ARM: dts: kirkwood: gpio-leds fixes for linkstation ls-wvl/vl
[linux/fpc-iii.git] / drivers / mmc / core / core.c
blobf95d41ffc766e5038059d0be82eaeb6aa4b0fe7a
1 /*
2 * linux/drivers/mmc/core/core.c
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/of.h>
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
39 #include "core.h"
40 #include "bus.h"
41 #include "host.h"
42 #include "sdio_bus.h"
43 #include "pwrseq.h"
45 #include "mmc_ops.h"
46 #include "sd_ops.h"
47 #include "sdio_ops.h"
49 /* If the device is not responding */
50 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
53 * Background operations can take a long time, depending on the housekeeping
54 * operations the card has to perform.
56 #define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
58 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
61 * Enabling software CRCs on the data blocks can be a significant (30%)
62 * performance cost, and for other reasons may not always be desired.
63 * So we allow it it to be disabled.
65 bool use_spi_crc = 1;
66 module_param(use_spi_crc, bool, 0);
68 static int mmc_schedule_delayed_work(struct delayed_work *work,
69 unsigned long delay)
72 * We use the system_freezable_wq, because of two reasons.
73 * First, it allows several works (not the same work item) to be
74 * executed simultaneously. Second, the queue becomes frozen when
75 * userspace becomes frozen during system PM.
77 return queue_delayed_work(system_freezable_wq, work, delay);
80 #ifdef CONFIG_FAIL_MMC_REQUEST
83 * Internal function. Inject random data errors.
84 * If mmc_data is NULL no errors are injected.
86 static void mmc_should_fail_request(struct mmc_host *host,
87 struct mmc_request *mrq)
89 struct mmc_command *cmd = mrq->cmd;
90 struct mmc_data *data = mrq->data;
91 static const int data_errors[] = {
92 -ETIMEDOUT,
93 -EILSEQ,
94 -EIO,
97 if (!data)
98 return;
100 if (cmd->error || data->error ||
101 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
102 return;
104 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
105 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
108 #else /* CONFIG_FAIL_MMC_REQUEST */
110 static inline void mmc_should_fail_request(struct mmc_host *host,
111 struct mmc_request *mrq)
115 #endif /* CONFIG_FAIL_MMC_REQUEST */
118 * mmc_request_done - finish processing an MMC request
119 * @host: MMC host which completed request
120 * @mrq: MMC request which request
122 * MMC drivers should call this function when they have completed
123 * their processing of a request.
125 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
127 struct mmc_command *cmd = mrq->cmd;
128 int err = cmd->error;
130 /* Flag re-tuning needed on CRC errors */
131 if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
132 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
133 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
134 (mrq->data && mrq->data->error == -EILSEQ) ||
135 (mrq->stop && mrq->stop->error == -EILSEQ)))
136 mmc_retune_needed(host);
138 if (err && cmd->retries && mmc_host_is_spi(host)) {
139 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
140 cmd->retries = 0;
143 if (err && cmd->retries && !mmc_card_removed(host->card)) {
145 * Request starter must handle retries - see
146 * mmc_wait_for_req_done().
148 if (mrq->done)
149 mrq->done(mrq);
150 } else {
151 mmc_should_fail_request(host, mrq);
153 led_trigger_event(host->led, LED_OFF);
155 if (mrq->sbc) {
156 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
157 mmc_hostname(host), mrq->sbc->opcode,
158 mrq->sbc->error,
159 mrq->sbc->resp[0], mrq->sbc->resp[1],
160 mrq->sbc->resp[2], mrq->sbc->resp[3]);
163 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
164 mmc_hostname(host), cmd->opcode, err,
165 cmd->resp[0], cmd->resp[1],
166 cmd->resp[2], cmd->resp[3]);
168 if (mrq->data) {
169 pr_debug("%s: %d bytes transferred: %d\n",
170 mmc_hostname(host),
171 mrq->data->bytes_xfered, mrq->data->error);
174 if (mrq->stop) {
175 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
176 mmc_hostname(host), mrq->stop->opcode,
177 mrq->stop->error,
178 mrq->stop->resp[0], mrq->stop->resp[1],
179 mrq->stop->resp[2], mrq->stop->resp[3]);
182 if (mrq->done)
183 mrq->done(mrq);
187 EXPORT_SYMBOL(mmc_request_done);
189 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
191 int err;
193 /* Assumes host controller has been runtime resumed by mmc_claim_host */
194 err = mmc_retune(host);
195 if (err) {
196 mrq->cmd->error = err;
197 mmc_request_done(host, mrq);
198 return;
202 * For sdio rw commands we must wait for card busy otherwise some
203 * sdio devices won't work properly.
205 if (mmc_is_io_op(mrq->cmd->opcode) && host->ops->card_busy) {
206 int tries = 500; /* Wait aprox 500ms at maximum */
208 while (host->ops->card_busy(host) && --tries)
209 mmc_delay(1);
211 if (tries == 0) {
212 mrq->cmd->error = -EBUSY;
213 mmc_request_done(host, mrq);
214 return;
218 host->ops->request(host, mrq);
221 static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
223 #ifdef CONFIG_MMC_DEBUG
224 unsigned int i, sz;
225 struct scatterlist *sg;
226 #endif
227 mmc_retune_hold(host);
229 if (mmc_card_removed(host->card))
230 return -ENOMEDIUM;
232 if (mrq->sbc) {
233 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
234 mmc_hostname(host), mrq->sbc->opcode,
235 mrq->sbc->arg, mrq->sbc->flags);
238 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
239 mmc_hostname(host), mrq->cmd->opcode,
240 mrq->cmd->arg, mrq->cmd->flags);
242 if (mrq->data) {
243 pr_debug("%s: blksz %d blocks %d flags %08x "
244 "tsac %d ms nsac %d\n",
245 mmc_hostname(host), mrq->data->blksz,
246 mrq->data->blocks, mrq->data->flags,
247 mrq->data->timeout_ns / 1000000,
248 mrq->data->timeout_clks);
251 if (mrq->stop) {
252 pr_debug("%s: CMD%u arg %08x flags %08x\n",
253 mmc_hostname(host), mrq->stop->opcode,
254 mrq->stop->arg, mrq->stop->flags);
257 WARN_ON(!host->claimed);
259 mrq->cmd->error = 0;
260 mrq->cmd->mrq = mrq;
261 if (mrq->sbc) {
262 mrq->sbc->error = 0;
263 mrq->sbc->mrq = mrq;
265 if (mrq->data) {
266 BUG_ON(mrq->data->blksz > host->max_blk_size);
267 BUG_ON(mrq->data->blocks > host->max_blk_count);
268 BUG_ON(mrq->data->blocks * mrq->data->blksz >
269 host->max_req_size);
271 #ifdef CONFIG_MMC_DEBUG
272 sz = 0;
273 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
274 sz += sg->length;
275 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
276 #endif
278 mrq->cmd->data = mrq->data;
279 mrq->data->error = 0;
280 mrq->data->mrq = mrq;
281 if (mrq->stop) {
282 mrq->data->stop = mrq->stop;
283 mrq->stop->error = 0;
284 mrq->stop->mrq = mrq;
287 led_trigger_event(host->led, LED_FULL);
288 __mmc_start_request(host, mrq);
290 return 0;
294 * mmc_start_bkops - start BKOPS for supported cards
295 * @card: MMC card to start BKOPS
296 * @form_exception: A flag to indicate if this function was
297 * called due to an exception raised by the card
299 * Start background operations whenever requested.
300 * When the urgent BKOPS bit is set in a R1 command response
301 * then background operations should be started immediately.
303 void mmc_start_bkops(struct mmc_card *card, bool from_exception)
305 int err;
306 int timeout;
307 bool use_busy_signal;
309 BUG_ON(!card);
311 if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card))
312 return;
314 err = mmc_read_bkops_status(card);
315 if (err) {
316 pr_err("%s: Failed to read bkops status: %d\n",
317 mmc_hostname(card->host), err);
318 return;
321 if (!card->ext_csd.raw_bkops_status)
322 return;
324 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
325 from_exception)
326 return;
328 mmc_claim_host(card->host);
329 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
330 timeout = MMC_BKOPS_MAX_TIMEOUT;
331 use_busy_signal = true;
332 } else {
333 timeout = 0;
334 use_busy_signal = false;
337 mmc_retune_hold(card->host);
339 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
340 EXT_CSD_BKOPS_START, 1, timeout,
341 use_busy_signal, true, false);
342 if (err) {
343 pr_warn("%s: Error %d starting bkops\n",
344 mmc_hostname(card->host), err);
345 mmc_retune_release(card->host);
346 goto out;
350 * For urgent bkops status (LEVEL_2 and more)
351 * bkops executed synchronously, otherwise
352 * the operation is in progress
354 if (!use_busy_signal)
355 mmc_card_set_doing_bkops(card);
356 else
357 mmc_retune_release(card->host);
358 out:
359 mmc_release_host(card->host);
361 EXPORT_SYMBOL(mmc_start_bkops);
364 * mmc_wait_data_done() - done callback for data request
365 * @mrq: done data request
367 * Wakes up mmc context, passed as a callback to host controller driver
369 static void mmc_wait_data_done(struct mmc_request *mrq)
371 struct mmc_context_info *context_info = &mrq->host->context_info;
373 context_info->is_done_rcv = true;
374 wake_up_interruptible(&context_info->wait);
377 static void mmc_wait_done(struct mmc_request *mrq)
379 complete(&mrq->completion);
383 *__mmc_start_data_req() - starts data request
384 * @host: MMC host to start the request
385 * @mrq: data request to start
387 * Sets the done callback to be called when request is completed by the card.
388 * Starts data mmc request execution
390 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
392 int err;
394 mrq->done = mmc_wait_data_done;
395 mrq->host = host;
397 err = mmc_start_request(host, mrq);
398 if (err) {
399 mrq->cmd->error = err;
400 mmc_wait_data_done(mrq);
403 return err;
406 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
408 int err;
410 init_completion(&mrq->completion);
411 mrq->done = mmc_wait_done;
413 err = mmc_start_request(host, mrq);
414 if (err) {
415 mrq->cmd->error = err;
416 complete(&mrq->completion);
419 return err;
423 * mmc_wait_for_data_req_done() - wait for request completed
424 * @host: MMC host to prepare the command.
425 * @mrq: MMC request to wait for
427 * Blocks MMC context till host controller will ack end of data request
428 * execution or new request notification arrives from the block layer.
429 * Handles command retries.
431 * Returns enum mmc_blk_status after checking errors.
433 static int mmc_wait_for_data_req_done(struct mmc_host *host,
434 struct mmc_request *mrq,
435 struct mmc_async_req *next_req)
437 struct mmc_command *cmd;
438 struct mmc_context_info *context_info = &host->context_info;
439 int err;
440 unsigned long flags;
442 while (1) {
443 wait_event_interruptible(context_info->wait,
444 (context_info->is_done_rcv ||
445 context_info->is_new_req));
446 spin_lock_irqsave(&context_info->lock, flags);
447 context_info->is_waiting_last_req = false;
448 spin_unlock_irqrestore(&context_info->lock, flags);
449 if (context_info->is_done_rcv) {
450 context_info->is_done_rcv = false;
451 context_info->is_new_req = false;
452 cmd = mrq->cmd;
454 if (!cmd->error || !cmd->retries ||
455 mmc_card_removed(host->card)) {
456 err = host->areq->err_check(host->card,
457 host->areq);
458 break; /* return err */
459 } else {
460 mmc_retune_recheck(host);
461 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
462 mmc_hostname(host),
463 cmd->opcode, cmd->error);
464 cmd->retries--;
465 cmd->error = 0;
466 __mmc_start_request(host, mrq);
467 continue; /* wait for done/new event again */
469 } else if (context_info->is_new_req) {
470 context_info->is_new_req = false;
471 if (!next_req)
472 return MMC_BLK_NEW_REQUEST;
475 mmc_retune_release(host);
476 return err;
479 static void mmc_wait_for_req_done(struct mmc_host *host,
480 struct mmc_request *mrq)
482 struct mmc_command *cmd;
484 while (1) {
485 wait_for_completion(&mrq->completion);
487 cmd = mrq->cmd;
490 * If host has timed out waiting for the sanitize
491 * to complete, card might be still in programming state
492 * so let's try to bring the card out of programming
493 * state.
495 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
496 if (!mmc_interrupt_hpi(host->card)) {
497 pr_warn("%s: %s: Interrupted sanitize\n",
498 mmc_hostname(host), __func__);
499 cmd->error = 0;
500 break;
501 } else {
502 pr_err("%s: %s: Failed to interrupt sanitize\n",
503 mmc_hostname(host), __func__);
506 if (!cmd->error || !cmd->retries ||
507 mmc_card_removed(host->card))
508 break;
510 mmc_retune_recheck(host);
512 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
513 mmc_hostname(host), cmd->opcode, cmd->error);
514 cmd->retries--;
515 cmd->error = 0;
516 __mmc_start_request(host, mrq);
519 mmc_retune_release(host);
523 * mmc_pre_req - Prepare for a new request
524 * @host: MMC host to prepare command
525 * @mrq: MMC request to prepare for
526 * @is_first_req: true if there is no previous started request
527 * that may run in parellel to this call, otherwise false
529 * mmc_pre_req() is called in prior to mmc_start_req() to let
530 * host prepare for the new request. Preparation of a request may be
531 * performed while another request is running on the host.
533 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
534 bool is_first_req)
536 if (host->ops->pre_req)
537 host->ops->pre_req(host, mrq, is_first_req);
541 * mmc_post_req - Post process a completed request
542 * @host: MMC host to post process command
543 * @mrq: MMC request to post process for
544 * @err: Error, if non zero, clean up any resources made in pre_req
546 * Let the host post process a completed request. Post processing of
547 * a request may be performed while another reuqest is running.
549 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
550 int err)
552 if (host->ops->post_req)
553 host->ops->post_req(host, mrq, err);
557 * mmc_start_req - start a non-blocking request
558 * @host: MMC host to start command
559 * @areq: async request to start
560 * @error: out parameter returns 0 for success, otherwise non zero
562 * Start a new MMC custom command request for a host.
563 * If there is on ongoing async request wait for completion
564 * of that request and start the new one and return.
565 * Does not wait for the new request to complete.
567 * Returns the completed request, NULL in case of none completed.
568 * Wait for the an ongoing request (previoulsy started) to complete and
569 * return the completed request. If there is no ongoing request, NULL
570 * is returned without waiting. NULL is not an error condition.
572 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
573 struct mmc_async_req *areq, int *error)
575 int err = 0;
576 int start_err = 0;
577 struct mmc_async_req *data = host->areq;
579 /* Prepare a new request */
580 if (areq)
581 mmc_pre_req(host, areq->mrq, !host->areq);
583 if (host->areq) {
584 err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq);
585 if (err == MMC_BLK_NEW_REQUEST) {
586 if (error)
587 *error = err;
589 * The previous request was not completed,
590 * nothing to return
592 return NULL;
595 * Check BKOPS urgency for each R1 response
597 if (host->card && mmc_card_mmc(host->card) &&
598 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
599 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
600 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
602 /* Cancel the prepared request */
603 if (areq)
604 mmc_post_req(host, areq->mrq, -EINVAL);
606 mmc_start_bkops(host->card, true);
608 /* prepare the request again */
609 if (areq)
610 mmc_pre_req(host, areq->mrq, !host->areq);
614 if (!err && areq)
615 start_err = __mmc_start_data_req(host, areq->mrq);
617 if (host->areq)
618 mmc_post_req(host, host->areq->mrq, 0);
620 /* Cancel a prepared request if it was not started. */
621 if ((err || start_err) && areq)
622 mmc_post_req(host, areq->mrq, -EINVAL);
624 if (err)
625 host->areq = NULL;
626 else
627 host->areq = areq;
629 if (error)
630 *error = err;
631 return data;
633 EXPORT_SYMBOL(mmc_start_req);
636 * mmc_wait_for_req - start a request and wait for completion
637 * @host: MMC host to start command
638 * @mrq: MMC request to start
640 * Start a new MMC custom command request for a host, and wait
641 * for the command to complete. Does not attempt to parse the
642 * response.
644 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
646 __mmc_start_req(host, mrq);
647 mmc_wait_for_req_done(host, mrq);
649 EXPORT_SYMBOL(mmc_wait_for_req);
652 * mmc_interrupt_hpi - Issue for High priority Interrupt
653 * @card: the MMC card associated with the HPI transfer
655 * Issued High Priority Interrupt, and check for card status
656 * until out-of prg-state.
658 int mmc_interrupt_hpi(struct mmc_card *card)
660 int err;
661 u32 status;
662 unsigned long prg_wait;
664 BUG_ON(!card);
666 if (!card->ext_csd.hpi_en) {
667 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
668 return 1;
671 mmc_claim_host(card->host);
672 err = mmc_send_status(card, &status);
673 if (err) {
674 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
675 goto out;
678 switch (R1_CURRENT_STATE(status)) {
679 case R1_STATE_IDLE:
680 case R1_STATE_READY:
681 case R1_STATE_STBY:
682 case R1_STATE_TRAN:
684 * In idle and transfer states, HPI is not needed and the caller
685 * can issue the next intended command immediately
687 goto out;
688 case R1_STATE_PRG:
689 break;
690 default:
691 /* In all other states, it's illegal to issue HPI */
692 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
693 mmc_hostname(card->host), R1_CURRENT_STATE(status));
694 err = -EINVAL;
695 goto out;
698 err = mmc_send_hpi_cmd(card, &status);
699 if (err)
700 goto out;
702 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
703 do {
704 err = mmc_send_status(card, &status);
706 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
707 break;
708 if (time_after(jiffies, prg_wait))
709 err = -ETIMEDOUT;
710 } while (!err);
712 out:
713 mmc_release_host(card->host);
714 return err;
716 EXPORT_SYMBOL(mmc_interrupt_hpi);
719 * mmc_wait_for_cmd - start a command and wait for completion
720 * @host: MMC host to start command
721 * @cmd: MMC command to start
722 * @retries: maximum number of retries
724 * Start a new MMC command for a host, and wait for the command
725 * to complete. Return any error that occurred while the command
726 * was executing. Do not attempt to parse the response.
728 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
730 struct mmc_request mrq = {NULL};
732 WARN_ON(!host->claimed);
734 memset(cmd->resp, 0, sizeof(cmd->resp));
735 cmd->retries = retries;
737 mrq.cmd = cmd;
738 cmd->data = NULL;
740 mmc_wait_for_req(host, &mrq);
742 return cmd->error;
745 EXPORT_SYMBOL(mmc_wait_for_cmd);
748 * mmc_stop_bkops - stop ongoing BKOPS
749 * @card: MMC card to check BKOPS
751 * Send HPI command to stop ongoing background operations to
752 * allow rapid servicing of foreground operations, e.g. read/
753 * writes. Wait until the card comes out of the programming state
754 * to avoid errors in servicing read/write requests.
756 int mmc_stop_bkops(struct mmc_card *card)
758 int err = 0;
760 BUG_ON(!card);
761 err = mmc_interrupt_hpi(card);
764 * If err is EINVAL, we can't issue an HPI.
765 * It should complete the BKOPS.
767 if (!err || (err == -EINVAL)) {
768 mmc_card_clr_doing_bkops(card);
769 mmc_retune_release(card->host);
770 err = 0;
773 return err;
775 EXPORT_SYMBOL(mmc_stop_bkops);
777 int mmc_read_bkops_status(struct mmc_card *card)
779 int err;
780 u8 *ext_csd;
782 mmc_claim_host(card->host);
783 err = mmc_get_ext_csd(card, &ext_csd);
784 mmc_release_host(card->host);
785 if (err)
786 return err;
788 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
789 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
790 kfree(ext_csd);
791 return 0;
793 EXPORT_SYMBOL(mmc_read_bkops_status);
796 * mmc_set_data_timeout - set the timeout for a data command
797 * @data: data phase for command
798 * @card: the MMC card associated with the data transfer
800 * Computes the data timeout parameters according to the
801 * correct algorithm given the card type.
803 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
805 unsigned int mult;
808 * SDIO cards only define an upper 1 s limit on access.
810 if (mmc_card_sdio(card)) {
811 data->timeout_ns = 1000000000;
812 data->timeout_clks = 0;
813 return;
817 * SD cards use a 100 multiplier rather than 10
819 mult = mmc_card_sd(card) ? 100 : 10;
822 * Scale up the multiplier (and therefore the timeout) by
823 * the r2w factor for writes.
825 if (data->flags & MMC_DATA_WRITE)
826 mult <<= card->csd.r2w_factor;
828 data->timeout_ns = card->csd.tacc_ns * mult;
829 data->timeout_clks = card->csd.tacc_clks * mult;
832 * SD cards also have an upper limit on the timeout.
834 if (mmc_card_sd(card)) {
835 unsigned int timeout_us, limit_us;
837 timeout_us = data->timeout_ns / 1000;
838 if (card->host->ios.clock)
839 timeout_us += data->timeout_clks * 1000 /
840 (card->host->ios.clock / 1000);
842 if (data->flags & MMC_DATA_WRITE)
844 * The MMC spec "It is strongly recommended
845 * for hosts to implement more than 500ms
846 * timeout value even if the card indicates
847 * the 250ms maximum busy length." Even the
848 * previous value of 300ms is known to be
849 * insufficient for some cards.
851 limit_us = 3000000;
852 else
853 limit_us = 100000;
856 * SDHC cards always use these fixed values.
858 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
859 data->timeout_ns = limit_us * 1000;
860 data->timeout_clks = 0;
863 /* assign limit value if invalid */
864 if (timeout_us == 0)
865 data->timeout_ns = limit_us * 1000;
869 * Some cards require longer data read timeout than indicated in CSD.
870 * Address this by setting the read timeout to a "reasonably high"
871 * value. For the cards tested, 300ms has proven enough. If necessary,
872 * this value can be increased if other problematic cards require this.
874 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
875 data->timeout_ns = 300000000;
876 data->timeout_clks = 0;
880 * Some cards need very high timeouts if driven in SPI mode.
881 * The worst observed timeout was 900ms after writing a
882 * continuous stream of data until the internal logic
883 * overflowed.
885 if (mmc_host_is_spi(card->host)) {
886 if (data->flags & MMC_DATA_WRITE) {
887 if (data->timeout_ns < 1000000000)
888 data->timeout_ns = 1000000000; /* 1s */
889 } else {
890 if (data->timeout_ns < 100000000)
891 data->timeout_ns = 100000000; /* 100ms */
895 EXPORT_SYMBOL(mmc_set_data_timeout);
898 * mmc_align_data_size - pads a transfer size to a more optimal value
899 * @card: the MMC card associated with the data transfer
900 * @sz: original transfer size
902 * Pads the original data size with a number of extra bytes in
903 * order to avoid controller bugs and/or performance hits
904 * (e.g. some controllers revert to PIO for certain sizes).
906 * Returns the improved size, which might be unmodified.
908 * Note that this function is only relevant when issuing a
909 * single scatter gather entry.
911 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
914 * FIXME: We don't have a system for the controller to tell
915 * the core about its problems yet, so for now we just 32-bit
916 * align the size.
918 sz = ((sz + 3) / 4) * 4;
920 return sz;
922 EXPORT_SYMBOL(mmc_align_data_size);
925 * __mmc_claim_host - exclusively claim a host
926 * @host: mmc host to claim
927 * @abort: whether or not the operation should be aborted
929 * Claim a host for a set of operations. If @abort is non null and
930 * dereference a non-zero value then this will return prematurely with
931 * that non-zero value without acquiring the lock. Returns zero
932 * with the lock held otherwise.
934 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
936 DECLARE_WAITQUEUE(wait, current);
937 unsigned long flags;
938 int stop;
939 bool pm = false;
941 might_sleep();
943 add_wait_queue(&host->wq, &wait);
944 spin_lock_irqsave(&host->lock, flags);
945 while (1) {
946 set_current_state(TASK_UNINTERRUPTIBLE);
947 stop = abort ? atomic_read(abort) : 0;
948 if (stop || !host->claimed || host->claimer == current)
949 break;
950 spin_unlock_irqrestore(&host->lock, flags);
951 schedule();
952 spin_lock_irqsave(&host->lock, flags);
954 set_current_state(TASK_RUNNING);
955 if (!stop) {
956 host->claimed = 1;
957 host->claimer = current;
958 host->claim_cnt += 1;
959 if (host->claim_cnt == 1)
960 pm = true;
961 } else
962 wake_up(&host->wq);
963 spin_unlock_irqrestore(&host->lock, flags);
964 remove_wait_queue(&host->wq, &wait);
966 if (pm)
967 pm_runtime_get_sync(mmc_dev(host));
969 return stop;
971 EXPORT_SYMBOL(__mmc_claim_host);
974 * mmc_release_host - release a host
975 * @host: mmc host to release
977 * Release a MMC host, allowing others to claim the host
978 * for their operations.
980 void mmc_release_host(struct mmc_host *host)
982 unsigned long flags;
984 WARN_ON(!host->claimed);
986 spin_lock_irqsave(&host->lock, flags);
987 if (--host->claim_cnt) {
988 /* Release for nested claim */
989 spin_unlock_irqrestore(&host->lock, flags);
990 } else {
991 host->claimed = 0;
992 host->claimer = NULL;
993 spin_unlock_irqrestore(&host->lock, flags);
994 wake_up(&host->wq);
995 pm_runtime_mark_last_busy(mmc_dev(host));
996 pm_runtime_put_autosuspend(mmc_dev(host));
999 EXPORT_SYMBOL(mmc_release_host);
1002 * This is a helper function, which fetches a runtime pm reference for the
1003 * card device and also claims the host.
1005 void mmc_get_card(struct mmc_card *card)
1007 pm_runtime_get_sync(&card->dev);
1008 mmc_claim_host(card->host);
1010 EXPORT_SYMBOL(mmc_get_card);
1013 * This is a helper function, which releases the host and drops the runtime
1014 * pm reference for the card device.
1016 void mmc_put_card(struct mmc_card *card)
1018 mmc_release_host(card->host);
1019 pm_runtime_mark_last_busy(&card->dev);
1020 pm_runtime_put_autosuspend(&card->dev);
1022 EXPORT_SYMBOL(mmc_put_card);
1025 * Internal function that does the actual ios call to the host driver,
1026 * optionally printing some debug output.
1028 static inline void mmc_set_ios(struct mmc_host *host)
1030 struct mmc_ios *ios = &host->ios;
1032 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1033 "width %u timing %u\n",
1034 mmc_hostname(host), ios->clock, ios->bus_mode,
1035 ios->power_mode, ios->chip_select, ios->vdd,
1036 ios->bus_width, ios->timing);
1038 host->ops->set_ios(host, ios);
1042 * Control chip select pin on a host.
1044 void mmc_set_chip_select(struct mmc_host *host, int mode)
1046 host->ios.chip_select = mode;
1047 mmc_set_ios(host);
1051 * Sets the host clock to the highest possible frequency that
1052 * is below "hz".
1054 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1056 WARN_ON(hz && hz < host->f_min);
1058 if (hz > host->f_max)
1059 hz = host->f_max;
1061 host->ios.clock = hz;
1062 mmc_set_ios(host);
1065 int mmc_execute_tuning(struct mmc_card *card)
1067 struct mmc_host *host = card->host;
1068 u32 opcode;
1069 int err;
1071 if (!host->ops->execute_tuning)
1072 return 0;
1074 if (mmc_card_mmc(card))
1075 opcode = MMC_SEND_TUNING_BLOCK_HS200;
1076 else
1077 opcode = MMC_SEND_TUNING_BLOCK;
1079 err = host->ops->execute_tuning(host, opcode);
1081 if (err)
1082 pr_err("%s: tuning execution failed\n", mmc_hostname(host));
1083 else
1084 mmc_retune_enable(host);
1086 return err;
1090 * Change the bus mode (open drain/push-pull) of a host.
1092 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1094 host->ios.bus_mode = mode;
1095 mmc_set_ios(host);
1099 * Change data bus width of a host.
1101 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1103 host->ios.bus_width = width;
1104 mmc_set_ios(host);
1108 * Set initial state after a power cycle or a hw_reset.
1110 void mmc_set_initial_state(struct mmc_host *host)
1112 mmc_retune_disable(host);
1114 if (mmc_host_is_spi(host))
1115 host->ios.chip_select = MMC_CS_HIGH;
1116 else
1117 host->ios.chip_select = MMC_CS_DONTCARE;
1118 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1119 host->ios.bus_width = MMC_BUS_WIDTH_1;
1120 host->ios.timing = MMC_TIMING_LEGACY;
1121 host->ios.drv_type = 0;
1123 mmc_set_ios(host);
1127 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1128 * @vdd: voltage (mV)
1129 * @low_bits: prefer low bits in boundary cases
1131 * This function returns the OCR bit number according to the provided @vdd
1132 * value. If conversion is not possible a negative errno value returned.
1134 * Depending on the @low_bits flag the function prefers low or high OCR bits
1135 * on boundary voltages. For example,
1136 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1137 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1139 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1141 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1143 const int max_bit = ilog2(MMC_VDD_35_36);
1144 int bit;
1146 if (vdd < 1650 || vdd > 3600)
1147 return -EINVAL;
1149 if (vdd >= 1650 && vdd <= 1950)
1150 return ilog2(MMC_VDD_165_195);
1152 if (low_bits)
1153 vdd -= 1;
1155 /* Base 2000 mV, step 100 mV, bit's base 8. */
1156 bit = (vdd - 2000) / 100 + 8;
1157 if (bit > max_bit)
1158 return max_bit;
1159 return bit;
1163 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1164 * @vdd_min: minimum voltage value (mV)
1165 * @vdd_max: maximum voltage value (mV)
1167 * This function returns the OCR mask bits according to the provided @vdd_min
1168 * and @vdd_max values. If conversion is not possible the function returns 0.
1170 * Notes wrt boundary cases:
1171 * This function sets the OCR bits for all boundary voltages, for example
1172 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1173 * MMC_VDD_34_35 mask.
1175 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1177 u32 mask = 0;
1179 if (vdd_max < vdd_min)
1180 return 0;
1182 /* Prefer high bits for the boundary vdd_max values. */
1183 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1184 if (vdd_max < 0)
1185 return 0;
1187 /* Prefer low bits for the boundary vdd_min values. */
1188 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1189 if (vdd_min < 0)
1190 return 0;
1192 /* Fill the mask, from max bit to min bit. */
1193 while (vdd_max >= vdd_min)
1194 mask |= 1 << vdd_max--;
1196 return mask;
1198 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1200 #ifdef CONFIG_OF
1203 * mmc_of_parse_voltage - return mask of supported voltages
1204 * @np: The device node need to be parsed.
1205 * @mask: mask of voltages available for MMC/SD/SDIO
1207 * 1. Return zero on success.
1208 * 2. Return negative errno: voltage-range is invalid.
1210 int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1212 const u32 *voltage_ranges;
1213 int num_ranges, i;
1215 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1216 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1217 if (!voltage_ranges || !num_ranges) {
1218 pr_info("%s: voltage-ranges unspecified\n", np->full_name);
1219 return -EINVAL;
1222 for (i = 0; i < num_ranges; i++) {
1223 const int j = i * 2;
1224 u32 ocr_mask;
1226 ocr_mask = mmc_vddrange_to_ocrmask(
1227 be32_to_cpu(voltage_ranges[j]),
1228 be32_to_cpu(voltage_ranges[j + 1]));
1229 if (!ocr_mask) {
1230 pr_err("%s: voltage-range #%d is invalid\n",
1231 np->full_name, i);
1232 return -EINVAL;
1234 *mask |= ocr_mask;
1237 return 0;
1239 EXPORT_SYMBOL(mmc_of_parse_voltage);
1241 #endif /* CONFIG_OF */
1243 static int mmc_of_get_func_num(struct device_node *node)
1245 u32 reg;
1246 int ret;
1248 ret = of_property_read_u32(node, "reg", &reg);
1249 if (ret < 0)
1250 return ret;
1252 return reg;
1255 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1256 unsigned func_num)
1258 struct device_node *node;
1260 if (!host->parent || !host->parent->of_node)
1261 return NULL;
1263 for_each_child_of_node(host->parent->of_node, node) {
1264 if (mmc_of_get_func_num(node) == func_num)
1265 return node;
1268 return NULL;
1271 #ifdef CONFIG_REGULATOR
1274 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1275 * @vdd_bit: OCR bit number
1276 * @min_uV: minimum voltage value (mV)
1277 * @max_uV: maximum voltage value (mV)
1279 * This function returns the voltage range according to the provided OCR
1280 * bit number. If conversion is not possible a negative errno value returned.
1282 static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1284 int tmp;
1286 if (!vdd_bit)
1287 return -EINVAL;
1290 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1291 * bits this regulator doesn't quite support ... don't
1292 * be too picky, most cards and regulators are OK with
1293 * a 0.1V range goof (it's a small error percentage).
1295 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1296 if (tmp == 0) {
1297 *min_uV = 1650 * 1000;
1298 *max_uV = 1950 * 1000;
1299 } else {
1300 *min_uV = 1900 * 1000 + tmp * 100 * 1000;
1301 *max_uV = *min_uV + 100 * 1000;
1304 return 0;
1308 * mmc_regulator_get_ocrmask - return mask of supported voltages
1309 * @supply: regulator to use
1311 * This returns either a negative errno, or a mask of voltages that
1312 * can be provided to MMC/SD/SDIO devices using the specified voltage
1313 * regulator. This would normally be called before registering the
1314 * MMC host adapter.
1316 int mmc_regulator_get_ocrmask(struct regulator *supply)
1318 int result = 0;
1319 int count;
1320 int i;
1321 int vdd_uV;
1322 int vdd_mV;
1324 count = regulator_count_voltages(supply);
1325 if (count < 0)
1326 return count;
1328 for (i = 0; i < count; i++) {
1329 vdd_uV = regulator_list_voltage(supply, i);
1330 if (vdd_uV <= 0)
1331 continue;
1333 vdd_mV = vdd_uV / 1000;
1334 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1337 if (!result) {
1338 vdd_uV = regulator_get_voltage(supply);
1339 if (vdd_uV <= 0)
1340 return vdd_uV;
1342 vdd_mV = vdd_uV / 1000;
1343 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1346 return result;
1348 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1351 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1352 * @mmc: the host to regulate
1353 * @supply: regulator to use
1354 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1356 * Returns zero on success, else negative errno.
1358 * MMC host drivers may use this to enable or disable a regulator using
1359 * a particular supply voltage. This would normally be called from the
1360 * set_ios() method.
1362 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1363 struct regulator *supply,
1364 unsigned short vdd_bit)
1366 int result = 0;
1367 int min_uV, max_uV;
1369 if (vdd_bit) {
1370 mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
1372 result = regulator_set_voltage(supply, min_uV, max_uV);
1373 if (result == 0 && !mmc->regulator_enabled) {
1374 result = regulator_enable(supply);
1375 if (!result)
1376 mmc->regulator_enabled = true;
1378 } else if (mmc->regulator_enabled) {
1379 result = regulator_disable(supply);
1380 if (result == 0)
1381 mmc->regulator_enabled = false;
1384 if (result)
1385 dev_err(mmc_dev(mmc),
1386 "could not set regulator OCR (%d)\n", result);
1387 return result;
1389 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1391 static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1392 int min_uV, int target_uV,
1393 int max_uV)
1396 * Check if supported first to avoid errors since we may try several
1397 * signal levels during power up and don't want to show errors.
1399 if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1400 return -EINVAL;
1402 return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1403 max_uV);
1407 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1409 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1410 * That will match the behavior of old boards where VQMMC and VMMC were supplied
1411 * by the same supply. The Bus Operating conditions for 3.3V signaling in the
1412 * SD card spec also define VQMMC in terms of VMMC.
1413 * If this is not possible we'll try the full 2.7-3.6V of the spec.
1415 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1416 * requested voltage. This is definitely a good idea for UHS where there's a
1417 * separate regulator on the card that's trying to make 1.8V and it's best if
1418 * we match.
1420 * This function is expected to be used by a controller's
1421 * start_signal_voltage_switch() function.
1423 int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1425 struct device *dev = mmc_dev(mmc);
1426 int ret, volt, min_uV, max_uV;
1428 /* If no vqmmc supply then we can't change the voltage */
1429 if (IS_ERR(mmc->supply.vqmmc))
1430 return -EINVAL;
1432 switch (ios->signal_voltage) {
1433 case MMC_SIGNAL_VOLTAGE_120:
1434 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1435 1100000, 1200000, 1300000);
1436 case MMC_SIGNAL_VOLTAGE_180:
1437 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1438 1700000, 1800000, 1950000);
1439 case MMC_SIGNAL_VOLTAGE_330:
1440 ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1441 if (ret < 0)
1442 return ret;
1444 dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1445 __func__, volt, max_uV);
1447 min_uV = max(volt - 300000, 2700000);
1448 max_uV = min(max_uV + 200000, 3600000);
1451 * Due to a limitation in the current implementation of
1452 * regulator_set_voltage_triplet() which is taking the lowest
1453 * voltage possible if below the target, search for a suitable
1454 * voltage in two steps and try to stay close to vmmc
1455 * with a 0.3V tolerance at first.
1457 if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1458 min_uV, volt, max_uV))
1459 return 0;
1461 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1462 2700000, volt, 3600000);
1463 default:
1464 return -EINVAL;
1467 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1469 #endif /* CONFIG_REGULATOR */
1471 int mmc_regulator_get_supply(struct mmc_host *mmc)
1473 struct device *dev = mmc_dev(mmc);
1474 int ret;
1476 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1477 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1479 if (IS_ERR(mmc->supply.vmmc)) {
1480 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1481 return -EPROBE_DEFER;
1482 dev_dbg(dev, "No vmmc regulator found\n");
1483 } else {
1484 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1485 if (ret > 0)
1486 mmc->ocr_avail = ret;
1487 else
1488 dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1491 if (IS_ERR(mmc->supply.vqmmc)) {
1492 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1493 return -EPROBE_DEFER;
1494 dev_dbg(dev, "No vqmmc regulator found\n");
1497 return 0;
1499 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1502 * Mask off any voltages we don't support and select
1503 * the lowest voltage
1505 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1507 int bit;
1510 * Sanity check the voltages that the card claims to
1511 * support.
1513 if (ocr & 0x7F) {
1514 dev_warn(mmc_dev(host),
1515 "card claims to support voltages below defined range\n");
1516 ocr &= ~0x7F;
1519 ocr &= host->ocr_avail;
1520 if (!ocr) {
1521 dev_warn(mmc_dev(host), "no support for card's volts\n");
1522 return 0;
1525 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1526 bit = ffs(ocr) - 1;
1527 ocr &= 3 << bit;
1528 mmc_power_cycle(host, ocr);
1529 } else {
1530 bit = fls(ocr) - 1;
1531 ocr &= 3 << bit;
1532 if (bit != host->ios.vdd)
1533 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1536 return ocr;
1539 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1541 int err = 0;
1542 int old_signal_voltage = host->ios.signal_voltage;
1544 host->ios.signal_voltage = signal_voltage;
1545 if (host->ops->start_signal_voltage_switch)
1546 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1548 if (err)
1549 host->ios.signal_voltage = old_signal_voltage;
1551 return err;
1555 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1557 struct mmc_command cmd = {0};
1558 int err = 0;
1559 u32 clock;
1561 BUG_ON(!host);
1564 * Send CMD11 only if the request is to switch the card to
1565 * 1.8V signalling.
1567 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1568 return __mmc_set_signal_voltage(host, signal_voltage);
1571 * If we cannot switch voltages, return failure so the caller
1572 * can continue without UHS mode
1574 if (!host->ops->start_signal_voltage_switch)
1575 return -EPERM;
1576 if (!host->ops->card_busy)
1577 pr_warn("%s: cannot verify signal voltage switch\n",
1578 mmc_hostname(host));
1580 cmd.opcode = SD_SWITCH_VOLTAGE;
1581 cmd.arg = 0;
1582 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1584 err = mmc_wait_for_cmd(host, &cmd, 0);
1585 if (err)
1586 return err;
1588 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1589 return -EIO;
1592 * The card should drive cmd and dat[0:3] low immediately
1593 * after the response of cmd11, but wait 1 ms to be sure
1595 mmc_delay(1);
1596 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1597 err = -EAGAIN;
1598 goto power_cycle;
1601 * During a signal voltage level switch, the clock must be gated
1602 * for 5 ms according to the SD spec
1604 clock = host->ios.clock;
1605 host->ios.clock = 0;
1606 mmc_set_ios(host);
1608 if (__mmc_set_signal_voltage(host, signal_voltage)) {
1610 * Voltages may not have been switched, but we've already
1611 * sent CMD11, so a power cycle is required anyway
1613 err = -EAGAIN;
1614 goto power_cycle;
1617 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1618 mmc_delay(10);
1619 host->ios.clock = clock;
1620 mmc_set_ios(host);
1622 /* Wait for at least 1 ms according to spec */
1623 mmc_delay(1);
1626 * Failure to switch is indicated by the card holding
1627 * dat[0:3] low
1629 if (host->ops->card_busy && host->ops->card_busy(host))
1630 err = -EAGAIN;
1632 power_cycle:
1633 if (err) {
1634 pr_debug("%s: Signal voltage switch failed, "
1635 "power cycling card\n", mmc_hostname(host));
1636 mmc_power_cycle(host, ocr);
1639 return err;
1643 * Select timing parameters for host.
1645 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1647 host->ios.timing = timing;
1648 mmc_set_ios(host);
1652 * Select appropriate driver type for host.
1654 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1656 host->ios.drv_type = drv_type;
1657 mmc_set_ios(host);
1660 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1661 int card_drv_type, int *drv_type)
1663 struct mmc_host *host = card->host;
1664 int host_drv_type = SD_DRIVER_TYPE_B;
1666 *drv_type = 0;
1668 if (!host->ops->select_drive_strength)
1669 return 0;
1671 /* Use SD definition of driver strength for hosts */
1672 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1673 host_drv_type |= SD_DRIVER_TYPE_A;
1675 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1676 host_drv_type |= SD_DRIVER_TYPE_C;
1678 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1679 host_drv_type |= SD_DRIVER_TYPE_D;
1682 * The drive strength that the hardware can support
1683 * depends on the board design. Pass the appropriate
1684 * information and let the hardware specific code
1685 * return what is possible given the options
1687 return host->ops->select_drive_strength(card, max_dtr,
1688 host_drv_type,
1689 card_drv_type,
1690 drv_type);
1694 * Apply power to the MMC stack. This is a two-stage process.
1695 * First, we enable power to the card without the clock running.
1696 * We then wait a bit for the power to stabilise. Finally,
1697 * enable the bus drivers and clock to the card.
1699 * We must _NOT_ enable the clock prior to power stablising.
1701 * If a host does all the power sequencing itself, ignore the
1702 * initial MMC_POWER_UP stage.
1704 void mmc_power_up(struct mmc_host *host, u32 ocr)
1706 if (host->ios.power_mode == MMC_POWER_ON)
1707 return;
1709 mmc_pwrseq_pre_power_on(host);
1711 host->ios.vdd = fls(ocr) - 1;
1712 host->ios.power_mode = MMC_POWER_UP;
1713 /* Set initial state and call mmc_set_ios */
1714 mmc_set_initial_state(host);
1716 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1717 if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0)
1718 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1719 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0)
1720 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1721 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0)
1722 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1725 * This delay should be sufficient to allow the power supply
1726 * to reach the minimum voltage.
1728 mmc_delay(10);
1730 mmc_pwrseq_post_power_on(host);
1732 host->ios.clock = host->f_init;
1734 host->ios.power_mode = MMC_POWER_ON;
1735 mmc_set_ios(host);
1738 * This delay must be at least 74 clock sizes, or 1 ms, or the
1739 * time required to reach a stable voltage.
1741 mmc_delay(10);
1744 void mmc_power_off(struct mmc_host *host)
1746 if (host->ios.power_mode == MMC_POWER_OFF)
1747 return;
1749 mmc_pwrseq_power_off(host);
1751 host->ios.clock = 0;
1752 host->ios.vdd = 0;
1754 host->ios.power_mode = MMC_POWER_OFF;
1755 /* Set initial state and call mmc_set_ios */
1756 mmc_set_initial_state(host);
1759 * Some configurations, such as the 802.11 SDIO card in the OLPC
1760 * XO-1.5, require a short delay after poweroff before the card
1761 * can be successfully turned on again.
1763 mmc_delay(1);
1766 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1768 mmc_power_off(host);
1769 /* Wait at least 1 ms according to SD spec */
1770 mmc_delay(1);
1771 mmc_power_up(host, ocr);
1775 * Cleanup when the last reference to the bus operator is dropped.
1777 static void __mmc_release_bus(struct mmc_host *host)
1779 BUG_ON(!host);
1780 BUG_ON(host->bus_refs);
1781 BUG_ON(!host->bus_dead);
1783 host->bus_ops = NULL;
1787 * Increase reference count of bus operator
1789 static inline void mmc_bus_get(struct mmc_host *host)
1791 unsigned long flags;
1793 spin_lock_irqsave(&host->lock, flags);
1794 host->bus_refs++;
1795 spin_unlock_irqrestore(&host->lock, flags);
1799 * Decrease reference count of bus operator and free it if
1800 * it is the last reference.
1802 static inline void mmc_bus_put(struct mmc_host *host)
1804 unsigned long flags;
1806 spin_lock_irqsave(&host->lock, flags);
1807 host->bus_refs--;
1808 if ((host->bus_refs == 0) && host->bus_ops)
1809 __mmc_release_bus(host);
1810 spin_unlock_irqrestore(&host->lock, flags);
1814 * Assign a mmc bus handler to a host. Only one bus handler may control a
1815 * host at any given time.
1817 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1819 unsigned long flags;
1821 BUG_ON(!host);
1822 BUG_ON(!ops);
1824 WARN_ON(!host->claimed);
1826 spin_lock_irqsave(&host->lock, flags);
1828 BUG_ON(host->bus_ops);
1829 BUG_ON(host->bus_refs);
1831 host->bus_ops = ops;
1832 host->bus_refs = 1;
1833 host->bus_dead = 0;
1835 spin_unlock_irqrestore(&host->lock, flags);
1839 * Remove the current bus handler from a host.
1841 void mmc_detach_bus(struct mmc_host *host)
1843 unsigned long flags;
1845 BUG_ON(!host);
1847 WARN_ON(!host->claimed);
1848 WARN_ON(!host->bus_ops);
1850 spin_lock_irqsave(&host->lock, flags);
1852 host->bus_dead = 1;
1854 spin_unlock_irqrestore(&host->lock, flags);
1856 mmc_bus_put(host);
1859 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1860 bool cd_irq)
1862 #ifdef CONFIG_MMC_DEBUG
1863 unsigned long flags;
1864 spin_lock_irqsave(&host->lock, flags);
1865 WARN_ON(host->removed);
1866 spin_unlock_irqrestore(&host->lock, flags);
1867 #endif
1870 * If the device is configured as wakeup, we prevent a new sleep for
1871 * 5 s to give provision for user space to consume the event.
1873 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1874 device_can_wakeup(mmc_dev(host)))
1875 pm_wakeup_event(mmc_dev(host), 5000);
1877 host->detect_change = 1;
1878 mmc_schedule_delayed_work(&host->detect, delay);
1882 * mmc_detect_change - process change of state on a MMC socket
1883 * @host: host which changed state.
1884 * @delay: optional delay to wait before detection (jiffies)
1886 * MMC drivers should call this when they detect a card has been
1887 * inserted or removed. The MMC layer will confirm that any
1888 * present card is still functional, and initialize any newly
1889 * inserted.
1891 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1893 _mmc_detect_change(host, delay, true);
1895 EXPORT_SYMBOL(mmc_detect_change);
1897 void mmc_init_erase(struct mmc_card *card)
1899 unsigned int sz;
1901 if (is_power_of_2(card->erase_size))
1902 card->erase_shift = ffs(card->erase_size) - 1;
1903 else
1904 card->erase_shift = 0;
1907 * It is possible to erase an arbitrarily large area of an SD or MMC
1908 * card. That is not desirable because it can take a long time
1909 * (minutes) potentially delaying more important I/O, and also the
1910 * timeout calculations become increasingly hugely over-estimated.
1911 * Consequently, 'pref_erase' is defined as a guide to limit erases
1912 * to that size and alignment.
1914 * For SD cards that define Allocation Unit size, limit erases to one
1915 * Allocation Unit at a time. For MMC cards that define High Capacity
1916 * Erase Size, whether it is switched on or not, limit to that size.
1917 * Otherwise just have a stab at a good value. For modern cards it
1918 * will end up being 4MiB. Note that if the value is too small, it
1919 * can end up taking longer to erase.
1921 if (mmc_card_sd(card) && card->ssr.au) {
1922 card->pref_erase = card->ssr.au;
1923 card->erase_shift = ffs(card->ssr.au) - 1;
1924 } else if (card->ext_csd.hc_erase_size) {
1925 card->pref_erase = card->ext_csd.hc_erase_size;
1926 } else if (card->erase_size) {
1927 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1928 if (sz < 128)
1929 card->pref_erase = 512 * 1024 / 512;
1930 else if (sz < 512)
1931 card->pref_erase = 1024 * 1024 / 512;
1932 else if (sz < 1024)
1933 card->pref_erase = 2 * 1024 * 1024 / 512;
1934 else
1935 card->pref_erase = 4 * 1024 * 1024 / 512;
1936 if (card->pref_erase < card->erase_size)
1937 card->pref_erase = card->erase_size;
1938 else {
1939 sz = card->pref_erase % card->erase_size;
1940 if (sz)
1941 card->pref_erase += card->erase_size - sz;
1943 } else
1944 card->pref_erase = 0;
1947 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1948 unsigned int arg, unsigned int qty)
1950 unsigned int erase_timeout;
1952 if (arg == MMC_DISCARD_ARG ||
1953 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1954 erase_timeout = card->ext_csd.trim_timeout;
1955 } else if (card->ext_csd.erase_group_def & 1) {
1956 /* High Capacity Erase Group Size uses HC timeouts */
1957 if (arg == MMC_TRIM_ARG)
1958 erase_timeout = card->ext_csd.trim_timeout;
1959 else
1960 erase_timeout = card->ext_csd.hc_erase_timeout;
1961 } else {
1962 /* CSD Erase Group Size uses write timeout */
1963 unsigned int mult = (10 << card->csd.r2w_factor);
1964 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1965 unsigned int timeout_us;
1967 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1968 if (card->csd.tacc_ns < 1000000)
1969 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1970 else
1971 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1974 * ios.clock is only a target. The real clock rate might be
1975 * less but not that much less, so fudge it by multiplying by 2.
1977 timeout_clks <<= 1;
1978 timeout_us += (timeout_clks * 1000) /
1979 (card->host->ios.clock / 1000);
1981 erase_timeout = timeout_us / 1000;
1984 * Theoretically, the calculation could underflow so round up
1985 * to 1ms in that case.
1987 if (!erase_timeout)
1988 erase_timeout = 1;
1991 /* Multiplier for secure operations */
1992 if (arg & MMC_SECURE_ARGS) {
1993 if (arg == MMC_SECURE_ERASE_ARG)
1994 erase_timeout *= card->ext_csd.sec_erase_mult;
1995 else
1996 erase_timeout *= card->ext_csd.sec_trim_mult;
1999 erase_timeout *= qty;
2002 * Ensure at least a 1 second timeout for SPI as per
2003 * 'mmc_set_data_timeout()'
2005 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
2006 erase_timeout = 1000;
2008 return erase_timeout;
2011 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
2012 unsigned int arg,
2013 unsigned int qty)
2015 unsigned int erase_timeout;
2017 if (card->ssr.erase_timeout) {
2018 /* Erase timeout specified in SD Status Register (SSR) */
2019 erase_timeout = card->ssr.erase_timeout * qty +
2020 card->ssr.erase_offset;
2021 } else {
2023 * Erase timeout not specified in SD Status Register (SSR) so
2024 * use 250ms per write block.
2026 erase_timeout = 250 * qty;
2029 /* Must not be less than 1 second */
2030 if (erase_timeout < 1000)
2031 erase_timeout = 1000;
2033 return erase_timeout;
2036 static unsigned int mmc_erase_timeout(struct mmc_card *card,
2037 unsigned int arg,
2038 unsigned int qty)
2040 if (mmc_card_sd(card))
2041 return mmc_sd_erase_timeout(card, arg, qty);
2042 else
2043 return mmc_mmc_erase_timeout(card, arg, qty);
2046 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
2047 unsigned int to, unsigned int arg)
2049 struct mmc_command cmd = {0};
2050 unsigned int qty = 0;
2051 unsigned long timeout;
2052 int err;
2054 mmc_retune_hold(card->host);
2057 * qty is used to calculate the erase timeout which depends on how many
2058 * erase groups (or allocation units in SD terminology) are affected.
2059 * We count erasing part of an erase group as one erase group.
2060 * For SD, the allocation units are always a power of 2. For MMC, the
2061 * erase group size is almost certainly also power of 2, but it does not
2062 * seem to insist on that in the JEDEC standard, so we fall back to
2063 * division in that case. SD may not specify an allocation unit size,
2064 * in which case the timeout is based on the number of write blocks.
2066 * Note that the timeout for secure trim 2 will only be correct if the
2067 * number of erase groups specified is the same as the total of all
2068 * preceding secure trim 1 commands. Since the power may have been
2069 * lost since the secure trim 1 commands occurred, it is generally
2070 * impossible to calculate the secure trim 2 timeout correctly.
2072 if (card->erase_shift)
2073 qty += ((to >> card->erase_shift) -
2074 (from >> card->erase_shift)) + 1;
2075 else if (mmc_card_sd(card))
2076 qty += to - from + 1;
2077 else
2078 qty += ((to / card->erase_size) -
2079 (from / card->erase_size)) + 1;
2081 if (!mmc_card_blockaddr(card)) {
2082 from <<= 9;
2083 to <<= 9;
2086 if (mmc_card_sd(card))
2087 cmd.opcode = SD_ERASE_WR_BLK_START;
2088 else
2089 cmd.opcode = MMC_ERASE_GROUP_START;
2090 cmd.arg = from;
2091 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2092 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2093 if (err) {
2094 pr_err("mmc_erase: group start error %d, "
2095 "status %#x\n", err, cmd.resp[0]);
2096 err = -EIO;
2097 goto out;
2100 memset(&cmd, 0, sizeof(struct mmc_command));
2101 if (mmc_card_sd(card))
2102 cmd.opcode = SD_ERASE_WR_BLK_END;
2103 else
2104 cmd.opcode = MMC_ERASE_GROUP_END;
2105 cmd.arg = to;
2106 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2107 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2108 if (err) {
2109 pr_err("mmc_erase: group end error %d, status %#x\n",
2110 err, cmd.resp[0]);
2111 err = -EIO;
2112 goto out;
2115 memset(&cmd, 0, sizeof(struct mmc_command));
2116 cmd.opcode = MMC_ERASE;
2117 cmd.arg = arg;
2118 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2119 cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
2120 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2121 if (err) {
2122 pr_err("mmc_erase: erase error %d, status %#x\n",
2123 err, cmd.resp[0]);
2124 err = -EIO;
2125 goto out;
2128 if (mmc_host_is_spi(card->host))
2129 goto out;
2131 timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
2132 do {
2133 memset(&cmd, 0, sizeof(struct mmc_command));
2134 cmd.opcode = MMC_SEND_STATUS;
2135 cmd.arg = card->rca << 16;
2136 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2137 /* Do not retry else we can't see errors */
2138 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2139 if (err || (cmd.resp[0] & 0xFDF92000)) {
2140 pr_err("error %d requesting status %#x\n",
2141 err, cmd.resp[0]);
2142 err = -EIO;
2143 goto out;
2146 /* Timeout if the device never becomes ready for data and
2147 * never leaves the program state.
2149 if (time_after(jiffies, timeout)) {
2150 pr_err("%s: Card stuck in programming state! %s\n",
2151 mmc_hostname(card->host), __func__);
2152 err = -EIO;
2153 goto out;
2156 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2157 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2158 out:
2159 mmc_retune_release(card->host);
2160 return err;
2164 * mmc_erase - erase sectors.
2165 * @card: card to erase
2166 * @from: first sector to erase
2167 * @nr: number of sectors to erase
2168 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2170 * Caller must claim host before calling this function.
2172 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2173 unsigned int arg)
2175 unsigned int rem, to = from + nr;
2176 int err;
2178 if (!(card->host->caps & MMC_CAP_ERASE) ||
2179 !(card->csd.cmdclass & CCC_ERASE))
2180 return -EOPNOTSUPP;
2182 if (!card->erase_size)
2183 return -EOPNOTSUPP;
2185 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2186 return -EOPNOTSUPP;
2188 if ((arg & MMC_SECURE_ARGS) &&
2189 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2190 return -EOPNOTSUPP;
2192 if ((arg & MMC_TRIM_ARGS) &&
2193 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2194 return -EOPNOTSUPP;
2196 if (arg == MMC_SECURE_ERASE_ARG) {
2197 if (from % card->erase_size || nr % card->erase_size)
2198 return -EINVAL;
2201 if (arg == MMC_ERASE_ARG) {
2202 rem = from % card->erase_size;
2203 if (rem) {
2204 rem = card->erase_size - rem;
2205 from += rem;
2206 if (nr > rem)
2207 nr -= rem;
2208 else
2209 return 0;
2211 rem = nr % card->erase_size;
2212 if (rem)
2213 nr -= rem;
2216 if (nr == 0)
2217 return 0;
2219 to = from + nr;
2221 if (to <= from)
2222 return -EINVAL;
2224 /* 'from' and 'to' are inclusive */
2225 to -= 1;
2228 * Special case where only one erase-group fits in the timeout budget:
2229 * If the region crosses an erase-group boundary on this particular
2230 * case, we will be trimming more than one erase-group which, does not
2231 * fit in the timeout budget of the controller, so we need to split it
2232 * and call mmc_do_erase() twice if necessary. This special case is
2233 * identified by the card->eg_boundary flag.
2235 rem = card->erase_size - (from % card->erase_size);
2236 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2237 err = mmc_do_erase(card, from, from + rem - 1, arg);
2238 from += rem;
2239 if ((err) || (to <= from))
2240 return err;
2243 return mmc_do_erase(card, from, to, arg);
2245 EXPORT_SYMBOL(mmc_erase);
2247 int mmc_can_erase(struct mmc_card *card)
2249 if ((card->host->caps & MMC_CAP_ERASE) &&
2250 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2251 return 1;
2252 return 0;
2254 EXPORT_SYMBOL(mmc_can_erase);
2256 int mmc_can_trim(struct mmc_card *card)
2258 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2259 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2260 return 1;
2261 return 0;
2263 EXPORT_SYMBOL(mmc_can_trim);
2265 int mmc_can_discard(struct mmc_card *card)
2268 * As there's no way to detect the discard support bit at v4.5
2269 * use the s/w feature support filed.
2271 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2272 return 1;
2273 return 0;
2275 EXPORT_SYMBOL(mmc_can_discard);
2277 int mmc_can_sanitize(struct mmc_card *card)
2279 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2280 return 0;
2281 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2282 return 1;
2283 return 0;
2285 EXPORT_SYMBOL(mmc_can_sanitize);
2287 int mmc_can_secure_erase_trim(struct mmc_card *card)
2289 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2290 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2291 return 1;
2292 return 0;
2294 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2296 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2297 unsigned int nr)
2299 if (!card->erase_size)
2300 return 0;
2301 if (from % card->erase_size || nr % card->erase_size)
2302 return 0;
2303 return 1;
2305 EXPORT_SYMBOL(mmc_erase_group_aligned);
2307 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2308 unsigned int arg)
2310 struct mmc_host *host = card->host;
2311 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2312 unsigned int last_timeout = 0;
2314 if (card->erase_shift)
2315 max_qty = UINT_MAX >> card->erase_shift;
2316 else if (mmc_card_sd(card))
2317 max_qty = UINT_MAX;
2318 else
2319 max_qty = UINT_MAX / card->erase_size;
2321 /* Find the largest qty with an OK timeout */
2322 do {
2323 y = 0;
2324 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2325 timeout = mmc_erase_timeout(card, arg, qty + x);
2326 if (timeout > host->max_busy_timeout)
2327 break;
2328 if (timeout < last_timeout)
2329 break;
2330 last_timeout = timeout;
2331 y = x;
2333 qty += y;
2334 } while (y);
2336 if (!qty)
2337 return 0;
2340 * When specifying a sector range to trim, chances are we might cross
2341 * an erase-group boundary even if the amount of sectors is less than
2342 * one erase-group.
2343 * If we can only fit one erase-group in the controller timeout budget,
2344 * we have to care that erase-group boundaries are not crossed by a
2345 * single trim operation. We flag that special case with "eg_boundary".
2346 * In all other cases we can just decrement qty and pretend that we
2347 * always touch (qty + 1) erase-groups as a simple optimization.
2349 if (qty == 1)
2350 card->eg_boundary = 1;
2351 else
2352 qty--;
2354 /* Convert qty to sectors */
2355 if (card->erase_shift)
2356 max_discard = qty << card->erase_shift;
2357 else if (mmc_card_sd(card))
2358 max_discard = qty + 1;
2359 else
2360 max_discard = qty * card->erase_size;
2362 return max_discard;
2365 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2367 struct mmc_host *host = card->host;
2368 unsigned int max_discard, max_trim;
2370 if (!host->max_busy_timeout)
2371 return UINT_MAX;
2374 * Without erase_group_def set, MMC erase timeout depends on clock
2375 * frequence which can change. In that case, the best choice is
2376 * just the preferred erase size.
2378 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2379 return card->pref_erase;
2381 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2382 if (mmc_can_trim(card)) {
2383 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2384 if (max_trim < max_discard)
2385 max_discard = max_trim;
2386 } else if (max_discard < card->erase_size) {
2387 max_discard = 0;
2389 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2390 mmc_hostname(host), max_discard, host->max_busy_timeout);
2391 return max_discard;
2393 EXPORT_SYMBOL(mmc_calc_max_discard);
2395 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2397 struct mmc_command cmd = {0};
2399 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card))
2400 return 0;
2402 cmd.opcode = MMC_SET_BLOCKLEN;
2403 cmd.arg = blocklen;
2404 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2405 return mmc_wait_for_cmd(card->host, &cmd, 5);
2407 EXPORT_SYMBOL(mmc_set_blocklen);
2409 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2410 bool is_rel_write)
2412 struct mmc_command cmd = {0};
2414 cmd.opcode = MMC_SET_BLOCK_COUNT;
2415 cmd.arg = blockcount & 0x0000FFFF;
2416 if (is_rel_write)
2417 cmd.arg |= 1 << 31;
2418 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2419 return mmc_wait_for_cmd(card->host, &cmd, 5);
2421 EXPORT_SYMBOL(mmc_set_blockcount);
2423 static void mmc_hw_reset_for_init(struct mmc_host *host)
2425 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2426 return;
2427 host->ops->hw_reset(host);
2430 int mmc_hw_reset(struct mmc_host *host)
2432 int ret;
2434 if (!host->card)
2435 return -EINVAL;
2437 mmc_bus_get(host);
2438 if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2439 mmc_bus_put(host);
2440 return -EOPNOTSUPP;
2443 ret = host->bus_ops->reset(host);
2444 mmc_bus_put(host);
2446 if (ret != -EOPNOTSUPP)
2447 pr_warn("%s: tried to reset card\n", mmc_hostname(host));
2449 return ret;
2451 EXPORT_SYMBOL(mmc_hw_reset);
2453 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2455 host->f_init = freq;
2457 #ifdef CONFIG_MMC_DEBUG
2458 pr_info("%s: %s: trying to init card at %u Hz\n",
2459 mmc_hostname(host), __func__, host->f_init);
2460 #endif
2461 mmc_power_up(host, host->ocr_avail);
2464 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2465 * do a hardware reset if possible.
2467 mmc_hw_reset_for_init(host);
2470 * sdio_reset sends CMD52 to reset card. Since we do not know
2471 * if the card is being re-initialized, just send it. CMD52
2472 * should be ignored by SD/eMMC cards.
2473 * Skip it if we already know that we do not support SDIO commands
2475 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2476 sdio_reset(host);
2478 mmc_go_idle(host);
2480 mmc_send_if_cond(host, host->ocr_avail);
2482 /* Order's important: probe SDIO, then SD, then MMC */
2483 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2484 if (!mmc_attach_sdio(host))
2485 return 0;
2487 if (!mmc_attach_sd(host))
2488 return 0;
2489 if (!mmc_attach_mmc(host))
2490 return 0;
2492 mmc_power_off(host);
2493 return -EIO;
2496 int _mmc_detect_card_removed(struct mmc_host *host)
2498 int ret;
2500 if (!host->card || mmc_card_removed(host->card))
2501 return 1;
2503 ret = host->bus_ops->alive(host);
2506 * Card detect status and alive check may be out of sync if card is
2507 * removed slowly, when card detect switch changes while card/slot
2508 * pads are still contacted in hardware (refer to "SD Card Mechanical
2509 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2510 * detect work 200ms later for this case.
2512 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2513 mmc_detect_change(host, msecs_to_jiffies(200));
2514 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2517 if (ret) {
2518 mmc_card_set_removed(host->card);
2519 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2522 return ret;
2525 int mmc_detect_card_removed(struct mmc_host *host)
2527 struct mmc_card *card = host->card;
2528 int ret;
2530 WARN_ON(!host->claimed);
2532 if (!card)
2533 return 1;
2535 if (host->caps & MMC_CAP_NONREMOVABLE)
2536 return 0;
2538 ret = mmc_card_removed(card);
2540 * The card will be considered unchanged unless we have been asked to
2541 * detect a change or host requires polling to provide card detection.
2543 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2544 return ret;
2546 host->detect_change = 0;
2547 if (!ret) {
2548 ret = _mmc_detect_card_removed(host);
2549 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2551 * Schedule a detect work as soon as possible to let a
2552 * rescan handle the card removal.
2554 cancel_delayed_work(&host->detect);
2555 _mmc_detect_change(host, 0, false);
2559 return ret;
2561 EXPORT_SYMBOL(mmc_detect_card_removed);
2563 void mmc_rescan(struct work_struct *work)
2565 struct mmc_host *host =
2566 container_of(work, struct mmc_host, detect.work);
2567 int i;
2569 if (host->rescan_disable)
2570 return;
2572 /* If there is a non-removable card registered, only scan once */
2573 if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2574 return;
2575 host->rescan_entered = 1;
2577 if (host->trigger_card_event && host->ops->card_event) {
2578 mmc_claim_host(host);
2579 host->ops->card_event(host);
2580 mmc_release_host(host);
2581 host->trigger_card_event = false;
2584 mmc_bus_get(host);
2587 * if there is a _removable_ card registered, check whether it is
2588 * still present
2590 if (host->bus_ops && !host->bus_dead
2591 && !(host->caps & MMC_CAP_NONREMOVABLE))
2592 host->bus_ops->detect(host);
2594 host->detect_change = 0;
2597 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2598 * the card is no longer present.
2600 mmc_bus_put(host);
2601 mmc_bus_get(host);
2603 /* if there still is a card present, stop here */
2604 if (host->bus_ops != NULL) {
2605 mmc_bus_put(host);
2606 goto out;
2610 * Only we can add a new handler, so it's safe to
2611 * release the lock here.
2613 mmc_bus_put(host);
2615 mmc_claim_host(host);
2616 if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd &&
2617 host->ops->get_cd(host) == 0) {
2618 mmc_power_off(host);
2619 mmc_release_host(host);
2620 goto out;
2623 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2624 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2625 break;
2626 if (freqs[i] <= host->f_min)
2627 break;
2629 mmc_release_host(host);
2631 out:
2632 if (host->caps & MMC_CAP_NEEDS_POLL)
2633 mmc_schedule_delayed_work(&host->detect, HZ);
2636 void mmc_start_host(struct mmc_host *host)
2638 host->f_init = max(freqs[0], host->f_min);
2639 host->rescan_disable = 0;
2640 host->ios.power_mode = MMC_POWER_UNDEFINED;
2642 mmc_claim_host(host);
2643 if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2644 mmc_power_off(host);
2645 else
2646 mmc_power_up(host, host->ocr_avail);
2647 mmc_release_host(host);
2649 mmc_gpiod_request_cd_irq(host);
2650 _mmc_detect_change(host, 0, false);
2653 void mmc_stop_host(struct mmc_host *host)
2655 #ifdef CONFIG_MMC_DEBUG
2656 unsigned long flags;
2657 spin_lock_irqsave(&host->lock, flags);
2658 host->removed = 1;
2659 spin_unlock_irqrestore(&host->lock, flags);
2660 #endif
2661 if (host->slot.cd_irq >= 0)
2662 disable_irq(host->slot.cd_irq);
2664 host->rescan_disable = 1;
2665 cancel_delayed_work_sync(&host->detect);
2667 /* clear pm flags now and let card drivers set them as needed */
2668 host->pm_flags = 0;
2670 mmc_bus_get(host);
2671 if (host->bus_ops && !host->bus_dead) {
2672 /* Calling bus_ops->remove() with a claimed host can deadlock */
2673 host->bus_ops->remove(host);
2674 mmc_claim_host(host);
2675 mmc_detach_bus(host);
2676 mmc_power_off(host);
2677 mmc_release_host(host);
2678 mmc_bus_put(host);
2679 return;
2681 mmc_bus_put(host);
2683 BUG_ON(host->card);
2685 mmc_claim_host(host);
2686 mmc_power_off(host);
2687 mmc_release_host(host);
2690 int mmc_power_save_host(struct mmc_host *host)
2692 int ret = 0;
2694 #ifdef CONFIG_MMC_DEBUG
2695 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2696 #endif
2698 mmc_bus_get(host);
2700 if (!host->bus_ops || host->bus_dead) {
2701 mmc_bus_put(host);
2702 return -EINVAL;
2705 if (host->bus_ops->power_save)
2706 ret = host->bus_ops->power_save(host);
2708 mmc_bus_put(host);
2710 mmc_power_off(host);
2712 return ret;
2714 EXPORT_SYMBOL(mmc_power_save_host);
2716 int mmc_power_restore_host(struct mmc_host *host)
2718 int ret;
2720 #ifdef CONFIG_MMC_DEBUG
2721 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2722 #endif
2724 mmc_bus_get(host);
2726 if (!host->bus_ops || host->bus_dead) {
2727 mmc_bus_put(host);
2728 return -EINVAL;
2731 mmc_power_up(host, host->card->ocr);
2732 ret = host->bus_ops->power_restore(host);
2734 mmc_bus_put(host);
2736 return ret;
2738 EXPORT_SYMBOL(mmc_power_restore_host);
2741 * Flush the cache to the non-volatile storage.
2743 int mmc_flush_cache(struct mmc_card *card)
2745 int err = 0;
2747 if (mmc_card_mmc(card) &&
2748 (card->ext_csd.cache_size > 0) &&
2749 (card->ext_csd.cache_ctrl & 1)) {
2750 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2751 EXT_CSD_FLUSH_CACHE, 1, 0);
2752 if (err)
2753 pr_err("%s: cache flush error %d\n",
2754 mmc_hostname(card->host), err);
2757 return err;
2759 EXPORT_SYMBOL(mmc_flush_cache);
2761 #ifdef CONFIG_PM_SLEEP
2762 /* Do the card removal on suspend if card is assumed removeable
2763 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2764 to sync the card.
2766 static int mmc_pm_notify(struct notifier_block *notify_block,
2767 unsigned long mode, void *unused)
2769 struct mmc_host *host = container_of(
2770 notify_block, struct mmc_host, pm_notify);
2771 unsigned long flags;
2772 int err = 0;
2774 switch (mode) {
2775 case PM_HIBERNATION_PREPARE:
2776 case PM_SUSPEND_PREPARE:
2777 case PM_RESTORE_PREPARE:
2778 spin_lock_irqsave(&host->lock, flags);
2779 host->rescan_disable = 1;
2780 spin_unlock_irqrestore(&host->lock, flags);
2781 cancel_delayed_work_sync(&host->detect);
2783 if (!host->bus_ops)
2784 break;
2786 /* Validate prerequisites for suspend */
2787 if (host->bus_ops->pre_suspend)
2788 err = host->bus_ops->pre_suspend(host);
2789 if (!err)
2790 break;
2792 /* Calling bus_ops->remove() with a claimed host can deadlock */
2793 host->bus_ops->remove(host);
2794 mmc_claim_host(host);
2795 mmc_detach_bus(host);
2796 mmc_power_off(host);
2797 mmc_release_host(host);
2798 host->pm_flags = 0;
2799 break;
2801 case PM_POST_SUSPEND:
2802 case PM_POST_HIBERNATION:
2803 case PM_POST_RESTORE:
2805 spin_lock_irqsave(&host->lock, flags);
2806 host->rescan_disable = 0;
2807 spin_unlock_irqrestore(&host->lock, flags);
2808 _mmc_detect_change(host, 0, false);
2812 return 0;
2815 void mmc_register_pm_notifier(struct mmc_host *host)
2817 host->pm_notify.notifier_call = mmc_pm_notify;
2818 register_pm_notifier(&host->pm_notify);
2821 void mmc_unregister_pm_notifier(struct mmc_host *host)
2823 unregister_pm_notifier(&host->pm_notify);
2825 #endif
2828 * mmc_init_context_info() - init synchronization context
2829 * @host: mmc host
2831 * Init struct context_info needed to implement asynchronous
2832 * request mechanism, used by mmc core, host driver and mmc requests
2833 * supplier.
2835 void mmc_init_context_info(struct mmc_host *host)
2837 spin_lock_init(&host->context_info.lock);
2838 host->context_info.is_new_req = false;
2839 host->context_info.is_done_rcv = false;
2840 host->context_info.is_waiting_last_req = false;
2841 init_waitqueue_head(&host->context_info.wait);
2844 static int __init mmc_init(void)
2846 int ret;
2848 ret = mmc_register_bus();
2849 if (ret)
2850 return ret;
2852 ret = mmc_register_host_class();
2853 if (ret)
2854 goto unregister_bus;
2856 ret = sdio_register_bus();
2857 if (ret)
2858 goto unregister_host_class;
2860 return 0;
2862 unregister_host_class:
2863 mmc_unregister_host_class();
2864 unregister_bus:
2865 mmc_unregister_bus();
2866 return ret;
2869 static void __exit mmc_exit(void)
2871 sdio_unregister_bus();
2872 mmc_unregister_host_class();
2873 mmc_unregister_bus();
2876 subsys_initcall(mmc_init);
2877 module_exit(mmc_exit);
2879 MODULE_LICENSE("GPL");