powercap: restrict energy meter to root access
[linux/fpc-iii.git] / drivers / pci / pci.c
blobe09653c73ab4b30fe1e8773cb208b19d1947097d
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/delay.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/of.h>
16 #include <linux/of_pci.h>
17 #include <linux/pci.h>
18 #include <linux/pm.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/spinlock.h>
22 #include <linux/string.h>
23 #include <linux/log2.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/pm_wakeup.h>
26 #include <linux/interrupt.h>
27 #include <linux/device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/pci_hotplug.h>
30 #include <linux/vmalloc.h>
31 #include <asm/setup.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include "pci.h"
36 const char *pci_power_names[] = {
37 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
39 EXPORT_SYMBOL_GPL(pci_power_names);
41 int isa_dma_bridge_buggy;
42 EXPORT_SYMBOL(isa_dma_bridge_buggy);
44 int pci_pci_problems;
45 EXPORT_SYMBOL(pci_pci_problems);
47 unsigned int pci_pm_d3_delay;
49 static void pci_pme_list_scan(struct work_struct *work);
51 static LIST_HEAD(pci_pme_list);
52 static DEFINE_MUTEX(pci_pme_list_mutex);
53 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
55 struct pci_pme_device {
56 struct list_head list;
57 struct pci_dev *dev;
60 #define PME_TIMEOUT 1000 /* How long between PME checks */
62 static void pci_dev_d3_sleep(struct pci_dev *dev)
64 unsigned int delay = dev->d3_delay;
66 if (delay < pci_pm_d3_delay)
67 delay = pci_pm_d3_delay;
69 msleep(delay);
72 #ifdef CONFIG_PCI_DOMAINS
73 int pci_domains_supported = 1;
74 #endif
76 #define DEFAULT_CARDBUS_IO_SIZE (256)
77 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
78 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
79 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
80 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
82 #define DEFAULT_HOTPLUG_IO_SIZE (256)
83 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
84 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
85 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
86 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
88 #define DEFAULT_HOTPLUG_BUS_SIZE 1
89 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
91 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
94 * The default CLS is used if arch didn't set CLS explicitly and not
95 * all pci devices agree on the same value. Arch can override either
96 * the dfl or actual value as it sees fit. Don't forget this is
97 * measured in 32-bit words, not bytes.
99 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
100 u8 pci_cache_line_size;
103 * If we set up a device for bus mastering, we need to check the latency
104 * timer as certain BIOSes forget to set it properly.
106 unsigned int pcibios_max_latency = 255;
108 /* If set, the PCIe ARI capability will not be used. */
109 static bool pcie_ari_disabled;
111 /* Disable bridge_d3 for all PCIe ports */
112 static bool pci_bridge_d3_disable;
113 /* Force bridge_d3 for all PCIe ports */
114 static bool pci_bridge_d3_force;
116 static int __init pcie_port_pm_setup(char *str)
118 if (!strcmp(str, "off"))
119 pci_bridge_d3_disable = true;
120 else if (!strcmp(str, "force"))
121 pci_bridge_d3_force = true;
122 return 1;
124 __setup("pcie_port_pm=", pcie_port_pm_setup);
127 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
128 * @bus: pointer to PCI bus structure to search
130 * Given a PCI bus, returns the highest PCI bus number present in the set
131 * including the given PCI bus and its list of child PCI buses.
133 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
135 struct pci_bus *tmp;
136 unsigned char max, n;
138 max = bus->busn_res.end;
139 list_for_each_entry(tmp, &bus->children, node) {
140 n = pci_bus_max_busnr(tmp);
141 if (n > max)
142 max = n;
144 return max;
146 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
148 #ifdef CONFIG_HAS_IOMEM
149 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
151 struct resource *res = &pdev->resource[bar];
154 * Make sure the BAR is actually a memory resource, not an IO resource
156 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
157 dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
158 return NULL;
160 return ioremap_nocache(res->start, resource_size(res));
162 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
164 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
167 * Make sure the BAR is actually a memory resource, not an IO resource
169 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
170 WARN_ON(1);
171 return NULL;
173 return ioremap_wc(pci_resource_start(pdev, bar),
174 pci_resource_len(pdev, bar));
176 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
177 #endif
180 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
181 u8 pos, int cap, int *ttl)
183 u8 id;
184 u16 ent;
186 pci_bus_read_config_byte(bus, devfn, pos, &pos);
188 while ((*ttl)--) {
189 if (pos < 0x40)
190 break;
191 pos &= ~3;
192 pci_bus_read_config_word(bus, devfn, pos, &ent);
194 id = ent & 0xff;
195 if (id == 0xff)
196 break;
197 if (id == cap)
198 return pos;
199 pos = (ent >> 8);
201 return 0;
204 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
205 u8 pos, int cap)
207 int ttl = PCI_FIND_CAP_TTL;
209 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
212 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
214 return __pci_find_next_cap(dev->bus, dev->devfn,
215 pos + PCI_CAP_LIST_NEXT, cap);
217 EXPORT_SYMBOL_GPL(pci_find_next_capability);
219 static int __pci_bus_find_cap_start(struct pci_bus *bus,
220 unsigned int devfn, u8 hdr_type)
222 u16 status;
224 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
225 if (!(status & PCI_STATUS_CAP_LIST))
226 return 0;
228 switch (hdr_type) {
229 case PCI_HEADER_TYPE_NORMAL:
230 case PCI_HEADER_TYPE_BRIDGE:
231 return PCI_CAPABILITY_LIST;
232 case PCI_HEADER_TYPE_CARDBUS:
233 return PCI_CB_CAPABILITY_LIST;
236 return 0;
240 * pci_find_capability - query for devices' capabilities
241 * @dev: PCI device to query
242 * @cap: capability code
244 * Tell if a device supports a given PCI capability.
245 * Returns the address of the requested capability structure within the
246 * device's PCI configuration space or 0 in case the device does not
247 * support it. Possible values for @cap:
249 * %PCI_CAP_ID_PM Power Management
250 * %PCI_CAP_ID_AGP Accelerated Graphics Port
251 * %PCI_CAP_ID_VPD Vital Product Data
252 * %PCI_CAP_ID_SLOTID Slot Identification
253 * %PCI_CAP_ID_MSI Message Signalled Interrupts
254 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
255 * %PCI_CAP_ID_PCIX PCI-X
256 * %PCI_CAP_ID_EXP PCI Express
258 int pci_find_capability(struct pci_dev *dev, int cap)
260 int pos;
262 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
263 if (pos)
264 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
266 return pos;
268 EXPORT_SYMBOL(pci_find_capability);
271 * pci_bus_find_capability - query for devices' capabilities
272 * @bus: the PCI bus to query
273 * @devfn: PCI device to query
274 * @cap: capability code
276 * Like pci_find_capability() but works for pci devices that do not have a
277 * pci_dev structure set up yet.
279 * Returns the address of the requested capability structure within the
280 * device's PCI configuration space or 0 in case the device does not
281 * support it.
283 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
285 int pos;
286 u8 hdr_type;
288 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
290 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
291 if (pos)
292 pos = __pci_find_next_cap(bus, devfn, pos, cap);
294 return pos;
296 EXPORT_SYMBOL(pci_bus_find_capability);
299 * pci_find_next_ext_capability - Find an extended capability
300 * @dev: PCI device to query
301 * @start: address at which to start looking (0 to start at beginning of list)
302 * @cap: capability code
304 * Returns the address of the next matching extended capability structure
305 * within the device's PCI configuration space or 0 if the device does
306 * not support it. Some capabilities can occur several times, e.g., the
307 * vendor-specific capability, and this provides a way to find them all.
309 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
311 u32 header;
312 int ttl;
313 int pos = PCI_CFG_SPACE_SIZE;
315 /* minimum 8 bytes per capability */
316 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
318 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
319 return 0;
321 if (start)
322 pos = start;
324 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
325 return 0;
328 * If we have no capabilities, this is indicated by cap ID,
329 * cap version and next pointer all being 0.
331 if (header == 0)
332 return 0;
334 while (ttl-- > 0) {
335 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
336 return pos;
338 pos = PCI_EXT_CAP_NEXT(header);
339 if (pos < PCI_CFG_SPACE_SIZE)
340 break;
342 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
343 break;
346 return 0;
348 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
351 * pci_find_ext_capability - Find an extended capability
352 * @dev: PCI device to query
353 * @cap: capability code
355 * Returns the address of the requested extended capability structure
356 * within the device's PCI configuration space or 0 if the device does
357 * not support it. Possible values for @cap:
359 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
360 * %PCI_EXT_CAP_ID_VC Virtual Channel
361 * %PCI_EXT_CAP_ID_DSN Device Serial Number
362 * %PCI_EXT_CAP_ID_PWR Power Budgeting
364 int pci_find_ext_capability(struct pci_dev *dev, int cap)
366 return pci_find_next_ext_capability(dev, 0, cap);
368 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
370 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
372 int rc, ttl = PCI_FIND_CAP_TTL;
373 u8 cap, mask;
375 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
376 mask = HT_3BIT_CAP_MASK;
377 else
378 mask = HT_5BIT_CAP_MASK;
380 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
381 PCI_CAP_ID_HT, &ttl);
382 while (pos) {
383 rc = pci_read_config_byte(dev, pos + 3, &cap);
384 if (rc != PCIBIOS_SUCCESSFUL)
385 return 0;
387 if ((cap & mask) == ht_cap)
388 return pos;
390 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
391 pos + PCI_CAP_LIST_NEXT,
392 PCI_CAP_ID_HT, &ttl);
395 return 0;
398 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
399 * @dev: PCI device to query
400 * @pos: Position from which to continue searching
401 * @ht_cap: Hypertransport capability code
403 * To be used in conjunction with pci_find_ht_capability() to search for
404 * all capabilities matching @ht_cap. @pos should always be a value returned
405 * from pci_find_ht_capability().
407 * NB. To be 100% safe against broken PCI devices, the caller should take
408 * steps to avoid an infinite loop.
410 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
412 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
414 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
417 * pci_find_ht_capability - query a device's Hypertransport capabilities
418 * @dev: PCI device to query
419 * @ht_cap: Hypertransport capability code
421 * Tell if a device supports a given Hypertransport capability.
422 * Returns an address within the device's PCI configuration space
423 * or 0 in case the device does not support the request capability.
424 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
425 * which has a Hypertransport capability matching @ht_cap.
427 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
429 int pos;
431 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
432 if (pos)
433 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
435 return pos;
437 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
440 * pci_find_parent_resource - return resource region of parent bus of given region
441 * @dev: PCI device structure contains resources to be searched
442 * @res: child resource record for which parent is sought
444 * For given resource region of given device, return the resource
445 * region of parent bus the given region is contained in.
447 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
448 struct resource *res)
450 const struct pci_bus *bus = dev->bus;
451 struct resource *r;
452 int i;
454 pci_bus_for_each_resource(bus, r, i) {
455 if (!r)
456 continue;
457 if (res->start && resource_contains(r, res)) {
460 * If the window is prefetchable but the BAR is
461 * not, the allocator made a mistake.
463 if (r->flags & IORESOURCE_PREFETCH &&
464 !(res->flags & IORESOURCE_PREFETCH))
465 return NULL;
468 * If we're below a transparent bridge, there may
469 * be both a positively-decoded aperture and a
470 * subtractively-decoded region that contain the BAR.
471 * We want the positively-decoded one, so this depends
472 * on pci_bus_for_each_resource() giving us those
473 * first.
475 return r;
478 return NULL;
480 EXPORT_SYMBOL(pci_find_parent_resource);
483 * pci_find_resource - Return matching PCI device resource
484 * @dev: PCI device to query
485 * @res: Resource to look for
487 * Goes over standard PCI resources (BARs) and checks if the given resource
488 * is partially or fully contained in any of them. In that case the
489 * matching resource is returned, %NULL otherwise.
491 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
493 int i;
495 for (i = 0; i < PCI_ROM_RESOURCE; i++) {
496 struct resource *r = &dev->resource[i];
498 if (r->start && resource_contains(r, res))
499 return r;
502 return NULL;
504 EXPORT_SYMBOL(pci_find_resource);
507 * pci_find_pcie_root_port - return PCIe Root Port
508 * @dev: PCI device to query
510 * Traverse up the parent chain and return the PCIe Root Port PCI Device
511 * for a given PCI Device.
513 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
515 struct pci_dev *bridge, *highest_pcie_bridge = NULL;
517 bridge = pci_upstream_bridge(dev);
518 while (bridge && pci_is_pcie(bridge)) {
519 highest_pcie_bridge = bridge;
520 bridge = pci_upstream_bridge(bridge);
523 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
524 return NULL;
526 return highest_pcie_bridge;
528 EXPORT_SYMBOL(pci_find_pcie_root_port);
531 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
532 * @dev: the PCI device to operate on
533 * @pos: config space offset of status word
534 * @mask: mask of bit(s) to care about in status word
536 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
538 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
540 int i;
542 /* Wait for Transaction Pending bit clean */
543 for (i = 0; i < 4; i++) {
544 u16 status;
545 if (i)
546 msleep((1 << (i - 1)) * 100);
548 pci_read_config_word(dev, pos, &status);
549 if (!(status & mask))
550 return 1;
553 return 0;
557 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
558 * @dev: PCI device to have its BARs restored
560 * Restore the BAR values for a given device, so as to make it
561 * accessible by its driver.
563 static void pci_restore_bars(struct pci_dev *dev)
565 int i;
567 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
568 pci_update_resource(dev, i);
571 static const struct pci_platform_pm_ops *pci_platform_pm;
573 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
575 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
576 !ops->choose_state || !ops->sleep_wake || !ops->run_wake ||
577 !ops->need_resume)
578 return -EINVAL;
579 pci_platform_pm = ops;
580 return 0;
583 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
585 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
588 static inline int platform_pci_set_power_state(struct pci_dev *dev,
589 pci_power_t t)
591 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
594 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
596 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
599 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
601 return pci_platform_pm ?
602 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
605 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
607 return pci_platform_pm ?
608 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
611 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
613 return pci_platform_pm ?
614 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
617 static inline bool platform_pci_need_resume(struct pci_dev *dev)
619 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
623 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
624 * given PCI device
625 * @dev: PCI device to handle.
626 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
628 * RETURN VALUE:
629 * -EINVAL if the requested state is invalid.
630 * -EIO if device does not support PCI PM or its PM capabilities register has a
631 * wrong version, or device doesn't support the requested state.
632 * 0 if device already is in the requested state.
633 * 0 if device's power state has been successfully changed.
635 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
637 u16 pmcsr;
638 bool need_restore = false;
640 /* Check if we're already there */
641 if (dev->current_state == state)
642 return 0;
644 if (!dev->pm_cap)
645 return -EIO;
647 if (state < PCI_D0 || state > PCI_D3hot)
648 return -EINVAL;
650 /* Validate current state:
651 * Can enter D0 from any state, but if we can only go deeper
652 * to sleep if we're already in a low power state
654 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
655 && dev->current_state > state) {
656 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
657 dev->current_state, state);
658 return -EINVAL;
661 /* check if this device supports the desired state */
662 if ((state == PCI_D1 && !dev->d1_support)
663 || (state == PCI_D2 && !dev->d2_support))
664 return -EIO;
666 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
668 /* If we're (effectively) in D3, force entire word to 0.
669 * This doesn't affect PME_Status, disables PME_En, and
670 * sets PowerState to 0.
672 switch (dev->current_state) {
673 case PCI_D0:
674 case PCI_D1:
675 case PCI_D2:
676 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
677 pmcsr |= state;
678 break;
679 case PCI_D3hot:
680 case PCI_D3cold:
681 case PCI_UNKNOWN: /* Boot-up */
682 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
683 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
684 need_restore = true;
685 /* Fall-through: force to D0 */
686 default:
687 pmcsr = 0;
688 break;
691 /* enter specified state */
692 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
694 /* Mandatory power management transition delays */
695 /* see PCI PM 1.1 5.6.1 table 18 */
696 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
697 pci_dev_d3_sleep(dev);
698 else if (state == PCI_D2 || dev->current_state == PCI_D2)
699 udelay(PCI_PM_D2_DELAY);
701 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
702 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
703 if (dev->current_state != state && printk_ratelimit())
704 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
705 dev->current_state);
708 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
709 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
710 * from D3hot to D0 _may_ perform an internal reset, thereby
711 * going to "D0 Uninitialized" rather than "D0 Initialized".
712 * For example, at least some versions of the 3c905B and the
713 * 3c556B exhibit this behaviour.
715 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
716 * devices in a D3hot state at boot. Consequently, we need to
717 * restore at least the BARs so that the device will be
718 * accessible to its driver.
720 if (need_restore)
721 pci_restore_bars(dev);
723 if (dev->bus->self)
724 pcie_aspm_pm_state_change(dev->bus->self);
726 return 0;
730 * pci_update_current_state - Read power state of given device and cache it
731 * @dev: PCI device to handle.
732 * @state: State to cache in case the device doesn't have the PM capability
734 * The power state is read from the PMCSR register, which however is
735 * inaccessible in D3cold. The platform firmware is therefore queried first
736 * to detect accessibility of the register. In case the platform firmware
737 * reports an incorrect state or the device isn't power manageable by the
738 * platform at all, we try to detect D3cold by testing accessibility of the
739 * vendor ID in config space.
741 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
743 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
744 !pci_device_is_present(dev)) {
745 dev->current_state = PCI_D3cold;
746 } else if (dev->pm_cap) {
747 u16 pmcsr;
749 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
750 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
751 } else {
752 dev->current_state = state;
757 * pci_platform_power_transition - Use platform to change device power state
758 * @dev: PCI device to handle.
759 * @state: State to put the device into.
761 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
763 int error;
765 if (platform_pci_power_manageable(dev)) {
766 error = platform_pci_set_power_state(dev, state);
767 if (!error)
768 pci_update_current_state(dev, state);
769 } else
770 error = -ENODEV;
772 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
773 dev->current_state = PCI_D0;
775 return error;
779 * pci_wakeup - Wake up a PCI device
780 * @pci_dev: Device to handle.
781 * @ign: ignored parameter
783 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
785 pci_wakeup_event(pci_dev);
786 pm_request_resume(&pci_dev->dev);
787 return 0;
791 * pci_wakeup_bus - Walk given bus and wake up devices on it
792 * @bus: Top bus of the subtree to walk.
794 static void pci_wakeup_bus(struct pci_bus *bus)
796 if (bus)
797 pci_walk_bus(bus, pci_wakeup, NULL);
801 * __pci_start_power_transition - Start power transition of a PCI device
802 * @dev: PCI device to handle.
803 * @state: State to put the device into.
805 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
807 if (state == PCI_D0) {
808 pci_platform_power_transition(dev, PCI_D0);
810 * Mandatory power management transition delays, see
811 * PCI Express Base Specification Revision 2.0 Section
812 * 6.6.1: Conventional Reset. Do not delay for
813 * devices powered on/off by corresponding bridge,
814 * because have already delayed for the bridge.
816 if (dev->runtime_d3cold) {
817 msleep(dev->d3cold_delay);
819 * When powering on a bridge from D3cold, the
820 * whole hierarchy may be powered on into
821 * D0uninitialized state, resume them to give
822 * them a chance to suspend again
824 pci_wakeup_bus(dev->subordinate);
830 * __pci_dev_set_current_state - Set current state of a PCI device
831 * @dev: Device to handle
832 * @data: pointer to state to be set
834 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
836 pci_power_t state = *(pci_power_t *)data;
838 dev->current_state = state;
839 return 0;
843 * __pci_bus_set_current_state - Walk given bus and set current state of devices
844 * @bus: Top bus of the subtree to walk.
845 * @state: state to be set
847 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
849 if (bus)
850 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
854 * __pci_complete_power_transition - Complete power transition of a PCI device
855 * @dev: PCI device to handle.
856 * @state: State to put the device into.
858 * This function should not be called directly by device drivers.
860 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
862 int ret;
864 if (state <= PCI_D0)
865 return -EINVAL;
866 ret = pci_platform_power_transition(dev, state);
867 /* Power off the bridge may power off the whole hierarchy */
868 if (!ret && state == PCI_D3cold)
869 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
870 return ret;
872 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
875 * pci_set_power_state - Set the power state of a PCI device
876 * @dev: PCI device to handle.
877 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
879 * Transition a device to a new power state, using the platform firmware and/or
880 * the device's PCI PM registers.
882 * RETURN VALUE:
883 * -EINVAL if the requested state is invalid.
884 * -EIO if device does not support PCI PM or its PM capabilities register has a
885 * wrong version, or device doesn't support the requested state.
886 * 0 if device already is in the requested state.
887 * 0 if device's power state has been successfully changed.
889 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
891 int error;
893 /* bound the state we're entering */
894 if (state > PCI_D3cold)
895 state = PCI_D3cold;
896 else if (state < PCI_D0)
897 state = PCI_D0;
898 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
900 * If the device or the parent bridge do not support PCI PM,
901 * ignore the request if we're doing anything other than putting
902 * it into D0 (which would only happen on boot).
904 return 0;
906 /* Check if we're already there */
907 if (dev->current_state == state)
908 return 0;
910 __pci_start_power_transition(dev, state);
912 /* This device is quirked not to be put into D3, so
913 don't put it in D3 */
914 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
915 return 0;
918 * To put device in D3cold, we put device into D3hot in native
919 * way, then put device into D3cold with platform ops
921 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
922 PCI_D3hot : state);
924 if (!__pci_complete_power_transition(dev, state))
925 error = 0;
927 return error;
929 EXPORT_SYMBOL(pci_set_power_state);
932 * pci_power_up - Put the given device into D0 forcibly
933 * @dev: PCI device to power up
935 void pci_power_up(struct pci_dev *dev)
937 __pci_start_power_transition(dev, PCI_D0);
938 pci_raw_set_power_state(dev, PCI_D0);
939 pci_update_current_state(dev, PCI_D0);
943 * pci_choose_state - Choose the power state of a PCI device
944 * @dev: PCI device to be suspended
945 * @state: target sleep state for the whole system. This is the value
946 * that is passed to suspend() function.
948 * Returns PCI power state suitable for given device and given system
949 * message.
952 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
954 pci_power_t ret;
956 if (!dev->pm_cap)
957 return PCI_D0;
959 ret = platform_pci_choose_state(dev);
960 if (ret != PCI_POWER_ERROR)
961 return ret;
963 switch (state.event) {
964 case PM_EVENT_ON:
965 return PCI_D0;
966 case PM_EVENT_FREEZE:
967 case PM_EVENT_PRETHAW:
968 /* REVISIT both freeze and pre-thaw "should" use D0 */
969 case PM_EVENT_SUSPEND:
970 case PM_EVENT_HIBERNATE:
971 return PCI_D3hot;
972 default:
973 dev_info(&dev->dev, "unrecognized suspend event %d\n",
974 state.event);
975 BUG();
977 return PCI_D0;
979 EXPORT_SYMBOL(pci_choose_state);
981 #define PCI_EXP_SAVE_REGS 7
983 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
984 u16 cap, bool extended)
986 struct pci_cap_saved_state *tmp;
988 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
989 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
990 return tmp;
992 return NULL;
995 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
997 return _pci_find_saved_cap(dev, cap, false);
1000 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1002 return _pci_find_saved_cap(dev, cap, true);
1005 static int pci_save_pcie_state(struct pci_dev *dev)
1007 int i = 0;
1008 struct pci_cap_saved_state *save_state;
1009 u16 *cap;
1011 if (!pci_is_pcie(dev))
1012 return 0;
1014 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1015 if (!save_state) {
1016 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1017 return -ENOMEM;
1020 cap = (u16 *)&save_state->cap.data[0];
1021 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1022 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1023 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1024 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1025 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1026 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1027 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1029 return 0;
1032 static void pci_restore_pcie_state(struct pci_dev *dev)
1034 int i = 0;
1035 struct pci_cap_saved_state *save_state;
1036 u16 *cap;
1038 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1039 if (!save_state)
1040 return;
1042 cap = (u16 *)&save_state->cap.data[0];
1043 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1044 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1045 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1046 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1047 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1048 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1049 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1053 static int pci_save_pcix_state(struct pci_dev *dev)
1055 int pos;
1056 struct pci_cap_saved_state *save_state;
1058 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1059 if (!pos)
1060 return 0;
1062 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1063 if (!save_state) {
1064 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1065 return -ENOMEM;
1068 pci_read_config_word(dev, pos + PCI_X_CMD,
1069 (u16 *)save_state->cap.data);
1071 return 0;
1074 static void pci_restore_pcix_state(struct pci_dev *dev)
1076 int i = 0, pos;
1077 struct pci_cap_saved_state *save_state;
1078 u16 *cap;
1080 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1081 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1082 if (!save_state || !pos)
1083 return;
1084 cap = (u16 *)&save_state->cap.data[0];
1086 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1091 * pci_save_state - save the PCI configuration space of a device before suspending
1092 * @dev: - PCI device that we're dealing with
1094 int pci_save_state(struct pci_dev *dev)
1096 int i;
1097 /* XXX: 100% dword access ok here? */
1098 for (i = 0; i < 16; i++)
1099 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1100 dev->state_saved = true;
1102 i = pci_save_pcie_state(dev);
1103 if (i != 0)
1104 return i;
1106 i = pci_save_pcix_state(dev);
1107 if (i != 0)
1108 return i;
1110 return pci_save_vc_state(dev);
1112 EXPORT_SYMBOL(pci_save_state);
1114 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1115 u32 saved_val, int retry, bool force)
1117 u32 val;
1119 pci_read_config_dword(pdev, offset, &val);
1120 if (!force && val == saved_val)
1121 return;
1123 for (;;) {
1124 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1125 offset, val, saved_val);
1126 pci_write_config_dword(pdev, offset, saved_val);
1127 if (retry-- <= 0)
1128 return;
1130 pci_read_config_dword(pdev, offset, &val);
1131 if (val == saved_val)
1132 return;
1134 mdelay(1);
1138 static void pci_restore_config_space_range(struct pci_dev *pdev,
1139 int start, int end, int retry,
1140 bool force)
1142 int index;
1144 for (index = end; index >= start; index--)
1145 pci_restore_config_dword(pdev, 4 * index,
1146 pdev->saved_config_space[index],
1147 retry, force);
1150 static void pci_restore_config_space(struct pci_dev *pdev)
1152 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1153 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1154 /* Restore BARs before the command register. */
1155 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1156 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1157 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1158 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1161 * Force rewriting of prefetch registers to avoid S3 resume
1162 * issues on Intel PCI bridges that occur when these
1163 * registers are not explicitly written.
1165 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1166 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1167 } else {
1168 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1173 * pci_restore_state - Restore the saved state of a PCI device
1174 * @dev: - PCI device that we're dealing with
1176 void pci_restore_state(struct pci_dev *dev)
1178 if (!dev->state_saved)
1179 return;
1181 /* PCI Express register must be restored first */
1182 pci_restore_pcie_state(dev);
1183 pci_restore_ats_state(dev);
1184 pci_restore_vc_state(dev);
1186 pci_cleanup_aer_error_status_regs(dev);
1188 pci_restore_config_space(dev);
1190 pci_restore_pcix_state(dev);
1191 pci_restore_msi_state(dev);
1193 /* Restore ACS and IOV configuration state */
1194 pci_enable_acs(dev);
1195 pci_restore_iov_state(dev);
1197 dev->state_saved = false;
1199 EXPORT_SYMBOL(pci_restore_state);
1201 struct pci_saved_state {
1202 u32 config_space[16];
1203 struct pci_cap_saved_data cap[0];
1207 * pci_store_saved_state - Allocate and return an opaque struct containing
1208 * the device saved state.
1209 * @dev: PCI device that we're dealing with
1211 * Return NULL if no state or error.
1213 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1215 struct pci_saved_state *state;
1216 struct pci_cap_saved_state *tmp;
1217 struct pci_cap_saved_data *cap;
1218 size_t size;
1220 if (!dev->state_saved)
1221 return NULL;
1223 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1225 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1226 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1228 state = kzalloc(size, GFP_KERNEL);
1229 if (!state)
1230 return NULL;
1232 memcpy(state->config_space, dev->saved_config_space,
1233 sizeof(state->config_space));
1235 cap = state->cap;
1236 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1237 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1238 memcpy(cap, &tmp->cap, len);
1239 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1241 /* Empty cap_save terminates list */
1243 return state;
1245 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1248 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1249 * @dev: PCI device that we're dealing with
1250 * @state: Saved state returned from pci_store_saved_state()
1252 int pci_load_saved_state(struct pci_dev *dev,
1253 struct pci_saved_state *state)
1255 struct pci_cap_saved_data *cap;
1257 dev->state_saved = false;
1259 if (!state)
1260 return 0;
1262 memcpy(dev->saved_config_space, state->config_space,
1263 sizeof(state->config_space));
1265 cap = state->cap;
1266 while (cap->size) {
1267 struct pci_cap_saved_state *tmp;
1269 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1270 if (!tmp || tmp->cap.size != cap->size)
1271 return -EINVAL;
1273 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1274 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1275 sizeof(struct pci_cap_saved_data) + cap->size);
1278 dev->state_saved = true;
1279 return 0;
1281 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1284 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1285 * and free the memory allocated for it.
1286 * @dev: PCI device that we're dealing with
1287 * @state: Pointer to saved state returned from pci_store_saved_state()
1289 int pci_load_and_free_saved_state(struct pci_dev *dev,
1290 struct pci_saved_state **state)
1292 int ret = pci_load_saved_state(dev, *state);
1293 kfree(*state);
1294 *state = NULL;
1295 return ret;
1297 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1299 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1301 return pci_enable_resources(dev, bars);
1304 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1306 int err;
1307 struct pci_dev *bridge;
1308 u16 cmd;
1309 u8 pin;
1311 err = pci_set_power_state(dev, PCI_D0);
1312 if (err < 0 && err != -EIO)
1313 return err;
1315 bridge = pci_upstream_bridge(dev);
1316 if (bridge)
1317 pcie_aspm_powersave_config_link(bridge);
1319 err = pcibios_enable_device(dev, bars);
1320 if (err < 0)
1321 return err;
1322 pci_fixup_device(pci_fixup_enable, dev);
1324 if (dev->msi_enabled || dev->msix_enabled)
1325 return 0;
1327 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1328 if (pin) {
1329 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1330 if (cmd & PCI_COMMAND_INTX_DISABLE)
1331 pci_write_config_word(dev, PCI_COMMAND,
1332 cmd & ~PCI_COMMAND_INTX_DISABLE);
1335 return 0;
1339 * pci_reenable_device - Resume abandoned device
1340 * @dev: PCI device to be resumed
1342 * Note this function is a backend of pci_default_resume and is not supposed
1343 * to be called by normal code, write proper resume handler and use it instead.
1345 int pci_reenable_device(struct pci_dev *dev)
1347 if (pci_is_enabled(dev))
1348 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1349 return 0;
1351 EXPORT_SYMBOL(pci_reenable_device);
1353 static void pci_enable_bridge(struct pci_dev *dev)
1355 struct pci_dev *bridge;
1356 int retval;
1358 bridge = pci_upstream_bridge(dev);
1359 if (bridge)
1360 pci_enable_bridge(bridge);
1362 if (pci_is_enabled(dev)) {
1363 if (!dev->is_busmaster)
1364 pci_set_master(dev);
1365 return;
1368 retval = pci_enable_device(dev);
1369 if (retval)
1370 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1371 retval);
1372 pci_set_master(dev);
1375 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1377 struct pci_dev *bridge;
1378 int err;
1379 int i, bars = 0;
1382 * Power state could be unknown at this point, either due to a fresh
1383 * boot or a device removal call. So get the current power state
1384 * so that things like MSI message writing will behave as expected
1385 * (e.g. if the device really is in D0 at enable time).
1387 if (dev->pm_cap) {
1388 u16 pmcsr;
1389 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1390 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1393 if (atomic_inc_return(&dev->enable_cnt) > 1)
1394 return 0; /* already enabled */
1396 bridge = pci_upstream_bridge(dev);
1397 if (bridge)
1398 pci_enable_bridge(bridge);
1400 /* only skip sriov related */
1401 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1402 if (dev->resource[i].flags & flags)
1403 bars |= (1 << i);
1404 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1405 if (dev->resource[i].flags & flags)
1406 bars |= (1 << i);
1408 err = do_pci_enable_device(dev, bars);
1409 if (err < 0)
1410 atomic_dec(&dev->enable_cnt);
1411 return err;
1415 * pci_enable_device_io - Initialize a device for use with IO space
1416 * @dev: PCI device to be initialized
1418 * Initialize device before it's used by a driver. Ask low-level code
1419 * to enable I/O resources. Wake up the device if it was suspended.
1420 * Beware, this function can fail.
1422 int pci_enable_device_io(struct pci_dev *dev)
1424 return pci_enable_device_flags(dev, IORESOURCE_IO);
1426 EXPORT_SYMBOL(pci_enable_device_io);
1429 * pci_enable_device_mem - Initialize a device for use with Memory space
1430 * @dev: PCI device to be initialized
1432 * Initialize device before it's used by a driver. Ask low-level code
1433 * to enable Memory resources. Wake up the device if it was suspended.
1434 * Beware, this function can fail.
1436 int pci_enable_device_mem(struct pci_dev *dev)
1438 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1440 EXPORT_SYMBOL(pci_enable_device_mem);
1443 * pci_enable_device - Initialize device before it's used by a driver.
1444 * @dev: PCI device to be initialized
1446 * Initialize device before it's used by a driver. Ask low-level code
1447 * to enable I/O and memory. Wake up the device if it was suspended.
1448 * Beware, this function can fail.
1450 * Note we don't actually enable the device many times if we call
1451 * this function repeatedly (we just increment the count).
1453 int pci_enable_device(struct pci_dev *dev)
1455 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1457 EXPORT_SYMBOL(pci_enable_device);
1460 * Managed PCI resources. This manages device on/off, intx/msi/msix
1461 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1462 * there's no need to track it separately. pci_devres is initialized
1463 * when a device is enabled using managed PCI device enable interface.
1465 struct pci_devres {
1466 unsigned int enabled:1;
1467 unsigned int pinned:1;
1468 unsigned int orig_intx:1;
1469 unsigned int restore_intx:1;
1470 u32 region_mask;
1473 static void pcim_release(struct device *gendev, void *res)
1475 struct pci_dev *dev = to_pci_dev(gendev);
1476 struct pci_devres *this = res;
1477 int i;
1479 if (dev->msi_enabled)
1480 pci_disable_msi(dev);
1481 if (dev->msix_enabled)
1482 pci_disable_msix(dev);
1484 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1485 if (this->region_mask & (1 << i))
1486 pci_release_region(dev, i);
1488 if (this->restore_intx)
1489 pci_intx(dev, this->orig_intx);
1491 if (this->enabled && !this->pinned)
1492 pci_disable_device(dev);
1495 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1497 struct pci_devres *dr, *new_dr;
1499 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1500 if (dr)
1501 return dr;
1503 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1504 if (!new_dr)
1505 return NULL;
1506 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1509 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1511 if (pci_is_managed(pdev))
1512 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1513 return NULL;
1517 * pcim_enable_device - Managed pci_enable_device()
1518 * @pdev: PCI device to be initialized
1520 * Managed pci_enable_device().
1522 int pcim_enable_device(struct pci_dev *pdev)
1524 struct pci_devres *dr;
1525 int rc;
1527 dr = get_pci_dr(pdev);
1528 if (unlikely(!dr))
1529 return -ENOMEM;
1530 if (dr->enabled)
1531 return 0;
1533 rc = pci_enable_device(pdev);
1534 if (!rc) {
1535 pdev->is_managed = 1;
1536 dr->enabled = 1;
1538 return rc;
1540 EXPORT_SYMBOL(pcim_enable_device);
1543 * pcim_pin_device - Pin managed PCI device
1544 * @pdev: PCI device to pin
1546 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1547 * driver detach. @pdev must have been enabled with
1548 * pcim_enable_device().
1550 void pcim_pin_device(struct pci_dev *pdev)
1552 struct pci_devres *dr;
1554 dr = find_pci_dr(pdev);
1555 WARN_ON(!dr || !dr->enabled);
1556 if (dr)
1557 dr->pinned = 1;
1559 EXPORT_SYMBOL(pcim_pin_device);
1562 * pcibios_add_device - provide arch specific hooks when adding device dev
1563 * @dev: the PCI device being added
1565 * Permits the platform to provide architecture specific functionality when
1566 * devices are added. This is the default implementation. Architecture
1567 * implementations can override this.
1569 int __weak pcibios_add_device(struct pci_dev *dev)
1571 return 0;
1575 * pcibios_release_device - provide arch specific hooks when releasing device dev
1576 * @dev: the PCI device being released
1578 * Permits the platform to provide architecture specific functionality when
1579 * devices are released. This is the default implementation. Architecture
1580 * implementations can override this.
1582 void __weak pcibios_release_device(struct pci_dev *dev) {}
1585 * pcibios_disable_device - disable arch specific PCI resources for device dev
1586 * @dev: the PCI device to disable
1588 * Disables architecture specific PCI resources for the device. This
1589 * is the default implementation. Architecture implementations can
1590 * override this.
1592 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1595 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1596 * @irq: ISA IRQ to penalize
1597 * @active: IRQ active or not
1599 * Permits the platform to provide architecture-specific functionality when
1600 * penalizing ISA IRQs. This is the default implementation. Architecture
1601 * implementations can override this.
1603 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1605 static void do_pci_disable_device(struct pci_dev *dev)
1607 u16 pci_command;
1609 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1610 if (pci_command & PCI_COMMAND_MASTER) {
1611 pci_command &= ~PCI_COMMAND_MASTER;
1612 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1615 pcibios_disable_device(dev);
1619 * pci_disable_enabled_device - Disable device without updating enable_cnt
1620 * @dev: PCI device to disable
1622 * NOTE: This function is a backend of PCI power management routines and is
1623 * not supposed to be called drivers.
1625 void pci_disable_enabled_device(struct pci_dev *dev)
1627 if (pci_is_enabled(dev))
1628 do_pci_disable_device(dev);
1632 * pci_disable_device - Disable PCI device after use
1633 * @dev: PCI device to be disabled
1635 * Signal to the system that the PCI device is not in use by the system
1636 * anymore. This only involves disabling PCI bus-mastering, if active.
1638 * Note we don't actually disable the device until all callers of
1639 * pci_enable_device() have called pci_disable_device().
1641 void pci_disable_device(struct pci_dev *dev)
1643 struct pci_devres *dr;
1645 dr = find_pci_dr(dev);
1646 if (dr)
1647 dr->enabled = 0;
1649 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1650 "disabling already-disabled device");
1652 if (atomic_dec_return(&dev->enable_cnt) != 0)
1653 return;
1655 do_pci_disable_device(dev);
1657 dev->is_busmaster = 0;
1659 EXPORT_SYMBOL(pci_disable_device);
1662 * pcibios_set_pcie_reset_state - set reset state for device dev
1663 * @dev: the PCIe device reset
1664 * @state: Reset state to enter into
1667 * Sets the PCIe reset state for the device. This is the default
1668 * implementation. Architecture implementations can override this.
1670 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1671 enum pcie_reset_state state)
1673 return -EINVAL;
1677 * pci_set_pcie_reset_state - set reset state for device dev
1678 * @dev: the PCIe device reset
1679 * @state: Reset state to enter into
1682 * Sets the PCI reset state for the device.
1684 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1686 return pcibios_set_pcie_reset_state(dev, state);
1688 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1691 * pci_check_pme_status - Check if given device has generated PME.
1692 * @dev: Device to check.
1694 * Check the PME status of the device and if set, clear it and clear PME enable
1695 * (if set). Return 'true' if PME status and PME enable were both set or
1696 * 'false' otherwise.
1698 bool pci_check_pme_status(struct pci_dev *dev)
1700 int pmcsr_pos;
1701 u16 pmcsr;
1702 bool ret = false;
1704 if (!dev->pm_cap)
1705 return false;
1707 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1708 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1709 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1710 return false;
1712 /* Clear PME status. */
1713 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1714 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1715 /* Disable PME to avoid interrupt flood. */
1716 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1717 ret = true;
1720 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1722 return ret;
1726 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1727 * @dev: Device to handle.
1728 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1730 * Check if @dev has generated PME and queue a resume request for it in that
1731 * case.
1733 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1735 if (pme_poll_reset && dev->pme_poll)
1736 dev->pme_poll = false;
1738 if (pci_check_pme_status(dev)) {
1739 pci_wakeup_event(dev);
1740 pm_request_resume(&dev->dev);
1742 return 0;
1746 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1747 * @bus: Top bus of the subtree to walk.
1749 void pci_pme_wakeup_bus(struct pci_bus *bus)
1751 if (bus)
1752 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1757 * pci_pme_capable - check the capability of PCI device to generate PME#
1758 * @dev: PCI device to handle.
1759 * @state: PCI state from which device will issue PME#.
1761 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1763 if (!dev->pm_cap)
1764 return false;
1766 return !!(dev->pme_support & (1 << state));
1768 EXPORT_SYMBOL(pci_pme_capable);
1770 static void pci_pme_list_scan(struct work_struct *work)
1772 struct pci_pme_device *pme_dev, *n;
1774 mutex_lock(&pci_pme_list_mutex);
1775 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1776 if (pme_dev->dev->pme_poll) {
1777 struct pci_dev *bridge;
1779 bridge = pme_dev->dev->bus->self;
1781 * If bridge is in low power state, the
1782 * configuration space of subordinate devices
1783 * may be not accessible
1785 if (bridge && bridge->current_state != PCI_D0)
1786 continue;
1788 * If the device is in D3cold it should not be
1789 * polled either.
1791 if (pme_dev->dev->current_state == PCI_D3cold)
1792 continue;
1794 pci_pme_wakeup(pme_dev->dev, NULL);
1795 } else {
1796 list_del(&pme_dev->list);
1797 kfree(pme_dev);
1800 if (!list_empty(&pci_pme_list))
1801 queue_delayed_work(system_freezable_wq, &pci_pme_work,
1802 msecs_to_jiffies(PME_TIMEOUT));
1803 mutex_unlock(&pci_pme_list_mutex);
1806 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1808 u16 pmcsr;
1810 if (!dev->pme_support)
1811 return;
1813 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1814 /* Clear PME_Status by writing 1 to it and enable PME# */
1815 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1816 if (!enable)
1817 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1819 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1823 * pci_pme_active - enable or disable PCI device's PME# function
1824 * @dev: PCI device to handle.
1825 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1827 * The caller must verify that the device is capable of generating PME# before
1828 * calling this function with @enable equal to 'true'.
1830 void pci_pme_active(struct pci_dev *dev, bool enable)
1832 __pci_pme_active(dev, enable);
1835 * PCI (as opposed to PCIe) PME requires that the device have
1836 * its PME# line hooked up correctly. Not all hardware vendors
1837 * do this, so the PME never gets delivered and the device
1838 * remains asleep. The easiest way around this is to
1839 * periodically walk the list of suspended devices and check
1840 * whether any have their PME flag set. The assumption is that
1841 * we'll wake up often enough anyway that this won't be a huge
1842 * hit, and the power savings from the devices will still be a
1843 * win.
1845 * Although PCIe uses in-band PME message instead of PME# line
1846 * to report PME, PME does not work for some PCIe devices in
1847 * reality. For example, there are devices that set their PME
1848 * status bits, but don't really bother to send a PME message;
1849 * there are PCI Express Root Ports that don't bother to
1850 * trigger interrupts when they receive PME messages from the
1851 * devices below. So PME poll is used for PCIe devices too.
1854 if (dev->pme_poll) {
1855 struct pci_pme_device *pme_dev;
1856 if (enable) {
1857 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1858 GFP_KERNEL);
1859 if (!pme_dev) {
1860 dev_warn(&dev->dev, "can't enable PME#\n");
1861 return;
1863 pme_dev->dev = dev;
1864 mutex_lock(&pci_pme_list_mutex);
1865 list_add(&pme_dev->list, &pci_pme_list);
1866 if (list_is_singular(&pci_pme_list))
1867 queue_delayed_work(system_freezable_wq,
1868 &pci_pme_work,
1869 msecs_to_jiffies(PME_TIMEOUT));
1870 mutex_unlock(&pci_pme_list_mutex);
1871 } else {
1872 mutex_lock(&pci_pme_list_mutex);
1873 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1874 if (pme_dev->dev == dev) {
1875 list_del(&pme_dev->list);
1876 kfree(pme_dev);
1877 break;
1880 mutex_unlock(&pci_pme_list_mutex);
1884 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1886 EXPORT_SYMBOL(pci_pme_active);
1889 * __pci_enable_wake - enable PCI device as wakeup event source
1890 * @dev: PCI device affected
1891 * @state: PCI state from which device will issue wakeup events
1892 * @runtime: True if the events are to be generated at run time
1893 * @enable: True to enable event generation; false to disable
1895 * This enables the device as a wakeup event source, or disables it.
1896 * When such events involves platform-specific hooks, those hooks are
1897 * called automatically by this routine.
1899 * Devices with legacy power management (no standard PCI PM capabilities)
1900 * always require such platform hooks.
1902 * RETURN VALUE:
1903 * 0 is returned on success
1904 * -EINVAL is returned if device is not supposed to wake up the system
1905 * Error code depending on the platform is returned if both the platform and
1906 * the native mechanism fail to enable the generation of wake-up events
1908 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1909 bool runtime, bool enable)
1911 int ret = 0;
1913 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1914 return -EINVAL;
1916 /* Don't do the same thing twice in a row for one device. */
1917 if (!!enable == !!dev->wakeup_prepared)
1918 return 0;
1921 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1922 * Anderson we should be doing PME# wake enable followed by ACPI wake
1923 * enable. To disable wake-up we call the platform first, for symmetry.
1926 if (enable) {
1927 int error;
1929 if (pci_pme_capable(dev, state))
1930 pci_pme_active(dev, true);
1931 else
1932 ret = 1;
1933 error = runtime ? platform_pci_run_wake(dev, true) :
1934 platform_pci_sleep_wake(dev, true);
1935 if (ret)
1936 ret = error;
1937 if (!ret)
1938 dev->wakeup_prepared = true;
1939 } else {
1940 if (runtime)
1941 platform_pci_run_wake(dev, false);
1942 else
1943 platform_pci_sleep_wake(dev, false);
1944 pci_pme_active(dev, false);
1945 dev->wakeup_prepared = false;
1948 return ret;
1950 EXPORT_SYMBOL(__pci_enable_wake);
1953 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1954 * @dev: PCI device to prepare
1955 * @enable: True to enable wake-up event generation; false to disable
1957 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1958 * and this function allows them to set that up cleanly - pci_enable_wake()
1959 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1960 * ordering constraints.
1962 * This function only returns error code if the device is not capable of
1963 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1964 * enable wake-up power for it.
1966 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1968 return pci_pme_capable(dev, PCI_D3cold) ?
1969 pci_enable_wake(dev, PCI_D3cold, enable) :
1970 pci_enable_wake(dev, PCI_D3hot, enable);
1972 EXPORT_SYMBOL(pci_wake_from_d3);
1975 * pci_target_state - find an appropriate low power state for a given PCI dev
1976 * @dev: PCI device
1978 * Use underlying platform code to find a supported low power state for @dev.
1979 * If the platform can't manage @dev, return the deepest state from which it
1980 * can generate wake events, based on any available PME info.
1982 static pci_power_t pci_target_state(struct pci_dev *dev)
1984 pci_power_t target_state = PCI_D3hot;
1986 if (platform_pci_power_manageable(dev)) {
1988 * Call the platform to choose the target state of the device
1989 * and enable wake-up from this state if supported.
1991 pci_power_t state = platform_pci_choose_state(dev);
1993 switch (state) {
1994 case PCI_POWER_ERROR:
1995 case PCI_UNKNOWN:
1996 break;
1997 case PCI_D1:
1998 case PCI_D2:
1999 if (pci_no_d1d2(dev))
2000 break;
2001 default:
2002 target_state = state;
2005 return target_state;
2008 if (!dev->pm_cap)
2009 target_state = PCI_D0;
2012 * If the device is in D3cold even though it's not power-manageable by
2013 * the platform, it may have been powered down by non-standard means.
2014 * Best to let it slumber.
2016 if (dev->current_state == PCI_D3cold)
2017 target_state = PCI_D3cold;
2019 if (device_may_wakeup(&dev->dev)) {
2021 * Find the deepest state from which the device can generate
2022 * wake-up events, make it the target state and enable device
2023 * to generate PME#.
2025 if (dev->pme_support) {
2026 while (target_state
2027 && !(dev->pme_support & (1 << target_state)))
2028 target_state--;
2032 return target_state;
2036 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2037 * @dev: Device to handle.
2039 * Choose the power state appropriate for the device depending on whether
2040 * it can wake up the system and/or is power manageable by the platform
2041 * (PCI_D3hot is the default) and put the device into that state.
2043 int pci_prepare_to_sleep(struct pci_dev *dev)
2045 pci_power_t target_state = pci_target_state(dev);
2046 int error;
2048 if (target_state == PCI_POWER_ERROR)
2049 return -EIO;
2051 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
2053 error = pci_set_power_state(dev, target_state);
2055 if (error)
2056 pci_enable_wake(dev, target_state, false);
2058 return error;
2060 EXPORT_SYMBOL(pci_prepare_to_sleep);
2063 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2064 * @dev: Device to handle.
2066 * Disable device's system wake-up capability and put it into D0.
2068 int pci_back_from_sleep(struct pci_dev *dev)
2070 pci_enable_wake(dev, PCI_D0, false);
2071 return pci_set_power_state(dev, PCI_D0);
2073 EXPORT_SYMBOL(pci_back_from_sleep);
2076 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2077 * @dev: PCI device being suspended.
2079 * Prepare @dev to generate wake-up events at run time and put it into a low
2080 * power state.
2082 int pci_finish_runtime_suspend(struct pci_dev *dev)
2084 pci_power_t target_state = pci_target_state(dev);
2085 int error;
2087 if (target_state == PCI_POWER_ERROR)
2088 return -EIO;
2090 dev->runtime_d3cold = target_state == PCI_D3cold;
2092 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
2094 error = pci_set_power_state(dev, target_state);
2096 if (error) {
2097 __pci_enable_wake(dev, target_state, true, false);
2098 dev->runtime_d3cold = false;
2101 return error;
2105 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2106 * @dev: Device to check.
2108 * Return true if the device itself is capable of generating wake-up events
2109 * (through the platform or using the native PCIe PME) or if the device supports
2110 * PME and one of its upstream bridges can generate wake-up events.
2112 bool pci_dev_run_wake(struct pci_dev *dev)
2114 struct pci_bus *bus = dev->bus;
2116 if (device_run_wake(&dev->dev))
2117 return true;
2119 if (!dev->pme_support)
2120 return false;
2122 /* PME-capable in principle, but not from the intended sleep state */
2123 if (!pci_pme_capable(dev, pci_target_state(dev)))
2124 return false;
2126 while (bus->parent) {
2127 struct pci_dev *bridge = bus->self;
2129 if (device_run_wake(&bridge->dev))
2130 return true;
2132 bus = bus->parent;
2135 /* We have reached the root bus. */
2136 if (bus->bridge)
2137 return device_run_wake(bus->bridge);
2139 return false;
2141 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2144 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2145 * @pci_dev: Device to check.
2147 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2148 * reconfigured due to wakeup settings difference between system and runtime
2149 * suspend and the current power state of it is suitable for the upcoming
2150 * (system) transition.
2152 * If the device is not configured for system wakeup, disable PME for it before
2153 * returning 'true' to prevent it from waking up the system unnecessarily.
2155 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2157 struct device *dev = &pci_dev->dev;
2159 if (!pm_runtime_suspended(dev)
2160 || pci_target_state(pci_dev) != pci_dev->current_state
2161 || platform_pci_need_resume(pci_dev)
2162 || (pci_dev->dev_flags & PCI_DEV_FLAGS_NEEDS_RESUME))
2163 return false;
2166 * At this point the device is good to go unless it's been configured
2167 * to generate PME at the runtime suspend time, but it is not supposed
2168 * to wake up the system. In that case, simply disable PME for it
2169 * (it will have to be re-enabled on exit from system resume).
2171 * If the device's power state is D3cold and the platform check above
2172 * hasn't triggered, the device's configuration is suitable and we don't
2173 * need to manipulate it at all.
2175 spin_lock_irq(&dev->power.lock);
2177 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2178 !device_may_wakeup(dev))
2179 __pci_pme_active(pci_dev, false);
2181 spin_unlock_irq(&dev->power.lock);
2182 return true;
2186 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2187 * @pci_dev: Device to handle.
2189 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2190 * it might have been disabled during the prepare phase of system suspend if
2191 * the device was not configured for system wakeup.
2193 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2195 struct device *dev = &pci_dev->dev;
2197 if (!pci_dev_run_wake(pci_dev))
2198 return;
2200 spin_lock_irq(&dev->power.lock);
2202 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2203 __pci_pme_active(pci_dev, true);
2205 spin_unlock_irq(&dev->power.lock);
2208 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2210 struct device *dev = &pdev->dev;
2211 struct device *parent = dev->parent;
2213 if (parent)
2214 pm_runtime_get_sync(parent);
2215 pm_runtime_get_noresume(dev);
2217 * pdev->current_state is set to PCI_D3cold during suspending,
2218 * so wait until suspending completes
2220 pm_runtime_barrier(dev);
2222 * Only need to resume devices in D3cold, because config
2223 * registers are still accessible for devices suspended but
2224 * not in D3cold.
2226 if (pdev->current_state == PCI_D3cold)
2227 pm_runtime_resume(dev);
2230 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2232 struct device *dev = &pdev->dev;
2233 struct device *parent = dev->parent;
2235 pm_runtime_put(dev);
2236 if (parent)
2237 pm_runtime_put_sync(parent);
2241 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2242 * @bridge: Bridge to check
2244 * This function checks if it is possible to move the bridge to D3.
2245 * Currently we only allow D3 for recent enough PCIe ports.
2247 static bool pci_bridge_d3_possible(struct pci_dev *bridge)
2249 unsigned int year;
2251 if (!pci_is_pcie(bridge))
2252 return false;
2254 switch (pci_pcie_type(bridge)) {
2255 case PCI_EXP_TYPE_ROOT_PORT:
2256 case PCI_EXP_TYPE_UPSTREAM:
2257 case PCI_EXP_TYPE_DOWNSTREAM:
2258 if (pci_bridge_d3_disable)
2259 return false;
2260 if (pci_bridge_d3_force)
2261 return true;
2264 * It should be safe to put PCIe ports from 2015 or newer
2265 * to D3.
2267 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) &&
2268 year >= 2015) {
2269 return true;
2271 break;
2274 return false;
2277 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2279 bool *d3cold_ok = data;
2280 bool no_d3cold;
2283 * The device needs to be allowed to go D3cold and if it is wake
2284 * capable to do so from D3cold.
2286 no_d3cold = dev->no_d3cold || !dev->d3cold_allowed ||
2287 (device_may_wakeup(&dev->dev) && !pci_pme_capable(dev, PCI_D3cold)) ||
2288 !pci_power_manageable(dev);
2290 *d3cold_ok = !no_d3cold;
2292 return no_d3cold;
2296 * pci_bridge_d3_update - Update bridge D3 capabilities
2297 * @dev: PCI device which is changed
2298 * @remove: Is the device being removed
2300 * Update upstream bridge PM capabilities accordingly depending on if the
2301 * device PM configuration was changed or the device is being removed. The
2302 * change is also propagated upstream.
2304 static void pci_bridge_d3_update(struct pci_dev *dev, bool remove)
2306 struct pci_dev *bridge;
2307 bool d3cold_ok = true;
2309 bridge = pci_upstream_bridge(dev);
2310 if (!bridge || !pci_bridge_d3_possible(bridge))
2311 return;
2313 pci_dev_get(bridge);
2315 * If the device is removed we do not care about its D3cold
2316 * capabilities.
2318 if (!remove)
2319 pci_dev_check_d3cold(dev, &d3cold_ok);
2321 if (d3cold_ok) {
2323 * We need to go through all children to find out if all of
2324 * them can still go to D3cold.
2326 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2327 &d3cold_ok);
2330 if (bridge->bridge_d3 != d3cold_ok) {
2331 bridge->bridge_d3 = d3cold_ok;
2332 /* Propagate change to upstream bridges */
2333 pci_bridge_d3_update(bridge, false);
2336 pci_dev_put(bridge);
2340 * pci_bridge_d3_device_changed - Update bridge D3 capabilities on change
2341 * @dev: PCI device that was changed
2343 * If a device is added or its PM configuration, such as is it allowed to
2344 * enter D3cold, is changed this function updates upstream bridge PM
2345 * capabilities accordingly.
2347 void pci_bridge_d3_device_changed(struct pci_dev *dev)
2349 pci_bridge_d3_update(dev, false);
2353 * pci_bridge_d3_device_removed - Update bridge D3 capabilities on remove
2354 * @dev: PCI device being removed
2356 * Function updates upstream bridge PM capabilities based on other devices
2357 * still left on the bus.
2359 void pci_bridge_d3_device_removed(struct pci_dev *dev)
2361 pci_bridge_d3_update(dev, true);
2365 * pci_d3cold_enable - Enable D3cold for device
2366 * @dev: PCI device to handle
2368 * This function can be used in drivers to enable D3cold from the device
2369 * they handle. It also updates upstream PCI bridge PM capabilities
2370 * accordingly.
2372 void pci_d3cold_enable(struct pci_dev *dev)
2374 if (dev->no_d3cold) {
2375 dev->no_d3cold = false;
2376 pci_bridge_d3_device_changed(dev);
2379 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2382 * pci_d3cold_disable - Disable D3cold for device
2383 * @dev: PCI device to handle
2385 * This function can be used in drivers to disable D3cold from the device
2386 * they handle. It also updates upstream PCI bridge PM capabilities
2387 * accordingly.
2389 void pci_d3cold_disable(struct pci_dev *dev)
2391 if (!dev->no_d3cold) {
2392 dev->no_d3cold = true;
2393 pci_bridge_d3_device_changed(dev);
2396 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2399 * pci_pm_init - Initialize PM functions of given PCI device
2400 * @dev: PCI device to handle.
2402 void pci_pm_init(struct pci_dev *dev)
2404 int pm;
2405 u16 pmc;
2407 pm_runtime_forbid(&dev->dev);
2408 pm_runtime_set_active(&dev->dev);
2409 pm_runtime_enable(&dev->dev);
2410 device_enable_async_suspend(&dev->dev);
2411 dev->wakeup_prepared = false;
2413 dev->pm_cap = 0;
2414 dev->pme_support = 0;
2416 /* find PCI PM capability in list */
2417 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2418 if (!pm)
2419 return;
2420 /* Check device's ability to generate PME# */
2421 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2423 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2424 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2425 pmc & PCI_PM_CAP_VER_MASK);
2426 return;
2429 dev->pm_cap = pm;
2430 dev->d3_delay = PCI_PM_D3_WAIT;
2431 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2432 dev->bridge_d3 = pci_bridge_d3_possible(dev);
2433 dev->d3cold_allowed = true;
2435 dev->d1_support = false;
2436 dev->d2_support = false;
2437 if (!pci_no_d1d2(dev)) {
2438 if (pmc & PCI_PM_CAP_D1)
2439 dev->d1_support = true;
2440 if (pmc & PCI_PM_CAP_D2)
2441 dev->d2_support = true;
2443 if (dev->d1_support || dev->d2_support)
2444 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2445 dev->d1_support ? " D1" : "",
2446 dev->d2_support ? " D2" : "");
2449 pmc &= PCI_PM_CAP_PME_MASK;
2450 if (pmc) {
2451 dev_printk(KERN_DEBUG, &dev->dev,
2452 "PME# supported from%s%s%s%s%s\n",
2453 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2454 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2455 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2456 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2457 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2458 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2459 dev->pme_poll = true;
2461 * Make device's PM flags reflect the wake-up capability, but
2462 * let the user space enable it to wake up the system as needed.
2464 device_set_wakeup_capable(&dev->dev, true);
2465 /* Disable the PME# generation functionality */
2466 pci_pme_active(dev, false);
2470 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2472 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2474 switch (prop) {
2475 case PCI_EA_P_MEM:
2476 case PCI_EA_P_VF_MEM:
2477 flags |= IORESOURCE_MEM;
2478 break;
2479 case PCI_EA_P_MEM_PREFETCH:
2480 case PCI_EA_P_VF_MEM_PREFETCH:
2481 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2482 break;
2483 case PCI_EA_P_IO:
2484 flags |= IORESOURCE_IO;
2485 break;
2486 default:
2487 return 0;
2490 return flags;
2493 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2494 u8 prop)
2496 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2497 return &dev->resource[bei];
2498 #ifdef CONFIG_PCI_IOV
2499 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2500 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2501 return &dev->resource[PCI_IOV_RESOURCES +
2502 bei - PCI_EA_BEI_VF_BAR0];
2503 #endif
2504 else if (bei == PCI_EA_BEI_ROM)
2505 return &dev->resource[PCI_ROM_RESOURCE];
2506 else
2507 return NULL;
2510 /* Read an Enhanced Allocation (EA) entry */
2511 static int pci_ea_read(struct pci_dev *dev, int offset)
2513 struct resource *res;
2514 int ent_size, ent_offset = offset;
2515 resource_size_t start, end;
2516 unsigned long flags;
2517 u32 dw0, bei, base, max_offset;
2518 u8 prop;
2519 bool support_64 = (sizeof(resource_size_t) >= 8);
2521 pci_read_config_dword(dev, ent_offset, &dw0);
2522 ent_offset += 4;
2524 /* Entry size field indicates DWORDs after 1st */
2525 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2527 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2528 goto out;
2530 bei = (dw0 & PCI_EA_BEI) >> 4;
2531 prop = (dw0 & PCI_EA_PP) >> 8;
2534 * If the Property is in the reserved range, try the Secondary
2535 * Property instead.
2537 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2538 prop = (dw0 & PCI_EA_SP) >> 16;
2539 if (prop > PCI_EA_P_BRIDGE_IO)
2540 goto out;
2542 res = pci_ea_get_resource(dev, bei, prop);
2543 if (!res) {
2544 dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
2545 goto out;
2548 flags = pci_ea_flags(dev, prop);
2549 if (!flags) {
2550 dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2551 goto out;
2554 /* Read Base */
2555 pci_read_config_dword(dev, ent_offset, &base);
2556 start = (base & PCI_EA_FIELD_MASK);
2557 ent_offset += 4;
2559 /* Read MaxOffset */
2560 pci_read_config_dword(dev, ent_offset, &max_offset);
2561 ent_offset += 4;
2563 /* Read Base MSBs (if 64-bit entry) */
2564 if (base & PCI_EA_IS_64) {
2565 u32 base_upper;
2567 pci_read_config_dword(dev, ent_offset, &base_upper);
2568 ent_offset += 4;
2570 flags |= IORESOURCE_MEM_64;
2572 /* entry starts above 32-bit boundary, can't use */
2573 if (!support_64 && base_upper)
2574 goto out;
2576 if (support_64)
2577 start |= ((u64)base_upper << 32);
2580 end = start + (max_offset | 0x03);
2582 /* Read MaxOffset MSBs (if 64-bit entry) */
2583 if (max_offset & PCI_EA_IS_64) {
2584 u32 max_offset_upper;
2586 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2587 ent_offset += 4;
2589 flags |= IORESOURCE_MEM_64;
2591 /* entry too big, can't use */
2592 if (!support_64 && max_offset_upper)
2593 goto out;
2595 if (support_64)
2596 end += ((u64)max_offset_upper << 32);
2599 if (end < start) {
2600 dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2601 goto out;
2604 if (ent_size != ent_offset - offset) {
2605 dev_err(&dev->dev,
2606 "EA Entry Size (%d) does not match length read (%d)\n",
2607 ent_size, ent_offset - offset);
2608 goto out;
2611 res->name = pci_name(dev);
2612 res->start = start;
2613 res->end = end;
2614 res->flags = flags;
2616 if (bei <= PCI_EA_BEI_BAR5)
2617 dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2618 bei, res, prop);
2619 else if (bei == PCI_EA_BEI_ROM)
2620 dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2621 res, prop);
2622 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2623 dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2624 bei - PCI_EA_BEI_VF_BAR0, res, prop);
2625 else
2626 dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2627 bei, res, prop);
2629 out:
2630 return offset + ent_size;
2633 /* Enhanced Allocation Initialization */
2634 void pci_ea_init(struct pci_dev *dev)
2636 int ea;
2637 u8 num_ent;
2638 int offset;
2639 int i;
2641 /* find PCI EA capability in list */
2642 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2643 if (!ea)
2644 return;
2646 /* determine the number of entries */
2647 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2648 &num_ent);
2649 num_ent &= PCI_EA_NUM_ENT_MASK;
2651 offset = ea + PCI_EA_FIRST_ENT;
2653 /* Skip DWORD 2 for type 1 functions */
2654 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2655 offset += 4;
2657 /* parse each EA entry */
2658 for (i = 0; i < num_ent; ++i)
2659 offset = pci_ea_read(dev, offset);
2662 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2663 struct pci_cap_saved_state *new_cap)
2665 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2669 * _pci_add_cap_save_buffer - allocate buffer for saving given
2670 * capability registers
2671 * @dev: the PCI device
2672 * @cap: the capability to allocate the buffer for
2673 * @extended: Standard or Extended capability ID
2674 * @size: requested size of the buffer
2676 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2677 bool extended, unsigned int size)
2679 int pos;
2680 struct pci_cap_saved_state *save_state;
2682 if (extended)
2683 pos = pci_find_ext_capability(dev, cap);
2684 else
2685 pos = pci_find_capability(dev, cap);
2687 if (!pos)
2688 return 0;
2690 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2691 if (!save_state)
2692 return -ENOMEM;
2694 save_state->cap.cap_nr = cap;
2695 save_state->cap.cap_extended = extended;
2696 save_state->cap.size = size;
2697 pci_add_saved_cap(dev, save_state);
2699 return 0;
2702 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2704 return _pci_add_cap_save_buffer(dev, cap, false, size);
2707 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2709 return _pci_add_cap_save_buffer(dev, cap, true, size);
2713 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2714 * @dev: the PCI device
2716 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2718 int error;
2720 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2721 PCI_EXP_SAVE_REGS * sizeof(u16));
2722 if (error)
2723 dev_err(&dev->dev,
2724 "unable to preallocate PCI Express save buffer\n");
2726 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2727 if (error)
2728 dev_err(&dev->dev,
2729 "unable to preallocate PCI-X save buffer\n");
2731 pci_allocate_vc_save_buffers(dev);
2734 void pci_free_cap_save_buffers(struct pci_dev *dev)
2736 struct pci_cap_saved_state *tmp;
2737 struct hlist_node *n;
2739 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2740 kfree(tmp);
2744 * pci_configure_ari - enable or disable ARI forwarding
2745 * @dev: the PCI device
2747 * If @dev and its upstream bridge both support ARI, enable ARI in the
2748 * bridge. Otherwise, disable ARI in the bridge.
2750 void pci_configure_ari(struct pci_dev *dev)
2752 u32 cap;
2753 struct pci_dev *bridge;
2755 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2756 return;
2758 bridge = dev->bus->self;
2759 if (!bridge)
2760 return;
2762 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2763 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2764 return;
2766 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2767 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2768 PCI_EXP_DEVCTL2_ARI);
2769 bridge->ari_enabled = 1;
2770 } else {
2771 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2772 PCI_EXP_DEVCTL2_ARI);
2773 bridge->ari_enabled = 0;
2777 static int pci_acs_enable;
2780 * pci_request_acs - ask for ACS to be enabled if supported
2782 void pci_request_acs(void)
2784 pci_acs_enable = 1;
2788 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2789 * @dev: the PCI device
2791 static void pci_std_enable_acs(struct pci_dev *dev)
2793 int pos;
2794 u16 cap;
2795 u16 ctrl;
2797 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2798 if (!pos)
2799 return;
2801 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2802 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2804 /* Source Validation */
2805 ctrl |= (cap & PCI_ACS_SV);
2807 /* P2P Request Redirect */
2808 ctrl |= (cap & PCI_ACS_RR);
2810 /* P2P Completion Redirect */
2811 ctrl |= (cap & PCI_ACS_CR);
2813 /* Upstream Forwarding */
2814 ctrl |= (cap & PCI_ACS_UF);
2816 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2820 * pci_enable_acs - enable ACS if hardware support it
2821 * @dev: the PCI device
2823 void pci_enable_acs(struct pci_dev *dev)
2825 if (!pci_acs_enable)
2826 return;
2828 if (!pci_dev_specific_enable_acs(dev))
2829 return;
2831 pci_std_enable_acs(dev);
2834 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2836 int pos;
2837 u16 cap, ctrl;
2839 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2840 if (!pos)
2841 return false;
2844 * Except for egress control, capabilities are either required
2845 * or only required if controllable. Features missing from the
2846 * capability field can therefore be assumed as hard-wired enabled.
2848 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2849 acs_flags &= (cap | PCI_ACS_EC);
2851 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2852 return (ctrl & acs_flags) == acs_flags;
2856 * pci_acs_enabled - test ACS against required flags for a given device
2857 * @pdev: device to test
2858 * @acs_flags: required PCI ACS flags
2860 * Return true if the device supports the provided flags. Automatically
2861 * filters out flags that are not implemented on multifunction devices.
2863 * Note that this interface checks the effective ACS capabilities of the
2864 * device rather than the actual capabilities. For instance, most single
2865 * function endpoints are not required to support ACS because they have no
2866 * opportunity for peer-to-peer access. We therefore return 'true'
2867 * regardless of whether the device exposes an ACS capability. This makes
2868 * it much easier for callers of this function to ignore the actual type
2869 * or topology of the device when testing ACS support.
2871 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2873 int ret;
2875 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2876 if (ret >= 0)
2877 return ret > 0;
2880 * Conventional PCI and PCI-X devices never support ACS, either
2881 * effectively or actually. The shared bus topology implies that
2882 * any device on the bus can receive or snoop DMA.
2884 if (!pci_is_pcie(pdev))
2885 return false;
2887 switch (pci_pcie_type(pdev)) {
2889 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2890 * but since their primary interface is PCI/X, we conservatively
2891 * handle them as we would a non-PCIe device.
2893 case PCI_EXP_TYPE_PCIE_BRIDGE:
2895 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2896 * applicable... must never implement an ACS Extended Capability...".
2897 * This seems arbitrary, but we take a conservative interpretation
2898 * of this statement.
2900 case PCI_EXP_TYPE_PCI_BRIDGE:
2901 case PCI_EXP_TYPE_RC_EC:
2902 return false;
2904 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2905 * implement ACS in order to indicate their peer-to-peer capabilities,
2906 * regardless of whether they are single- or multi-function devices.
2908 case PCI_EXP_TYPE_DOWNSTREAM:
2909 case PCI_EXP_TYPE_ROOT_PORT:
2910 return pci_acs_flags_enabled(pdev, acs_flags);
2912 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2913 * implemented by the remaining PCIe types to indicate peer-to-peer
2914 * capabilities, but only when they are part of a multifunction
2915 * device. The footnote for section 6.12 indicates the specific
2916 * PCIe types included here.
2918 case PCI_EXP_TYPE_ENDPOINT:
2919 case PCI_EXP_TYPE_UPSTREAM:
2920 case PCI_EXP_TYPE_LEG_END:
2921 case PCI_EXP_TYPE_RC_END:
2922 if (!pdev->multifunction)
2923 break;
2925 return pci_acs_flags_enabled(pdev, acs_flags);
2929 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2930 * to single function devices with the exception of downstream ports.
2932 return true;
2936 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2937 * @start: starting downstream device
2938 * @end: ending upstream device or NULL to search to the root bus
2939 * @acs_flags: required flags
2941 * Walk up a device tree from start to end testing PCI ACS support. If
2942 * any step along the way does not support the required flags, return false.
2944 bool pci_acs_path_enabled(struct pci_dev *start,
2945 struct pci_dev *end, u16 acs_flags)
2947 struct pci_dev *pdev, *parent = start;
2949 do {
2950 pdev = parent;
2952 if (!pci_acs_enabled(pdev, acs_flags))
2953 return false;
2955 if (pci_is_root_bus(pdev->bus))
2956 return (end == NULL);
2958 parent = pdev->bus->self;
2959 } while (pdev != end);
2961 return true;
2965 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2966 * @dev: the PCI device
2967 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2969 * Perform INTx swizzling for a device behind one level of bridge. This is
2970 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2971 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2972 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2973 * the PCI Express Base Specification, Revision 2.1)
2975 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2977 int slot;
2979 if (pci_ari_enabled(dev->bus))
2980 slot = 0;
2981 else
2982 slot = PCI_SLOT(dev->devfn);
2984 return (((pin - 1) + slot) % 4) + 1;
2987 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2989 u8 pin;
2991 pin = dev->pin;
2992 if (!pin)
2993 return -1;
2995 while (!pci_is_root_bus(dev->bus)) {
2996 pin = pci_swizzle_interrupt_pin(dev, pin);
2997 dev = dev->bus->self;
2999 *bridge = dev;
3000 return pin;
3004 * pci_common_swizzle - swizzle INTx all the way to root bridge
3005 * @dev: the PCI device
3006 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3008 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3009 * bridges all the way up to a PCI root bus.
3011 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3013 u8 pin = *pinp;
3015 while (!pci_is_root_bus(dev->bus)) {
3016 pin = pci_swizzle_interrupt_pin(dev, pin);
3017 dev = dev->bus->self;
3019 *pinp = pin;
3020 return PCI_SLOT(dev->devfn);
3022 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3025 * pci_release_region - Release a PCI bar
3026 * @pdev: PCI device whose resources were previously reserved by pci_request_region
3027 * @bar: BAR to release
3029 * Releases the PCI I/O and memory resources previously reserved by a
3030 * successful call to pci_request_region. Call this function only
3031 * after all use of the PCI regions has ceased.
3033 void pci_release_region(struct pci_dev *pdev, int bar)
3035 struct pci_devres *dr;
3037 if (pci_resource_len(pdev, bar) == 0)
3038 return;
3039 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3040 release_region(pci_resource_start(pdev, bar),
3041 pci_resource_len(pdev, bar));
3042 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3043 release_mem_region(pci_resource_start(pdev, bar),
3044 pci_resource_len(pdev, bar));
3046 dr = find_pci_dr(pdev);
3047 if (dr)
3048 dr->region_mask &= ~(1 << bar);
3050 EXPORT_SYMBOL(pci_release_region);
3053 * __pci_request_region - Reserved PCI I/O and memory resource
3054 * @pdev: PCI device whose resources are to be reserved
3055 * @bar: BAR to be reserved
3056 * @res_name: Name to be associated with resource.
3057 * @exclusive: whether the region access is exclusive or not
3059 * Mark the PCI region associated with PCI device @pdev BR @bar as
3060 * being reserved by owner @res_name. Do not access any
3061 * address inside the PCI regions unless this call returns
3062 * successfully.
3064 * If @exclusive is set, then the region is marked so that userspace
3065 * is explicitly not allowed to map the resource via /dev/mem or
3066 * sysfs MMIO access.
3068 * Returns 0 on success, or %EBUSY on error. A warning
3069 * message is also printed on failure.
3071 static int __pci_request_region(struct pci_dev *pdev, int bar,
3072 const char *res_name, int exclusive)
3074 struct pci_devres *dr;
3076 if (pci_resource_len(pdev, bar) == 0)
3077 return 0;
3079 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3080 if (!request_region(pci_resource_start(pdev, bar),
3081 pci_resource_len(pdev, bar), res_name))
3082 goto err_out;
3083 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3084 if (!__request_mem_region(pci_resource_start(pdev, bar),
3085 pci_resource_len(pdev, bar), res_name,
3086 exclusive))
3087 goto err_out;
3090 dr = find_pci_dr(pdev);
3091 if (dr)
3092 dr->region_mask |= 1 << bar;
3094 return 0;
3096 err_out:
3097 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
3098 &pdev->resource[bar]);
3099 return -EBUSY;
3103 * pci_request_region - Reserve PCI I/O and memory resource
3104 * @pdev: PCI device whose resources are to be reserved
3105 * @bar: BAR to be reserved
3106 * @res_name: Name to be associated with resource
3108 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3109 * being reserved by owner @res_name. Do not access any
3110 * address inside the PCI regions unless this call returns
3111 * successfully.
3113 * Returns 0 on success, or %EBUSY on error. A warning
3114 * message is also printed on failure.
3116 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3118 return __pci_request_region(pdev, bar, res_name, 0);
3120 EXPORT_SYMBOL(pci_request_region);
3123 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
3124 * @pdev: PCI device whose resources are to be reserved
3125 * @bar: BAR to be reserved
3126 * @res_name: Name to be associated with resource.
3128 * Mark the PCI region associated with PCI device @pdev BR @bar as
3129 * being reserved by owner @res_name. Do not access any
3130 * address inside the PCI regions unless this call returns
3131 * successfully.
3133 * Returns 0 on success, or %EBUSY on error. A warning
3134 * message is also printed on failure.
3136 * The key difference that _exclusive makes it that userspace is
3137 * explicitly not allowed to map the resource via /dev/mem or
3138 * sysfs.
3140 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3141 const char *res_name)
3143 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3145 EXPORT_SYMBOL(pci_request_region_exclusive);
3148 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3149 * @pdev: PCI device whose resources were previously reserved
3150 * @bars: Bitmask of BARs to be released
3152 * Release selected PCI I/O and memory resources previously reserved.
3153 * Call this function only after all use of the PCI regions has ceased.
3155 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3157 int i;
3159 for (i = 0; i < 6; i++)
3160 if (bars & (1 << i))
3161 pci_release_region(pdev, i);
3163 EXPORT_SYMBOL(pci_release_selected_regions);
3165 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3166 const char *res_name, int excl)
3168 int i;
3170 for (i = 0; i < 6; i++)
3171 if (bars & (1 << i))
3172 if (__pci_request_region(pdev, i, res_name, excl))
3173 goto err_out;
3174 return 0;
3176 err_out:
3177 while (--i >= 0)
3178 if (bars & (1 << i))
3179 pci_release_region(pdev, i);
3181 return -EBUSY;
3186 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3187 * @pdev: PCI device whose resources are to be reserved
3188 * @bars: Bitmask of BARs to be requested
3189 * @res_name: Name to be associated with resource
3191 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3192 const char *res_name)
3194 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3196 EXPORT_SYMBOL(pci_request_selected_regions);
3198 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3199 const char *res_name)
3201 return __pci_request_selected_regions(pdev, bars, res_name,
3202 IORESOURCE_EXCLUSIVE);
3204 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3207 * pci_release_regions - Release reserved PCI I/O and memory resources
3208 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
3210 * Releases all PCI I/O and memory resources previously reserved by a
3211 * successful call to pci_request_regions. Call this function only
3212 * after all use of the PCI regions has ceased.
3215 void pci_release_regions(struct pci_dev *pdev)
3217 pci_release_selected_regions(pdev, (1 << 6) - 1);
3219 EXPORT_SYMBOL(pci_release_regions);
3222 * pci_request_regions - Reserved PCI I/O and memory resources
3223 * @pdev: PCI device whose resources are to be reserved
3224 * @res_name: Name to be associated with resource.
3226 * Mark all PCI regions associated with PCI device @pdev as
3227 * being reserved by owner @res_name. Do not access any
3228 * address inside the PCI regions unless this call returns
3229 * successfully.
3231 * Returns 0 on success, or %EBUSY on error. A warning
3232 * message is also printed on failure.
3234 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3236 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3238 EXPORT_SYMBOL(pci_request_regions);
3241 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3242 * @pdev: PCI device whose resources are to be reserved
3243 * @res_name: Name to be associated with resource.
3245 * Mark all PCI regions associated with PCI device @pdev as
3246 * being reserved by owner @res_name. Do not access any
3247 * address inside the PCI regions unless this call returns
3248 * successfully.
3250 * pci_request_regions_exclusive() will mark the region so that
3251 * /dev/mem and the sysfs MMIO access will not be allowed.
3253 * Returns 0 on success, or %EBUSY on error. A warning
3254 * message is also printed on failure.
3256 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3258 return pci_request_selected_regions_exclusive(pdev,
3259 ((1 << 6) - 1), res_name);
3261 EXPORT_SYMBOL(pci_request_regions_exclusive);
3263 #ifdef PCI_IOBASE
3264 struct io_range {
3265 struct list_head list;
3266 phys_addr_t start;
3267 resource_size_t size;
3270 static LIST_HEAD(io_range_list);
3271 static DEFINE_SPINLOCK(io_range_lock);
3272 #endif
3275 * Record the PCI IO range (expressed as CPU physical address + size).
3276 * Return a negative value if an error has occured, zero otherwise
3278 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
3280 int err = 0;
3282 #ifdef PCI_IOBASE
3283 struct io_range *range;
3284 resource_size_t allocated_size = 0;
3286 /* check if the range hasn't been previously recorded */
3287 spin_lock(&io_range_lock);
3288 list_for_each_entry(range, &io_range_list, list) {
3289 if (addr >= range->start && addr + size <= range->start + size) {
3290 /* range already registered, bail out */
3291 goto end_register;
3293 allocated_size += range->size;
3296 /* range not registed yet, check for available space */
3297 if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
3298 /* if it's too big check if 64K space can be reserved */
3299 if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
3300 err = -E2BIG;
3301 goto end_register;
3304 size = SZ_64K;
3305 pr_warn("Requested IO range too big, new size set to 64K\n");
3308 /* add the range to the list */
3309 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3310 if (!range) {
3311 err = -ENOMEM;
3312 goto end_register;
3315 range->start = addr;
3316 range->size = size;
3318 list_add_tail(&range->list, &io_range_list);
3320 end_register:
3321 spin_unlock(&io_range_lock);
3322 #endif
3324 return err;
3327 phys_addr_t pci_pio_to_address(unsigned long pio)
3329 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3331 #ifdef PCI_IOBASE
3332 struct io_range *range;
3333 resource_size_t allocated_size = 0;
3335 if (pio > IO_SPACE_LIMIT)
3336 return address;
3338 spin_lock(&io_range_lock);
3339 list_for_each_entry(range, &io_range_list, list) {
3340 if (pio >= allocated_size && pio < allocated_size + range->size) {
3341 address = range->start + pio - allocated_size;
3342 break;
3344 allocated_size += range->size;
3346 spin_unlock(&io_range_lock);
3347 #endif
3349 return address;
3352 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3354 #ifdef PCI_IOBASE
3355 struct io_range *res;
3356 resource_size_t offset = 0;
3357 unsigned long addr = -1;
3359 spin_lock(&io_range_lock);
3360 list_for_each_entry(res, &io_range_list, list) {
3361 if (address >= res->start && address < res->start + res->size) {
3362 addr = address - res->start + offset;
3363 break;
3365 offset += res->size;
3367 spin_unlock(&io_range_lock);
3369 return addr;
3370 #else
3371 if (address > IO_SPACE_LIMIT)
3372 return (unsigned long)-1;
3374 return (unsigned long) address;
3375 #endif
3379 * pci_remap_iospace - Remap the memory mapped I/O space
3380 * @res: Resource describing the I/O space
3381 * @phys_addr: physical address of range to be mapped
3383 * Remap the memory mapped I/O space described by the @res
3384 * and the CPU physical address @phys_addr into virtual address space.
3385 * Only architectures that have memory mapped IO functions defined
3386 * (and the PCI_IOBASE value defined) should call this function.
3388 int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3390 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3391 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3393 if (!(res->flags & IORESOURCE_IO))
3394 return -EINVAL;
3396 if (res->end > IO_SPACE_LIMIT)
3397 return -EINVAL;
3399 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3400 pgprot_device(PAGE_KERNEL));
3401 #else
3402 /* this architecture does not have memory mapped I/O space,
3403 so this function should never be called */
3404 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3405 return -ENODEV;
3406 #endif
3410 * pci_unmap_iospace - Unmap the memory mapped I/O space
3411 * @res: resource to be unmapped
3413 * Unmap the CPU virtual address @res from virtual address space.
3414 * Only architectures that have memory mapped IO functions defined
3415 * (and the PCI_IOBASE value defined) should call this function.
3417 void pci_unmap_iospace(struct resource *res)
3419 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3420 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3422 unmap_kernel_range(vaddr, resource_size(res));
3423 #endif
3426 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
3428 struct resource **res = ptr;
3430 pci_unmap_iospace(*res);
3434 * devm_pci_remap_iospace - Managed pci_remap_iospace()
3435 * @dev: Generic device to remap IO address for
3436 * @res: Resource describing the I/O space
3437 * @phys_addr: physical address of range to be mapped
3439 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
3440 * detach.
3442 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
3443 phys_addr_t phys_addr)
3445 const struct resource **ptr;
3446 int error;
3448 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
3449 if (!ptr)
3450 return -ENOMEM;
3452 error = pci_remap_iospace(res, phys_addr);
3453 if (error) {
3454 devres_free(ptr);
3455 } else {
3456 *ptr = res;
3457 devres_add(dev, ptr);
3460 return error;
3462 EXPORT_SYMBOL(devm_pci_remap_iospace);
3464 static void __pci_set_master(struct pci_dev *dev, bool enable)
3466 u16 old_cmd, cmd;
3468 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3469 if (enable)
3470 cmd = old_cmd | PCI_COMMAND_MASTER;
3471 else
3472 cmd = old_cmd & ~PCI_COMMAND_MASTER;
3473 if (cmd != old_cmd) {
3474 dev_dbg(&dev->dev, "%s bus mastering\n",
3475 enable ? "enabling" : "disabling");
3476 pci_write_config_word(dev, PCI_COMMAND, cmd);
3478 dev->is_busmaster = enable;
3482 * pcibios_setup - process "pci=" kernel boot arguments
3483 * @str: string used to pass in "pci=" kernel boot arguments
3485 * Process kernel boot arguments. This is the default implementation.
3486 * Architecture specific implementations can override this as necessary.
3488 char * __weak __init pcibios_setup(char *str)
3490 return str;
3494 * pcibios_set_master - enable PCI bus-mastering for device dev
3495 * @dev: the PCI device to enable
3497 * Enables PCI bus-mastering for the device. This is the default
3498 * implementation. Architecture specific implementations can override
3499 * this if necessary.
3501 void __weak pcibios_set_master(struct pci_dev *dev)
3503 u8 lat;
3505 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3506 if (pci_is_pcie(dev))
3507 return;
3509 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3510 if (lat < 16)
3511 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3512 else if (lat > pcibios_max_latency)
3513 lat = pcibios_max_latency;
3514 else
3515 return;
3517 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3521 * pci_set_master - enables bus-mastering for device dev
3522 * @dev: the PCI device to enable
3524 * Enables bus-mastering on the device and calls pcibios_set_master()
3525 * to do the needed arch specific settings.
3527 void pci_set_master(struct pci_dev *dev)
3529 __pci_set_master(dev, true);
3530 pcibios_set_master(dev);
3532 EXPORT_SYMBOL(pci_set_master);
3535 * pci_clear_master - disables bus-mastering for device dev
3536 * @dev: the PCI device to disable
3538 void pci_clear_master(struct pci_dev *dev)
3540 __pci_set_master(dev, false);
3542 EXPORT_SYMBOL(pci_clear_master);
3545 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3546 * @dev: the PCI device for which MWI is to be enabled
3548 * Helper function for pci_set_mwi.
3549 * Originally copied from drivers/net/acenic.c.
3550 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3552 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3554 int pci_set_cacheline_size(struct pci_dev *dev)
3556 u8 cacheline_size;
3558 if (!pci_cache_line_size)
3559 return -EINVAL;
3561 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3562 equal to or multiple of the right value. */
3563 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3564 if (cacheline_size >= pci_cache_line_size &&
3565 (cacheline_size % pci_cache_line_size) == 0)
3566 return 0;
3568 /* Write the correct value. */
3569 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3570 /* Read it back. */
3571 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3572 if (cacheline_size == pci_cache_line_size)
3573 return 0;
3575 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3576 pci_cache_line_size << 2);
3578 return -EINVAL;
3580 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3583 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3584 * @dev: the PCI device for which MWI is enabled
3586 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3588 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3590 int pci_set_mwi(struct pci_dev *dev)
3592 #ifdef PCI_DISABLE_MWI
3593 return 0;
3594 #else
3595 int rc;
3596 u16 cmd;
3598 rc = pci_set_cacheline_size(dev);
3599 if (rc)
3600 return rc;
3602 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3603 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3604 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
3605 cmd |= PCI_COMMAND_INVALIDATE;
3606 pci_write_config_word(dev, PCI_COMMAND, cmd);
3608 return 0;
3609 #endif
3611 EXPORT_SYMBOL(pci_set_mwi);
3614 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3615 * @dev: the PCI device for which MWI is enabled
3617 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3618 * Callers are not required to check the return value.
3620 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3622 int pci_try_set_mwi(struct pci_dev *dev)
3624 #ifdef PCI_DISABLE_MWI
3625 return 0;
3626 #else
3627 return pci_set_mwi(dev);
3628 #endif
3630 EXPORT_SYMBOL(pci_try_set_mwi);
3633 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3634 * @dev: the PCI device to disable
3636 * Disables PCI Memory-Write-Invalidate transaction on the device
3638 void pci_clear_mwi(struct pci_dev *dev)
3640 #ifndef PCI_DISABLE_MWI
3641 u16 cmd;
3643 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3644 if (cmd & PCI_COMMAND_INVALIDATE) {
3645 cmd &= ~PCI_COMMAND_INVALIDATE;
3646 pci_write_config_word(dev, PCI_COMMAND, cmd);
3648 #endif
3650 EXPORT_SYMBOL(pci_clear_mwi);
3653 * pci_intx - enables/disables PCI INTx for device dev
3654 * @pdev: the PCI device to operate on
3655 * @enable: boolean: whether to enable or disable PCI INTx
3657 * Enables/disables PCI INTx for device dev
3659 void pci_intx(struct pci_dev *pdev, int enable)
3661 u16 pci_command, new;
3663 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3665 if (enable)
3666 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3667 else
3668 new = pci_command | PCI_COMMAND_INTX_DISABLE;
3670 if (new != pci_command) {
3671 struct pci_devres *dr;
3673 pci_write_config_word(pdev, PCI_COMMAND, new);
3675 dr = find_pci_dr(pdev);
3676 if (dr && !dr->restore_intx) {
3677 dr->restore_intx = 1;
3678 dr->orig_intx = !enable;
3682 EXPORT_SYMBOL_GPL(pci_intx);
3685 * pci_intx_mask_supported - probe for INTx masking support
3686 * @dev: the PCI device to operate on
3688 * Check if the device dev support INTx masking via the config space
3689 * command word.
3691 bool pci_intx_mask_supported(struct pci_dev *dev)
3693 bool mask_supported = false;
3694 u16 orig, new;
3696 if (dev->broken_intx_masking)
3697 return false;
3699 pci_cfg_access_lock(dev);
3701 pci_read_config_word(dev, PCI_COMMAND, &orig);
3702 pci_write_config_word(dev, PCI_COMMAND,
3703 orig ^ PCI_COMMAND_INTX_DISABLE);
3704 pci_read_config_word(dev, PCI_COMMAND, &new);
3707 * There's no way to protect against hardware bugs or detect them
3708 * reliably, but as long as we know what the value should be, let's
3709 * go ahead and check it.
3711 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3712 dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3713 orig, new);
3714 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3715 mask_supported = true;
3716 pci_write_config_word(dev, PCI_COMMAND, orig);
3719 pci_cfg_access_unlock(dev);
3720 return mask_supported;
3722 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3724 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3726 struct pci_bus *bus = dev->bus;
3727 bool mask_updated = true;
3728 u32 cmd_status_dword;
3729 u16 origcmd, newcmd;
3730 unsigned long flags;
3731 bool irq_pending;
3734 * We do a single dword read to retrieve both command and status.
3735 * Document assumptions that make this possible.
3737 BUILD_BUG_ON(PCI_COMMAND % 4);
3738 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3740 raw_spin_lock_irqsave(&pci_lock, flags);
3742 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3744 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3747 * Check interrupt status register to see whether our device
3748 * triggered the interrupt (when masking) or the next IRQ is
3749 * already pending (when unmasking).
3751 if (mask != irq_pending) {
3752 mask_updated = false;
3753 goto done;
3756 origcmd = cmd_status_dword;
3757 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3758 if (mask)
3759 newcmd |= PCI_COMMAND_INTX_DISABLE;
3760 if (newcmd != origcmd)
3761 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3763 done:
3764 raw_spin_unlock_irqrestore(&pci_lock, flags);
3766 return mask_updated;
3770 * pci_check_and_mask_intx - mask INTx on pending interrupt
3771 * @dev: the PCI device to operate on
3773 * Check if the device dev has its INTx line asserted, mask it and
3774 * return true in that case. False is returned if not interrupt was
3775 * pending.
3777 bool pci_check_and_mask_intx(struct pci_dev *dev)
3779 return pci_check_and_set_intx_mask(dev, true);
3781 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3784 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3785 * @dev: the PCI device to operate on
3787 * Check if the device dev has its INTx line asserted, unmask it if not
3788 * and return true. False is returned and the mask remains active if
3789 * there was still an interrupt pending.
3791 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3793 return pci_check_and_set_intx_mask(dev, false);
3795 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3798 * pci_wait_for_pending_transaction - waits for pending transaction
3799 * @dev: the PCI device to operate on
3801 * Return 0 if transaction is pending 1 otherwise.
3803 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3805 if (!pci_is_pcie(dev))
3806 return 1;
3808 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3809 PCI_EXP_DEVSTA_TRPND);
3811 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3813 static void pci_flr_wait(struct pci_dev *dev)
3815 int delay = 1, timeout = 60000;
3816 u32 id;
3819 * Per PCIe r3.1, sec 6.6.2, a device must complete an FLR within
3820 * 100ms, but may silently discard requests while the FLR is in
3821 * progress. Wait 100ms before trying to access the device.
3823 msleep(100);
3826 * After 100ms, the device should not silently discard config
3827 * requests, but it may still indicate that it needs more time by
3828 * responding to them with CRS completions. The Root Port will
3829 * generally synthesize ~0 data to complete the read (except when
3830 * CRS SV is enabled and the read was for the Vendor ID; in that
3831 * case it synthesizes 0x0001 data).
3833 * Wait for the device to return a non-CRS completion. Read the
3834 * Command register instead of Vendor ID so we don't have to
3835 * contend with the CRS SV value.
3837 pci_read_config_dword(dev, PCI_COMMAND, &id);
3838 while (id == ~0) {
3839 if (delay > timeout) {
3840 dev_warn(&dev->dev, "not ready %dms after FLR; giving up\n",
3841 100 + delay - 1);
3842 return;
3845 if (delay > 1000)
3846 dev_info(&dev->dev, "not ready %dms after FLR; waiting\n",
3847 100 + delay - 1);
3849 msleep(delay);
3850 delay *= 2;
3851 pci_read_config_dword(dev, PCI_COMMAND, &id);
3854 if (delay > 1000)
3855 dev_info(&dev->dev, "ready %dms after FLR\n", 100 + delay - 1);
3858 static int pcie_flr(struct pci_dev *dev, int probe)
3860 u32 cap;
3862 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3863 if (!(cap & PCI_EXP_DEVCAP_FLR))
3864 return -ENOTTY;
3866 if (probe)
3867 return 0;
3869 if (!pci_wait_for_pending_transaction(dev))
3870 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3872 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3873 pci_flr_wait(dev);
3874 return 0;
3877 static int pci_af_flr(struct pci_dev *dev, int probe)
3879 int pos;
3880 u8 cap;
3882 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3883 if (!pos)
3884 return -ENOTTY;
3886 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3887 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3888 return -ENOTTY;
3890 if (probe)
3891 return 0;
3894 * Wait for Transaction Pending bit to clear. A word-aligned test
3895 * is used, so we use the conrol offset rather than status and shift
3896 * the test bit to match.
3898 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3899 PCI_AF_STATUS_TP << 8))
3900 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3902 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3903 pci_flr_wait(dev);
3904 return 0;
3908 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3909 * @dev: Device to reset.
3910 * @probe: If set, only check if the device can be reset this way.
3912 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3913 * unset, it will be reinitialized internally when going from PCI_D3hot to
3914 * PCI_D0. If that's the case and the device is not in a low-power state
3915 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3917 * NOTE: This causes the caller to sleep for twice the device power transition
3918 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3919 * by default (i.e. unless the @dev's d3_delay field has a different value).
3920 * Moreover, only devices in D0 can be reset by this function.
3922 static int pci_pm_reset(struct pci_dev *dev, int probe)
3924 u16 csr;
3926 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
3927 return -ENOTTY;
3929 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3930 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3931 return -ENOTTY;
3933 if (probe)
3934 return 0;
3936 if (dev->current_state != PCI_D0)
3937 return -EINVAL;
3939 csr &= ~PCI_PM_CTRL_STATE_MASK;
3940 csr |= PCI_D3hot;
3941 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3942 pci_dev_d3_sleep(dev);
3944 csr &= ~PCI_PM_CTRL_STATE_MASK;
3945 csr |= PCI_D0;
3946 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3947 pci_dev_d3_sleep(dev);
3949 return 0;
3952 void pci_reset_secondary_bus(struct pci_dev *dev)
3954 u16 ctrl;
3956 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3957 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3958 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3960 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3961 * this to 2ms to ensure that we meet the minimum requirement.
3963 msleep(2);
3965 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3966 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3969 * Trhfa for conventional PCI is 2^25 clock cycles.
3970 * Assuming a minimum 33MHz clock this results in a 1s
3971 * delay before we can consider subordinate devices to
3972 * be re-initialized. PCIe has some ways to shorten this,
3973 * but we don't make use of them yet.
3975 ssleep(1);
3978 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3980 pci_reset_secondary_bus(dev);
3984 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3985 * @dev: Bridge device
3987 * Use the bridge control register to assert reset on the secondary bus.
3988 * Devices on the secondary bus are left in power-on state.
3990 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3992 pcibios_reset_secondary_bus(dev);
3994 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3996 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3998 struct pci_dev *pdev;
4000 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4001 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4002 return -ENOTTY;
4004 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4005 if (pdev != dev)
4006 return -ENOTTY;
4008 if (probe)
4009 return 0;
4011 pci_reset_bridge_secondary_bus(dev->bus->self);
4013 return 0;
4016 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4018 int rc = -ENOTTY;
4020 if (!hotplug || !try_module_get(hotplug->ops->owner))
4021 return rc;
4023 if (hotplug->ops->reset_slot)
4024 rc = hotplug->ops->reset_slot(hotplug, probe);
4026 module_put(hotplug->ops->owner);
4028 return rc;
4031 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4033 struct pci_dev *pdev;
4035 if (dev->subordinate || !dev->slot ||
4036 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4037 return -ENOTTY;
4039 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4040 if (pdev != dev && pdev->slot == dev->slot)
4041 return -ENOTTY;
4043 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4046 static int __pci_dev_reset(struct pci_dev *dev, int probe)
4048 int rc;
4050 might_sleep();
4052 rc = pci_dev_specific_reset(dev, probe);
4053 if (rc != -ENOTTY)
4054 goto done;
4056 rc = pcie_flr(dev, probe);
4057 if (rc != -ENOTTY)
4058 goto done;
4060 rc = pci_af_flr(dev, probe);
4061 if (rc != -ENOTTY)
4062 goto done;
4064 rc = pci_pm_reset(dev, probe);
4065 if (rc != -ENOTTY)
4066 goto done;
4068 rc = pci_dev_reset_slot_function(dev, probe);
4069 if (rc != -ENOTTY)
4070 goto done;
4072 rc = pci_parent_bus_reset(dev, probe);
4073 done:
4074 return rc;
4077 static void pci_dev_lock(struct pci_dev *dev)
4079 pci_cfg_access_lock(dev);
4080 /* block PM suspend, driver probe, etc. */
4081 device_lock(&dev->dev);
4084 /* Return 1 on successful lock, 0 on contention */
4085 static int pci_dev_trylock(struct pci_dev *dev)
4087 if (pci_cfg_access_trylock(dev)) {
4088 if (device_trylock(&dev->dev))
4089 return 1;
4090 pci_cfg_access_unlock(dev);
4093 return 0;
4096 static void pci_dev_unlock(struct pci_dev *dev)
4098 device_unlock(&dev->dev);
4099 pci_cfg_access_unlock(dev);
4103 * pci_reset_notify - notify device driver of reset
4104 * @dev: device to be notified of reset
4105 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
4106 * completed
4108 * Must be called prior to device access being disabled and after device
4109 * access is restored.
4111 static void pci_reset_notify(struct pci_dev *dev, bool prepare)
4113 const struct pci_error_handlers *err_handler =
4114 dev->driver ? dev->driver->err_handler : NULL;
4115 if (err_handler && err_handler->reset_notify)
4116 err_handler->reset_notify(dev, prepare);
4119 static void pci_dev_save_and_disable(struct pci_dev *dev)
4121 pci_reset_notify(dev, true);
4124 * Wake-up device prior to save. PM registers default to D0 after
4125 * reset and a simple register restore doesn't reliably return
4126 * to a non-D0 state anyway.
4128 pci_set_power_state(dev, PCI_D0);
4130 pci_save_state(dev);
4132 * Disable the device by clearing the Command register, except for
4133 * INTx-disable which is set. This not only disables MMIO and I/O port
4134 * BARs, but also prevents the device from being Bus Master, preventing
4135 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4136 * compliant devices, INTx-disable prevents legacy interrupts.
4138 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4141 static void pci_dev_restore(struct pci_dev *dev)
4143 pci_restore_state(dev);
4144 pci_reset_notify(dev, false);
4147 static int pci_dev_reset(struct pci_dev *dev, int probe)
4149 int rc;
4151 if (!probe)
4152 pci_dev_lock(dev);
4154 rc = __pci_dev_reset(dev, probe);
4156 if (!probe)
4157 pci_dev_unlock(dev);
4159 return rc;
4163 * __pci_reset_function - reset a PCI device function
4164 * @dev: PCI device to reset
4166 * Some devices allow an individual function to be reset without affecting
4167 * other functions in the same device. The PCI device must be responsive
4168 * to PCI config space in order to use this function.
4170 * The device function is presumed to be unused when this function is called.
4171 * Resetting the device will make the contents of PCI configuration space
4172 * random, so any caller of this must be prepared to reinitialise the
4173 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4174 * etc.
4176 * Returns 0 if the device function was successfully reset or negative if the
4177 * device doesn't support resetting a single function.
4179 int __pci_reset_function(struct pci_dev *dev)
4181 return pci_dev_reset(dev, 0);
4183 EXPORT_SYMBOL_GPL(__pci_reset_function);
4186 * __pci_reset_function_locked - reset a PCI device function while holding
4187 * the @dev mutex lock.
4188 * @dev: PCI device to reset
4190 * Some devices allow an individual function to be reset without affecting
4191 * other functions in the same device. The PCI device must be responsive
4192 * to PCI config space in order to use this function.
4194 * The device function is presumed to be unused and the caller is holding
4195 * the device mutex lock when this function is called.
4196 * Resetting the device will make the contents of PCI configuration space
4197 * random, so any caller of this must be prepared to reinitialise the
4198 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4199 * etc.
4201 * Returns 0 if the device function was successfully reset or negative if the
4202 * device doesn't support resetting a single function.
4204 int __pci_reset_function_locked(struct pci_dev *dev)
4206 return __pci_dev_reset(dev, 0);
4208 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4211 * pci_probe_reset_function - check whether the device can be safely reset
4212 * @dev: PCI device to reset
4214 * Some devices allow an individual function to be reset without affecting
4215 * other functions in the same device. The PCI device must be responsive
4216 * to PCI config space in order to use this function.
4218 * Returns 0 if the device function can be reset or negative if the
4219 * device doesn't support resetting a single function.
4221 int pci_probe_reset_function(struct pci_dev *dev)
4223 return pci_dev_reset(dev, 1);
4227 * pci_reset_function - quiesce and reset a PCI device function
4228 * @dev: PCI device to reset
4230 * Some devices allow an individual function to be reset without affecting
4231 * other functions in the same device. The PCI device must be responsive
4232 * to PCI config space in order to use this function.
4234 * This function does not just reset the PCI portion of a device, but
4235 * clears all the state associated with the device. This function differs
4236 * from __pci_reset_function in that it saves and restores device state
4237 * over the reset.
4239 * Returns 0 if the device function was successfully reset or negative if the
4240 * device doesn't support resetting a single function.
4242 int pci_reset_function(struct pci_dev *dev)
4244 int rc;
4246 rc = pci_dev_reset(dev, 1);
4247 if (rc)
4248 return rc;
4250 pci_dev_save_and_disable(dev);
4252 rc = pci_dev_reset(dev, 0);
4254 pci_dev_restore(dev);
4256 return rc;
4258 EXPORT_SYMBOL_GPL(pci_reset_function);
4261 * pci_try_reset_function - quiesce and reset a PCI device function
4262 * @dev: PCI device to reset
4264 * Same as above, except return -EAGAIN if unable to lock device.
4266 int pci_try_reset_function(struct pci_dev *dev)
4268 int rc;
4270 rc = pci_dev_reset(dev, 1);
4271 if (rc)
4272 return rc;
4274 pci_dev_save_and_disable(dev);
4276 if (pci_dev_trylock(dev)) {
4277 rc = __pci_dev_reset(dev, 0);
4278 pci_dev_unlock(dev);
4279 } else
4280 rc = -EAGAIN;
4282 pci_dev_restore(dev);
4284 return rc;
4286 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4288 /* Do any devices on or below this bus prevent a bus reset? */
4289 static bool pci_bus_resetable(struct pci_bus *bus)
4291 struct pci_dev *dev;
4294 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4295 return false;
4297 list_for_each_entry(dev, &bus->devices, bus_list) {
4298 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4299 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4300 return false;
4303 return true;
4306 /* Lock devices from the top of the tree down */
4307 static void pci_bus_lock(struct pci_bus *bus)
4309 struct pci_dev *dev;
4311 list_for_each_entry(dev, &bus->devices, bus_list) {
4312 pci_dev_lock(dev);
4313 if (dev->subordinate)
4314 pci_bus_lock(dev->subordinate);
4318 /* Unlock devices from the bottom of the tree up */
4319 static void pci_bus_unlock(struct pci_bus *bus)
4321 struct pci_dev *dev;
4323 list_for_each_entry(dev, &bus->devices, bus_list) {
4324 if (dev->subordinate)
4325 pci_bus_unlock(dev->subordinate);
4326 pci_dev_unlock(dev);
4330 /* Return 1 on successful lock, 0 on contention */
4331 static int pci_bus_trylock(struct pci_bus *bus)
4333 struct pci_dev *dev;
4335 list_for_each_entry(dev, &bus->devices, bus_list) {
4336 if (!pci_dev_trylock(dev))
4337 goto unlock;
4338 if (dev->subordinate) {
4339 if (!pci_bus_trylock(dev->subordinate)) {
4340 pci_dev_unlock(dev);
4341 goto unlock;
4345 return 1;
4347 unlock:
4348 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4349 if (dev->subordinate)
4350 pci_bus_unlock(dev->subordinate);
4351 pci_dev_unlock(dev);
4353 return 0;
4356 /* Do any devices on or below this slot prevent a bus reset? */
4357 static bool pci_slot_resetable(struct pci_slot *slot)
4359 struct pci_dev *dev;
4361 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4362 if (!dev->slot || dev->slot != slot)
4363 continue;
4364 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4365 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4366 return false;
4369 return true;
4372 /* Lock devices from the top of the tree down */
4373 static void pci_slot_lock(struct pci_slot *slot)
4375 struct pci_dev *dev;
4377 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4378 if (!dev->slot || dev->slot != slot)
4379 continue;
4380 pci_dev_lock(dev);
4381 if (dev->subordinate)
4382 pci_bus_lock(dev->subordinate);
4386 /* Unlock devices from the bottom of the tree up */
4387 static void pci_slot_unlock(struct pci_slot *slot)
4389 struct pci_dev *dev;
4391 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4392 if (!dev->slot || dev->slot != slot)
4393 continue;
4394 if (dev->subordinate)
4395 pci_bus_unlock(dev->subordinate);
4396 pci_dev_unlock(dev);
4400 /* Return 1 on successful lock, 0 on contention */
4401 static int pci_slot_trylock(struct pci_slot *slot)
4403 struct pci_dev *dev;
4405 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4406 if (!dev->slot || dev->slot != slot)
4407 continue;
4408 if (!pci_dev_trylock(dev))
4409 goto unlock;
4410 if (dev->subordinate) {
4411 if (!pci_bus_trylock(dev->subordinate)) {
4412 pci_dev_unlock(dev);
4413 goto unlock;
4417 return 1;
4419 unlock:
4420 list_for_each_entry_continue_reverse(dev,
4421 &slot->bus->devices, bus_list) {
4422 if (!dev->slot || dev->slot != slot)
4423 continue;
4424 if (dev->subordinate)
4425 pci_bus_unlock(dev->subordinate);
4426 pci_dev_unlock(dev);
4428 return 0;
4431 /* Save and disable devices from the top of the tree down */
4432 static void pci_bus_save_and_disable(struct pci_bus *bus)
4434 struct pci_dev *dev;
4436 list_for_each_entry(dev, &bus->devices, bus_list) {
4437 pci_dev_save_and_disable(dev);
4438 if (dev->subordinate)
4439 pci_bus_save_and_disable(dev->subordinate);
4444 * Restore devices from top of the tree down - parent bridges need to be
4445 * restored before we can get to subordinate devices.
4447 static void pci_bus_restore(struct pci_bus *bus)
4449 struct pci_dev *dev;
4451 list_for_each_entry(dev, &bus->devices, bus_list) {
4452 pci_dev_restore(dev);
4453 if (dev->subordinate)
4454 pci_bus_restore(dev->subordinate);
4458 /* Save and disable devices from the top of the tree down */
4459 static void pci_slot_save_and_disable(struct pci_slot *slot)
4461 struct pci_dev *dev;
4463 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4464 if (!dev->slot || dev->slot != slot)
4465 continue;
4466 pci_dev_save_and_disable(dev);
4467 if (dev->subordinate)
4468 pci_bus_save_and_disable(dev->subordinate);
4473 * Restore devices from top of the tree down - parent bridges need to be
4474 * restored before we can get to subordinate devices.
4476 static void pci_slot_restore(struct pci_slot *slot)
4478 struct pci_dev *dev;
4480 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4481 if (!dev->slot || dev->slot != slot)
4482 continue;
4483 pci_dev_restore(dev);
4484 if (dev->subordinate)
4485 pci_bus_restore(dev->subordinate);
4489 static int pci_slot_reset(struct pci_slot *slot, int probe)
4491 int rc;
4493 if (!slot || !pci_slot_resetable(slot))
4494 return -ENOTTY;
4496 if (!probe)
4497 pci_slot_lock(slot);
4499 might_sleep();
4501 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4503 if (!probe)
4504 pci_slot_unlock(slot);
4506 return rc;
4510 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4511 * @slot: PCI slot to probe
4513 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4515 int pci_probe_reset_slot(struct pci_slot *slot)
4517 return pci_slot_reset(slot, 1);
4519 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4522 * pci_reset_slot - reset a PCI slot
4523 * @slot: PCI slot to reset
4525 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4526 * independent of other slots. For instance, some slots may support slot power
4527 * control. In the case of a 1:1 bus to slot architecture, this function may
4528 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4529 * Generally a slot reset should be attempted before a bus reset. All of the
4530 * function of the slot and any subordinate buses behind the slot are reset
4531 * through this function. PCI config space of all devices in the slot and
4532 * behind the slot is saved before and restored after reset.
4534 * Return 0 on success, non-zero on error.
4536 int pci_reset_slot(struct pci_slot *slot)
4538 int rc;
4540 rc = pci_slot_reset(slot, 1);
4541 if (rc)
4542 return rc;
4544 pci_slot_save_and_disable(slot);
4546 rc = pci_slot_reset(slot, 0);
4548 pci_slot_restore(slot);
4550 return rc;
4552 EXPORT_SYMBOL_GPL(pci_reset_slot);
4555 * pci_try_reset_slot - Try to reset a PCI slot
4556 * @slot: PCI slot to reset
4558 * Same as above except return -EAGAIN if the slot cannot be locked
4560 int pci_try_reset_slot(struct pci_slot *slot)
4562 int rc;
4564 rc = pci_slot_reset(slot, 1);
4565 if (rc)
4566 return rc;
4568 pci_slot_save_and_disable(slot);
4570 if (pci_slot_trylock(slot)) {
4571 might_sleep();
4572 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4573 pci_slot_unlock(slot);
4574 } else
4575 rc = -EAGAIN;
4577 pci_slot_restore(slot);
4579 return rc;
4581 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4583 static int pci_bus_reset(struct pci_bus *bus, int probe)
4585 if (!bus->self || !pci_bus_resetable(bus))
4586 return -ENOTTY;
4588 if (probe)
4589 return 0;
4591 pci_bus_lock(bus);
4593 might_sleep();
4595 pci_reset_bridge_secondary_bus(bus->self);
4597 pci_bus_unlock(bus);
4599 return 0;
4603 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4604 * @bus: PCI bus to probe
4606 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4608 int pci_probe_reset_bus(struct pci_bus *bus)
4610 return pci_bus_reset(bus, 1);
4612 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4615 * pci_reset_bus - reset a PCI bus
4616 * @bus: top level PCI bus to reset
4618 * Do a bus reset on the given bus and any subordinate buses, saving
4619 * and restoring state of all devices.
4621 * Return 0 on success, non-zero on error.
4623 int pci_reset_bus(struct pci_bus *bus)
4625 int rc;
4627 rc = pci_bus_reset(bus, 1);
4628 if (rc)
4629 return rc;
4631 pci_bus_save_and_disable(bus);
4633 rc = pci_bus_reset(bus, 0);
4635 pci_bus_restore(bus);
4637 return rc;
4639 EXPORT_SYMBOL_GPL(pci_reset_bus);
4642 * pci_try_reset_bus - Try to reset a PCI bus
4643 * @bus: top level PCI bus to reset
4645 * Same as above except return -EAGAIN if the bus cannot be locked
4647 int pci_try_reset_bus(struct pci_bus *bus)
4649 int rc;
4651 rc = pci_bus_reset(bus, 1);
4652 if (rc)
4653 return rc;
4655 pci_bus_save_and_disable(bus);
4657 if (pci_bus_trylock(bus)) {
4658 might_sleep();
4659 pci_reset_bridge_secondary_bus(bus->self);
4660 pci_bus_unlock(bus);
4661 } else
4662 rc = -EAGAIN;
4664 pci_bus_restore(bus);
4666 return rc;
4668 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4671 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4672 * @dev: PCI device to query
4674 * Returns mmrbc: maximum designed memory read count in bytes
4675 * or appropriate error value.
4677 int pcix_get_max_mmrbc(struct pci_dev *dev)
4679 int cap;
4680 u32 stat;
4682 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4683 if (!cap)
4684 return -EINVAL;
4686 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4687 return -EINVAL;
4689 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4691 EXPORT_SYMBOL(pcix_get_max_mmrbc);
4694 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4695 * @dev: PCI device to query
4697 * Returns mmrbc: maximum memory read count in bytes
4698 * or appropriate error value.
4700 int pcix_get_mmrbc(struct pci_dev *dev)
4702 int cap;
4703 u16 cmd;
4705 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4706 if (!cap)
4707 return -EINVAL;
4709 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4710 return -EINVAL;
4712 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4714 EXPORT_SYMBOL(pcix_get_mmrbc);
4717 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4718 * @dev: PCI device to query
4719 * @mmrbc: maximum memory read count in bytes
4720 * valid values are 512, 1024, 2048, 4096
4722 * If possible sets maximum memory read byte count, some bridges have erratas
4723 * that prevent this.
4725 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4727 int cap;
4728 u32 stat, v, o;
4729 u16 cmd;
4731 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4732 return -EINVAL;
4734 v = ffs(mmrbc) - 10;
4736 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4737 if (!cap)
4738 return -EINVAL;
4740 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4741 return -EINVAL;
4743 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4744 return -E2BIG;
4746 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4747 return -EINVAL;
4749 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4750 if (o != v) {
4751 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4752 return -EIO;
4754 cmd &= ~PCI_X_CMD_MAX_READ;
4755 cmd |= v << 2;
4756 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4757 return -EIO;
4759 return 0;
4761 EXPORT_SYMBOL(pcix_set_mmrbc);
4764 * pcie_get_readrq - get PCI Express read request size
4765 * @dev: PCI device to query
4767 * Returns maximum memory read request in bytes
4768 * or appropriate error value.
4770 int pcie_get_readrq(struct pci_dev *dev)
4772 u16 ctl;
4774 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4776 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4778 EXPORT_SYMBOL(pcie_get_readrq);
4781 * pcie_set_readrq - set PCI Express maximum memory read request
4782 * @dev: PCI device to query
4783 * @rq: maximum memory read count in bytes
4784 * valid values are 128, 256, 512, 1024, 2048, 4096
4786 * If possible sets maximum memory read request in bytes
4788 int pcie_set_readrq(struct pci_dev *dev, int rq)
4790 u16 v;
4792 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4793 return -EINVAL;
4796 * If using the "performance" PCIe config, we clamp the
4797 * read rq size to the max packet size to prevent the
4798 * host bridge generating requests larger than we can
4799 * cope with
4801 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4802 int mps = pcie_get_mps(dev);
4804 if (mps < rq)
4805 rq = mps;
4808 v = (ffs(rq) - 8) << 12;
4810 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4811 PCI_EXP_DEVCTL_READRQ, v);
4813 EXPORT_SYMBOL(pcie_set_readrq);
4816 * pcie_get_mps - get PCI Express maximum payload size
4817 * @dev: PCI device to query
4819 * Returns maximum payload size in bytes
4821 int pcie_get_mps(struct pci_dev *dev)
4823 u16 ctl;
4825 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4827 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4829 EXPORT_SYMBOL(pcie_get_mps);
4832 * pcie_set_mps - set PCI Express maximum payload size
4833 * @dev: PCI device to query
4834 * @mps: maximum payload size in bytes
4835 * valid values are 128, 256, 512, 1024, 2048, 4096
4837 * If possible sets maximum payload size
4839 int pcie_set_mps(struct pci_dev *dev, int mps)
4841 u16 v;
4843 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4844 return -EINVAL;
4846 v = ffs(mps) - 8;
4847 if (v > dev->pcie_mpss)
4848 return -EINVAL;
4849 v <<= 5;
4851 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4852 PCI_EXP_DEVCTL_PAYLOAD, v);
4854 EXPORT_SYMBOL(pcie_set_mps);
4857 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4858 * @dev: PCI device to query
4859 * @speed: storage for minimum speed
4860 * @width: storage for minimum width
4862 * This function will walk up the PCI device chain and determine the minimum
4863 * link width and speed of the device.
4865 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4866 enum pcie_link_width *width)
4868 int ret;
4870 *speed = PCI_SPEED_UNKNOWN;
4871 *width = PCIE_LNK_WIDTH_UNKNOWN;
4873 while (dev) {
4874 u16 lnksta;
4875 enum pci_bus_speed next_speed;
4876 enum pcie_link_width next_width;
4878 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4879 if (ret)
4880 return ret;
4882 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4883 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4884 PCI_EXP_LNKSTA_NLW_SHIFT;
4886 if (next_speed < *speed)
4887 *speed = next_speed;
4889 if (next_width < *width)
4890 *width = next_width;
4892 dev = dev->bus->self;
4895 return 0;
4897 EXPORT_SYMBOL(pcie_get_minimum_link);
4900 * pci_select_bars - Make BAR mask from the type of resource
4901 * @dev: the PCI device for which BAR mask is made
4902 * @flags: resource type mask to be selected
4904 * This helper routine makes bar mask from the type of resource.
4906 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4908 int i, bars = 0;
4909 for (i = 0; i < PCI_NUM_RESOURCES; i++)
4910 if (pci_resource_flags(dev, i) & flags)
4911 bars |= (1 << i);
4912 return bars;
4914 EXPORT_SYMBOL(pci_select_bars);
4916 /* Some architectures require additional programming to enable VGA */
4917 static arch_set_vga_state_t arch_set_vga_state;
4919 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4921 arch_set_vga_state = func; /* NULL disables */
4924 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4925 unsigned int command_bits, u32 flags)
4927 if (arch_set_vga_state)
4928 return arch_set_vga_state(dev, decode, command_bits,
4929 flags);
4930 return 0;
4934 * pci_set_vga_state - set VGA decode state on device and parents if requested
4935 * @dev: the PCI device
4936 * @decode: true = enable decoding, false = disable decoding
4937 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4938 * @flags: traverse ancestors and change bridges
4939 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4941 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4942 unsigned int command_bits, u32 flags)
4944 struct pci_bus *bus;
4945 struct pci_dev *bridge;
4946 u16 cmd;
4947 int rc;
4949 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4951 /* ARCH specific VGA enables */
4952 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4953 if (rc)
4954 return rc;
4956 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4957 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4958 if (decode == true)
4959 cmd |= command_bits;
4960 else
4961 cmd &= ~command_bits;
4962 pci_write_config_word(dev, PCI_COMMAND, cmd);
4965 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4966 return 0;
4968 bus = dev->bus;
4969 while (bus) {
4970 bridge = bus->self;
4971 if (bridge) {
4972 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4973 &cmd);
4974 if (decode == true)
4975 cmd |= PCI_BRIDGE_CTL_VGA;
4976 else
4977 cmd &= ~PCI_BRIDGE_CTL_VGA;
4978 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4979 cmd);
4981 bus = bus->parent;
4983 return 0;
4987 * pci_add_dma_alias - Add a DMA devfn alias for a device
4988 * @dev: the PCI device for which alias is added
4989 * @devfn: alias slot and function
4991 * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
4992 * It should be called early, preferably as PCI fixup header quirk.
4994 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
4996 if (!dev->dma_alias_mask)
4997 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
4998 sizeof(long), GFP_KERNEL);
4999 if (!dev->dma_alias_mask) {
5000 dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n");
5001 return;
5004 set_bit(devfn, dev->dma_alias_mask);
5005 dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n",
5006 PCI_SLOT(devfn), PCI_FUNC(devfn));
5009 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5011 return (dev1->dma_alias_mask &&
5012 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5013 (dev2->dma_alias_mask &&
5014 test_bit(dev1->devfn, dev2->dma_alias_mask));
5017 bool pci_device_is_present(struct pci_dev *pdev)
5019 u32 v;
5021 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5023 EXPORT_SYMBOL_GPL(pci_device_is_present);
5025 void pci_ignore_hotplug(struct pci_dev *dev)
5027 struct pci_dev *bridge = dev->bus->self;
5029 dev->ignore_hotplug = 1;
5030 /* Propagate the "ignore hotplug" setting to the parent bridge. */
5031 if (bridge)
5032 bridge->ignore_hotplug = 1;
5034 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5036 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5037 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
5038 static DEFINE_SPINLOCK(resource_alignment_lock);
5041 * pci_specified_resource_alignment - get resource alignment specified by user.
5042 * @dev: the PCI device to get
5044 * RETURNS: Resource alignment if it is specified.
5045 * Zero if it is not specified.
5047 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
5049 int seg, bus, slot, func, align_order, count;
5050 unsigned short vendor, device, subsystem_vendor, subsystem_device;
5051 resource_size_t align = 0;
5052 char *p;
5054 spin_lock(&resource_alignment_lock);
5055 p = resource_alignment_param;
5056 if (!*p)
5057 goto out;
5058 if (pci_has_flag(PCI_PROBE_ONLY)) {
5059 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5060 goto out;
5063 while (*p) {
5064 count = 0;
5065 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5066 p[count] == '@') {
5067 p += count + 1;
5068 } else {
5069 align_order = -1;
5071 if (strncmp(p, "pci:", 4) == 0) {
5072 /* PCI vendor/device (subvendor/subdevice) ids are specified */
5073 p += 4;
5074 if (sscanf(p, "%hx:%hx:%hx:%hx%n",
5075 &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
5076 if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
5077 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
5079 break;
5081 subsystem_vendor = subsystem_device = 0;
5083 p += count;
5084 if ((!vendor || (vendor == dev->vendor)) &&
5085 (!device || (device == dev->device)) &&
5086 (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5087 (!subsystem_device || (subsystem_device == dev->subsystem_device))) {
5088 if (align_order == -1)
5089 align = PAGE_SIZE;
5090 else
5091 align = 1 << align_order;
5092 /* Found */
5093 break;
5096 else {
5097 if (sscanf(p, "%x:%x:%x.%x%n",
5098 &seg, &bus, &slot, &func, &count) != 4) {
5099 seg = 0;
5100 if (sscanf(p, "%x:%x.%x%n",
5101 &bus, &slot, &func, &count) != 3) {
5102 /* Invalid format */
5103 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5105 break;
5108 p += count;
5109 if (seg == pci_domain_nr(dev->bus) &&
5110 bus == dev->bus->number &&
5111 slot == PCI_SLOT(dev->devfn) &&
5112 func == PCI_FUNC(dev->devfn)) {
5113 if (align_order == -1)
5114 align = PAGE_SIZE;
5115 else
5116 align = 1 << align_order;
5117 /* Found */
5118 break;
5121 if (*p != ';' && *p != ',') {
5122 /* End of param or invalid format */
5123 break;
5125 p++;
5127 out:
5128 spin_unlock(&resource_alignment_lock);
5129 return align;
5133 * This function disables memory decoding and releases memory resources
5134 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5135 * It also rounds up size to specified alignment.
5136 * Later on, the kernel will assign page-aligned memory resource back
5137 * to the device.
5139 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5141 int i;
5142 struct resource *r;
5143 resource_size_t align, size;
5144 u16 command;
5147 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5148 * 3.4.1.11. Their resources are allocated from the space
5149 * described by the VF BARx register in the PF's SR-IOV capability.
5150 * We can't influence their alignment here.
5152 if (dev->is_virtfn)
5153 return;
5155 /* check if specified PCI is target device to reassign */
5156 align = pci_specified_resource_alignment(dev);
5157 if (!align)
5158 return;
5160 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5161 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5162 dev_warn(&dev->dev,
5163 "Can't reassign resources to host bridge.\n");
5164 return;
5167 dev_info(&dev->dev,
5168 "Disabling memory decoding and releasing memory resources.\n");
5169 pci_read_config_word(dev, PCI_COMMAND, &command);
5170 command &= ~PCI_COMMAND_MEMORY;
5171 pci_write_config_word(dev, PCI_COMMAND, command);
5173 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
5174 r = &dev->resource[i];
5175 if (!(r->flags & IORESOURCE_MEM))
5176 continue;
5177 if (r->flags & IORESOURCE_PCI_FIXED) {
5178 dev_info(&dev->dev, "Ignoring requested alignment for BAR%d: %pR\n",
5179 i, r);
5180 continue;
5183 size = resource_size(r);
5184 if (size < align) {
5185 size = align;
5186 dev_info(&dev->dev,
5187 "Rounding up size of resource #%d to %#llx.\n",
5188 i, (unsigned long long)size);
5190 r->flags |= IORESOURCE_UNSET;
5191 r->end = size - 1;
5192 r->start = 0;
5194 /* Need to disable bridge's resource window,
5195 * to enable the kernel to reassign new resource
5196 * window later on.
5198 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5199 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5200 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5201 r = &dev->resource[i];
5202 if (!(r->flags & IORESOURCE_MEM))
5203 continue;
5204 r->flags |= IORESOURCE_UNSET;
5205 r->end = resource_size(r) - 1;
5206 r->start = 0;
5208 pci_disable_bridge_window(dev);
5212 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5214 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5215 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5216 spin_lock(&resource_alignment_lock);
5217 strncpy(resource_alignment_param, buf, count);
5218 resource_alignment_param[count] = '\0';
5219 spin_unlock(&resource_alignment_lock);
5220 return count;
5223 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5225 size_t count;
5226 spin_lock(&resource_alignment_lock);
5227 count = snprintf(buf, size, "%s", resource_alignment_param);
5228 spin_unlock(&resource_alignment_lock);
5229 return count;
5232 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5234 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5237 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5238 const char *buf, size_t count)
5240 return pci_set_resource_alignment_param(buf, count);
5243 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5244 pci_resource_alignment_store);
5246 static int __init pci_resource_alignment_sysfs_init(void)
5248 return bus_create_file(&pci_bus_type,
5249 &bus_attr_resource_alignment);
5251 late_initcall(pci_resource_alignment_sysfs_init);
5253 static void pci_no_domains(void)
5255 #ifdef CONFIG_PCI_DOMAINS
5256 pci_domains_supported = 0;
5257 #endif
5260 #ifdef CONFIG_PCI_DOMAINS
5261 static atomic_t __domain_nr = ATOMIC_INIT(-1);
5263 int pci_get_new_domain_nr(void)
5265 return atomic_inc_return(&__domain_nr);
5268 #ifdef CONFIG_PCI_DOMAINS_GENERIC
5269 static int of_pci_bus_find_domain_nr(struct device *parent)
5271 static int use_dt_domains = -1;
5272 int domain = -1;
5274 if (parent)
5275 domain = of_get_pci_domain_nr(parent->of_node);
5277 * Check DT domain and use_dt_domains values.
5279 * If DT domain property is valid (domain >= 0) and
5280 * use_dt_domains != 0, the DT assignment is valid since this means
5281 * we have not previously allocated a domain number by using
5282 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5283 * 1, to indicate that we have just assigned a domain number from
5284 * DT.
5286 * If DT domain property value is not valid (ie domain < 0), and we
5287 * have not previously assigned a domain number from DT
5288 * (use_dt_domains != 1) we should assign a domain number by
5289 * using the:
5291 * pci_get_new_domain_nr()
5293 * API and update the use_dt_domains value to keep track of method we
5294 * are using to assign domain numbers (use_dt_domains = 0).
5296 * All other combinations imply we have a platform that is trying
5297 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5298 * which is a recipe for domain mishandling and it is prevented by
5299 * invalidating the domain value (domain = -1) and printing a
5300 * corresponding error.
5302 if (domain >= 0 && use_dt_domains) {
5303 use_dt_domains = 1;
5304 } else if (domain < 0 && use_dt_domains != 1) {
5305 use_dt_domains = 0;
5306 domain = pci_get_new_domain_nr();
5307 } else {
5308 dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
5309 parent->of_node->full_name);
5310 domain = -1;
5313 return domain;
5316 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5318 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5319 acpi_pci_bus_find_domain_nr(bus);
5321 #endif
5322 #endif
5325 * pci_ext_cfg_avail - can we access extended PCI config space?
5327 * Returns 1 if we can access PCI extended config space (offsets
5328 * greater than 0xff). This is the default implementation. Architecture
5329 * implementations can override this.
5331 int __weak pci_ext_cfg_avail(void)
5333 return 1;
5336 void __weak pci_fixup_cardbus(struct pci_bus *bus)
5339 EXPORT_SYMBOL(pci_fixup_cardbus);
5341 static int __init pci_setup(char *str)
5343 while (str) {
5344 char *k = strchr(str, ',');
5345 if (k)
5346 *k++ = 0;
5347 if (*str && (str = pcibios_setup(str)) && *str) {
5348 if (!strcmp(str, "nomsi")) {
5349 pci_no_msi();
5350 } else if (!strcmp(str, "noaer")) {
5351 pci_no_aer();
5352 } else if (!strncmp(str, "realloc=", 8)) {
5353 pci_realloc_get_opt(str + 8);
5354 } else if (!strncmp(str, "realloc", 7)) {
5355 pci_realloc_get_opt("on");
5356 } else if (!strcmp(str, "nodomains")) {
5357 pci_no_domains();
5358 } else if (!strncmp(str, "noari", 5)) {
5359 pcie_ari_disabled = true;
5360 } else if (!strncmp(str, "cbiosize=", 9)) {
5361 pci_cardbus_io_size = memparse(str + 9, &str);
5362 } else if (!strncmp(str, "cbmemsize=", 10)) {
5363 pci_cardbus_mem_size = memparse(str + 10, &str);
5364 } else if (!strncmp(str, "resource_alignment=", 19)) {
5365 pci_set_resource_alignment_param(str + 19,
5366 strlen(str + 19));
5367 } else if (!strncmp(str, "ecrc=", 5)) {
5368 pcie_ecrc_get_policy(str + 5);
5369 } else if (!strncmp(str, "hpiosize=", 9)) {
5370 pci_hotplug_io_size = memparse(str + 9, &str);
5371 } else if (!strncmp(str, "hpmemsize=", 10)) {
5372 pci_hotplug_mem_size = memparse(str + 10, &str);
5373 } else if (!strncmp(str, "hpbussize=", 10)) {
5374 pci_hotplug_bus_size =
5375 simple_strtoul(str + 10, &str, 0);
5376 if (pci_hotplug_bus_size > 0xff)
5377 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5378 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5379 pcie_bus_config = PCIE_BUS_TUNE_OFF;
5380 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
5381 pcie_bus_config = PCIE_BUS_SAFE;
5382 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
5383 pcie_bus_config = PCIE_BUS_PERFORMANCE;
5384 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5385 pcie_bus_config = PCIE_BUS_PEER2PEER;
5386 } else if (!strncmp(str, "pcie_scan_all", 13)) {
5387 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
5388 } else {
5389 printk(KERN_ERR "PCI: Unknown option `%s'\n",
5390 str);
5393 str = k;
5395 return 0;
5397 early_param("pci", pci_setup);