2 * Copyright (C) 2011-2012 Red Hat UK.
4 * This file is released under the GPL.
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
25 #define DM_MSG_PREFIX "thin"
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
35 static unsigned no_space_timeout_secs
= NO_SPACE_TIMEOUT_SECS
;
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle
,
38 "A percentage of time allocated for copy on write");
41 * The block size of the device holding pool data must be
42 * between 64KB and 1GB.
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
48 * Device id is restricted to 24 bits.
50 #define MAX_DEV_ID ((1 << 24) - 1)
53 * How do we handle breaking sharing of data blocks?
54 * =================================================
56 * We use a standard copy-on-write btree to store the mappings for the
57 * devices (note I'm talking about copy-on-write of the metadata here, not
58 * the data). When you take an internal snapshot you clone the root node
59 * of the origin btree. After this there is no concept of an origin or a
60 * snapshot. They are just two device trees that happen to point to the
63 * When we get a write in we decide if it's to a shared data block using
64 * some timestamp magic. If it is, we have to break sharing.
66 * Let's say we write to a shared block in what was the origin. The
69 * i) plug io further to this physical block. (see bio_prison code).
71 * ii) quiesce any read io to that shared data block. Obviously
72 * including all devices that share this block. (see dm_deferred_set code)
74 * iii) copy the data block to a newly allocate block. This step can be
75 * missed out if the io covers the block. (schedule_copy).
77 * iv) insert the new mapping into the origin's btree
78 * (process_prepared_mapping). This act of inserting breaks some
79 * sharing of btree nodes between the two devices. Breaking sharing only
80 * effects the btree of that specific device. Btrees for the other
81 * devices that share the block never change. The btree for the origin
82 * device as it was after the last commit is untouched, ie. we're using
83 * persistent data structures in the functional programming sense.
85 * v) unplug io to this physical block, including the io that triggered
86 * the breaking of sharing.
88 * Steps (ii) and (iii) occur in parallel.
90 * The metadata _doesn't_ need to be committed before the io continues. We
91 * get away with this because the io is always written to a _new_ block.
92 * If there's a crash, then:
94 * - The origin mapping will point to the old origin block (the shared
95 * one). This will contain the data as it was before the io that triggered
96 * the breaking of sharing came in.
98 * - The snap mapping still points to the old block. As it would after
101 * The downside of this scheme is the timestamp magic isn't perfect, and
102 * will continue to think that data block in the snapshot device is shared
103 * even after the write to the origin has broken sharing. I suspect data
104 * blocks will typically be shared by many different devices, so we're
105 * breaking sharing n + 1 times, rather than n, where n is the number of
106 * devices that reference this data block. At the moment I think the
107 * benefits far, far outweigh the disadvantages.
110 /*----------------------------------------------------------------*/
120 static void build_key(struct dm_thin_device
*td
, enum lock_space ls
,
121 dm_block_t b
, dm_block_t e
, struct dm_cell_key
*key
)
123 key
->virtual = (ls
== VIRTUAL
);
124 key
->dev
= dm_thin_dev_id(td
);
125 key
->block_begin
= b
;
129 static void build_data_key(struct dm_thin_device
*td
, dm_block_t b
,
130 struct dm_cell_key
*key
)
132 build_key(td
, PHYSICAL
, b
, b
+ 1llu, key
);
135 static void build_virtual_key(struct dm_thin_device
*td
, dm_block_t b
,
136 struct dm_cell_key
*key
)
138 build_key(td
, VIRTUAL
, b
, b
+ 1llu, key
);
141 /*----------------------------------------------------------------*/
143 #define THROTTLE_THRESHOLD (1 * HZ)
146 struct rw_semaphore lock
;
147 unsigned long threshold
;
148 bool throttle_applied
;
151 static void throttle_init(struct throttle
*t
)
153 init_rwsem(&t
->lock
);
154 t
->throttle_applied
= false;
157 static void throttle_work_start(struct throttle
*t
)
159 t
->threshold
= jiffies
+ THROTTLE_THRESHOLD
;
162 static void throttle_work_update(struct throttle
*t
)
164 if (!t
->throttle_applied
&& jiffies
> t
->threshold
) {
165 down_write(&t
->lock
);
166 t
->throttle_applied
= true;
170 static void throttle_work_complete(struct throttle
*t
)
172 if (t
->throttle_applied
) {
173 t
->throttle_applied
= false;
178 static void throttle_lock(struct throttle
*t
)
183 static void throttle_unlock(struct throttle
*t
)
188 /*----------------------------------------------------------------*/
191 * A pool device ties together a metadata device and a data device. It
192 * also provides the interface for creating and destroying internal
195 struct dm_thin_new_mapping
;
198 * The pool runs in 4 modes. Ordered in degraded order for comparisons.
201 PM_WRITE
, /* metadata may be changed */
202 PM_OUT_OF_DATA_SPACE
, /* metadata may be changed, though data may not be allocated */
203 PM_READ_ONLY
, /* metadata may not be changed */
204 PM_FAIL
, /* all I/O fails */
207 struct pool_features
{
210 bool zero_new_blocks
:1;
211 bool discard_enabled
:1;
212 bool discard_passdown
:1;
213 bool error_if_no_space
:1;
217 typedef void (*process_bio_fn
)(struct thin_c
*tc
, struct bio
*bio
);
218 typedef void (*process_cell_fn
)(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
);
219 typedef void (*process_mapping_fn
)(struct dm_thin_new_mapping
*m
);
221 #define CELL_SORT_ARRAY_SIZE 8192
224 struct list_head list
;
225 struct dm_target
*ti
; /* Only set if a pool target is bound */
227 struct mapped_device
*pool_md
;
228 struct block_device
*md_dev
;
229 struct dm_pool_metadata
*pmd
;
231 dm_block_t low_water_blocks
;
232 uint32_t sectors_per_block
;
233 int sectors_per_block_shift
;
235 struct pool_features pf
;
236 bool low_water_triggered
:1; /* A dm event has been sent */
239 struct dm_bio_prison
*prison
;
240 struct dm_kcopyd_client
*copier
;
242 struct workqueue_struct
*wq
;
243 struct throttle throttle
;
244 struct work_struct worker
;
245 struct delayed_work waker
;
246 struct delayed_work no_space_timeout
;
248 unsigned long last_commit_jiffies
;
252 struct bio_list deferred_flush_bios
;
253 struct list_head prepared_mappings
;
254 struct list_head prepared_discards
;
255 struct list_head active_thins
;
257 struct dm_deferred_set
*shared_read_ds
;
258 struct dm_deferred_set
*all_io_ds
;
260 struct dm_thin_new_mapping
*next_mapping
;
261 mempool_t
*mapping_pool
;
263 process_bio_fn process_bio
;
264 process_bio_fn process_discard
;
266 process_cell_fn process_cell
;
267 process_cell_fn process_discard_cell
;
269 process_mapping_fn process_prepared_mapping
;
270 process_mapping_fn process_prepared_discard
;
272 struct dm_bio_prison_cell
**cell_sort_array
;
275 static enum pool_mode
get_pool_mode(struct pool
*pool
);
276 static void metadata_operation_failed(struct pool
*pool
, const char *op
, int r
);
279 * Target context for a pool.
282 struct dm_target
*ti
;
284 struct dm_dev
*data_dev
;
285 struct dm_dev
*metadata_dev
;
286 struct dm_target_callbacks callbacks
;
288 dm_block_t low_water_blocks
;
289 struct pool_features requested_pf
; /* Features requested during table load */
290 struct pool_features adjusted_pf
; /* Features used after adjusting for constituent devices */
294 * Target context for a thin.
297 struct list_head list
;
298 struct dm_dev
*pool_dev
;
299 struct dm_dev
*origin_dev
;
300 sector_t origin_size
;
304 struct dm_thin_device
*td
;
305 struct mapped_device
*thin_md
;
309 struct list_head deferred_cells
;
310 struct bio_list deferred_bio_list
;
311 struct bio_list retry_on_resume_list
;
312 struct rb_root sort_bio_list
; /* sorted list of deferred bios */
315 * Ensures the thin is not destroyed until the worker has finished
316 * iterating the active_thins list.
319 struct completion can_destroy
;
322 /*----------------------------------------------------------------*/
325 * __blkdev_issue_discard_async - queue a discard with async completion
326 * @bdev: blockdev to issue discard for
327 * @sector: start sector
328 * @nr_sects: number of sectors to discard
329 * @gfp_mask: memory allocation flags (for bio_alloc)
330 * @flags: BLKDEV_IFL_* flags to control behaviour
331 * @parent_bio: parent discard bio that all sub discards get chained to
334 * Asynchronously issue a discard request for the sectors in question.
336 static int __blkdev_issue_discard_async(struct block_device
*bdev
, sector_t sector
,
337 sector_t nr_sects
, gfp_t gfp_mask
, unsigned long flags
,
338 struct bio
*parent_bio
)
340 struct request_queue
*q
= bdev_get_queue(bdev
);
341 int type
= REQ_WRITE
| REQ_DISCARD
;
347 if (!blk_queue_discard(q
))
350 if (flags
& BLKDEV_DISCARD_SECURE
) {
351 if (!blk_queue_secdiscard(q
))
357 * Required bio_put occurs in bio_endio thanks to bio_chain below
359 bio
= bio_alloc(gfp_mask
, 1);
363 bio_chain(bio
, parent_bio
);
365 bio
->bi_iter
.bi_sector
= sector
;
367 bio
->bi_iter
.bi_size
= nr_sects
<< 9;
369 submit_bio(type
, bio
);
374 static bool block_size_is_power_of_two(struct pool
*pool
)
376 return pool
->sectors_per_block_shift
>= 0;
379 static sector_t
block_to_sectors(struct pool
*pool
, dm_block_t b
)
381 return block_size_is_power_of_two(pool
) ?
382 (b
<< pool
->sectors_per_block_shift
) :
383 (b
* pool
->sectors_per_block
);
386 static int issue_discard(struct thin_c
*tc
, dm_block_t data_b
, dm_block_t data_e
,
387 struct bio
*parent_bio
)
389 sector_t s
= block_to_sectors(tc
->pool
, data_b
);
390 sector_t len
= block_to_sectors(tc
->pool
, data_e
- data_b
);
392 return __blkdev_issue_discard_async(tc
->pool_dev
->bdev
, s
, len
,
393 GFP_NOWAIT
, 0, parent_bio
);
396 /*----------------------------------------------------------------*/
399 * wake_worker() is used when new work is queued and when pool_resume is
400 * ready to continue deferred IO processing.
402 static void wake_worker(struct pool
*pool
)
404 queue_work(pool
->wq
, &pool
->worker
);
407 /*----------------------------------------------------------------*/
409 static int bio_detain(struct pool
*pool
, struct dm_cell_key
*key
, struct bio
*bio
,
410 struct dm_bio_prison_cell
**cell_result
)
413 struct dm_bio_prison_cell
*cell_prealloc
;
416 * Allocate a cell from the prison's mempool.
417 * This might block but it can't fail.
419 cell_prealloc
= dm_bio_prison_alloc_cell(pool
->prison
, GFP_NOIO
);
421 r
= dm_bio_detain(pool
->prison
, key
, bio
, cell_prealloc
, cell_result
);
424 * We reused an old cell; we can get rid of
427 dm_bio_prison_free_cell(pool
->prison
, cell_prealloc
);
432 static void cell_release(struct pool
*pool
,
433 struct dm_bio_prison_cell
*cell
,
434 struct bio_list
*bios
)
436 dm_cell_release(pool
->prison
, cell
, bios
);
437 dm_bio_prison_free_cell(pool
->prison
, cell
);
440 static void cell_visit_release(struct pool
*pool
,
441 void (*fn
)(void *, struct dm_bio_prison_cell
*),
443 struct dm_bio_prison_cell
*cell
)
445 dm_cell_visit_release(pool
->prison
, fn
, context
, cell
);
446 dm_bio_prison_free_cell(pool
->prison
, cell
);
449 static void cell_release_no_holder(struct pool
*pool
,
450 struct dm_bio_prison_cell
*cell
,
451 struct bio_list
*bios
)
453 dm_cell_release_no_holder(pool
->prison
, cell
, bios
);
454 dm_bio_prison_free_cell(pool
->prison
, cell
);
457 static void cell_error_with_code(struct pool
*pool
,
458 struct dm_bio_prison_cell
*cell
, int error_code
)
460 dm_cell_error(pool
->prison
, cell
, error_code
);
461 dm_bio_prison_free_cell(pool
->prison
, cell
);
464 static void cell_error(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
466 cell_error_with_code(pool
, cell
, -EIO
);
469 static void cell_success(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
471 cell_error_with_code(pool
, cell
, 0);
474 static void cell_requeue(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
476 cell_error_with_code(pool
, cell
, DM_ENDIO_REQUEUE
);
479 /*----------------------------------------------------------------*/
482 * A global list of pools that uses a struct mapped_device as a key.
484 static struct dm_thin_pool_table
{
486 struct list_head pools
;
487 } dm_thin_pool_table
;
489 static void pool_table_init(void)
491 mutex_init(&dm_thin_pool_table
.mutex
);
492 INIT_LIST_HEAD(&dm_thin_pool_table
.pools
);
495 static void __pool_table_insert(struct pool
*pool
)
497 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
498 list_add(&pool
->list
, &dm_thin_pool_table
.pools
);
501 static void __pool_table_remove(struct pool
*pool
)
503 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
504 list_del(&pool
->list
);
507 static struct pool
*__pool_table_lookup(struct mapped_device
*md
)
509 struct pool
*pool
= NULL
, *tmp
;
511 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
513 list_for_each_entry(tmp
, &dm_thin_pool_table
.pools
, list
) {
514 if (tmp
->pool_md
== md
) {
523 static struct pool
*__pool_table_lookup_metadata_dev(struct block_device
*md_dev
)
525 struct pool
*pool
= NULL
, *tmp
;
527 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
529 list_for_each_entry(tmp
, &dm_thin_pool_table
.pools
, list
) {
530 if (tmp
->md_dev
== md_dev
) {
539 /*----------------------------------------------------------------*/
541 struct dm_thin_endio_hook
{
543 struct dm_deferred_entry
*shared_read_entry
;
544 struct dm_deferred_entry
*all_io_entry
;
545 struct dm_thin_new_mapping
*overwrite_mapping
;
546 struct rb_node rb_node
;
547 struct dm_bio_prison_cell
*cell
;
550 static void __merge_bio_list(struct bio_list
*bios
, struct bio_list
*master
)
552 bio_list_merge(bios
, master
);
553 bio_list_init(master
);
556 static void error_bio_list(struct bio_list
*bios
, int error
)
560 while ((bio
= bio_list_pop(bios
))) {
561 bio
->bi_error
= error
;
566 static void error_thin_bio_list(struct thin_c
*tc
, struct bio_list
*master
, int error
)
568 struct bio_list bios
;
571 bio_list_init(&bios
);
573 spin_lock_irqsave(&tc
->lock
, flags
);
574 __merge_bio_list(&bios
, master
);
575 spin_unlock_irqrestore(&tc
->lock
, flags
);
577 error_bio_list(&bios
, error
);
580 static void requeue_deferred_cells(struct thin_c
*tc
)
582 struct pool
*pool
= tc
->pool
;
584 struct list_head cells
;
585 struct dm_bio_prison_cell
*cell
, *tmp
;
587 INIT_LIST_HEAD(&cells
);
589 spin_lock_irqsave(&tc
->lock
, flags
);
590 list_splice_init(&tc
->deferred_cells
, &cells
);
591 spin_unlock_irqrestore(&tc
->lock
, flags
);
593 list_for_each_entry_safe(cell
, tmp
, &cells
, user_list
)
594 cell_requeue(pool
, cell
);
597 static void requeue_io(struct thin_c
*tc
)
599 struct bio_list bios
;
602 bio_list_init(&bios
);
604 spin_lock_irqsave(&tc
->lock
, flags
);
605 __merge_bio_list(&bios
, &tc
->deferred_bio_list
);
606 __merge_bio_list(&bios
, &tc
->retry_on_resume_list
);
607 spin_unlock_irqrestore(&tc
->lock
, flags
);
609 error_bio_list(&bios
, DM_ENDIO_REQUEUE
);
610 requeue_deferred_cells(tc
);
613 static void error_retry_list_with_code(struct pool
*pool
, int error
)
618 list_for_each_entry_rcu(tc
, &pool
->active_thins
, list
)
619 error_thin_bio_list(tc
, &tc
->retry_on_resume_list
, error
);
623 static void error_retry_list(struct pool
*pool
)
625 return error_retry_list_with_code(pool
, -EIO
);
629 * This section of code contains the logic for processing a thin device's IO.
630 * Much of the code depends on pool object resources (lists, workqueues, etc)
631 * but most is exclusively called from the thin target rather than the thin-pool
635 static dm_block_t
get_bio_block(struct thin_c
*tc
, struct bio
*bio
)
637 struct pool
*pool
= tc
->pool
;
638 sector_t block_nr
= bio
->bi_iter
.bi_sector
;
640 if (block_size_is_power_of_two(pool
))
641 block_nr
>>= pool
->sectors_per_block_shift
;
643 (void) sector_div(block_nr
, pool
->sectors_per_block
);
649 * Returns the _complete_ blocks that this bio covers.
651 static void get_bio_block_range(struct thin_c
*tc
, struct bio
*bio
,
652 dm_block_t
*begin
, dm_block_t
*end
)
654 struct pool
*pool
= tc
->pool
;
655 sector_t b
= bio
->bi_iter
.bi_sector
;
656 sector_t e
= b
+ (bio
->bi_iter
.bi_size
>> SECTOR_SHIFT
);
658 b
+= pool
->sectors_per_block
- 1ull; /* so we round up */
660 if (block_size_is_power_of_two(pool
)) {
661 b
>>= pool
->sectors_per_block_shift
;
662 e
>>= pool
->sectors_per_block_shift
;
664 (void) sector_div(b
, pool
->sectors_per_block
);
665 (void) sector_div(e
, pool
->sectors_per_block
);
669 /* Can happen if the bio is within a single block. */
676 static void remap(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
)
678 struct pool
*pool
= tc
->pool
;
679 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
681 bio
->bi_bdev
= tc
->pool_dev
->bdev
;
682 if (block_size_is_power_of_two(pool
))
683 bio
->bi_iter
.bi_sector
=
684 (block
<< pool
->sectors_per_block_shift
) |
685 (bi_sector
& (pool
->sectors_per_block
- 1));
687 bio
->bi_iter
.bi_sector
= (block
* pool
->sectors_per_block
) +
688 sector_div(bi_sector
, pool
->sectors_per_block
);
691 static void remap_to_origin(struct thin_c
*tc
, struct bio
*bio
)
693 bio
->bi_bdev
= tc
->origin_dev
->bdev
;
696 static int bio_triggers_commit(struct thin_c
*tc
, struct bio
*bio
)
698 return (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) &&
699 dm_thin_changed_this_transaction(tc
->td
);
702 static void inc_all_io_entry(struct pool
*pool
, struct bio
*bio
)
704 struct dm_thin_endio_hook
*h
;
706 if (bio
->bi_rw
& REQ_DISCARD
)
709 h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
710 h
->all_io_entry
= dm_deferred_entry_inc(pool
->all_io_ds
);
713 static void issue(struct thin_c
*tc
, struct bio
*bio
)
715 struct pool
*pool
= tc
->pool
;
718 if (!bio_triggers_commit(tc
, bio
)) {
719 generic_make_request(bio
);
724 * Complete bio with an error if earlier I/O caused changes to
725 * the metadata that can't be committed e.g, due to I/O errors
726 * on the metadata device.
728 if (dm_thin_aborted_changes(tc
->td
)) {
734 * Batch together any bios that trigger commits and then issue a
735 * single commit for them in process_deferred_bios().
737 spin_lock_irqsave(&pool
->lock
, flags
);
738 bio_list_add(&pool
->deferred_flush_bios
, bio
);
739 spin_unlock_irqrestore(&pool
->lock
, flags
);
742 static void remap_to_origin_and_issue(struct thin_c
*tc
, struct bio
*bio
)
744 remap_to_origin(tc
, bio
);
748 static void remap_and_issue(struct thin_c
*tc
, struct bio
*bio
,
751 remap(tc
, bio
, block
);
755 /*----------------------------------------------------------------*/
758 * Bio endio functions.
760 struct dm_thin_new_mapping
{
761 struct list_head list
;
767 * Track quiescing, copying and zeroing preparation actions. When this
768 * counter hits zero the block is prepared and can be inserted into the
771 atomic_t prepare_actions
;
775 dm_block_t virt_begin
, virt_end
;
776 dm_block_t data_block
;
777 struct dm_bio_prison_cell
*cell
;
780 * If the bio covers the whole area of a block then we can avoid
781 * zeroing or copying. Instead this bio is hooked. The bio will
782 * still be in the cell, so care has to be taken to avoid issuing
786 bio_end_io_t
*saved_bi_end_io
;
789 static void __complete_mapping_preparation(struct dm_thin_new_mapping
*m
)
791 struct pool
*pool
= m
->tc
->pool
;
793 if (atomic_dec_and_test(&m
->prepare_actions
)) {
794 list_add_tail(&m
->list
, &pool
->prepared_mappings
);
799 static void complete_mapping_preparation(struct dm_thin_new_mapping
*m
)
802 struct pool
*pool
= m
->tc
->pool
;
804 spin_lock_irqsave(&pool
->lock
, flags
);
805 __complete_mapping_preparation(m
);
806 spin_unlock_irqrestore(&pool
->lock
, flags
);
809 static void copy_complete(int read_err
, unsigned long write_err
, void *context
)
811 struct dm_thin_new_mapping
*m
= context
;
813 m
->err
= read_err
|| write_err
? -EIO
: 0;
814 complete_mapping_preparation(m
);
817 static void overwrite_endio(struct bio
*bio
)
819 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
820 struct dm_thin_new_mapping
*m
= h
->overwrite_mapping
;
822 bio
->bi_end_io
= m
->saved_bi_end_io
;
824 m
->err
= bio
->bi_error
;
825 complete_mapping_preparation(m
);
828 /*----------------------------------------------------------------*/
835 * Prepared mapping jobs.
839 * This sends the bios in the cell, except the original holder, back
840 * to the deferred_bios list.
842 static void cell_defer_no_holder(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
844 struct pool
*pool
= tc
->pool
;
847 spin_lock_irqsave(&tc
->lock
, flags
);
848 cell_release_no_holder(pool
, cell
, &tc
->deferred_bio_list
);
849 spin_unlock_irqrestore(&tc
->lock
, flags
);
854 static void thin_defer_bio(struct thin_c
*tc
, struct bio
*bio
);
858 struct bio_list defer_bios
;
859 struct bio_list issue_bios
;
862 static void __inc_remap_and_issue_cell(void *context
,
863 struct dm_bio_prison_cell
*cell
)
865 struct remap_info
*info
= context
;
868 while ((bio
= bio_list_pop(&cell
->bios
))) {
869 if (bio
->bi_rw
& (REQ_DISCARD
| REQ_FLUSH
| REQ_FUA
))
870 bio_list_add(&info
->defer_bios
, bio
);
872 inc_all_io_entry(info
->tc
->pool
, bio
);
875 * We can't issue the bios with the bio prison lock
876 * held, so we add them to a list to issue on
877 * return from this function.
879 bio_list_add(&info
->issue_bios
, bio
);
884 static void inc_remap_and_issue_cell(struct thin_c
*tc
,
885 struct dm_bio_prison_cell
*cell
,
889 struct remap_info info
;
892 bio_list_init(&info
.defer_bios
);
893 bio_list_init(&info
.issue_bios
);
896 * We have to be careful to inc any bios we're about to issue
897 * before the cell is released, and avoid a race with new bios
898 * being added to the cell.
900 cell_visit_release(tc
->pool
, __inc_remap_and_issue_cell
,
903 while ((bio
= bio_list_pop(&info
.defer_bios
)))
904 thin_defer_bio(tc
, bio
);
906 while ((bio
= bio_list_pop(&info
.issue_bios
)))
907 remap_and_issue(info
.tc
, bio
, block
);
910 static void process_prepared_mapping_fail(struct dm_thin_new_mapping
*m
)
912 cell_error(m
->tc
->pool
, m
->cell
);
914 mempool_free(m
, m
->tc
->pool
->mapping_pool
);
917 static void process_prepared_mapping(struct dm_thin_new_mapping
*m
)
919 struct thin_c
*tc
= m
->tc
;
920 struct pool
*pool
= tc
->pool
;
921 struct bio
*bio
= m
->bio
;
925 cell_error(pool
, m
->cell
);
930 * Commit the prepared block into the mapping btree.
931 * Any I/O for this block arriving after this point will get
932 * remapped to it directly.
934 r
= dm_thin_insert_block(tc
->td
, m
->virt_begin
, m
->data_block
);
936 metadata_operation_failed(pool
, "dm_thin_insert_block", r
);
937 cell_error(pool
, m
->cell
);
942 * Release any bios held while the block was being provisioned.
943 * If we are processing a write bio that completely covers the block,
944 * we already processed it so can ignore it now when processing
945 * the bios in the cell.
948 inc_remap_and_issue_cell(tc
, m
->cell
, m
->data_block
);
951 inc_all_io_entry(tc
->pool
, m
->cell
->holder
);
952 remap_and_issue(tc
, m
->cell
->holder
, m
->data_block
);
953 inc_remap_and_issue_cell(tc
, m
->cell
, m
->data_block
);
958 mempool_free(m
, pool
->mapping_pool
);
961 /*----------------------------------------------------------------*/
963 static void free_discard_mapping(struct dm_thin_new_mapping
*m
)
965 struct thin_c
*tc
= m
->tc
;
967 cell_defer_no_holder(tc
, m
->cell
);
968 mempool_free(m
, tc
->pool
->mapping_pool
);
971 static void process_prepared_discard_fail(struct dm_thin_new_mapping
*m
)
973 bio_io_error(m
->bio
);
974 free_discard_mapping(m
);
977 static void process_prepared_discard_success(struct dm_thin_new_mapping
*m
)
980 free_discard_mapping(m
);
983 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping
*m
)
986 struct thin_c
*tc
= m
->tc
;
988 r
= dm_thin_remove_range(tc
->td
, m
->cell
->key
.block_begin
, m
->cell
->key
.block_end
);
990 metadata_operation_failed(tc
->pool
, "dm_thin_remove_range", r
);
991 bio_io_error(m
->bio
);
995 cell_defer_no_holder(tc
, m
->cell
);
996 mempool_free(m
, tc
->pool
->mapping_pool
);
999 static int passdown_double_checking_shared_status(struct dm_thin_new_mapping
*m
)
1002 * We've already unmapped this range of blocks, but before we
1003 * passdown we have to check that these blocks are now unused.
1007 struct thin_c
*tc
= m
->tc
;
1008 struct pool
*pool
= tc
->pool
;
1009 dm_block_t b
= m
->data_block
, e
, end
= m
->data_block
+ m
->virt_end
- m
->virt_begin
;
1012 /* find start of unmapped run */
1013 for (; b
< end
; b
++) {
1014 r
= dm_pool_block_is_used(pool
->pmd
, b
, &used
);
1025 /* find end of run */
1026 for (e
= b
+ 1; e
!= end
; e
++) {
1027 r
= dm_pool_block_is_used(pool
->pmd
, e
, &used
);
1035 r
= issue_discard(tc
, b
, e
, m
->bio
);
1045 static void process_prepared_discard_passdown(struct dm_thin_new_mapping
*m
)
1048 struct thin_c
*tc
= m
->tc
;
1049 struct pool
*pool
= tc
->pool
;
1051 r
= dm_thin_remove_range(tc
->td
, m
->virt_begin
, m
->virt_end
);
1053 metadata_operation_failed(pool
, "dm_thin_remove_range", r
);
1055 else if (m
->maybe_shared
)
1056 r
= passdown_double_checking_shared_status(m
);
1058 r
= issue_discard(tc
, m
->data_block
, m
->data_block
+ (m
->virt_end
- m
->virt_begin
), m
->bio
);
1061 * Even if r is set, there could be sub discards in flight that we
1064 m
->bio
->bi_error
= r
;
1066 cell_defer_no_holder(tc
, m
->cell
);
1067 mempool_free(m
, pool
->mapping_pool
);
1070 static void process_prepared(struct pool
*pool
, struct list_head
*head
,
1071 process_mapping_fn
*fn
)
1073 unsigned long flags
;
1074 struct list_head maps
;
1075 struct dm_thin_new_mapping
*m
, *tmp
;
1077 INIT_LIST_HEAD(&maps
);
1078 spin_lock_irqsave(&pool
->lock
, flags
);
1079 list_splice_init(head
, &maps
);
1080 spin_unlock_irqrestore(&pool
->lock
, flags
);
1082 list_for_each_entry_safe(m
, tmp
, &maps
, list
)
1087 * Deferred bio jobs.
1089 static int io_overlaps_block(struct pool
*pool
, struct bio
*bio
)
1091 return bio
->bi_iter
.bi_size
==
1092 (pool
->sectors_per_block
<< SECTOR_SHIFT
);
1095 static int io_overwrites_block(struct pool
*pool
, struct bio
*bio
)
1097 return (bio_data_dir(bio
) == WRITE
) &&
1098 io_overlaps_block(pool
, bio
);
1101 static void save_and_set_endio(struct bio
*bio
, bio_end_io_t
**save
,
1104 *save
= bio
->bi_end_io
;
1105 bio
->bi_end_io
= fn
;
1108 static int ensure_next_mapping(struct pool
*pool
)
1110 if (pool
->next_mapping
)
1113 pool
->next_mapping
= mempool_alloc(pool
->mapping_pool
, GFP_ATOMIC
);
1115 return pool
->next_mapping
? 0 : -ENOMEM
;
1118 static struct dm_thin_new_mapping
*get_next_mapping(struct pool
*pool
)
1120 struct dm_thin_new_mapping
*m
= pool
->next_mapping
;
1122 BUG_ON(!pool
->next_mapping
);
1124 memset(m
, 0, sizeof(struct dm_thin_new_mapping
));
1125 INIT_LIST_HEAD(&m
->list
);
1128 pool
->next_mapping
= NULL
;
1133 static void ll_zero(struct thin_c
*tc
, struct dm_thin_new_mapping
*m
,
1134 sector_t begin
, sector_t end
)
1137 struct dm_io_region to
;
1139 to
.bdev
= tc
->pool_dev
->bdev
;
1141 to
.count
= end
- begin
;
1143 r
= dm_kcopyd_zero(tc
->pool
->copier
, 1, &to
, 0, copy_complete
, m
);
1145 DMERR_LIMIT("dm_kcopyd_zero() failed");
1146 copy_complete(1, 1, m
);
1150 static void remap_and_issue_overwrite(struct thin_c
*tc
, struct bio
*bio
,
1151 dm_block_t data_begin
,
1152 struct dm_thin_new_mapping
*m
)
1154 struct pool
*pool
= tc
->pool
;
1155 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1157 h
->overwrite_mapping
= m
;
1159 save_and_set_endio(bio
, &m
->saved_bi_end_io
, overwrite_endio
);
1160 inc_all_io_entry(pool
, bio
);
1161 remap_and_issue(tc
, bio
, data_begin
);
1165 * A partial copy also needs to zero the uncopied region.
1167 static void schedule_copy(struct thin_c
*tc
, dm_block_t virt_block
,
1168 struct dm_dev
*origin
, dm_block_t data_origin
,
1169 dm_block_t data_dest
,
1170 struct dm_bio_prison_cell
*cell
, struct bio
*bio
,
1174 struct pool
*pool
= tc
->pool
;
1175 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
1178 m
->virt_begin
= virt_block
;
1179 m
->virt_end
= virt_block
+ 1u;
1180 m
->data_block
= data_dest
;
1184 * quiesce action + copy action + an extra reference held for the
1185 * duration of this function (we may need to inc later for a
1188 atomic_set(&m
->prepare_actions
, 3);
1190 if (!dm_deferred_set_add_work(pool
->shared_read_ds
, &m
->list
))
1191 complete_mapping_preparation(m
); /* already quiesced */
1194 * IO to pool_dev remaps to the pool target's data_dev.
1196 * If the whole block of data is being overwritten, we can issue the
1197 * bio immediately. Otherwise we use kcopyd to clone the data first.
1199 if (io_overwrites_block(pool
, bio
))
1200 remap_and_issue_overwrite(tc
, bio
, data_dest
, m
);
1202 struct dm_io_region from
, to
;
1204 from
.bdev
= origin
->bdev
;
1205 from
.sector
= data_origin
* pool
->sectors_per_block
;
1208 to
.bdev
= tc
->pool_dev
->bdev
;
1209 to
.sector
= data_dest
* pool
->sectors_per_block
;
1212 r
= dm_kcopyd_copy(pool
->copier
, &from
, 1, &to
,
1213 0, copy_complete
, m
);
1215 DMERR_LIMIT("dm_kcopyd_copy() failed");
1216 copy_complete(1, 1, m
);
1219 * We allow the zero to be issued, to simplify the
1220 * error path. Otherwise we'd need to start
1221 * worrying about decrementing the prepare_actions
1227 * Do we need to zero a tail region?
1229 if (len
< pool
->sectors_per_block
&& pool
->pf
.zero_new_blocks
) {
1230 atomic_inc(&m
->prepare_actions
);
1232 data_dest
* pool
->sectors_per_block
+ len
,
1233 (data_dest
+ 1) * pool
->sectors_per_block
);
1237 complete_mapping_preparation(m
); /* drop our ref */
1240 static void schedule_internal_copy(struct thin_c
*tc
, dm_block_t virt_block
,
1241 dm_block_t data_origin
, dm_block_t data_dest
,
1242 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
1244 schedule_copy(tc
, virt_block
, tc
->pool_dev
,
1245 data_origin
, data_dest
, cell
, bio
,
1246 tc
->pool
->sectors_per_block
);
1249 static void schedule_zero(struct thin_c
*tc
, dm_block_t virt_block
,
1250 dm_block_t data_block
, struct dm_bio_prison_cell
*cell
,
1253 struct pool
*pool
= tc
->pool
;
1254 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
1256 atomic_set(&m
->prepare_actions
, 1); /* no need to quiesce */
1258 m
->virt_begin
= virt_block
;
1259 m
->virt_end
= virt_block
+ 1u;
1260 m
->data_block
= data_block
;
1264 * If the whole block of data is being overwritten or we are not
1265 * zeroing pre-existing data, we can issue the bio immediately.
1266 * Otherwise we use kcopyd to zero the data first.
1268 if (pool
->pf
.zero_new_blocks
) {
1269 if (io_overwrites_block(pool
, bio
))
1270 remap_and_issue_overwrite(tc
, bio
, data_block
, m
);
1272 ll_zero(tc
, m
, data_block
* pool
->sectors_per_block
,
1273 (data_block
+ 1) * pool
->sectors_per_block
);
1275 process_prepared_mapping(m
);
1278 static void schedule_external_copy(struct thin_c
*tc
, dm_block_t virt_block
,
1279 dm_block_t data_dest
,
1280 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
1282 struct pool
*pool
= tc
->pool
;
1283 sector_t virt_block_begin
= virt_block
* pool
->sectors_per_block
;
1284 sector_t virt_block_end
= (virt_block
+ 1) * pool
->sectors_per_block
;
1286 if (virt_block_end
<= tc
->origin_size
)
1287 schedule_copy(tc
, virt_block
, tc
->origin_dev
,
1288 virt_block
, data_dest
, cell
, bio
,
1289 pool
->sectors_per_block
);
1291 else if (virt_block_begin
< tc
->origin_size
)
1292 schedule_copy(tc
, virt_block
, tc
->origin_dev
,
1293 virt_block
, data_dest
, cell
, bio
,
1294 tc
->origin_size
- virt_block_begin
);
1297 schedule_zero(tc
, virt_block
, data_dest
, cell
, bio
);
1300 static void set_pool_mode(struct pool
*pool
, enum pool_mode new_mode
);
1302 static void check_for_space(struct pool
*pool
)
1307 if (get_pool_mode(pool
) != PM_OUT_OF_DATA_SPACE
)
1310 r
= dm_pool_get_free_block_count(pool
->pmd
, &nr_free
);
1315 set_pool_mode(pool
, PM_WRITE
);
1319 * A non-zero return indicates read_only or fail_io mode.
1320 * Many callers don't care about the return value.
1322 static int commit(struct pool
*pool
)
1326 if (get_pool_mode(pool
) >= PM_READ_ONLY
)
1329 r
= dm_pool_commit_metadata(pool
->pmd
);
1331 metadata_operation_failed(pool
, "dm_pool_commit_metadata", r
);
1333 check_for_space(pool
);
1338 static void check_low_water_mark(struct pool
*pool
, dm_block_t free_blocks
)
1340 unsigned long flags
;
1342 if (free_blocks
<= pool
->low_water_blocks
&& !pool
->low_water_triggered
) {
1343 DMWARN("%s: reached low water mark for data device: sending event.",
1344 dm_device_name(pool
->pool_md
));
1345 spin_lock_irqsave(&pool
->lock
, flags
);
1346 pool
->low_water_triggered
= true;
1347 spin_unlock_irqrestore(&pool
->lock
, flags
);
1348 dm_table_event(pool
->ti
->table
);
1352 static int alloc_data_block(struct thin_c
*tc
, dm_block_t
*result
)
1355 dm_block_t free_blocks
;
1356 struct pool
*pool
= tc
->pool
;
1358 if (WARN_ON(get_pool_mode(pool
) != PM_WRITE
))
1361 r
= dm_pool_get_free_block_count(pool
->pmd
, &free_blocks
);
1363 metadata_operation_failed(pool
, "dm_pool_get_free_block_count", r
);
1367 check_low_water_mark(pool
, free_blocks
);
1371 * Try to commit to see if that will free up some
1378 r
= dm_pool_get_free_block_count(pool
->pmd
, &free_blocks
);
1380 metadata_operation_failed(pool
, "dm_pool_get_free_block_count", r
);
1385 set_pool_mode(pool
, PM_OUT_OF_DATA_SPACE
);
1390 r
= dm_pool_alloc_data_block(pool
->pmd
, result
);
1392 metadata_operation_failed(pool
, "dm_pool_alloc_data_block", r
);
1400 * If we have run out of space, queue bios until the device is
1401 * resumed, presumably after having been reloaded with more space.
1403 static void retry_on_resume(struct bio
*bio
)
1405 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1406 struct thin_c
*tc
= h
->tc
;
1407 unsigned long flags
;
1409 spin_lock_irqsave(&tc
->lock
, flags
);
1410 bio_list_add(&tc
->retry_on_resume_list
, bio
);
1411 spin_unlock_irqrestore(&tc
->lock
, flags
);
1414 static int should_error_unserviceable_bio(struct pool
*pool
)
1416 enum pool_mode m
= get_pool_mode(pool
);
1420 /* Shouldn't get here */
1421 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1424 case PM_OUT_OF_DATA_SPACE
:
1425 return pool
->pf
.error_if_no_space
? -ENOSPC
: 0;
1431 /* Shouldn't get here */
1432 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1437 static void handle_unserviceable_bio(struct pool
*pool
, struct bio
*bio
)
1439 int error
= should_error_unserviceable_bio(pool
);
1442 bio
->bi_error
= error
;
1445 retry_on_resume(bio
);
1448 static void retry_bios_on_resume(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
1451 struct bio_list bios
;
1454 error
= should_error_unserviceable_bio(pool
);
1456 cell_error_with_code(pool
, cell
, error
);
1460 bio_list_init(&bios
);
1461 cell_release(pool
, cell
, &bios
);
1463 while ((bio
= bio_list_pop(&bios
)))
1464 retry_on_resume(bio
);
1467 static void process_discard_cell_no_passdown(struct thin_c
*tc
,
1468 struct dm_bio_prison_cell
*virt_cell
)
1470 struct pool
*pool
= tc
->pool
;
1471 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
1474 * We don't need to lock the data blocks, since there's no
1475 * passdown. We only lock data blocks for allocation and breaking sharing.
1478 m
->virt_begin
= virt_cell
->key
.block_begin
;
1479 m
->virt_end
= virt_cell
->key
.block_end
;
1480 m
->cell
= virt_cell
;
1481 m
->bio
= virt_cell
->holder
;
1483 if (!dm_deferred_set_add_work(pool
->all_io_ds
, &m
->list
))
1484 pool
->process_prepared_discard(m
);
1488 * __bio_inc_remaining() is used to defer parent bios's end_io until
1489 * we _know_ all chained sub range discard bios have completed.
1491 static inline void __bio_inc_remaining(struct bio
*bio
)
1493 bio
->bi_flags
|= (1 << BIO_CHAIN
);
1494 smp_mb__before_atomic();
1495 atomic_inc(&bio
->__bi_remaining
);
1498 static void break_up_discard_bio(struct thin_c
*tc
, dm_block_t begin
, dm_block_t end
,
1501 struct pool
*pool
= tc
->pool
;
1505 struct dm_cell_key data_key
;
1506 struct dm_bio_prison_cell
*data_cell
;
1507 struct dm_thin_new_mapping
*m
;
1508 dm_block_t virt_begin
, virt_end
, data_begin
;
1510 while (begin
!= end
) {
1511 r
= ensure_next_mapping(pool
);
1513 /* we did our best */
1516 r
= dm_thin_find_mapped_range(tc
->td
, begin
, end
, &virt_begin
, &virt_end
,
1517 &data_begin
, &maybe_shared
);
1520 * Silently fail, letting any mappings we've
1525 build_key(tc
->td
, PHYSICAL
, data_begin
, data_begin
+ (virt_end
- virt_begin
), &data_key
);
1526 if (bio_detain(tc
->pool
, &data_key
, NULL
, &data_cell
)) {
1527 /* contention, we'll give up with this range */
1533 * IO may still be going to the destination block. We must
1534 * quiesce before we can do the removal.
1536 m
= get_next_mapping(pool
);
1538 m
->maybe_shared
= maybe_shared
;
1539 m
->virt_begin
= virt_begin
;
1540 m
->virt_end
= virt_end
;
1541 m
->data_block
= data_begin
;
1542 m
->cell
= data_cell
;
1546 * The parent bio must not complete before sub discard bios are
1547 * chained to it (see __blkdev_issue_discard_async's bio_chain)!
1549 * This per-mapping bi_remaining increment is paired with
1550 * the implicit decrement that occurs via bio_endio() in
1551 * process_prepared_discard_{passdown,no_passdown}.
1553 __bio_inc_remaining(bio
);
1554 if (!dm_deferred_set_add_work(pool
->all_io_ds
, &m
->list
))
1555 pool
->process_prepared_discard(m
);
1561 static void process_discard_cell_passdown(struct thin_c
*tc
, struct dm_bio_prison_cell
*virt_cell
)
1563 struct bio
*bio
= virt_cell
->holder
;
1564 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1567 * The virt_cell will only get freed once the origin bio completes.
1568 * This means it will remain locked while all the individual
1569 * passdown bios are in flight.
1571 h
->cell
= virt_cell
;
1572 break_up_discard_bio(tc
, virt_cell
->key
.block_begin
, virt_cell
->key
.block_end
, bio
);
1575 * We complete the bio now, knowing that the bi_remaining field
1576 * will prevent completion until the sub range discards have
1582 static void process_discard_bio(struct thin_c
*tc
, struct bio
*bio
)
1584 dm_block_t begin
, end
;
1585 struct dm_cell_key virt_key
;
1586 struct dm_bio_prison_cell
*virt_cell
;
1588 get_bio_block_range(tc
, bio
, &begin
, &end
);
1591 * The discard covers less than a block.
1597 build_key(tc
->td
, VIRTUAL
, begin
, end
, &virt_key
);
1598 if (bio_detain(tc
->pool
, &virt_key
, bio
, &virt_cell
))
1600 * Potential starvation issue: We're relying on the
1601 * fs/application being well behaved, and not trying to
1602 * send IO to a region at the same time as discarding it.
1603 * If they do this persistently then it's possible this
1604 * cell will never be granted.
1608 tc
->pool
->process_discard_cell(tc
, virt_cell
);
1611 static void break_sharing(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
,
1612 struct dm_cell_key
*key
,
1613 struct dm_thin_lookup_result
*lookup_result
,
1614 struct dm_bio_prison_cell
*cell
)
1617 dm_block_t data_block
;
1618 struct pool
*pool
= tc
->pool
;
1620 r
= alloc_data_block(tc
, &data_block
);
1623 schedule_internal_copy(tc
, block
, lookup_result
->block
,
1624 data_block
, cell
, bio
);
1628 retry_bios_on_resume(pool
, cell
);
1632 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1634 cell_error(pool
, cell
);
1639 static void __remap_and_issue_shared_cell(void *context
,
1640 struct dm_bio_prison_cell
*cell
)
1642 struct remap_info
*info
= context
;
1645 while ((bio
= bio_list_pop(&cell
->bios
))) {
1646 if ((bio_data_dir(bio
) == WRITE
) ||
1647 (bio
->bi_rw
& (REQ_DISCARD
| REQ_FLUSH
| REQ_FUA
)))
1648 bio_list_add(&info
->defer_bios
, bio
);
1650 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));;
1652 h
->shared_read_entry
= dm_deferred_entry_inc(info
->tc
->pool
->shared_read_ds
);
1653 inc_all_io_entry(info
->tc
->pool
, bio
);
1654 bio_list_add(&info
->issue_bios
, bio
);
1659 static void remap_and_issue_shared_cell(struct thin_c
*tc
,
1660 struct dm_bio_prison_cell
*cell
,
1664 struct remap_info info
;
1667 bio_list_init(&info
.defer_bios
);
1668 bio_list_init(&info
.issue_bios
);
1670 cell_visit_release(tc
->pool
, __remap_and_issue_shared_cell
,
1673 while ((bio
= bio_list_pop(&info
.defer_bios
)))
1674 thin_defer_bio(tc
, bio
);
1676 while ((bio
= bio_list_pop(&info
.issue_bios
)))
1677 remap_and_issue(tc
, bio
, block
);
1680 static void process_shared_bio(struct thin_c
*tc
, struct bio
*bio
,
1682 struct dm_thin_lookup_result
*lookup_result
,
1683 struct dm_bio_prison_cell
*virt_cell
)
1685 struct dm_bio_prison_cell
*data_cell
;
1686 struct pool
*pool
= tc
->pool
;
1687 struct dm_cell_key key
;
1690 * If cell is already occupied, then sharing is already in the process
1691 * of being broken so we have nothing further to do here.
1693 build_data_key(tc
->td
, lookup_result
->block
, &key
);
1694 if (bio_detain(pool
, &key
, bio
, &data_cell
)) {
1695 cell_defer_no_holder(tc
, virt_cell
);
1699 if (bio_data_dir(bio
) == WRITE
&& bio
->bi_iter
.bi_size
) {
1700 break_sharing(tc
, bio
, block
, &key
, lookup_result
, data_cell
);
1701 cell_defer_no_holder(tc
, virt_cell
);
1703 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1705 h
->shared_read_entry
= dm_deferred_entry_inc(pool
->shared_read_ds
);
1706 inc_all_io_entry(pool
, bio
);
1707 remap_and_issue(tc
, bio
, lookup_result
->block
);
1709 remap_and_issue_shared_cell(tc
, data_cell
, lookup_result
->block
);
1710 remap_and_issue_shared_cell(tc
, virt_cell
, lookup_result
->block
);
1714 static void provision_block(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
,
1715 struct dm_bio_prison_cell
*cell
)
1718 dm_block_t data_block
;
1719 struct pool
*pool
= tc
->pool
;
1722 * Remap empty bios (flushes) immediately, without provisioning.
1724 if (!bio
->bi_iter
.bi_size
) {
1725 inc_all_io_entry(pool
, bio
);
1726 cell_defer_no_holder(tc
, cell
);
1728 remap_and_issue(tc
, bio
, 0);
1733 * Fill read bios with zeroes and complete them immediately.
1735 if (bio_data_dir(bio
) == READ
) {
1737 cell_defer_no_holder(tc
, cell
);
1742 r
= alloc_data_block(tc
, &data_block
);
1746 schedule_external_copy(tc
, block
, data_block
, cell
, bio
);
1748 schedule_zero(tc
, block
, data_block
, cell
, bio
);
1752 retry_bios_on_resume(pool
, cell
);
1756 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1758 cell_error(pool
, cell
);
1763 static void process_cell(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
1766 struct pool
*pool
= tc
->pool
;
1767 struct bio
*bio
= cell
->holder
;
1768 dm_block_t block
= get_bio_block(tc
, bio
);
1769 struct dm_thin_lookup_result lookup_result
;
1771 if (tc
->requeue_mode
) {
1772 cell_requeue(pool
, cell
);
1776 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
1779 if (lookup_result
.shared
)
1780 process_shared_bio(tc
, bio
, block
, &lookup_result
, cell
);
1782 inc_all_io_entry(pool
, bio
);
1783 remap_and_issue(tc
, bio
, lookup_result
.block
);
1784 inc_remap_and_issue_cell(tc
, cell
, lookup_result
.block
);
1789 if (bio_data_dir(bio
) == READ
&& tc
->origin_dev
) {
1790 inc_all_io_entry(pool
, bio
);
1791 cell_defer_no_holder(tc
, cell
);
1793 if (bio_end_sector(bio
) <= tc
->origin_size
)
1794 remap_to_origin_and_issue(tc
, bio
);
1796 else if (bio
->bi_iter
.bi_sector
< tc
->origin_size
) {
1798 bio
->bi_iter
.bi_size
= (tc
->origin_size
- bio
->bi_iter
.bi_sector
) << SECTOR_SHIFT
;
1799 remap_to_origin_and_issue(tc
, bio
);
1806 provision_block(tc
, bio
, block
, cell
);
1810 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1812 cell_defer_no_holder(tc
, cell
);
1818 static void process_bio(struct thin_c
*tc
, struct bio
*bio
)
1820 struct pool
*pool
= tc
->pool
;
1821 dm_block_t block
= get_bio_block(tc
, bio
);
1822 struct dm_bio_prison_cell
*cell
;
1823 struct dm_cell_key key
;
1826 * If cell is already occupied, then the block is already
1827 * being provisioned so we have nothing further to do here.
1829 build_virtual_key(tc
->td
, block
, &key
);
1830 if (bio_detain(pool
, &key
, bio
, &cell
))
1833 process_cell(tc
, cell
);
1836 static void __process_bio_read_only(struct thin_c
*tc
, struct bio
*bio
,
1837 struct dm_bio_prison_cell
*cell
)
1840 int rw
= bio_data_dir(bio
);
1841 dm_block_t block
= get_bio_block(tc
, bio
);
1842 struct dm_thin_lookup_result lookup_result
;
1844 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
1847 if (lookup_result
.shared
&& (rw
== WRITE
) && bio
->bi_iter
.bi_size
) {
1848 handle_unserviceable_bio(tc
->pool
, bio
);
1850 cell_defer_no_holder(tc
, cell
);
1852 inc_all_io_entry(tc
->pool
, bio
);
1853 remap_and_issue(tc
, bio
, lookup_result
.block
);
1855 inc_remap_and_issue_cell(tc
, cell
, lookup_result
.block
);
1861 cell_defer_no_holder(tc
, cell
);
1863 handle_unserviceable_bio(tc
->pool
, bio
);
1867 if (tc
->origin_dev
) {
1868 inc_all_io_entry(tc
->pool
, bio
);
1869 remap_to_origin_and_issue(tc
, bio
);
1878 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1881 cell_defer_no_holder(tc
, cell
);
1887 static void process_bio_read_only(struct thin_c
*tc
, struct bio
*bio
)
1889 __process_bio_read_only(tc
, bio
, NULL
);
1892 static void process_cell_read_only(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
1894 __process_bio_read_only(tc
, cell
->holder
, cell
);
1897 static void process_bio_success(struct thin_c
*tc
, struct bio
*bio
)
1902 static void process_bio_fail(struct thin_c
*tc
, struct bio
*bio
)
1907 static void process_cell_success(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
1909 cell_success(tc
->pool
, cell
);
1912 static void process_cell_fail(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
1914 cell_error(tc
->pool
, cell
);
1918 * FIXME: should we also commit due to size of transaction, measured in
1921 static int need_commit_due_to_time(struct pool
*pool
)
1923 return !time_in_range(jiffies
, pool
->last_commit_jiffies
,
1924 pool
->last_commit_jiffies
+ COMMIT_PERIOD
);
1927 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1928 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1930 static void __thin_bio_rb_add(struct thin_c
*tc
, struct bio
*bio
)
1932 struct rb_node
**rbp
, *parent
;
1933 struct dm_thin_endio_hook
*pbd
;
1934 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
1936 rbp
= &tc
->sort_bio_list
.rb_node
;
1940 pbd
= thin_pbd(parent
);
1942 if (bi_sector
< thin_bio(pbd
)->bi_iter
.bi_sector
)
1943 rbp
= &(*rbp
)->rb_left
;
1945 rbp
= &(*rbp
)->rb_right
;
1948 pbd
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1949 rb_link_node(&pbd
->rb_node
, parent
, rbp
);
1950 rb_insert_color(&pbd
->rb_node
, &tc
->sort_bio_list
);
1953 static void __extract_sorted_bios(struct thin_c
*tc
)
1955 struct rb_node
*node
;
1956 struct dm_thin_endio_hook
*pbd
;
1959 for (node
= rb_first(&tc
->sort_bio_list
); node
; node
= rb_next(node
)) {
1960 pbd
= thin_pbd(node
);
1961 bio
= thin_bio(pbd
);
1963 bio_list_add(&tc
->deferred_bio_list
, bio
);
1964 rb_erase(&pbd
->rb_node
, &tc
->sort_bio_list
);
1967 WARN_ON(!RB_EMPTY_ROOT(&tc
->sort_bio_list
));
1970 static void __sort_thin_deferred_bios(struct thin_c
*tc
)
1973 struct bio_list bios
;
1975 bio_list_init(&bios
);
1976 bio_list_merge(&bios
, &tc
->deferred_bio_list
);
1977 bio_list_init(&tc
->deferred_bio_list
);
1979 /* Sort deferred_bio_list using rb-tree */
1980 while ((bio
= bio_list_pop(&bios
)))
1981 __thin_bio_rb_add(tc
, bio
);
1984 * Transfer the sorted bios in sort_bio_list back to
1985 * deferred_bio_list to allow lockless submission of
1988 __extract_sorted_bios(tc
);
1991 static void process_thin_deferred_bios(struct thin_c
*tc
)
1993 struct pool
*pool
= tc
->pool
;
1994 unsigned long flags
;
1996 struct bio_list bios
;
1997 struct blk_plug plug
;
2000 if (tc
->requeue_mode
) {
2001 error_thin_bio_list(tc
, &tc
->deferred_bio_list
, DM_ENDIO_REQUEUE
);
2005 bio_list_init(&bios
);
2007 spin_lock_irqsave(&tc
->lock
, flags
);
2009 if (bio_list_empty(&tc
->deferred_bio_list
)) {
2010 spin_unlock_irqrestore(&tc
->lock
, flags
);
2014 __sort_thin_deferred_bios(tc
);
2016 bio_list_merge(&bios
, &tc
->deferred_bio_list
);
2017 bio_list_init(&tc
->deferred_bio_list
);
2019 spin_unlock_irqrestore(&tc
->lock
, flags
);
2021 blk_start_plug(&plug
);
2022 while ((bio
= bio_list_pop(&bios
))) {
2024 * If we've got no free new_mapping structs, and processing
2025 * this bio might require one, we pause until there are some
2026 * prepared mappings to process.
2028 if (ensure_next_mapping(pool
)) {
2029 spin_lock_irqsave(&tc
->lock
, flags
);
2030 bio_list_add(&tc
->deferred_bio_list
, bio
);
2031 bio_list_merge(&tc
->deferred_bio_list
, &bios
);
2032 spin_unlock_irqrestore(&tc
->lock
, flags
);
2036 if (bio
->bi_rw
& REQ_DISCARD
)
2037 pool
->process_discard(tc
, bio
);
2039 pool
->process_bio(tc
, bio
);
2041 if ((count
++ & 127) == 0) {
2042 throttle_work_update(&pool
->throttle
);
2043 dm_pool_issue_prefetches(pool
->pmd
);
2046 blk_finish_plug(&plug
);
2049 static int cmp_cells(const void *lhs
, const void *rhs
)
2051 struct dm_bio_prison_cell
*lhs_cell
= *((struct dm_bio_prison_cell
**) lhs
);
2052 struct dm_bio_prison_cell
*rhs_cell
= *((struct dm_bio_prison_cell
**) rhs
);
2054 BUG_ON(!lhs_cell
->holder
);
2055 BUG_ON(!rhs_cell
->holder
);
2057 if (lhs_cell
->holder
->bi_iter
.bi_sector
< rhs_cell
->holder
->bi_iter
.bi_sector
)
2060 if (lhs_cell
->holder
->bi_iter
.bi_sector
> rhs_cell
->holder
->bi_iter
.bi_sector
)
2066 static unsigned sort_cells(struct pool
*pool
, struct list_head
*cells
)
2069 struct dm_bio_prison_cell
*cell
, *tmp
;
2071 list_for_each_entry_safe(cell
, tmp
, cells
, user_list
) {
2072 if (count
>= CELL_SORT_ARRAY_SIZE
)
2075 pool
->cell_sort_array
[count
++] = cell
;
2076 list_del(&cell
->user_list
);
2079 sort(pool
->cell_sort_array
, count
, sizeof(cell
), cmp_cells
, NULL
);
2084 static void process_thin_deferred_cells(struct thin_c
*tc
)
2086 struct pool
*pool
= tc
->pool
;
2087 unsigned long flags
;
2088 struct list_head cells
;
2089 struct dm_bio_prison_cell
*cell
;
2090 unsigned i
, j
, count
;
2092 INIT_LIST_HEAD(&cells
);
2094 spin_lock_irqsave(&tc
->lock
, flags
);
2095 list_splice_init(&tc
->deferred_cells
, &cells
);
2096 spin_unlock_irqrestore(&tc
->lock
, flags
);
2098 if (list_empty(&cells
))
2102 count
= sort_cells(tc
->pool
, &cells
);
2104 for (i
= 0; i
< count
; i
++) {
2105 cell
= pool
->cell_sort_array
[i
];
2106 BUG_ON(!cell
->holder
);
2109 * If we've got no free new_mapping structs, and processing
2110 * this bio might require one, we pause until there are some
2111 * prepared mappings to process.
2113 if (ensure_next_mapping(pool
)) {
2114 for (j
= i
; j
< count
; j
++)
2115 list_add(&pool
->cell_sort_array
[j
]->user_list
, &cells
);
2117 spin_lock_irqsave(&tc
->lock
, flags
);
2118 list_splice(&cells
, &tc
->deferred_cells
);
2119 spin_unlock_irqrestore(&tc
->lock
, flags
);
2123 if (cell
->holder
->bi_rw
& REQ_DISCARD
)
2124 pool
->process_discard_cell(tc
, cell
);
2126 pool
->process_cell(tc
, cell
);
2128 } while (!list_empty(&cells
));
2131 static void thin_get(struct thin_c
*tc
);
2132 static void thin_put(struct thin_c
*tc
);
2135 * We can't hold rcu_read_lock() around code that can block. So we
2136 * find a thin with the rcu lock held; bump a refcount; then drop
2139 static struct thin_c
*get_first_thin(struct pool
*pool
)
2141 struct thin_c
*tc
= NULL
;
2144 if (!list_empty(&pool
->active_thins
)) {
2145 tc
= list_entry_rcu(pool
->active_thins
.next
, struct thin_c
, list
);
2153 static struct thin_c
*get_next_thin(struct pool
*pool
, struct thin_c
*tc
)
2155 struct thin_c
*old_tc
= tc
;
2158 list_for_each_entry_continue_rcu(tc
, &pool
->active_thins
, list
) {
2170 static void process_deferred_bios(struct pool
*pool
)
2172 unsigned long flags
;
2174 struct bio_list bios
;
2177 tc
= get_first_thin(pool
);
2179 process_thin_deferred_cells(tc
);
2180 process_thin_deferred_bios(tc
);
2181 tc
= get_next_thin(pool
, tc
);
2185 * If there are any deferred flush bios, we must commit
2186 * the metadata before issuing them.
2188 bio_list_init(&bios
);
2189 spin_lock_irqsave(&pool
->lock
, flags
);
2190 bio_list_merge(&bios
, &pool
->deferred_flush_bios
);
2191 bio_list_init(&pool
->deferred_flush_bios
);
2192 spin_unlock_irqrestore(&pool
->lock
, flags
);
2194 if (bio_list_empty(&bios
) &&
2195 !(dm_pool_changed_this_transaction(pool
->pmd
) && need_commit_due_to_time(pool
)))
2199 while ((bio
= bio_list_pop(&bios
)))
2203 pool
->last_commit_jiffies
= jiffies
;
2205 while ((bio
= bio_list_pop(&bios
)))
2206 generic_make_request(bio
);
2209 static void do_worker(struct work_struct
*ws
)
2211 struct pool
*pool
= container_of(ws
, struct pool
, worker
);
2213 throttle_work_start(&pool
->throttle
);
2214 dm_pool_issue_prefetches(pool
->pmd
);
2215 throttle_work_update(&pool
->throttle
);
2216 process_prepared(pool
, &pool
->prepared_mappings
, &pool
->process_prepared_mapping
);
2217 throttle_work_update(&pool
->throttle
);
2218 process_prepared(pool
, &pool
->prepared_discards
, &pool
->process_prepared_discard
);
2219 throttle_work_update(&pool
->throttle
);
2220 process_deferred_bios(pool
);
2221 throttle_work_complete(&pool
->throttle
);
2225 * We want to commit periodically so that not too much
2226 * unwritten data builds up.
2228 static void do_waker(struct work_struct
*ws
)
2230 struct pool
*pool
= container_of(to_delayed_work(ws
), struct pool
, waker
);
2232 queue_delayed_work(pool
->wq
, &pool
->waker
, COMMIT_PERIOD
);
2235 static void notify_of_pool_mode_change_to_oods(struct pool
*pool
);
2238 * We're holding onto IO to allow userland time to react. After the
2239 * timeout either the pool will have been resized (and thus back in
2240 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2242 static void do_no_space_timeout(struct work_struct
*ws
)
2244 struct pool
*pool
= container_of(to_delayed_work(ws
), struct pool
,
2247 if (get_pool_mode(pool
) == PM_OUT_OF_DATA_SPACE
&& !pool
->pf
.error_if_no_space
) {
2248 pool
->pf
.error_if_no_space
= true;
2249 notify_of_pool_mode_change_to_oods(pool
);
2250 error_retry_list_with_code(pool
, -ENOSPC
);
2254 /*----------------------------------------------------------------*/
2257 struct work_struct worker
;
2258 struct completion complete
;
2261 static struct pool_work
*to_pool_work(struct work_struct
*ws
)
2263 return container_of(ws
, struct pool_work
, worker
);
2266 static void pool_work_complete(struct pool_work
*pw
)
2268 complete(&pw
->complete
);
2271 static void pool_work_wait(struct pool_work
*pw
, struct pool
*pool
,
2272 void (*fn
)(struct work_struct
*))
2274 INIT_WORK_ONSTACK(&pw
->worker
, fn
);
2275 init_completion(&pw
->complete
);
2276 queue_work(pool
->wq
, &pw
->worker
);
2277 wait_for_completion(&pw
->complete
);
2280 /*----------------------------------------------------------------*/
2282 struct noflush_work
{
2283 struct pool_work pw
;
2287 static struct noflush_work
*to_noflush(struct work_struct
*ws
)
2289 return container_of(to_pool_work(ws
), struct noflush_work
, pw
);
2292 static void do_noflush_start(struct work_struct
*ws
)
2294 struct noflush_work
*w
= to_noflush(ws
);
2295 w
->tc
->requeue_mode
= true;
2297 pool_work_complete(&w
->pw
);
2300 static void do_noflush_stop(struct work_struct
*ws
)
2302 struct noflush_work
*w
= to_noflush(ws
);
2303 w
->tc
->requeue_mode
= false;
2304 pool_work_complete(&w
->pw
);
2307 static void noflush_work(struct thin_c
*tc
, void (*fn
)(struct work_struct
*))
2309 struct noflush_work w
;
2312 pool_work_wait(&w
.pw
, tc
->pool
, fn
);
2315 /*----------------------------------------------------------------*/
2317 static enum pool_mode
get_pool_mode(struct pool
*pool
)
2319 return pool
->pf
.mode
;
2322 static void notify_of_pool_mode_change(struct pool
*pool
, const char *new_mode
)
2324 dm_table_event(pool
->ti
->table
);
2325 DMINFO("%s: switching pool to %s mode",
2326 dm_device_name(pool
->pool_md
), new_mode
);
2329 static void notify_of_pool_mode_change_to_oods(struct pool
*pool
)
2331 if (!pool
->pf
.error_if_no_space
)
2332 notify_of_pool_mode_change(pool
, "out-of-data-space (queue IO)");
2334 notify_of_pool_mode_change(pool
, "out-of-data-space (error IO)");
2337 static bool passdown_enabled(struct pool_c
*pt
)
2339 return pt
->adjusted_pf
.discard_passdown
;
2342 static void set_discard_callbacks(struct pool
*pool
)
2344 struct pool_c
*pt
= pool
->ti
->private;
2346 if (passdown_enabled(pt
)) {
2347 pool
->process_discard_cell
= process_discard_cell_passdown
;
2348 pool
->process_prepared_discard
= process_prepared_discard_passdown
;
2350 pool
->process_discard_cell
= process_discard_cell_no_passdown
;
2351 pool
->process_prepared_discard
= process_prepared_discard_no_passdown
;
2355 static void set_pool_mode(struct pool
*pool
, enum pool_mode new_mode
)
2357 struct pool_c
*pt
= pool
->ti
->private;
2358 bool needs_check
= dm_pool_metadata_needs_check(pool
->pmd
);
2359 enum pool_mode old_mode
= get_pool_mode(pool
);
2360 unsigned long no_space_timeout
= ACCESS_ONCE(no_space_timeout_secs
) * HZ
;
2363 * Never allow the pool to transition to PM_WRITE mode if user
2364 * intervention is required to verify metadata and data consistency.
2366 if (new_mode
== PM_WRITE
&& needs_check
) {
2367 DMERR("%s: unable to switch pool to write mode until repaired.",
2368 dm_device_name(pool
->pool_md
));
2369 if (old_mode
!= new_mode
)
2370 new_mode
= old_mode
;
2372 new_mode
= PM_READ_ONLY
;
2375 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2376 * not going to recover without a thin_repair. So we never let the
2377 * pool move out of the old mode.
2379 if (old_mode
== PM_FAIL
)
2380 new_mode
= old_mode
;
2384 if (old_mode
!= new_mode
)
2385 notify_of_pool_mode_change(pool
, "failure");
2386 dm_pool_metadata_read_only(pool
->pmd
);
2387 pool
->process_bio
= process_bio_fail
;
2388 pool
->process_discard
= process_bio_fail
;
2389 pool
->process_cell
= process_cell_fail
;
2390 pool
->process_discard_cell
= process_cell_fail
;
2391 pool
->process_prepared_mapping
= process_prepared_mapping_fail
;
2392 pool
->process_prepared_discard
= process_prepared_discard_fail
;
2394 error_retry_list(pool
);
2398 if (old_mode
!= new_mode
)
2399 notify_of_pool_mode_change(pool
, "read-only");
2400 dm_pool_metadata_read_only(pool
->pmd
);
2401 pool
->process_bio
= process_bio_read_only
;
2402 pool
->process_discard
= process_bio_success
;
2403 pool
->process_cell
= process_cell_read_only
;
2404 pool
->process_discard_cell
= process_cell_success
;
2405 pool
->process_prepared_mapping
= process_prepared_mapping_fail
;
2406 pool
->process_prepared_discard
= process_prepared_discard_success
;
2408 error_retry_list(pool
);
2411 case PM_OUT_OF_DATA_SPACE
:
2413 * Ideally we'd never hit this state; the low water mark
2414 * would trigger userland to extend the pool before we
2415 * completely run out of data space. However, many small
2416 * IOs to unprovisioned space can consume data space at an
2417 * alarming rate. Adjust your low water mark if you're
2418 * frequently seeing this mode.
2420 if (old_mode
!= new_mode
)
2421 notify_of_pool_mode_change_to_oods(pool
);
2422 pool
->process_bio
= process_bio_read_only
;
2423 pool
->process_discard
= process_discard_bio
;
2424 pool
->process_cell
= process_cell_read_only
;
2425 pool
->process_prepared_mapping
= process_prepared_mapping
;
2426 set_discard_callbacks(pool
);
2428 if (!pool
->pf
.error_if_no_space
&& no_space_timeout
)
2429 queue_delayed_work(pool
->wq
, &pool
->no_space_timeout
, no_space_timeout
);
2433 if (old_mode
!= new_mode
)
2434 notify_of_pool_mode_change(pool
, "write");
2435 pool
->pf
.error_if_no_space
= pt
->requested_pf
.error_if_no_space
;
2436 dm_pool_metadata_read_write(pool
->pmd
);
2437 pool
->process_bio
= process_bio
;
2438 pool
->process_discard
= process_discard_bio
;
2439 pool
->process_cell
= process_cell
;
2440 pool
->process_prepared_mapping
= process_prepared_mapping
;
2441 set_discard_callbacks(pool
);
2445 pool
->pf
.mode
= new_mode
;
2447 * The pool mode may have changed, sync it so bind_control_target()
2448 * doesn't cause an unexpected mode transition on resume.
2450 pt
->adjusted_pf
.mode
= new_mode
;
2453 static void abort_transaction(struct pool
*pool
)
2455 const char *dev_name
= dm_device_name(pool
->pool_md
);
2457 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name
);
2458 if (dm_pool_abort_metadata(pool
->pmd
)) {
2459 DMERR("%s: failed to abort metadata transaction", dev_name
);
2460 set_pool_mode(pool
, PM_FAIL
);
2463 if (dm_pool_metadata_set_needs_check(pool
->pmd
)) {
2464 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name
);
2465 set_pool_mode(pool
, PM_FAIL
);
2469 static void metadata_operation_failed(struct pool
*pool
, const char *op
, int r
)
2471 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2472 dm_device_name(pool
->pool_md
), op
, r
);
2474 abort_transaction(pool
);
2475 set_pool_mode(pool
, PM_READ_ONLY
);
2478 /*----------------------------------------------------------------*/
2481 * Mapping functions.
2485 * Called only while mapping a thin bio to hand it over to the workqueue.
2487 static void thin_defer_bio(struct thin_c
*tc
, struct bio
*bio
)
2489 unsigned long flags
;
2490 struct pool
*pool
= tc
->pool
;
2492 spin_lock_irqsave(&tc
->lock
, flags
);
2493 bio_list_add(&tc
->deferred_bio_list
, bio
);
2494 spin_unlock_irqrestore(&tc
->lock
, flags
);
2499 static void thin_defer_bio_with_throttle(struct thin_c
*tc
, struct bio
*bio
)
2501 struct pool
*pool
= tc
->pool
;
2503 throttle_lock(&pool
->throttle
);
2504 thin_defer_bio(tc
, bio
);
2505 throttle_unlock(&pool
->throttle
);
2508 static void thin_defer_cell(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
2510 unsigned long flags
;
2511 struct pool
*pool
= tc
->pool
;
2513 throttle_lock(&pool
->throttle
);
2514 spin_lock_irqsave(&tc
->lock
, flags
);
2515 list_add_tail(&cell
->user_list
, &tc
->deferred_cells
);
2516 spin_unlock_irqrestore(&tc
->lock
, flags
);
2517 throttle_unlock(&pool
->throttle
);
2522 static void thin_hook_bio(struct thin_c
*tc
, struct bio
*bio
)
2524 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
2527 h
->shared_read_entry
= NULL
;
2528 h
->all_io_entry
= NULL
;
2529 h
->overwrite_mapping
= NULL
;
2534 * Non-blocking function called from the thin target's map function.
2536 static int thin_bio_map(struct dm_target
*ti
, struct bio
*bio
)
2539 struct thin_c
*tc
= ti
->private;
2540 dm_block_t block
= get_bio_block(tc
, bio
);
2541 struct dm_thin_device
*td
= tc
->td
;
2542 struct dm_thin_lookup_result result
;
2543 struct dm_bio_prison_cell
*virt_cell
, *data_cell
;
2544 struct dm_cell_key key
;
2546 thin_hook_bio(tc
, bio
);
2548 if (tc
->requeue_mode
) {
2549 bio
->bi_error
= DM_ENDIO_REQUEUE
;
2551 return DM_MAPIO_SUBMITTED
;
2554 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
2556 return DM_MAPIO_SUBMITTED
;
2559 if (bio
->bi_rw
& (REQ_DISCARD
| REQ_FLUSH
| REQ_FUA
)) {
2560 thin_defer_bio_with_throttle(tc
, bio
);
2561 return DM_MAPIO_SUBMITTED
;
2565 * We must hold the virtual cell before doing the lookup, otherwise
2566 * there's a race with discard.
2568 build_virtual_key(tc
->td
, block
, &key
);
2569 if (bio_detain(tc
->pool
, &key
, bio
, &virt_cell
))
2570 return DM_MAPIO_SUBMITTED
;
2572 r
= dm_thin_find_block(td
, block
, 0, &result
);
2575 * Note that we defer readahead too.
2579 if (unlikely(result
.shared
)) {
2581 * We have a race condition here between the
2582 * result.shared value returned by the lookup and
2583 * snapshot creation, which may cause new
2586 * To avoid this always quiesce the origin before
2587 * taking the snap. You want to do this anyway to
2588 * ensure a consistent application view
2591 * More distant ancestors are irrelevant. The
2592 * shared flag will be set in their case.
2594 thin_defer_cell(tc
, virt_cell
);
2595 return DM_MAPIO_SUBMITTED
;
2598 build_data_key(tc
->td
, result
.block
, &key
);
2599 if (bio_detain(tc
->pool
, &key
, bio
, &data_cell
)) {
2600 cell_defer_no_holder(tc
, virt_cell
);
2601 return DM_MAPIO_SUBMITTED
;
2604 inc_all_io_entry(tc
->pool
, bio
);
2605 cell_defer_no_holder(tc
, data_cell
);
2606 cell_defer_no_holder(tc
, virt_cell
);
2608 remap(tc
, bio
, result
.block
);
2609 return DM_MAPIO_REMAPPED
;
2613 thin_defer_cell(tc
, virt_cell
);
2614 return DM_MAPIO_SUBMITTED
;
2618 * Must always call bio_io_error on failure.
2619 * dm_thin_find_block can fail with -EINVAL if the
2620 * pool is switched to fail-io mode.
2623 cell_defer_no_holder(tc
, virt_cell
);
2624 return DM_MAPIO_SUBMITTED
;
2628 static int pool_is_congested(struct dm_target_callbacks
*cb
, int bdi_bits
)
2630 struct pool_c
*pt
= container_of(cb
, struct pool_c
, callbacks
);
2631 struct request_queue
*q
;
2633 if (get_pool_mode(pt
->pool
) == PM_OUT_OF_DATA_SPACE
)
2636 q
= bdev_get_queue(pt
->data_dev
->bdev
);
2637 return bdi_congested(&q
->backing_dev_info
, bdi_bits
);
2640 static void requeue_bios(struct pool
*pool
)
2642 unsigned long flags
;
2646 list_for_each_entry_rcu(tc
, &pool
->active_thins
, list
) {
2647 spin_lock_irqsave(&tc
->lock
, flags
);
2648 bio_list_merge(&tc
->deferred_bio_list
, &tc
->retry_on_resume_list
);
2649 bio_list_init(&tc
->retry_on_resume_list
);
2650 spin_unlock_irqrestore(&tc
->lock
, flags
);
2655 /*----------------------------------------------------------------
2656 * Binding of control targets to a pool object
2657 *--------------------------------------------------------------*/
2658 static bool data_dev_supports_discard(struct pool_c
*pt
)
2660 struct request_queue
*q
= bdev_get_queue(pt
->data_dev
->bdev
);
2662 return q
&& blk_queue_discard(q
);
2665 static bool is_factor(sector_t block_size
, uint32_t n
)
2667 return !sector_div(block_size
, n
);
2671 * If discard_passdown was enabled verify that the data device
2672 * supports discards. Disable discard_passdown if not.
2674 static void disable_passdown_if_not_supported(struct pool_c
*pt
)
2676 struct pool
*pool
= pt
->pool
;
2677 struct block_device
*data_bdev
= pt
->data_dev
->bdev
;
2678 struct queue_limits
*data_limits
= &bdev_get_queue(data_bdev
)->limits
;
2679 const char *reason
= NULL
;
2680 char buf
[BDEVNAME_SIZE
];
2682 if (!pt
->adjusted_pf
.discard_passdown
)
2685 if (!data_dev_supports_discard(pt
))
2686 reason
= "discard unsupported";
2688 else if (data_limits
->max_discard_sectors
< pool
->sectors_per_block
)
2689 reason
= "max discard sectors smaller than a block";
2692 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev
, buf
), reason
);
2693 pt
->adjusted_pf
.discard_passdown
= false;
2697 static int bind_control_target(struct pool
*pool
, struct dm_target
*ti
)
2699 struct pool_c
*pt
= ti
->private;
2702 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2704 enum pool_mode old_mode
= get_pool_mode(pool
);
2705 enum pool_mode new_mode
= pt
->adjusted_pf
.mode
;
2708 * Don't change the pool's mode until set_pool_mode() below.
2709 * Otherwise the pool's process_* function pointers may
2710 * not match the desired pool mode.
2712 pt
->adjusted_pf
.mode
= old_mode
;
2715 pool
->pf
= pt
->adjusted_pf
;
2716 pool
->low_water_blocks
= pt
->low_water_blocks
;
2718 set_pool_mode(pool
, new_mode
);
2723 static void unbind_control_target(struct pool
*pool
, struct dm_target
*ti
)
2729 /*----------------------------------------------------------------
2731 *--------------------------------------------------------------*/
2732 /* Initialize pool features. */
2733 static void pool_features_init(struct pool_features
*pf
)
2735 pf
->mode
= PM_WRITE
;
2736 pf
->zero_new_blocks
= true;
2737 pf
->discard_enabled
= true;
2738 pf
->discard_passdown
= true;
2739 pf
->error_if_no_space
= false;
2742 static void __pool_destroy(struct pool
*pool
)
2744 __pool_table_remove(pool
);
2746 vfree(pool
->cell_sort_array
);
2747 if (dm_pool_metadata_close(pool
->pmd
) < 0)
2748 DMWARN("%s: dm_pool_metadata_close() failed.", __func__
);
2750 dm_bio_prison_destroy(pool
->prison
);
2751 dm_kcopyd_client_destroy(pool
->copier
);
2754 destroy_workqueue(pool
->wq
);
2756 if (pool
->next_mapping
)
2757 mempool_free(pool
->next_mapping
, pool
->mapping_pool
);
2758 mempool_destroy(pool
->mapping_pool
);
2759 dm_deferred_set_destroy(pool
->shared_read_ds
);
2760 dm_deferred_set_destroy(pool
->all_io_ds
);
2764 static struct kmem_cache
*_new_mapping_cache
;
2766 static struct pool
*pool_create(struct mapped_device
*pool_md
,
2767 struct block_device
*metadata_dev
,
2768 unsigned long block_size
,
2769 int read_only
, char **error
)
2774 struct dm_pool_metadata
*pmd
;
2775 bool format_device
= read_only
? false : true;
2777 pmd
= dm_pool_metadata_open(metadata_dev
, block_size
, format_device
);
2779 *error
= "Error creating metadata object";
2780 return (struct pool
*)pmd
;
2783 pool
= kmalloc(sizeof(*pool
), GFP_KERNEL
);
2785 *error
= "Error allocating memory for pool";
2786 err_p
= ERR_PTR(-ENOMEM
);
2791 pool
->sectors_per_block
= block_size
;
2792 if (block_size
& (block_size
- 1))
2793 pool
->sectors_per_block_shift
= -1;
2795 pool
->sectors_per_block_shift
= __ffs(block_size
);
2796 pool
->low_water_blocks
= 0;
2797 pool_features_init(&pool
->pf
);
2798 pool
->prison
= dm_bio_prison_create();
2799 if (!pool
->prison
) {
2800 *error
= "Error creating pool's bio prison";
2801 err_p
= ERR_PTR(-ENOMEM
);
2805 pool
->copier
= dm_kcopyd_client_create(&dm_kcopyd_throttle
);
2806 if (IS_ERR(pool
->copier
)) {
2807 r
= PTR_ERR(pool
->copier
);
2808 *error
= "Error creating pool's kcopyd client";
2810 goto bad_kcopyd_client
;
2814 * Create singlethreaded workqueue that will service all devices
2815 * that use this metadata.
2817 pool
->wq
= alloc_ordered_workqueue("dm-" DM_MSG_PREFIX
, WQ_MEM_RECLAIM
);
2819 *error
= "Error creating pool's workqueue";
2820 err_p
= ERR_PTR(-ENOMEM
);
2824 throttle_init(&pool
->throttle
);
2825 INIT_WORK(&pool
->worker
, do_worker
);
2826 INIT_DELAYED_WORK(&pool
->waker
, do_waker
);
2827 INIT_DELAYED_WORK(&pool
->no_space_timeout
, do_no_space_timeout
);
2828 spin_lock_init(&pool
->lock
);
2829 bio_list_init(&pool
->deferred_flush_bios
);
2830 INIT_LIST_HEAD(&pool
->prepared_mappings
);
2831 INIT_LIST_HEAD(&pool
->prepared_discards
);
2832 INIT_LIST_HEAD(&pool
->active_thins
);
2833 pool
->low_water_triggered
= false;
2834 pool
->suspended
= true;
2836 pool
->shared_read_ds
= dm_deferred_set_create();
2837 if (!pool
->shared_read_ds
) {
2838 *error
= "Error creating pool's shared read deferred set";
2839 err_p
= ERR_PTR(-ENOMEM
);
2840 goto bad_shared_read_ds
;
2843 pool
->all_io_ds
= dm_deferred_set_create();
2844 if (!pool
->all_io_ds
) {
2845 *error
= "Error creating pool's all io deferred set";
2846 err_p
= ERR_PTR(-ENOMEM
);
2850 pool
->next_mapping
= NULL
;
2851 pool
->mapping_pool
= mempool_create_slab_pool(MAPPING_POOL_SIZE
,
2852 _new_mapping_cache
);
2853 if (!pool
->mapping_pool
) {
2854 *error
= "Error creating pool's mapping mempool";
2855 err_p
= ERR_PTR(-ENOMEM
);
2856 goto bad_mapping_pool
;
2859 pool
->cell_sort_array
= vmalloc(sizeof(*pool
->cell_sort_array
) * CELL_SORT_ARRAY_SIZE
);
2860 if (!pool
->cell_sort_array
) {
2861 *error
= "Error allocating cell sort array";
2862 err_p
= ERR_PTR(-ENOMEM
);
2863 goto bad_sort_array
;
2866 pool
->ref_count
= 1;
2867 pool
->last_commit_jiffies
= jiffies
;
2868 pool
->pool_md
= pool_md
;
2869 pool
->md_dev
= metadata_dev
;
2870 __pool_table_insert(pool
);
2875 mempool_destroy(pool
->mapping_pool
);
2877 dm_deferred_set_destroy(pool
->all_io_ds
);
2879 dm_deferred_set_destroy(pool
->shared_read_ds
);
2881 destroy_workqueue(pool
->wq
);
2883 dm_kcopyd_client_destroy(pool
->copier
);
2885 dm_bio_prison_destroy(pool
->prison
);
2889 if (dm_pool_metadata_close(pmd
))
2890 DMWARN("%s: dm_pool_metadata_close() failed.", __func__
);
2895 static void __pool_inc(struct pool
*pool
)
2897 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
2901 static void __pool_dec(struct pool
*pool
)
2903 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
2904 BUG_ON(!pool
->ref_count
);
2905 if (!--pool
->ref_count
)
2906 __pool_destroy(pool
);
2909 static struct pool
*__pool_find(struct mapped_device
*pool_md
,
2910 struct block_device
*metadata_dev
,
2911 unsigned long block_size
, int read_only
,
2912 char **error
, int *created
)
2914 struct pool
*pool
= __pool_table_lookup_metadata_dev(metadata_dev
);
2917 if (pool
->pool_md
!= pool_md
) {
2918 *error
= "metadata device already in use by a pool";
2919 return ERR_PTR(-EBUSY
);
2924 pool
= __pool_table_lookup(pool_md
);
2926 if (pool
->md_dev
!= metadata_dev
) {
2927 *error
= "different pool cannot replace a pool";
2928 return ERR_PTR(-EINVAL
);
2933 pool
= pool_create(pool_md
, metadata_dev
, block_size
, read_only
, error
);
2941 /*----------------------------------------------------------------
2942 * Pool target methods
2943 *--------------------------------------------------------------*/
2944 static void pool_dtr(struct dm_target
*ti
)
2946 struct pool_c
*pt
= ti
->private;
2948 mutex_lock(&dm_thin_pool_table
.mutex
);
2950 unbind_control_target(pt
->pool
, ti
);
2951 __pool_dec(pt
->pool
);
2952 dm_put_device(ti
, pt
->metadata_dev
);
2953 dm_put_device(ti
, pt
->data_dev
);
2956 mutex_unlock(&dm_thin_pool_table
.mutex
);
2959 static int parse_pool_features(struct dm_arg_set
*as
, struct pool_features
*pf
,
2960 struct dm_target
*ti
)
2964 const char *arg_name
;
2966 static struct dm_arg _args
[] = {
2967 {0, 4, "Invalid number of pool feature arguments"},
2971 * No feature arguments supplied.
2976 r
= dm_read_arg_group(_args
, as
, &argc
, &ti
->error
);
2980 while (argc
&& !r
) {
2981 arg_name
= dm_shift_arg(as
);
2984 if (!strcasecmp(arg_name
, "skip_block_zeroing"))
2985 pf
->zero_new_blocks
= false;
2987 else if (!strcasecmp(arg_name
, "ignore_discard"))
2988 pf
->discard_enabled
= false;
2990 else if (!strcasecmp(arg_name
, "no_discard_passdown"))
2991 pf
->discard_passdown
= false;
2993 else if (!strcasecmp(arg_name
, "read_only"))
2994 pf
->mode
= PM_READ_ONLY
;
2996 else if (!strcasecmp(arg_name
, "error_if_no_space"))
2997 pf
->error_if_no_space
= true;
3000 ti
->error
= "Unrecognised pool feature requested";
3009 static void metadata_low_callback(void *context
)
3011 struct pool
*pool
= context
;
3013 DMWARN("%s: reached low water mark for metadata device: sending event.",
3014 dm_device_name(pool
->pool_md
));
3016 dm_table_event(pool
->ti
->table
);
3019 static sector_t
get_dev_size(struct block_device
*bdev
)
3021 return i_size_read(bdev
->bd_inode
) >> SECTOR_SHIFT
;
3024 static void warn_if_metadata_device_too_big(struct block_device
*bdev
)
3026 sector_t metadata_dev_size
= get_dev_size(bdev
);
3027 char buffer
[BDEVNAME_SIZE
];
3029 if (metadata_dev_size
> THIN_METADATA_MAX_SECTORS_WARNING
)
3030 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3031 bdevname(bdev
, buffer
), THIN_METADATA_MAX_SECTORS
);
3034 static sector_t
get_metadata_dev_size(struct block_device
*bdev
)
3036 sector_t metadata_dev_size
= get_dev_size(bdev
);
3038 if (metadata_dev_size
> THIN_METADATA_MAX_SECTORS
)
3039 metadata_dev_size
= THIN_METADATA_MAX_SECTORS
;
3041 return metadata_dev_size
;
3044 static dm_block_t
get_metadata_dev_size_in_blocks(struct block_device
*bdev
)
3046 sector_t metadata_dev_size
= get_metadata_dev_size(bdev
);
3048 sector_div(metadata_dev_size
, THIN_METADATA_BLOCK_SIZE
);
3050 return metadata_dev_size
;
3054 * When a metadata threshold is crossed a dm event is triggered, and
3055 * userland should respond by growing the metadata device. We could let
3056 * userland set the threshold, like we do with the data threshold, but I'm
3057 * not sure they know enough to do this well.
3059 static dm_block_t
calc_metadata_threshold(struct pool_c
*pt
)
3062 * 4M is ample for all ops with the possible exception of thin
3063 * device deletion which is harmless if it fails (just retry the
3064 * delete after you've grown the device).
3066 dm_block_t quarter
= get_metadata_dev_size_in_blocks(pt
->metadata_dev
->bdev
) / 4;
3067 return min((dm_block_t
)1024ULL /* 4M */, quarter
);
3071 * thin-pool <metadata dev> <data dev>
3072 * <data block size (sectors)>
3073 * <low water mark (blocks)>
3074 * [<#feature args> [<arg>]*]
3076 * Optional feature arguments are:
3077 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3078 * ignore_discard: disable discard
3079 * no_discard_passdown: don't pass discards down to the data device
3080 * read_only: Don't allow any changes to be made to the pool metadata.
3081 * error_if_no_space: error IOs, instead of queueing, if no space.
3083 static int pool_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
3085 int r
, pool_created
= 0;
3088 struct pool_features pf
;
3089 struct dm_arg_set as
;
3090 struct dm_dev
*data_dev
;
3091 unsigned long block_size
;
3092 dm_block_t low_water_blocks
;
3093 struct dm_dev
*metadata_dev
;
3094 fmode_t metadata_mode
;
3097 * FIXME Remove validation from scope of lock.
3099 mutex_lock(&dm_thin_pool_table
.mutex
);
3102 ti
->error
= "Invalid argument count";
3111 * Set default pool features.
3113 pool_features_init(&pf
);
3115 dm_consume_args(&as
, 4);
3116 r
= parse_pool_features(&as
, &pf
, ti
);
3120 metadata_mode
= FMODE_READ
| ((pf
.mode
== PM_READ_ONLY
) ? 0 : FMODE_WRITE
);
3121 r
= dm_get_device(ti
, argv
[0], metadata_mode
, &metadata_dev
);
3123 ti
->error
= "Error opening metadata block device";
3126 warn_if_metadata_device_too_big(metadata_dev
->bdev
);
3128 r
= dm_get_device(ti
, argv
[1], FMODE_READ
| FMODE_WRITE
, &data_dev
);
3130 ti
->error
= "Error getting data device";
3134 if (kstrtoul(argv
[2], 10, &block_size
) || !block_size
||
3135 block_size
< DATA_DEV_BLOCK_SIZE_MIN_SECTORS
||
3136 block_size
> DATA_DEV_BLOCK_SIZE_MAX_SECTORS
||
3137 block_size
& (DATA_DEV_BLOCK_SIZE_MIN_SECTORS
- 1)) {
3138 ti
->error
= "Invalid block size";
3143 if (kstrtoull(argv
[3], 10, (unsigned long long *)&low_water_blocks
)) {
3144 ti
->error
= "Invalid low water mark";
3149 pt
= kzalloc(sizeof(*pt
), GFP_KERNEL
);
3155 pool
= __pool_find(dm_table_get_md(ti
->table
), metadata_dev
->bdev
,
3156 block_size
, pf
.mode
== PM_READ_ONLY
, &ti
->error
, &pool_created
);
3163 * 'pool_created' reflects whether this is the first table load.
3164 * Top level discard support is not allowed to be changed after
3165 * initial load. This would require a pool reload to trigger thin
3168 if (!pool_created
&& pf
.discard_enabled
!= pool
->pf
.discard_enabled
) {
3169 ti
->error
= "Discard support cannot be disabled once enabled";
3171 goto out_flags_changed
;
3176 pt
->metadata_dev
= metadata_dev
;
3177 pt
->data_dev
= data_dev
;
3178 pt
->low_water_blocks
= low_water_blocks
;
3179 pt
->adjusted_pf
= pt
->requested_pf
= pf
;
3180 ti
->num_flush_bios
= 1;
3183 * Only need to enable discards if the pool should pass
3184 * them down to the data device. The thin device's discard
3185 * processing will cause mappings to be removed from the btree.
3187 ti
->discard_zeroes_data_unsupported
= true;
3188 if (pf
.discard_enabled
&& pf
.discard_passdown
) {
3189 ti
->num_discard_bios
= 1;
3192 * Setting 'discards_supported' circumvents the normal
3193 * stacking of discard limits (this keeps the pool and
3194 * thin devices' discard limits consistent).
3196 ti
->discards_supported
= true;
3200 r
= dm_pool_register_metadata_threshold(pt
->pool
->pmd
,
3201 calc_metadata_threshold(pt
),
3202 metadata_low_callback
,
3205 goto out_flags_changed
;
3207 pt
->callbacks
.congested_fn
= pool_is_congested
;
3208 dm_table_add_target_callbacks(ti
->table
, &pt
->callbacks
);
3210 mutex_unlock(&dm_thin_pool_table
.mutex
);
3219 dm_put_device(ti
, data_dev
);
3221 dm_put_device(ti
, metadata_dev
);
3223 mutex_unlock(&dm_thin_pool_table
.mutex
);
3228 static int pool_map(struct dm_target
*ti
, struct bio
*bio
)
3231 struct pool_c
*pt
= ti
->private;
3232 struct pool
*pool
= pt
->pool
;
3233 unsigned long flags
;
3236 * As this is a singleton target, ti->begin is always zero.
3238 spin_lock_irqsave(&pool
->lock
, flags
);
3239 bio
->bi_bdev
= pt
->data_dev
->bdev
;
3240 r
= DM_MAPIO_REMAPPED
;
3241 spin_unlock_irqrestore(&pool
->lock
, flags
);
3246 static int maybe_resize_data_dev(struct dm_target
*ti
, bool *need_commit
)
3249 struct pool_c
*pt
= ti
->private;
3250 struct pool
*pool
= pt
->pool
;
3251 sector_t data_size
= ti
->len
;
3252 dm_block_t sb_data_size
;
3254 *need_commit
= false;
3256 (void) sector_div(data_size
, pool
->sectors_per_block
);
3258 r
= dm_pool_get_data_dev_size(pool
->pmd
, &sb_data_size
);
3260 DMERR("%s: failed to retrieve data device size",
3261 dm_device_name(pool
->pool_md
));
3265 if (data_size
< sb_data_size
) {
3266 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3267 dm_device_name(pool
->pool_md
),
3268 (unsigned long long)data_size
, sb_data_size
);
3271 } else if (data_size
> sb_data_size
) {
3272 if (dm_pool_metadata_needs_check(pool
->pmd
)) {
3273 DMERR("%s: unable to grow the data device until repaired.",
3274 dm_device_name(pool
->pool_md
));
3279 DMINFO("%s: growing the data device from %llu to %llu blocks",
3280 dm_device_name(pool
->pool_md
),
3281 sb_data_size
, (unsigned long long)data_size
);
3282 r
= dm_pool_resize_data_dev(pool
->pmd
, data_size
);
3284 metadata_operation_failed(pool
, "dm_pool_resize_data_dev", r
);
3288 *need_commit
= true;
3294 static int maybe_resize_metadata_dev(struct dm_target
*ti
, bool *need_commit
)
3297 struct pool_c
*pt
= ti
->private;
3298 struct pool
*pool
= pt
->pool
;
3299 dm_block_t metadata_dev_size
, sb_metadata_dev_size
;
3301 *need_commit
= false;
3303 metadata_dev_size
= get_metadata_dev_size_in_blocks(pool
->md_dev
);
3305 r
= dm_pool_get_metadata_dev_size(pool
->pmd
, &sb_metadata_dev_size
);
3307 DMERR("%s: failed to retrieve metadata device size",
3308 dm_device_name(pool
->pool_md
));
3312 if (metadata_dev_size
< sb_metadata_dev_size
) {
3313 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3314 dm_device_name(pool
->pool_md
),
3315 metadata_dev_size
, sb_metadata_dev_size
);
3318 } else if (metadata_dev_size
> sb_metadata_dev_size
) {
3319 if (dm_pool_metadata_needs_check(pool
->pmd
)) {
3320 DMERR("%s: unable to grow the metadata device until repaired.",
3321 dm_device_name(pool
->pool_md
));
3325 warn_if_metadata_device_too_big(pool
->md_dev
);
3326 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3327 dm_device_name(pool
->pool_md
),
3328 sb_metadata_dev_size
, metadata_dev_size
);
3329 r
= dm_pool_resize_metadata_dev(pool
->pmd
, metadata_dev_size
);
3331 metadata_operation_failed(pool
, "dm_pool_resize_metadata_dev", r
);
3335 *need_commit
= true;
3342 * Retrieves the number of blocks of the data device from
3343 * the superblock and compares it to the actual device size,
3344 * thus resizing the data device in case it has grown.
3346 * This both copes with opening preallocated data devices in the ctr
3347 * being followed by a resume
3349 * calling the resume method individually after userspace has
3350 * grown the data device in reaction to a table event.
3352 static int pool_preresume(struct dm_target
*ti
)
3355 bool need_commit1
, need_commit2
;
3356 struct pool_c
*pt
= ti
->private;
3357 struct pool
*pool
= pt
->pool
;
3360 * Take control of the pool object.
3362 r
= bind_control_target(pool
, ti
);
3366 r
= maybe_resize_data_dev(ti
, &need_commit1
);
3370 r
= maybe_resize_metadata_dev(ti
, &need_commit2
);
3374 if (need_commit1
|| need_commit2
)
3375 (void) commit(pool
);
3380 static void pool_suspend_active_thins(struct pool
*pool
)
3384 /* Suspend all active thin devices */
3385 tc
= get_first_thin(pool
);
3387 dm_internal_suspend_noflush(tc
->thin_md
);
3388 tc
= get_next_thin(pool
, tc
);
3392 static void pool_resume_active_thins(struct pool
*pool
)
3396 /* Resume all active thin devices */
3397 tc
= get_first_thin(pool
);
3399 dm_internal_resume(tc
->thin_md
);
3400 tc
= get_next_thin(pool
, tc
);
3404 static void pool_resume(struct dm_target
*ti
)
3406 struct pool_c
*pt
= ti
->private;
3407 struct pool
*pool
= pt
->pool
;
3408 unsigned long flags
;
3411 * Must requeue active_thins' bios and then resume
3412 * active_thins _before_ clearing 'suspend' flag.
3415 pool_resume_active_thins(pool
);
3417 spin_lock_irqsave(&pool
->lock
, flags
);
3418 pool
->low_water_triggered
= false;
3419 pool
->suspended
= false;
3420 spin_unlock_irqrestore(&pool
->lock
, flags
);
3422 do_waker(&pool
->waker
.work
);
3425 static void pool_presuspend(struct dm_target
*ti
)
3427 struct pool_c
*pt
= ti
->private;
3428 struct pool
*pool
= pt
->pool
;
3429 unsigned long flags
;
3431 spin_lock_irqsave(&pool
->lock
, flags
);
3432 pool
->suspended
= true;
3433 spin_unlock_irqrestore(&pool
->lock
, flags
);
3435 pool_suspend_active_thins(pool
);
3438 static void pool_presuspend_undo(struct dm_target
*ti
)
3440 struct pool_c
*pt
= ti
->private;
3441 struct pool
*pool
= pt
->pool
;
3442 unsigned long flags
;
3444 pool_resume_active_thins(pool
);
3446 spin_lock_irqsave(&pool
->lock
, flags
);
3447 pool
->suspended
= false;
3448 spin_unlock_irqrestore(&pool
->lock
, flags
);
3451 static void pool_postsuspend(struct dm_target
*ti
)
3453 struct pool_c
*pt
= ti
->private;
3454 struct pool
*pool
= pt
->pool
;
3456 cancel_delayed_work_sync(&pool
->waker
);
3457 cancel_delayed_work_sync(&pool
->no_space_timeout
);
3458 flush_workqueue(pool
->wq
);
3459 (void) commit(pool
);
3462 static int check_arg_count(unsigned argc
, unsigned args_required
)
3464 if (argc
!= args_required
) {
3465 DMWARN("Message received with %u arguments instead of %u.",
3466 argc
, args_required
);
3473 static int read_dev_id(char *arg
, dm_thin_id
*dev_id
, int warning
)
3475 if (!kstrtoull(arg
, 10, (unsigned long long *)dev_id
) &&
3476 *dev_id
<= MAX_DEV_ID
)
3480 DMWARN("Message received with invalid device id: %s", arg
);
3485 static int process_create_thin_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3490 r
= check_arg_count(argc
, 2);
3494 r
= read_dev_id(argv
[1], &dev_id
, 1);
3498 r
= dm_pool_create_thin(pool
->pmd
, dev_id
);
3500 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3508 static int process_create_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3511 dm_thin_id origin_dev_id
;
3514 r
= check_arg_count(argc
, 3);
3518 r
= read_dev_id(argv
[1], &dev_id
, 1);
3522 r
= read_dev_id(argv
[2], &origin_dev_id
, 1);
3526 r
= dm_pool_create_snap(pool
->pmd
, dev_id
, origin_dev_id
);
3528 DMWARN("Creation of new snapshot %s of device %s failed.",
3536 static int process_delete_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3541 r
= check_arg_count(argc
, 2);
3545 r
= read_dev_id(argv
[1], &dev_id
, 1);
3549 r
= dm_pool_delete_thin_device(pool
->pmd
, dev_id
);
3551 DMWARN("Deletion of thin device %s failed.", argv
[1]);
3556 static int process_set_transaction_id_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3558 dm_thin_id old_id
, new_id
;
3561 r
= check_arg_count(argc
, 3);
3565 if (kstrtoull(argv
[1], 10, (unsigned long long *)&old_id
)) {
3566 DMWARN("set_transaction_id message: Unrecognised id %s.", argv
[1]);
3570 if (kstrtoull(argv
[2], 10, (unsigned long long *)&new_id
)) {
3571 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv
[2]);
3575 r
= dm_pool_set_metadata_transaction_id(pool
->pmd
, old_id
, new_id
);
3577 DMWARN("Failed to change transaction id from %s to %s.",
3585 static int process_reserve_metadata_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3589 r
= check_arg_count(argc
, 1);
3593 (void) commit(pool
);
3595 r
= dm_pool_reserve_metadata_snap(pool
->pmd
);
3597 DMWARN("reserve_metadata_snap message failed.");
3602 static int process_release_metadata_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3606 r
= check_arg_count(argc
, 1);
3610 r
= dm_pool_release_metadata_snap(pool
->pmd
);
3612 DMWARN("release_metadata_snap message failed.");
3618 * Messages supported:
3619 * create_thin <dev_id>
3620 * create_snap <dev_id> <origin_id>
3622 * set_transaction_id <current_trans_id> <new_trans_id>
3623 * reserve_metadata_snap
3624 * release_metadata_snap
3626 static int pool_message(struct dm_target
*ti
, unsigned argc
, char **argv
)
3629 struct pool_c
*pt
= ti
->private;
3630 struct pool
*pool
= pt
->pool
;
3632 if (get_pool_mode(pool
) >= PM_READ_ONLY
) {
3633 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3634 dm_device_name(pool
->pool_md
));
3638 if (!strcasecmp(argv
[0], "create_thin"))
3639 r
= process_create_thin_mesg(argc
, argv
, pool
);
3641 else if (!strcasecmp(argv
[0], "create_snap"))
3642 r
= process_create_snap_mesg(argc
, argv
, pool
);
3644 else if (!strcasecmp(argv
[0], "delete"))
3645 r
= process_delete_mesg(argc
, argv
, pool
);
3647 else if (!strcasecmp(argv
[0], "set_transaction_id"))
3648 r
= process_set_transaction_id_mesg(argc
, argv
, pool
);
3650 else if (!strcasecmp(argv
[0], "reserve_metadata_snap"))
3651 r
= process_reserve_metadata_snap_mesg(argc
, argv
, pool
);
3653 else if (!strcasecmp(argv
[0], "release_metadata_snap"))
3654 r
= process_release_metadata_snap_mesg(argc
, argv
, pool
);
3657 DMWARN("Unrecognised thin pool target message received: %s", argv
[0]);
3660 (void) commit(pool
);
3665 static void emit_flags(struct pool_features
*pf
, char *result
,
3666 unsigned sz
, unsigned maxlen
)
3668 unsigned count
= !pf
->zero_new_blocks
+ !pf
->discard_enabled
+
3669 !pf
->discard_passdown
+ (pf
->mode
== PM_READ_ONLY
) +
3670 pf
->error_if_no_space
;
3671 DMEMIT("%u ", count
);
3673 if (!pf
->zero_new_blocks
)
3674 DMEMIT("skip_block_zeroing ");
3676 if (!pf
->discard_enabled
)
3677 DMEMIT("ignore_discard ");
3679 if (!pf
->discard_passdown
)
3680 DMEMIT("no_discard_passdown ");
3682 if (pf
->mode
== PM_READ_ONLY
)
3683 DMEMIT("read_only ");
3685 if (pf
->error_if_no_space
)
3686 DMEMIT("error_if_no_space ");
3691 * <transaction id> <used metadata sectors>/<total metadata sectors>
3692 * <used data sectors>/<total data sectors> <held metadata root>
3693 * <pool mode> <discard config> <no space config> <needs_check>
3695 static void pool_status(struct dm_target
*ti
, status_type_t type
,
3696 unsigned status_flags
, char *result
, unsigned maxlen
)
3700 uint64_t transaction_id
;
3701 dm_block_t nr_free_blocks_data
;
3702 dm_block_t nr_free_blocks_metadata
;
3703 dm_block_t nr_blocks_data
;
3704 dm_block_t nr_blocks_metadata
;
3705 dm_block_t held_root
;
3706 char buf
[BDEVNAME_SIZE
];
3707 char buf2
[BDEVNAME_SIZE
];
3708 struct pool_c
*pt
= ti
->private;
3709 struct pool
*pool
= pt
->pool
;
3712 case STATUSTYPE_INFO
:
3713 if (get_pool_mode(pool
) == PM_FAIL
) {
3718 /* Commit to ensure statistics aren't out-of-date */
3719 if (!(status_flags
& DM_STATUS_NOFLUSH_FLAG
) && !dm_suspended(ti
))
3720 (void) commit(pool
);
3722 r
= dm_pool_get_metadata_transaction_id(pool
->pmd
, &transaction_id
);
3724 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3725 dm_device_name(pool
->pool_md
), r
);
3729 r
= dm_pool_get_free_metadata_block_count(pool
->pmd
, &nr_free_blocks_metadata
);
3731 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3732 dm_device_name(pool
->pool_md
), r
);
3736 r
= dm_pool_get_metadata_dev_size(pool
->pmd
, &nr_blocks_metadata
);
3738 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3739 dm_device_name(pool
->pool_md
), r
);
3743 r
= dm_pool_get_free_block_count(pool
->pmd
, &nr_free_blocks_data
);
3745 DMERR("%s: dm_pool_get_free_block_count returned %d",
3746 dm_device_name(pool
->pool_md
), r
);
3750 r
= dm_pool_get_data_dev_size(pool
->pmd
, &nr_blocks_data
);
3752 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3753 dm_device_name(pool
->pool_md
), r
);
3757 r
= dm_pool_get_metadata_snap(pool
->pmd
, &held_root
);
3759 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3760 dm_device_name(pool
->pool_md
), r
);
3764 DMEMIT("%llu %llu/%llu %llu/%llu ",
3765 (unsigned long long)transaction_id
,
3766 (unsigned long long)(nr_blocks_metadata
- nr_free_blocks_metadata
),
3767 (unsigned long long)nr_blocks_metadata
,
3768 (unsigned long long)(nr_blocks_data
- nr_free_blocks_data
),
3769 (unsigned long long)nr_blocks_data
);
3772 DMEMIT("%llu ", held_root
);
3776 if (pool
->pf
.mode
== PM_OUT_OF_DATA_SPACE
)
3777 DMEMIT("out_of_data_space ");
3778 else if (pool
->pf
.mode
== PM_READ_ONLY
)
3783 if (!pool
->pf
.discard_enabled
)
3784 DMEMIT("ignore_discard ");
3785 else if (pool
->pf
.discard_passdown
)
3786 DMEMIT("discard_passdown ");
3788 DMEMIT("no_discard_passdown ");
3790 if (pool
->pf
.error_if_no_space
)
3791 DMEMIT("error_if_no_space ");
3793 DMEMIT("queue_if_no_space ");
3795 if (dm_pool_metadata_needs_check(pool
->pmd
))
3796 DMEMIT("needs_check ");
3802 case STATUSTYPE_TABLE
:
3803 DMEMIT("%s %s %lu %llu ",
3804 format_dev_t(buf
, pt
->metadata_dev
->bdev
->bd_dev
),
3805 format_dev_t(buf2
, pt
->data_dev
->bdev
->bd_dev
),
3806 (unsigned long)pool
->sectors_per_block
,
3807 (unsigned long long)pt
->low_water_blocks
);
3808 emit_flags(&pt
->requested_pf
, result
, sz
, maxlen
);
3817 static int pool_iterate_devices(struct dm_target
*ti
,
3818 iterate_devices_callout_fn fn
, void *data
)
3820 struct pool_c
*pt
= ti
->private;
3822 return fn(ti
, pt
->data_dev
, 0, ti
->len
, data
);
3825 static void pool_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
3827 struct pool_c
*pt
= ti
->private;
3828 struct pool
*pool
= pt
->pool
;
3829 sector_t io_opt_sectors
= limits
->io_opt
>> SECTOR_SHIFT
;
3832 * If max_sectors is smaller than pool->sectors_per_block adjust it
3833 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3834 * This is especially beneficial when the pool's data device is a RAID
3835 * device that has a full stripe width that matches pool->sectors_per_block
3836 * -- because even though partial RAID stripe-sized IOs will be issued to a
3837 * single RAID stripe; when aggregated they will end on a full RAID stripe
3838 * boundary.. which avoids additional partial RAID stripe writes cascading
3840 if (limits
->max_sectors
< pool
->sectors_per_block
) {
3841 while (!is_factor(pool
->sectors_per_block
, limits
->max_sectors
)) {
3842 if ((limits
->max_sectors
& (limits
->max_sectors
- 1)) == 0)
3843 limits
->max_sectors
--;
3844 limits
->max_sectors
= rounddown_pow_of_two(limits
->max_sectors
);
3849 * If the system-determined stacked limits are compatible with the
3850 * pool's blocksize (io_opt is a factor) do not override them.
3852 if (io_opt_sectors
< pool
->sectors_per_block
||
3853 !is_factor(io_opt_sectors
, pool
->sectors_per_block
)) {
3854 if (is_factor(pool
->sectors_per_block
, limits
->max_sectors
))
3855 blk_limits_io_min(limits
, limits
->max_sectors
<< SECTOR_SHIFT
);
3857 blk_limits_io_min(limits
, pool
->sectors_per_block
<< SECTOR_SHIFT
);
3858 blk_limits_io_opt(limits
, pool
->sectors_per_block
<< SECTOR_SHIFT
);
3862 * pt->adjusted_pf is a staging area for the actual features to use.
3863 * They get transferred to the live pool in bind_control_target()
3864 * called from pool_preresume().
3866 if (!pt
->adjusted_pf
.discard_enabled
) {
3868 * Must explicitly disallow stacking discard limits otherwise the
3869 * block layer will stack them if pool's data device has support.
3870 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3871 * user to see that, so make sure to set all discard limits to 0.
3873 limits
->discard_granularity
= 0;
3877 disable_passdown_if_not_supported(pt
);
3880 * The pool uses the same discard limits as the underlying data
3881 * device. DM core has already set this up.
3885 static struct target_type pool_target
= {
3886 .name
= "thin-pool",
3887 .features
= DM_TARGET_SINGLETON
| DM_TARGET_ALWAYS_WRITEABLE
|
3888 DM_TARGET_IMMUTABLE
,
3889 .version
= {1, 17, 0},
3890 .module
= THIS_MODULE
,
3894 .presuspend
= pool_presuspend
,
3895 .presuspend_undo
= pool_presuspend_undo
,
3896 .postsuspend
= pool_postsuspend
,
3897 .preresume
= pool_preresume
,
3898 .resume
= pool_resume
,
3899 .message
= pool_message
,
3900 .status
= pool_status
,
3901 .iterate_devices
= pool_iterate_devices
,
3902 .io_hints
= pool_io_hints
,
3905 /*----------------------------------------------------------------
3906 * Thin target methods
3907 *--------------------------------------------------------------*/
3908 static void thin_get(struct thin_c
*tc
)
3910 atomic_inc(&tc
->refcount
);
3913 static void thin_put(struct thin_c
*tc
)
3915 if (atomic_dec_and_test(&tc
->refcount
))
3916 complete(&tc
->can_destroy
);
3919 static void thin_dtr(struct dm_target
*ti
)
3921 struct thin_c
*tc
= ti
->private;
3922 unsigned long flags
;
3924 spin_lock_irqsave(&tc
->pool
->lock
, flags
);
3925 list_del_rcu(&tc
->list
);
3926 spin_unlock_irqrestore(&tc
->pool
->lock
, flags
);
3930 wait_for_completion(&tc
->can_destroy
);
3932 mutex_lock(&dm_thin_pool_table
.mutex
);
3934 __pool_dec(tc
->pool
);
3935 dm_pool_close_thin_device(tc
->td
);
3936 dm_put_device(ti
, tc
->pool_dev
);
3938 dm_put_device(ti
, tc
->origin_dev
);
3941 mutex_unlock(&dm_thin_pool_table
.mutex
);
3945 * Thin target parameters:
3947 * <pool_dev> <dev_id> [origin_dev]
3949 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3950 * dev_id: the internal device identifier
3951 * origin_dev: a device external to the pool that should act as the origin
3953 * If the pool device has discards disabled, they get disabled for the thin
3956 static int thin_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
3960 struct dm_dev
*pool_dev
, *origin_dev
;
3961 struct mapped_device
*pool_md
;
3962 unsigned long flags
;
3964 mutex_lock(&dm_thin_pool_table
.mutex
);
3966 if (argc
!= 2 && argc
!= 3) {
3967 ti
->error
= "Invalid argument count";
3972 tc
= ti
->private = kzalloc(sizeof(*tc
), GFP_KERNEL
);
3974 ti
->error
= "Out of memory";
3978 tc
->thin_md
= dm_table_get_md(ti
->table
);
3979 spin_lock_init(&tc
->lock
);
3980 INIT_LIST_HEAD(&tc
->deferred_cells
);
3981 bio_list_init(&tc
->deferred_bio_list
);
3982 bio_list_init(&tc
->retry_on_resume_list
);
3983 tc
->sort_bio_list
= RB_ROOT
;
3986 r
= dm_get_device(ti
, argv
[2], FMODE_READ
, &origin_dev
);
3988 ti
->error
= "Error opening origin device";
3989 goto bad_origin_dev
;
3991 tc
->origin_dev
= origin_dev
;
3994 r
= dm_get_device(ti
, argv
[0], dm_table_get_mode(ti
->table
), &pool_dev
);
3996 ti
->error
= "Error opening pool device";
3999 tc
->pool_dev
= pool_dev
;
4001 if (read_dev_id(argv
[1], (unsigned long long *)&tc
->dev_id
, 0)) {
4002 ti
->error
= "Invalid device id";
4007 pool_md
= dm_get_md(tc
->pool_dev
->bdev
->bd_dev
);
4009 ti
->error
= "Couldn't get pool mapped device";
4014 tc
->pool
= __pool_table_lookup(pool_md
);
4016 ti
->error
= "Couldn't find pool object";
4018 goto bad_pool_lookup
;
4020 __pool_inc(tc
->pool
);
4022 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
4023 ti
->error
= "Couldn't open thin device, Pool is in fail mode";
4028 r
= dm_pool_open_thin_device(tc
->pool
->pmd
, tc
->dev_id
, &tc
->td
);
4030 ti
->error
= "Couldn't open thin internal device";
4034 r
= dm_set_target_max_io_len(ti
, tc
->pool
->sectors_per_block
);
4038 ti
->num_flush_bios
= 1;
4039 ti
->flush_supported
= true;
4040 ti
->per_bio_data_size
= sizeof(struct dm_thin_endio_hook
);
4042 /* In case the pool supports discards, pass them on. */
4043 ti
->discard_zeroes_data_unsupported
= true;
4044 if (tc
->pool
->pf
.discard_enabled
) {
4045 ti
->discards_supported
= true;
4046 ti
->num_discard_bios
= 1;
4047 ti
->split_discard_bios
= false;
4050 mutex_unlock(&dm_thin_pool_table
.mutex
);
4052 spin_lock_irqsave(&tc
->pool
->lock
, flags
);
4053 if (tc
->pool
->suspended
) {
4054 spin_unlock_irqrestore(&tc
->pool
->lock
, flags
);
4055 mutex_lock(&dm_thin_pool_table
.mutex
); /* reacquire for __pool_dec */
4056 ti
->error
= "Unable to activate thin device while pool is suspended";
4060 atomic_set(&tc
->refcount
, 1);
4061 init_completion(&tc
->can_destroy
);
4062 list_add_tail_rcu(&tc
->list
, &tc
->pool
->active_thins
);
4063 spin_unlock_irqrestore(&tc
->pool
->lock
, flags
);
4065 * This synchronize_rcu() call is needed here otherwise we risk a
4066 * wake_worker() call finding no bios to process (because the newly
4067 * added tc isn't yet visible). So this reduces latency since we
4068 * aren't then dependent on the periodic commit to wake_worker().
4077 dm_pool_close_thin_device(tc
->td
);
4079 __pool_dec(tc
->pool
);
4083 dm_put_device(ti
, tc
->pool_dev
);
4086 dm_put_device(ti
, tc
->origin_dev
);
4090 mutex_unlock(&dm_thin_pool_table
.mutex
);
4095 static int thin_map(struct dm_target
*ti
, struct bio
*bio
)
4097 bio
->bi_iter
.bi_sector
= dm_target_offset(ti
, bio
->bi_iter
.bi_sector
);
4099 return thin_bio_map(ti
, bio
);
4102 static int thin_endio(struct dm_target
*ti
, struct bio
*bio
, int err
)
4104 unsigned long flags
;
4105 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
4106 struct list_head work
;
4107 struct dm_thin_new_mapping
*m
, *tmp
;
4108 struct pool
*pool
= h
->tc
->pool
;
4110 if (h
->shared_read_entry
) {
4111 INIT_LIST_HEAD(&work
);
4112 dm_deferred_entry_dec(h
->shared_read_entry
, &work
);
4114 spin_lock_irqsave(&pool
->lock
, flags
);
4115 list_for_each_entry_safe(m
, tmp
, &work
, list
) {
4117 __complete_mapping_preparation(m
);
4119 spin_unlock_irqrestore(&pool
->lock
, flags
);
4122 if (h
->all_io_entry
) {
4123 INIT_LIST_HEAD(&work
);
4124 dm_deferred_entry_dec(h
->all_io_entry
, &work
);
4125 if (!list_empty(&work
)) {
4126 spin_lock_irqsave(&pool
->lock
, flags
);
4127 list_for_each_entry_safe(m
, tmp
, &work
, list
)
4128 list_add_tail(&m
->list
, &pool
->prepared_discards
);
4129 spin_unlock_irqrestore(&pool
->lock
, flags
);
4135 cell_defer_no_holder(h
->tc
, h
->cell
);
4140 static void thin_presuspend(struct dm_target
*ti
)
4142 struct thin_c
*tc
= ti
->private;
4144 if (dm_noflush_suspending(ti
))
4145 noflush_work(tc
, do_noflush_start
);
4148 static void thin_postsuspend(struct dm_target
*ti
)
4150 struct thin_c
*tc
= ti
->private;
4153 * The dm_noflush_suspending flag has been cleared by now, so
4154 * unfortunately we must always run this.
4156 noflush_work(tc
, do_noflush_stop
);
4159 static int thin_preresume(struct dm_target
*ti
)
4161 struct thin_c
*tc
= ti
->private;
4164 tc
->origin_size
= get_dev_size(tc
->origin_dev
->bdev
);
4170 * <nr mapped sectors> <highest mapped sector>
4172 static void thin_status(struct dm_target
*ti
, status_type_t type
,
4173 unsigned status_flags
, char *result
, unsigned maxlen
)
4177 dm_block_t mapped
, highest
;
4178 char buf
[BDEVNAME_SIZE
];
4179 struct thin_c
*tc
= ti
->private;
4181 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
4190 case STATUSTYPE_INFO
:
4191 r
= dm_thin_get_mapped_count(tc
->td
, &mapped
);
4193 DMERR("dm_thin_get_mapped_count returned %d", r
);
4197 r
= dm_thin_get_highest_mapped_block(tc
->td
, &highest
);
4199 DMERR("dm_thin_get_highest_mapped_block returned %d", r
);
4203 DMEMIT("%llu ", mapped
* tc
->pool
->sectors_per_block
);
4205 DMEMIT("%llu", ((highest
+ 1) *
4206 tc
->pool
->sectors_per_block
) - 1);
4211 case STATUSTYPE_TABLE
:
4213 format_dev_t(buf
, tc
->pool_dev
->bdev
->bd_dev
),
4214 (unsigned long) tc
->dev_id
);
4216 DMEMIT(" %s", format_dev_t(buf
, tc
->origin_dev
->bdev
->bd_dev
));
4227 static int thin_iterate_devices(struct dm_target
*ti
,
4228 iterate_devices_callout_fn fn
, void *data
)
4231 struct thin_c
*tc
= ti
->private;
4232 struct pool
*pool
= tc
->pool
;
4235 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4236 * we follow a more convoluted path through to the pool's target.
4239 return 0; /* nothing is bound */
4241 blocks
= pool
->ti
->len
;
4242 (void) sector_div(blocks
, pool
->sectors_per_block
);
4244 return fn(ti
, tc
->pool_dev
, 0, pool
->sectors_per_block
* blocks
, data
);
4249 static void thin_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
4251 struct thin_c
*tc
= ti
->private;
4252 struct pool
*pool
= tc
->pool
;
4254 if (!pool
->pf
.discard_enabled
)
4257 limits
->discard_granularity
= pool
->sectors_per_block
<< SECTOR_SHIFT
;
4258 limits
->max_discard_sectors
= 2048 * 1024 * 16; /* 16G */
4261 static struct target_type thin_target
= {
4263 .version
= {1, 17, 0},
4264 .module
= THIS_MODULE
,
4268 .end_io
= thin_endio
,
4269 .preresume
= thin_preresume
,
4270 .presuspend
= thin_presuspend
,
4271 .postsuspend
= thin_postsuspend
,
4272 .status
= thin_status
,
4273 .iterate_devices
= thin_iterate_devices
,
4274 .io_hints
= thin_io_hints
,
4277 /*----------------------------------------------------------------*/
4279 static int __init
dm_thin_init(void)
4285 r
= dm_register_target(&thin_target
);
4289 r
= dm_register_target(&pool_target
);
4291 goto bad_pool_target
;
4295 _new_mapping_cache
= KMEM_CACHE(dm_thin_new_mapping
, 0);
4296 if (!_new_mapping_cache
)
4297 goto bad_new_mapping_cache
;
4301 bad_new_mapping_cache
:
4302 dm_unregister_target(&pool_target
);
4304 dm_unregister_target(&thin_target
);
4309 static void dm_thin_exit(void)
4311 dm_unregister_target(&thin_target
);
4312 dm_unregister_target(&pool_target
);
4314 kmem_cache_destroy(_new_mapping_cache
);
4317 module_init(dm_thin_init
);
4318 module_exit(dm_thin_exit
);
4320 module_param_named(no_space_timeout
, no_space_timeout_secs
, uint
, S_IRUGO
| S_IWUSR
);
4321 MODULE_PARM_DESC(no_space_timeout
, "Out of data space queue IO timeout in seconds");
4323 MODULE_DESCRIPTION(DM_NAME
" thin provisioning target");
4324 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4325 MODULE_LICENSE("GPL");