powercap: restrict energy meter to root access
[linux/fpc-iii.git] / drivers / edac / fsl_ddr_edac.c
blob9774f52f0c3ee63180e33d7543c2394829ed6906
1 /*
2 * Freescale Memory Controller kernel module
4 * Support Power-based SoCs including MPC85xx, MPC86xx, MPC83xx and
5 * ARM-based Layerscape SoCs including LS2xxx. Originally split
6 * out from mpc85xx_edac EDAC driver.
8 * Parts Copyrighted (c) 2013 by Freescale Semiconductor, Inc.
10 * Author: Dave Jiang <djiang@mvista.com>
12 * 2006-2007 (c) MontaVista Software, Inc. This file is licensed under
13 * the terms of the GNU General Public License version 2. This program
14 * is licensed "as is" without any warranty of any kind, whether express
15 * or implied.
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/ctype.h>
21 #include <linux/io.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/edac.h>
24 #include <linux/smp.h>
25 #include <linux/gfp.h>
27 #include <linux/of_platform.h>
28 #include <linux/of_device.h>
29 #include <linux/of_address.h>
30 #include "edac_module.h"
31 #include "edac_core.h"
32 #include "fsl_ddr_edac.h"
34 #define EDAC_MOD_STR "fsl_ddr_edac"
36 static int edac_mc_idx;
38 static u32 orig_ddr_err_disable;
39 static u32 orig_ddr_err_sbe;
40 static bool little_endian;
42 static inline u32 ddr_in32(void __iomem *addr)
44 return little_endian ? ioread32(addr) : ioread32be(addr);
47 static inline void ddr_out32(void __iomem *addr, u32 value)
49 if (little_endian)
50 iowrite32(value, addr);
51 else
52 iowrite32be(value, addr);
55 /************************ MC SYSFS parts ***********************************/
57 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
59 static ssize_t fsl_mc_inject_data_hi_show(struct device *dev,
60 struct device_attribute *mattr,
61 char *data)
63 struct mem_ctl_info *mci = to_mci(dev);
64 struct fsl_mc_pdata *pdata = mci->pvt_info;
65 return sprintf(data, "0x%08x",
66 ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI));
69 static ssize_t fsl_mc_inject_data_lo_show(struct device *dev,
70 struct device_attribute *mattr,
71 char *data)
73 struct mem_ctl_info *mci = to_mci(dev);
74 struct fsl_mc_pdata *pdata = mci->pvt_info;
75 return sprintf(data, "0x%08x",
76 ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO));
79 static ssize_t fsl_mc_inject_ctrl_show(struct device *dev,
80 struct device_attribute *mattr,
81 char *data)
83 struct mem_ctl_info *mci = to_mci(dev);
84 struct fsl_mc_pdata *pdata = mci->pvt_info;
85 return sprintf(data, "0x%08x",
86 ddr_in32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT));
89 static ssize_t fsl_mc_inject_data_hi_store(struct device *dev,
90 struct device_attribute *mattr,
91 const char *data, size_t count)
93 struct mem_ctl_info *mci = to_mci(dev);
94 struct fsl_mc_pdata *pdata = mci->pvt_info;
95 unsigned long val;
96 int rc;
98 if (isdigit(*data)) {
99 rc = kstrtoul(data, 0, &val);
100 if (rc)
101 return rc;
103 ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI, val);
104 return count;
106 return 0;
109 static ssize_t fsl_mc_inject_data_lo_store(struct device *dev,
110 struct device_attribute *mattr,
111 const char *data, size_t count)
113 struct mem_ctl_info *mci = to_mci(dev);
114 struct fsl_mc_pdata *pdata = mci->pvt_info;
115 unsigned long val;
116 int rc;
118 if (isdigit(*data)) {
119 rc = kstrtoul(data, 0, &val);
120 if (rc)
121 return rc;
123 ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO, val);
124 return count;
126 return 0;
129 static ssize_t fsl_mc_inject_ctrl_store(struct device *dev,
130 struct device_attribute *mattr,
131 const char *data, size_t count)
133 struct mem_ctl_info *mci = to_mci(dev);
134 struct fsl_mc_pdata *pdata = mci->pvt_info;
135 unsigned long val;
136 int rc;
138 if (isdigit(*data)) {
139 rc = kstrtoul(data, 0, &val);
140 if (rc)
141 return rc;
143 ddr_out32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT, val);
144 return count;
146 return 0;
149 DEVICE_ATTR(inject_data_hi, S_IRUGO | S_IWUSR,
150 fsl_mc_inject_data_hi_show, fsl_mc_inject_data_hi_store);
151 DEVICE_ATTR(inject_data_lo, S_IRUGO | S_IWUSR,
152 fsl_mc_inject_data_lo_show, fsl_mc_inject_data_lo_store);
153 DEVICE_ATTR(inject_ctrl, S_IRUGO | S_IWUSR,
154 fsl_mc_inject_ctrl_show, fsl_mc_inject_ctrl_store);
156 static struct attribute *fsl_ddr_dev_attrs[] = {
157 &dev_attr_inject_data_hi.attr,
158 &dev_attr_inject_data_lo.attr,
159 &dev_attr_inject_ctrl.attr,
160 NULL
163 ATTRIBUTE_GROUPS(fsl_ddr_dev);
165 /**************************** MC Err device ***************************/
168 * Taken from table 8-55 in the MPC8641 User's Manual and/or 9-61 in the
169 * MPC8572 User's Manual. Each line represents a syndrome bit column as a
170 * 64-bit value, but split into an upper and lower 32-bit chunk. The labels
171 * below correspond to Freescale's manuals.
173 static unsigned int ecc_table[16] = {
174 /* MSB LSB */
175 /* [0:31] [32:63] */
176 0xf00fe11e, 0xc33c0ff7, /* Syndrome bit 7 */
177 0x00ff00ff, 0x00fff0ff,
178 0x0f0f0f0f, 0x0f0fff00,
179 0x11113333, 0x7777000f,
180 0x22224444, 0x8888222f,
181 0x44448888, 0xffff4441,
182 0x8888ffff, 0x11118882,
183 0xffff1111, 0x22221114, /* Syndrome bit 0 */
187 * Calculate the correct ECC value for a 64-bit value specified by high:low
189 static u8 calculate_ecc(u32 high, u32 low)
191 u32 mask_low;
192 u32 mask_high;
193 int bit_cnt;
194 u8 ecc = 0;
195 int i;
196 int j;
198 for (i = 0; i < 8; i++) {
199 mask_high = ecc_table[i * 2];
200 mask_low = ecc_table[i * 2 + 1];
201 bit_cnt = 0;
203 for (j = 0; j < 32; j++) {
204 if ((mask_high >> j) & 1)
205 bit_cnt ^= (high >> j) & 1;
206 if ((mask_low >> j) & 1)
207 bit_cnt ^= (low >> j) & 1;
210 ecc |= bit_cnt << i;
213 return ecc;
217 * Create the syndrome code which is generated if the data line specified by
218 * 'bit' failed. Eg generate an 8-bit codes seen in Table 8-55 in the MPC8641
219 * User's Manual and 9-61 in the MPC8572 User's Manual.
221 static u8 syndrome_from_bit(unsigned int bit) {
222 int i;
223 u8 syndrome = 0;
226 * Cycle through the upper or lower 32-bit portion of each value in
227 * ecc_table depending on if 'bit' is in the upper or lower half of
228 * 64-bit data.
230 for (i = bit < 32; i < 16; i += 2)
231 syndrome |= ((ecc_table[i] >> (bit % 32)) & 1) << (i / 2);
233 return syndrome;
237 * Decode data and ecc syndrome to determine what went wrong
238 * Note: This can only decode single-bit errors
240 static void sbe_ecc_decode(u32 cap_high, u32 cap_low, u32 cap_ecc,
241 int *bad_data_bit, int *bad_ecc_bit)
243 int i;
244 u8 syndrome;
246 *bad_data_bit = -1;
247 *bad_ecc_bit = -1;
250 * Calculate the ECC of the captured data and XOR it with the captured
251 * ECC to find an ECC syndrome value we can search for
253 syndrome = calculate_ecc(cap_high, cap_low) ^ cap_ecc;
255 /* Check if a data line is stuck... */
256 for (i = 0; i < 64; i++) {
257 if (syndrome == syndrome_from_bit(i)) {
258 *bad_data_bit = i;
259 return;
263 /* If data is correct, check ECC bits for errors... */
264 for (i = 0; i < 8; i++) {
265 if ((syndrome >> i) & 0x1) {
266 *bad_ecc_bit = i;
267 return;
272 #define make64(high, low) (((u64)(high) << 32) | (low))
274 static void fsl_mc_check(struct mem_ctl_info *mci)
276 struct fsl_mc_pdata *pdata = mci->pvt_info;
277 struct csrow_info *csrow;
278 u32 bus_width;
279 u32 err_detect;
280 u32 syndrome;
281 u64 err_addr;
282 u32 pfn;
283 int row_index;
284 u32 cap_high;
285 u32 cap_low;
286 int bad_data_bit;
287 int bad_ecc_bit;
289 err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
290 if (!err_detect)
291 return;
293 fsl_mc_printk(mci, KERN_ERR, "Err Detect Register: %#8.8x\n",
294 err_detect);
296 /* no more processing if not ECC bit errors */
297 if (!(err_detect & (DDR_EDE_SBE | DDR_EDE_MBE))) {
298 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
299 return;
302 syndrome = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ECC);
304 /* Mask off appropriate bits of syndrome based on bus width */
305 bus_width = (ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG) &
306 DSC_DBW_MASK) ? 32 : 64;
307 if (bus_width == 64)
308 syndrome &= 0xff;
309 else
310 syndrome &= 0xffff;
312 err_addr = make64(
313 ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_EXT_ADDRESS),
314 ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ADDRESS));
315 pfn = err_addr >> PAGE_SHIFT;
317 for (row_index = 0; row_index < mci->nr_csrows; row_index++) {
318 csrow = mci->csrows[row_index];
319 if ((pfn >= csrow->first_page) && (pfn <= csrow->last_page))
320 break;
323 cap_high = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_HI);
324 cap_low = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_LO);
327 * Analyze single-bit errors on 64-bit wide buses
328 * TODO: Add support for 32-bit wide buses
330 if ((err_detect & DDR_EDE_SBE) && (bus_width == 64)) {
331 sbe_ecc_decode(cap_high, cap_low, syndrome,
332 &bad_data_bit, &bad_ecc_bit);
334 if (bad_data_bit != -1)
335 fsl_mc_printk(mci, KERN_ERR,
336 "Faulty Data bit: %d\n", bad_data_bit);
337 if (bad_ecc_bit != -1)
338 fsl_mc_printk(mci, KERN_ERR,
339 "Faulty ECC bit: %d\n", bad_ecc_bit);
341 fsl_mc_printk(mci, KERN_ERR,
342 "Expected Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
343 cap_high ^ (1 << (bad_data_bit - 32)),
344 cap_low ^ (1 << bad_data_bit),
345 syndrome ^ (1 << bad_ecc_bit));
348 fsl_mc_printk(mci, KERN_ERR,
349 "Captured Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
350 cap_high, cap_low, syndrome);
351 fsl_mc_printk(mci, KERN_ERR, "Err addr: %#8.8llx\n", err_addr);
352 fsl_mc_printk(mci, KERN_ERR, "PFN: %#8.8x\n", pfn);
354 /* we are out of range */
355 if (row_index == mci->nr_csrows)
356 fsl_mc_printk(mci, KERN_ERR, "PFN out of range!\n");
358 if (err_detect & DDR_EDE_SBE)
359 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
360 pfn, err_addr & ~PAGE_MASK, syndrome,
361 row_index, 0, -1,
362 mci->ctl_name, "");
364 if (err_detect & DDR_EDE_MBE)
365 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
366 pfn, err_addr & ~PAGE_MASK, syndrome,
367 row_index, 0, -1,
368 mci->ctl_name, "");
370 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
373 static irqreturn_t fsl_mc_isr(int irq, void *dev_id)
375 struct mem_ctl_info *mci = dev_id;
376 struct fsl_mc_pdata *pdata = mci->pvt_info;
377 u32 err_detect;
379 err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
380 if (!err_detect)
381 return IRQ_NONE;
383 fsl_mc_check(mci);
385 return IRQ_HANDLED;
388 static void fsl_ddr_init_csrows(struct mem_ctl_info *mci)
390 struct fsl_mc_pdata *pdata = mci->pvt_info;
391 struct csrow_info *csrow;
392 struct dimm_info *dimm;
393 u32 sdram_ctl;
394 u32 sdtype;
395 enum mem_type mtype;
396 u32 cs_bnds;
397 int index;
399 sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
401 sdtype = sdram_ctl & DSC_SDTYPE_MASK;
402 if (sdram_ctl & DSC_RD_EN) {
403 switch (sdtype) {
404 case 0x02000000:
405 mtype = MEM_RDDR;
406 break;
407 case 0x03000000:
408 mtype = MEM_RDDR2;
409 break;
410 case 0x07000000:
411 mtype = MEM_RDDR3;
412 break;
413 case 0x05000000:
414 mtype = MEM_RDDR4;
415 break;
416 default:
417 mtype = MEM_UNKNOWN;
418 break;
420 } else {
421 switch (sdtype) {
422 case 0x02000000:
423 mtype = MEM_DDR;
424 break;
425 case 0x03000000:
426 mtype = MEM_DDR2;
427 break;
428 case 0x07000000:
429 mtype = MEM_DDR3;
430 break;
431 case 0x05000000:
432 mtype = MEM_DDR4;
433 break;
434 default:
435 mtype = MEM_UNKNOWN;
436 break;
440 for (index = 0; index < mci->nr_csrows; index++) {
441 u32 start;
442 u32 end;
444 csrow = mci->csrows[index];
445 dimm = csrow->channels[0]->dimm;
447 cs_bnds = ddr_in32(pdata->mc_vbase + FSL_MC_CS_BNDS_0 +
448 (index * FSL_MC_CS_BNDS_OFS));
450 start = (cs_bnds & 0xffff0000) >> 16;
451 end = (cs_bnds & 0x0000ffff);
453 if (start == end)
454 continue; /* not populated */
456 start <<= (24 - PAGE_SHIFT);
457 end <<= (24 - PAGE_SHIFT);
458 end |= (1 << (24 - PAGE_SHIFT)) - 1;
460 csrow->first_page = start;
461 csrow->last_page = end;
463 dimm->nr_pages = end + 1 - start;
464 dimm->grain = 8;
465 dimm->mtype = mtype;
466 dimm->dtype = DEV_UNKNOWN;
467 if (sdram_ctl & DSC_X32_EN)
468 dimm->dtype = DEV_X32;
469 dimm->edac_mode = EDAC_SECDED;
473 int fsl_mc_err_probe(struct platform_device *op)
475 struct mem_ctl_info *mci;
476 struct edac_mc_layer layers[2];
477 struct fsl_mc_pdata *pdata;
478 struct resource r;
479 u32 sdram_ctl;
480 int res;
482 if (!devres_open_group(&op->dev, fsl_mc_err_probe, GFP_KERNEL))
483 return -ENOMEM;
485 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
486 layers[0].size = 4;
487 layers[0].is_virt_csrow = true;
488 layers[1].type = EDAC_MC_LAYER_CHANNEL;
489 layers[1].size = 1;
490 layers[1].is_virt_csrow = false;
491 mci = edac_mc_alloc(edac_mc_idx, ARRAY_SIZE(layers), layers,
492 sizeof(*pdata));
493 if (!mci) {
494 devres_release_group(&op->dev, fsl_mc_err_probe);
495 return -ENOMEM;
498 pdata = mci->pvt_info;
499 pdata->name = "fsl_mc_err";
500 mci->pdev = &op->dev;
501 pdata->edac_idx = edac_mc_idx++;
502 dev_set_drvdata(mci->pdev, mci);
503 mci->ctl_name = pdata->name;
504 mci->dev_name = pdata->name;
507 * Get the endianness of DDR controller registers.
508 * Default is big endian.
510 little_endian = of_property_read_bool(op->dev.of_node, "little-endian");
512 res = of_address_to_resource(op->dev.of_node, 0, &r);
513 if (res) {
514 pr_err("%s: Unable to get resource for MC err regs\n",
515 __func__);
516 goto err;
519 if (!devm_request_mem_region(&op->dev, r.start, resource_size(&r),
520 pdata->name)) {
521 pr_err("%s: Error while requesting mem region\n",
522 __func__);
523 res = -EBUSY;
524 goto err;
527 pdata->mc_vbase = devm_ioremap(&op->dev, r.start, resource_size(&r));
528 if (!pdata->mc_vbase) {
529 pr_err("%s: Unable to setup MC err regs\n", __func__);
530 res = -ENOMEM;
531 goto err;
534 sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
535 if (!(sdram_ctl & DSC_ECC_EN)) {
536 /* no ECC */
537 pr_warn("%s: No ECC DIMMs discovered\n", __func__);
538 res = -ENODEV;
539 goto err;
542 edac_dbg(3, "init mci\n");
543 mci->mtype_cap = MEM_FLAG_DDR | MEM_FLAG_RDDR |
544 MEM_FLAG_DDR2 | MEM_FLAG_RDDR2 |
545 MEM_FLAG_DDR3 | MEM_FLAG_RDDR3 |
546 MEM_FLAG_DDR4 | MEM_FLAG_RDDR4;
547 mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
548 mci->edac_cap = EDAC_FLAG_SECDED;
549 mci->mod_name = EDAC_MOD_STR;
551 if (edac_op_state == EDAC_OPSTATE_POLL)
552 mci->edac_check = fsl_mc_check;
554 mci->ctl_page_to_phys = NULL;
556 mci->scrub_mode = SCRUB_SW_SRC;
558 fsl_ddr_init_csrows(mci);
560 /* store the original error disable bits */
561 orig_ddr_err_disable = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DISABLE);
562 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE, 0);
564 /* clear all error bits */
565 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, ~0);
567 res = edac_mc_add_mc_with_groups(mci, fsl_ddr_dev_groups);
568 if (res) {
569 edac_dbg(3, "failed edac_mc_add_mc()\n");
570 goto err;
573 if (edac_op_state == EDAC_OPSTATE_INT) {
574 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN,
575 DDR_EIE_MBEE | DDR_EIE_SBEE);
577 /* store the original error management threshold */
578 orig_ddr_err_sbe = ddr_in32(pdata->mc_vbase +
579 FSL_MC_ERR_SBE) & 0xff0000;
581 /* set threshold to 1 error per interrupt */
582 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, 0x10000);
584 /* register interrupts */
585 pdata->irq = platform_get_irq(op, 0);
586 res = devm_request_irq(&op->dev, pdata->irq,
587 fsl_mc_isr,
588 IRQF_SHARED,
589 "[EDAC] MC err", mci);
590 if (res < 0) {
591 pr_err("%s: Unable to request irq %d for FSL DDR DRAM ERR\n",
592 __func__, pdata->irq);
593 res = -ENODEV;
594 goto err2;
597 pr_info(EDAC_MOD_STR " acquired irq %d for MC\n",
598 pdata->irq);
601 devres_remove_group(&op->dev, fsl_mc_err_probe);
602 edac_dbg(3, "success\n");
603 pr_info(EDAC_MOD_STR " MC err registered\n");
605 return 0;
607 err2:
608 edac_mc_del_mc(&op->dev);
609 err:
610 devres_release_group(&op->dev, fsl_mc_err_probe);
611 edac_mc_free(mci);
612 return res;
615 int fsl_mc_err_remove(struct platform_device *op)
617 struct mem_ctl_info *mci = dev_get_drvdata(&op->dev);
618 struct fsl_mc_pdata *pdata = mci->pvt_info;
620 edac_dbg(0, "\n");
622 if (edac_op_state == EDAC_OPSTATE_INT) {
623 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN, 0);
626 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE,
627 orig_ddr_err_disable);
628 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, orig_ddr_err_sbe);
630 edac_mc_del_mc(&op->dev);
631 edac_mc_free(mci);
632 return 0;