powercap: restrict energy meter to root access
[linux/fpc-iii.git] / drivers / nvdimm / pmem.c
blob3456f532077cd8e780e2717a820e7246e311e0d7
1 /*
2 * Persistent Memory Driver
4 * Copyright (c) 2014-2015, Intel Corporation.
5 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms and conditions of the GNU General Public License,
10 * version 2, as published by the Free Software Foundation.
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/badblocks.h>
26 #include <linux/memremap.h>
27 #include <linux/vmalloc.h>
28 #include <linux/pfn_t.h>
29 #include <linux/slab.h>
30 #include <linux/pmem.h>
31 #include <linux/nd.h>
32 #include "pmem.h"
33 #include "pfn.h"
34 #include "nd.h"
36 static struct device *to_dev(struct pmem_device *pmem)
39 * nvdimm bus services need a 'dev' parameter, and we record the device
40 * at init in bb.dev.
42 return pmem->bb.dev;
45 static struct nd_region *to_region(struct pmem_device *pmem)
47 return to_nd_region(to_dev(pmem)->parent);
50 static int pmem_clear_poison(struct pmem_device *pmem, phys_addr_t offset,
51 unsigned int len)
53 struct device *dev = to_dev(pmem);
54 sector_t sector;
55 long cleared;
57 sector = (offset - pmem->data_offset) / 512;
58 cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
60 if (cleared > 0 && cleared / 512) {
61 dev_dbg(dev, "%s: %#llx clear %ld sector%s\n",
62 __func__, (unsigned long long) sector,
63 cleared / 512, cleared / 512 > 1 ? "s" : "");
64 badblocks_clear(&pmem->bb, sector, cleared / 512);
65 } else {
66 return -EIO;
69 invalidate_pmem(pmem->virt_addr + offset, len);
70 return 0;
73 static void write_pmem(void *pmem_addr, struct page *page,
74 unsigned int off, unsigned int len)
76 void *mem = kmap_atomic(page);
78 memcpy_to_pmem(pmem_addr, mem + off, len);
79 kunmap_atomic(mem);
82 static int read_pmem(struct page *page, unsigned int off,
83 void *pmem_addr, unsigned int len)
85 int rc;
86 void *mem = kmap_atomic(page);
88 rc = memcpy_from_pmem(mem + off, pmem_addr, len);
89 kunmap_atomic(mem);
90 if (rc)
91 return -EIO;
92 return 0;
95 static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
96 unsigned int len, unsigned int off, bool is_write,
97 sector_t sector)
99 int rc = 0;
100 bool bad_pmem = false;
101 phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
102 void *pmem_addr = pmem->virt_addr + pmem_off;
104 if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
105 bad_pmem = true;
107 if (!is_write) {
108 if (unlikely(bad_pmem))
109 rc = -EIO;
110 else {
111 rc = read_pmem(page, off, pmem_addr, len);
112 flush_dcache_page(page);
114 } else {
116 * Note that we write the data both before and after
117 * clearing poison. The write before clear poison
118 * handles situations where the latest written data is
119 * preserved and the clear poison operation simply marks
120 * the address range as valid without changing the data.
121 * In this case application software can assume that an
122 * interrupted write will either return the new good
123 * data or an error.
125 * However, if pmem_clear_poison() leaves the data in an
126 * indeterminate state we need to perform the write
127 * after clear poison.
129 flush_dcache_page(page);
130 write_pmem(pmem_addr, page, off, len);
131 if (unlikely(bad_pmem)) {
132 rc = pmem_clear_poison(pmem, pmem_off, len);
133 write_pmem(pmem_addr, page, off, len);
137 return rc;
140 /* account for REQ_FLUSH rename, replace with REQ_PREFLUSH after v4.8-rc1 */
141 #ifndef REQ_FLUSH
142 #define REQ_FLUSH REQ_PREFLUSH
143 #endif
145 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
147 int rc = 0;
148 bool do_acct;
149 unsigned long start;
150 struct bio_vec bvec;
151 struct bvec_iter iter;
152 struct pmem_device *pmem = q->queuedata;
153 struct nd_region *nd_region = to_region(pmem);
155 if (bio->bi_opf & REQ_FLUSH)
156 nvdimm_flush(nd_region);
158 do_acct = nd_iostat_start(bio, &start);
159 bio_for_each_segment(bvec, bio, iter) {
160 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
161 bvec.bv_offset, op_is_write(bio_op(bio)),
162 iter.bi_sector);
163 if (rc) {
164 bio->bi_error = rc;
165 break;
168 if (do_acct)
169 nd_iostat_end(bio, start);
171 if (bio->bi_opf & REQ_FUA)
172 nvdimm_flush(nd_region);
174 bio_endio(bio);
175 return BLK_QC_T_NONE;
178 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
179 struct page *page, bool is_write)
181 struct pmem_device *pmem = bdev->bd_queue->queuedata;
182 int rc;
184 rc = pmem_do_bvec(pmem, page, PAGE_SIZE, 0, is_write, sector);
187 * The ->rw_page interface is subtle and tricky. The core
188 * retries on any error, so we can only invoke page_endio() in
189 * the successful completion case. Otherwise, we'll see crashes
190 * caused by double completion.
192 if (rc == 0)
193 page_endio(page, is_write, 0);
195 return rc;
198 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
199 __weak long pmem_direct_access(struct block_device *bdev, sector_t sector,
200 void **kaddr, pfn_t *pfn, long size)
202 struct pmem_device *pmem = bdev->bd_queue->queuedata;
203 resource_size_t offset = sector * 512 + pmem->data_offset;
205 if (unlikely(is_bad_pmem(&pmem->bb, sector, size)))
206 return -EIO;
207 *kaddr = pmem->virt_addr + offset;
208 *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
211 * If badblocks are present, limit known good range to the
212 * requested range.
214 if (unlikely(pmem->bb.count))
215 return size;
216 return pmem->size - pmem->pfn_pad - offset;
219 static const struct block_device_operations pmem_fops = {
220 .owner = THIS_MODULE,
221 .rw_page = pmem_rw_page,
222 .direct_access = pmem_direct_access,
223 .revalidate_disk = nvdimm_revalidate_disk,
226 static void pmem_release_queue(void *q)
228 blk_cleanup_queue(q);
231 static void pmem_release_disk(void *disk)
233 del_gendisk(disk);
234 put_disk(disk);
237 static int pmem_attach_disk(struct device *dev,
238 struct nd_namespace_common *ndns)
240 struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
241 struct nd_region *nd_region = to_nd_region(dev->parent);
242 struct vmem_altmap __altmap, *altmap = NULL;
243 struct resource *res = &nsio->res;
244 struct nd_pfn *nd_pfn = NULL;
245 int nid = dev_to_node(dev);
246 struct nd_pfn_sb *pfn_sb;
247 struct pmem_device *pmem;
248 struct resource pfn_res;
249 struct request_queue *q;
250 struct gendisk *disk;
251 void *addr;
253 /* while nsio_rw_bytes is active, parse a pfn info block if present */
254 if (is_nd_pfn(dev)) {
255 nd_pfn = to_nd_pfn(dev);
256 altmap = nvdimm_setup_pfn(nd_pfn, &pfn_res, &__altmap);
257 if (IS_ERR(altmap))
258 return PTR_ERR(altmap);
261 /* we're attaching a block device, disable raw namespace access */
262 devm_nsio_disable(dev, nsio);
264 pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
265 if (!pmem)
266 return -ENOMEM;
268 dev_set_drvdata(dev, pmem);
269 pmem->phys_addr = res->start;
270 pmem->size = resource_size(res);
271 if (nvdimm_has_flush(nd_region) < 0)
272 dev_warn(dev, "unable to guarantee persistence of writes\n");
274 if (!devm_request_mem_region(dev, res->start, resource_size(res),
275 dev_name(dev))) {
276 dev_warn(dev, "could not reserve region %pR\n", res);
277 return -EBUSY;
280 q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
281 if (!q)
282 return -ENOMEM;
284 pmem->pfn_flags = PFN_DEV;
285 if (is_nd_pfn(dev)) {
286 addr = devm_memremap_pages(dev, &pfn_res, &q->q_usage_counter,
287 altmap);
288 pfn_sb = nd_pfn->pfn_sb;
289 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
290 pmem->pfn_pad = resource_size(res) - resource_size(&pfn_res);
291 pmem->pfn_flags |= PFN_MAP;
292 res = &pfn_res; /* for badblocks populate */
293 res->start += pmem->data_offset;
294 } else if (pmem_should_map_pages(dev)) {
295 addr = devm_memremap_pages(dev, &nsio->res,
296 &q->q_usage_counter, NULL);
297 pmem->pfn_flags |= PFN_MAP;
298 } else
299 addr = devm_memremap(dev, pmem->phys_addr,
300 pmem->size, ARCH_MEMREMAP_PMEM);
303 * At release time the queue must be dead before
304 * devm_memremap_pages is unwound
306 if (devm_add_action_or_reset(dev, pmem_release_queue, q))
307 return -ENOMEM;
309 if (IS_ERR(addr))
310 return PTR_ERR(addr);
311 pmem->virt_addr = addr;
313 blk_queue_write_cache(q, true, true);
314 blk_queue_make_request(q, pmem_make_request);
315 blk_queue_physical_block_size(q, PAGE_SIZE);
316 blk_queue_max_hw_sectors(q, UINT_MAX);
317 blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
318 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
319 queue_flag_set_unlocked(QUEUE_FLAG_DAX, q);
320 q->queuedata = pmem;
322 disk = alloc_disk_node(0, nid);
323 if (!disk)
324 return -ENOMEM;
326 disk->fops = &pmem_fops;
327 disk->queue = q;
328 disk->flags = GENHD_FL_EXT_DEVT;
329 nvdimm_namespace_disk_name(ndns, disk->disk_name);
330 set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
331 / 512);
332 if (devm_init_badblocks(dev, &pmem->bb))
333 return -ENOMEM;
334 nvdimm_badblocks_populate(nd_region, &pmem->bb, res);
335 disk->bb = &pmem->bb;
336 device_add_disk(dev, disk);
338 if (devm_add_action_or_reset(dev, pmem_release_disk, disk))
339 return -ENOMEM;
341 revalidate_disk(disk);
343 return 0;
346 static int nd_pmem_probe(struct device *dev)
348 struct nd_namespace_common *ndns;
350 ndns = nvdimm_namespace_common_probe(dev);
351 if (IS_ERR(ndns))
352 return PTR_ERR(ndns);
354 if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
355 return -ENXIO;
357 if (is_nd_btt(dev))
358 return nvdimm_namespace_attach_btt(ndns);
360 if (is_nd_pfn(dev))
361 return pmem_attach_disk(dev, ndns);
363 /* if we find a valid info-block we'll come back as that personality */
364 if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0
365 || nd_dax_probe(dev, ndns) == 0)
366 return -ENXIO;
368 /* ...otherwise we're just a raw pmem device */
369 return pmem_attach_disk(dev, ndns);
372 static int nd_pmem_remove(struct device *dev)
374 if (is_nd_btt(dev))
375 nvdimm_namespace_detach_btt(to_nd_btt(dev));
376 nvdimm_flush(to_nd_region(dev->parent));
378 return 0;
381 static void nd_pmem_shutdown(struct device *dev)
383 nvdimm_flush(to_nd_region(dev->parent));
386 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
388 struct nd_region *nd_region;
389 resource_size_t offset = 0, end_trunc = 0;
390 struct nd_namespace_common *ndns;
391 struct nd_namespace_io *nsio;
392 struct resource res;
393 struct badblocks *bb;
395 if (event != NVDIMM_REVALIDATE_POISON)
396 return;
398 if (is_nd_btt(dev)) {
399 struct nd_btt *nd_btt = to_nd_btt(dev);
401 ndns = nd_btt->ndns;
402 nd_region = to_nd_region(ndns->dev.parent);
403 nsio = to_nd_namespace_io(&ndns->dev);
404 bb = &nsio->bb;
405 } else {
406 struct pmem_device *pmem = dev_get_drvdata(dev);
408 nd_region = to_region(pmem);
409 bb = &pmem->bb;
411 if (is_nd_pfn(dev)) {
412 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
413 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
415 ndns = nd_pfn->ndns;
416 offset = pmem->data_offset +
417 __le32_to_cpu(pfn_sb->start_pad);
418 end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
419 } else {
420 ndns = to_ndns(dev);
423 nsio = to_nd_namespace_io(&ndns->dev);
426 res.start = nsio->res.start + offset;
427 res.end = nsio->res.end - end_trunc;
428 nvdimm_badblocks_populate(nd_region, bb, &res);
431 MODULE_ALIAS("pmem");
432 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
433 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
434 static struct nd_device_driver nd_pmem_driver = {
435 .probe = nd_pmem_probe,
436 .remove = nd_pmem_remove,
437 .notify = nd_pmem_notify,
438 .shutdown = nd_pmem_shutdown,
439 .drv = {
440 .name = "nd_pmem",
442 .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
445 static int __init pmem_init(void)
447 return nd_driver_register(&nd_pmem_driver);
449 module_init(pmem_init);
451 static void pmem_exit(void)
453 driver_unregister(&nd_pmem_driver.drv);
455 module_exit(pmem_exit);
457 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
458 MODULE_LICENSE("GPL v2");