Linux 3.14.51
[linux/fpc-iii.git] / fs / exec.c
blob05f1942d7edba5e4086562c7beea27389b4d99ca
1 /*
2 * linux/fs/exec.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * #!-checking implemented by tytso.
9 */
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
60 #include <asm/uaccess.h>
61 #include <asm/mmu_context.h>
62 #include <asm/tlb.h>
64 #include <trace/events/task.h>
65 #include "internal.h"
67 #include <trace/events/sched.h>
69 int suid_dumpable = 0;
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
74 void __register_binfmt(struct linux_binfmt * fmt, int insert)
76 BUG_ON(!fmt);
77 if (WARN_ON(!fmt->load_binary))
78 return;
79 write_lock(&binfmt_lock);
80 insert ? list_add(&fmt->lh, &formats) :
81 list_add_tail(&fmt->lh, &formats);
82 write_unlock(&binfmt_lock);
85 EXPORT_SYMBOL(__register_binfmt);
87 void unregister_binfmt(struct linux_binfmt * fmt)
89 write_lock(&binfmt_lock);
90 list_del(&fmt->lh);
91 write_unlock(&binfmt_lock);
94 EXPORT_SYMBOL(unregister_binfmt);
96 static inline void put_binfmt(struct linux_binfmt * fmt)
98 module_put(fmt->module);
102 * Note that a shared library must be both readable and executable due to
103 * security reasons.
105 * Also note that we take the address to load from from the file itself.
107 SYSCALL_DEFINE1(uselib, const char __user *, library)
109 struct linux_binfmt *fmt;
110 struct file *file;
111 struct filename *tmp = getname(library);
112 int error = PTR_ERR(tmp);
113 static const struct open_flags uselib_flags = {
114 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
115 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
116 .intent = LOOKUP_OPEN,
117 .lookup_flags = LOOKUP_FOLLOW,
120 if (IS_ERR(tmp))
121 goto out;
123 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
124 putname(tmp);
125 error = PTR_ERR(file);
126 if (IS_ERR(file))
127 goto out;
129 error = -EINVAL;
130 if (!S_ISREG(file_inode(file)->i_mode))
131 goto exit;
133 error = -EACCES;
134 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
135 goto exit;
137 fsnotify_open(file);
139 error = -ENOEXEC;
141 read_lock(&binfmt_lock);
142 list_for_each_entry(fmt, &formats, lh) {
143 if (!fmt->load_shlib)
144 continue;
145 if (!try_module_get(fmt->module))
146 continue;
147 read_unlock(&binfmt_lock);
148 error = fmt->load_shlib(file);
149 read_lock(&binfmt_lock);
150 put_binfmt(fmt);
151 if (error != -ENOEXEC)
152 break;
154 read_unlock(&binfmt_lock);
155 exit:
156 fput(file);
157 out:
158 return error;
161 #ifdef CONFIG_MMU
163 * The nascent bprm->mm is not visible until exec_mmap() but it can
164 * use a lot of memory, account these pages in current->mm temporary
165 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
166 * change the counter back via acct_arg_size(0).
168 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
170 struct mm_struct *mm = current->mm;
171 long diff = (long)(pages - bprm->vma_pages);
173 if (!mm || !diff)
174 return;
176 bprm->vma_pages = pages;
177 add_mm_counter(mm, MM_ANONPAGES, diff);
180 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
181 int write)
183 struct page *page;
184 int ret;
186 #ifdef CONFIG_STACK_GROWSUP
187 if (write) {
188 ret = expand_downwards(bprm->vma, pos);
189 if (ret < 0)
190 return NULL;
192 #endif
193 ret = get_user_pages(current, bprm->mm, pos,
194 1, write, 1, &page, NULL);
195 if (ret <= 0)
196 return NULL;
198 if (write) {
199 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
200 struct rlimit *rlim;
202 acct_arg_size(bprm, size / PAGE_SIZE);
205 * We've historically supported up to 32 pages (ARG_MAX)
206 * of argument strings even with small stacks
208 if (size <= ARG_MAX)
209 return page;
212 * Limit to 1/4-th the stack size for the argv+env strings.
213 * This ensures that:
214 * - the remaining binfmt code will not run out of stack space,
215 * - the program will have a reasonable amount of stack left
216 * to work from.
218 rlim = current->signal->rlim;
219 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
220 put_page(page);
221 return NULL;
225 return page;
228 static void put_arg_page(struct page *page)
230 put_page(page);
233 static void free_arg_page(struct linux_binprm *bprm, int i)
237 static void free_arg_pages(struct linux_binprm *bprm)
241 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
242 struct page *page)
244 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
247 static int __bprm_mm_init(struct linux_binprm *bprm)
249 int err;
250 struct vm_area_struct *vma = NULL;
251 struct mm_struct *mm = bprm->mm;
253 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
254 if (!vma)
255 return -ENOMEM;
257 down_write(&mm->mmap_sem);
258 vma->vm_mm = mm;
261 * Place the stack at the largest stack address the architecture
262 * supports. Later, we'll move this to an appropriate place. We don't
263 * use STACK_TOP because that can depend on attributes which aren't
264 * configured yet.
266 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
267 vma->vm_end = STACK_TOP_MAX;
268 vma->vm_start = vma->vm_end - PAGE_SIZE;
269 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
270 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
271 INIT_LIST_HEAD(&vma->anon_vma_chain);
273 err = insert_vm_struct(mm, vma);
274 if (err)
275 goto err;
277 mm->stack_vm = mm->total_vm = 1;
278 up_write(&mm->mmap_sem);
279 bprm->p = vma->vm_end - sizeof(void *);
280 return 0;
281 err:
282 up_write(&mm->mmap_sem);
283 bprm->vma = NULL;
284 kmem_cache_free(vm_area_cachep, vma);
285 return err;
288 static bool valid_arg_len(struct linux_binprm *bprm, long len)
290 return len <= MAX_ARG_STRLEN;
293 #else
295 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
299 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
300 int write)
302 struct page *page;
304 page = bprm->page[pos / PAGE_SIZE];
305 if (!page && write) {
306 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
307 if (!page)
308 return NULL;
309 bprm->page[pos / PAGE_SIZE] = page;
312 return page;
315 static void put_arg_page(struct page *page)
319 static void free_arg_page(struct linux_binprm *bprm, int i)
321 if (bprm->page[i]) {
322 __free_page(bprm->page[i]);
323 bprm->page[i] = NULL;
327 static void free_arg_pages(struct linux_binprm *bprm)
329 int i;
331 for (i = 0; i < MAX_ARG_PAGES; i++)
332 free_arg_page(bprm, i);
335 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
336 struct page *page)
340 static int __bprm_mm_init(struct linux_binprm *bprm)
342 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
343 return 0;
346 static bool valid_arg_len(struct linux_binprm *bprm, long len)
348 return len <= bprm->p;
351 #endif /* CONFIG_MMU */
354 * Create a new mm_struct and populate it with a temporary stack
355 * vm_area_struct. We don't have enough context at this point to set the stack
356 * flags, permissions, and offset, so we use temporary values. We'll update
357 * them later in setup_arg_pages().
359 static int bprm_mm_init(struct linux_binprm *bprm)
361 int err;
362 struct mm_struct *mm = NULL;
364 bprm->mm = mm = mm_alloc();
365 err = -ENOMEM;
366 if (!mm)
367 goto err;
369 err = init_new_context(current, mm);
370 if (err)
371 goto err;
373 err = __bprm_mm_init(bprm);
374 if (err)
375 goto err;
377 return 0;
379 err:
380 if (mm) {
381 bprm->mm = NULL;
382 mmdrop(mm);
385 return err;
388 struct user_arg_ptr {
389 #ifdef CONFIG_COMPAT
390 bool is_compat;
391 #endif
392 union {
393 const char __user *const __user *native;
394 #ifdef CONFIG_COMPAT
395 const compat_uptr_t __user *compat;
396 #endif
397 } ptr;
400 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
402 const char __user *native;
404 #ifdef CONFIG_COMPAT
405 if (unlikely(argv.is_compat)) {
406 compat_uptr_t compat;
408 if (get_user(compat, argv.ptr.compat + nr))
409 return ERR_PTR(-EFAULT);
411 return compat_ptr(compat);
413 #endif
415 if (get_user(native, argv.ptr.native + nr))
416 return ERR_PTR(-EFAULT);
418 return native;
422 * count() counts the number of strings in array ARGV.
424 static int count(struct user_arg_ptr argv, int max)
426 int i = 0;
428 if (argv.ptr.native != NULL) {
429 for (;;) {
430 const char __user *p = get_user_arg_ptr(argv, i);
432 if (!p)
433 break;
435 if (IS_ERR(p))
436 return -EFAULT;
438 if (i >= max)
439 return -E2BIG;
440 ++i;
442 if (fatal_signal_pending(current))
443 return -ERESTARTNOHAND;
444 cond_resched();
447 return i;
451 * 'copy_strings()' copies argument/environment strings from the old
452 * processes's memory to the new process's stack. The call to get_user_pages()
453 * ensures the destination page is created and not swapped out.
455 static int copy_strings(int argc, struct user_arg_ptr argv,
456 struct linux_binprm *bprm)
458 struct page *kmapped_page = NULL;
459 char *kaddr = NULL;
460 unsigned long kpos = 0;
461 int ret;
463 while (argc-- > 0) {
464 const char __user *str;
465 int len;
466 unsigned long pos;
468 ret = -EFAULT;
469 str = get_user_arg_ptr(argv, argc);
470 if (IS_ERR(str))
471 goto out;
473 len = strnlen_user(str, MAX_ARG_STRLEN);
474 if (!len)
475 goto out;
477 ret = -E2BIG;
478 if (!valid_arg_len(bprm, len))
479 goto out;
481 /* We're going to work our way backwords. */
482 pos = bprm->p;
483 str += len;
484 bprm->p -= len;
486 while (len > 0) {
487 int offset, bytes_to_copy;
489 if (fatal_signal_pending(current)) {
490 ret = -ERESTARTNOHAND;
491 goto out;
493 cond_resched();
495 offset = pos % PAGE_SIZE;
496 if (offset == 0)
497 offset = PAGE_SIZE;
499 bytes_to_copy = offset;
500 if (bytes_to_copy > len)
501 bytes_to_copy = len;
503 offset -= bytes_to_copy;
504 pos -= bytes_to_copy;
505 str -= bytes_to_copy;
506 len -= bytes_to_copy;
508 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
509 struct page *page;
511 page = get_arg_page(bprm, pos, 1);
512 if (!page) {
513 ret = -E2BIG;
514 goto out;
517 if (kmapped_page) {
518 flush_kernel_dcache_page(kmapped_page);
519 kunmap(kmapped_page);
520 put_arg_page(kmapped_page);
522 kmapped_page = page;
523 kaddr = kmap(kmapped_page);
524 kpos = pos & PAGE_MASK;
525 flush_arg_page(bprm, kpos, kmapped_page);
527 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
528 ret = -EFAULT;
529 goto out;
533 ret = 0;
534 out:
535 if (kmapped_page) {
536 flush_kernel_dcache_page(kmapped_page);
537 kunmap(kmapped_page);
538 put_arg_page(kmapped_page);
540 return ret;
544 * Like copy_strings, but get argv and its values from kernel memory.
546 int copy_strings_kernel(int argc, const char *const *__argv,
547 struct linux_binprm *bprm)
549 int r;
550 mm_segment_t oldfs = get_fs();
551 struct user_arg_ptr argv = {
552 .ptr.native = (const char __user *const __user *)__argv,
555 set_fs(KERNEL_DS);
556 r = copy_strings(argc, argv, bprm);
557 set_fs(oldfs);
559 return r;
561 EXPORT_SYMBOL(copy_strings_kernel);
563 #ifdef CONFIG_MMU
566 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
567 * the binfmt code determines where the new stack should reside, we shift it to
568 * its final location. The process proceeds as follows:
570 * 1) Use shift to calculate the new vma endpoints.
571 * 2) Extend vma to cover both the old and new ranges. This ensures the
572 * arguments passed to subsequent functions are consistent.
573 * 3) Move vma's page tables to the new range.
574 * 4) Free up any cleared pgd range.
575 * 5) Shrink the vma to cover only the new range.
577 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
579 struct mm_struct *mm = vma->vm_mm;
580 unsigned long old_start = vma->vm_start;
581 unsigned long old_end = vma->vm_end;
582 unsigned long length = old_end - old_start;
583 unsigned long new_start = old_start - shift;
584 unsigned long new_end = old_end - shift;
585 struct mmu_gather tlb;
587 BUG_ON(new_start > new_end);
590 * ensure there are no vmas between where we want to go
591 * and where we are
593 if (vma != find_vma(mm, new_start))
594 return -EFAULT;
597 * cover the whole range: [new_start, old_end)
599 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
600 return -ENOMEM;
603 * move the page tables downwards, on failure we rely on
604 * process cleanup to remove whatever mess we made.
606 if (length != move_page_tables(vma, old_start,
607 vma, new_start, length, false))
608 return -ENOMEM;
610 lru_add_drain();
611 tlb_gather_mmu(&tlb, mm, old_start, old_end);
612 if (new_end > old_start) {
614 * when the old and new regions overlap clear from new_end.
616 free_pgd_range(&tlb, new_end, old_end, new_end,
617 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
618 } else {
620 * otherwise, clean from old_start; this is done to not touch
621 * the address space in [new_end, old_start) some architectures
622 * have constraints on va-space that make this illegal (IA64) -
623 * for the others its just a little faster.
625 free_pgd_range(&tlb, old_start, old_end, new_end,
626 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
628 tlb_finish_mmu(&tlb, old_start, old_end);
631 * Shrink the vma to just the new range. Always succeeds.
633 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
635 return 0;
639 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
640 * the stack is optionally relocated, and some extra space is added.
642 int setup_arg_pages(struct linux_binprm *bprm,
643 unsigned long stack_top,
644 int executable_stack)
646 unsigned long ret;
647 unsigned long stack_shift;
648 struct mm_struct *mm = current->mm;
649 struct vm_area_struct *vma = bprm->vma;
650 struct vm_area_struct *prev = NULL;
651 unsigned long vm_flags;
652 unsigned long stack_base;
653 unsigned long stack_size;
654 unsigned long stack_expand;
655 unsigned long rlim_stack;
657 #ifdef CONFIG_STACK_GROWSUP
658 /* Limit stack size */
659 stack_base = rlimit_max(RLIMIT_STACK);
660 if (stack_base > STACK_SIZE_MAX)
661 stack_base = STACK_SIZE_MAX;
663 /* Make sure we didn't let the argument array grow too large. */
664 if (vma->vm_end - vma->vm_start > stack_base)
665 return -ENOMEM;
667 stack_base = PAGE_ALIGN(stack_top - stack_base);
669 stack_shift = vma->vm_start - stack_base;
670 mm->arg_start = bprm->p - stack_shift;
671 bprm->p = vma->vm_end - stack_shift;
672 #else
673 stack_top = arch_align_stack(stack_top);
674 stack_top = PAGE_ALIGN(stack_top);
676 if (unlikely(stack_top < mmap_min_addr) ||
677 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
678 return -ENOMEM;
680 stack_shift = vma->vm_end - stack_top;
682 bprm->p -= stack_shift;
683 mm->arg_start = bprm->p;
684 #endif
686 if (bprm->loader)
687 bprm->loader -= stack_shift;
688 bprm->exec -= stack_shift;
690 down_write(&mm->mmap_sem);
691 vm_flags = VM_STACK_FLAGS;
694 * Adjust stack execute permissions; explicitly enable for
695 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
696 * (arch default) otherwise.
698 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
699 vm_flags |= VM_EXEC;
700 else if (executable_stack == EXSTACK_DISABLE_X)
701 vm_flags &= ~VM_EXEC;
702 vm_flags |= mm->def_flags;
703 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
705 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
706 vm_flags);
707 if (ret)
708 goto out_unlock;
709 BUG_ON(prev != vma);
711 /* Move stack pages down in memory. */
712 if (stack_shift) {
713 ret = shift_arg_pages(vma, stack_shift);
714 if (ret)
715 goto out_unlock;
718 /* mprotect_fixup is overkill to remove the temporary stack flags */
719 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
721 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
722 stack_size = vma->vm_end - vma->vm_start;
724 * Align this down to a page boundary as expand_stack
725 * will align it up.
727 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
728 #ifdef CONFIG_STACK_GROWSUP
729 if (stack_size + stack_expand > rlim_stack)
730 stack_base = vma->vm_start + rlim_stack;
731 else
732 stack_base = vma->vm_end + stack_expand;
733 #else
734 if (stack_size + stack_expand > rlim_stack)
735 stack_base = vma->vm_end - rlim_stack;
736 else
737 stack_base = vma->vm_start - stack_expand;
738 #endif
739 current->mm->start_stack = bprm->p;
740 ret = expand_stack(vma, stack_base);
741 if (ret)
742 ret = -EFAULT;
744 out_unlock:
745 up_write(&mm->mmap_sem);
746 return ret;
748 EXPORT_SYMBOL(setup_arg_pages);
750 #endif /* CONFIG_MMU */
752 static struct file *do_open_exec(struct filename *name)
754 struct file *file;
755 int err;
756 static const struct open_flags open_exec_flags = {
757 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
758 .acc_mode = MAY_EXEC | MAY_OPEN,
759 .intent = LOOKUP_OPEN,
760 .lookup_flags = LOOKUP_FOLLOW,
763 file = do_filp_open(AT_FDCWD, name, &open_exec_flags);
764 if (IS_ERR(file))
765 goto out;
767 err = -EACCES;
768 if (!S_ISREG(file_inode(file)->i_mode))
769 goto exit;
771 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
772 goto exit;
774 fsnotify_open(file);
776 err = deny_write_access(file);
777 if (err)
778 goto exit;
780 out:
781 return file;
783 exit:
784 fput(file);
785 return ERR_PTR(err);
788 struct file *open_exec(const char *name)
790 struct filename tmp = { .name = name };
791 return do_open_exec(&tmp);
793 EXPORT_SYMBOL(open_exec);
795 int kernel_read(struct file *file, loff_t offset,
796 char *addr, unsigned long count)
798 mm_segment_t old_fs;
799 loff_t pos = offset;
800 int result;
802 old_fs = get_fs();
803 set_fs(get_ds());
804 /* The cast to a user pointer is valid due to the set_fs() */
805 result = vfs_read(file, (void __user *)addr, count, &pos);
806 set_fs(old_fs);
807 return result;
810 EXPORT_SYMBOL(kernel_read);
812 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
814 ssize_t res = file->f_op->read(file, (void __user *)addr, len, &pos);
815 if (res > 0)
816 flush_icache_range(addr, addr + len);
817 return res;
819 EXPORT_SYMBOL(read_code);
821 static int exec_mmap(struct mm_struct *mm)
823 struct task_struct *tsk;
824 struct mm_struct *old_mm, *active_mm;
826 /* Notify parent that we're no longer interested in the old VM */
827 tsk = current;
828 old_mm = current->mm;
829 mm_release(tsk, old_mm);
831 if (old_mm) {
832 sync_mm_rss(old_mm);
834 * Make sure that if there is a core dump in progress
835 * for the old mm, we get out and die instead of going
836 * through with the exec. We must hold mmap_sem around
837 * checking core_state and changing tsk->mm.
839 down_read(&old_mm->mmap_sem);
840 if (unlikely(old_mm->core_state)) {
841 up_read(&old_mm->mmap_sem);
842 return -EINTR;
845 task_lock(tsk);
846 active_mm = tsk->active_mm;
847 tsk->mm = mm;
848 tsk->active_mm = mm;
849 activate_mm(active_mm, mm);
850 tsk->mm->vmacache_seqnum = 0;
851 vmacache_flush(tsk);
852 task_unlock(tsk);
853 if (old_mm) {
854 up_read(&old_mm->mmap_sem);
855 BUG_ON(active_mm != old_mm);
856 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
857 mm_update_next_owner(old_mm);
858 mmput(old_mm);
859 return 0;
861 mmdrop(active_mm);
862 return 0;
866 * This function makes sure the current process has its own signal table,
867 * so that flush_signal_handlers can later reset the handlers without
868 * disturbing other processes. (Other processes might share the signal
869 * table via the CLONE_SIGHAND option to clone().)
871 static int de_thread(struct task_struct *tsk)
873 struct signal_struct *sig = tsk->signal;
874 struct sighand_struct *oldsighand = tsk->sighand;
875 spinlock_t *lock = &oldsighand->siglock;
877 if (thread_group_empty(tsk))
878 goto no_thread_group;
881 * Kill all other threads in the thread group.
883 spin_lock_irq(lock);
884 if (signal_group_exit(sig)) {
886 * Another group action in progress, just
887 * return so that the signal is processed.
889 spin_unlock_irq(lock);
890 return -EAGAIN;
893 sig->group_exit_task = tsk;
894 sig->notify_count = zap_other_threads(tsk);
895 if (!thread_group_leader(tsk))
896 sig->notify_count--;
898 while (sig->notify_count) {
899 __set_current_state(TASK_KILLABLE);
900 spin_unlock_irq(lock);
901 schedule();
902 if (unlikely(__fatal_signal_pending(tsk)))
903 goto killed;
904 spin_lock_irq(lock);
906 spin_unlock_irq(lock);
909 * At this point all other threads have exited, all we have to
910 * do is to wait for the thread group leader to become inactive,
911 * and to assume its PID:
913 if (!thread_group_leader(tsk)) {
914 struct task_struct *leader = tsk->group_leader;
916 sig->notify_count = -1; /* for exit_notify() */
917 for (;;) {
918 threadgroup_change_begin(tsk);
919 write_lock_irq(&tasklist_lock);
920 if (likely(leader->exit_state))
921 break;
922 __set_current_state(TASK_KILLABLE);
923 write_unlock_irq(&tasklist_lock);
924 threadgroup_change_end(tsk);
925 schedule();
926 if (unlikely(__fatal_signal_pending(tsk)))
927 goto killed;
931 * The only record we have of the real-time age of a
932 * process, regardless of execs it's done, is start_time.
933 * All the past CPU time is accumulated in signal_struct
934 * from sister threads now dead. But in this non-leader
935 * exec, nothing survives from the original leader thread,
936 * whose birth marks the true age of this process now.
937 * When we take on its identity by switching to its PID, we
938 * also take its birthdate (always earlier than our own).
940 tsk->start_time = leader->start_time;
941 tsk->real_start_time = leader->real_start_time;
943 BUG_ON(!same_thread_group(leader, tsk));
944 BUG_ON(has_group_leader_pid(tsk));
946 * An exec() starts a new thread group with the
947 * TGID of the previous thread group. Rehash the
948 * two threads with a switched PID, and release
949 * the former thread group leader:
952 /* Become a process group leader with the old leader's pid.
953 * The old leader becomes a thread of the this thread group.
954 * Note: The old leader also uses this pid until release_task
955 * is called. Odd but simple and correct.
957 tsk->pid = leader->pid;
958 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
959 transfer_pid(leader, tsk, PIDTYPE_PGID);
960 transfer_pid(leader, tsk, PIDTYPE_SID);
962 list_replace_rcu(&leader->tasks, &tsk->tasks);
963 list_replace_init(&leader->sibling, &tsk->sibling);
965 tsk->group_leader = tsk;
966 leader->group_leader = tsk;
968 tsk->exit_signal = SIGCHLD;
969 leader->exit_signal = -1;
971 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
972 leader->exit_state = EXIT_DEAD;
975 * We are going to release_task()->ptrace_unlink() silently,
976 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
977 * the tracer wont't block again waiting for this thread.
979 if (unlikely(leader->ptrace))
980 __wake_up_parent(leader, leader->parent);
981 write_unlock_irq(&tasklist_lock);
982 threadgroup_change_end(tsk);
984 release_task(leader);
987 sig->group_exit_task = NULL;
988 sig->notify_count = 0;
990 no_thread_group:
991 /* we have changed execution domain */
992 tsk->exit_signal = SIGCHLD;
994 exit_itimers(sig);
995 flush_itimer_signals();
997 if (atomic_read(&oldsighand->count) != 1) {
998 struct sighand_struct *newsighand;
1000 * This ->sighand is shared with the CLONE_SIGHAND
1001 * but not CLONE_THREAD task, switch to the new one.
1003 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1004 if (!newsighand)
1005 return -ENOMEM;
1007 atomic_set(&newsighand->count, 1);
1008 memcpy(newsighand->action, oldsighand->action,
1009 sizeof(newsighand->action));
1011 write_lock_irq(&tasklist_lock);
1012 spin_lock(&oldsighand->siglock);
1013 rcu_assign_pointer(tsk->sighand, newsighand);
1014 spin_unlock(&oldsighand->siglock);
1015 write_unlock_irq(&tasklist_lock);
1017 __cleanup_sighand(oldsighand);
1020 BUG_ON(!thread_group_leader(tsk));
1021 return 0;
1023 killed:
1024 /* protects against exit_notify() and __exit_signal() */
1025 read_lock(&tasklist_lock);
1026 sig->group_exit_task = NULL;
1027 sig->notify_count = 0;
1028 read_unlock(&tasklist_lock);
1029 return -EAGAIN;
1032 char *get_task_comm(char *buf, struct task_struct *tsk)
1034 /* buf must be at least sizeof(tsk->comm) in size */
1035 task_lock(tsk);
1036 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1037 task_unlock(tsk);
1038 return buf;
1040 EXPORT_SYMBOL_GPL(get_task_comm);
1043 * These functions flushes out all traces of the currently running executable
1044 * so that a new one can be started
1047 void set_task_comm(struct task_struct *tsk, char *buf)
1049 task_lock(tsk);
1050 trace_task_rename(tsk, buf);
1051 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1052 task_unlock(tsk);
1053 perf_event_comm(tsk);
1056 static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len)
1058 int i, ch;
1060 /* Copies the binary name from after last slash */
1061 for (i = 0; (ch = *(fn++)) != '\0';) {
1062 if (ch == '/')
1063 i = 0; /* overwrite what we wrote */
1064 else
1065 if (i < len - 1)
1066 tcomm[i++] = ch;
1068 tcomm[i] = '\0';
1071 int flush_old_exec(struct linux_binprm * bprm)
1073 int retval;
1076 * Make sure we have a private signal table and that
1077 * we are unassociated from the previous thread group.
1079 retval = de_thread(current);
1080 if (retval)
1081 goto out;
1083 set_mm_exe_file(bprm->mm, bprm->file);
1085 filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm));
1087 * Release all of the old mmap stuff
1089 acct_arg_size(bprm, 0);
1090 retval = exec_mmap(bprm->mm);
1091 if (retval)
1092 goto out;
1094 bprm->mm = NULL; /* We're using it now */
1096 set_fs(USER_DS);
1097 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1098 PF_NOFREEZE | PF_NO_SETAFFINITY);
1099 flush_thread();
1100 current->personality &= ~bprm->per_clear;
1102 return 0;
1104 out:
1105 return retval;
1107 EXPORT_SYMBOL(flush_old_exec);
1109 void would_dump(struct linux_binprm *bprm, struct file *file)
1111 if (inode_permission(file_inode(file), MAY_READ) < 0)
1112 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1114 EXPORT_SYMBOL(would_dump);
1116 void setup_new_exec(struct linux_binprm * bprm)
1118 arch_pick_mmap_layout(current->mm);
1120 /* This is the point of no return */
1121 current->sas_ss_sp = current->sas_ss_size = 0;
1123 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1124 set_dumpable(current->mm, SUID_DUMP_USER);
1125 else
1126 set_dumpable(current->mm, suid_dumpable);
1128 set_task_comm(current, bprm->tcomm);
1130 /* Set the new mm task size. We have to do that late because it may
1131 * depend on TIF_32BIT which is only updated in flush_thread() on
1132 * some architectures like powerpc
1134 current->mm->task_size = TASK_SIZE;
1136 /* install the new credentials */
1137 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1138 !gid_eq(bprm->cred->gid, current_egid())) {
1139 current->pdeath_signal = 0;
1140 } else {
1141 would_dump(bprm, bprm->file);
1142 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1143 set_dumpable(current->mm, suid_dumpable);
1146 /* An exec changes our domain. We are no longer part of the thread
1147 group */
1148 current->self_exec_id++;
1149 flush_signal_handlers(current, 0);
1150 do_close_on_exec(current->files);
1152 EXPORT_SYMBOL(setup_new_exec);
1155 * Prepare credentials and lock ->cred_guard_mutex.
1156 * install_exec_creds() commits the new creds and drops the lock.
1157 * Or, if exec fails before, free_bprm() should release ->cred and
1158 * and unlock.
1160 int prepare_bprm_creds(struct linux_binprm *bprm)
1162 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1163 return -ERESTARTNOINTR;
1165 bprm->cred = prepare_exec_creds();
1166 if (likely(bprm->cred))
1167 return 0;
1169 mutex_unlock(&current->signal->cred_guard_mutex);
1170 return -ENOMEM;
1173 static void free_bprm(struct linux_binprm *bprm)
1175 free_arg_pages(bprm);
1176 if (bprm->cred) {
1177 mutex_unlock(&current->signal->cred_guard_mutex);
1178 abort_creds(bprm->cred);
1180 if (bprm->file) {
1181 allow_write_access(bprm->file);
1182 fput(bprm->file);
1184 /* If a binfmt changed the interp, free it. */
1185 if (bprm->interp != bprm->filename)
1186 kfree(bprm->interp);
1187 kfree(bprm);
1190 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1192 /* If a binfmt changed the interp, free it first. */
1193 if (bprm->interp != bprm->filename)
1194 kfree(bprm->interp);
1195 bprm->interp = kstrdup(interp, GFP_KERNEL);
1196 if (!bprm->interp)
1197 return -ENOMEM;
1198 return 0;
1200 EXPORT_SYMBOL(bprm_change_interp);
1203 * install the new credentials for this executable
1205 void install_exec_creds(struct linux_binprm *bprm)
1207 security_bprm_committing_creds(bprm);
1209 commit_creds(bprm->cred);
1210 bprm->cred = NULL;
1213 * Disable monitoring for regular users
1214 * when executing setuid binaries. Must
1215 * wait until new credentials are committed
1216 * by commit_creds() above
1218 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1219 perf_event_exit_task(current);
1221 * cred_guard_mutex must be held at least to this point to prevent
1222 * ptrace_attach() from altering our determination of the task's
1223 * credentials; any time after this it may be unlocked.
1225 security_bprm_committed_creds(bprm);
1226 mutex_unlock(&current->signal->cred_guard_mutex);
1228 EXPORT_SYMBOL(install_exec_creds);
1231 * determine how safe it is to execute the proposed program
1232 * - the caller must hold ->cred_guard_mutex to protect against
1233 * PTRACE_ATTACH
1235 static void check_unsafe_exec(struct linux_binprm *bprm)
1237 struct task_struct *p = current, *t;
1238 unsigned n_fs;
1240 if (p->ptrace) {
1241 if (p->ptrace & PT_PTRACE_CAP)
1242 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1243 else
1244 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1248 * This isn't strictly necessary, but it makes it harder for LSMs to
1249 * mess up.
1251 if (current->no_new_privs)
1252 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1254 t = p;
1255 n_fs = 1;
1256 spin_lock(&p->fs->lock);
1257 rcu_read_lock();
1258 while_each_thread(p, t) {
1259 if (t->fs == p->fs)
1260 n_fs++;
1262 rcu_read_unlock();
1264 if (p->fs->users > n_fs)
1265 bprm->unsafe |= LSM_UNSAFE_SHARE;
1266 else
1267 p->fs->in_exec = 1;
1268 spin_unlock(&p->fs->lock);
1271 static void bprm_fill_uid(struct linux_binprm *bprm)
1273 struct inode *inode;
1274 unsigned int mode;
1275 kuid_t uid;
1276 kgid_t gid;
1278 /* clear any previous set[ug]id data from a previous binary */
1279 bprm->cred->euid = current_euid();
1280 bprm->cred->egid = current_egid();
1282 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1283 return;
1285 if (current->no_new_privs)
1286 return;
1288 inode = file_inode(bprm->file);
1289 mode = ACCESS_ONCE(inode->i_mode);
1290 if (!(mode & (S_ISUID|S_ISGID)))
1291 return;
1293 /* Be careful if suid/sgid is set */
1294 mutex_lock(&inode->i_mutex);
1296 /* reload atomically mode/uid/gid now that lock held */
1297 mode = inode->i_mode;
1298 uid = inode->i_uid;
1299 gid = inode->i_gid;
1300 mutex_unlock(&inode->i_mutex);
1302 /* We ignore suid/sgid if there are no mappings for them in the ns */
1303 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1304 !kgid_has_mapping(bprm->cred->user_ns, gid))
1305 return;
1307 if (mode & S_ISUID) {
1308 bprm->per_clear |= PER_CLEAR_ON_SETID;
1309 bprm->cred->euid = uid;
1312 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1313 bprm->per_clear |= PER_CLEAR_ON_SETID;
1314 bprm->cred->egid = gid;
1319 * Fill the binprm structure from the inode.
1320 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1322 * This may be called multiple times for binary chains (scripts for example).
1324 int prepare_binprm(struct linux_binprm *bprm)
1326 int retval;
1328 bprm_fill_uid(bprm);
1330 /* fill in binprm security blob */
1331 retval = security_bprm_set_creds(bprm);
1332 if (retval)
1333 return retval;
1334 bprm->cred_prepared = 1;
1336 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1337 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1340 EXPORT_SYMBOL(prepare_binprm);
1343 * Arguments are '\0' separated strings found at the location bprm->p
1344 * points to; chop off the first by relocating brpm->p to right after
1345 * the first '\0' encountered.
1347 int remove_arg_zero(struct linux_binprm *bprm)
1349 int ret = 0;
1350 unsigned long offset;
1351 char *kaddr;
1352 struct page *page;
1354 if (!bprm->argc)
1355 return 0;
1357 do {
1358 offset = bprm->p & ~PAGE_MASK;
1359 page = get_arg_page(bprm, bprm->p, 0);
1360 if (!page) {
1361 ret = -EFAULT;
1362 goto out;
1364 kaddr = kmap_atomic(page);
1366 for (; offset < PAGE_SIZE && kaddr[offset];
1367 offset++, bprm->p++)
1370 kunmap_atomic(kaddr);
1371 put_arg_page(page);
1373 if (offset == PAGE_SIZE)
1374 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1375 } while (offset == PAGE_SIZE);
1377 bprm->p++;
1378 bprm->argc--;
1379 ret = 0;
1381 out:
1382 return ret;
1384 EXPORT_SYMBOL(remove_arg_zero);
1386 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1388 * cycle the list of binary formats handler, until one recognizes the image
1390 int search_binary_handler(struct linux_binprm *bprm)
1392 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1393 struct linux_binfmt *fmt;
1394 int retval;
1396 /* This allows 4 levels of binfmt rewrites before failing hard. */
1397 if (bprm->recursion_depth > 5)
1398 return -ELOOP;
1400 retval = security_bprm_check(bprm);
1401 if (retval)
1402 return retval;
1404 retval = -ENOENT;
1405 retry:
1406 read_lock(&binfmt_lock);
1407 list_for_each_entry(fmt, &formats, lh) {
1408 if (!try_module_get(fmt->module))
1409 continue;
1410 read_unlock(&binfmt_lock);
1411 bprm->recursion_depth++;
1412 retval = fmt->load_binary(bprm);
1413 bprm->recursion_depth--;
1414 if (retval >= 0 || retval != -ENOEXEC ||
1415 bprm->mm == NULL || bprm->file == NULL) {
1416 put_binfmt(fmt);
1417 return retval;
1419 read_lock(&binfmt_lock);
1420 put_binfmt(fmt);
1422 read_unlock(&binfmt_lock);
1424 if (need_retry && retval == -ENOEXEC) {
1425 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1426 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1427 return retval;
1428 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1429 return retval;
1430 need_retry = false;
1431 goto retry;
1434 return retval;
1436 EXPORT_SYMBOL(search_binary_handler);
1438 static int exec_binprm(struct linux_binprm *bprm)
1440 pid_t old_pid, old_vpid;
1441 int ret;
1443 /* Need to fetch pid before load_binary changes it */
1444 old_pid = current->pid;
1445 rcu_read_lock();
1446 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1447 rcu_read_unlock();
1449 ret = search_binary_handler(bprm);
1450 if (ret >= 0) {
1451 audit_bprm(bprm);
1452 trace_sched_process_exec(current, old_pid, bprm);
1453 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1454 proc_exec_connector(current);
1457 return ret;
1461 * sys_execve() executes a new program.
1463 static int do_execve_common(struct filename *filename,
1464 struct user_arg_ptr argv,
1465 struct user_arg_ptr envp)
1467 struct linux_binprm *bprm;
1468 struct file *file;
1469 struct files_struct *displaced;
1470 int retval;
1472 if (IS_ERR(filename))
1473 return PTR_ERR(filename);
1476 * We move the actual failure in case of RLIMIT_NPROC excess from
1477 * set*uid() to execve() because too many poorly written programs
1478 * don't check setuid() return code. Here we additionally recheck
1479 * whether NPROC limit is still exceeded.
1481 if ((current->flags & PF_NPROC_EXCEEDED) &&
1482 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1483 retval = -EAGAIN;
1484 goto out_ret;
1487 /* We're below the limit (still or again), so we don't want to make
1488 * further execve() calls fail. */
1489 current->flags &= ~PF_NPROC_EXCEEDED;
1491 retval = unshare_files(&displaced);
1492 if (retval)
1493 goto out_ret;
1495 retval = -ENOMEM;
1496 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1497 if (!bprm)
1498 goto out_files;
1500 retval = prepare_bprm_creds(bprm);
1501 if (retval)
1502 goto out_free;
1504 check_unsafe_exec(bprm);
1505 current->in_execve = 1;
1507 file = do_open_exec(filename);
1508 retval = PTR_ERR(file);
1509 if (IS_ERR(file))
1510 goto out_unmark;
1512 sched_exec();
1514 bprm->file = file;
1515 bprm->filename = bprm->interp = filename->name;
1517 retval = bprm_mm_init(bprm);
1518 if (retval)
1519 goto out_unmark;
1521 bprm->argc = count(argv, MAX_ARG_STRINGS);
1522 if ((retval = bprm->argc) < 0)
1523 goto out;
1525 bprm->envc = count(envp, MAX_ARG_STRINGS);
1526 if ((retval = bprm->envc) < 0)
1527 goto out;
1529 retval = prepare_binprm(bprm);
1530 if (retval < 0)
1531 goto out;
1533 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1534 if (retval < 0)
1535 goto out;
1537 bprm->exec = bprm->p;
1538 retval = copy_strings(bprm->envc, envp, bprm);
1539 if (retval < 0)
1540 goto out;
1542 retval = copy_strings(bprm->argc, argv, bprm);
1543 if (retval < 0)
1544 goto out;
1546 retval = exec_binprm(bprm);
1547 if (retval < 0)
1548 goto out;
1550 /* execve succeeded */
1551 current->fs->in_exec = 0;
1552 current->in_execve = 0;
1553 acct_update_integrals(current);
1554 task_numa_free(current);
1555 free_bprm(bprm);
1556 putname(filename);
1557 if (displaced)
1558 put_files_struct(displaced);
1559 return retval;
1561 out:
1562 if (bprm->mm) {
1563 acct_arg_size(bprm, 0);
1564 mmput(bprm->mm);
1567 out_unmark:
1568 current->fs->in_exec = 0;
1569 current->in_execve = 0;
1571 out_free:
1572 free_bprm(bprm);
1574 out_files:
1575 if (displaced)
1576 reset_files_struct(displaced);
1577 out_ret:
1578 putname(filename);
1579 return retval;
1582 int do_execve(struct filename *filename,
1583 const char __user *const __user *__argv,
1584 const char __user *const __user *__envp)
1586 struct user_arg_ptr argv = { .ptr.native = __argv };
1587 struct user_arg_ptr envp = { .ptr.native = __envp };
1588 return do_execve_common(filename, argv, envp);
1591 #ifdef CONFIG_COMPAT
1592 static int compat_do_execve(struct filename *filename,
1593 const compat_uptr_t __user *__argv,
1594 const compat_uptr_t __user *__envp)
1596 struct user_arg_ptr argv = {
1597 .is_compat = true,
1598 .ptr.compat = __argv,
1600 struct user_arg_ptr envp = {
1601 .is_compat = true,
1602 .ptr.compat = __envp,
1604 return do_execve_common(filename, argv, envp);
1606 #endif
1608 void set_binfmt(struct linux_binfmt *new)
1610 struct mm_struct *mm = current->mm;
1612 if (mm->binfmt)
1613 module_put(mm->binfmt->module);
1615 mm->binfmt = new;
1616 if (new)
1617 __module_get(new->module);
1619 EXPORT_SYMBOL(set_binfmt);
1622 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1624 void set_dumpable(struct mm_struct *mm, int value)
1626 unsigned long old, new;
1628 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1629 return;
1631 do {
1632 old = ACCESS_ONCE(mm->flags);
1633 new = (old & ~MMF_DUMPABLE_MASK) | value;
1634 } while (cmpxchg(&mm->flags, old, new) != old);
1637 SYSCALL_DEFINE3(execve,
1638 const char __user *, filename,
1639 const char __user *const __user *, argv,
1640 const char __user *const __user *, envp)
1642 return do_execve(getname(filename), argv, envp);
1644 #ifdef CONFIG_COMPAT
1645 asmlinkage long compat_sys_execve(const char __user * filename,
1646 const compat_uptr_t __user * argv,
1647 const compat_uptr_t __user * envp)
1649 return compat_do_execve(getname(filename), argv, envp);
1651 #endif