Linux 3.14.51
[linux/fpc-iii.git] / fs / proc / task_mmu.c
blobeaa7374305a31c6793a15ae3a81c48f5d081753e
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
17 #include <asm/elf.h>
18 #include <asm/uaccess.h>
19 #include <asm/tlbflush.h>
20 #include "internal.h"
22 void task_mem(struct seq_file *m, struct mm_struct *mm)
24 unsigned long data, text, lib, swap;
25 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
28 * Note: to minimize their overhead, mm maintains hiwater_vm and
29 * hiwater_rss only when about to *lower* total_vm or rss. Any
30 * collector of these hiwater stats must therefore get total_vm
31 * and rss too, which will usually be the higher. Barriers? not
32 * worth the effort, such snapshots can always be inconsistent.
34 hiwater_vm = total_vm = mm->total_vm;
35 if (hiwater_vm < mm->hiwater_vm)
36 hiwater_vm = mm->hiwater_vm;
37 hiwater_rss = total_rss = get_mm_rss(mm);
38 if (hiwater_rss < mm->hiwater_rss)
39 hiwater_rss = mm->hiwater_rss;
41 data = mm->total_vm - mm->shared_vm - mm->stack_vm;
42 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
43 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
44 swap = get_mm_counter(mm, MM_SWAPENTS);
45 seq_printf(m,
46 "VmPeak:\t%8lu kB\n"
47 "VmSize:\t%8lu kB\n"
48 "VmLck:\t%8lu kB\n"
49 "VmPin:\t%8lu kB\n"
50 "VmHWM:\t%8lu kB\n"
51 "VmRSS:\t%8lu kB\n"
52 "VmData:\t%8lu kB\n"
53 "VmStk:\t%8lu kB\n"
54 "VmExe:\t%8lu kB\n"
55 "VmLib:\t%8lu kB\n"
56 "VmPTE:\t%8lu kB\n"
57 "VmSwap:\t%8lu kB\n",
58 hiwater_vm << (PAGE_SHIFT-10),
59 total_vm << (PAGE_SHIFT-10),
60 mm->locked_vm << (PAGE_SHIFT-10),
61 mm->pinned_vm << (PAGE_SHIFT-10),
62 hiwater_rss << (PAGE_SHIFT-10),
63 total_rss << (PAGE_SHIFT-10),
64 data << (PAGE_SHIFT-10),
65 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
66 (PTRS_PER_PTE * sizeof(pte_t) *
67 atomic_long_read(&mm->nr_ptes)) >> 10,
68 swap << (PAGE_SHIFT-10));
71 unsigned long task_vsize(struct mm_struct *mm)
73 return PAGE_SIZE * mm->total_vm;
76 unsigned long task_statm(struct mm_struct *mm,
77 unsigned long *shared, unsigned long *text,
78 unsigned long *data, unsigned long *resident)
80 *shared = get_mm_counter(mm, MM_FILEPAGES);
81 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
82 >> PAGE_SHIFT;
83 *data = mm->total_vm - mm->shared_vm;
84 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
85 return mm->total_vm;
88 #ifdef CONFIG_NUMA
90 * These functions are for numa_maps but called in generic **maps seq_file
91 * ->start(), ->stop() ops.
93 * numa_maps scans all vmas under mmap_sem and checks their mempolicy.
94 * Each mempolicy object is controlled by reference counting. The problem here
95 * is how to avoid accessing dead mempolicy object.
97 * Because we're holding mmap_sem while reading seq_file, it's safe to access
98 * each vma's mempolicy, no vma objects will never drop refs to mempolicy.
100 * A task's mempolicy (task->mempolicy) has different behavior. task->mempolicy
101 * is set and replaced under mmap_sem but unrefed and cleared under task_lock().
102 * So, without task_lock(), we cannot trust get_vma_policy() because we cannot
103 * gurantee the task never exits under us. But taking task_lock() around
104 * get_vma_plicy() causes lock order problem.
106 * To access task->mempolicy without lock, we hold a reference count of an
107 * object pointed by task->mempolicy and remember it. This will guarantee
108 * that task->mempolicy points to an alive object or NULL in numa_maps accesses.
110 static void hold_task_mempolicy(struct proc_maps_private *priv)
112 struct task_struct *task = priv->task;
114 task_lock(task);
115 priv->task_mempolicy = task->mempolicy;
116 mpol_get(priv->task_mempolicy);
117 task_unlock(task);
119 static void release_task_mempolicy(struct proc_maps_private *priv)
121 mpol_put(priv->task_mempolicy);
123 #else
124 static void hold_task_mempolicy(struct proc_maps_private *priv)
127 static void release_task_mempolicy(struct proc_maps_private *priv)
130 #endif
132 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
134 if (vma && vma != priv->tail_vma) {
135 struct mm_struct *mm = vma->vm_mm;
136 release_task_mempolicy(priv);
137 up_read(&mm->mmap_sem);
138 mmput(mm);
142 static void *m_start(struct seq_file *m, loff_t *pos)
144 struct proc_maps_private *priv = m->private;
145 unsigned long last_addr = m->version;
146 struct mm_struct *mm;
147 struct vm_area_struct *vma, *tail_vma = NULL;
148 loff_t l = *pos;
150 /* Clear the per syscall fields in priv */
151 priv->task = NULL;
152 priv->tail_vma = NULL;
155 * We remember last_addr rather than next_addr to hit with
156 * vmacache most of the time. We have zero last_addr at
157 * the beginning and also after lseek. We will have -1 last_addr
158 * after the end of the vmas.
161 if (last_addr == -1UL)
162 return NULL;
164 priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
165 if (!priv->task)
166 return ERR_PTR(-ESRCH);
168 mm = mm_access(priv->task, PTRACE_MODE_READ);
169 if (!mm || IS_ERR(mm))
170 return mm;
171 down_read(&mm->mmap_sem);
173 tail_vma = get_gate_vma(priv->task->mm);
174 priv->tail_vma = tail_vma;
175 hold_task_mempolicy(priv);
176 /* Start with last addr hint */
177 vma = find_vma(mm, last_addr);
178 if (last_addr && vma) {
179 vma = vma->vm_next;
180 goto out;
184 * Check the vma index is within the range and do
185 * sequential scan until m_index.
187 vma = NULL;
188 if ((unsigned long)l < mm->map_count) {
189 vma = mm->mmap;
190 while (l-- && vma)
191 vma = vma->vm_next;
192 goto out;
195 if (l != mm->map_count)
196 tail_vma = NULL; /* After gate vma */
198 out:
199 if (vma)
200 return vma;
202 release_task_mempolicy(priv);
203 /* End of vmas has been reached */
204 m->version = (tail_vma != NULL)? 0: -1UL;
205 up_read(&mm->mmap_sem);
206 mmput(mm);
207 return tail_vma;
210 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
212 struct proc_maps_private *priv = m->private;
213 struct vm_area_struct *vma = v;
214 struct vm_area_struct *tail_vma = priv->tail_vma;
216 (*pos)++;
217 if (vma && (vma != tail_vma) && vma->vm_next)
218 return vma->vm_next;
219 vma_stop(priv, vma);
220 return (vma != tail_vma)? tail_vma: NULL;
223 static void m_stop(struct seq_file *m, void *v)
225 struct proc_maps_private *priv = m->private;
226 struct vm_area_struct *vma = v;
228 if (!IS_ERR(vma))
229 vma_stop(priv, vma);
230 if (priv->task)
231 put_task_struct(priv->task);
234 static int do_maps_open(struct inode *inode, struct file *file,
235 const struct seq_operations *ops)
237 struct proc_maps_private *priv;
238 int ret = -ENOMEM;
239 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
240 if (priv) {
241 priv->pid = proc_pid(inode);
242 ret = seq_open(file, ops);
243 if (!ret) {
244 struct seq_file *m = file->private_data;
245 m->private = priv;
246 } else {
247 kfree(priv);
250 return ret;
253 static void
254 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
256 struct mm_struct *mm = vma->vm_mm;
257 struct file *file = vma->vm_file;
258 struct proc_maps_private *priv = m->private;
259 struct task_struct *task = priv->task;
260 vm_flags_t flags = vma->vm_flags;
261 unsigned long ino = 0;
262 unsigned long long pgoff = 0;
263 unsigned long start, end;
264 dev_t dev = 0;
265 const char *name = NULL;
267 if (file) {
268 struct inode *inode = file_inode(vma->vm_file);
269 dev = inode->i_sb->s_dev;
270 ino = inode->i_ino;
271 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
274 /* We don't show the stack guard page in /proc/maps */
275 start = vma->vm_start;
276 if (stack_guard_page_start(vma, start))
277 start += PAGE_SIZE;
278 end = vma->vm_end;
279 if (stack_guard_page_end(vma, end))
280 end -= PAGE_SIZE;
282 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
283 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
284 start,
285 end,
286 flags & VM_READ ? 'r' : '-',
287 flags & VM_WRITE ? 'w' : '-',
288 flags & VM_EXEC ? 'x' : '-',
289 flags & VM_MAYSHARE ? 's' : 'p',
290 pgoff,
291 MAJOR(dev), MINOR(dev), ino);
294 * Print the dentry name for named mappings, and a
295 * special [heap] marker for the heap:
297 if (file) {
298 seq_pad(m, ' ');
299 seq_path(m, &file->f_path, "\n");
300 goto done;
303 name = arch_vma_name(vma);
304 if (!name) {
305 pid_t tid;
307 if (!mm) {
308 name = "[vdso]";
309 goto done;
312 if (vma->vm_start <= mm->brk &&
313 vma->vm_end >= mm->start_brk) {
314 name = "[heap]";
315 goto done;
318 tid = vm_is_stack(task, vma, is_pid);
320 if (tid != 0) {
322 * Thread stack in /proc/PID/task/TID/maps or
323 * the main process stack.
325 if (!is_pid || (vma->vm_start <= mm->start_stack &&
326 vma->vm_end >= mm->start_stack)) {
327 name = "[stack]";
328 } else {
329 /* Thread stack in /proc/PID/maps */
330 seq_pad(m, ' ');
331 seq_printf(m, "[stack:%d]", tid);
336 done:
337 if (name) {
338 seq_pad(m, ' ');
339 seq_puts(m, name);
341 seq_putc(m, '\n');
344 static int show_map(struct seq_file *m, void *v, int is_pid)
346 struct vm_area_struct *vma = v;
347 struct proc_maps_private *priv = m->private;
348 struct task_struct *task = priv->task;
350 show_map_vma(m, vma, is_pid);
352 if (m->count < m->size) /* vma is copied successfully */
353 m->version = (vma != get_gate_vma(task->mm))
354 ? vma->vm_start : 0;
355 return 0;
358 static int show_pid_map(struct seq_file *m, void *v)
360 return show_map(m, v, 1);
363 static int show_tid_map(struct seq_file *m, void *v)
365 return show_map(m, v, 0);
368 static const struct seq_operations proc_pid_maps_op = {
369 .start = m_start,
370 .next = m_next,
371 .stop = m_stop,
372 .show = show_pid_map
375 static const struct seq_operations proc_tid_maps_op = {
376 .start = m_start,
377 .next = m_next,
378 .stop = m_stop,
379 .show = show_tid_map
382 static int pid_maps_open(struct inode *inode, struct file *file)
384 return do_maps_open(inode, file, &proc_pid_maps_op);
387 static int tid_maps_open(struct inode *inode, struct file *file)
389 return do_maps_open(inode, file, &proc_tid_maps_op);
392 const struct file_operations proc_pid_maps_operations = {
393 .open = pid_maps_open,
394 .read = seq_read,
395 .llseek = seq_lseek,
396 .release = seq_release_private,
399 const struct file_operations proc_tid_maps_operations = {
400 .open = tid_maps_open,
401 .read = seq_read,
402 .llseek = seq_lseek,
403 .release = seq_release_private,
407 * Proportional Set Size(PSS): my share of RSS.
409 * PSS of a process is the count of pages it has in memory, where each
410 * page is divided by the number of processes sharing it. So if a
411 * process has 1000 pages all to itself, and 1000 shared with one other
412 * process, its PSS will be 1500.
414 * To keep (accumulated) division errors low, we adopt a 64bit
415 * fixed-point pss counter to minimize division errors. So (pss >>
416 * PSS_SHIFT) would be the real byte count.
418 * A shift of 12 before division means (assuming 4K page size):
419 * - 1M 3-user-pages add up to 8KB errors;
420 * - supports mapcount up to 2^24, or 16M;
421 * - supports PSS up to 2^52 bytes, or 4PB.
423 #define PSS_SHIFT 12
425 #ifdef CONFIG_PROC_PAGE_MONITOR
426 struct mem_size_stats {
427 struct vm_area_struct *vma;
428 unsigned long resident;
429 unsigned long shared_clean;
430 unsigned long shared_dirty;
431 unsigned long private_clean;
432 unsigned long private_dirty;
433 unsigned long referenced;
434 unsigned long anonymous;
435 unsigned long anonymous_thp;
436 unsigned long swap;
437 unsigned long nonlinear;
438 u64 pss;
442 static void smaps_pte_entry(pte_t ptent, unsigned long addr,
443 unsigned long ptent_size, struct mm_walk *walk)
445 struct mem_size_stats *mss = walk->private;
446 struct vm_area_struct *vma = mss->vma;
447 pgoff_t pgoff = linear_page_index(vma, addr);
448 struct page *page = NULL;
449 int mapcount;
451 if (pte_present(ptent)) {
452 page = vm_normal_page(vma, addr, ptent);
453 } else if (is_swap_pte(ptent)) {
454 swp_entry_t swpent = pte_to_swp_entry(ptent);
456 if (!non_swap_entry(swpent))
457 mss->swap += ptent_size;
458 else if (is_migration_entry(swpent))
459 page = migration_entry_to_page(swpent);
460 } else if (pte_file(ptent)) {
461 if (pte_to_pgoff(ptent) != pgoff)
462 mss->nonlinear += ptent_size;
465 if (!page)
466 return;
468 if (PageAnon(page))
469 mss->anonymous += ptent_size;
471 if (page->index != pgoff)
472 mss->nonlinear += ptent_size;
474 mss->resident += ptent_size;
475 /* Accumulate the size in pages that have been accessed. */
476 if (pte_young(ptent) || PageReferenced(page))
477 mss->referenced += ptent_size;
478 mapcount = page_mapcount(page);
479 if (mapcount >= 2) {
480 if (pte_dirty(ptent) || PageDirty(page))
481 mss->shared_dirty += ptent_size;
482 else
483 mss->shared_clean += ptent_size;
484 mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
485 } else {
486 if (pte_dirty(ptent) || PageDirty(page))
487 mss->private_dirty += ptent_size;
488 else
489 mss->private_clean += ptent_size;
490 mss->pss += (ptent_size << PSS_SHIFT);
494 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
495 struct mm_walk *walk)
497 struct mem_size_stats *mss = walk->private;
498 struct vm_area_struct *vma = mss->vma;
499 pte_t *pte;
500 spinlock_t *ptl;
502 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
503 smaps_pte_entry(*(pte_t *)pmd, addr, HPAGE_PMD_SIZE, walk);
504 spin_unlock(ptl);
505 mss->anonymous_thp += HPAGE_PMD_SIZE;
506 return 0;
509 if (pmd_trans_unstable(pmd))
510 return 0;
512 * The mmap_sem held all the way back in m_start() is what
513 * keeps khugepaged out of here and from collapsing things
514 * in here.
516 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
517 for (; addr != end; pte++, addr += PAGE_SIZE)
518 smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
519 pte_unmap_unlock(pte - 1, ptl);
520 cond_resched();
521 return 0;
524 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
527 * Don't forget to update Documentation/ on changes.
529 static const char mnemonics[BITS_PER_LONG][2] = {
531 * In case if we meet a flag we don't know about.
533 [0 ... (BITS_PER_LONG-1)] = "??",
535 [ilog2(VM_READ)] = "rd",
536 [ilog2(VM_WRITE)] = "wr",
537 [ilog2(VM_EXEC)] = "ex",
538 [ilog2(VM_SHARED)] = "sh",
539 [ilog2(VM_MAYREAD)] = "mr",
540 [ilog2(VM_MAYWRITE)] = "mw",
541 [ilog2(VM_MAYEXEC)] = "me",
542 [ilog2(VM_MAYSHARE)] = "ms",
543 [ilog2(VM_GROWSDOWN)] = "gd",
544 [ilog2(VM_PFNMAP)] = "pf",
545 [ilog2(VM_DENYWRITE)] = "dw",
546 [ilog2(VM_LOCKED)] = "lo",
547 [ilog2(VM_IO)] = "io",
548 [ilog2(VM_SEQ_READ)] = "sr",
549 [ilog2(VM_RAND_READ)] = "rr",
550 [ilog2(VM_DONTCOPY)] = "dc",
551 [ilog2(VM_DONTEXPAND)] = "de",
552 [ilog2(VM_ACCOUNT)] = "ac",
553 [ilog2(VM_NORESERVE)] = "nr",
554 [ilog2(VM_HUGETLB)] = "ht",
555 [ilog2(VM_NONLINEAR)] = "nl",
556 [ilog2(VM_ARCH_1)] = "ar",
557 [ilog2(VM_DONTDUMP)] = "dd",
558 #ifdef CONFIG_MEM_SOFT_DIRTY
559 [ilog2(VM_SOFTDIRTY)] = "sd",
560 #endif
561 [ilog2(VM_MIXEDMAP)] = "mm",
562 [ilog2(VM_HUGEPAGE)] = "hg",
563 [ilog2(VM_NOHUGEPAGE)] = "nh",
564 [ilog2(VM_MERGEABLE)] = "mg",
566 size_t i;
568 seq_puts(m, "VmFlags: ");
569 for (i = 0; i < BITS_PER_LONG; i++) {
570 if (vma->vm_flags & (1UL << i)) {
571 seq_printf(m, "%c%c ",
572 mnemonics[i][0], mnemonics[i][1]);
575 seq_putc(m, '\n');
578 static int show_smap(struct seq_file *m, void *v, int is_pid)
580 struct proc_maps_private *priv = m->private;
581 struct task_struct *task = priv->task;
582 struct vm_area_struct *vma = v;
583 struct mem_size_stats mss;
584 struct mm_walk smaps_walk = {
585 .pmd_entry = smaps_pte_range,
586 .mm = vma->vm_mm,
587 .private = &mss,
590 memset(&mss, 0, sizeof mss);
591 mss.vma = vma;
592 /* mmap_sem is held in m_start */
593 if (vma->vm_mm && !is_vm_hugetlb_page(vma))
594 walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
596 show_map_vma(m, vma, is_pid);
598 seq_printf(m,
599 "Size: %8lu kB\n"
600 "Rss: %8lu kB\n"
601 "Pss: %8lu kB\n"
602 "Shared_Clean: %8lu kB\n"
603 "Shared_Dirty: %8lu kB\n"
604 "Private_Clean: %8lu kB\n"
605 "Private_Dirty: %8lu kB\n"
606 "Referenced: %8lu kB\n"
607 "Anonymous: %8lu kB\n"
608 "AnonHugePages: %8lu kB\n"
609 "Swap: %8lu kB\n"
610 "KernelPageSize: %8lu kB\n"
611 "MMUPageSize: %8lu kB\n"
612 "Locked: %8lu kB\n",
613 (vma->vm_end - vma->vm_start) >> 10,
614 mss.resident >> 10,
615 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
616 mss.shared_clean >> 10,
617 mss.shared_dirty >> 10,
618 mss.private_clean >> 10,
619 mss.private_dirty >> 10,
620 mss.referenced >> 10,
621 mss.anonymous >> 10,
622 mss.anonymous_thp >> 10,
623 mss.swap >> 10,
624 vma_kernel_pagesize(vma) >> 10,
625 vma_mmu_pagesize(vma) >> 10,
626 (vma->vm_flags & VM_LOCKED) ?
627 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
629 if (vma->vm_flags & VM_NONLINEAR)
630 seq_printf(m, "Nonlinear: %8lu kB\n",
631 mss.nonlinear >> 10);
633 show_smap_vma_flags(m, vma);
635 if (m->count < m->size) /* vma is copied successfully */
636 m->version = (vma != get_gate_vma(task->mm))
637 ? vma->vm_start : 0;
638 return 0;
641 static int show_pid_smap(struct seq_file *m, void *v)
643 return show_smap(m, v, 1);
646 static int show_tid_smap(struct seq_file *m, void *v)
648 return show_smap(m, v, 0);
651 static const struct seq_operations proc_pid_smaps_op = {
652 .start = m_start,
653 .next = m_next,
654 .stop = m_stop,
655 .show = show_pid_smap
658 static const struct seq_operations proc_tid_smaps_op = {
659 .start = m_start,
660 .next = m_next,
661 .stop = m_stop,
662 .show = show_tid_smap
665 static int pid_smaps_open(struct inode *inode, struct file *file)
667 return do_maps_open(inode, file, &proc_pid_smaps_op);
670 static int tid_smaps_open(struct inode *inode, struct file *file)
672 return do_maps_open(inode, file, &proc_tid_smaps_op);
675 const struct file_operations proc_pid_smaps_operations = {
676 .open = pid_smaps_open,
677 .read = seq_read,
678 .llseek = seq_lseek,
679 .release = seq_release_private,
682 const struct file_operations proc_tid_smaps_operations = {
683 .open = tid_smaps_open,
684 .read = seq_read,
685 .llseek = seq_lseek,
686 .release = seq_release_private,
690 * We do not want to have constant page-shift bits sitting in
691 * pagemap entries and are about to reuse them some time soon.
693 * Here's the "migration strategy":
694 * 1. when the system boots these bits remain what they are,
695 * but a warning about future change is printed in log;
696 * 2. once anyone clears soft-dirty bits via clear_refs file,
697 * these flag is set to denote, that user is aware of the
698 * new API and those page-shift bits change their meaning.
699 * The respective warning is printed in dmesg;
700 * 3. In a couple of releases we will remove all the mentions
701 * of page-shift in pagemap entries.
704 static bool soft_dirty_cleared __read_mostly;
706 enum clear_refs_types {
707 CLEAR_REFS_ALL = 1,
708 CLEAR_REFS_ANON,
709 CLEAR_REFS_MAPPED,
710 CLEAR_REFS_SOFT_DIRTY,
711 CLEAR_REFS_LAST,
714 struct clear_refs_private {
715 struct vm_area_struct *vma;
716 enum clear_refs_types type;
719 static inline void clear_soft_dirty(struct vm_area_struct *vma,
720 unsigned long addr, pte_t *pte)
722 #ifdef CONFIG_MEM_SOFT_DIRTY
724 * The soft-dirty tracker uses #PF-s to catch writes
725 * to pages, so write-protect the pte as well. See the
726 * Documentation/vm/soft-dirty.txt for full description
727 * of how soft-dirty works.
729 pte_t ptent = *pte;
731 if (pte_present(ptent)) {
732 ptent = pte_wrprotect(ptent);
733 ptent = pte_clear_flags(ptent, _PAGE_SOFT_DIRTY);
734 } else if (is_swap_pte(ptent)) {
735 ptent = pte_swp_clear_soft_dirty(ptent);
736 } else if (pte_file(ptent)) {
737 ptent = pte_file_clear_soft_dirty(ptent);
740 if (vma->vm_flags & VM_SOFTDIRTY)
741 vma->vm_flags &= ~VM_SOFTDIRTY;
743 set_pte_at(vma->vm_mm, addr, pte, ptent);
744 #endif
747 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
748 unsigned long end, struct mm_walk *walk)
750 struct clear_refs_private *cp = walk->private;
751 struct vm_area_struct *vma = cp->vma;
752 pte_t *pte, ptent;
753 spinlock_t *ptl;
754 struct page *page;
756 split_huge_page_pmd(vma, addr, pmd);
757 if (pmd_trans_unstable(pmd))
758 return 0;
760 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
761 for (; addr != end; pte++, addr += PAGE_SIZE) {
762 ptent = *pte;
764 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
765 clear_soft_dirty(vma, addr, pte);
766 continue;
769 if (!pte_present(ptent))
770 continue;
772 page = vm_normal_page(vma, addr, ptent);
773 if (!page)
774 continue;
776 /* Clear accessed and referenced bits. */
777 ptep_test_and_clear_young(vma, addr, pte);
778 ClearPageReferenced(page);
780 pte_unmap_unlock(pte - 1, ptl);
781 cond_resched();
782 return 0;
785 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
786 size_t count, loff_t *ppos)
788 struct task_struct *task;
789 char buffer[PROC_NUMBUF];
790 struct mm_struct *mm;
791 struct vm_area_struct *vma;
792 enum clear_refs_types type;
793 int itype;
794 int rv;
796 memset(buffer, 0, sizeof(buffer));
797 if (count > sizeof(buffer) - 1)
798 count = sizeof(buffer) - 1;
799 if (copy_from_user(buffer, buf, count))
800 return -EFAULT;
801 rv = kstrtoint(strstrip(buffer), 10, &itype);
802 if (rv < 0)
803 return rv;
804 type = (enum clear_refs_types)itype;
805 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
806 return -EINVAL;
808 if (type == CLEAR_REFS_SOFT_DIRTY) {
809 soft_dirty_cleared = true;
810 pr_warn_once("The pagemap bits 55-60 has changed their meaning! "
811 "See the linux/Documentation/vm/pagemap.txt for details.\n");
814 task = get_proc_task(file_inode(file));
815 if (!task)
816 return -ESRCH;
817 mm = get_task_mm(task);
818 if (mm) {
819 struct clear_refs_private cp = {
820 .type = type,
822 struct mm_walk clear_refs_walk = {
823 .pmd_entry = clear_refs_pte_range,
824 .mm = mm,
825 .private = &cp,
827 down_read(&mm->mmap_sem);
828 if (type == CLEAR_REFS_SOFT_DIRTY)
829 mmu_notifier_invalidate_range_start(mm, 0, -1);
830 for (vma = mm->mmap; vma; vma = vma->vm_next) {
831 cp.vma = vma;
832 if (is_vm_hugetlb_page(vma))
833 continue;
835 * Writing 1 to /proc/pid/clear_refs affects all pages.
837 * Writing 2 to /proc/pid/clear_refs only affects
838 * Anonymous pages.
840 * Writing 3 to /proc/pid/clear_refs only affects file
841 * mapped pages.
843 if (type == CLEAR_REFS_ANON && vma->vm_file)
844 continue;
845 if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
846 continue;
847 walk_page_range(vma->vm_start, vma->vm_end,
848 &clear_refs_walk);
850 if (type == CLEAR_REFS_SOFT_DIRTY)
851 mmu_notifier_invalidate_range_end(mm, 0, -1);
852 flush_tlb_mm(mm);
853 up_read(&mm->mmap_sem);
854 mmput(mm);
856 put_task_struct(task);
858 return count;
861 const struct file_operations proc_clear_refs_operations = {
862 .write = clear_refs_write,
863 .llseek = noop_llseek,
866 typedef struct {
867 u64 pme;
868 } pagemap_entry_t;
870 struct pagemapread {
871 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
872 pagemap_entry_t *buffer;
873 bool v2;
876 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
877 #define PAGEMAP_WALK_MASK (PMD_MASK)
879 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
880 #define PM_STATUS_BITS 3
881 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
882 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
883 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
884 #define PM_PSHIFT_BITS 6
885 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
886 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
887 #define __PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
888 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
889 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
890 /* in "new" pagemap pshift bits are occupied with more status bits */
891 #define PM_STATUS2(v2, x) (__PM_PSHIFT(v2 ? x : PAGE_SHIFT))
893 #define __PM_SOFT_DIRTY (1LL)
894 #define PM_PRESENT PM_STATUS(4LL)
895 #define PM_SWAP PM_STATUS(2LL)
896 #define PM_FILE PM_STATUS(1LL)
897 #define PM_NOT_PRESENT(v2) PM_STATUS2(v2, 0)
898 #define PM_END_OF_BUFFER 1
900 static inline pagemap_entry_t make_pme(u64 val)
902 return (pagemap_entry_t) { .pme = val };
905 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
906 struct pagemapread *pm)
908 pm->buffer[pm->pos++] = *pme;
909 if (pm->pos >= pm->len)
910 return PM_END_OF_BUFFER;
911 return 0;
914 static int pagemap_pte_hole(unsigned long start, unsigned long end,
915 struct mm_walk *walk)
917 struct pagemapread *pm = walk->private;
918 unsigned long addr;
919 int err = 0;
920 pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
922 for (addr = start; addr < end; addr += PAGE_SIZE) {
923 err = add_to_pagemap(addr, &pme, pm);
924 if (err)
925 break;
927 return err;
930 static void pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
931 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
933 u64 frame, flags;
934 struct page *page = NULL;
935 int flags2 = 0;
937 if (pte_present(pte)) {
938 frame = pte_pfn(pte);
939 flags = PM_PRESENT;
940 page = vm_normal_page(vma, addr, pte);
941 if (pte_soft_dirty(pte))
942 flags2 |= __PM_SOFT_DIRTY;
943 } else if (is_swap_pte(pte)) {
944 swp_entry_t entry;
945 if (pte_swp_soft_dirty(pte))
946 flags2 |= __PM_SOFT_DIRTY;
947 entry = pte_to_swp_entry(pte);
948 frame = swp_type(entry) |
949 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
950 flags = PM_SWAP;
951 if (is_migration_entry(entry))
952 page = migration_entry_to_page(entry);
953 } else {
954 if (vma->vm_flags & VM_SOFTDIRTY)
955 flags2 |= __PM_SOFT_DIRTY;
956 *pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2));
957 return;
960 if (page && !PageAnon(page))
961 flags |= PM_FILE;
962 if ((vma->vm_flags & VM_SOFTDIRTY))
963 flags2 |= __PM_SOFT_DIRTY;
965 *pme = make_pme(PM_PFRAME(frame) | PM_STATUS2(pm->v2, flags2) | flags);
968 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
969 static void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
970 pmd_t pmd, int offset, int pmd_flags2)
973 * Currently pmd for thp is always present because thp can not be
974 * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
975 * This if-check is just to prepare for future implementation.
977 if (pmd_present(pmd))
978 *pme = make_pme(PM_PFRAME(pmd_pfn(pmd) + offset)
979 | PM_STATUS2(pm->v2, pmd_flags2) | PM_PRESENT);
980 else
981 *pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, pmd_flags2));
983 #else
984 static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
985 pmd_t pmd, int offset, int pmd_flags2)
988 #endif
990 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
991 struct mm_walk *walk)
993 struct vm_area_struct *vma;
994 struct pagemapread *pm = walk->private;
995 spinlock_t *ptl;
996 pte_t *pte, *orig_pte;
997 int err = 0;
999 /* find the first VMA at or above 'addr' */
1000 vma = find_vma(walk->mm, addr);
1001 if (vma && pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1002 int pmd_flags2;
1004 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(*pmd))
1005 pmd_flags2 = __PM_SOFT_DIRTY;
1006 else
1007 pmd_flags2 = 0;
1009 for (; addr != end; addr += PAGE_SIZE) {
1010 unsigned long offset;
1011 pagemap_entry_t pme;
1013 offset = (addr & ~PAGEMAP_WALK_MASK) >>
1014 PAGE_SHIFT;
1015 thp_pmd_to_pagemap_entry(&pme, pm, *pmd, offset, pmd_flags2);
1016 err = add_to_pagemap(addr, &pme, pm);
1017 if (err)
1018 break;
1020 spin_unlock(ptl);
1021 return err;
1024 if (pmd_trans_unstable(pmd))
1025 return 0;
1027 while (1) {
1028 /* End of address space hole, which we mark as non-present. */
1029 unsigned long hole_end;
1031 if (vma)
1032 hole_end = min(end, vma->vm_start);
1033 else
1034 hole_end = end;
1036 for (; addr < hole_end; addr += PAGE_SIZE) {
1037 pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
1039 err = add_to_pagemap(addr, &pme, pm);
1040 if (err)
1041 return err;
1044 if (!vma || vma->vm_start >= end)
1045 break;
1047 * We can't possibly be in a hugetlb VMA. In general,
1048 * for a mm_walk with a pmd_entry and a hugetlb_entry,
1049 * the pmd_entry can only be called on addresses in a
1050 * hugetlb if the walk starts in a non-hugetlb VMA and
1051 * spans a hugepage VMA. Since pagemap_read walks are
1052 * PMD-sized and PMD-aligned, this will never be true.
1054 BUG_ON(is_vm_hugetlb_page(vma));
1056 /* Addresses in the VMA. */
1057 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1058 for (; addr < min(end, vma->vm_end); pte++, addr += PAGE_SIZE) {
1059 pagemap_entry_t pme;
1061 pte_to_pagemap_entry(&pme, pm, vma, addr, *pte);
1062 err = add_to_pagemap(addr, &pme, pm);
1063 if (err)
1064 break;
1066 pte_unmap_unlock(orig_pte, ptl);
1068 if (err)
1069 return err;
1071 if (addr == end)
1072 break;
1074 vma = find_vma(walk->mm, addr);
1077 cond_resched();
1079 return err;
1082 #ifdef CONFIG_HUGETLB_PAGE
1083 static void huge_pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
1084 pte_t pte, int offset, int flags2)
1086 if (pte_present(pte))
1087 *pme = make_pme(PM_PFRAME(pte_pfn(pte) + offset) |
1088 PM_STATUS2(pm->v2, flags2) |
1089 PM_PRESENT);
1090 else
1091 *pme = make_pme(PM_NOT_PRESENT(pm->v2) |
1092 PM_STATUS2(pm->v2, flags2));
1095 /* This function walks within one hugetlb entry in the single call */
1096 static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
1097 unsigned long addr, unsigned long end,
1098 struct mm_walk *walk)
1100 struct pagemapread *pm = walk->private;
1101 struct vm_area_struct *vma;
1102 int err = 0;
1103 int flags2;
1104 pagemap_entry_t pme;
1106 vma = find_vma(walk->mm, addr);
1107 WARN_ON_ONCE(!vma);
1109 if (vma && (vma->vm_flags & VM_SOFTDIRTY))
1110 flags2 = __PM_SOFT_DIRTY;
1111 else
1112 flags2 = 0;
1114 for (; addr != end; addr += PAGE_SIZE) {
1115 int offset = (addr & ~hmask) >> PAGE_SHIFT;
1116 huge_pte_to_pagemap_entry(&pme, pm, *pte, offset, flags2);
1117 err = add_to_pagemap(addr, &pme, pm);
1118 if (err)
1119 return err;
1122 cond_resched();
1124 return err;
1126 #endif /* HUGETLB_PAGE */
1129 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1131 * For each page in the address space, this file contains one 64-bit entry
1132 * consisting of the following:
1134 * Bits 0-54 page frame number (PFN) if present
1135 * Bits 0-4 swap type if swapped
1136 * Bits 5-54 swap offset if swapped
1137 * Bits 55-60 page shift (page size = 1<<page shift)
1138 * Bit 61 page is file-page or shared-anon
1139 * Bit 62 page swapped
1140 * Bit 63 page present
1142 * If the page is not present but in swap, then the PFN contains an
1143 * encoding of the swap file number and the page's offset into the
1144 * swap. Unmapped pages return a null PFN. This allows determining
1145 * precisely which pages are mapped (or in swap) and comparing mapped
1146 * pages between processes.
1148 * Efficient users of this interface will use /proc/pid/maps to
1149 * determine which areas of memory are actually mapped and llseek to
1150 * skip over unmapped regions.
1152 static ssize_t pagemap_read(struct file *file, char __user *buf,
1153 size_t count, loff_t *ppos)
1155 struct task_struct *task = get_proc_task(file_inode(file));
1156 struct mm_struct *mm;
1157 struct pagemapread pm;
1158 int ret = -ESRCH;
1159 struct mm_walk pagemap_walk = {};
1160 unsigned long src;
1161 unsigned long svpfn;
1162 unsigned long start_vaddr;
1163 unsigned long end_vaddr;
1164 int copied = 0;
1166 if (!task)
1167 goto out;
1169 ret = -EINVAL;
1170 /* file position must be aligned */
1171 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1172 goto out_task;
1174 ret = 0;
1175 if (!count)
1176 goto out_task;
1178 pm.v2 = soft_dirty_cleared;
1179 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1180 pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1181 ret = -ENOMEM;
1182 if (!pm.buffer)
1183 goto out_task;
1185 mm = mm_access(task, PTRACE_MODE_READ);
1186 ret = PTR_ERR(mm);
1187 if (!mm || IS_ERR(mm))
1188 goto out_free;
1190 pagemap_walk.pmd_entry = pagemap_pte_range;
1191 pagemap_walk.pte_hole = pagemap_pte_hole;
1192 #ifdef CONFIG_HUGETLB_PAGE
1193 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1194 #endif
1195 pagemap_walk.mm = mm;
1196 pagemap_walk.private = &pm;
1198 src = *ppos;
1199 svpfn = src / PM_ENTRY_BYTES;
1200 start_vaddr = svpfn << PAGE_SHIFT;
1201 end_vaddr = TASK_SIZE_OF(task);
1203 /* watch out for wraparound */
1204 if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
1205 start_vaddr = end_vaddr;
1208 * The odds are that this will stop walking way
1209 * before end_vaddr, because the length of the
1210 * user buffer is tracked in "pm", and the walk
1211 * will stop when we hit the end of the buffer.
1213 ret = 0;
1214 while (count && (start_vaddr < end_vaddr)) {
1215 int len;
1216 unsigned long end;
1218 pm.pos = 0;
1219 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1220 /* overflow ? */
1221 if (end < start_vaddr || end > end_vaddr)
1222 end = end_vaddr;
1223 down_read(&mm->mmap_sem);
1224 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1225 up_read(&mm->mmap_sem);
1226 start_vaddr = end;
1228 len = min(count, PM_ENTRY_BYTES * pm.pos);
1229 if (copy_to_user(buf, pm.buffer, len)) {
1230 ret = -EFAULT;
1231 goto out_mm;
1233 copied += len;
1234 buf += len;
1235 count -= len;
1237 *ppos += copied;
1238 if (!ret || ret == PM_END_OF_BUFFER)
1239 ret = copied;
1241 out_mm:
1242 mmput(mm);
1243 out_free:
1244 kfree(pm.buffer);
1245 out_task:
1246 put_task_struct(task);
1247 out:
1248 return ret;
1251 static int pagemap_open(struct inode *inode, struct file *file)
1253 /* do not disclose physical addresses: attack vector */
1254 if (!capable(CAP_SYS_ADMIN))
1255 return -EPERM;
1256 pr_warn_once("Bits 55-60 of /proc/PID/pagemap entries are about "
1257 "to stop being page-shift some time soon. See the "
1258 "linux/Documentation/vm/pagemap.txt for details.\n");
1259 return 0;
1262 const struct file_operations proc_pagemap_operations = {
1263 .llseek = mem_lseek, /* borrow this */
1264 .read = pagemap_read,
1265 .open = pagemap_open,
1267 #endif /* CONFIG_PROC_PAGE_MONITOR */
1269 #ifdef CONFIG_NUMA
1271 struct numa_maps {
1272 struct vm_area_struct *vma;
1273 unsigned long pages;
1274 unsigned long anon;
1275 unsigned long active;
1276 unsigned long writeback;
1277 unsigned long mapcount_max;
1278 unsigned long dirty;
1279 unsigned long swapcache;
1280 unsigned long node[MAX_NUMNODES];
1283 struct numa_maps_private {
1284 struct proc_maps_private proc_maps;
1285 struct numa_maps md;
1288 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1289 unsigned long nr_pages)
1291 int count = page_mapcount(page);
1293 md->pages += nr_pages;
1294 if (pte_dirty || PageDirty(page))
1295 md->dirty += nr_pages;
1297 if (PageSwapCache(page))
1298 md->swapcache += nr_pages;
1300 if (PageActive(page) || PageUnevictable(page))
1301 md->active += nr_pages;
1303 if (PageWriteback(page))
1304 md->writeback += nr_pages;
1306 if (PageAnon(page))
1307 md->anon += nr_pages;
1309 if (count > md->mapcount_max)
1310 md->mapcount_max = count;
1312 md->node[page_to_nid(page)] += nr_pages;
1315 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1316 unsigned long addr)
1318 struct page *page;
1319 int nid;
1321 if (!pte_present(pte))
1322 return NULL;
1324 page = vm_normal_page(vma, addr, pte);
1325 if (!page)
1326 return NULL;
1328 if (PageReserved(page))
1329 return NULL;
1331 nid = page_to_nid(page);
1332 if (!node_isset(nid, node_states[N_MEMORY]))
1333 return NULL;
1335 return page;
1338 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1339 unsigned long end, struct mm_walk *walk)
1341 struct numa_maps *md;
1342 spinlock_t *ptl;
1343 pte_t *orig_pte;
1344 pte_t *pte;
1346 md = walk->private;
1348 if (pmd_trans_huge_lock(pmd, md->vma, &ptl) == 1) {
1349 pte_t huge_pte = *(pte_t *)pmd;
1350 struct page *page;
1352 page = can_gather_numa_stats(huge_pte, md->vma, addr);
1353 if (page)
1354 gather_stats(page, md, pte_dirty(huge_pte),
1355 HPAGE_PMD_SIZE/PAGE_SIZE);
1356 spin_unlock(ptl);
1357 return 0;
1360 if (pmd_trans_unstable(pmd))
1361 return 0;
1362 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1363 do {
1364 struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
1365 if (!page)
1366 continue;
1367 gather_stats(page, md, pte_dirty(*pte), 1);
1369 } while (pte++, addr += PAGE_SIZE, addr != end);
1370 pte_unmap_unlock(orig_pte, ptl);
1371 return 0;
1373 #ifdef CONFIG_HUGETLB_PAGE
1374 static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1375 unsigned long addr, unsigned long end, struct mm_walk *walk)
1377 struct numa_maps *md;
1378 struct page *page;
1380 if (!pte_present(*pte))
1381 return 0;
1383 page = pte_page(*pte);
1384 if (!page)
1385 return 0;
1387 md = walk->private;
1388 gather_stats(page, md, pte_dirty(*pte), 1);
1389 return 0;
1392 #else
1393 static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1394 unsigned long addr, unsigned long end, struct mm_walk *walk)
1396 return 0;
1398 #endif
1401 * Display pages allocated per node and memory policy via /proc.
1403 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1405 struct numa_maps_private *numa_priv = m->private;
1406 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1407 struct vm_area_struct *vma = v;
1408 struct numa_maps *md = &numa_priv->md;
1409 struct file *file = vma->vm_file;
1410 struct task_struct *task = proc_priv->task;
1411 struct mm_struct *mm = vma->vm_mm;
1412 struct mm_walk walk = {};
1413 struct mempolicy *pol;
1414 char buffer[64];
1415 int nid;
1417 if (!mm)
1418 return 0;
1420 /* Ensure we start with an empty set of numa_maps statistics. */
1421 memset(md, 0, sizeof(*md));
1423 md->vma = vma;
1425 walk.hugetlb_entry = gather_hugetbl_stats;
1426 walk.pmd_entry = gather_pte_stats;
1427 walk.private = md;
1428 walk.mm = mm;
1430 pol = get_vma_policy(task, vma, vma->vm_start);
1431 mpol_to_str(buffer, sizeof(buffer), pol);
1432 mpol_cond_put(pol);
1434 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1436 if (file) {
1437 seq_printf(m, " file=");
1438 seq_path(m, &file->f_path, "\n\t= ");
1439 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1440 seq_printf(m, " heap");
1441 } else {
1442 pid_t tid = vm_is_stack(task, vma, is_pid);
1443 if (tid != 0) {
1445 * Thread stack in /proc/PID/task/TID/maps or
1446 * the main process stack.
1448 if (!is_pid || (vma->vm_start <= mm->start_stack &&
1449 vma->vm_end >= mm->start_stack))
1450 seq_printf(m, " stack");
1451 else
1452 seq_printf(m, " stack:%d", tid);
1456 if (is_vm_hugetlb_page(vma))
1457 seq_printf(m, " huge");
1459 walk_page_range(vma->vm_start, vma->vm_end, &walk);
1461 if (!md->pages)
1462 goto out;
1464 if (md->anon)
1465 seq_printf(m, " anon=%lu", md->anon);
1467 if (md->dirty)
1468 seq_printf(m, " dirty=%lu", md->dirty);
1470 if (md->pages != md->anon && md->pages != md->dirty)
1471 seq_printf(m, " mapped=%lu", md->pages);
1473 if (md->mapcount_max > 1)
1474 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1476 if (md->swapcache)
1477 seq_printf(m, " swapcache=%lu", md->swapcache);
1479 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1480 seq_printf(m, " active=%lu", md->active);
1482 if (md->writeback)
1483 seq_printf(m, " writeback=%lu", md->writeback);
1485 for_each_node_state(nid, N_MEMORY)
1486 if (md->node[nid])
1487 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1488 out:
1489 seq_putc(m, '\n');
1491 if (m->count < m->size)
1492 m->version = (vma != proc_priv->tail_vma) ? vma->vm_start : 0;
1493 return 0;
1496 static int show_pid_numa_map(struct seq_file *m, void *v)
1498 return show_numa_map(m, v, 1);
1501 static int show_tid_numa_map(struct seq_file *m, void *v)
1503 return show_numa_map(m, v, 0);
1506 static const struct seq_operations proc_pid_numa_maps_op = {
1507 .start = m_start,
1508 .next = m_next,
1509 .stop = m_stop,
1510 .show = show_pid_numa_map,
1513 static const struct seq_operations proc_tid_numa_maps_op = {
1514 .start = m_start,
1515 .next = m_next,
1516 .stop = m_stop,
1517 .show = show_tid_numa_map,
1520 static int numa_maps_open(struct inode *inode, struct file *file,
1521 const struct seq_operations *ops)
1523 struct numa_maps_private *priv;
1524 int ret = -ENOMEM;
1525 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1526 if (priv) {
1527 priv->proc_maps.pid = proc_pid(inode);
1528 ret = seq_open(file, ops);
1529 if (!ret) {
1530 struct seq_file *m = file->private_data;
1531 m->private = priv;
1532 } else {
1533 kfree(priv);
1536 return ret;
1539 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1541 return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1544 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1546 return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1549 const struct file_operations proc_pid_numa_maps_operations = {
1550 .open = pid_numa_maps_open,
1551 .read = seq_read,
1552 .llseek = seq_lseek,
1553 .release = seq_release_private,
1556 const struct file_operations proc_tid_numa_maps_operations = {
1557 .open = tid_numa_maps_open,
1558 .read = seq_read,
1559 .llseek = seq_lseek,
1560 .release = seq_release_private,
1562 #endif /* CONFIG_NUMA */