2 * linux/drivers/mmc/core/core.c
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
49 /* If the device is not responding */
50 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
53 * Background operations can take a long time, depending on the housekeeping
54 * operations the card has to perform.
56 #define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
58 static const unsigned freqs
[] = { 400000, 300000, 200000, 100000 };
61 * Enabling software CRCs on the data blocks can be a significant (30%)
62 * performance cost, and for other reasons may not always be desired.
63 * So we allow it it to be disabled.
66 module_param(use_spi_crc
, bool, 0);
68 static int mmc_schedule_delayed_work(struct delayed_work
*work
,
72 * We use the system_freezable_wq, because of two reasons.
73 * First, it allows several works (not the same work item) to be
74 * executed simultaneously. Second, the queue becomes frozen when
75 * userspace becomes frozen during system PM.
77 return queue_delayed_work(system_freezable_wq
, work
, delay
);
80 #ifdef CONFIG_FAIL_MMC_REQUEST
83 * Internal function. Inject random data errors.
84 * If mmc_data is NULL no errors are injected.
86 static void mmc_should_fail_request(struct mmc_host
*host
,
87 struct mmc_request
*mrq
)
89 struct mmc_command
*cmd
= mrq
->cmd
;
90 struct mmc_data
*data
= mrq
->data
;
91 static const int data_errors
[] = {
100 if (cmd
->error
|| data
->error
||
101 !should_fail(&host
->fail_mmc_request
, data
->blksz
* data
->blocks
))
104 data
->error
= data_errors
[prandom_u32() % ARRAY_SIZE(data_errors
)];
105 data
->bytes_xfered
= (prandom_u32() % (data
->bytes_xfered
>> 9)) << 9;
108 #else /* CONFIG_FAIL_MMC_REQUEST */
110 static inline void mmc_should_fail_request(struct mmc_host
*host
,
111 struct mmc_request
*mrq
)
115 #endif /* CONFIG_FAIL_MMC_REQUEST */
118 * mmc_request_done - finish processing an MMC request
119 * @host: MMC host which completed request
120 * @mrq: MMC request which request
122 * MMC drivers should call this function when they have completed
123 * their processing of a request.
125 void mmc_request_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
127 struct mmc_command
*cmd
= mrq
->cmd
;
128 int err
= cmd
->error
;
130 /* Flag re-tuning needed on CRC errors */
131 if ((cmd
->opcode
!= MMC_SEND_TUNING_BLOCK
&&
132 cmd
->opcode
!= MMC_SEND_TUNING_BLOCK_HS200
) &&
133 (err
== -EILSEQ
|| (mrq
->sbc
&& mrq
->sbc
->error
== -EILSEQ
) ||
134 (mrq
->data
&& mrq
->data
->error
== -EILSEQ
) ||
135 (mrq
->stop
&& mrq
->stop
->error
== -EILSEQ
)))
136 mmc_retune_needed(host
);
138 if (err
&& cmd
->retries
&& mmc_host_is_spi(host
)) {
139 if (cmd
->resp
[0] & R1_SPI_ILLEGAL_COMMAND
)
143 if (err
&& cmd
->retries
&& !mmc_card_removed(host
->card
)) {
145 * Request starter must handle retries - see
146 * mmc_wait_for_req_done().
151 mmc_should_fail_request(host
, mrq
);
153 led_trigger_event(host
->led
, LED_OFF
);
156 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
157 mmc_hostname(host
), mrq
->sbc
->opcode
,
159 mrq
->sbc
->resp
[0], mrq
->sbc
->resp
[1],
160 mrq
->sbc
->resp
[2], mrq
->sbc
->resp
[3]);
163 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
164 mmc_hostname(host
), cmd
->opcode
, err
,
165 cmd
->resp
[0], cmd
->resp
[1],
166 cmd
->resp
[2], cmd
->resp
[3]);
169 pr_debug("%s: %d bytes transferred: %d\n",
171 mrq
->data
->bytes_xfered
, mrq
->data
->error
);
175 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
176 mmc_hostname(host
), mrq
->stop
->opcode
,
178 mrq
->stop
->resp
[0], mrq
->stop
->resp
[1],
179 mrq
->stop
->resp
[2], mrq
->stop
->resp
[3]);
187 EXPORT_SYMBOL(mmc_request_done
);
189 static void __mmc_start_request(struct mmc_host
*host
, struct mmc_request
*mrq
)
193 /* Assumes host controller has been runtime resumed by mmc_claim_host */
194 err
= mmc_retune(host
);
196 mrq
->cmd
->error
= err
;
197 mmc_request_done(host
, mrq
);
202 * For sdio rw commands we must wait for card busy otherwise some
203 * sdio devices won't work properly.
205 if (mmc_is_io_op(mrq
->cmd
->opcode
) && host
->ops
->card_busy
) {
206 int tries
= 500; /* Wait aprox 500ms at maximum */
208 while (host
->ops
->card_busy(host
) && --tries
)
212 mrq
->cmd
->error
= -EBUSY
;
213 mmc_request_done(host
, mrq
);
218 host
->ops
->request(host
, mrq
);
221 static int mmc_start_request(struct mmc_host
*host
, struct mmc_request
*mrq
)
223 #ifdef CONFIG_MMC_DEBUG
225 struct scatterlist
*sg
;
227 mmc_retune_hold(host
);
229 if (mmc_card_removed(host
->card
))
233 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
234 mmc_hostname(host
), mrq
->sbc
->opcode
,
235 mrq
->sbc
->arg
, mrq
->sbc
->flags
);
238 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
239 mmc_hostname(host
), mrq
->cmd
->opcode
,
240 mrq
->cmd
->arg
, mrq
->cmd
->flags
);
243 pr_debug("%s: blksz %d blocks %d flags %08x "
244 "tsac %d ms nsac %d\n",
245 mmc_hostname(host
), mrq
->data
->blksz
,
246 mrq
->data
->blocks
, mrq
->data
->flags
,
247 mrq
->data
->timeout_ns
/ 1000000,
248 mrq
->data
->timeout_clks
);
252 pr_debug("%s: CMD%u arg %08x flags %08x\n",
253 mmc_hostname(host
), mrq
->stop
->opcode
,
254 mrq
->stop
->arg
, mrq
->stop
->flags
);
257 WARN_ON(!host
->claimed
);
266 BUG_ON(mrq
->data
->blksz
> host
->max_blk_size
);
267 BUG_ON(mrq
->data
->blocks
> host
->max_blk_count
);
268 BUG_ON(mrq
->data
->blocks
* mrq
->data
->blksz
>
271 #ifdef CONFIG_MMC_DEBUG
273 for_each_sg(mrq
->data
->sg
, sg
, mrq
->data
->sg_len
, i
)
275 BUG_ON(sz
!= mrq
->data
->blocks
* mrq
->data
->blksz
);
278 mrq
->cmd
->data
= mrq
->data
;
279 mrq
->data
->error
= 0;
280 mrq
->data
->mrq
= mrq
;
282 mrq
->data
->stop
= mrq
->stop
;
283 mrq
->stop
->error
= 0;
284 mrq
->stop
->mrq
= mrq
;
287 led_trigger_event(host
->led
, LED_FULL
);
288 __mmc_start_request(host
, mrq
);
294 * mmc_start_bkops - start BKOPS for supported cards
295 * @card: MMC card to start BKOPS
296 * @form_exception: A flag to indicate if this function was
297 * called due to an exception raised by the card
299 * Start background operations whenever requested.
300 * When the urgent BKOPS bit is set in a R1 command response
301 * then background operations should be started immediately.
303 void mmc_start_bkops(struct mmc_card
*card
, bool from_exception
)
307 bool use_busy_signal
;
311 if (!card
->ext_csd
.man_bkops_en
|| mmc_card_doing_bkops(card
))
314 err
= mmc_read_bkops_status(card
);
316 pr_err("%s: Failed to read bkops status: %d\n",
317 mmc_hostname(card
->host
), err
);
321 if (!card
->ext_csd
.raw_bkops_status
)
324 if (card
->ext_csd
.raw_bkops_status
< EXT_CSD_BKOPS_LEVEL_2
&&
328 mmc_claim_host(card
->host
);
329 if (card
->ext_csd
.raw_bkops_status
>= EXT_CSD_BKOPS_LEVEL_2
) {
330 timeout
= MMC_BKOPS_MAX_TIMEOUT
;
331 use_busy_signal
= true;
334 use_busy_signal
= false;
337 mmc_retune_hold(card
->host
);
339 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
340 EXT_CSD_BKOPS_START
, 1, timeout
,
341 use_busy_signal
, true, false);
343 pr_warn("%s: Error %d starting bkops\n",
344 mmc_hostname(card
->host
), err
);
345 mmc_retune_release(card
->host
);
350 * For urgent bkops status (LEVEL_2 and more)
351 * bkops executed synchronously, otherwise
352 * the operation is in progress
354 if (!use_busy_signal
)
355 mmc_card_set_doing_bkops(card
);
357 mmc_retune_release(card
->host
);
359 mmc_release_host(card
->host
);
361 EXPORT_SYMBOL(mmc_start_bkops
);
364 * mmc_wait_data_done() - done callback for data request
365 * @mrq: done data request
367 * Wakes up mmc context, passed as a callback to host controller driver
369 static void mmc_wait_data_done(struct mmc_request
*mrq
)
371 struct mmc_context_info
*context_info
= &mrq
->host
->context_info
;
373 context_info
->is_done_rcv
= true;
374 wake_up_interruptible(&context_info
->wait
);
377 static void mmc_wait_done(struct mmc_request
*mrq
)
379 complete(&mrq
->completion
);
383 *__mmc_start_data_req() - starts data request
384 * @host: MMC host to start the request
385 * @mrq: data request to start
387 * Sets the done callback to be called when request is completed by the card.
388 * Starts data mmc request execution
390 static int __mmc_start_data_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
394 mrq
->done
= mmc_wait_data_done
;
397 err
= mmc_start_request(host
, mrq
);
399 mrq
->cmd
->error
= err
;
400 mmc_wait_data_done(mrq
);
406 static int __mmc_start_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
410 init_completion(&mrq
->completion
);
411 mrq
->done
= mmc_wait_done
;
413 err
= mmc_start_request(host
, mrq
);
415 mrq
->cmd
->error
= err
;
416 complete(&mrq
->completion
);
423 * mmc_wait_for_data_req_done() - wait for request completed
424 * @host: MMC host to prepare the command.
425 * @mrq: MMC request to wait for
427 * Blocks MMC context till host controller will ack end of data request
428 * execution or new request notification arrives from the block layer.
429 * Handles command retries.
431 * Returns enum mmc_blk_status after checking errors.
433 static int mmc_wait_for_data_req_done(struct mmc_host
*host
,
434 struct mmc_request
*mrq
,
435 struct mmc_async_req
*next_req
)
437 struct mmc_command
*cmd
;
438 struct mmc_context_info
*context_info
= &host
->context_info
;
443 wait_event_interruptible(context_info
->wait
,
444 (context_info
->is_done_rcv
||
445 context_info
->is_new_req
));
446 spin_lock_irqsave(&context_info
->lock
, flags
);
447 context_info
->is_waiting_last_req
= false;
448 spin_unlock_irqrestore(&context_info
->lock
, flags
);
449 if (context_info
->is_done_rcv
) {
450 context_info
->is_done_rcv
= false;
451 context_info
->is_new_req
= false;
454 if (!cmd
->error
|| !cmd
->retries
||
455 mmc_card_removed(host
->card
)) {
456 err
= host
->areq
->err_check(host
->card
,
458 break; /* return err */
460 mmc_retune_recheck(host
);
461 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
463 cmd
->opcode
, cmd
->error
);
466 __mmc_start_request(host
, mrq
);
467 continue; /* wait for done/new event again */
469 } else if (context_info
->is_new_req
) {
470 context_info
->is_new_req
= false;
472 return MMC_BLK_NEW_REQUEST
;
475 mmc_retune_release(host
);
479 static void mmc_wait_for_req_done(struct mmc_host
*host
,
480 struct mmc_request
*mrq
)
482 struct mmc_command
*cmd
;
485 wait_for_completion(&mrq
->completion
);
490 * If host has timed out waiting for the sanitize
491 * to complete, card might be still in programming state
492 * so let's try to bring the card out of programming
495 if (cmd
->sanitize_busy
&& cmd
->error
== -ETIMEDOUT
) {
496 if (!mmc_interrupt_hpi(host
->card
)) {
497 pr_warn("%s: %s: Interrupted sanitize\n",
498 mmc_hostname(host
), __func__
);
502 pr_err("%s: %s: Failed to interrupt sanitize\n",
503 mmc_hostname(host
), __func__
);
506 if (!cmd
->error
|| !cmd
->retries
||
507 mmc_card_removed(host
->card
))
510 mmc_retune_recheck(host
);
512 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
513 mmc_hostname(host
), cmd
->opcode
, cmd
->error
);
516 __mmc_start_request(host
, mrq
);
519 mmc_retune_release(host
);
523 * mmc_pre_req - Prepare for a new request
524 * @host: MMC host to prepare command
525 * @mrq: MMC request to prepare for
526 * @is_first_req: true if there is no previous started request
527 * that may run in parellel to this call, otherwise false
529 * mmc_pre_req() is called in prior to mmc_start_req() to let
530 * host prepare for the new request. Preparation of a request may be
531 * performed while another request is running on the host.
533 static void mmc_pre_req(struct mmc_host
*host
, struct mmc_request
*mrq
,
536 if (host
->ops
->pre_req
)
537 host
->ops
->pre_req(host
, mrq
, is_first_req
);
541 * mmc_post_req - Post process a completed request
542 * @host: MMC host to post process command
543 * @mrq: MMC request to post process for
544 * @err: Error, if non zero, clean up any resources made in pre_req
546 * Let the host post process a completed request. Post processing of
547 * a request may be performed while another reuqest is running.
549 static void mmc_post_req(struct mmc_host
*host
, struct mmc_request
*mrq
,
552 if (host
->ops
->post_req
)
553 host
->ops
->post_req(host
, mrq
, err
);
557 * mmc_start_req - start a non-blocking request
558 * @host: MMC host to start command
559 * @areq: async request to start
560 * @error: out parameter returns 0 for success, otherwise non zero
562 * Start a new MMC custom command request for a host.
563 * If there is on ongoing async request wait for completion
564 * of that request and start the new one and return.
565 * Does not wait for the new request to complete.
567 * Returns the completed request, NULL in case of none completed.
568 * Wait for the an ongoing request (previoulsy started) to complete and
569 * return the completed request. If there is no ongoing request, NULL
570 * is returned without waiting. NULL is not an error condition.
572 struct mmc_async_req
*mmc_start_req(struct mmc_host
*host
,
573 struct mmc_async_req
*areq
, int *error
)
577 struct mmc_async_req
*data
= host
->areq
;
579 /* Prepare a new request */
581 mmc_pre_req(host
, areq
->mrq
, !host
->areq
);
584 err
= mmc_wait_for_data_req_done(host
, host
->areq
->mrq
, areq
);
585 if (err
== MMC_BLK_NEW_REQUEST
) {
589 * The previous request was not completed,
595 * Check BKOPS urgency for each R1 response
597 if (host
->card
&& mmc_card_mmc(host
->card
) &&
598 ((mmc_resp_type(host
->areq
->mrq
->cmd
) == MMC_RSP_R1
) ||
599 (mmc_resp_type(host
->areq
->mrq
->cmd
) == MMC_RSP_R1B
)) &&
600 (host
->areq
->mrq
->cmd
->resp
[0] & R1_EXCEPTION_EVENT
)) {
602 /* Cancel the prepared request */
604 mmc_post_req(host
, areq
->mrq
, -EINVAL
);
606 mmc_start_bkops(host
->card
, true);
608 /* prepare the request again */
610 mmc_pre_req(host
, areq
->mrq
, !host
->areq
);
615 start_err
= __mmc_start_data_req(host
, areq
->mrq
);
618 mmc_post_req(host
, host
->areq
->mrq
, 0);
620 /* Cancel a prepared request if it was not started. */
621 if ((err
|| start_err
) && areq
)
622 mmc_post_req(host
, areq
->mrq
, -EINVAL
);
633 EXPORT_SYMBOL(mmc_start_req
);
636 * mmc_wait_for_req - start a request and wait for completion
637 * @host: MMC host to start command
638 * @mrq: MMC request to start
640 * Start a new MMC custom command request for a host, and wait
641 * for the command to complete. Does not attempt to parse the
644 void mmc_wait_for_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
646 __mmc_start_req(host
, mrq
);
647 mmc_wait_for_req_done(host
, mrq
);
649 EXPORT_SYMBOL(mmc_wait_for_req
);
652 * mmc_interrupt_hpi - Issue for High priority Interrupt
653 * @card: the MMC card associated with the HPI transfer
655 * Issued High Priority Interrupt, and check for card status
656 * until out-of prg-state.
658 int mmc_interrupt_hpi(struct mmc_card
*card
)
662 unsigned long prg_wait
;
666 if (!card
->ext_csd
.hpi_en
) {
667 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card
->host
));
671 mmc_claim_host(card
->host
);
672 err
= mmc_send_status(card
, &status
);
674 pr_err("%s: Get card status fail\n", mmc_hostname(card
->host
));
678 switch (R1_CURRENT_STATE(status
)) {
684 * In idle and transfer states, HPI is not needed and the caller
685 * can issue the next intended command immediately
691 /* In all other states, it's illegal to issue HPI */
692 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
693 mmc_hostname(card
->host
), R1_CURRENT_STATE(status
));
698 err
= mmc_send_hpi_cmd(card
, &status
);
702 prg_wait
= jiffies
+ msecs_to_jiffies(card
->ext_csd
.out_of_int_time
);
704 err
= mmc_send_status(card
, &status
);
706 if (!err
&& R1_CURRENT_STATE(status
) == R1_STATE_TRAN
)
708 if (time_after(jiffies
, prg_wait
))
713 mmc_release_host(card
->host
);
716 EXPORT_SYMBOL(mmc_interrupt_hpi
);
719 * mmc_wait_for_cmd - start a command and wait for completion
720 * @host: MMC host to start command
721 * @cmd: MMC command to start
722 * @retries: maximum number of retries
724 * Start a new MMC command for a host, and wait for the command
725 * to complete. Return any error that occurred while the command
726 * was executing. Do not attempt to parse the response.
728 int mmc_wait_for_cmd(struct mmc_host
*host
, struct mmc_command
*cmd
, int retries
)
730 struct mmc_request mrq
= {NULL
};
732 WARN_ON(!host
->claimed
);
734 memset(cmd
->resp
, 0, sizeof(cmd
->resp
));
735 cmd
->retries
= retries
;
740 mmc_wait_for_req(host
, &mrq
);
745 EXPORT_SYMBOL(mmc_wait_for_cmd
);
748 * mmc_stop_bkops - stop ongoing BKOPS
749 * @card: MMC card to check BKOPS
751 * Send HPI command to stop ongoing background operations to
752 * allow rapid servicing of foreground operations, e.g. read/
753 * writes. Wait until the card comes out of the programming state
754 * to avoid errors in servicing read/write requests.
756 int mmc_stop_bkops(struct mmc_card
*card
)
761 err
= mmc_interrupt_hpi(card
);
764 * If err is EINVAL, we can't issue an HPI.
765 * It should complete the BKOPS.
767 if (!err
|| (err
== -EINVAL
)) {
768 mmc_card_clr_doing_bkops(card
);
769 mmc_retune_release(card
->host
);
775 EXPORT_SYMBOL(mmc_stop_bkops
);
777 int mmc_read_bkops_status(struct mmc_card
*card
)
782 mmc_claim_host(card
->host
);
783 err
= mmc_get_ext_csd(card
, &ext_csd
);
784 mmc_release_host(card
->host
);
788 card
->ext_csd
.raw_bkops_status
= ext_csd
[EXT_CSD_BKOPS_STATUS
];
789 card
->ext_csd
.raw_exception_status
= ext_csd
[EXT_CSD_EXP_EVENTS_STATUS
];
793 EXPORT_SYMBOL(mmc_read_bkops_status
);
796 * mmc_set_data_timeout - set the timeout for a data command
797 * @data: data phase for command
798 * @card: the MMC card associated with the data transfer
800 * Computes the data timeout parameters according to the
801 * correct algorithm given the card type.
803 void mmc_set_data_timeout(struct mmc_data
*data
, const struct mmc_card
*card
)
808 * SDIO cards only define an upper 1 s limit on access.
810 if (mmc_card_sdio(card
)) {
811 data
->timeout_ns
= 1000000000;
812 data
->timeout_clks
= 0;
817 * SD cards use a 100 multiplier rather than 10
819 mult
= mmc_card_sd(card
) ? 100 : 10;
822 * Scale up the multiplier (and therefore the timeout) by
823 * the r2w factor for writes.
825 if (data
->flags
& MMC_DATA_WRITE
)
826 mult
<<= card
->csd
.r2w_factor
;
828 data
->timeout_ns
= card
->csd
.tacc_ns
* mult
;
829 data
->timeout_clks
= card
->csd
.tacc_clks
* mult
;
832 * SD cards also have an upper limit on the timeout.
834 if (mmc_card_sd(card
)) {
835 unsigned int timeout_us
, limit_us
;
837 timeout_us
= data
->timeout_ns
/ 1000;
838 if (card
->host
->ios
.clock
)
839 timeout_us
+= data
->timeout_clks
* 1000 /
840 (card
->host
->ios
.clock
/ 1000);
842 if (data
->flags
& MMC_DATA_WRITE
)
844 * The MMC spec "It is strongly recommended
845 * for hosts to implement more than 500ms
846 * timeout value even if the card indicates
847 * the 250ms maximum busy length." Even the
848 * previous value of 300ms is known to be
849 * insufficient for some cards.
856 * SDHC cards always use these fixed values.
858 if (timeout_us
> limit_us
|| mmc_card_blockaddr(card
)) {
859 data
->timeout_ns
= limit_us
* 1000;
860 data
->timeout_clks
= 0;
863 /* assign limit value if invalid */
865 data
->timeout_ns
= limit_us
* 1000;
869 * Some cards require longer data read timeout than indicated in CSD.
870 * Address this by setting the read timeout to a "reasonably high"
871 * value. For the cards tested, 300ms has proven enough. If necessary,
872 * this value can be increased if other problematic cards require this.
874 if (mmc_card_long_read_time(card
) && data
->flags
& MMC_DATA_READ
) {
875 data
->timeout_ns
= 300000000;
876 data
->timeout_clks
= 0;
880 * Some cards need very high timeouts if driven in SPI mode.
881 * The worst observed timeout was 900ms after writing a
882 * continuous stream of data until the internal logic
885 if (mmc_host_is_spi(card
->host
)) {
886 if (data
->flags
& MMC_DATA_WRITE
) {
887 if (data
->timeout_ns
< 1000000000)
888 data
->timeout_ns
= 1000000000; /* 1s */
890 if (data
->timeout_ns
< 100000000)
891 data
->timeout_ns
= 100000000; /* 100ms */
895 EXPORT_SYMBOL(mmc_set_data_timeout
);
898 * mmc_align_data_size - pads a transfer size to a more optimal value
899 * @card: the MMC card associated with the data transfer
900 * @sz: original transfer size
902 * Pads the original data size with a number of extra bytes in
903 * order to avoid controller bugs and/or performance hits
904 * (e.g. some controllers revert to PIO for certain sizes).
906 * Returns the improved size, which might be unmodified.
908 * Note that this function is only relevant when issuing a
909 * single scatter gather entry.
911 unsigned int mmc_align_data_size(struct mmc_card
*card
, unsigned int sz
)
914 * FIXME: We don't have a system for the controller to tell
915 * the core about its problems yet, so for now we just 32-bit
918 sz
= ((sz
+ 3) / 4) * 4;
922 EXPORT_SYMBOL(mmc_align_data_size
);
925 * __mmc_claim_host - exclusively claim a host
926 * @host: mmc host to claim
927 * @abort: whether or not the operation should be aborted
929 * Claim a host for a set of operations. If @abort is non null and
930 * dereference a non-zero value then this will return prematurely with
931 * that non-zero value without acquiring the lock. Returns zero
932 * with the lock held otherwise.
934 int __mmc_claim_host(struct mmc_host
*host
, atomic_t
*abort
)
936 DECLARE_WAITQUEUE(wait
, current
);
943 add_wait_queue(&host
->wq
, &wait
);
944 spin_lock_irqsave(&host
->lock
, flags
);
946 set_current_state(TASK_UNINTERRUPTIBLE
);
947 stop
= abort
? atomic_read(abort
) : 0;
948 if (stop
|| !host
->claimed
|| host
->claimer
== current
)
950 spin_unlock_irqrestore(&host
->lock
, flags
);
952 spin_lock_irqsave(&host
->lock
, flags
);
954 set_current_state(TASK_RUNNING
);
957 host
->claimer
= current
;
958 host
->claim_cnt
+= 1;
959 if (host
->claim_cnt
== 1)
963 spin_unlock_irqrestore(&host
->lock
, flags
);
964 remove_wait_queue(&host
->wq
, &wait
);
967 pm_runtime_get_sync(mmc_dev(host
));
971 EXPORT_SYMBOL(__mmc_claim_host
);
974 * mmc_release_host - release a host
975 * @host: mmc host to release
977 * Release a MMC host, allowing others to claim the host
978 * for their operations.
980 void mmc_release_host(struct mmc_host
*host
)
984 WARN_ON(!host
->claimed
);
986 spin_lock_irqsave(&host
->lock
, flags
);
987 if (--host
->claim_cnt
) {
988 /* Release for nested claim */
989 spin_unlock_irqrestore(&host
->lock
, flags
);
992 host
->claimer
= NULL
;
993 spin_unlock_irqrestore(&host
->lock
, flags
);
995 pm_runtime_mark_last_busy(mmc_dev(host
));
996 pm_runtime_put_autosuspend(mmc_dev(host
));
999 EXPORT_SYMBOL(mmc_release_host
);
1002 * This is a helper function, which fetches a runtime pm reference for the
1003 * card device and also claims the host.
1005 void mmc_get_card(struct mmc_card
*card
)
1007 pm_runtime_get_sync(&card
->dev
);
1008 mmc_claim_host(card
->host
);
1010 EXPORT_SYMBOL(mmc_get_card
);
1013 * This is a helper function, which releases the host and drops the runtime
1014 * pm reference for the card device.
1016 void mmc_put_card(struct mmc_card
*card
)
1018 mmc_release_host(card
->host
);
1019 pm_runtime_mark_last_busy(&card
->dev
);
1020 pm_runtime_put_autosuspend(&card
->dev
);
1022 EXPORT_SYMBOL(mmc_put_card
);
1025 * Internal function that does the actual ios call to the host driver,
1026 * optionally printing some debug output.
1028 static inline void mmc_set_ios(struct mmc_host
*host
)
1030 struct mmc_ios
*ios
= &host
->ios
;
1032 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1033 "width %u timing %u\n",
1034 mmc_hostname(host
), ios
->clock
, ios
->bus_mode
,
1035 ios
->power_mode
, ios
->chip_select
, ios
->vdd
,
1036 ios
->bus_width
, ios
->timing
);
1038 host
->ops
->set_ios(host
, ios
);
1042 * Control chip select pin on a host.
1044 void mmc_set_chip_select(struct mmc_host
*host
, int mode
)
1046 host
->ios
.chip_select
= mode
;
1051 * Sets the host clock to the highest possible frequency that
1054 void mmc_set_clock(struct mmc_host
*host
, unsigned int hz
)
1056 WARN_ON(hz
&& hz
< host
->f_min
);
1058 if (hz
> host
->f_max
)
1061 host
->ios
.clock
= hz
;
1065 int mmc_execute_tuning(struct mmc_card
*card
)
1067 struct mmc_host
*host
= card
->host
;
1071 if (!host
->ops
->execute_tuning
)
1074 if (mmc_card_mmc(card
))
1075 opcode
= MMC_SEND_TUNING_BLOCK_HS200
;
1077 opcode
= MMC_SEND_TUNING_BLOCK
;
1079 err
= host
->ops
->execute_tuning(host
, opcode
);
1082 pr_err("%s: tuning execution failed\n", mmc_hostname(host
));
1084 mmc_retune_enable(host
);
1090 * Change the bus mode (open drain/push-pull) of a host.
1092 void mmc_set_bus_mode(struct mmc_host
*host
, unsigned int mode
)
1094 host
->ios
.bus_mode
= mode
;
1099 * Change data bus width of a host.
1101 void mmc_set_bus_width(struct mmc_host
*host
, unsigned int width
)
1103 host
->ios
.bus_width
= width
;
1108 * Set initial state after a power cycle or a hw_reset.
1110 void mmc_set_initial_state(struct mmc_host
*host
)
1112 mmc_retune_disable(host
);
1114 if (mmc_host_is_spi(host
))
1115 host
->ios
.chip_select
= MMC_CS_HIGH
;
1117 host
->ios
.chip_select
= MMC_CS_DONTCARE
;
1118 host
->ios
.bus_mode
= MMC_BUSMODE_PUSHPULL
;
1119 host
->ios
.bus_width
= MMC_BUS_WIDTH_1
;
1120 host
->ios
.timing
= MMC_TIMING_LEGACY
;
1121 host
->ios
.drv_type
= 0;
1127 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1128 * @vdd: voltage (mV)
1129 * @low_bits: prefer low bits in boundary cases
1131 * This function returns the OCR bit number according to the provided @vdd
1132 * value. If conversion is not possible a negative errno value returned.
1134 * Depending on the @low_bits flag the function prefers low or high OCR bits
1135 * on boundary voltages. For example,
1136 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1137 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1139 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1141 static int mmc_vdd_to_ocrbitnum(int vdd
, bool low_bits
)
1143 const int max_bit
= ilog2(MMC_VDD_35_36
);
1146 if (vdd
< 1650 || vdd
> 3600)
1149 if (vdd
>= 1650 && vdd
<= 1950)
1150 return ilog2(MMC_VDD_165_195
);
1155 /* Base 2000 mV, step 100 mV, bit's base 8. */
1156 bit
= (vdd
- 2000) / 100 + 8;
1163 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1164 * @vdd_min: minimum voltage value (mV)
1165 * @vdd_max: maximum voltage value (mV)
1167 * This function returns the OCR mask bits according to the provided @vdd_min
1168 * and @vdd_max values. If conversion is not possible the function returns 0.
1170 * Notes wrt boundary cases:
1171 * This function sets the OCR bits for all boundary voltages, for example
1172 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1173 * MMC_VDD_34_35 mask.
1175 u32
mmc_vddrange_to_ocrmask(int vdd_min
, int vdd_max
)
1179 if (vdd_max
< vdd_min
)
1182 /* Prefer high bits for the boundary vdd_max values. */
1183 vdd_max
= mmc_vdd_to_ocrbitnum(vdd_max
, false);
1187 /* Prefer low bits for the boundary vdd_min values. */
1188 vdd_min
= mmc_vdd_to_ocrbitnum(vdd_min
, true);
1192 /* Fill the mask, from max bit to min bit. */
1193 while (vdd_max
>= vdd_min
)
1194 mask
|= 1 << vdd_max
--;
1198 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask
);
1203 * mmc_of_parse_voltage - return mask of supported voltages
1204 * @np: The device node need to be parsed.
1205 * @mask: mask of voltages available for MMC/SD/SDIO
1207 * 1. Return zero on success.
1208 * 2. Return negative errno: voltage-range is invalid.
1210 int mmc_of_parse_voltage(struct device_node
*np
, u32
*mask
)
1212 const u32
*voltage_ranges
;
1215 voltage_ranges
= of_get_property(np
, "voltage-ranges", &num_ranges
);
1216 num_ranges
= num_ranges
/ sizeof(*voltage_ranges
) / 2;
1217 if (!voltage_ranges
|| !num_ranges
) {
1218 pr_info("%s: voltage-ranges unspecified\n", np
->full_name
);
1222 for (i
= 0; i
< num_ranges
; i
++) {
1223 const int j
= i
* 2;
1226 ocr_mask
= mmc_vddrange_to_ocrmask(
1227 be32_to_cpu(voltage_ranges
[j
]),
1228 be32_to_cpu(voltage_ranges
[j
+ 1]));
1230 pr_err("%s: voltage-range #%d is invalid\n",
1239 EXPORT_SYMBOL(mmc_of_parse_voltage
);
1241 #endif /* CONFIG_OF */
1243 static int mmc_of_get_func_num(struct device_node
*node
)
1248 ret
= of_property_read_u32(node
, "reg", ®
);
1255 struct device_node
*mmc_of_find_child_device(struct mmc_host
*host
,
1258 struct device_node
*node
;
1260 if (!host
->parent
|| !host
->parent
->of_node
)
1263 for_each_child_of_node(host
->parent
->of_node
, node
) {
1264 if (mmc_of_get_func_num(node
) == func_num
)
1271 #ifdef CONFIG_REGULATOR
1274 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1275 * @vdd_bit: OCR bit number
1276 * @min_uV: minimum voltage value (mV)
1277 * @max_uV: maximum voltage value (mV)
1279 * This function returns the voltage range according to the provided OCR
1280 * bit number. If conversion is not possible a negative errno value returned.
1282 static int mmc_ocrbitnum_to_vdd(int vdd_bit
, int *min_uV
, int *max_uV
)
1290 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1291 * bits this regulator doesn't quite support ... don't
1292 * be too picky, most cards and regulators are OK with
1293 * a 0.1V range goof (it's a small error percentage).
1295 tmp
= vdd_bit
- ilog2(MMC_VDD_165_195
);
1297 *min_uV
= 1650 * 1000;
1298 *max_uV
= 1950 * 1000;
1300 *min_uV
= 1900 * 1000 + tmp
* 100 * 1000;
1301 *max_uV
= *min_uV
+ 100 * 1000;
1308 * mmc_regulator_get_ocrmask - return mask of supported voltages
1309 * @supply: regulator to use
1311 * This returns either a negative errno, or a mask of voltages that
1312 * can be provided to MMC/SD/SDIO devices using the specified voltage
1313 * regulator. This would normally be called before registering the
1316 int mmc_regulator_get_ocrmask(struct regulator
*supply
)
1324 count
= regulator_count_voltages(supply
);
1328 for (i
= 0; i
< count
; i
++) {
1329 vdd_uV
= regulator_list_voltage(supply
, i
);
1333 vdd_mV
= vdd_uV
/ 1000;
1334 result
|= mmc_vddrange_to_ocrmask(vdd_mV
, vdd_mV
);
1338 vdd_uV
= regulator_get_voltage(supply
);
1342 vdd_mV
= vdd_uV
/ 1000;
1343 result
= mmc_vddrange_to_ocrmask(vdd_mV
, vdd_mV
);
1348 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask
);
1351 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1352 * @mmc: the host to regulate
1353 * @supply: regulator to use
1354 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1356 * Returns zero on success, else negative errno.
1358 * MMC host drivers may use this to enable or disable a regulator using
1359 * a particular supply voltage. This would normally be called from the
1362 int mmc_regulator_set_ocr(struct mmc_host
*mmc
,
1363 struct regulator
*supply
,
1364 unsigned short vdd_bit
)
1370 mmc_ocrbitnum_to_vdd(vdd_bit
, &min_uV
, &max_uV
);
1372 result
= regulator_set_voltage(supply
, min_uV
, max_uV
);
1373 if (result
== 0 && !mmc
->regulator_enabled
) {
1374 result
= regulator_enable(supply
);
1376 mmc
->regulator_enabled
= true;
1378 } else if (mmc
->regulator_enabled
) {
1379 result
= regulator_disable(supply
);
1381 mmc
->regulator_enabled
= false;
1385 dev_err(mmc_dev(mmc
),
1386 "could not set regulator OCR (%d)\n", result
);
1389 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr
);
1391 static int mmc_regulator_set_voltage_if_supported(struct regulator
*regulator
,
1392 int min_uV
, int target_uV
,
1396 * Check if supported first to avoid errors since we may try several
1397 * signal levels during power up and don't want to show errors.
1399 if (!regulator_is_supported_voltage(regulator
, min_uV
, max_uV
))
1402 return regulator_set_voltage_triplet(regulator
, min_uV
, target_uV
,
1407 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1409 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1410 * That will match the behavior of old boards where VQMMC and VMMC were supplied
1411 * by the same supply. The Bus Operating conditions for 3.3V signaling in the
1412 * SD card spec also define VQMMC in terms of VMMC.
1413 * If this is not possible we'll try the full 2.7-3.6V of the spec.
1415 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1416 * requested voltage. This is definitely a good idea for UHS where there's a
1417 * separate regulator on the card that's trying to make 1.8V and it's best if
1420 * This function is expected to be used by a controller's
1421 * start_signal_voltage_switch() function.
1423 int mmc_regulator_set_vqmmc(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1425 struct device
*dev
= mmc_dev(mmc
);
1426 int ret
, volt
, min_uV
, max_uV
;
1428 /* If no vqmmc supply then we can't change the voltage */
1429 if (IS_ERR(mmc
->supply
.vqmmc
))
1432 switch (ios
->signal_voltage
) {
1433 case MMC_SIGNAL_VOLTAGE_120
:
1434 return mmc_regulator_set_voltage_if_supported(mmc
->supply
.vqmmc
,
1435 1100000, 1200000, 1300000);
1436 case MMC_SIGNAL_VOLTAGE_180
:
1437 return mmc_regulator_set_voltage_if_supported(mmc
->supply
.vqmmc
,
1438 1700000, 1800000, 1950000);
1439 case MMC_SIGNAL_VOLTAGE_330
:
1440 ret
= mmc_ocrbitnum_to_vdd(mmc
->ios
.vdd
, &volt
, &max_uV
);
1444 dev_dbg(dev
, "%s: found vmmc voltage range of %d-%duV\n",
1445 __func__
, volt
, max_uV
);
1447 min_uV
= max(volt
- 300000, 2700000);
1448 max_uV
= min(max_uV
+ 200000, 3600000);
1451 * Due to a limitation in the current implementation of
1452 * regulator_set_voltage_triplet() which is taking the lowest
1453 * voltage possible if below the target, search for a suitable
1454 * voltage in two steps and try to stay close to vmmc
1455 * with a 0.3V tolerance at first.
1457 if (!mmc_regulator_set_voltage_if_supported(mmc
->supply
.vqmmc
,
1458 min_uV
, volt
, max_uV
))
1461 return mmc_regulator_set_voltage_if_supported(mmc
->supply
.vqmmc
,
1462 2700000, volt
, 3600000);
1467 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc
);
1469 #endif /* CONFIG_REGULATOR */
1471 int mmc_regulator_get_supply(struct mmc_host
*mmc
)
1473 struct device
*dev
= mmc_dev(mmc
);
1476 mmc
->supply
.vmmc
= devm_regulator_get_optional(dev
, "vmmc");
1477 mmc
->supply
.vqmmc
= devm_regulator_get_optional(dev
, "vqmmc");
1479 if (IS_ERR(mmc
->supply
.vmmc
)) {
1480 if (PTR_ERR(mmc
->supply
.vmmc
) == -EPROBE_DEFER
)
1481 return -EPROBE_DEFER
;
1482 dev_dbg(dev
, "No vmmc regulator found\n");
1484 ret
= mmc_regulator_get_ocrmask(mmc
->supply
.vmmc
);
1486 mmc
->ocr_avail
= ret
;
1488 dev_warn(dev
, "Failed getting OCR mask: %d\n", ret
);
1491 if (IS_ERR(mmc
->supply
.vqmmc
)) {
1492 if (PTR_ERR(mmc
->supply
.vqmmc
) == -EPROBE_DEFER
)
1493 return -EPROBE_DEFER
;
1494 dev_dbg(dev
, "No vqmmc regulator found\n");
1499 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply
);
1502 * Mask off any voltages we don't support and select
1503 * the lowest voltage
1505 u32
mmc_select_voltage(struct mmc_host
*host
, u32 ocr
)
1510 * Sanity check the voltages that the card claims to
1514 dev_warn(mmc_dev(host
),
1515 "card claims to support voltages below defined range\n");
1519 ocr
&= host
->ocr_avail
;
1521 dev_warn(mmc_dev(host
), "no support for card's volts\n");
1525 if (host
->caps2
& MMC_CAP2_FULL_PWR_CYCLE
) {
1528 mmc_power_cycle(host
, ocr
);
1532 if (bit
!= host
->ios
.vdd
)
1533 dev_warn(mmc_dev(host
), "exceeding card's volts\n");
1539 int __mmc_set_signal_voltage(struct mmc_host
*host
, int signal_voltage
)
1542 int old_signal_voltage
= host
->ios
.signal_voltage
;
1544 host
->ios
.signal_voltage
= signal_voltage
;
1545 if (host
->ops
->start_signal_voltage_switch
)
1546 err
= host
->ops
->start_signal_voltage_switch(host
, &host
->ios
);
1549 host
->ios
.signal_voltage
= old_signal_voltage
;
1555 int mmc_set_signal_voltage(struct mmc_host
*host
, int signal_voltage
, u32 ocr
)
1557 struct mmc_command cmd
= {0};
1564 * Send CMD11 only if the request is to switch the card to
1567 if (signal_voltage
== MMC_SIGNAL_VOLTAGE_330
)
1568 return __mmc_set_signal_voltage(host
, signal_voltage
);
1571 * If we cannot switch voltages, return failure so the caller
1572 * can continue without UHS mode
1574 if (!host
->ops
->start_signal_voltage_switch
)
1576 if (!host
->ops
->card_busy
)
1577 pr_warn("%s: cannot verify signal voltage switch\n",
1578 mmc_hostname(host
));
1580 cmd
.opcode
= SD_SWITCH_VOLTAGE
;
1582 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
1584 err
= mmc_wait_for_cmd(host
, &cmd
, 0);
1588 if (!mmc_host_is_spi(host
) && (cmd
.resp
[0] & R1_ERROR
))
1592 * The card should drive cmd and dat[0:3] low immediately
1593 * after the response of cmd11, but wait 1 ms to be sure
1596 if (host
->ops
->card_busy
&& !host
->ops
->card_busy(host
)) {
1601 * During a signal voltage level switch, the clock must be gated
1602 * for 5 ms according to the SD spec
1604 clock
= host
->ios
.clock
;
1605 host
->ios
.clock
= 0;
1608 if (__mmc_set_signal_voltage(host
, signal_voltage
)) {
1610 * Voltages may not have been switched, but we've already
1611 * sent CMD11, so a power cycle is required anyway
1617 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1619 host
->ios
.clock
= clock
;
1622 /* Wait for at least 1 ms according to spec */
1626 * Failure to switch is indicated by the card holding
1629 if (host
->ops
->card_busy
&& host
->ops
->card_busy(host
))
1634 pr_debug("%s: Signal voltage switch failed, "
1635 "power cycling card\n", mmc_hostname(host
));
1636 mmc_power_cycle(host
, ocr
);
1643 * Select timing parameters for host.
1645 void mmc_set_timing(struct mmc_host
*host
, unsigned int timing
)
1647 host
->ios
.timing
= timing
;
1652 * Select appropriate driver type for host.
1654 void mmc_set_driver_type(struct mmc_host
*host
, unsigned int drv_type
)
1656 host
->ios
.drv_type
= drv_type
;
1660 int mmc_select_drive_strength(struct mmc_card
*card
, unsigned int max_dtr
,
1661 int card_drv_type
, int *drv_type
)
1663 struct mmc_host
*host
= card
->host
;
1664 int host_drv_type
= SD_DRIVER_TYPE_B
;
1668 if (!host
->ops
->select_drive_strength
)
1671 /* Use SD definition of driver strength for hosts */
1672 if (host
->caps
& MMC_CAP_DRIVER_TYPE_A
)
1673 host_drv_type
|= SD_DRIVER_TYPE_A
;
1675 if (host
->caps
& MMC_CAP_DRIVER_TYPE_C
)
1676 host_drv_type
|= SD_DRIVER_TYPE_C
;
1678 if (host
->caps
& MMC_CAP_DRIVER_TYPE_D
)
1679 host_drv_type
|= SD_DRIVER_TYPE_D
;
1682 * The drive strength that the hardware can support
1683 * depends on the board design. Pass the appropriate
1684 * information and let the hardware specific code
1685 * return what is possible given the options
1687 return host
->ops
->select_drive_strength(card
, max_dtr
,
1694 * Apply power to the MMC stack. This is a two-stage process.
1695 * First, we enable power to the card without the clock running.
1696 * We then wait a bit for the power to stabilise. Finally,
1697 * enable the bus drivers and clock to the card.
1699 * We must _NOT_ enable the clock prior to power stablising.
1701 * If a host does all the power sequencing itself, ignore the
1702 * initial MMC_POWER_UP stage.
1704 void mmc_power_up(struct mmc_host
*host
, u32 ocr
)
1706 if (host
->ios
.power_mode
== MMC_POWER_ON
)
1709 mmc_pwrseq_pre_power_on(host
);
1711 host
->ios
.vdd
= fls(ocr
) - 1;
1712 host
->ios
.power_mode
= MMC_POWER_UP
;
1713 /* Set initial state and call mmc_set_ios */
1714 mmc_set_initial_state(host
);
1716 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1717 if (__mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_330
) == 0)
1718 dev_dbg(mmc_dev(host
), "Initial signal voltage of 3.3v\n");
1719 else if (__mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_180
) == 0)
1720 dev_dbg(mmc_dev(host
), "Initial signal voltage of 1.8v\n");
1721 else if (__mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_120
) == 0)
1722 dev_dbg(mmc_dev(host
), "Initial signal voltage of 1.2v\n");
1725 * This delay should be sufficient to allow the power supply
1726 * to reach the minimum voltage.
1730 mmc_pwrseq_post_power_on(host
);
1732 host
->ios
.clock
= host
->f_init
;
1734 host
->ios
.power_mode
= MMC_POWER_ON
;
1738 * This delay must be at least 74 clock sizes, or 1 ms, or the
1739 * time required to reach a stable voltage.
1744 void mmc_power_off(struct mmc_host
*host
)
1746 if (host
->ios
.power_mode
== MMC_POWER_OFF
)
1749 mmc_pwrseq_power_off(host
);
1751 host
->ios
.clock
= 0;
1754 host
->ios
.power_mode
= MMC_POWER_OFF
;
1755 /* Set initial state and call mmc_set_ios */
1756 mmc_set_initial_state(host
);
1759 * Some configurations, such as the 802.11 SDIO card in the OLPC
1760 * XO-1.5, require a short delay after poweroff before the card
1761 * can be successfully turned on again.
1766 void mmc_power_cycle(struct mmc_host
*host
, u32 ocr
)
1768 mmc_power_off(host
);
1769 /* Wait at least 1 ms according to SD spec */
1771 mmc_power_up(host
, ocr
);
1775 * Cleanup when the last reference to the bus operator is dropped.
1777 static void __mmc_release_bus(struct mmc_host
*host
)
1780 BUG_ON(host
->bus_refs
);
1781 BUG_ON(!host
->bus_dead
);
1783 host
->bus_ops
= NULL
;
1787 * Increase reference count of bus operator
1789 static inline void mmc_bus_get(struct mmc_host
*host
)
1791 unsigned long flags
;
1793 spin_lock_irqsave(&host
->lock
, flags
);
1795 spin_unlock_irqrestore(&host
->lock
, flags
);
1799 * Decrease reference count of bus operator and free it if
1800 * it is the last reference.
1802 static inline void mmc_bus_put(struct mmc_host
*host
)
1804 unsigned long flags
;
1806 spin_lock_irqsave(&host
->lock
, flags
);
1808 if ((host
->bus_refs
== 0) && host
->bus_ops
)
1809 __mmc_release_bus(host
);
1810 spin_unlock_irqrestore(&host
->lock
, flags
);
1814 * Assign a mmc bus handler to a host. Only one bus handler may control a
1815 * host at any given time.
1817 void mmc_attach_bus(struct mmc_host
*host
, const struct mmc_bus_ops
*ops
)
1819 unsigned long flags
;
1824 WARN_ON(!host
->claimed
);
1826 spin_lock_irqsave(&host
->lock
, flags
);
1828 BUG_ON(host
->bus_ops
);
1829 BUG_ON(host
->bus_refs
);
1831 host
->bus_ops
= ops
;
1835 spin_unlock_irqrestore(&host
->lock
, flags
);
1839 * Remove the current bus handler from a host.
1841 void mmc_detach_bus(struct mmc_host
*host
)
1843 unsigned long flags
;
1847 WARN_ON(!host
->claimed
);
1848 WARN_ON(!host
->bus_ops
);
1850 spin_lock_irqsave(&host
->lock
, flags
);
1854 spin_unlock_irqrestore(&host
->lock
, flags
);
1859 static void _mmc_detect_change(struct mmc_host
*host
, unsigned long delay
,
1862 #ifdef CONFIG_MMC_DEBUG
1863 unsigned long flags
;
1864 spin_lock_irqsave(&host
->lock
, flags
);
1865 WARN_ON(host
->removed
);
1866 spin_unlock_irqrestore(&host
->lock
, flags
);
1870 * If the device is configured as wakeup, we prevent a new sleep for
1871 * 5 s to give provision for user space to consume the event.
1873 if (cd_irq
&& !(host
->caps
& MMC_CAP_NEEDS_POLL
) &&
1874 device_can_wakeup(mmc_dev(host
)))
1875 pm_wakeup_event(mmc_dev(host
), 5000);
1877 host
->detect_change
= 1;
1878 mmc_schedule_delayed_work(&host
->detect
, delay
);
1882 * mmc_detect_change - process change of state on a MMC socket
1883 * @host: host which changed state.
1884 * @delay: optional delay to wait before detection (jiffies)
1886 * MMC drivers should call this when they detect a card has been
1887 * inserted or removed. The MMC layer will confirm that any
1888 * present card is still functional, and initialize any newly
1891 void mmc_detect_change(struct mmc_host
*host
, unsigned long delay
)
1893 _mmc_detect_change(host
, delay
, true);
1895 EXPORT_SYMBOL(mmc_detect_change
);
1897 void mmc_init_erase(struct mmc_card
*card
)
1901 if (is_power_of_2(card
->erase_size
))
1902 card
->erase_shift
= ffs(card
->erase_size
) - 1;
1904 card
->erase_shift
= 0;
1907 * It is possible to erase an arbitrarily large area of an SD or MMC
1908 * card. That is not desirable because it can take a long time
1909 * (minutes) potentially delaying more important I/O, and also the
1910 * timeout calculations become increasingly hugely over-estimated.
1911 * Consequently, 'pref_erase' is defined as a guide to limit erases
1912 * to that size and alignment.
1914 * For SD cards that define Allocation Unit size, limit erases to one
1915 * Allocation Unit at a time. For MMC cards that define High Capacity
1916 * Erase Size, whether it is switched on or not, limit to that size.
1917 * Otherwise just have a stab at a good value. For modern cards it
1918 * will end up being 4MiB. Note that if the value is too small, it
1919 * can end up taking longer to erase.
1921 if (mmc_card_sd(card
) && card
->ssr
.au
) {
1922 card
->pref_erase
= card
->ssr
.au
;
1923 card
->erase_shift
= ffs(card
->ssr
.au
) - 1;
1924 } else if (card
->ext_csd
.hc_erase_size
) {
1925 card
->pref_erase
= card
->ext_csd
.hc_erase_size
;
1926 } else if (card
->erase_size
) {
1927 sz
= (card
->csd
.capacity
<< (card
->csd
.read_blkbits
- 9)) >> 11;
1929 card
->pref_erase
= 512 * 1024 / 512;
1931 card
->pref_erase
= 1024 * 1024 / 512;
1933 card
->pref_erase
= 2 * 1024 * 1024 / 512;
1935 card
->pref_erase
= 4 * 1024 * 1024 / 512;
1936 if (card
->pref_erase
< card
->erase_size
)
1937 card
->pref_erase
= card
->erase_size
;
1939 sz
= card
->pref_erase
% card
->erase_size
;
1941 card
->pref_erase
+= card
->erase_size
- sz
;
1944 card
->pref_erase
= 0;
1947 static unsigned int mmc_mmc_erase_timeout(struct mmc_card
*card
,
1948 unsigned int arg
, unsigned int qty
)
1950 unsigned int erase_timeout
;
1952 if (arg
== MMC_DISCARD_ARG
||
1953 (arg
== MMC_TRIM_ARG
&& card
->ext_csd
.rev
>= 6)) {
1954 erase_timeout
= card
->ext_csd
.trim_timeout
;
1955 } else if (card
->ext_csd
.erase_group_def
& 1) {
1956 /* High Capacity Erase Group Size uses HC timeouts */
1957 if (arg
== MMC_TRIM_ARG
)
1958 erase_timeout
= card
->ext_csd
.trim_timeout
;
1960 erase_timeout
= card
->ext_csd
.hc_erase_timeout
;
1962 /* CSD Erase Group Size uses write timeout */
1963 unsigned int mult
= (10 << card
->csd
.r2w_factor
);
1964 unsigned int timeout_clks
= card
->csd
.tacc_clks
* mult
;
1965 unsigned int timeout_us
;
1967 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1968 if (card
->csd
.tacc_ns
< 1000000)
1969 timeout_us
= (card
->csd
.tacc_ns
* mult
) / 1000;
1971 timeout_us
= (card
->csd
.tacc_ns
/ 1000) * mult
;
1974 * ios.clock is only a target. The real clock rate might be
1975 * less but not that much less, so fudge it by multiplying by 2.
1978 timeout_us
+= (timeout_clks
* 1000) /
1979 (card
->host
->ios
.clock
/ 1000);
1981 erase_timeout
= timeout_us
/ 1000;
1984 * Theoretically, the calculation could underflow so round up
1985 * to 1ms in that case.
1991 /* Multiplier for secure operations */
1992 if (arg
& MMC_SECURE_ARGS
) {
1993 if (arg
== MMC_SECURE_ERASE_ARG
)
1994 erase_timeout
*= card
->ext_csd
.sec_erase_mult
;
1996 erase_timeout
*= card
->ext_csd
.sec_trim_mult
;
1999 erase_timeout
*= qty
;
2002 * Ensure at least a 1 second timeout for SPI as per
2003 * 'mmc_set_data_timeout()'
2005 if (mmc_host_is_spi(card
->host
) && erase_timeout
< 1000)
2006 erase_timeout
= 1000;
2008 return erase_timeout
;
2011 static unsigned int mmc_sd_erase_timeout(struct mmc_card
*card
,
2015 unsigned int erase_timeout
;
2017 if (card
->ssr
.erase_timeout
) {
2018 /* Erase timeout specified in SD Status Register (SSR) */
2019 erase_timeout
= card
->ssr
.erase_timeout
* qty
+
2020 card
->ssr
.erase_offset
;
2023 * Erase timeout not specified in SD Status Register (SSR) so
2024 * use 250ms per write block.
2026 erase_timeout
= 250 * qty
;
2029 /* Must not be less than 1 second */
2030 if (erase_timeout
< 1000)
2031 erase_timeout
= 1000;
2033 return erase_timeout
;
2036 static unsigned int mmc_erase_timeout(struct mmc_card
*card
,
2040 if (mmc_card_sd(card
))
2041 return mmc_sd_erase_timeout(card
, arg
, qty
);
2043 return mmc_mmc_erase_timeout(card
, arg
, qty
);
2046 static int mmc_do_erase(struct mmc_card
*card
, unsigned int from
,
2047 unsigned int to
, unsigned int arg
)
2049 struct mmc_command cmd
= {0};
2050 unsigned int qty
= 0;
2051 unsigned long timeout
;
2054 mmc_retune_hold(card
->host
);
2057 * qty is used to calculate the erase timeout which depends on how many
2058 * erase groups (or allocation units in SD terminology) are affected.
2059 * We count erasing part of an erase group as one erase group.
2060 * For SD, the allocation units are always a power of 2. For MMC, the
2061 * erase group size is almost certainly also power of 2, but it does not
2062 * seem to insist on that in the JEDEC standard, so we fall back to
2063 * division in that case. SD may not specify an allocation unit size,
2064 * in which case the timeout is based on the number of write blocks.
2066 * Note that the timeout for secure trim 2 will only be correct if the
2067 * number of erase groups specified is the same as the total of all
2068 * preceding secure trim 1 commands. Since the power may have been
2069 * lost since the secure trim 1 commands occurred, it is generally
2070 * impossible to calculate the secure trim 2 timeout correctly.
2072 if (card
->erase_shift
)
2073 qty
+= ((to
>> card
->erase_shift
) -
2074 (from
>> card
->erase_shift
)) + 1;
2075 else if (mmc_card_sd(card
))
2076 qty
+= to
- from
+ 1;
2078 qty
+= ((to
/ card
->erase_size
) -
2079 (from
/ card
->erase_size
)) + 1;
2081 if (!mmc_card_blockaddr(card
)) {
2086 if (mmc_card_sd(card
))
2087 cmd
.opcode
= SD_ERASE_WR_BLK_START
;
2089 cmd
.opcode
= MMC_ERASE_GROUP_START
;
2091 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2092 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2094 pr_err("mmc_erase: group start error %d, "
2095 "status %#x\n", err
, cmd
.resp
[0]);
2100 memset(&cmd
, 0, sizeof(struct mmc_command
));
2101 if (mmc_card_sd(card
))
2102 cmd
.opcode
= SD_ERASE_WR_BLK_END
;
2104 cmd
.opcode
= MMC_ERASE_GROUP_END
;
2106 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2107 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2109 pr_err("mmc_erase: group end error %d, status %#x\n",
2115 memset(&cmd
, 0, sizeof(struct mmc_command
));
2116 cmd
.opcode
= MMC_ERASE
;
2118 cmd
.flags
= MMC_RSP_SPI_R1B
| MMC_RSP_R1B
| MMC_CMD_AC
;
2119 cmd
.busy_timeout
= mmc_erase_timeout(card
, arg
, qty
);
2120 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2122 pr_err("mmc_erase: erase error %d, status %#x\n",
2128 if (mmc_host_is_spi(card
->host
))
2131 timeout
= jiffies
+ msecs_to_jiffies(MMC_CORE_TIMEOUT_MS
);
2133 memset(&cmd
, 0, sizeof(struct mmc_command
));
2134 cmd
.opcode
= MMC_SEND_STATUS
;
2135 cmd
.arg
= card
->rca
<< 16;
2136 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
2137 /* Do not retry else we can't see errors */
2138 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2139 if (err
|| (cmd
.resp
[0] & 0xFDF92000)) {
2140 pr_err("error %d requesting status %#x\n",
2146 /* Timeout if the device never becomes ready for data and
2147 * never leaves the program state.
2149 if (time_after(jiffies
, timeout
)) {
2150 pr_err("%s: Card stuck in programming state! %s\n",
2151 mmc_hostname(card
->host
), __func__
);
2156 } while (!(cmd
.resp
[0] & R1_READY_FOR_DATA
) ||
2157 (R1_CURRENT_STATE(cmd
.resp
[0]) == R1_STATE_PRG
));
2159 mmc_retune_release(card
->host
);
2164 * mmc_erase - erase sectors.
2165 * @card: card to erase
2166 * @from: first sector to erase
2167 * @nr: number of sectors to erase
2168 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2170 * Caller must claim host before calling this function.
2172 int mmc_erase(struct mmc_card
*card
, unsigned int from
, unsigned int nr
,
2175 unsigned int rem
, to
= from
+ nr
;
2178 if (!(card
->host
->caps
& MMC_CAP_ERASE
) ||
2179 !(card
->csd
.cmdclass
& CCC_ERASE
))
2182 if (!card
->erase_size
)
2185 if (mmc_card_sd(card
) && arg
!= MMC_ERASE_ARG
)
2188 if ((arg
& MMC_SECURE_ARGS
) &&
2189 !(card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_ER_EN
))
2192 if ((arg
& MMC_TRIM_ARGS
) &&
2193 !(card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_GB_CL_EN
))
2196 if (arg
== MMC_SECURE_ERASE_ARG
) {
2197 if (from
% card
->erase_size
|| nr
% card
->erase_size
)
2201 if (arg
== MMC_ERASE_ARG
) {
2202 rem
= from
% card
->erase_size
;
2204 rem
= card
->erase_size
- rem
;
2211 rem
= nr
% card
->erase_size
;
2224 /* 'from' and 'to' are inclusive */
2228 * Special case where only one erase-group fits in the timeout budget:
2229 * If the region crosses an erase-group boundary on this particular
2230 * case, we will be trimming more than one erase-group which, does not
2231 * fit in the timeout budget of the controller, so we need to split it
2232 * and call mmc_do_erase() twice if necessary. This special case is
2233 * identified by the card->eg_boundary flag.
2235 rem
= card
->erase_size
- (from
% card
->erase_size
);
2236 if ((arg
& MMC_TRIM_ARGS
) && (card
->eg_boundary
) && (nr
> rem
)) {
2237 err
= mmc_do_erase(card
, from
, from
+ rem
- 1, arg
);
2239 if ((err
) || (to
<= from
))
2243 return mmc_do_erase(card
, from
, to
, arg
);
2245 EXPORT_SYMBOL(mmc_erase
);
2247 int mmc_can_erase(struct mmc_card
*card
)
2249 if ((card
->host
->caps
& MMC_CAP_ERASE
) &&
2250 (card
->csd
.cmdclass
& CCC_ERASE
) && card
->erase_size
)
2254 EXPORT_SYMBOL(mmc_can_erase
);
2256 int mmc_can_trim(struct mmc_card
*card
)
2258 if ((card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_GB_CL_EN
) &&
2259 (!(card
->quirks
& MMC_QUIRK_TRIM_BROKEN
)))
2263 EXPORT_SYMBOL(mmc_can_trim
);
2265 int mmc_can_discard(struct mmc_card
*card
)
2268 * As there's no way to detect the discard support bit at v4.5
2269 * use the s/w feature support filed.
2271 if (card
->ext_csd
.feature_support
& MMC_DISCARD_FEATURE
)
2275 EXPORT_SYMBOL(mmc_can_discard
);
2277 int mmc_can_sanitize(struct mmc_card
*card
)
2279 if (!mmc_can_trim(card
) && !mmc_can_erase(card
))
2281 if (card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_SANITIZE
)
2285 EXPORT_SYMBOL(mmc_can_sanitize
);
2287 int mmc_can_secure_erase_trim(struct mmc_card
*card
)
2289 if ((card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_ER_EN
) &&
2290 !(card
->quirks
& MMC_QUIRK_SEC_ERASE_TRIM_BROKEN
))
2294 EXPORT_SYMBOL(mmc_can_secure_erase_trim
);
2296 int mmc_erase_group_aligned(struct mmc_card
*card
, unsigned int from
,
2299 if (!card
->erase_size
)
2301 if (from
% card
->erase_size
|| nr
% card
->erase_size
)
2305 EXPORT_SYMBOL(mmc_erase_group_aligned
);
2307 static unsigned int mmc_do_calc_max_discard(struct mmc_card
*card
,
2310 struct mmc_host
*host
= card
->host
;
2311 unsigned int max_discard
, x
, y
, qty
= 0, max_qty
, timeout
;
2312 unsigned int last_timeout
= 0;
2314 if (card
->erase_shift
)
2315 max_qty
= UINT_MAX
>> card
->erase_shift
;
2316 else if (mmc_card_sd(card
))
2319 max_qty
= UINT_MAX
/ card
->erase_size
;
2321 /* Find the largest qty with an OK timeout */
2324 for (x
= 1; x
&& x
<= max_qty
&& max_qty
- x
>= qty
; x
<<= 1) {
2325 timeout
= mmc_erase_timeout(card
, arg
, qty
+ x
);
2326 if (timeout
> host
->max_busy_timeout
)
2328 if (timeout
< last_timeout
)
2330 last_timeout
= timeout
;
2340 * When specifying a sector range to trim, chances are we might cross
2341 * an erase-group boundary even if the amount of sectors is less than
2343 * If we can only fit one erase-group in the controller timeout budget,
2344 * we have to care that erase-group boundaries are not crossed by a
2345 * single trim operation. We flag that special case with "eg_boundary".
2346 * In all other cases we can just decrement qty and pretend that we
2347 * always touch (qty + 1) erase-groups as a simple optimization.
2350 card
->eg_boundary
= 1;
2354 /* Convert qty to sectors */
2355 if (card
->erase_shift
)
2356 max_discard
= qty
<< card
->erase_shift
;
2357 else if (mmc_card_sd(card
))
2358 max_discard
= qty
+ 1;
2360 max_discard
= qty
* card
->erase_size
;
2365 unsigned int mmc_calc_max_discard(struct mmc_card
*card
)
2367 struct mmc_host
*host
= card
->host
;
2368 unsigned int max_discard
, max_trim
;
2370 if (!host
->max_busy_timeout
)
2374 * Without erase_group_def set, MMC erase timeout depends on clock
2375 * frequence which can change. In that case, the best choice is
2376 * just the preferred erase size.
2378 if (mmc_card_mmc(card
) && !(card
->ext_csd
.erase_group_def
& 1))
2379 return card
->pref_erase
;
2381 max_discard
= mmc_do_calc_max_discard(card
, MMC_ERASE_ARG
);
2382 if (mmc_can_trim(card
)) {
2383 max_trim
= mmc_do_calc_max_discard(card
, MMC_TRIM_ARG
);
2384 if (max_trim
< max_discard
)
2385 max_discard
= max_trim
;
2386 } else if (max_discard
< card
->erase_size
) {
2389 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2390 mmc_hostname(host
), max_discard
, host
->max_busy_timeout
);
2393 EXPORT_SYMBOL(mmc_calc_max_discard
);
2395 int mmc_set_blocklen(struct mmc_card
*card
, unsigned int blocklen
)
2397 struct mmc_command cmd
= {0};
2399 if (mmc_card_blockaddr(card
) || mmc_card_ddr52(card
))
2402 cmd
.opcode
= MMC_SET_BLOCKLEN
;
2404 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2405 return mmc_wait_for_cmd(card
->host
, &cmd
, 5);
2407 EXPORT_SYMBOL(mmc_set_blocklen
);
2409 int mmc_set_blockcount(struct mmc_card
*card
, unsigned int blockcount
,
2412 struct mmc_command cmd
= {0};
2414 cmd
.opcode
= MMC_SET_BLOCK_COUNT
;
2415 cmd
.arg
= blockcount
& 0x0000FFFF;
2418 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2419 return mmc_wait_for_cmd(card
->host
, &cmd
, 5);
2421 EXPORT_SYMBOL(mmc_set_blockcount
);
2423 static void mmc_hw_reset_for_init(struct mmc_host
*host
)
2425 if (!(host
->caps
& MMC_CAP_HW_RESET
) || !host
->ops
->hw_reset
)
2427 host
->ops
->hw_reset(host
);
2430 int mmc_hw_reset(struct mmc_host
*host
)
2438 if (!host
->bus_ops
|| host
->bus_dead
|| !host
->bus_ops
->reset
) {
2443 ret
= host
->bus_ops
->reset(host
);
2446 if (ret
!= -EOPNOTSUPP
)
2447 pr_warn("%s: tried to reset card\n", mmc_hostname(host
));
2451 EXPORT_SYMBOL(mmc_hw_reset
);
2453 static int mmc_rescan_try_freq(struct mmc_host
*host
, unsigned freq
)
2455 host
->f_init
= freq
;
2457 #ifdef CONFIG_MMC_DEBUG
2458 pr_info("%s: %s: trying to init card at %u Hz\n",
2459 mmc_hostname(host
), __func__
, host
->f_init
);
2461 mmc_power_up(host
, host
->ocr_avail
);
2464 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2465 * do a hardware reset if possible.
2467 mmc_hw_reset_for_init(host
);
2470 * sdio_reset sends CMD52 to reset card. Since we do not know
2471 * if the card is being re-initialized, just send it. CMD52
2472 * should be ignored by SD/eMMC cards.
2473 * Skip it if we already know that we do not support SDIO commands
2475 if (!(host
->caps2
& MMC_CAP2_NO_SDIO
))
2480 mmc_send_if_cond(host
, host
->ocr_avail
);
2482 /* Order's important: probe SDIO, then SD, then MMC */
2483 if (!(host
->caps2
& MMC_CAP2_NO_SDIO
))
2484 if (!mmc_attach_sdio(host
))
2487 if (!mmc_attach_sd(host
))
2489 if (!mmc_attach_mmc(host
))
2492 mmc_power_off(host
);
2496 int _mmc_detect_card_removed(struct mmc_host
*host
)
2500 if (!host
->card
|| mmc_card_removed(host
->card
))
2503 ret
= host
->bus_ops
->alive(host
);
2506 * Card detect status and alive check may be out of sync if card is
2507 * removed slowly, when card detect switch changes while card/slot
2508 * pads are still contacted in hardware (refer to "SD Card Mechanical
2509 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2510 * detect work 200ms later for this case.
2512 if (!ret
&& host
->ops
->get_cd
&& !host
->ops
->get_cd(host
)) {
2513 mmc_detect_change(host
, msecs_to_jiffies(200));
2514 pr_debug("%s: card removed too slowly\n", mmc_hostname(host
));
2518 mmc_card_set_removed(host
->card
);
2519 pr_debug("%s: card remove detected\n", mmc_hostname(host
));
2525 int mmc_detect_card_removed(struct mmc_host
*host
)
2527 struct mmc_card
*card
= host
->card
;
2530 WARN_ON(!host
->claimed
);
2535 if (host
->caps
& MMC_CAP_NONREMOVABLE
)
2538 ret
= mmc_card_removed(card
);
2540 * The card will be considered unchanged unless we have been asked to
2541 * detect a change or host requires polling to provide card detection.
2543 if (!host
->detect_change
&& !(host
->caps
& MMC_CAP_NEEDS_POLL
))
2546 host
->detect_change
= 0;
2548 ret
= _mmc_detect_card_removed(host
);
2549 if (ret
&& (host
->caps
& MMC_CAP_NEEDS_POLL
)) {
2551 * Schedule a detect work as soon as possible to let a
2552 * rescan handle the card removal.
2554 cancel_delayed_work(&host
->detect
);
2555 _mmc_detect_change(host
, 0, false);
2561 EXPORT_SYMBOL(mmc_detect_card_removed
);
2563 void mmc_rescan(struct work_struct
*work
)
2565 struct mmc_host
*host
=
2566 container_of(work
, struct mmc_host
, detect
.work
);
2569 if (host
->rescan_disable
)
2572 /* If there is a non-removable card registered, only scan once */
2573 if ((host
->caps
& MMC_CAP_NONREMOVABLE
) && host
->rescan_entered
)
2575 host
->rescan_entered
= 1;
2577 if (host
->trigger_card_event
&& host
->ops
->card_event
) {
2578 mmc_claim_host(host
);
2579 host
->ops
->card_event(host
);
2580 mmc_release_host(host
);
2581 host
->trigger_card_event
= false;
2587 * if there is a _removable_ card registered, check whether it is
2590 if (host
->bus_ops
&& !host
->bus_dead
2591 && !(host
->caps
& MMC_CAP_NONREMOVABLE
))
2592 host
->bus_ops
->detect(host
);
2594 host
->detect_change
= 0;
2597 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2598 * the card is no longer present.
2603 /* if there still is a card present, stop here */
2604 if (host
->bus_ops
!= NULL
) {
2610 * Only we can add a new handler, so it's safe to
2611 * release the lock here.
2615 mmc_claim_host(host
);
2616 if (!(host
->caps
& MMC_CAP_NONREMOVABLE
) && host
->ops
->get_cd
&&
2617 host
->ops
->get_cd(host
) == 0) {
2618 mmc_power_off(host
);
2619 mmc_release_host(host
);
2623 for (i
= 0; i
< ARRAY_SIZE(freqs
); i
++) {
2624 if (!mmc_rescan_try_freq(host
, max(freqs
[i
], host
->f_min
)))
2626 if (freqs
[i
] <= host
->f_min
)
2629 mmc_release_host(host
);
2632 if (host
->caps
& MMC_CAP_NEEDS_POLL
)
2633 mmc_schedule_delayed_work(&host
->detect
, HZ
);
2636 void mmc_start_host(struct mmc_host
*host
)
2638 host
->f_init
= max(freqs
[0], host
->f_min
);
2639 host
->rescan_disable
= 0;
2640 host
->ios
.power_mode
= MMC_POWER_UNDEFINED
;
2642 mmc_claim_host(host
);
2643 if (host
->caps2
& MMC_CAP2_NO_PRESCAN_POWERUP
)
2644 mmc_power_off(host
);
2646 mmc_power_up(host
, host
->ocr_avail
);
2647 mmc_release_host(host
);
2649 mmc_gpiod_request_cd_irq(host
);
2650 _mmc_detect_change(host
, 0, false);
2653 void mmc_stop_host(struct mmc_host
*host
)
2655 #ifdef CONFIG_MMC_DEBUG
2656 unsigned long flags
;
2657 spin_lock_irqsave(&host
->lock
, flags
);
2659 spin_unlock_irqrestore(&host
->lock
, flags
);
2661 if (host
->slot
.cd_irq
>= 0)
2662 disable_irq(host
->slot
.cd_irq
);
2664 host
->rescan_disable
= 1;
2665 cancel_delayed_work_sync(&host
->detect
);
2667 /* clear pm flags now and let card drivers set them as needed */
2671 if (host
->bus_ops
&& !host
->bus_dead
) {
2672 /* Calling bus_ops->remove() with a claimed host can deadlock */
2673 host
->bus_ops
->remove(host
);
2674 mmc_claim_host(host
);
2675 mmc_detach_bus(host
);
2676 mmc_power_off(host
);
2677 mmc_release_host(host
);
2685 mmc_claim_host(host
);
2686 mmc_power_off(host
);
2687 mmc_release_host(host
);
2690 int mmc_power_save_host(struct mmc_host
*host
)
2694 #ifdef CONFIG_MMC_DEBUG
2695 pr_info("%s: %s: powering down\n", mmc_hostname(host
), __func__
);
2700 if (!host
->bus_ops
|| host
->bus_dead
) {
2705 if (host
->bus_ops
->power_save
)
2706 ret
= host
->bus_ops
->power_save(host
);
2710 mmc_power_off(host
);
2714 EXPORT_SYMBOL(mmc_power_save_host
);
2716 int mmc_power_restore_host(struct mmc_host
*host
)
2720 #ifdef CONFIG_MMC_DEBUG
2721 pr_info("%s: %s: powering up\n", mmc_hostname(host
), __func__
);
2726 if (!host
->bus_ops
|| host
->bus_dead
) {
2731 mmc_power_up(host
, host
->card
->ocr
);
2732 ret
= host
->bus_ops
->power_restore(host
);
2738 EXPORT_SYMBOL(mmc_power_restore_host
);
2741 * Flush the cache to the non-volatile storage.
2743 int mmc_flush_cache(struct mmc_card
*card
)
2747 if (mmc_card_mmc(card
) &&
2748 (card
->ext_csd
.cache_size
> 0) &&
2749 (card
->ext_csd
.cache_ctrl
& 1)) {
2750 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
2751 EXT_CSD_FLUSH_CACHE
, 1, 0);
2753 pr_err("%s: cache flush error %d\n",
2754 mmc_hostname(card
->host
), err
);
2759 EXPORT_SYMBOL(mmc_flush_cache
);
2761 #ifdef CONFIG_PM_SLEEP
2762 /* Do the card removal on suspend if card is assumed removeable
2763 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2766 static int mmc_pm_notify(struct notifier_block
*notify_block
,
2767 unsigned long mode
, void *unused
)
2769 struct mmc_host
*host
= container_of(
2770 notify_block
, struct mmc_host
, pm_notify
);
2771 unsigned long flags
;
2775 case PM_HIBERNATION_PREPARE
:
2776 case PM_SUSPEND_PREPARE
:
2777 case PM_RESTORE_PREPARE
:
2778 spin_lock_irqsave(&host
->lock
, flags
);
2779 host
->rescan_disable
= 1;
2780 spin_unlock_irqrestore(&host
->lock
, flags
);
2781 cancel_delayed_work_sync(&host
->detect
);
2786 /* Validate prerequisites for suspend */
2787 if (host
->bus_ops
->pre_suspend
)
2788 err
= host
->bus_ops
->pre_suspend(host
);
2792 /* Calling bus_ops->remove() with a claimed host can deadlock */
2793 host
->bus_ops
->remove(host
);
2794 mmc_claim_host(host
);
2795 mmc_detach_bus(host
);
2796 mmc_power_off(host
);
2797 mmc_release_host(host
);
2801 case PM_POST_SUSPEND
:
2802 case PM_POST_HIBERNATION
:
2803 case PM_POST_RESTORE
:
2805 spin_lock_irqsave(&host
->lock
, flags
);
2806 host
->rescan_disable
= 0;
2807 spin_unlock_irqrestore(&host
->lock
, flags
);
2808 _mmc_detect_change(host
, 0, false);
2815 void mmc_register_pm_notifier(struct mmc_host
*host
)
2817 host
->pm_notify
.notifier_call
= mmc_pm_notify
;
2818 register_pm_notifier(&host
->pm_notify
);
2821 void mmc_unregister_pm_notifier(struct mmc_host
*host
)
2823 unregister_pm_notifier(&host
->pm_notify
);
2828 * mmc_init_context_info() - init synchronization context
2831 * Init struct context_info needed to implement asynchronous
2832 * request mechanism, used by mmc core, host driver and mmc requests
2835 void mmc_init_context_info(struct mmc_host
*host
)
2837 spin_lock_init(&host
->context_info
.lock
);
2838 host
->context_info
.is_new_req
= false;
2839 host
->context_info
.is_done_rcv
= false;
2840 host
->context_info
.is_waiting_last_req
= false;
2841 init_waitqueue_head(&host
->context_info
.wait
);
2844 static int __init
mmc_init(void)
2848 ret
= mmc_register_bus();
2852 ret
= mmc_register_host_class();
2854 goto unregister_bus
;
2856 ret
= sdio_register_bus();
2858 goto unregister_host_class
;
2862 unregister_host_class
:
2863 mmc_unregister_host_class();
2865 mmc_unregister_bus();
2869 static void __exit
mmc_exit(void)
2871 sdio_unregister_bus();
2872 mmc_unregister_host_class();
2873 mmc_unregister_bus();
2876 subsys_initcall(mmc_init
);
2877 module_exit(mmc_exit
);
2879 MODULE_LICENSE("GPL");