2 * TI EDMA DMA engine driver
4 * Copyright 2012 Texas Instruments
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation version 2.
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
16 #include <linux/dmaengine.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/edma.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/list.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
28 #include <linux/of_dma.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_address.h>
31 #include <linux/of_device.h>
32 #include <linux/pm_runtime.h>
34 #include <linux/platform_data/edma.h>
36 #include "dmaengine.h"
39 /* Offsets matching "struct edmacc_param" */
42 #define PARM_A_B_CNT 0x08
44 #define PARM_SRC_DST_BIDX 0x10
45 #define PARM_LINK_BCNTRLD 0x14
46 #define PARM_SRC_DST_CIDX 0x18
47 #define PARM_CCNT 0x1c
49 #define PARM_SIZE 0x20
51 /* Offsets for EDMA CC global channel registers and their shadows */
52 #define SH_ER 0x00 /* 64 bits */
53 #define SH_ECR 0x08 /* 64 bits */
54 #define SH_ESR 0x10 /* 64 bits */
55 #define SH_CER 0x18 /* 64 bits */
56 #define SH_EER 0x20 /* 64 bits */
57 #define SH_EECR 0x28 /* 64 bits */
58 #define SH_EESR 0x30 /* 64 bits */
59 #define SH_SER 0x38 /* 64 bits */
60 #define SH_SECR 0x40 /* 64 bits */
61 #define SH_IER 0x50 /* 64 bits */
62 #define SH_IECR 0x58 /* 64 bits */
63 #define SH_IESR 0x60 /* 64 bits */
64 #define SH_IPR 0x68 /* 64 bits */
65 #define SH_ICR 0x70 /* 64 bits */
75 /* Offsets for EDMA CC global registers */
76 #define EDMA_REV 0x0000
77 #define EDMA_CCCFG 0x0004
78 #define EDMA_QCHMAP 0x0200 /* 8 registers */
79 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
80 #define EDMA_QDMAQNUM 0x0260
81 #define EDMA_QUETCMAP 0x0280
82 #define EDMA_QUEPRI 0x0284
83 #define EDMA_EMR 0x0300 /* 64 bits */
84 #define EDMA_EMCR 0x0308 /* 64 bits */
85 #define EDMA_QEMR 0x0310
86 #define EDMA_QEMCR 0x0314
87 #define EDMA_CCERR 0x0318
88 #define EDMA_CCERRCLR 0x031c
89 #define EDMA_EEVAL 0x0320
90 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
91 #define EDMA_QRAE 0x0380 /* 4 registers */
92 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
93 #define EDMA_QSTAT 0x0600 /* 2 registers */
94 #define EDMA_QWMTHRA 0x0620
95 #define EDMA_QWMTHRB 0x0624
96 #define EDMA_CCSTAT 0x0640
98 #define EDMA_M 0x1000 /* global channel registers */
99 #define EDMA_ECR 0x1008
100 #define EDMA_ECRH 0x100C
101 #define EDMA_SHADOW0 0x2000 /* 4 shadow regions */
102 #define EDMA_PARM 0x4000 /* PaRAM entries */
104 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
106 #define EDMA_DCHMAP 0x0100 /* 64 registers */
109 #define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */
110 #define GET_NUM_QDMACH(x) ((x & 0x70) >> 4) /* bits 4-6 */
111 #define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */
112 #define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */
113 #define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */
114 #define CHMAP_EXIST BIT(24)
116 /* CCSTAT register */
117 #define EDMA_CCSTAT_ACTV BIT(4)
120 * Max of 20 segments per channel to conserve PaRAM slots
121 * Also note that MAX_NR_SG should be atleast the no.of periods
122 * that are required for ASoC, otherwise DMA prep calls will
123 * fail. Today davinci-pcm is the only user of this driver and
124 * requires atleast 17 slots, so we setup the default to 20.
127 #define EDMA_MAX_SLOTS MAX_NR_SG
128 #define EDMA_DESCRIPTORS 16
130 #define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */
131 #define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */
132 #define EDMA_CONT_PARAMS_ANY 1001
133 #define EDMA_CONT_PARAMS_FIXED_EXACT 1002
134 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
136 /* PaRAM slots are laid out like this */
137 struct edmacc_param
{
148 /* fields in edmacc_param.opt */
151 #define SYNCDIM BIT(2)
152 #define STATIC BIT(3)
153 #define EDMA_FWID (0x07 << 8)
154 #define TCCMODE BIT(11)
155 #define EDMA_TCC(t) ((t) << 12)
156 #define TCINTEN BIT(20)
157 #define ITCINTEN BIT(21)
158 #define TCCHEN BIT(22)
159 #define ITCCHEN BIT(23)
164 struct edmacc_param param
;
168 struct virt_dma_desc vdesc
;
169 struct list_head node
;
170 enum dma_transfer_direction direction
;
174 struct edma_chan
*echan
;
178 * The following 4 elements are used for residue accounting.
180 * - processed_stat: the number of SG elements we have traversed
181 * so far to cover accounting. This is updated directly to processed
182 * during edma_callback and is always <= processed, because processed
183 * refers to the number of pending transfer (programmed to EDMA
184 * controller), where as processed_stat tracks number of transfers
185 * accounted for so far.
187 * - residue: The amount of bytes we have left to transfer for this desc
189 * - residue_stat: The residue in bytes of data we have covered
190 * so far for accounting. This is updated directly to residue
191 * during callbacks to keep it current.
193 * - sg_len: Tracks the length of the current intermediate transfer,
194 * this is required to update the residue during intermediate transfer
195 * completion callback.
202 struct edma_pset pset
[0];
208 struct device_node
*node
;
213 struct virt_dma_chan vchan
;
214 struct list_head node
;
215 struct edma_desc
*edesc
;
221 int slot
[EDMA_MAX_SLOTS
];
223 struct dma_slave_config cfg
;
228 struct edma_soc_info
*info
;
233 /* eDMA3 resource information */
234 unsigned num_channels
;
235 unsigned num_qchannels
;
240 enum dma_event_q default_queue
;
243 unsigned int ccerrint
;
246 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
247 * in use by Linux or if it is allocated to be used by DSP.
249 unsigned long *slot_inuse
;
251 struct dma_device dma_slave
;
252 struct dma_device
*dma_memcpy
;
253 struct edma_chan
*slave_chans
;
254 struct edma_tc
*tc_list
;
258 /* dummy param set used to (re)initialize parameter RAM slots */
259 static const struct edmacc_param dummy_paramset
= {
260 .link_bcntrld
= 0xffff,
264 #define EDMA_BINDING_LEGACY 0
265 #define EDMA_BINDING_TPCC 1
266 static const u32 edma_binding_type
[] = {
267 [EDMA_BINDING_LEGACY
] = EDMA_BINDING_LEGACY
,
268 [EDMA_BINDING_TPCC
] = EDMA_BINDING_TPCC
,
271 static const struct of_device_id edma_of_ids
[] = {
273 .compatible
= "ti,edma3",
274 .data
= &edma_binding_type
[EDMA_BINDING_LEGACY
],
277 .compatible
= "ti,edma3-tpcc",
278 .data
= &edma_binding_type
[EDMA_BINDING_TPCC
],
282 MODULE_DEVICE_TABLE(of
, edma_of_ids
);
284 static const struct of_device_id edma_tptc_of_ids
[] = {
285 { .compatible
= "ti,edma3-tptc", },
288 MODULE_DEVICE_TABLE(of
, edma_tptc_of_ids
);
290 static inline unsigned int edma_read(struct edma_cc
*ecc
, int offset
)
292 return (unsigned int)__raw_readl(ecc
->base
+ offset
);
295 static inline void edma_write(struct edma_cc
*ecc
, int offset
, int val
)
297 __raw_writel(val
, ecc
->base
+ offset
);
300 static inline void edma_modify(struct edma_cc
*ecc
, int offset
, unsigned and,
303 unsigned val
= edma_read(ecc
, offset
);
307 edma_write(ecc
, offset
, val
);
310 static inline void edma_and(struct edma_cc
*ecc
, int offset
, unsigned and)
312 unsigned val
= edma_read(ecc
, offset
);
315 edma_write(ecc
, offset
, val
);
318 static inline void edma_or(struct edma_cc
*ecc
, int offset
, unsigned or)
320 unsigned val
= edma_read(ecc
, offset
);
323 edma_write(ecc
, offset
, val
);
326 static inline unsigned int edma_read_array(struct edma_cc
*ecc
, int offset
,
329 return edma_read(ecc
, offset
+ (i
<< 2));
332 static inline void edma_write_array(struct edma_cc
*ecc
, int offset
, int i
,
335 edma_write(ecc
, offset
+ (i
<< 2), val
);
338 static inline void edma_modify_array(struct edma_cc
*ecc
, int offset
, int i
,
339 unsigned and, unsigned or)
341 edma_modify(ecc
, offset
+ (i
<< 2), and, or);
344 static inline void edma_or_array(struct edma_cc
*ecc
, int offset
, int i
,
347 edma_or(ecc
, offset
+ (i
<< 2), or);
350 static inline void edma_or_array2(struct edma_cc
*ecc
, int offset
, int i
, int j
,
353 edma_or(ecc
, offset
+ ((i
* 2 + j
) << 2), or);
356 static inline void edma_write_array2(struct edma_cc
*ecc
, int offset
, int i
,
359 edma_write(ecc
, offset
+ ((i
* 2 + j
) << 2), val
);
362 static inline unsigned int edma_shadow0_read(struct edma_cc
*ecc
, int offset
)
364 return edma_read(ecc
, EDMA_SHADOW0
+ offset
);
367 static inline unsigned int edma_shadow0_read_array(struct edma_cc
*ecc
,
370 return edma_read(ecc
, EDMA_SHADOW0
+ offset
+ (i
<< 2));
373 static inline void edma_shadow0_write(struct edma_cc
*ecc
, int offset
,
376 edma_write(ecc
, EDMA_SHADOW0
+ offset
, val
);
379 static inline void edma_shadow0_write_array(struct edma_cc
*ecc
, int offset
,
382 edma_write(ecc
, EDMA_SHADOW0
+ offset
+ (i
<< 2), val
);
385 static inline unsigned int edma_param_read(struct edma_cc
*ecc
, int offset
,
388 return edma_read(ecc
, EDMA_PARM
+ offset
+ (param_no
<< 5));
391 static inline void edma_param_write(struct edma_cc
*ecc
, int offset
,
392 int param_no
, unsigned val
)
394 edma_write(ecc
, EDMA_PARM
+ offset
+ (param_no
<< 5), val
);
397 static inline void edma_param_modify(struct edma_cc
*ecc
, int offset
,
398 int param_no
, unsigned and, unsigned or)
400 edma_modify(ecc
, EDMA_PARM
+ offset
+ (param_no
<< 5), and, or);
403 static inline void edma_param_and(struct edma_cc
*ecc
, int offset
, int param_no
,
406 edma_and(ecc
, EDMA_PARM
+ offset
+ (param_no
<< 5), and);
409 static inline void edma_param_or(struct edma_cc
*ecc
, int offset
, int param_no
,
412 edma_or(ecc
, EDMA_PARM
+ offset
+ (param_no
<< 5), or);
415 static inline void edma_set_bits(int offset
, int len
, unsigned long *p
)
417 for (; len
> 0; len
--)
418 set_bit(offset
+ (len
- 1), p
);
421 static void edma_assign_priority_to_queue(struct edma_cc
*ecc
, int queue_no
,
424 int bit
= queue_no
* 4;
426 edma_modify(ecc
, EDMA_QUEPRI
, ~(0x7 << bit
), ((priority
& 0x7) << bit
));
429 static void edma_set_chmap(struct edma_chan
*echan
, int slot
)
431 struct edma_cc
*ecc
= echan
->ecc
;
432 int channel
= EDMA_CHAN_SLOT(echan
->ch_num
);
434 if (ecc
->chmap_exist
) {
435 slot
= EDMA_CHAN_SLOT(slot
);
436 edma_write_array(ecc
, EDMA_DCHMAP
, channel
, (slot
<< 5));
440 static void edma_setup_interrupt(struct edma_chan
*echan
, bool enable
)
442 struct edma_cc
*ecc
= echan
->ecc
;
443 int channel
= EDMA_CHAN_SLOT(echan
->ch_num
);
446 edma_shadow0_write_array(ecc
, SH_ICR
, channel
>> 5,
447 BIT(channel
& 0x1f));
448 edma_shadow0_write_array(ecc
, SH_IESR
, channel
>> 5,
449 BIT(channel
& 0x1f));
451 edma_shadow0_write_array(ecc
, SH_IECR
, channel
>> 5,
452 BIT(channel
& 0x1f));
457 * paRAM slot management functions
459 static void edma_write_slot(struct edma_cc
*ecc
, unsigned slot
,
460 const struct edmacc_param
*param
)
462 slot
= EDMA_CHAN_SLOT(slot
);
463 if (slot
>= ecc
->num_slots
)
465 memcpy_toio(ecc
->base
+ PARM_OFFSET(slot
), param
, PARM_SIZE
);
468 static int edma_read_slot(struct edma_cc
*ecc
, unsigned slot
,
469 struct edmacc_param
*param
)
471 slot
= EDMA_CHAN_SLOT(slot
);
472 if (slot
>= ecc
->num_slots
)
474 memcpy_fromio(param
, ecc
->base
+ PARM_OFFSET(slot
), PARM_SIZE
);
480 * edma_alloc_slot - allocate DMA parameter RAM
481 * @ecc: pointer to edma_cc struct
482 * @slot: specific slot to allocate; negative for "any unused slot"
484 * This allocates a parameter RAM slot, initializing it to hold a
485 * dummy transfer. Slots allocated using this routine have not been
486 * mapped to a hardware DMA channel, and will normally be used by
487 * linking to them from a slot associated with a DMA channel.
489 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
490 * slots may be allocated on behalf of DSP firmware.
492 * Returns the number of the slot, else negative errno.
494 static int edma_alloc_slot(struct edma_cc
*ecc
, int slot
)
497 slot
= EDMA_CHAN_SLOT(slot
);
498 /* Requesting entry paRAM slot for a HW triggered channel. */
499 if (ecc
->chmap_exist
&& slot
< ecc
->num_channels
)
500 slot
= EDMA_SLOT_ANY
;
504 if (ecc
->chmap_exist
)
507 slot
= ecc
->num_channels
;
509 slot
= find_next_zero_bit(ecc
->slot_inuse
,
512 if (slot
== ecc
->num_slots
)
514 if (!test_and_set_bit(slot
, ecc
->slot_inuse
))
517 } else if (slot
>= ecc
->num_slots
) {
519 } else if (test_and_set_bit(slot
, ecc
->slot_inuse
)) {
523 edma_write_slot(ecc
, slot
, &dummy_paramset
);
525 return EDMA_CTLR_CHAN(ecc
->id
, slot
);
528 static void edma_free_slot(struct edma_cc
*ecc
, unsigned slot
)
530 slot
= EDMA_CHAN_SLOT(slot
);
531 if (slot
>= ecc
->num_slots
)
534 edma_write_slot(ecc
, slot
, &dummy_paramset
);
535 clear_bit(slot
, ecc
->slot_inuse
);
539 * edma_link - link one parameter RAM slot to another
540 * @ecc: pointer to edma_cc struct
541 * @from: parameter RAM slot originating the link
542 * @to: parameter RAM slot which is the link target
544 * The originating slot should not be part of any active DMA transfer.
546 static void edma_link(struct edma_cc
*ecc
, unsigned from
, unsigned to
)
548 if (unlikely(EDMA_CTLR(from
) != EDMA_CTLR(to
)))
549 dev_warn(ecc
->dev
, "Ignoring eDMA instance for linking\n");
551 from
= EDMA_CHAN_SLOT(from
);
552 to
= EDMA_CHAN_SLOT(to
);
553 if (from
>= ecc
->num_slots
|| to
>= ecc
->num_slots
)
556 edma_param_modify(ecc
, PARM_LINK_BCNTRLD
, from
, 0xffff0000,
561 * edma_get_position - returns the current transfer point
562 * @ecc: pointer to edma_cc struct
563 * @slot: parameter RAM slot being examined
564 * @dst: true selects the dest position, false the source
566 * Returns the position of the current active slot
568 static dma_addr_t
edma_get_position(struct edma_cc
*ecc
, unsigned slot
,
573 slot
= EDMA_CHAN_SLOT(slot
);
574 offs
= PARM_OFFSET(slot
);
575 offs
+= dst
? PARM_DST
: PARM_SRC
;
577 return edma_read(ecc
, offs
);
581 * Channels with event associations will be triggered by their hardware
582 * events, and channels without such associations will be triggered by
583 * software. (At this writing there is no interface for using software
584 * triggers except with channels that don't support hardware triggers.)
586 static void edma_start(struct edma_chan
*echan
)
588 struct edma_cc
*ecc
= echan
->ecc
;
589 int channel
= EDMA_CHAN_SLOT(echan
->ch_num
);
590 int j
= (channel
>> 5);
591 unsigned int mask
= BIT(channel
& 0x1f);
593 if (!echan
->hw_triggered
) {
594 /* EDMA channels without event association */
595 dev_dbg(ecc
->dev
, "ESR%d %08x\n", j
,
596 edma_shadow0_read_array(ecc
, SH_ESR
, j
));
597 edma_shadow0_write_array(ecc
, SH_ESR
, j
, mask
);
599 /* EDMA channel with event association */
600 dev_dbg(ecc
->dev
, "ER%d %08x\n", j
,
601 edma_shadow0_read_array(ecc
, SH_ER
, j
));
602 /* Clear any pending event or error */
603 edma_write_array(ecc
, EDMA_ECR
, j
, mask
);
604 edma_write_array(ecc
, EDMA_EMCR
, j
, mask
);
606 edma_shadow0_write_array(ecc
, SH_SECR
, j
, mask
);
607 edma_shadow0_write_array(ecc
, SH_EESR
, j
, mask
);
608 dev_dbg(ecc
->dev
, "EER%d %08x\n", j
,
609 edma_shadow0_read_array(ecc
, SH_EER
, j
));
613 static void edma_stop(struct edma_chan
*echan
)
615 struct edma_cc
*ecc
= echan
->ecc
;
616 int channel
= EDMA_CHAN_SLOT(echan
->ch_num
);
617 int j
= (channel
>> 5);
618 unsigned int mask
= BIT(channel
& 0x1f);
620 edma_shadow0_write_array(ecc
, SH_EECR
, j
, mask
);
621 edma_shadow0_write_array(ecc
, SH_ECR
, j
, mask
);
622 edma_shadow0_write_array(ecc
, SH_SECR
, j
, mask
);
623 edma_write_array(ecc
, EDMA_EMCR
, j
, mask
);
625 /* clear possibly pending completion interrupt */
626 edma_shadow0_write_array(ecc
, SH_ICR
, j
, mask
);
628 dev_dbg(ecc
->dev
, "EER%d %08x\n", j
,
629 edma_shadow0_read_array(ecc
, SH_EER
, j
));
631 /* REVISIT: consider guarding against inappropriate event
632 * chaining by overwriting with dummy_paramset.
637 * Temporarily disable EDMA hardware events on the specified channel,
638 * preventing them from triggering new transfers
640 static void edma_pause(struct edma_chan
*echan
)
642 int channel
= EDMA_CHAN_SLOT(echan
->ch_num
);
643 unsigned int mask
= BIT(channel
& 0x1f);
645 edma_shadow0_write_array(echan
->ecc
, SH_EECR
, channel
>> 5, mask
);
648 /* Re-enable EDMA hardware events on the specified channel. */
649 static void edma_resume(struct edma_chan
*echan
)
651 int channel
= EDMA_CHAN_SLOT(echan
->ch_num
);
652 unsigned int mask
= BIT(channel
& 0x1f);
654 edma_shadow0_write_array(echan
->ecc
, SH_EESR
, channel
>> 5, mask
);
657 static void edma_trigger_channel(struct edma_chan
*echan
)
659 struct edma_cc
*ecc
= echan
->ecc
;
660 int channel
= EDMA_CHAN_SLOT(echan
->ch_num
);
661 unsigned int mask
= BIT(channel
& 0x1f);
663 edma_shadow0_write_array(ecc
, SH_ESR
, (channel
>> 5), mask
);
665 dev_dbg(ecc
->dev
, "ESR%d %08x\n", (channel
>> 5),
666 edma_shadow0_read_array(ecc
, SH_ESR
, (channel
>> 5)));
669 static void edma_clean_channel(struct edma_chan
*echan
)
671 struct edma_cc
*ecc
= echan
->ecc
;
672 int channel
= EDMA_CHAN_SLOT(echan
->ch_num
);
673 int j
= (channel
>> 5);
674 unsigned int mask
= BIT(channel
& 0x1f);
676 dev_dbg(ecc
->dev
, "EMR%d %08x\n", j
, edma_read_array(ecc
, EDMA_EMR
, j
));
677 edma_shadow0_write_array(ecc
, SH_ECR
, j
, mask
);
678 /* Clear the corresponding EMR bits */
679 edma_write_array(ecc
, EDMA_EMCR
, j
, mask
);
681 edma_shadow0_write_array(ecc
, SH_SECR
, j
, mask
);
682 edma_write(ecc
, EDMA_CCERRCLR
, BIT(16) | BIT(1) | BIT(0));
685 /* Move channel to a specific event queue */
686 static void edma_assign_channel_eventq(struct edma_chan
*echan
,
687 enum dma_event_q eventq_no
)
689 struct edma_cc
*ecc
= echan
->ecc
;
690 int channel
= EDMA_CHAN_SLOT(echan
->ch_num
);
691 int bit
= (channel
& 0x7) * 4;
693 /* default to low priority queue */
694 if (eventq_no
== EVENTQ_DEFAULT
)
695 eventq_no
= ecc
->default_queue
;
696 if (eventq_no
>= ecc
->num_tc
)
700 edma_modify_array(ecc
, EDMA_DMAQNUM
, (channel
>> 3), ~(0x7 << bit
),
704 static int edma_alloc_channel(struct edma_chan
*echan
,
705 enum dma_event_q eventq_no
)
707 struct edma_cc
*ecc
= echan
->ecc
;
708 int channel
= EDMA_CHAN_SLOT(echan
->ch_num
);
710 /* ensure access through shadow region 0 */
711 edma_or_array2(ecc
, EDMA_DRAE
, 0, channel
>> 5, BIT(channel
& 0x1f));
713 /* ensure no events are pending */
716 edma_setup_interrupt(echan
, true);
718 edma_assign_channel_eventq(echan
, eventq_no
);
723 static void edma_free_channel(struct edma_chan
*echan
)
725 /* ensure no events are pending */
727 /* REVISIT should probably take out of shadow region 0 */
728 edma_setup_interrupt(echan
, false);
731 static inline struct edma_cc
*to_edma_cc(struct dma_device
*d
)
733 return container_of(d
, struct edma_cc
, dma_slave
);
736 static inline struct edma_chan
*to_edma_chan(struct dma_chan
*c
)
738 return container_of(c
, struct edma_chan
, vchan
.chan
);
741 static inline struct edma_desc
*to_edma_desc(struct dma_async_tx_descriptor
*tx
)
743 return container_of(tx
, struct edma_desc
, vdesc
.tx
);
746 static void edma_desc_free(struct virt_dma_desc
*vdesc
)
748 kfree(container_of(vdesc
, struct edma_desc
, vdesc
));
751 /* Dispatch a queued descriptor to the controller (caller holds lock) */
752 static void edma_execute(struct edma_chan
*echan
)
754 struct edma_cc
*ecc
= echan
->ecc
;
755 struct virt_dma_desc
*vdesc
;
756 struct edma_desc
*edesc
;
757 struct device
*dev
= echan
->vchan
.chan
.device
->dev
;
758 int i
, j
, left
, nslots
;
761 /* Setup is needed for the first transfer */
762 vdesc
= vchan_next_desc(&echan
->vchan
);
765 list_del(&vdesc
->node
);
766 echan
->edesc
= to_edma_desc(&vdesc
->tx
);
769 edesc
= echan
->edesc
;
771 /* Find out how many left */
772 left
= edesc
->pset_nr
- edesc
->processed
;
773 nslots
= min(MAX_NR_SG
, left
);
776 /* Write descriptor PaRAM set(s) */
777 for (i
= 0; i
< nslots
; i
++) {
778 j
= i
+ edesc
->processed
;
779 edma_write_slot(ecc
, echan
->slot
[i
], &edesc
->pset
[j
].param
);
780 edesc
->sg_len
+= edesc
->pset
[j
].len
;
793 j
, echan
->ch_num
, echan
->slot
[i
],
794 edesc
->pset
[j
].param
.opt
,
795 edesc
->pset
[j
].param
.src
,
796 edesc
->pset
[j
].param
.dst
,
797 edesc
->pset
[j
].param
.a_b_cnt
,
798 edesc
->pset
[j
].param
.ccnt
,
799 edesc
->pset
[j
].param
.src_dst_bidx
,
800 edesc
->pset
[j
].param
.src_dst_cidx
,
801 edesc
->pset
[j
].param
.link_bcntrld
);
802 /* Link to the previous slot if not the last set */
803 if (i
!= (nslots
- 1))
804 edma_link(ecc
, echan
->slot
[i
], echan
->slot
[i
+ 1]);
807 edesc
->processed
+= nslots
;
810 * If this is either the last set in a set of SG-list transactions
811 * then setup a link to the dummy slot, this results in all future
812 * events being absorbed and that's OK because we're done
814 if (edesc
->processed
== edesc
->pset_nr
) {
816 edma_link(ecc
, echan
->slot
[nslots
- 1], echan
->slot
[1]);
818 edma_link(ecc
, echan
->slot
[nslots
- 1],
819 echan
->ecc
->dummy_slot
);
824 * This happens due to setup times between intermediate
825 * transfers in long SG lists which have to be broken up into
826 * transfers of MAX_NR_SG
828 dev_dbg(dev
, "missed event on channel %d\n", echan
->ch_num
);
829 edma_clean_channel(echan
);
832 edma_trigger_channel(echan
);
834 } else if (edesc
->processed
<= MAX_NR_SG
) {
835 dev_dbg(dev
, "first transfer starting on channel %d\n",
839 dev_dbg(dev
, "chan: %d: completed %d elements, resuming\n",
840 echan
->ch_num
, edesc
->processed
);
845 static int edma_terminate_all(struct dma_chan
*chan
)
847 struct edma_chan
*echan
= to_edma_chan(chan
);
851 spin_lock_irqsave(&echan
->vchan
.lock
, flags
);
854 * Stop DMA activity: we assume the callback will not be called
855 * after edma_dma() returns (even if it does, it will see
856 * echan->edesc is NULL and exit.)
860 /* Move the cyclic channel back to default queue */
861 if (!echan
->tc
&& echan
->edesc
->cyclic
)
862 edma_assign_channel_eventq(echan
, EVENTQ_DEFAULT
);
864 * free the running request descriptor
865 * since it is not in any of the vdesc lists
867 edma_desc_free(&echan
->edesc
->vdesc
);
871 vchan_get_all_descriptors(&echan
->vchan
, &head
);
872 spin_unlock_irqrestore(&echan
->vchan
.lock
, flags
);
873 vchan_dma_desc_free_list(&echan
->vchan
, &head
);
878 static void edma_synchronize(struct dma_chan
*chan
)
880 struct edma_chan
*echan
= to_edma_chan(chan
);
882 vchan_synchronize(&echan
->vchan
);
885 static int edma_slave_config(struct dma_chan
*chan
,
886 struct dma_slave_config
*cfg
)
888 struct edma_chan
*echan
= to_edma_chan(chan
);
890 if (cfg
->src_addr_width
== DMA_SLAVE_BUSWIDTH_8_BYTES
||
891 cfg
->dst_addr_width
== DMA_SLAVE_BUSWIDTH_8_BYTES
)
894 memcpy(&echan
->cfg
, cfg
, sizeof(echan
->cfg
));
899 static int edma_dma_pause(struct dma_chan
*chan
)
901 struct edma_chan
*echan
= to_edma_chan(chan
);
910 static int edma_dma_resume(struct dma_chan
*chan
)
912 struct edma_chan
*echan
= to_edma_chan(chan
);
919 * A PaRAM set configuration abstraction used by other modes
920 * @chan: Channel who's PaRAM set we're configuring
921 * @pset: PaRAM set to initialize and setup.
922 * @src_addr: Source address of the DMA
923 * @dst_addr: Destination address of the DMA
924 * @burst: In units of dev_width, how much to send
925 * @dev_width: How much is the dev_width
926 * @dma_length: Total length of the DMA transfer
927 * @direction: Direction of the transfer
929 static int edma_config_pset(struct dma_chan
*chan
, struct edma_pset
*epset
,
930 dma_addr_t src_addr
, dma_addr_t dst_addr
, u32 burst
,
931 unsigned int acnt
, unsigned int dma_length
,
932 enum dma_transfer_direction direction
)
934 struct edma_chan
*echan
= to_edma_chan(chan
);
935 struct device
*dev
= chan
->device
->dev
;
936 struct edmacc_param
*param
= &epset
->param
;
937 int bcnt
, ccnt
, cidx
;
938 int src_bidx
, dst_bidx
, src_cidx
, dst_cidx
;
941 /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
945 * If the maxburst is equal to the fifo width, use
946 * A-synced transfers. This allows for large contiguous
947 * buffer transfers using only one PaRAM set.
951 * For the A-sync case, bcnt and ccnt are the remainder
952 * and quotient respectively of the division of:
953 * (dma_length / acnt) by (SZ_64K -1). This is so
954 * that in case bcnt over flows, we have ccnt to use.
955 * Note: In A-sync tranfer only, bcntrld is used, but it
956 * only applies for sg_dma_len(sg) >= SZ_64K.
957 * In this case, the best way adopted is- bccnt for the
958 * first frame will be the remainder below. Then for
959 * every successive frame, bcnt will be SZ_64K-1. This
960 * is assured as bcntrld = 0xffff in end of function.
963 ccnt
= dma_length
/ acnt
/ (SZ_64K
- 1);
964 bcnt
= dma_length
/ acnt
- ccnt
* (SZ_64K
- 1);
966 * If bcnt is non-zero, we have a remainder and hence an
967 * extra frame to transfer, so increment ccnt.
976 * If maxburst is greater than the fifo address_width,
977 * use AB-synced transfers where A count is the fifo
978 * address_width and B count is the maxburst. In this
979 * case, we are limited to transfers of C count frames
980 * of (address_width * maxburst) where C count is limited
981 * to SZ_64K-1. This places an upper bound on the length
982 * of an SG segment that can be handled.
986 ccnt
= dma_length
/ (acnt
* bcnt
);
987 if (ccnt
> (SZ_64K
- 1)) {
988 dev_err(dev
, "Exceeded max SG segment size\n");
994 epset
->len
= dma_length
;
996 if (direction
== DMA_MEM_TO_DEV
) {
1001 epset
->addr
= src_addr
;
1002 } else if (direction
== DMA_DEV_TO_MEM
) {
1007 epset
->addr
= dst_addr
;
1008 } else if (direction
== DMA_MEM_TO_MEM
) {
1014 dev_err(dev
, "%s: direction not implemented yet\n", __func__
);
1018 param
->opt
= EDMA_TCC(EDMA_CHAN_SLOT(echan
->ch_num
));
1019 /* Configure A or AB synchronized transfers */
1021 param
->opt
|= SYNCDIM
;
1023 param
->src
= src_addr
;
1024 param
->dst
= dst_addr
;
1026 param
->src_dst_bidx
= (dst_bidx
<< 16) | src_bidx
;
1027 param
->src_dst_cidx
= (dst_cidx
<< 16) | src_cidx
;
1029 param
->a_b_cnt
= bcnt
<< 16 | acnt
;
1032 * Only time when (bcntrld) auto reload is required is for
1033 * A-sync case, and in this case, a requirement of reload value
1034 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1035 * and then later will be populated by edma_execute.
1037 param
->link_bcntrld
= 0xffffffff;
1041 static struct dma_async_tx_descriptor
*edma_prep_slave_sg(
1042 struct dma_chan
*chan
, struct scatterlist
*sgl
,
1043 unsigned int sg_len
, enum dma_transfer_direction direction
,
1044 unsigned long tx_flags
, void *context
)
1046 struct edma_chan
*echan
= to_edma_chan(chan
);
1047 struct device
*dev
= chan
->device
->dev
;
1048 struct edma_desc
*edesc
;
1049 dma_addr_t src_addr
= 0, dst_addr
= 0;
1050 enum dma_slave_buswidth dev_width
;
1052 struct scatterlist
*sg
;
1055 if (unlikely(!echan
|| !sgl
|| !sg_len
))
1058 if (direction
== DMA_DEV_TO_MEM
) {
1059 src_addr
= echan
->cfg
.src_addr
;
1060 dev_width
= echan
->cfg
.src_addr_width
;
1061 burst
= echan
->cfg
.src_maxburst
;
1062 } else if (direction
== DMA_MEM_TO_DEV
) {
1063 dst_addr
= echan
->cfg
.dst_addr
;
1064 dev_width
= echan
->cfg
.dst_addr_width
;
1065 burst
= echan
->cfg
.dst_maxburst
;
1067 dev_err(dev
, "%s: bad direction: %d\n", __func__
, direction
);
1071 if (dev_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
) {
1072 dev_err(dev
, "%s: Undefined slave buswidth\n", __func__
);
1076 edesc
= kzalloc(sizeof(*edesc
) + sg_len
* sizeof(edesc
->pset
[0]),
1081 edesc
->pset_nr
= sg_len
;
1083 edesc
->direction
= direction
;
1084 edesc
->echan
= echan
;
1086 /* Allocate a PaRAM slot, if needed */
1087 nslots
= min_t(unsigned, MAX_NR_SG
, sg_len
);
1089 for (i
= 0; i
< nslots
; i
++) {
1090 if (echan
->slot
[i
] < 0) {
1092 edma_alloc_slot(echan
->ecc
, EDMA_SLOT_ANY
);
1093 if (echan
->slot
[i
] < 0) {
1095 dev_err(dev
, "%s: Failed to allocate slot\n",
1102 /* Configure PaRAM sets for each SG */
1103 for_each_sg(sgl
, sg
, sg_len
, i
) {
1104 /* Get address for each SG */
1105 if (direction
== DMA_DEV_TO_MEM
)
1106 dst_addr
= sg_dma_address(sg
);
1108 src_addr
= sg_dma_address(sg
);
1110 ret
= edma_config_pset(chan
, &edesc
->pset
[i
], src_addr
,
1111 dst_addr
, burst
, dev_width
,
1112 sg_dma_len(sg
), direction
);
1118 edesc
->absync
= ret
;
1119 edesc
->residue
+= sg_dma_len(sg
);
1121 if (i
== sg_len
- 1)
1122 /* Enable completion interrupt */
1123 edesc
->pset
[i
].param
.opt
|= TCINTEN
;
1124 else if (!((i
+1) % MAX_NR_SG
))
1126 * Enable early completion interrupt for the
1127 * intermediateset. In this case the driver will be
1128 * notified when the paRAM set is submitted to TC. This
1129 * will allow more time to set up the next set of slots.
1131 edesc
->pset
[i
].param
.opt
|= (TCINTEN
| TCCMODE
);
1133 edesc
->residue_stat
= edesc
->residue
;
1135 return vchan_tx_prep(&echan
->vchan
, &edesc
->vdesc
, tx_flags
);
1138 static struct dma_async_tx_descriptor
*edma_prep_dma_memcpy(
1139 struct dma_chan
*chan
, dma_addr_t dest
, dma_addr_t src
,
1140 size_t len
, unsigned long tx_flags
)
1143 struct edma_desc
*edesc
;
1144 struct device
*dev
= chan
->device
->dev
;
1145 struct edma_chan
*echan
= to_edma_chan(chan
);
1146 unsigned int width
, pset_len
, array_size
;
1148 if (unlikely(!echan
|| !len
))
1151 /* Align the array size (acnt block) with the transfer properties */
1152 switch (__ffs((src
| dest
| len
))) {
1154 array_size
= SZ_32K
- 1;
1157 array_size
= SZ_32K
- 2;
1160 array_size
= SZ_32K
- 4;
1166 * Transfer size less than 64K can be handled with one paRAM
1167 * slot and with one burst.
1175 * Transfer size bigger than 64K will be handled with maximum of
1177 * slot1: (full_length / 32767) times 32767 bytes bursts.
1178 * ACNT = 32767, length1: (full_length / 32767) * 32767
1179 * slot2: the remaining amount of data after slot1.
1180 * ACNT = full_length - length1, length2 = ACNT
1182 * When the full_length is multibple of 32767 one slot can be
1183 * used to complete the transfer.
1186 pset_len
= rounddown(len
, width
);
1187 /* One slot is enough for lengths multiple of (SZ_32K -1) */
1188 if (unlikely(pset_len
== len
))
1194 edesc
= kzalloc(sizeof(*edesc
) + nslots
* sizeof(edesc
->pset
[0]),
1199 edesc
->pset_nr
= nslots
;
1200 edesc
->residue
= edesc
->residue_stat
= len
;
1201 edesc
->direction
= DMA_MEM_TO_MEM
;
1202 edesc
->echan
= echan
;
1204 ret
= edma_config_pset(chan
, &edesc
->pset
[0], src
, dest
, 1,
1205 width
, pset_len
, DMA_MEM_TO_MEM
);
1211 edesc
->absync
= ret
;
1213 edesc
->pset
[0].param
.opt
|= ITCCHEN
;
1215 /* Enable transfer complete interrupt */
1216 edesc
->pset
[0].param
.opt
|= TCINTEN
;
1218 /* Enable transfer complete chaining for the first slot */
1219 edesc
->pset
[0].param
.opt
|= TCCHEN
;
1221 if (echan
->slot
[1] < 0) {
1222 echan
->slot
[1] = edma_alloc_slot(echan
->ecc
,
1224 if (echan
->slot
[1] < 0) {
1226 dev_err(dev
, "%s: Failed to allocate slot\n",
1233 pset_len
= width
= len
% array_size
;
1235 ret
= edma_config_pset(chan
, &edesc
->pset
[1], src
, dest
, 1,
1236 width
, pset_len
, DMA_MEM_TO_MEM
);
1242 edesc
->pset
[1].param
.opt
|= ITCCHEN
;
1243 edesc
->pset
[1].param
.opt
|= TCINTEN
;
1246 return vchan_tx_prep(&echan
->vchan
, &edesc
->vdesc
, tx_flags
);
1249 static struct dma_async_tx_descriptor
*edma_prep_dma_cyclic(
1250 struct dma_chan
*chan
, dma_addr_t buf_addr
, size_t buf_len
,
1251 size_t period_len
, enum dma_transfer_direction direction
,
1252 unsigned long tx_flags
)
1254 struct edma_chan
*echan
= to_edma_chan(chan
);
1255 struct device
*dev
= chan
->device
->dev
;
1256 struct edma_desc
*edesc
;
1257 dma_addr_t src_addr
, dst_addr
;
1258 enum dma_slave_buswidth dev_width
;
1259 bool use_intermediate
= false;
1263 if (unlikely(!echan
|| !buf_len
|| !period_len
))
1266 if (direction
== DMA_DEV_TO_MEM
) {
1267 src_addr
= echan
->cfg
.src_addr
;
1268 dst_addr
= buf_addr
;
1269 dev_width
= echan
->cfg
.src_addr_width
;
1270 burst
= echan
->cfg
.src_maxburst
;
1271 } else if (direction
== DMA_MEM_TO_DEV
) {
1272 src_addr
= buf_addr
;
1273 dst_addr
= echan
->cfg
.dst_addr
;
1274 dev_width
= echan
->cfg
.dst_addr_width
;
1275 burst
= echan
->cfg
.dst_maxburst
;
1277 dev_err(dev
, "%s: bad direction: %d\n", __func__
, direction
);
1281 if (dev_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
) {
1282 dev_err(dev
, "%s: Undefined slave buswidth\n", __func__
);
1286 if (unlikely(buf_len
% period_len
)) {
1287 dev_err(dev
, "Period should be multiple of Buffer length\n");
1291 nslots
= (buf_len
/ period_len
) + 1;
1294 * Cyclic DMA users such as audio cannot tolerate delays introduced
1295 * by cases where the number of periods is more than the maximum
1296 * number of SGs the EDMA driver can handle at a time. For DMA types
1297 * such as Slave SGs, such delays are tolerable and synchronized,
1298 * but the synchronization is difficult to achieve with Cyclic and
1299 * cannot be guaranteed, so we error out early.
1301 if (nslots
> MAX_NR_SG
) {
1303 * If the burst and period sizes are the same, we can put
1304 * the full buffer into a single period and activate
1305 * intermediate interrupts. This will produce interrupts
1306 * after each burst, which is also after each desired period.
1308 if (burst
== period_len
) {
1309 period_len
= buf_len
;
1311 use_intermediate
= true;
1317 edesc
= kzalloc(sizeof(*edesc
) + nslots
* sizeof(edesc
->pset
[0]),
1323 edesc
->pset_nr
= nslots
;
1324 edesc
->residue
= edesc
->residue_stat
= buf_len
;
1325 edesc
->direction
= direction
;
1326 edesc
->echan
= echan
;
1328 dev_dbg(dev
, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1329 __func__
, echan
->ch_num
, nslots
, period_len
, buf_len
);
1331 for (i
= 0; i
< nslots
; i
++) {
1332 /* Allocate a PaRAM slot, if needed */
1333 if (echan
->slot
[i
] < 0) {
1335 edma_alloc_slot(echan
->ecc
, EDMA_SLOT_ANY
);
1336 if (echan
->slot
[i
] < 0) {
1338 dev_err(dev
, "%s: Failed to allocate slot\n",
1344 if (i
== nslots
- 1) {
1345 memcpy(&edesc
->pset
[i
], &edesc
->pset
[0],
1346 sizeof(edesc
->pset
[0]));
1350 ret
= edma_config_pset(chan
, &edesc
->pset
[i
], src_addr
,
1351 dst_addr
, burst
, dev_width
, period_len
,
1358 if (direction
== DMA_DEV_TO_MEM
)
1359 dst_addr
+= period_len
;
1361 src_addr
+= period_len
;
1363 dev_vdbg(dev
, "%s: Configure period %d of buf:\n", __func__
, i
);
1376 i
, echan
->ch_num
, echan
->slot
[i
],
1377 edesc
->pset
[i
].param
.opt
,
1378 edesc
->pset
[i
].param
.src
,
1379 edesc
->pset
[i
].param
.dst
,
1380 edesc
->pset
[i
].param
.a_b_cnt
,
1381 edesc
->pset
[i
].param
.ccnt
,
1382 edesc
->pset
[i
].param
.src_dst_bidx
,
1383 edesc
->pset
[i
].param
.src_dst_cidx
,
1384 edesc
->pset
[i
].param
.link_bcntrld
);
1386 edesc
->absync
= ret
;
1389 * Enable period interrupt only if it is requested
1391 if (tx_flags
& DMA_PREP_INTERRUPT
) {
1392 edesc
->pset
[i
].param
.opt
|= TCINTEN
;
1394 /* Also enable intermediate interrupts if necessary */
1395 if (use_intermediate
)
1396 edesc
->pset
[i
].param
.opt
|= ITCINTEN
;
1400 /* Place the cyclic channel to highest priority queue */
1402 edma_assign_channel_eventq(echan
, EVENTQ_0
);
1404 return vchan_tx_prep(&echan
->vchan
, &edesc
->vdesc
, tx_flags
);
1407 static void edma_completion_handler(struct edma_chan
*echan
)
1409 struct device
*dev
= echan
->vchan
.chan
.device
->dev
;
1410 struct edma_desc
*edesc
;
1412 spin_lock(&echan
->vchan
.lock
);
1413 edesc
= echan
->edesc
;
1415 if (edesc
->cyclic
) {
1416 vchan_cyclic_callback(&edesc
->vdesc
);
1417 spin_unlock(&echan
->vchan
.lock
);
1419 } else if (edesc
->processed
== edesc
->pset_nr
) {
1422 vchan_cookie_complete(&edesc
->vdesc
);
1423 echan
->edesc
= NULL
;
1425 dev_dbg(dev
, "Transfer completed on channel %d\n",
1428 dev_dbg(dev
, "Sub transfer completed on channel %d\n",
1433 /* Update statistics for tx_status */
1434 edesc
->residue
-= edesc
->sg_len
;
1435 edesc
->residue_stat
= edesc
->residue
;
1436 edesc
->processed_stat
= edesc
->processed
;
1438 edma_execute(echan
);
1441 spin_unlock(&echan
->vchan
.lock
);
1444 /* eDMA interrupt handler */
1445 static irqreturn_t
dma_irq_handler(int irq
, void *data
)
1447 struct edma_cc
*ecc
= data
;
1457 dev_vdbg(ecc
->dev
, "dma_irq_handler\n");
1459 sh_ipr
= edma_shadow0_read_array(ecc
, SH_IPR
, 0);
1461 sh_ipr
= edma_shadow0_read_array(ecc
, SH_IPR
, 1);
1464 sh_ier
= edma_shadow0_read_array(ecc
, SH_IER
, 1);
1467 sh_ier
= edma_shadow0_read_array(ecc
, SH_IER
, 0);
1475 slot
= __ffs(sh_ipr
);
1476 sh_ipr
&= ~(BIT(slot
));
1478 if (sh_ier
& BIT(slot
)) {
1479 channel
= (bank
<< 5) | slot
;
1480 /* Clear the corresponding IPR bits */
1481 edma_shadow0_write_array(ecc
, SH_ICR
, bank
, BIT(slot
));
1482 edma_completion_handler(&ecc
->slave_chans
[channel
]);
1486 edma_shadow0_write(ecc
, SH_IEVAL
, 1);
1490 static void edma_error_handler(struct edma_chan
*echan
)
1492 struct edma_cc
*ecc
= echan
->ecc
;
1493 struct device
*dev
= echan
->vchan
.chan
.device
->dev
;
1494 struct edmacc_param p
;
1500 spin_lock(&echan
->vchan
.lock
);
1502 err
= edma_read_slot(ecc
, echan
->slot
[0], &p
);
1505 * Issue later based on missed flag which will be sure
1507 * (1) we finished transmitting an intermediate slot and
1508 * edma_execute is coming up.
1509 * (2) or we finished current transfer and issue will
1510 * call edma_execute.
1512 * Important note: issuing can be dangerous here and
1513 * lead to some nasty recursion when we are in a NULL
1514 * slot. So we avoid doing so and set the missed flag.
1516 if (err
|| (p
.a_b_cnt
== 0 && p
.ccnt
== 0)) {
1517 dev_dbg(dev
, "Error on null slot, setting miss\n");
1521 * The slot is already programmed but the event got
1522 * missed, so its safe to issue it here.
1524 dev_dbg(dev
, "Missed event, TRIGGERING\n");
1525 edma_clean_channel(echan
);
1528 edma_trigger_channel(echan
);
1530 spin_unlock(&echan
->vchan
.lock
);
1533 static inline bool edma_error_pending(struct edma_cc
*ecc
)
1535 if (edma_read_array(ecc
, EDMA_EMR
, 0) ||
1536 edma_read_array(ecc
, EDMA_EMR
, 1) ||
1537 edma_read(ecc
, EDMA_QEMR
) || edma_read(ecc
, EDMA_CCERR
))
1543 /* eDMA error interrupt handler */
1544 static irqreturn_t
dma_ccerr_handler(int irq
, void *data
)
1546 struct edma_cc
*ecc
= data
;
1549 unsigned int cnt
= 0;
1556 dev_vdbg(ecc
->dev
, "dma_ccerr_handler\n");
1558 if (!edma_error_pending(ecc
)) {
1560 * The registers indicate no pending error event but the irq
1561 * handler has been called.
1562 * Ask eDMA to re-evaluate the error registers.
1564 dev_err(ecc
->dev
, "%s: Error interrupt without error event!\n",
1566 edma_write(ecc
, EDMA_EEVAL
, 1);
1571 /* Event missed register(s) */
1572 for (j
= 0; j
< 2; j
++) {
1575 val
= edma_read_array(ecc
, EDMA_EMR
, j
);
1579 dev_dbg(ecc
->dev
, "EMR%d 0x%08x\n", j
, val
);
1581 for (i
= find_next_bit(&emr
, 32, 0); i
< 32;
1582 i
= find_next_bit(&emr
, 32, i
+ 1)) {
1583 int k
= (j
<< 5) + i
;
1585 /* Clear the corresponding EMR bits */
1586 edma_write_array(ecc
, EDMA_EMCR
, j
, BIT(i
));
1588 edma_shadow0_write_array(ecc
, SH_SECR
, j
,
1590 edma_error_handler(&ecc
->slave_chans
[k
]);
1594 val
= edma_read(ecc
, EDMA_QEMR
);
1596 dev_dbg(ecc
->dev
, "QEMR 0x%02x\n", val
);
1597 /* Not reported, just clear the interrupt reason. */
1598 edma_write(ecc
, EDMA_QEMCR
, val
);
1599 edma_shadow0_write(ecc
, SH_QSECR
, val
);
1602 val
= edma_read(ecc
, EDMA_CCERR
);
1604 dev_warn(ecc
->dev
, "CCERR 0x%08x\n", val
);
1605 /* Not reported, just clear the interrupt reason. */
1606 edma_write(ecc
, EDMA_CCERRCLR
, val
);
1609 if (!edma_error_pending(ecc
))
1615 edma_write(ecc
, EDMA_EEVAL
, 1);
1619 /* Alloc channel resources */
1620 static int edma_alloc_chan_resources(struct dma_chan
*chan
)
1622 struct edma_chan
*echan
= to_edma_chan(chan
);
1623 struct edma_cc
*ecc
= echan
->ecc
;
1624 struct device
*dev
= ecc
->dev
;
1625 enum dma_event_q eventq_no
= EVENTQ_DEFAULT
;
1629 eventq_no
= echan
->tc
->id
;
1630 } else if (ecc
->tc_list
) {
1631 /* memcpy channel */
1632 echan
->tc
= &ecc
->tc_list
[ecc
->info
->default_queue
];
1633 eventq_no
= echan
->tc
->id
;
1636 ret
= edma_alloc_channel(echan
, eventq_no
);
1640 echan
->slot
[0] = edma_alloc_slot(ecc
, echan
->ch_num
);
1641 if (echan
->slot
[0] < 0) {
1642 dev_err(dev
, "Entry slot allocation failed for channel %u\n",
1643 EDMA_CHAN_SLOT(echan
->ch_num
));
1644 ret
= echan
->slot
[0];
1648 /* Set up channel -> slot mapping for the entry slot */
1649 edma_set_chmap(echan
, echan
->slot
[0]);
1650 echan
->alloced
= true;
1652 dev_dbg(dev
, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1653 EDMA_CHAN_SLOT(echan
->ch_num
), chan
->chan_id
,
1654 echan
->hw_triggered
? "HW" : "SW");
1659 edma_free_channel(echan
);
1663 /* Free channel resources */
1664 static void edma_free_chan_resources(struct dma_chan
*chan
)
1666 struct edma_chan
*echan
= to_edma_chan(chan
);
1667 struct device
*dev
= echan
->ecc
->dev
;
1670 /* Terminate transfers */
1673 vchan_free_chan_resources(&echan
->vchan
);
1675 /* Free EDMA PaRAM slots */
1676 for (i
= 0; i
< EDMA_MAX_SLOTS
; i
++) {
1677 if (echan
->slot
[i
] >= 0) {
1678 edma_free_slot(echan
->ecc
, echan
->slot
[i
]);
1679 echan
->slot
[i
] = -1;
1683 /* Set entry slot to the dummy slot */
1684 edma_set_chmap(echan
, echan
->ecc
->dummy_slot
);
1686 /* Free EDMA channel */
1687 if (echan
->alloced
) {
1688 edma_free_channel(echan
);
1689 echan
->alloced
= false;
1693 echan
->hw_triggered
= false;
1695 dev_dbg(dev
, "Free eDMA channel %d for virt channel %d\n",
1696 EDMA_CHAN_SLOT(echan
->ch_num
), chan
->chan_id
);
1699 /* Send pending descriptor to hardware */
1700 static void edma_issue_pending(struct dma_chan
*chan
)
1702 struct edma_chan
*echan
= to_edma_chan(chan
);
1703 unsigned long flags
;
1705 spin_lock_irqsave(&echan
->vchan
.lock
, flags
);
1706 if (vchan_issue_pending(&echan
->vchan
) && !echan
->edesc
)
1707 edma_execute(echan
);
1708 spin_unlock_irqrestore(&echan
->vchan
.lock
, flags
);
1712 * This limit exists to avoid a possible infinite loop when waiting for proof
1713 * that a particular transfer is completed. This limit can be hit if there
1714 * are large bursts to/from slow devices or the CPU is never able to catch
1715 * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART
1716 * RX-FIFO, as many as 55 loops have been seen.
1718 #define EDMA_MAX_TR_WAIT_LOOPS 1000
1720 static u32
edma_residue(struct edma_desc
*edesc
)
1722 bool dst
= edesc
->direction
== DMA_DEV_TO_MEM
;
1723 int loop_count
= EDMA_MAX_TR_WAIT_LOOPS
;
1724 struct edma_chan
*echan
= edesc
->echan
;
1725 struct edma_pset
*pset
= edesc
->pset
;
1726 dma_addr_t done
, pos
;
1730 * We always read the dst/src position from the first RamPar
1731 * pset. That's the one which is active now.
1733 pos
= edma_get_position(echan
->ecc
, echan
->slot
[0], dst
);
1736 * "pos" may represent a transfer request that is still being
1737 * processed by the EDMACC or EDMATC. We will busy wait until
1738 * any one of the situations occurs:
1739 * 1. the DMA hardware is idle
1740 * 2. a new transfer request is setup
1741 * 3. we hit the loop limit
1743 while (edma_read(echan
->ecc
, EDMA_CCSTAT
) & EDMA_CCSTAT_ACTV
) {
1744 /* check if a new transfer request is setup */
1745 if (edma_get_position(echan
->ecc
,
1746 echan
->slot
[0], dst
) != pos
) {
1750 if (!--loop_count
) {
1751 dev_dbg_ratelimited(echan
->vchan
.chan
.device
->dev
,
1752 "%s: timeout waiting for PaRAM update\n",
1761 * Cyclic is simple. Just subtract pset[0].addr from pos.
1763 * We never update edesc->residue in the cyclic case, so we
1764 * can tell the remaining room to the end of the circular
1767 if (edesc
->cyclic
) {
1768 done
= pos
- pset
->addr
;
1769 edesc
->residue_stat
= edesc
->residue
- done
;
1770 return edesc
->residue_stat
;
1774 * For SG operation we catch up with the last processed
1777 pset
+= edesc
->processed_stat
;
1779 for (i
= edesc
->processed_stat
; i
< edesc
->processed
; i
++, pset
++) {
1781 * If we are inside this pset address range, we know
1782 * this is the active one. Get the current delta and
1783 * stop walking the psets.
1785 if (pos
>= pset
->addr
&& pos
< pset
->addr
+ pset
->len
)
1786 return edesc
->residue_stat
- (pos
- pset
->addr
);
1788 /* Otherwise mark it done and update residue_stat. */
1789 edesc
->processed_stat
++;
1790 edesc
->residue_stat
-= pset
->len
;
1792 return edesc
->residue_stat
;
1795 /* Check request completion status */
1796 static enum dma_status
edma_tx_status(struct dma_chan
*chan
,
1797 dma_cookie_t cookie
,
1798 struct dma_tx_state
*txstate
)
1800 struct edma_chan
*echan
= to_edma_chan(chan
);
1801 struct virt_dma_desc
*vdesc
;
1802 enum dma_status ret
;
1803 unsigned long flags
;
1805 ret
= dma_cookie_status(chan
, cookie
, txstate
);
1806 if (ret
== DMA_COMPLETE
|| !txstate
)
1809 spin_lock_irqsave(&echan
->vchan
.lock
, flags
);
1810 if (echan
->edesc
&& echan
->edesc
->vdesc
.tx
.cookie
== cookie
)
1811 txstate
->residue
= edma_residue(echan
->edesc
);
1812 else if ((vdesc
= vchan_find_desc(&echan
->vchan
, cookie
)))
1813 txstate
->residue
= to_edma_desc(&vdesc
->tx
)->residue
;
1814 spin_unlock_irqrestore(&echan
->vchan
.lock
, flags
);
1819 static bool edma_is_memcpy_channel(int ch_num
, s32
*memcpy_channels
)
1821 if (!memcpy_channels
)
1823 while (*memcpy_channels
!= -1) {
1824 if (*memcpy_channels
== ch_num
)
1831 #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1832 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1833 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1834 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1836 static void edma_dma_init(struct edma_cc
*ecc
, bool legacy_mode
)
1838 struct dma_device
*s_ddev
= &ecc
->dma_slave
;
1839 struct dma_device
*m_ddev
= NULL
;
1840 s32
*memcpy_channels
= ecc
->info
->memcpy_channels
;
1843 dma_cap_zero(s_ddev
->cap_mask
);
1844 dma_cap_set(DMA_SLAVE
, s_ddev
->cap_mask
);
1845 dma_cap_set(DMA_CYCLIC
, s_ddev
->cap_mask
);
1846 if (ecc
->legacy_mode
&& !memcpy_channels
) {
1848 "Legacy memcpy is enabled, things might not work\n");
1850 dma_cap_set(DMA_MEMCPY
, s_ddev
->cap_mask
);
1851 s_ddev
->device_prep_dma_memcpy
= edma_prep_dma_memcpy
;
1852 s_ddev
->directions
= BIT(DMA_MEM_TO_MEM
);
1855 s_ddev
->device_prep_slave_sg
= edma_prep_slave_sg
;
1856 s_ddev
->device_prep_dma_cyclic
= edma_prep_dma_cyclic
;
1857 s_ddev
->device_alloc_chan_resources
= edma_alloc_chan_resources
;
1858 s_ddev
->device_free_chan_resources
= edma_free_chan_resources
;
1859 s_ddev
->device_issue_pending
= edma_issue_pending
;
1860 s_ddev
->device_tx_status
= edma_tx_status
;
1861 s_ddev
->device_config
= edma_slave_config
;
1862 s_ddev
->device_pause
= edma_dma_pause
;
1863 s_ddev
->device_resume
= edma_dma_resume
;
1864 s_ddev
->device_terminate_all
= edma_terminate_all
;
1865 s_ddev
->device_synchronize
= edma_synchronize
;
1867 s_ddev
->src_addr_widths
= EDMA_DMA_BUSWIDTHS
;
1868 s_ddev
->dst_addr_widths
= EDMA_DMA_BUSWIDTHS
;
1869 s_ddev
->directions
|= (BIT(DMA_DEV_TO_MEM
) | BIT(DMA_MEM_TO_DEV
));
1870 s_ddev
->residue_granularity
= DMA_RESIDUE_GRANULARITY_BURST
;
1872 s_ddev
->dev
= ecc
->dev
;
1873 INIT_LIST_HEAD(&s_ddev
->channels
);
1875 if (memcpy_channels
) {
1876 m_ddev
= devm_kzalloc(ecc
->dev
, sizeof(*m_ddev
), GFP_KERNEL
);
1877 ecc
->dma_memcpy
= m_ddev
;
1879 dma_cap_zero(m_ddev
->cap_mask
);
1880 dma_cap_set(DMA_MEMCPY
, m_ddev
->cap_mask
);
1882 m_ddev
->device_prep_dma_memcpy
= edma_prep_dma_memcpy
;
1883 m_ddev
->device_alloc_chan_resources
= edma_alloc_chan_resources
;
1884 m_ddev
->device_free_chan_resources
= edma_free_chan_resources
;
1885 m_ddev
->device_issue_pending
= edma_issue_pending
;
1886 m_ddev
->device_tx_status
= edma_tx_status
;
1887 m_ddev
->device_config
= edma_slave_config
;
1888 m_ddev
->device_pause
= edma_dma_pause
;
1889 m_ddev
->device_resume
= edma_dma_resume
;
1890 m_ddev
->device_terminate_all
= edma_terminate_all
;
1891 m_ddev
->device_synchronize
= edma_synchronize
;
1893 m_ddev
->src_addr_widths
= EDMA_DMA_BUSWIDTHS
;
1894 m_ddev
->dst_addr_widths
= EDMA_DMA_BUSWIDTHS
;
1895 m_ddev
->directions
= BIT(DMA_MEM_TO_MEM
);
1896 m_ddev
->residue_granularity
= DMA_RESIDUE_GRANULARITY_BURST
;
1898 m_ddev
->dev
= ecc
->dev
;
1899 INIT_LIST_HEAD(&m_ddev
->channels
);
1900 } else if (!ecc
->legacy_mode
) {
1901 dev_info(ecc
->dev
, "memcpy is disabled\n");
1904 for (i
= 0; i
< ecc
->num_channels
; i
++) {
1905 struct edma_chan
*echan
= &ecc
->slave_chans
[i
];
1906 echan
->ch_num
= EDMA_CTLR_CHAN(ecc
->id
, i
);
1908 echan
->vchan
.desc_free
= edma_desc_free
;
1910 if (m_ddev
&& edma_is_memcpy_channel(i
, memcpy_channels
))
1911 vchan_init(&echan
->vchan
, m_ddev
);
1913 vchan_init(&echan
->vchan
, s_ddev
);
1915 INIT_LIST_HEAD(&echan
->node
);
1916 for (j
= 0; j
< EDMA_MAX_SLOTS
; j
++)
1917 echan
->slot
[j
] = -1;
1921 static int edma_setup_from_hw(struct device
*dev
, struct edma_soc_info
*pdata
,
1922 struct edma_cc
*ecc
)
1926 s8 (*queue_priority_map
)[2];
1928 /* Decode the eDMA3 configuration from CCCFG register */
1929 cccfg
= edma_read(ecc
, EDMA_CCCFG
);
1931 value
= GET_NUM_REGN(cccfg
);
1932 ecc
->num_region
= BIT(value
);
1934 value
= GET_NUM_DMACH(cccfg
);
1935 ecc
->num_channels
= BIT(value
+ 1);
1937 value
= GET_NUM_QDMACH(cccfg
);
1938 ecc
->num_qchannels
= value
* 2;
1940 value
= GET_NUM_PAENTRY(cccfg
);
1941 ecc
->num_slots
= BIT(value
+ 4);
1943 value
= GET_NUM_EVQUE(cccfg
);
1944 ecc
->num_tc
= value
+ 1;
1946 ecc
->chmap_exist
= (cccfg
& CHMAP_EXIST
) ? true : false;
1948 dev_dbg(dev
, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg
);
1949 dev_dbg(dev
, "num_region: %u\n", ecc
->num_region
);
1950 dev_dbg(dev
, "num_channels: %u\n", ecc
->num_channels
);
1951 dev_dbg(dev
, "num_qchannels: %u\n", ecc
->num_qchannels
);
1952 dev_dbg(dev
, "num_slots: %u\n", ecc
->num_slots
);
1953 dev_dbg(dev
, "num_tc: %u\n", ecc
->num_tc
);
1954 dev_dbg(dev
, "chmap_exist: %s\n", ecc
->chmap_exist
? "yes" : "no");
1956 /* Nothing need to be done if queue priority is provided */
1957 if (pdata
->queue_priority_mapping
)
1961 * Configure TC/queue priority as follows:
1966 * The meaning of priority numbers: 0 highest priority, 7 lowest
1967 * priority. So Q0 is the highest priority queue and the last queue has
1968 * the lowest priority.
1970 queue_priority_map
= devm_kcalloc(dev
, ecc
->num_tc
+ 1, sizeof(s8
),
1972 if (!queue_priority_map
)
1975 for (i
= 0; i
< ecc
->num_tc
; i
++) {
1976 queue_priority_map
[i
][0] = i
;
1977 queue_priority_map
[i
][1] = i
;
1979 queue_priority_map
[i
][0] = -1;
1980 queue_priority_map
[i
][1] = -1;
1982 pdata
->queue_priority_mapping
= queue_priority_map
;
1983 /* Default queue has the lowest priority */
1984 pdata
->default_queue
= i
- 1;
1989 #if IS_ENABLED(CONFIG_OF)
1990 static int edma_xbar_event_map(struct device
*dev
, struct edma_soc_info
*pdata
,
1993 const char pname
[] = "ti,edma-xbar-event-map";
1994 struct resource res
;
1996 s16 (*xbar_chans
)[2];
1997 size_t nelm
= sz
/ sizeof(s16
);
1998 u32 shift
, offset
, mux
;
2001 xbar_chans
= devm_kcalloc(dev
, nelm
+ 2, sizeof(s16
), GFP_KERNEL
);
2005 ret
= of_address_to_resource(dev
->of_node
, 1, &res
);
2009 xbar
= devm_ioremap(dev
, res
.start
, resource_size(&res
));
2013 ret
= of_property_read_u16_array(dev
->of_node
, pname
, (u16
*)xbar_chans
,
2018 /* Invalidate last entry for the other user of this mess */
2020 xbar_chans
[nelm
][0] = -1;
2021 xbar_chans
[nelm
][1] = -1;
2023 for (i
= 0; i
< nelm
; i
++) {
2024 shift
= (xbar_chans
[i
][1] & 0x03) << 3;
2025 offset
= xbar_chans
[i
][1] & 0xfffffffc;
2026 mux
= readl(xbar
+ offset
);
2027 mux
&= ~(0xff << shift
);
2028 mux
|= xbar_chans
[i
][0] << shift
;
2029 writel(mux
, (xbar
+ offset
));
2032 pdata
->xbar_chans
= (const s16 (*)[2]) xbar_chans
;
2036 static struct edma_soc_info
*edma_setup_info_from_dt(struct device
*dev
,
2039 struct edma_soc_info
*info
;
2040 struct property
*prop
;
2043 info
= devm_kzalloc(dev
, sizeof(struct edma_soc_info
), GFP_KERNEL
);
2045 return ERR_PTR(-ENOMEM
);
2048 prop
= of_find_property(dev
->of_node
, "ti,edma-xbar-event-map",
2051 ret
= edma_xbar_event_map(dev
, info
, sz
);
2053 return ERR_PTR(ret
);
2058 /* Get the list of channels allocated to be used for memcpy */
2059 prop
= of_find_property(dev
->of_node
, "ti,edma-memcpy-channels", &sz
);
2061 const char pname
[] = "ti,edma-memcpy-channels";
2062 size_t nelm
= sz
/ sizeof(s32
);
2065 memcpy_ch
= devm_kcalloc(dev
, nelm
+ 1, sizeof(s32
),
2068 return ERR_PTR(-ENOMEM
);
2070 ret
= of_property_read_u32_array(dev
->of_node
, pname
,
2071 (u32
*)memcpy_ch
, nelm
);
2073 return ERR_PTR(ret
);
2075 memcpy_ch
[nelm
] = -1;
2076 info
->memcpy_channels
= memcpy_ch
;
2079 prop
= of_find_property(dev
->of_node
, "ti,edma-reserved-slot-ranges",
2082 const char pname
[] = "ti,edma-reserved-slot-ranges";
2084 s16 (*rsv_slots
)[2];
2085 size_t nelm
= sz
/ sizeof(*tmp
);
2086 struct edma_rsv_info
*rsv_info
;
2092 tmp
= kcalloc(nelm
, sizeof(*tmp
), GFP_KERNEL
);
2094 return ERR_PTR(-ENOMEM
);
2096 rsv_info
= devm_kzalloc(dev
, sizeof(*rsv_info
), GFP_KERNEL
);
2099 return ERR_PTR(-ENOMEM
);
2102 rsv_slots
= devm_kcalloc(dev
, nelm
+ 1, sizeof(*rsv_slots
),
2106 return ERR_PTR(-ENOMEM
);
2109 ret
= of_property_read_u32_array(dev
->of_node
, pname
,
2110 (u32
*)tmp
, nelm
* 2);
2113 return ERR_PTR(ret
);
2116 for (i
= 0; i
< nelm
; i
++) {
2117 rsv_slots
[i
][0] = tmp
[i
][0];
2118 rsv_slots
[i
][1] = tmp
[i
][1];
2120 rsv_slots
[nelm
][0] = -1;
2121 rsv_slots
[nelm
][1] = -1;
2123 info
->rsv
= rsv_info
;
2124 info
->rsv
->rsv_slots
= (const s16 (*)[2])rsv_slots
;
2132 static struct dma_chan
*of_edma_xlate(struct of_phandle_args
*dma_spec
,
2133 struct of_dma
*ofdma
)
2135 struct edma_cc
*ecc
= ofdma
->of_dma_data
;
2136 struct dma_chan
*chan
= NULL
;
2137 struct edma_chan
*echan
;
2140 if (!ecc
|| dma_spec
->args_count
< 1)
2143 for (i
= 0; i
< ecc
->num_channels
; i
++) {
2144 echan
= &ecc
->slave_chans
[i
];
2145 if (echan
->ch_num
== dma_spec
->args
[0]) {
2146 chan
= &echan
->vchan
.chan
;
2154 if (echan
->ecc
->legacy_mode
&& dma_spec
->args_count
== 1)
2157 if (!echan
->ecc
->legacy_mode
&& dma_spec
->args_count
== 2 &&
2158 dma_spec
->args
[1] < echan
->ecc
->num_tc
) {
2159 echan
->tc
= &echan
->ecc
->tc_list
[dma_spec
->args
[1]];
2165 /* The channel is going to be used as HW synchronized */
2166 echan
->hw_triggered
= true;
2167 return dma_get_slave_channel(chan
);
2170 static struct edma_soc_info
*edma_setup_info_from_dt(struct device
*dev
,
2173 return ERR_PTR(-EINVAL
);
2176 static struct dma_chan
*of_edma_xlate(struct of_phandle_args
*dma_spec
,
2177 struct of_dma
*ofdma
)
2183 static int edma_probe(struct platform_device
*pdev
)
2185 struct edma_soc_info
*info
= pdev
->dev
.platform_data
;
2186 s8 (*queue_priority_mapping
)[2];
2188 const s16 (*rsv_slots
)[2];
2189 const s16 (*xbar_chans
)[2];
2192 struct resource
*mem
;
2193 struct device_node
*node
= pdev
->dev
.of_node
;
2194 struct device
*dev
= &pdev
->dev
;
2195 struct edma_cc
*ecc
;
2196 bool legacy_mode
= true;
2200 const struct of_device_id
*match
;
2202 match
= of_match_node(edma_of_ids
, node
);
2203 if (match
&& (*(u32
*)match
->data
) == EDMA_BINDING_TPCC
)
2204 legacy_mode
= false;
2206 info
= edma_setup_info_from_dt(dev
, legacy_mode
);
2208 dev_err(dev
, "failed to get DT data\n");
2209 return PTR_ERR(info
);
2216 pm_runtime_enable(dev
);
2217 ret
= pm_runtime_get_sync(dev
);
2219 dev_err(dev
, "pm_runtime_get_sync() failed\n");
2223 ret
= dma_set_mask_and_coherent(dev
, DMA_BIT_MASK(32));
2227 ecc
= devm_kzalloc(dev
, sizeof(*ecc
), GFP_KERNEL
);
2233 ecc
->legacy_mode
= legacy_mode
;
2234 /* When booting with DT the pdev->id is -1 */
2238 mem
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "edma3_cc");
2240 dev_dbg(dev
, "mem resource not found, using index 0\n");
2241 mem
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2243 dev_err(dev
, "no mem resource?\n");
2247 ecc
->base
= devm_ioremap_resource(dev
, mem
);
2248 if (IS_ERR(ecc
->base
))
2249 return PTR_ERR(ecc
->base
);
2251 platform_set_drvdata(pdev
, ecc
);
2253 /* Get eDMA3 configuration from IP */
2254 ret
= edma_setup_from_hw(dev
, info
, ecc
);
2258 /* Allocate memory based on the information we got from the IP */
2259 ecc
->slave_chans
= devm_kcalloc(dev
, ecc
->num_channels
,
2260 sizeof(*ecc
->slave_chans
), GFP_KERNEL
);
2261 if (!ecc
->slave_chans
)
2264 ecc
->slot_inuse
= devm_kcalloc(dev
, BITS_TO_LONGS(ecc
->num_slots
),
2265 sizeof(unsigned long), GFP_KERNEL
);
2266 if (!ecc
->slot_inuse
)
2269 ecc
->default_queue
= info
->default_queue
;
2272 /* Set the reserved slots in inuse list */
2273 rsv_slots
= info
->rsv
->rsv_slots
;
2275 for (i
= 0; rsv_slots
[i
][0] != -1; i
++) {
2276 off
= rsv_slots
[i
][0];
2277 ln
= rsv_slots
[i
][1];
2278 edma_set_bits(off
, ln
, ecc
->slot_inuse
);
2283 for (i
= 0; i
< ecc
->num_slots
; i
++) {
2284 /* Reset only unused - not reserved - paRAM slots */
2285 if (!test_bit(i
, ecc
->slot_inuse
))
2286 edma_write_slot(ecc
, i
, &dummy_paramset
);
2289 /* Clear the xbar mapped channels in unused list */
2290 xbar_chans
= info
->xbar_chans
;
2292 for (i
= 0; xbar_chans
[i
][1] != -1; i
++) {
2293 off
= xbar_chans
[i
][1];
2297 irq
= platform_get_irq_byname(pdev
, "edma3_ccint");
2298 if (irq
< 0 && node
)
2299 irq
= irq_of_parse_and_map(node
, 0);
2302 irq_name
= devm_kasprintf(dev
, GFP_KERNEL
, "%s_ccint",
2304 ret
= devm_request_irq(dev
, irq
, dma_irq_handler
, 0, irq_name
,
2307 dev_err(dev
, "CCINT (%d) failed --> %d\n", irq
, ret
);
2313 irq
= platform_get_irq_byname(pdev
, "edma3_ccerrint");
2314 if (irq
< 0 && node
)
2315 irq
= irq_of_parse_and_map(node
, 2);
2318 irq_name
= devm_kasprintf(dev
, GFP_KERNEL
, "%s_ccerrint",
2320 ret
= devm_request_irq(dev
, irq
, dma_ccerr_handler
, 0, irq_name
,
2323 dev_err(dev
, "CCERRINT (%d) failed --> %d\n", irq
, ret
);
2326 ecc
->ccerrint
= irq
;
2329 ecc
->dummy_slot
= edma_alloc_slot(ecc
, EDMA_SLOT_ANY
);
2330 if (ecc
->dummy_slot
< 0) {
2331 dev_err(dev
, "Can't allocate PaRAM dummy slot\n");
2332 return ecc
->dummy_slot
;
2335 queue_priority_mapping
= info
->queue_priority_mapping
;
2337 if (!ecc
->legacy_mode
) {
2338 int lowest_priority
= 0;
2339 struct of_phandle_args tc_args
;
2341 ecc
->tc_list
= devm_kcalloc(dev
, ecc
->num_tc
,
2342 sizeof(*ecc
->tc_list
), GFP_KERNEL
);
2343 if (!ecc
->tc_list
) {
2349 ret
= of_parse_phandle_with_fixed_args(node
, "ti,tptcs",
2351 if (ret
|| i
== ecc
->num_tc
)
2354 ecc
->tc_list
[i
].node
= tc_args
.np
;
2355 ecc
->tc_list
[i
].id
= i
;
2356 queue_priority_mapping
[i
][1] = tc_args
.args
[0];
2357 if (queue_priority_mapping
[i
][1] > lowest_priority
) {
2358 lowest_priority
= queue_priority_mapping
[i
][1];
2359 info
->default_queue
= i
;
2364 /* Event queue priority mapping */
2365 for (i
= 0; queue_priority_mapping
[i
][0] != -1; i
++)
2366 edma_assign_priority_to_queue(ecc
, queue_priority_mapping
[i
][0],
2367 queue_priority_mapping
[i
][1]);
2369 for (i
= 0; i
< ecc
->num_region
; i
++) {
2370 edma_write_array2(ecc
, EDMA_DRAE
, i
, 0, 0x0);
2371 edma_write_array2(ecc
, EDMA_DRAE
, i
, 1, 0x0);
2372 edma_write_array(ecc
, EDMA_QRAE
, i
, 0x0);
2376 /* Init the dma device and channels */
2377 edma_dma_init(ecc
, legacy_mode
);
2379 for (i
= 0; i
< ecc
->num_channels
; i
++) {
2380 /* Assign all channels to the default queue */
2381 edma_assign_channel_eventq(&ecc
->slave_chans
[i
],
2382 info
->default_queue
);
2383 /* Set entry slot to the dummy slot */
2384 edma_set_chmap(&ecc
->slave_chans
[i
], ecc
->dummy_slot
);
2387 ecc
->dma_slave
.filter
.map
= info
->slave_map
;
2388 ecc
->dma_slave
.filter
.mapcnt
= info
->slavecnt
;
2389 ecc
->dma_slave
.filter
.fn
= edma_filter_fn
;
2391 ret
= dma_async_device_register(&ecc
->dma_slave
);
2393 dev_err(dev
, "slave ddev registration failed (%d)\n", ret
);
2397 if (ecc
->dma_memcpy
) {
2398 ret
= dma_async_device_register(ecc
->dma_memcpy
);
2400 dev_err(dev
, "memcpy ddev registration failed (%d)\n",
2402 dma_async_device_unregister(&ecc
->dma_slave
);
2408 of_dma_controller_register(node
, of_edma_xlate
, ecc
);
2410 dev_info(dev
, "TI EDMA DMA engine driver\n");
2415 edma_free_slot(ecc
, ecc
->dummy_slot
);
2419 static void edma_cleanupp_vchan(struct dma_device
*dmadev
)
2421 struct edma_chan
*echan
, *_echan
;
2423 list_for_each_entry_safe(echan
, _echan
,
2424 &dmadev
->channels
, vchan
.chan
.device_node
) {
2425 list_del(&echan
->vchan
.chan
.device_node
);
2426 tasklet_kill(&echan
->vchan
.task
);
2430 static int edma_remove(struct platform_device
*pdev
)
2432 struct device
*dev
= &pdev
->dev
;
2433 struct edma_cc
*ecc
= dev_get_drvdata(dev
);
2435 devm_free_irq(dev
, ecc
->ccint
, ecc
);
2436 devm_free_irq(dev
, ecc
->ccerrint
, ecc
);
2438 edma_cleanupp_vchan(&ecc
->dma_slave
);
2441 of_dma_controller_free(dev
->of_node
);
2442 dma_async_device_unregister(&ecc
->dma_slave
);
2443 if (ecc
->dma_memcpy
)
2444 dma_async_device_unregister(ecc
->dma_memcpy
);
2445 edma_free_slot(ecc
, ecc
->dummy_slot
);
2450 #ifdef CONFIG_PM_SLEEP
2451 static int edma_pm_suspend(struct device
*dev
)
2453 struct edma_cc
*ecc
= dev_get_drvdata(dev
);
2454 struct edma_chan
*echan
= ecc
->slave_chans
;
2457 for (i
= 0; i
< ecc
->num_channels
; i
++) {
2458 if (echan
[i
].alloced
)
2459 edma_setup_interrupt(&echan
[i
], false);
2465 static int edma_pm_resume(struct device
*dev
)
2467 struct edma_cc
*ecc
= dev_get_drvdata(dev
);
2468 struct edma_chan
*echan
= ecc
->slave_chans
;
2470 s8 (*queue_priority_mapping
)[2];
2472 queue_priority_mapping
= ecc
->info
->queue_priority_mapping
;
2474 /* Event queue priority mapping */
2475 for (i
= 0; queue_priority_mapping
[i
][0] != -1; i
++)
2476 edma_assign_priority_to_queue(ecc
, queue_priority_mapping
[i
][0],
2477 queue_priority_mapping
[i
][1]);
2479 for (i
= 0; i
< ecc
->num_channels
; i
++) {
2480 if (echan
[i
].alloced
) {
2481 /* ensure access through shadow region 0 */
2482 edma_or_array2(ecc
, EDMA_DRAE
, 0, i
>> 5,
2485 edma_setup_interrupt(&echan
[i
], true);
2487 /* Set up channel -> slot mapping for the entry slot */
2488 edma_set_chmap(&echan
[i
], echan
[i
].slot
[0]);
2496 static const struct dev_pm_ops edma_pm_ops
= {
2497 SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend
, edma_pm_resume
)
2500 static struct platform_driver edma_driver
= {
2501 .probe
= edma_probe
,
2502 .remove
= edma_remove
,
2506 .of_match_table
= edma_of_ids
,
2510 static int edma_tptc_probe(struct platform_device
*pdev
)
2512 pm_runtime_enable(&pdev
->dev
);
2513 return pm_runtime_get_sync(&pdev
->dev
);
2516 static struct platform_driver edma_tptc_driver
= {
2517 .probe
= edma_tptc_probe
,
2519 .name
= "edma3-tptc",
2520 .of_match_table
= edma_tptc_of_ids
,
2524 bool edma_filter_fn(struct dma_chan
*chan
, void *param
)
2528 if (chan
->device
->dev
->driver
== &edma_driver
.driver
) {
2529 struct edma_chan
*echan
= to_edma_chan(chan
);
2530 unsigned ch_req
= *(unsigned *)param
;
2531 if (ch_req
== echan
->ch_num
) {
2532 /* The channel is going to be used as HW synchronized */
2533 echan
->hw_triggered
= true;
2539 EXPORT_SYMBOL(edma_filter_fn
);
2541 static int edma_init(void)
2545 ret
= platform_driver_register(&edma_tptc_driver
);
2549 return platform_driver_register(&edma_driver
);
2551 subsys_initcall(edma_init
);
2553 static void __exit
edma_exit(void)
2555 platform_driver_unregister(&edma_driver
);
2556 platform_driver_unregister(&edma_tptc_driver
);
2558 module_exit(edma_exit
);
2560 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2561 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2562 MODULE_LICENSE("GPL v2");