IN_RDY interrupt */
358 hintmsk
= mei_txe_sec_reg_read(hw
, SEC_IPC_HOST_INT_MASK_REG
);
359 hintmsk
|= SEC_IPC_HOST_INT_MASK_IN_RDY
;
360 mei_txe_sec_reg_write(hw
, SEC_IPC_HOST_INT_MASK_REG
, hintmsk
);
364 * mei_txe_input_doorbell_set - sets bit 0 in
365 * SEC_IPC_INPUT_DOORBELL.IPC_INPUT_DOORBELL.
367 * @hw: the txe hardware structure
369 static void mei_txe_input_doorbell_set(struct mei_txe_hw
*hw
)
371 /* Clear the interrupt cause */
372 clear_bit(TXE_INTR_IN_READY_BIT
, &hw
->intr_cause
);
373 mei_txe_sec_reg_write(hw
, SEC_IPC_INPUT_DOORBELL_REG
, 1);
377 * mei_txe_output_ready_set - Sets the SICR_SEC_IPC_OUTPUT_STATUS bit to 1
379 * @hw: the txe hardware structure
381 static void mei_txe_output_ready_set(struct mei_txe_hw
*hw
)
383 mei_txe_br_reg_write(hw
,
384 SICR_SEC_IPC_OUTPUT_STATUS_REG
,
385 SEC_IPC_OUTPUT_STATUS_RDY
);
389 * mei_txe_is_input_ready - check if TXE is ready for receiving data
391 * @dev: the device structure
393 * Return: true if INPUT STATUS READY bit is set
395 static bool mei_txe_is_input_ready(struct mei_device
*dev
)
397 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
400 status
= mei_txe_sec_reg_read(hw
, SEC_IPC_INPUT_STATUS_REG
);
401 return !!(SEC_IPC_INPUT_STATUS_RDY
& status
);
405 * mei_txe_intr_clear - clear all interrupts
407 * @dev: the device structure
409 static inline void mei_txe_intr_clear(struct mei_device
*dev
)
411 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
413 mei_txe_sec_reg_write_silent(hw
, SEC_IPC_HOST_INT_STATUS_REG
,
414 SEC_IPC_HOST_INT_STATUS_PENDING
);
415 mei_txe_br_reg_write(hw
, HISR_REG
, HISR_INT_STS_MSK
);
416 mei_txe_br_reg_write(hw
, HHISR_REG
, IPC_HHIER_MSK
);
420 * mei_txe_intr_disable - disable all interrupts
422 * @dev: the device structure
424 static void mei_txe_intr_disable(struct mei_device
*dev
)
426 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
428 mei_txe_br_reg_write(hw
, HHIER_REG
, 0);
429 mei_txe_br_reg_write(hw
, HIER_REG
, 0);
432 * mei_txe_intr_enable - enable all interrupts
434 * @dev: the device structure
436 static void mei_txe_intr_enable(struct mei_device
*dev
)
438 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
440 mei_txe_br_reg_write(hw
, HHIER_REG
, IPC_HHIER_MSK
);
441 mei_txe_br_reg_write(hw
, HIER_REG
, HIER_INT_EN_MSK
);
445 * mei_txe_synchronize_irq - wait for pending IRQ handlers
447 * @dev: the device structure
449 static void mei_txe_synchronize_irq(struct mei_device
*dev
)
451 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
453 synchronize_irq(pdev
->irq
);
457 * mei_txe_pending_interrupts - check if there are pending interrupts
458 * only Aliveness, Input ready, and output doorbell are of relevance
460 * @dev: the device structure
462 * Checks if there are pending interrupts
463 * only Aliveness, Readiness, Input ready, and Output doorbell are relevant
465 * Return: true if there are pending interrupts
467 static bool mei_txe_pending_interrupts(struct mei_device
*dev
)
470 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
471 bool ret
= (hw
->intr_cause
& (TXE_INTR_READINESS
|
478 "Pending Interrupts InReady=%01d Readiness=%01d, Aliveness=%01d, OutDoor=%01d\n",
479 !!(hw
->intr_cause
& TXE_INTR_IN_READY
),
480 !!(hw
->intr_cause
& TXE_INTR_READINESS
),
481 !!(hw
->intr_cause
& TXE_INTR_ALIVENESS
),
482 !!(hw
->intr_cause
& TXE_INTR_OUT_DB
));
488 * mei_txe_input_payload_write - write a dword to the host buffer
491 * @dev: the device structure
492 * @idx: index in the host buffer
495 static void mei_txe_input_payload_write(struct mei_device
*dev
,
496 unsigned long idx
, u32 value
)
498 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
500 mei_txe_sec_reg_write(hw
, SEC_IPC_INPUT_PAYLOAD_REG
+
501 (idx
* sizeof(u32
)), value
);
505 * mei_txe_out_data_read - read dword from the device buffer
508 * @dev: the device structure
509 * @idx: index in the device buffer
511 * Return: register value at index
513 static u32
mei_txe_out_data_read(const struct mei_device
*dev
,
516 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
518 return mei_txe_br_reg_read(hw
,
519 BRIDGE_IPC_OUTPUT_PAYLOAD_REG
+ (idx
* sizeof(u32
)));
525 * mei_txe_readiness_set_host_rdy - set host readiness bit
527 * @dev: the device structure
529 static void mei_txe_readiness_set_host_rdy(struct mei_device
*dev
)
531 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
533 mei_txe_br_reg_write(hw
,
534 SICR_HOST_IPC_READINESS_REQ_REG
,
535 SICR_HOST_IPC_READINESS_HOST_RDY
);
539 * mei_txe_readiness_clear - clear host readiness bit
541 * @dev: the device structure
543 static void mei_txe_readiness_clear(struct mei_device
*dev
)
545 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
547 mei_txe_br_reg_write(hw
, SICR_HOST_IPC_READINESS_REQ_REG
,
548 SICR_HOST_IPC_READINESS_RDY_CLR
);
551 * mei_txe_readiness_get - Reads and returns
552 * the HICR_SEC_IPC_READINESS register value
554 * @dev: the device structure
556 * Return: the HICR_SEC_IPC_READINESS register value
558 static u32
mei_txe_readiness_get(struct mei_device
*dev
)
560 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
562 return mei_txe_br_reg_read(hw
, HICR_SEC_IPC_READINESS_REG
);
567 * mei_txe_readiness_is_sec_rdy - check readiness
568 * for HICR_SEC_IPC_READINESS_SEC_RDY
570 * @readiness: cached readiness state
572 * Return: true if readiness bit is set
574 static inline bool mei_txe_readiness_is_sec_rdy(u32 readiness
)
576 return !!(readiness
& HICR_SEC_IPC_READINESS_SEC_RDY
);
580 * mei_txe_hw_is_ready - check if the hw is ready
582 * @dev: the device structure
584 * Return: true if sec is ready
586 static bool mei_txe_hw_is_ready(struct mei_device
*dev
)
588 u32 readiness
= mei_txe_readiness_get(dev
);
590 return mei_txe_readiness_is_sec_rdy(readiness
);
594 * mei_txe_host_is_ready - check if the host is ready
596 * @dev: the device structure
598 * Return: true if host is ready
600 static inline bool mei_txe_host_is_ready(struct mei_device
*dev
)
602 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
603 u32 reg
= mei_txe_br_reg_read(hw
, HICR_SEC_IPC_READINESS_REG
);
605 return !!(reg
& HICR_SEC_IPC_READINESS_HOST_RDY
);
609 * mei_txe_readiness_wait - wait till readiness settles
611 * @dev: the device structure
613 * Return: 0 on success and -ETIME on timeout
615 static int mei_txe_readiness_wait(struct mei_device
*dev
)
617 if (mei_txe_hw_is_ready(dev
))
620 mutex_unlock(&dev
->device_lock
);
621 wait_event_timeout(dev
->wait_hw_ready
, dev
->recvd_hw_ready
,
622 msecs_to_jiffies(SEC_RESET_WAIT_TIMEOUT
));
623 mutex_lock(&dev
->device_lock
);
624 if (!dev
->recvd_hw_ready
) {
625 dev_err(dev
->dev
, "wait for readiness failed\n");
629 dev
->recvd_hw_ready
= false;
633 static const struct mei_fw_status mei_txe_fw_sts
= {
635 .status
[0] = PCI_CFG_TXE_FW_STS0
,
636 .status
[1] = PCI_CFG_TXE_FW_STS1
640 * mei_txe_fw_status - read fw status register from pci config space
643 * @fw_status: fw status register values
645 * Return: 0 on success, error otherwise
647 static int mei_txe_fw_status(struct mei_device
*dev
,
648 struct mei_fw_status
*fw_status
)
650 const struct mei_fw_status
*fw_src
= &mei_txe_fw_sts
;
651 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
658 fw_status
->count
= fw_src
->count
;
659 for (i
= 0; i
< fw_src
->count
&& i
< MEI_FW_STATUS_MAX
; i
++) {
660 ret
= pci_read_config_dword(pdev
, fw_src
->status
[i
],
661 &fw_status
->status
[i
]);
662 trace_mei_pci_cfg_read(dev
->dev
, "PCI_CFG_HSF_X",
664 fw_status
->status
[i
]);
673 * mei_txe_hw_config - configure hardware at the start of the devices
675 * @dev: the device structure
677 * Configure hardware at the start of the device should be done only
678 * once at the device probe time
680 static void mei_txe_hw_config(struct mei_device
*dev
)
683 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
685 hw
->aliveness
= mei_txe_aliveness_get(dev
);
686 hw
->readiness
= mei_txe_readiness_get(dev
);
688 dev_dbg(dev
->dev
, "aliveness_resp = 0x%08x, readiness = 0x%08x.\n",
689 hw
->aliveness
, hw
->readiness
);
693 * mei_txe_write - writes a message to device.
695 * @dev: the device structure
696 * @hdr: header of message
697 * @hdr_len: header length in bytes - must multiplication of a slot (4bytes)
699 * @data_len: paylead length in bytes
701 * Return: 0 if success, < 0 - otherwise.
703 static int mei_txe_write(struct mei_device
*dev
,
704 const void *hdr
, size_t hdr_len
,
705 const void *data
, size_t data_len
)
707 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
710 u32 slots
= TXE_HBUF_DEPTH
;
714 if (WARN_ON(!hdr
|| !data
|| hdr_len
& 0x3))
717 dev_dbg(dev
->dev
, MEI_HDR_FMT
, MEI_HDR_PRM((struct mei_msg_hdr
*)hdr
));
719 dw_cnt
= mei_data2slots(hdr_len
+ data_len
);
723 if (WARN(!hw
->aliveness
, "txe write: aliveness not asserted\n"))
726 /* Enable Input Ready Interrupt. */
727 mei_txe_input_ready_interrupt_enable(dev
);
729 if (!mei_txe_is_input_ready(dev
)) {
730 char fw_sts_str
[MEI_FW_STATUS_STR_SZ
];
732 mei_fw_status_str(dev
, fw_sts_str
, MEI_FW_STATUS_STR_SZ
);
733 dev_err(dev
->dev
, "Input is not ready %s\n", fw_sts_str
);
738 for (i
= 0; i
< hdr_len
/ MEI_SLOT_SIZE
; i
++)
739 mei_txe_input_payload_write(dev
, i
, reg_buf
[i
]);
742 for (j
= 0; j
< data_len
/ MEI_SLOT_SIZE
; j
++)
743 mei_txe_input_payload_write(dev
, i
+ j
, reg_buf
[j
]);
745 rem
= data_len
& 0x3;
749 memcpy(®
, (const u8
*)data
+ data_len
- rem
, rem
);
750 mei_txe_input_payload_write(dev
, i
+ j
, reg
);
753 /* after each write the whole buffer is consumed */
756 /* Set Input-Doorbell */
757 mei_txe_input_doorbell_set(hw
);
763 * mei_txe_hbuf_depth - mimics the me hbuf circular buffer
765 * @dev: the device structure
767 * Return: the TXE_HBUF_DEPTH
769 static u32
mei_txe_hbuf_depth(const struct mei_device
*dev
)
771 return TXE_HBUF_DEPTH
;
775 * mei_txe_hbuf_empty_slots - mimics the me hbuf circular buffer
777 * @dev: the device structure
779 * Return: always TXE_HBUF_DEPTH
781 static int mei_txe_hbuf_empty_slots(struct mei_device
*dev
)
783 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
789 * mei_txe_count_full_read_slots - mimics the me device circular buffer
791 * @dev: the device structure
793 * Return: always buffer size in dwords count
795 static int mei_txe_count_full_read_slots(struct mei_device
*dev
)
797 /* read buffers has static size */
798 return TXE_HBUF_DEPTH
;
802 * mei_txe_read_hdr - read message header which is always in 4 first bytes
804 * @dev: the device structure
806 * Return: mei message header
809 static u32
mei_txe_read_hdr(const struct mei_device
*dev
)
811 return mei_txe_out_data_read(dev
, 0);
814 * mei_txe_read - reads a message from the txe device.
816 * @dev: the device structure
817 * @buf: message buffer will be written
818 * @len: message size will be read
820 * Return: -EINVAL on error wrong argument and 0 on success
822 static int mei_txe_read(struct mei_device
*dev
,
823 unsigned char *buf
, unsigned long len
)
826 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
831 if (WARN_ON(!buf
|| !len
))
834 reg_buf
= (u32
*)buf
;
837 dev_dbg(dev
->dev
, "buffer-length = %lu buf[0]0x%08X\n",
838 len
, mei_txe_out_data_read(dev
, 0));
840 for (i
= 0; i
< len
/ MEI_SLOT_SIZE
; i
++) {
841 /* skip header: index starts from 1 */
842 reg
= mei_txe_out_data_read(dev
, i
+ 1);
843 dev_dbg(dev
->dev
, "buf[%d] = 0x%08X\n", i
, reg
);
848 reg
= mei_txe_out_data_read(dev
, i
+ 1);
849 memcpy(reg_buf
, ®
, rem
);
852 mei_txe_output_ready_set(hw
);
857 * mei_txe_hw_reset - resets host and fw.
859 * @dev: the device structure
860 * @intr_enable: if interrupt should be enabled after reset.
862 * Return: 0 on success and < 0 in case of error
864 static int mei_txe_hw_reset(struct mei_device
*dev
, bool intr_enable
)
866 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
870 * read input doorbell to ensure consistency between Bridge and SeC
871 * return value might be garbage return
873 (void)mei_txe_sec_reg_read_silent(hw
, SEC_IPC_INPUT_DOORBELL_REG
);
875 aliveness_req
= mei_txe_aliveness_req_get(dev
);
876 hw
->aliveness
= mei_txe_aliveness_get(dev
);
878 /* Disable interrupts in this stage we will poll */
879 mei_txe_intr_disable(dev
);
882 * If Aliveness Request and Aliveness Response are not equal then
883 * wait for them to be equal
884 * Since we might have interrupts disabled - poll for it
886 if (aliveness_req
!= hw
->aliveness
)
887 if (mei_txe_aliveness_poll(dev
, aliveness_req
) < 0) {
888 dev_err(dev
->dev
, "wait for aliveness settle failed ... bailing out\n");
893 * If Aliveness Request and Aliveness Response are set then clear them
896 mei_txe_aliveness_set(dev
, 0);
897 if (mei_txe_aliveness_poll(dev
, 0) < 0) {
898 dev_err(dev
->dev
, "wait for aliveness failed ... bailing out\n");
904 * Set readiness RDY_CLR bit
906 mei_txe_readiness_clear(dev
);
912 * mei_txe_hw_start - start the hardware after reset
914 * @dev: the device structure
916 * Return: 0 on success an error code otherwise
918 static int mei_txe_hw_start(struct mei_device
*dev
)
920 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
925 /* bring back interrupts */
926 mei_txe_intr_enable(dev
);
928 ret
= mei_txe_readiness_wait(dev
);
930 dev_err(dev
->dev
, "waiting for readiness failed\n");
935 * If HISR.INT2_STS interrupt status bit is set then clear it.
937 hisr
= mei_txe_br_reg_read(hw
, HISR_REG
);
938 if (hisr
& HISR_INT_2_STS
)
939 mei_txe_br_reg_write(hw
, HISR_REG
, HISR_INT_2_STS
);
941 /* Clear the interrupt cause of OutputDoorbell */
942 clear_bit(TXE_INTR_OUT_DB_BIT
, &hw
->intr_cause
);
944 ret
= mei_txe_aliveness_set_sync(dev
, 1);
946 dev_err(dev
->dev
, "wait for aliveness failed ... bailing out\n");
950 pm_runtime_set_active(dev
->dev
);
952 /* enable input ready interrupts:
953 * SEC_IPC_HOST_INT_MASK.IPC_INPUT_READY_INT_MASK
955 mei_txe_input_ready_interrupt_enable(dev
);
958 /* Set the SICR_SEC_IPC_OUTPUT_STATUS.IPC_OUTPUT_READY bit */
959 mei_txe_output_ready_set(hw
);
961 /* Set bit SICR_HOST_IPC_READINESS.HOST_RDY
963 mei_txe_readiness_set_host_rdy(dev
);
969 * mei_txe_check_and_ack_intrs - translate multi BAR interrupt into
970 * single bit mask and acknowledge the interrupts
972 * @dev: the device structure
973 * @do_ack: acknowledge interrupts
975 * Return: true if found interrupts to process.
977 static bool mei_txe_check_and_ack_intrs(struct mei_device
*dev
, bool do_ack
)
979 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
986 /* read interrupt registers */
987 hhisr
= mei_txe_br_reg_read(hw
, HHISR_REG
);
988 generated
= (hhisr
& IPC_HHIER_MSK
);
992 hisr
= mei_txe_br_reg_read(hw
, HISR_REG
);
994 aliveness
= mei_txe_aliveness_get(dev
);
995 if (hhisr
& IPC_HHIER_SEC
&& aliveness
) {
996 ipc_isr
= mei_txe_sec_reg_read_silent(hw
,
997 SEC_IPC_HOST_INT_STATUS_REG
);
1000 hhisr
&= ~IPC_HHIER_SEC
;
1003 generated
= generated
||
1004 (hisr
& HISR_INT_STS_MSK
) ||
1005 (ipc_isr
& SEC_IPC_HOST_INT_STATUS_PENDING
);
1007 if (generated
&& do_ack
) {
1008 /* Save the interrupt causes */
1009 hw
->intr_cause
|= hisr
& HISR_INT_STS_MSK
;
1010 if (ipc_isr
& SEC_IPC_HOST_INT_STATUS_IN_RDY
)
1011 hw
->intr_cause
|= TXE_INTR_IN_READY
;
1014 mei_txe_intr_disable(dev
);
1015 /* Clear the interrupts in hierarchy:
1016 * IPC and Bridge, than the High Level */
1017 mei_txe_sec_reg_write_silent(hw
,
1018 SEC_IPC_HOST_INT_STATUS_REG
, ipc_isr
);
1019 mei_txe_br_reg_write(hw
, HISR_REG
, hisr
);
1020 mei_txe_br_reg_write(hw
, HHISR_REG
, hhisr
);
1028 * mei_txe_irq_quick_handler - The ISR of the MEI device
1030 * @irq: The irq number
1031 * @dev_id: pointer to the device structure
1033 * Return: IRQ_WAKE_THREAD if interrupt is designed for the device
1034 * IRQ_NONE otherwise
1036 irqreturn_t
mei_txe_irq_quick_handler(int irq
, void *dev_id
)
1038 struct mei_device
*dev
= dev_id
;
1040 if (mei_txe_check_and_ack_intrs(dev
, true))
1041 return IRQ_WAKE_THREAD
;
1047 * mei_txe_irq_thread_handler - txe interrupt thread
1049 * @irq: The irq number
1050 * @dev_id: pointer to the device structure
1052 * Return: IRQ_HANDLED
1054 irqreturn_t
mei_txe_irq_thread_handler(int irq
, void *dev_id
)
1056 struct mei_device
*dev
= (struct mei_device
*) dev_id
;
1057 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
1058 struct list_head cmpl_list
;
1062 dev_dbg(dev
->dev
, "irq thread: Interrupt Registers HHISR|HISR|SEC=%02X|%04X|%02X\n",
1063 mei_txe_br_reg_read(hw
, HHISR_REG
),
1064 mei_txe_br_reg_read(hw
, HISR_REG
),
1065 mei_txe_sec_reg_read_silent(hw
, SEC_IPC_HOST_INT_STATUS_REG
));
1068 /* initialize our complete list */
1069 mutex_lock(&dev
->device_lock
);
1070 INIT_LIST_HEAD(&cmpl_list
);
1072 if (pci_dev_msi_enabled(to_pci_dev(dev
->dev
)))
1073 mei_txe_check_and_ack_intrs(dev
, true);
1075 /* show irq events */
1076 mei_txe_pending_interrupts(dev
);
1078 hw
->aliveness
= mei_txe_aliveness_get(dev
);
1079 hw
->readiness
= mei_txe_readiness_get(dev
);
1082 * Detection of TXE driver going through reset
1083 * or TXE driver resetting the HECI interface.
1085 if (test_and_clear_bit(TXE_INTR_READINESS_BIT
, &hw
->intr_cause
)) {
1086 dev_dbg(dev
->dev
, "Readiness Interrupt was received...\n");
1088 /* Check if SeC is going through reset */
1089 if (mei_txe_readiness_is_sec_rdy(hw
->readiness
)) {
1090 dev_dbg(dev
->dev
, "we need to start the dev.\n");
1091 dev
->recvd_hw_ready
= true;
1093 dev
->recvd_hw_ready
= false;
1094 if (dev
->dev_state
!= MEI_DEV_RESETTING
) {
1096 dev_warn(dev
->dev
, "FW not ready: resetting.\n");
1097 schedule_work(&dev
->reset_work
);
1102 wake_up(&dev
->wait_hw_ready
);
1105 /************************************************************/
1106 /* Check interrupt cause:
1107 * Aliveness: Detection of SeC acknowledge of host request that
1108 * it remain alive or host cancellation of that request.
1111 if (test_and_clear_bit(TXE_INTR_ALIVENESS_BIT
, &hw
->intr_cause
)) {
1112 /* Clear the interrupt cause */
1114 "Aliveness Interrupt: Status: %d\n", hw
->aliveness
);
1115 dev
->pg_event
= MEI_PG_EVENT_RECEIVED
;
1116 if (waitqueue_active(&hw
->wait_aliveness_resp
))
1117 wake_up(&hw
->wait_aliveness_resp
);
1122 * Detection of SeC having sent output to host
1124 slots
= mei_count_full_read_slots(dev
);
1125 if (test_and_clear_bit(TXE_INTR_OUT_DB_BIT
, &hw
->intr_cause
)) {
1127 rets
= mei_irq_read_handler(dev
, &cmpl_list
, &slots
);
1129 (dev
->dev_state
!= MEI_DEV_RESETTING
&&
1130 dev
->dev_state
!= MEI_DEV_POWER_DOWN
)) {
1132 "mei_irq_read_handler ret = %d.\n", rets
);
1134 schedule_work(&dev
->reset_work
);
1138 /* Input Ready: Detection if host can write to SeC */
1139 if (test_and_clear_bit(TXE_INTR_IN_READY_BIT
, &hw
->intr_cause
)) {
1140 dev
->hbuf_is_ready
= true;
1141 hw
->slots
= TXE_HBUF_DEPTH
;
1144 if (hw
->aliveness
&& dev
->hbuf_is_ready
) {
1145 /* get the real register value */
1146 dev
->hbuf_is_ready
= mei_hbuf_is_ready(dev
);
1147 rets
= mei_irq_write_handler(dev
, &cmpl_list
);
1148 if (rets
&& rets
!= -EMSGSIZE
)
1149 dev_err(dev
->dev
, "mei_irq_write_handler ret = %d.\n",
1151 dev
->hbuf_is_ready
= mei_hbuf_is_ready(dev
);
1154 mei_irq_compl_handler(dev
, &cmpl_list
);
1157 dev_dbg(dev
->dev
, "interrupt thread end ret = %d\n", rets
);
1159 mutex_unlock(&dev
->device_lock
);
1161 mei_enable_interrupts(dev
);
1165 static const struct mei_hw_ops mei_txe_hw_ops
= {
1167 .host_is_ready
= mei_txe_host_is_ready
,
1169 .fw_status
= mei_txe_fw_status
,
1170 .pg_state
= mei_txe_pg_state
,
1172 .hw_is_ready
= mei_txe_hw_is_ready
,
1173 .hw_reset
= mei_txe_hw_reset
,
1174 .hw_config
= mei_txe_hw_config
,
1175 .hw_start
= mei_txe_hw_start
,
1177 .pg_in_transition
= mei_txe_pg_in_transition
,
1178 .pg_is_enabled
= mei_txe_pg_is_enabled
,
1180 .intr_clear
= mei_txe_intr_clear
,
1181 .intr_enable
= mei_txe_intr_enable
,
1182 .intr_disable
= mei_txe_intr_disable
,
1183 .synchronize_irq
= mei_txe_synchronize_irq
,
1185 .hbuf_free_slots
= mei_txe_hbuf_empty_slots
,
1186 .hbuf_is_ready
= mei_txe_is_input_ready
,
1187 .hbuf_depth
= mei_txe_hbuf_depth
,
1189 .write
= mei_txe_write
,
1191 .rdbuf_full_slots
= mei_txe_count_full_read_slots
,
1192 .read_hdr
= mei_txe_read_hdr
,
1194 .read
= mei_txe_read
,
1199 * mei_txe_dev_init - allocates and initializes txe hardware specific structure
1203 * Return: struct mei_device * on success or NULL
1205 struct mei_device
*mei_txe_dev_init(struct pci_dev
*pdev
)
1207 struct mei_device
*dev
;
1208 struct mei_txe_hw
*hw
;
1210 dev
= devm_kzalloc(&pdev
->dev
, sizeof(struct mei_device
) +
1211 sizeof(struct mei_txe_hw
), GFP_KERNEL
);
1215 mei_device_init(dev
, &pdev
->dev
, &mei_txe_hw_ops
);
1217 hw
= to_txe_hw(dev
);
1219 init_waitqueue_head(&hw
->wait_aliveness_resp
);
1225 * mei_txe_setup_satt2 - SATT2 configuration for DMA support.
1227 * @dev: the device structure
1228 * @addr: physical address start of the range
1229 * @range: physical range size
1231 * Return: 0 on success an error code otherwise
1233 int mei_txe_setup_satt2(struct mei_device
*dev
, phys_addr_t addr
, u32 range
)
1235 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
1237 u32 lo32
= lower_32_bits(addr
);
1238 u32 hi32
= upper_32_bits(addr
);
1241 /* SATT is limited to 36 Bits */
1245 /* SATT has to be 16Byte aligned */
1249 /* SATT range has to be 4Bytes aligned */
1253 /* SATT is limited to 32 MB range*/
1254 if (range
> SATT_RANGE_MAX
)
1257 ctrl
= SATT2_CTRL_VALID_MSK
;
1258 ctrl
|= hi32
<< SATT2_CTRL_BR_BASE_ADDR_REG_SHIFT
;
1260 mei_txe_br_reg_write(hw
, SATT2_SAP_SIZE_REG
, range
);
1261 mei_txe_br_reg_write(hw
, SATT2_BRG_BA_LSB_REG
, lo32
);
1262 mei_txe_br_reg_write(hw
, SATT2_CTRL_REG
, ctrl
);
1263 dev_dbg(dev
->dev
, "SATT2: SAP_SIZE_OFFSET=0x%08X, BRG_BA_LSB_OFFSET=0x%08X, CTRL_OFFSET=0x%08X\n",