2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
18 #include <asm/uaccess.h>
19 #include <asm/tlbflush.h>
22 void task_mem(struct seq_file
*m
, struct mm_struct
*mm
)
24 unsigned long data
, text
, lib
, swap
;
25 unsigned long hiwater_vm
, total_vm
, hiwater_rss
, total_rss
;
28 * Note: to minimize their overhead, mm maintains hiwater_vm and
29 * hiwater_rss only when about to *lower* total_vm or rss. Any
30 * collector of these hiwater stats must therefore get total_vm
31 * and rss too, which will usually be the higher. Barriers? not
32 * worth the effort, such snapshots can always be inconsistent.
34 hiwater_vm
= total_vm
= mm
->total_vm
;
35 if (hiwater_vm
< mm
->hiwater_vm
)
36 hiwater_vm
= mm
->hiwater_vm
;
37 hiwater_rss
= total_rss
= get_mm_rss(mm
);
38 if (hiwater_rss
< mm
->hiwater_rss
)
39 hiwater_rss
= mm
->hiwater_rss
;
41 data
= mm
->total_vm
- mm
->shared_vm
- mm
->stack_vm
;
42 text
= (PAGE_ALIGN(mm
->end_code
) - (mm
->start_code
& PAGE_MASK
)) >> 10;
43 lib
= (mm
->exec_vm
<< (PAGE_SHIFT
-10)) - text
;
44 swap
= get_mm_counter(mm
, MM_SWAPENTS
);
58 hiwater_vm
<< (PAGE_SHIFT
-10),
59 total_vm
<< (PAGE_SHIFT
-10),
60 mm
->locked_vm
<< (PAGE_SHIFT
-10),
61 mm
->pinned_vm
<< (PAGE_SHIFT
-10),
62 hiwater_rss
<< (PAGE_SHIFT
-10),
63 total_rss
<< (PAGE_SHIFT
-10),
64 data
<< (PAGE_SHIFT
-10),
65 mm
->stack_vm
<< (PAGE_SHIFT
-10), text
, lib
,
66 (PTRS_PER_PTE
* sizeof(pte_t
) *
67 atomic_long_read(&mm
->nr_ptes
)) >> 10,
68 swap
<< (PAGE_SHIFT
-10));
71 unsigned long task_vsize(struct mm_struct
*mm
)
73 return PAGE_SIZE
* mm
->total_vm
;
76 unsigned long task_statm(struct mm_struct
*mm
,
77 unsigned long *shared
, unsigned long *text
,
78 unsigned long *data
, unsigned long *resident
)
80 *shared
= get_mm_counter(mm
, MM_FILEPAGES
);
81 *text
= (PAGE_ALIGN(mm
->end_code
) - (mm
->start_code
& PAGE_MASK
))
83 *data
= mm
->total_vm
- mm
->shared_vm
;
84 *resident
= *shared
+ get_mm_counter(mm
, MM_ANONPAGES
);
90 * These functions are for numa_maps but called in generic **maps seq_file
91 * ->start(), ->stop() ops.
93 * numa_maps scans all vmas under mmap_sem and checks their mempolicy.
94 * Each mempolicy object is controlled by reference counting. The problem here
95 * is how to avoid accessing dead mempolicy object.
97 * Because we're holding mmap_sem while reading seq_file, it's safe to access
98 * each vma's mempolicy, no vma objects will never drop refs to mempolicy.
100 * A task's mempolicy (task->mempolicy) has different behavior. task->mempolicy
101 * is set and replaced under mmap_sem but unrefed and cleared under task_lock().
102 * So, without task_lock(), we cannot trust get_vma_policy() because we cannot
103 * gurantee the task never exits under us. But taking task_lock() around
104 * get_vma_plicy() causes lock order problem.
106 * To access task->mempolicy without lock, we hold a reference count of an
107 * object pointed by task->mempolicy and remember it. This will guarantee
108 * that task->mempolicy points to an alive object or NULL in numa_maps accesses.
110 static void hold_task_mempolicy(struct proc_maps_private
*priv
)
112 struct task_struct
*task
= priv
->task
;
115 priv
->task_mempolicy
= task
->mempolicy
;
116 mpol_get(priv
->task_mempolicy
);
119 static void release_task_mempolicy(struct proc_maps_private
*priv
)
121 mpol_put(priv
->task_mempolicy
);
124 static void hold_task_mempolicy(struct proc_maps_private
*priv
)
127 static void release_task_mempolicy(struct proc_maps_private
*priv
)
132 static void vma_stop(struct proc_maps_private
*priv
, struct vm_area_struct
*vma
)
134 if (vma
&& vma
!= priv
->tail_vma
) {
135 struct mm_struct
*mm
= vma
->vm_mm
;
136 release_task_mempolicy(priv
);
137 up_read(&mm
->mmap_sem
);
142 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
144 struct proc_maps_private
*priv
= m
->private;
145 unsigned long last_addr
= m
->version
;
146 struct mm_struct
*mm
;
147 struct vm_area_struct
*vma
, *tail_vma
= NULL
;
150 /* Clear the per syscall fields in priv */
152 priv
->tail_vma
= NULL
;
155 * We remember last_addr rather than next_addr to hit with
156 * vmacache most of the time. We have zero last_addr at
157 * the beginning and also after lseek. We will have -1 last_addr
158 * after the end of the vmas.
161 if (last_addr
== -1UL)
164 priv
->task
= get_pid_task(priv
->pid
, PIDTYPE_PID
);
166 return ERR_PTR(-ESRCH
);
168 mm
= mm_access(priv
->task
, PTRACE_MODE_READ
);
169 if (!mm
|| IS_ERR(mm
))
171 down_read(&mm
->mmap_sem
);
173 tail_vma
= get_gate_vma(priv
->task
->mm
);
174 priv
->tail_vma
= tail_vma
;
175 hold_task_mempolicy(priv
);
176 /* Start with last addr hint */
177 vma
= find_vma(mm
, last_addr
);
178 if (last_addr
&& vma
) {
184 * Check the vma index is within the range and do
185 * sequential scan until m_index.
188 if ((unsigned long)l
< mm
->map_count
) {
195 if (l
!= mm
->map_count
)
196 tail_vma
= NULL
; /* After gate vma */
202 release_task_mempolicy(priv
);
203 /* End of vmas has been reached */
204 m
->version
= (tail_vma
!= NULL
)? 0: -1UL;
205 up_read(&mm
->mmap_sem
);
210 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
212 struct proc_maps_private
*priv
= m
->private;
213 struct vm_area_struct
*vma
= v
;
214 struct vm_area_struct
*tail_vma
= priv
->tail_vma
;
217 if (vma
&& (vma
!= tail_vma
) && vma
->vm_next
)
220 return (vma
!= tail_vma
)? tail_vma
: NULL
;
223 static void m_stop(struct seq_file
*m
, void *v
)
225 struct proc_maps_private
*priv
= m
->private;
226 struct vm_area_struct
*vma
= v
;
231 put_task_struct(priv
->task
);
234 static int do_maps_open(struct inode
*inode
, struct file
*file
,
235 const struct seq_operations
*ops
)
237 struct proc_maps_private
*priv
;
239 priv
= kzalloc(sizeof(*priv
), GFP_KERNEL
);
241 priv
->pid
= proc_pid(inode
);
242 ret
= seq_open(file
, ops
);
244 struct seq_file
*m
= file
->private_data
;
254 show_map_vma(struct seq_file
*m
, struct vm_area_struct
*vma
, int is_pid
)
256 struct mm_struct
*mm
= vma
->vm_mm
;
257 struct file
*file
= vma
->vm_file
;
258 struct proc_maps_private
*priv
= m
->private;
259 struct task_struct
*task
= priv
->task
;
260 vm_flags_t flags
= vma
->vm_flags
;
261 unsigned long ino
= 0;
262 unsigned long long pgoff
= 0;
263 unsigned long start
, end
;
265 const char *name
= NULL
;
268 struct inode
*inode
= file_inode(vma
->vm_file
);
269 dev
= inode
->i_sb
->s_dev
;
271 pgoff
= ((loff_t
)vma
->vm_pgoff
) << PAGE_SHIFT
;
274 /* We don't show the stack guard page in /proc/maps */
275 start
= vma
->vm_start
;
276 if (stack_guard_page_start(vma
, start
))
279 if (stack_guard_page_end(vma
, end
))
282 seq_setwidth(m
, 25 + sizeof(void *) * 6 - 1);
283 seq_printf(m
, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
286 flags
& VM_READ
? 'r' : '-',
287 flags
& VM_WRITE
? 'w' : '-',
288 flags
& VM_EXEC
? 'x' : '-',
289 flags
& VM_MAYSHARE
? 's' : 'p',
291 MAJOR(dev
), MINOR(dev
), ino
);
294 * Print the dentry name for named mappings, and a
295 * special [heap] marker for the heap:
299 seq_path(m
, &file
->f_path
, "\n");
303 name
= arch_vma_name(vma
);
312 if (vma
->vm_start
<= mm
->brk
&&
313 vma
->vm_end
>= mm
->start_brk
) {
318 tid
= vm_is_stack(task
, vma
, is_pid
);
322 * Thread stack in /proc/PID/task/TID/maps or
323 * the main process stack.
325 if (!is_pid
|| (vma
->vm_start
<= mm
->start_stack
&&
326 vma
->vm_end
>= mm
->start_stack
)) {
329 /* Thread stack in /proc/PID/maps */
331 seq_printf(m
, "[stack:%d]", tid
);
344 static int show_map(struct seq_file
*m
, void *v
, int is_pid
)
346 struct vm_area_struct
*vma
= v
;
347 struct proc_maps_private
*priv
= m
->private;
348 struct task_struct
*task
= priv
->task
;
350 show_map_vma(m
, vma
, is_pid
);
352 if (m
->count
< m
->size
) /* vma is copied successfully */
353 m
->version
= (vma
!= get_gate_vma(task
->mm
))
358 static int show_pid_map(struct seq_file
*m
, void *v
)
360 return show_map(m
, v
, 1);
363 static int show_tid_map(struct seq_file
*m
, void *v
)
365 return show_map(m
, v
, 0);
368 static const struct seq_operations proc_pid_maps_op
= {
375 static const struct seq_operations proc_tid_maps_op
= {
382 static int pid_maps_open(struct inode
*inode
, struct file
*file
)
384 return do_maps_open(inode
, file
, &proc_pid_maps_op
);
387 static int tid_maps_open(struct inode
*inode
, struct file
*file
)
389 return do_maps_open(inode
, file
, &proc_tid_maps_op
);
392 const struct file_operations proc_pid_maps_operations
= {
393 .open
= pid_maps_open
,
396 .release
= seq_release_private
,
399 const struct file_operations proc_tid_maps_operations
= {
400 .open
= tid_maps_open
,
403 .release
= seq_release_private
,
407 * Proportional Set Size(PSS): my share of RSS.
409 * PSS of a process is the count of pages it has in memory, where each
410 * page is divided by the number of processes sharing it. So if a
411 * process has 1000 pages all to itself, and 1000 shared with one other
412 * process, its PSS will be 1500.
414 * To keep (accumulated) division errors low, we adopt a 64bit
415 * fixed-point pss counter to minimize division errors. So (pss >>
416 * PSS_SHIFT) would be the real byte count.
418 * A shift of 12 before division means (assuming 4K page size):
419 * - 1M 3-user-pages add up to 8KB errors;
420 * - supports mapcount up to 2^24, or 16M;
421 * - supports PSS up to 2^52 bytes, or 4PB.
425 #ifdef CONFIG_PROC_PAGE_MONITOR
426 struct mem_size_stats
{
427 struct vm_area_struct
*vma
;
428 unsigned long resident
;
429 unsigned long shared_clean
;
430 unsigned long shared_dirty
;
431 unsigned long private_clean
;
432 unsigned long private_dirty
;
433 unsigned long referenced
;
434 unsigned long anonymous
;
435 unsigned long anonymous_thp
;
437 unsigned long nonlinear
;
442 static void smaps_pte_entry(pte_t ptent
, unsigned long addr
,
443 unsigned long ptent_size
, struct mm_walk
*walk
)
445 struct mem_size_stats
*mss
= walk
->private;
446 struct vm_area_struct
*vma
= mss
->vma
;
447 pgoff_t pgoff
= linear_page_index(vma
, addr
);
448 struct page
*page
= NULL
;
451 if (pte_present(ptent
)) {
452 page
= vm_normal_page(vma
, addr
, ptent
);
453 } else if (is_swap_pte(ptent
)) {
454 swp_entry_t swpent
= pte_to_swp_entry(ptent
);
456 if (!non_swap_entry(swpent
))
457 mss
->swap
+= ptent_size
;
458 else if (is_migration_entry(swpent
))
459 page
= migration_entry_to_page(swpent
);
460 } else if (pte_file(ptent
)) {
461 if (pte_to_pgoff(ptent
) != pgoff
)
462 mss
->nonlinear
+= ptent_size
;
469 mss
->anonymous
+= ptent_size
;
471 if (page
->index
!= pgoff
)
472 mss
->nonlinear
+= ptent_size
;
474 mss
->resident
+= ptent_size
;
475 /* Accumulate the size in pages that have been accessed. */
476 if (pte_young(ptent
) || PageReferenced(page
))
477 mss
->referenced
+= ptent_size
;
478 mapcount
= page_mapcount(page
);
480 if (pte_dirty(ptent
) || PageDirty(page
))
481 mss
->shared_dirty
+= ptent_size
;
483 mss
->shared_clean
+= ptent_size
;
484 mss
->pss
+= (ptent_size
<< PSS_SHIFT
) / mapcount
;
486 if (pte_dirty(ptent
) || PageDirty(page
))
487 mss
->private_dirty
+= ptent_size
;
489 mss
->private_clean
+= ptent_size
;
490 mss
->pss
+= (ptent_size
<< PSS_SHIFT
);
494 static int smaps_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
,
495 struct mm_walk
*walk
)
497 struct mem_size_stats
*mss
= walk
->private;
498 struct vm_area_struct
*vma
= mss
->vma
;
502 if (pmd_trans_huge_lock(pmd
, vma
, &ptl
) == 1) {
503 smaps_pte_entry(*(pte_t
*)pmd
, addr
, HPAGE_PMD_SIZE
, walk
);
505 mss
->anonymous_thp
+= HPAGE_PMD_SIZE
;
509 if (pmd_trans_unstable(pmd
))
512 * The mmap_sem held all the way back in m_start() is what
513 * keeps khugepaged out of here and from collapsing things
516 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
517 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
518 smaps_pte_entry(*pte
, addr
, PAGE_SIZE
, walk
);
519 pte_unmap_unlock(pte
- 1, ptl
);
524 static void show_smap_vma_flags(struct seq_file
*m
, struct vm_area_struct
*vma
)
527 * Don't forget to update Documentation/ on changes.
529 static const char mnemonics
[BITS_PER_LONG
][2] = {
531 * In case if we meet a flag we don't know about.
533 [0 ... (BITS_PER_LONG
-1)] = "??",
535 [ilog2(VM_READ
)] = "rd",
536 [ilog2(VM_WRITE
)] = "wr",
537 [ilog2(VM_EXEC
)] = "ex",
538 [ilog2(VM_SHARED
)] = "sh",
539 [ilog2(VM_MAYREAD
)] = "mr",
540 [ilog2(VM_MAYWRITE
)] = "mw",
541 [ilog2(VM_MAYEXEC
)] = "me",
542 [ilog2(VM_MAYSHARE
)] = "ms",
543 [ilog2(VM_GROWSDOWN
)] = "gd",
544 [ilog2(VM_PFNMAP
)] = "pf",
545 [ilog2(VM_DENYWRITE
)] = "dw",
546 [ilog2(VM_LOCKED
)] = "lo",
547 [ilog2(VM_IO
)] = "io",
548 [ilog2(VM_SEQ_READ
)] = "sr",
549 [ilog2(VM_RAND_READ
)] = "rr",
550 [ilog2(VM_DONTCOPY
)] = "dc",
551 [ilog2(VM_DONTEXPAND
)] = "de",
552 [ilog2(VM_ACCOUNT
)] = "ac",
553 [ilog2(VM_NORESERVE
)] = "nr",
554 [ilog2(VM_HUGETLB
)] = "ht",
555 [ilog2(VM_NONLINEAR
)] = "nl",
556 [ilog2(VM_ARCH_1
)] = "ar",
557 [ilog2(VM_DONTDUMP
)] = "dd",
558 #ifdef CONFIG_MEM_SOFT_DIRTY
559 [ilog2(VM_SOFTDIRTY
)] = "sd",
561 [ilog2(VM_MIXEDMAP
)] = "mm",
562 [ilog2(VM_HUGEPAGE
)] = "hg",
563 [ilog2(VM_NOHUGEPAGE
)] = "nh",
564 [ilog2(VM_MERGEABLE
)] = "mg",
568 seq_puts(m
, "VmFlags: ");
569 for (i
= 0; i
< BITS_PER_LONG
; i
++) {
570 if (vma
->vm_flags
& (1UL << i
)) {
571 seq_printf(m
, "%c%c ",
572 mnemonics
[i
][0], mnemonics
[i
][1]);
578 static int show_smap(struct seq_file
*m
, void *v
, int is_pid
)
580 struct proc_maps_private
*priv
= m
->private;
581 struct task_struct
*task
= priv
->task
;
582 struct vm_area_struct
*vma
= v
;
583 struct mem_size_stats mss
;
584 struct mm_walk smaps_walk
= {
585 .pmd_entry
= smaps_pte_range
,
590 memset(&mss
, 0, sizeof mss
);
592 /* mmap_sem is held in m_start */
593 if (vma
->vm_mm
&& !is_vm_hugetlb_page(vma
))
594 walk_page_range(vma
->vm_start
, vma
->vm_end
, &smaps_walk
);
596 show_map_vma(m
, vma
, is_pid
);
602 "Shared_Clean: %8lu kB\n"
603 "Shared_Dirty: %8lu kB\n"
604 "Private_Clean: %8lu kB\n"
605 "Private_Dirty: %8lu kB\n"
606 "Referenced: %8lu kB\n"
607 "Anonymous: %8lu kB\n"
608 "AnonHugePages: %8lu kB\n"
610 "KernelPageSize: %8lu kB\n"
611 "MMUPageSize: %8lu kB\n"
613 (vma
->vm_end
- vma
->vm_start
) >> 10,
615 (unsigned long)(mss
.pss
>> (10 + PSS_SHIFT
)),
616 mss
.shared_clean
>> 10,
617 mss
.shared_dirty
>> 10,
618 mss
.private_clean
>> 10,
619 mss
.private_dirty
>> 10,
620 mss
.referenced
>> 10,
622 mss
.anonymous_thp
>> 10,
624 vma_kernel_pagesize(vma
) >> 10,
625 vma_mmu_pagesize(vma
) >> 10,
626 (vma
->vm_flags
& VM_LOCKED
) ?
627 (unsigned long)(mss
.pss
>> (10 + PSS_SHIFT
)) : 0);
629 if (vma
->vm_flags
& VM_NONLINEAR
)
630 seq_printf(m
, "Nonlinear: %8lu kB\n",
631 mss
.nonlinear
>> 10);
633 show_smap_vma_flags(m
, vma
);
635 if (m
->count
< m
->size
) /* vma is copied successfully */
636 m
->version
= (vma
!= get_gate_vma(task
->mm
))
641 static int show_pid_smap(struct seq_file
*m
, void *v
)
643 return show_smap(m
, v
, 1);
646 static int show_tid_smap(struct seq_file
*m
, void *v
)
648 return show_smap(m
, v
, 0);
651 static const struct seq_operations proc_pid_smaps_op
= {
655 .show
= show_pid_smap
658 static const struct seq_operations proc_tid_smaps_op
= {
662 .show
= show_tid_smap
665 static int pid_smaps_open(struct inode
*inode
, struct file
*file
)
667 return do_maps_open(inode
, file
, &proc_pid_smaps_op
);
670 static int tid_smaps_open(struct inode
*inode
, struct file
*file
)
672 return do_maps_open(inode
, file
, &proc_tid_smaps_op
);
675 const struct file_operations proc_pid_smaps_operations
= {
676 .open
= pid_smaps_open
,
679 .release
= seq_release_private
,
682 const struct file_operations proc_tid_smaps_operations
= {
683 .open
= tid_smaps_open
,
686 .release
= seq_release_private
,
690 * We do not want to have constant page-shift bits sitting in
691 * pagemap entries and are about to reuse them some time soon.
693 * Here's the "migration strategy":
694 * 1. when the system boots these bits remain what they are,
695 * but a warning about future change is printed in log;
696 * 2. once anyone clears soft-dirty bits via clear_refs file,
697 * these flag is set to denote, that user is aware of the
698 * new API and those page-shift bits change their meaning.
699 * The respective warning is printed in dmesg;
700 * 3. In a couple of releases we will remove all the mentions
701 * of page-shift in pagemap entries.
704 static bool soft_dirty_cleared __read_mostly
;
706 enum clear_refs_types
{
710 CLEAR_REFS_SOFT_DIRTY
,
714 struct clear_refs_private
{
715 struct vm_area_struct
*vma
;
716 enum clear_refs_types type
;
719 static inline void clear_soft_dirty(struct vm_area_struct
*vma
,
720 unsigned long addr
, pte_t
*pte
)
722 #ifdef CONFIG_MEM_SOFT_DIRTY
724 * The soft-dirty tracker uses #PF-s to catch writes
725 * to pages, so write-protect the pte as well. See the
726 * Documentation/vm/soft-dirty.txt for full description
727 * of how soft-dirty works.
731 if (pte_present(ptent
)) {
732 ptent
= pte_wrprotect(ptent
);
733 ptent
= pte_clear_flags(ptent
, _PAGE_SOFT_DIRTY
);
734 } else if (is_swap_pte(ptent
)) {
735 ptent
= pte_swp_clear_soft_dirty(ptent
);
736 } else if (pte_file(ptent
)) {
737 ptent
= pte_file_clear_soft_dirty(ptent
);
740 if (vma
->vm_flags
& VM_SOFTDIRTY
)
741 vma
->vm_flags
&= ~VM_SOFTDIRTY
;
743 set_pte_at(vma
->vm_mm
, addr
, pte
, ptent
);
747 static int clear_refs_pte_range(pmd_t
*pmd
, unsigned long addr
,
748 unsigned long end
, struct mm_walk
*walk
)
750 struct clear_refs_private
*cp
= walk
->private;
751 struct vm_area_struct
*vma
= cp
->vma
;
756 split_huge_page_pmd(vma
, addr
, pmd
);
757 if (pmd_trans_unstable(pmd
))
760 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
761 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
) {
764 if (cp
->type
== CLEAR_REFS_SOFT_DIRTY
) {
765 clear_soft_dirty(vma
, addr
, pte
);
769 if (!pte_present(ptent
))
772 page
= vm_normal_page(vma
, addr
, ptent
);
776 /* Clear accessed and referenced bits. */
777 ptep_test_and_clear_young(vma
, addr
, pte
);
778 ClearPageReferenced(page
);
780 pte_unmap_unlock(pte
- 1, ptl
);
785 static ssize_t
clear_refs_write(struct file
*file
, const char __user
*buf
,
786 size_t count
, loff_t
*ppos
)
788 struct task_struct
*task
;
789 char buffer
[PROC_NUMBUF
];
790 struct mm_struct
*mm
;
791 struct vm_area_struct
*vma
;
792 enum clear_refs_types type
;
796 memset(buffer
, 0, sizeof(buffer
));
797 if (count
> sizeof(buffer
) - 1)
798 count
= sizeof(buffer
) - 1;
799 if (copy_from_user(buffer
, buf
, count
))
801 rv
= kstrtoint(strstrip(buffer
), 10, &itype
);
804 type
= (enum clear_refs_types
)itype
;
805 if (type
< CLEAR_REFS_ALL
|| type
>= CLEAR_REFS_LAST
)
808 if (type
== CLEAR_REFS_SOFT_DIRTY
) {
809 soft_dirty_cleared
= true;
810 pr_warn_once("The pagemap bits 55-60 has changed their meaning! "
811 "See the linux/Documentation/vm/pagemap.txt for details.\n");
814 task
= get_proc_task(file_inode(file
));
817 mm
= get_task_mm(task
);
819 struct clear_refs_private cp
= {
822 struct mm_walk clear_refs_walk
= {
823 .pmd_entry
= clear_refs_pte_range
,
827 down_read(&mm
->mmap_sem
);
828 if (type
== CLEAR_REFS_SOFT_DIRTY
)
829 mmu_notifier_invalidate_range_start(mm
, 0, -1);
830 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
832 if (is_vm_hugetlb_page(vma
))
835 * Writing 1 to /proc/pid/clear_refs affects all pages.
837 * Writing 2 to /proc/pid/clear_refs only affects
840 * Writing 3 to /proc/pid/clear_refs only affects file
843 if (type
== CLEAR_REFS_ANON
&& vma
->vm_file
)
845 if (type
== CLEAR_REFS_MAPPED
&& !vma
->vm_file
)
847 walk_page_range(vma
->vm_start
, vma
->vm_end
,
850 if (type
== CLEAR_REFS_SOFT_DIRTY
)
851 mmu_notifier_invalidate_range_end(mm
, 0, -1);
853 up_read(&mm
->mmap_sem
);
856 put_task_struct(task
);
861 const struct file_operations proc_clear_refs_operations
= {
862 .write
= clear_refs_write
,
863 .llseek
= noop_llseek
,
871 int pos
, len
; /* units: PM_ENTRY_BYTES, not bytes */
872 pagemap_entry_t
*buffer
;
876 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
877 #define PAGEMAP_WALK_MASK (PMD_MASK)
879 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
880 #define PM_STATUS_BITS 3
881 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
882 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
883 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
884 #define PM_PSHIFT_BITS 6
885 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
886 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
887 #define __PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
888 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
889 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
890 /* in "new" pagemap pshift bits are occupied with more status bits */
891 #define PM_STATUS2(v2, x) (__PM_PSHIFT(v2 ? x : PAGE_SHIFT))
893 #define __PM_SOFT_DIRTY (1LL)
894 #define PM_PRESENT PM_STATUS(4LL)
895 #define PM_SWAP PM_STATUS(2LL)
896 #define PM_FILE PM_STATUS(1LL)
897 #define PM_NOT_PRESENT(v2) PM_STATUS2(v2, 0)
898 #define PM_END_OF_BUFFER 1
900 static inline pagemap_entry_t
make_pme(u64 val
)
902 return (pagemap_entry_t
) { .pme
= val
};
905 static int add_to_pagemap(unsigned long addr
, pagemap_entry_t
*pme
,
906 struct pagemapread
*pm
)
908 pm
->buffer
[pm
->pos
++] = *pme
;
909 if (pm
->pos
>= pm
->len
)
910 return PM_END_OF_BUFFER
;
914 static int pagemap_pte_hole(unsigned long start
, unsigned long end
,
915 struct mm_walk
*walk
)
917 struct pagemapread
*pm
= walk
->private;
920 pagemap_entry_t pme
= make_pme(PM_NOT_PRESENT(pm
->v2
));
922 for (addr
= start
; addr
< end
; addr
+= PAGE_SIZE
) {
923 err
= add_to_pagemap(addr
, &pme
, pm
);
930 static void pte_to_pagemap_entry(pagemap_entry_t
*pme
, struct pagemapread
*pm
,
931 struct vm_area_struct
*vma
, unsigned long addr
, pte_t pte
)
934 struct page
*page
= NULL
;
937 if (pte_present(pte
)) {
938 frame
= pte_pfn(pte
);
940 page
= vm_normal_page(vma
, addr
, pte
);
941 if (pte_soft_dirty(pte
))
942 flags2
|= __PM_SOFT_DIRTY
;
943 } else if (is_swap_pte(pte
)) {
945 if (pte_swp_soft_dirty(pte
))
946 flags2
|= __PM_SOFT_DIRTY
;
947 entry
= pte_to_swp_entry(pte
);
948 frame
= swp_type(entry
) |
949 (swp_offset(entry
) << MAX_SWAPFILES_SHIFT
);
951 if (is_migration_entry(entry
))
952 page
= migration_entry_to_page(entry
);
954 if (vma
->vm_flags
& VM_SOFTDIRTY
)
955 flags2
|= __PM_SOFT_DIRTY
;
956 *pme
= make_pme(PM_NOT_PRESENT(pm
->v2
) | PM_STATUS2(pm
->v2
, flags2
));
960 if (page
&& !PageAnon(page
))
962 if ((vma
->vm_flags
& VM_SOFTDIRTY
))
963 flags2
|= __PM_SOFT_DIRTY
;
965 *pme
= make_pme(PM_PFRAME(frame
) | PM_STATUS2(pm
->v2
, flags2
) | flags
);
968 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
969 static void thp_pmd_to_pagemap_entry(pagemap_entry_t
*pme
, struct pagemapread
*pm
,
970 pmd_t pmd
, int offset
, int pmd_flags2
)
973 * Currently pmd for thp is always present because thp can not be
974 * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
975 * This if-check is just to prepare for future implementation.
977 if (pmd_present(pmd
))
978 *pme
= make_pme(PM_PFRAME(pmd_pfn(pmd
) + offset
)
979 | PM_STATUS2(pm
->v2
, pmd_flags2
) | PM_PRESENT
);
981 *pme
= make_pme(PM_NOT_PRESENT(pm
->v2
) | PM_STATUS2(pm
->v2
, pmd_flags2
));
984 static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t
*pme
, struct pagemapread
*pm
,
985 pmd_t pmd
, int offset
, int pmd_flags2
)
990 static int pagemap_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
,
991 struct mm_walk
*walk
)
993 struct vm_area_struct
*vma
;
994 struct pagemapread
*pm
= walk
->private;
996 pte_t
*pte
, *orig_pte
;
999 /* find the first VMA at or above 'addr' */
1000 vma
= find_vma(walk
->mm
, addr
);
1001 if (vma
&& pmd_trans_huge_lock(pmd
, vma
, &ptl
) == 1) {
1004 if ((vma
->vm_flags
& VM_SOFTDIRTY
) || pmd_soft_dirty(*pmd
))
1005 pmd_flags2
= __PM_SOFT_DIRTY
;
1009 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
1010 unsigned long offset
;
1011 pagemap_entry_t pme
;
1013 offset
= (addr
& ~PAGEMAP_WALK_MASK
) >>
1015 thp_pmd_to_pagemap_entry(&pme
, pm
, *pmd
, offset
, pmd_flags2
);
1016 err
= add_to_pagemap(addr
, &pme
, pm
);
1024 if (pmd_trans_unstable(pmd
))
1028 /* End of address space hole, which we mark as non-present. */
1029 unsigned long hole_end
;
1032 hole_end
= min(end
, vma
->vm_start
);
1036 for (; addr
< hole_end
; addr
+= PAGE_SIZE
) {
1037 pagemap_entry_t pme
= make_pme(PM_NOT_PRESENT(pm
->v2
));
1039 err
= add_to_pagemap(addr
, &pme
, pm
);
1044 if (!vma
|| vma
->vm_start
>= end
)
1047 * We can't possibly be in a hugetlb VMA. In general,
1048 * for a mm_walk with a pmd_entry and a hugetlb_entry,
1049 * the pmd_entry can only be called on addresses in a
1050 * hugetlb if the walk starts in a non-hugetlb VMA and
1051 * spans a hugepage VMA. Since pagemap_read walks are
1052 * PMD-sized and PMD-aligned, this will never be true.
1054 BUG_ON(is_vm_hugetlb_page(vma
));
1056 /* Addresses in the VMA. */
1057 orig_pte
= pte
= pte_offset_map_lock(walk
->mm
, pmd
, addr
, &ptl
);
1058 for (; addr
< min(end
, vma
->vm_end
); pte
++, addr
+= PAGE_SIZE
) {
1059 pagemap_entry_t pme
;
1061 pte_to_pagemap_entry(&pme
, pm
, vma
, addr
, *pte
);
1062 err
= add_to_pagemap(addr
, &pme
, pm
);
1066 pte_unmap_unlock(orig_pte
, ptl
);
1074 vma
= find_vma(walk
->mm
, addr
);
1082 #ifdef CONFIG_HUGETLB_PAGE
1083 static void huge_pte_to_pagemap_entry(pagemap_entry_t
*pme
, struct pagemapread
*pm
,
1084 pte_t pte
, int offset
, int flags2
)
1086 if (pte_present(pte
))
1087 *pme
= make_pme(PM_PFRAME(pte_pfn(pte
) + offset
) |
1088 PM_STATUS2(pm
->v2
, flags2
) |
1091 *pme
= make_pme(PM_NOT_PRESENT(pm
->v2
) |
1092 PM_STATUS2(pm
->v2
, flags2
));
1095 /* This function walks within one hugetlb entry in the single call */
1096 static int pagemap_hugetlb_range(pte_t
*pte
, unsigned long hmask
,
1097 unsigned long addr
, unsigned long end
,
1098 struct mm_walk
*walk
)
1100 struct pagemapread
*pm
= walk
->private;
1101 struct vm_area_struct
*vma
;
1104 pagemap_entry_t pme
;
1106 vma
= find_vma(walk
->mm
, addr
);
1109 if (vma
&& (vma
->vm_flags
& VM_SOFTDIRTY
))
1110 flags2
= __PM_SOFT_DIRTY
;
1114 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
1115 int offset
= (addr
& ~hmask
) >> PAGE_SHIFT
;
1116 huge_pte_to_pagemap_entry(&pme
, pm
, *pte
, offset
, flags2
);
1117 err
= add_to_pagemap(addr
, &pme
, pm
);
1126 #endif /* HUGETLB_PAGE */
1129 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1131 * For each page in the address space, this file contains one 64-bit entry
1132 * consisting of the following:
1134 * Bits 0-54 page frame number (PFN) if present
1135 * Bits 0-4 swap type if swapped
1136 * Bits 5-54 swap offset if swapped
1137 * Bits 55-60 page shift (page size = 1<<page shift)
1138 * Bit 61 page is file-page or shared-anon
1139 * Bit 62 page swapped
1140 * Bit 63 page present
1142 * If the page is not present but in swap, then the PFN contains an
1143 * encoding of the swap file number and the page's offset into the
1144 * swap. Unmapped pages return a null PFN. This allows determining
1145 * precisely which pages are mapped (or in swap) and comparing mapped
1146 * pages between processes.
1148 * Efficient users of this interface will use /proc/pid/maps to
1149 * determine which areas of memory are actually mapped and llseek to
1150 * skip over unmapped regions.
1152 static ssize_t
pagemap_read(struct file
*file
, char __user
*buf
,
1153 size_t count
, loff_t
*ppos
)
1155 struct task_struct
*task
= get_proc_task(file_inode(file
));
1156 struct mm_struct
*mm
;
1157 struct pagemapread pm
;
1159 struct mm_walk pagemap_walk
= {};
1161 unsigned long svpfn
;
1162 unsigned long start_vaddr
;
1163 unsigned long end_vaddr
;
1170 /* file position must be aligned */
1171 if ((*ppos
% PM_ENTRY_BYTES
) || (count
% PM_ENTRY_BYTES
))
1178 pm
.v2
= soft_dirty_cleared
;
1179 pm
.len
= (PAGEMAP_WALK_SIZE
>> PAGE_SHIFT
);
1180 pm
.buffer
= kmalloc(pm
.len
* PM_ENTRY_BYTES
, GFP_TEMPORARY
);
1185 mm
= mm_access(task
, PTRACE_MODE_READ
);
1187 if (!mm
|| IS_ERR(mm
))
1190 pagemap_walk
.pmd_entry
= pagemap_pte_range
;
1191 pagemap_walk
.pte_hole
= pagemap_pte_hole
;
1192 #ifdef CONFIG_HUGETLB_PAGE
1193 pagemap_walk
.hugetlb_entry
= pagemap_hugetlb_range
;
1195 pagemap_walk
.mm
= mm
;
1196 pagemap_walk
.private = &pm
;
1199 svpfn
= src
/ PM_ENTRY_BYTES
;
1200 start_vaddr
= svpfn
<< PAGE_SHIFT
;
1201 end_vaddr
= TASK_SIZE_OF(task
);
1203 /* watch out for wraparound */
1204 if (svpfn
> TASK_SIZE_OF(task
) >> PAGE_SHIFT
)
1205 start_vaddr
= end_vaddr
;
1208 * The odds are that this will stop walking way
1209 * before end_vaddr, because the length of the
1210 * user buffer is tracked in "pm", and the walk
1211 * will stop when we hit the end of the buffer.
1214 while (count
&& (start_vaddr
< end_vaddr
)) {
1219 end
= (start_vaddr
+ PAGEMAP_WALK_SIZE
) & PAGEMAP_WALK_MASK
;
1221 if (end
< start_vaddr
|| end
> end_vaddr
)
1223 down_read(&mm
->mmap_sem
);
1224 ret
= walk_page_range(start_vaddr
, end
, &pagemap_walk
);
1225 up_read(&mm
->mmap_sem
);
1228 len
= min(count
, PM_ENTRY_BYTES
* pm
.pos
);
1229 if (copy_to_user(buf
, pm
.buffer
, len
)) {
1238 if (!ret
|| ret
== PM_END_OF_BUFFER
)
1246 put_task_struct(task
);
1251 static int pagemap_open(struct inode
*inode
, struct file
*file
)
1253 /* do not disclose physical addresses: attack vector */
1254 if (!capable(CAP_SYS_ADMIN
))
1256 pr_warn_once("Bits 55-60 of /proc/PID/pagemap entries are about "
1257 "to stop being page-shift some time soon. See the "
1258 "linux/Documentation/vm/pagemap.txt for details.\n");
1262 const struct file_operations proc_pagemap_operations
= {
1263 .llseek
= mem_lseek
, /* borrow this */
1264 .read
= pagemap_read
,
1265 .open
= pagemap_open
,
1267 #endif /* CONFIG_PROC_PAGE_MONITOR */
1272 struct vm_area_struct
*vma
;
1273 unsigned long pages
;
1275 unsigned long active
;
1276 unsigned long writeback
;
1277 unsigned long mapcount_max
;
1278 unsigned long dirty
;
1279 unsigned long swapcache
;
1280 unsigned long node
[MAX_NUMNODES
];
1283 struct numa_maps_private
{
1284 struct proc_maps_private proc_maps
;
1285 struct numa_maps md
;
1288 static void gather_stats(struct page
*page
, struct numa_maps
*md
, int pte_dirty
,
1289 unsigned long nr_pages
)
1291 int count
= page_mapcount(page
);
1293 md
->pages
+= nr_pages
;
1294 if (pte_dirty
|| PageDirty(page
))
1295 md
->dirty
+= nr_pages
;
1297 if (PageSwapCache(page
))
1298 md
->swapcache
+= nr_pages
;
1300 if (PageActive(page
) || PageUnevictable(page
))
1301 md
->active
+= nr_pages
;
1303 if (PageWriteback(page
))
1304 md
->writeback
+= nr_pages
;
1307 md
->anon
+= nr_pages
;
1309 if (count
> md
->mapcount_max
)
1310 md
->mapcount_max
= count
;
1312 md
->node
[page_to_nid(page
)] += nr_pages
;
1315 static struct page
*can_gather_numa_stats(pte_t pte
, struct vm_area_struct
*vma
,
1321 if (!pte_present(pte
))
1324 page
= vm_normal_page(vma
, addr
, pte
);
1328 if (PageReserved(page
))
1331 nid
= page_to_nid(page
);
1332 if (!node_isset(nid
, node_states
[N_MEMORY
]))
1338 static int gather_pte_stats(pmd_t
*pmd
, unsigned long addr
,
1339 unsigned long end
, struct mm_walk
*walk
)
1341 struct numa_maps
*md
;
1348 if (pmd_trans_huge_lock(pmd
, md
->vma
, &ptl
) == 1) {
1349 pte_t huge_pte
= *(pte_t
*)pmd
;
1352 page
= can_gather_numa_stats(huge_pte
, md
->vma
, addr
);
1354 gather_stats(page
, md
, pte_dirty(huge_pte
),
1355 HPAGE_PMD_SIZE
/PAGE_SIZE
);
1360 if (pmd_trans_unstable(pmd
))
1362 orig_pte
= pte
= pte_offset_map_lock(walk
->mm
, pmd
, addr
, &ptl
);
1364 struct page
*page
= can_gather_numa_stats(*pte
, md
->vma
, addr
);
1367 gather_stats(page
, md
, pte_dirty(*pte
), 1);
1369 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1370 pte_unmap_unlock(orig_pte
, ptl
);
1373 #ifdef CONFIG_HUGETLB_PAGE
1374 static int gather_hugetbl_stats(pte_t
*pte
, unsigned long hmask
,
1375 unsigned long addr
, unsigned long end
, struct mm_walk
*walk
)
1377 struct numa_maps
*md
;
1380 if (!pte_present(*pte
))
1383 page
= pte_page(*pte
);
1388 gather_stats(page
, md
, pte_dirty(*pte
), 1);
1393 static int gather_hugetbl_stats(pte_t
*pte
, unsigned long hmask
,
1394 unsigned long addr
, unsigned long end
, struct mm_walk
*walk
)
1401 * Display pages allocated per node and memory policy via /proc.
1403 static int show_numa_map(struct seq_file
*m
, void *v
, int is_pid
)
1405 struct numa_maps_private
*numa_priv
= m
->private;
1406 struct proc_maps_private
*proc_priv
= &numa_priv
->proc_maps
;
1407 struct vm_area_struct
*vma
= v
;
1408 struct numa_maps
*md
= &numa_priv
->md
;
1409 struct file
*file
= vma
->vm_file
;
1410 struct task_struct
*task
= proc_priv
->task
;
1411 struct mm_struct
*mm
= vma
->vm_mm
;
1412 struct mm_walk walk
= {};
1413 struct mempolicy
*pol
;
1420 /* Ensure we start with an empty set of numa_maps statistics. */
1421 memset(md
, 0, sizeof(*md
));
1425 walk
.hugetlb_entry
= gather_hugetbl_stats
;
1426 walk
.pmd_entry
= gather_pte_stats
;
1430 pol
= get_vma_policy(task
, vma
, vma
->vm_start
);
1431 mpol_to_str(buffer
, sizeof(buffer
), pol
);
1434 seq_printf(m
, "%08lx %s", vma
->vm_start
, buffer
);
1437 seq_printf(m
, " file=");
1438 seq_path(m
, &file
->f_path
, "\n\t= ");
1439 } else if (vma
->vm_start
<= mm
->brk
&& vma
->vm_end
>= mm
->start_brk
) {
1440 seq_printf(m
, " heap");
1442 pid_t tid
= vm_is_stack(task
, vma
, is_pid
);
1445 * Thread stack in /proc/PID/task/TID/maps or
1446 * the main process stack.
1448 if (!is_pid
|| (vma
->vm_start
<= mm
->start_stack
&&
1449 vma
->vm_end
>= mm
->start_stack
))
1450 seq_printf(m
, " stack");
1452 seq_printf(m
, " stack:%d", tid
);
1456 if (is_vm_hugetlb_page(vma
))
1457 seq_printf(m
, " huge");
1459 walk_page_range(vma
->vm_start
, vma
->vm_end
, &walk
);
1465 seq_printf(m
, " anon=%lu", md
->anon
);
1468 seq_printf(m
, " dirty=%lu", md
->dirty
);
1470 if (md
->pages
!= md
->anon
&& md
->pages
!= md
->dirty
)
1471 seq_printf(m
, " mapped=%lu", md
->pages
);
1473 if (md
->mapcount_max
> 1)
1474 seq_printf(m
, " mapmax=%lu", md
->mapcount_max
);
1477 seq_printf(m
, " swapcache=%lu", md
->swapcache
);
1479 if (md
->active
< md
->pages
&& !is_vm_hugetlb_page(vma
))
1480 seq_printf(m
, " active=%lu", md
->active
);
1483 seq_printf(m
, " writeback=%lu", md
->writeback
);
1485 for_each_node_state(nid
, N_MEMORY
)
1487 seq_printf(m
, " N%d=%lu", nid
, md
->node
[nid
]);
1491 if (m
->count
< m
->size
)
1492 m
->version
= (vma
!= proc_priv
->tail_vma
) ? vma
->vm_start
: 0;
1496 static int show_pid_numa_map(struct seq_file
*m
, void *v
)
1498 return show_numa_map(m
, v
, 1);
1501 static int show_tid_numa_map(struct seq_file
*m
, void *v
)
1503 return show_numa_map(m
, v
, 0);
1506 static const struct seq_operations proc_pid_numa_maps_op
= {
1510 .show
= show_pid_numa_map
,
1513 static const struct seq_operations proc_tid_numa_maps_op
= {
1517 .show
= show_tid_numa_map
,
1520 static int numa_maps_open(struct inode
*inode
, struct file
*file
,
1521 const struct seq_operations
*ops
)
1523 struct numa_maps_private
*priv
;
1525 priv
= kzalloc(sizeof(*priv
), GFP_KERNEL
);
1527 priv
->proc_maps
.pid
= proc_pid(inode
);
1528 ret
= seq_open(file
, ops
);
1530 struct seq_file
*m
= file
->private_data
;
1539 static int pid_numa_maps_open(struct inode
*inode
, struct file
*file
)
1541 return numa_maps_open(inode
, file
, &proc_pid_numa_maps_op
);
1544 static int tid_numa_maps_open(struct inode
*inode
, struct file
*file
)
1546 return numa_maps_open(inode
, file
, &proc_tid_numa_maps_op
);
1549 const struct file_operations proc_pid_numa_maps_operations
= {
1550 .open
= pid_numa_maps_open
,
1552 .llseek
= seq_lseek
,
1553 .release
= seq_release_private
,
1556 const struct file_operations proc_tid_numa_maps_operations
= {
1557 .open
= tid_numa_maps_open
,
1559 .llseek
= seq_lseek
,
1560 .release
= seq_release_private
,
1562 #endif /* CONFIG_NUMA */