2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
42 #include "ext4_jbd2.h"
45 #include "ext4_extents.h"
47 #include <trace/events/ext4.h>
49 #define MPAGE_DA_EXTENT_TAIL 0x01
51 static inline int ext4_begin_ordered_truncate(struct inode
*inode
,
54 return jbd2_journal_begin_ordered_truncate(
55 EXT4_SB(inode
->i_sb
)->s_journal
,
56 &EXT4_I(inode
)->jinode
,
60 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
);
63 * Test whether an inode is a fast symlink.
65 static int ext4_inode_is_fast_symlink(struct inode
*inode
)
67 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
68 (inode
->i_sb
->s_blocksize
>> 9) : 0;
70 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
74 * The ext4 forget function must perform a revoke if we are freeing data
75 * which has been journaled. Metadata (eg. indirect blocks) must be
76 * revoked in all cases.
78 * "bh" may be NULL: a metadata block may have been freed from memory
79 * but there may still be a record of it in the journal, and that record
80 * still needs to be revoked.
82 * If the handle isn't valid we're not journaling, but we still need to
83 * call into ext4_journal_revoke() to put the buffer head.
85 int ext4_forget(handle_t
*handle
, int is_metadata
, struct inode
*inode
,
86 struct buffer_head
*bh
, ext4_fsblk_t blocknr
)
92 BUFFER_TRACE(bh
, "enter");
94 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
96 bh
, is_metadata
, inode
->i_mode
,
97 test_opt(inode
->i_sb
, DATA_FLAGS
));
99 /* Never use the revoke function if we are doing full data
100 * journaling: there is no need to, and a V1 superblock won't
101 * support it. Otherwise, only skip the revoke on un-journaled
104 if (test_opt(inode
->i_sb
, DATA_FLAGS
) == EXT4_MOUNT_JOURNAL_DATA
||
105 (!is_metadata
&& !ext4_should_journal_data(inode
))) {
107 BUFFER_TRACE(bh
, "call jbd2_journal_forget");
108 return ext4_journal_forget(handle
, bh
);
114 * data!=journal && (is_metadata || should_journal_data(inode))
116 BUFFER_TRACE(bh
, "call ext4_journal_revoke");
117 err
= ext4_journal_revoke(handle
, blocknr
, bh
);
119 ext4_abort(inode
->i_sb
, __func__
,
120 "error %d when attempting revoke", err
);
121 BUFFER_TRACE(bh
, "exit");
126 * Work out how many blocks we need to proceed with the next chunk of a
127 * truncate transaction.
129 static unsigned long blocks_for_truncate(struct inode
*inode
)
133 needed
= inode
->i_blocks
>> (inode
->i_sb
->s_blocksize_bits
- 9);
135 /* Give ourselves just enough room to cope with inodes in which
136 * i_blocks is corrupt: we've seen disk corruptions in the past
137 * which resulted in random data in an inode which looked enough
138 * like a regular file for ext4 to try to delete it. Things
139 * will go a bit crazy if that happens, but at least we should
140 * try not to panic the whole kernel. */
144 /* But we need to bound the transaction so we don't overflow the
146 if (needed
> EXT4_MAX_TRANS_DATA
)
147 needed
= EXT4_MAX_TRANS_DATA
;
149 return EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
) + needed
;
153 * Truncate transactions can be complex and absolutely huge. So we need to
154 * be able to restart the transaction at a conventient checkpoint to make
155 * sure we don't overflow the journal.
157 * start_transaction gets us a new handle for a truncate transaction,
158 * and extend_transaction tries to extend the existing one a bit. If
159 * extend fails, we need to propagate the failure up and restart the
160 * transaction in the top-level truncate loop. --sct
162 static handle_t
*start_transaction(struct inode
*inode
)
166 result
= ext4_journal_start(inode
, blocks_for_truncate(inode
));
170 ext4_std_error(inode
->i_sb
, PTR_ERR(result
));
175 * Try to extend this transaction for the purposes of truncation.
177 * Returns 0 if we managed to create more room. If we can't create more
178 * room, and the transaction must be restarted we return 1.
180 static int try_to_extend_transaction(handle_t
*handle
, struct inode
*inode
)
182 if (!ext4_handle_valid(handle
))
184 if (ext4_handle_has_enough_credits(handle
, EXT4_RESERVE_TRANS_BLOCKS
+1))
186 if (!ext4_journal_extend(handle
, blocks_for_truncate(inode
)))
192 * Restart the transaction associated with *handle. This does a commit,
193 * so before we call here everything must be consistently dirtied against
196 int ext4_truncate_restart_trans(handle_t
*handle
, struct inode
*inode
,
202 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
203 * moment, get_block can be called only for blocks inside i_size since
204 * page cache has been already dropped and writes are blocked by
205 * i_mutex. So we can safely drop the i_data_sem here.
207 BUG_ON(EXT4_JOURNAL(inode
) == NULL
);
208 jbd_debug(2, "restarting handle %p\n", handle
);
209 up_write(&EXT4_I(inode
)->i_data_sem
);
210 ret
= ext4_journal_restart(handle
, blocks_for_truncate(inode
));
211 down_write(&EXT4_I(inode
)->i_data_sem
);
212 ext4_discard_preallocations(inode
);
218 * Called at the last iput() if i_nlink is zero.
220 void ext4_delete_inode(struct inode
*inode
)
225 if (ext4_should_order_data(inode
))
226 ext4_begin_ordered_truncate(inode
, 0);
227 truncate_inode_pages(&inode
->i_data
, 0);
229 if (is_bad_inode(inode
))
232 handle
= ext4_journal_start(inode
, blocks_for_truncate(inode
)+3);
233 if (IS_ERR(handle
)) {
234 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
236 * If we're going to skip the normal cleanup, we still need to
237 * make sure that the in-core orphan linked list is properly
240 ext4_orphan_del(NULL
, inode
);
245 ext4_handle_sync(handle
);
247 err
= ext4_mark_inode_dirty(handle
, inode
);
249 ext4_warning(inode
->i_sb
, __func__
,
250 "couldn't mark inode dirty (err %d)", err
);
254 ext4_truncate(inode
);
257 * ext4_ext_truncate() doesn't reserve any slop when it
258 * restarts journal transactions; therefore there may not be
259 * enough credits left in the handle to remove the inode from
260 * the orphan list and set the dtime field.
262 if (!ext4_handle_has_enough_credits(handle
, 3)) {
263 err
= ext4_journal_extend(handle
, 3);
265 err
= ext4_journal_restart(handle
, 3);
267 ext4_warning(inode
->i_sb
, __func__
,
268 "couldn't extend journal (err %d)", err
);
270 ext4_journal_stop(handle
);
276 * Kill off the orphan record which ext4_truncate created.
277 * AKPM: I think this can be inside the above `if'.
278 * Note that ext4_orphan_del() has to be able to cope with the
279 * deletion of a non-existent orphan - this is because we don't
280 * know if ext4_truncate() actually created an orphan record.
281 * (Well, we could do this if we need to, but heck - it works)
283 ext4_orphan_del(handle
, inode
);
284 EXT4_I(inode
)->i_dtime
= get_seconds();
287 * One subtle ordering requirement: if anything has gone wrong
288 * (transaction abort, IO errors, whatever), then we can still
289 * do these next steps (the fs will already have been marked as
290 * having errors), but we can't free the inode if the mark_dirty
293 if (ext4_mark_inode_dirty(handle
, inode
))
294 /* If that failed, just do the required in-core inode clear. */
297 ext4_free_inode(handle
, inode
);
298 ext4_journal_stop(handle
);
301 clear_inode(inode
); /* We must guarantee clearing of inode... */
307 struct buffer_head
*bh
;
310 static inline void add_chain(Indirect
*p
, struct buffer_head
*bh
, __le32
*v
)
312 p
->key
= *(p
->p
= v
);
317 * ext4_block_to_path - parse the block number into array of offsets
318 * @inode: inode in question (we are only interested in its superblock)
319 * @i_block: block number to be parsed
320 * @offsets: array to store the offsets in
321 * @boundary: set this non-zero if the referred-to block is likely to be
322 * followed (on disk) by an indirect block.
324 * To store the locations of file's data ext4 uses a data structure common
325 * for UNIX filesystems - tree of pointers anchored in the inode, with
326 * data blocks at leaves and indirect blocks in intermediate nodes.
327 * This function translates the block number into path in that tree -
328 * return value is the path length and @offsets[n] is the offset of
329 * pointer to (n+1)th node in the nth one. If @block is out of range
330 * (negative or too large) warning is printed and zero returned.
332 * Note: function doesn't find node addresses, so no IO is needed. All
333 * we need to know is the capacity of indirect blocks (taken from the
338 * Portability note: the last comparison (check that we fit into triple
339 * indirect block) is spelled differently, because otherwise on an
340 * architecture with 32-bit longs and 8Kb pages we might get into trouble
341 * if our filesystem had 8Kb blocks. We might use long long, but that would
342 * kill us on x86. Oh, well, at least the sign propagation does not matter -
343 * i_block would have to be negative in the very beginning, so we would not
347 static int ext4_block_to_path(struct inode
*inode
,
349 ext4_lblk_t offsets
[4], int *boundary
)
351 int ptrs
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
352 int ptrs_bits
= EXT4_ADDR_PER_BLOCK_BITS(inode
->i_sb
);
353 const long direct_blocks
= EXT4_NDIR_BLOCKS
,
354 indirect_blocks
= ptrs
,
355 double_blocks
= (1 << (ptrs_bits
* 2));
360 ext4_warning(inode
->i_sb
, "ext4_block_to_path", "block < 0");
361 } else if (i_block
< direct_blocks
) {
362 offsets
[n
++] = i_block
;
363 final
= direct_blocks
;
364 } else if ((i_block
-= direct_blocks
) < indirect_blocks
) {
365 offsets
[n
++] = EXT4_IND_BLOCK
;
366 offsets
[n
++] = i_block
;
368 } else if ((i_block
-= indirect_blocks
) < double_blocks
) {
369 offsets
[n
++] = EXT4_DIND_BLOCK
;
370 offsets
[n
++] = i_block
>> ptrs_bits
;
371 offsets
[n
++] = i_block
& (ptrs
- 1);
373 } else if (((i_block
-= double_blocks
) >> (ptrs_bits
* 2)) < ptrs
) {
374 offsets
[n
++] = EXT4_TIND_BLOCK
;
375 offsets
[n
++] = i_block
>> (ptrs_bits
* 2);
376 offsets
[n
++] = (i_block
>> ptrs_bits
) & (ptrs
- 1);
377 offsets
[n
++] = i_block
& (ptrs
- 1);
380 ext4_warning(inode
->i_sb
, "ext4_block_to_path",
381 "block %lu > max in inode %lu",
382 i_block
+ direct_blocks
+
383 indirect_blocks
+ double_blocks
, inode
->i_ino
);
386 *boundary
= final
- 1 - (i_block
& (ptrs
- 1));
390 static int __ext4_check_blockref(const char *function
, struct inode
*inode
,
391 __le32
*p
, unsigned int max
)
396 while (bref
< p
+max
) {
397 blk
= le32_to_cpu(*bref
++);
399 unlikely(!ext4_data_block_valid(EXT4_SB(inode
->i_sb
),
401 ext4_error(inode
->i_sb
, function
,
402 "invalid block reference %u "
403 "in inode #%lu", blk
, inode
->i_ino
);
411 #define ext4_check_indirect_blockref(inode, bh) \
412 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
413 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
415 #define ext4_check_inode_blockref(inode) \
416 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
420 * ext4_get_branch - read the chain of indirect blocks leading to data
421 * @inode: inode in question
422 * @depth: depth of the chain (1 - direct pointer, etc.)
423 * @offsets: offsets of pointers in inode/indirect blocks
424 * @chain: place to store the result
425 * @err: here we store the error value
427 * Function fills the array of triples <key, p, bh> and returns %NULL
428 * if everything went OK or the pointer to the last filled triple
429 * (incomplete one) otherwise. Upon the return chain[i].key contains
430 * the number of (i+1)-th block in the chain (as it is stored in memory,
431 * i.e. little-endian 32-bit), chain[i].p contains the address of that
432 * number (it points into struct inode for i==0 and into the bh->b_data
433 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
434 * block for i>0 and NULL for i==0. In other words, it holds the block
435 * numbers of the chain, addresses they were taken from (and where we can
436 * verify that chain did not change) and buffer_heads hosting these
439 * Function stops when it stumbles upon zero pointer (absent block)
440 * (pointer to last triple returned, *@err == 0)
441 * or when it gets an IO error reading an indirect block
442 * (ditto, *@err == -EIO)
443 * or when it reads all @depth-1 indirect blocks successfully and finds
444 * the whole chain, all way to the data (returns %NULL, *err == 0).
446 * Need to be called with
447 * down_read(&EXT4_I(inode)->i_data_sem)
449 static Indirect
*ext4_get_branch(struct inode
*inode
, int depth
,
450 ext4_lblk_t
*offsets
,
451 Indirect chain
[4], int *err
)
453 struct super_block
*sb
= inode
->i_sb
;
455 struct buffer_head
*bh
;
458 /* i_data is not going away, no lock needed */
459 add_chain(chain
, NULL
, EXT4_I(inode
)->i_data
+ *offsets
);
463 bh
= sb_getblk(sb
, le32_to_cpu(p
->key
));
467 if (!bh_uptodate_or_lock(bh
)) {
468 if (bh_submit_read(bh
) < 0) {
472 /* validate block references */
473 if (ext4_check_indirect_blockref(inode
, bh
)) {
479 add_chain(++p
, bh
, (__le32
*)bh
->b_data
+ *++offsets
);
493 * ext4_find_near - find a place for allocation with sufficient locality
495 * @ind: descriptor of indirect block.
497 * This function returns the preferred place for block allocation.
498 * It is used when heuristic for sequential allocation fails.
500 * + if there is a block to the left of our position - allocate near it.
501 * + if pointer will live in indirect block - allocate near that block.
502 * + if pointer will live in inode - allocate in the same
505 * In the latter case we colour the starting block by the callers PID to
506 * prevent it from clashing with concurrent allocations for a different inode
507 * in the same block group. The PID is used here so that functionally related
508 * files will be close-by on-disk.
510 * Caller must make sure that @ind is valid and will stay that way.
512 static ext4_fsblk_t
ext4_find_near(struct inode
*inode
, Indirect
*ind
)
514 struct ext4_inode_info
*ei
= EXT4_I(inode
);
515 __le32
*start
= ind
->bh
? (__le32
*) ind
->bh
->b_data
: ei
->i_data
;
517 ext4_fsblk_t bg_start
;
518 ext4_fsblk_t last_block
;
519 ext4_grpblk_t colour
;
520 ext4_group_t block_group
;
521 int flex_size
= ext4_flex_bg_size(EXT4_SB(inode
->i_sb
));
523 /* Try to find previous block */
524 for (p
= ind
->p
- 1; p
>= start
; p
--) {
526 return le32_to_cpu(*p
);
529 /* No such thing, so let's try location of indirect block */
531 return ind
->bh
->b_blocknr
;
534 * It is going to be referred to from the inode itself? OK, just put it
535 * into the same cylinder group then.
537 block_group
= ei
->i_block_group
;
538 if (flex_size
>= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
) {
539 block_group
&= ~(flex_size
-1);
540 if (S_ISREG(inode
->i_mode
))
543 bg_start
= ext4_group_first_block_no(inode
->i_sb
, block_group
);
544 last_block
= ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
) - 1;
547 * If we are doing delayed allocation, we don't need take
548 * colour into account.
550 if (test_opt(inode
->i_sb
, DELALLOC
))
553 if (bg_start
+ EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) <= last_block
)
554 colour
= (current
->pid
% 16) *
555 (EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
557 colour
= (current
->pid
% 16) * ((last_block
- bg_start
) / 16);
558 return bg_start
+ colour
;
562 * ext4_find_goal - find a preferred place for allocation.
564 * @block: block we want
565 * @partial: pointer to the last triple within a chain
567 * Normally this function find the preferred place for block allocation,
569 * Because this is only used for non-extent files, we limit the block nr
572 static ext4_fsblk_t
ext4_find_goal(struct inode
*inode
, ext4_lblk_t block
,
578 * XXX need to get goal block from mballoc's data structures
581 goal
= ext4_find_near(inode
, partial
);
582 goal
= goal
& EXT4_MAX_BLOCK_FILE_PHYS
;
587 * ext4_blks_to_allocate: Look up the block map and count the number
588 * of direct blocks need to be allocated for the given branch.
590 * @branch: chain of indirect blocks
591 * @k: number of blocks need for indirect blocks
592 * @blks: number of data blocks to be mapped.
593 * @blocks_to_boundary: the offset in the indirect block
595 * return the total number of blocks to be allocate, including the
596 * direct and indirect blocks.
598 static int ext4_blks_to_allocate(Indirect
*branch
, int k
, unsigned int blks
,
599 int blocks_to_boundary
)
601 unsigned int count
= 0;
604 * Simple case, [t,d]Indirect block(s) has not allocated yet
605 * then it's clear blocks on that path have not allocated
608 /* right now we don't handle cross boundary allocation */
609 if (blks
< blocks_to_boundary
+ 1)
612 count
+= blocks_to_boundary
+ 1;
617 while (count
< blks
&& count
<= blocks_to_boundary
&&
618 le32_to_cpu(*(branch
[0].p
+ count
)) == 0) {
625 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
626 * @indirect_blks: the number of blocks need to allocate for indirect
629 * @new_blocks: on return it will store the new block numbers for
630 * the indirect blocks(if needed) and the first direct block,
631 * @blks: on return it will store the total number of allocated
634 static int ext4_alloc_blocks(handle_t
*handle
, struct inode
*inode
,
635 ext4_lblk_t iblock
, ext4_fsblk_t goal
,
636 int indirect_blks
, int blks
,
637 ext4_fsblk_t new_blocks
[4], int *err
)
639 struct ext4_allocation_request ar
;
641 unsigned long count
= 0, blk_allocated
= 0;
643 ext4_fsblk_t current_block
= 0;
647 * Here we try to allocate the requested multiple blocks at once,
648 * on a best-effort basis.
649 * To build a branch, we should allocate blocks for
650 * the indirect blocks(if not allocated yet), and at least
651 * the first direct block of this branch. That's the
652 * minimum number of blocks need to allocate(required)
654 /* first we try to allocate the indirect blocks */
655 target
= indirect_blks
;
658 /* allocating blocks for indirect blocks and direct blocks */
659 current_block
= ext4_new_meta_blocks(handle
, inode
,
664 BUG_ON(current_block
+ count
> EXT4_MAX_BLOCK_FILE_PHYS
);
667 /* allocate blocks for indirect blocks */
668 while (index
< indirect_blks
&& count
) {
669 new_blocks
[index
++] = current_block
++;
674 * save the new block number
675 * for the first direct block
677 new_blocks
[index
] = current_block
;
678 printk(KERN_INFO
"%s returned more blocks than "
679 "requested\n", __func__
);
685 target
= blks
- count
;
686 blk_allocated
= count
;
689 /* Now allocate data blocks */
690 memset(&ar
, 0, sizeof(ar
));
695 if (S_ISREG(inode
->i_mode
))
696 /* enable in-core preallocation only for regular files */
697 ar
.flags
= EXT4_MB_HINT_DATA
;
699 current_block
= ext4_mb_new_blocks(handle
, &ar
, err
);
700 BUG_ON(current_block
+ ar
.len
> EXT4_MAX_BLOCK_FILE_PHYS
);
702 if (*err
&& (target
== blks
)) {
704 * if the allocation failed and we didn't allocate
710 if (target
== blks
) {
712 * save the new block number
713 * for the first direct block
715 new_blocks
[index
] = current_block
;
717 blk_allocated
+= ar
.len
;
720 /* total number of blocks allocated for direct blocks */
725 for (i
= 0; i
< index
; i
++)
726 ext4_free_blocks(handle
, inode
, new_blocks
[i
], 1, 0);
731 * ext4_alloc_branch - allocate and set up a chain of blocks.
733 * @indirect_blks: number of allocated indirect blocks
734 * @blks: number of allocated direct blocks
735 * @offsets: offsets (in the blocks) to store the pointers to next.
736 * @branch: place to store the chain in.
738 * This function allocates blocks, zeroes out all but the last one,
739 * links them into chain and (if we are synchronous) writes them to disk.
740 * In other words, it prepares a branch that can be spliced onto the
741 * inode. It stores the information about that chain in the branch[], in
742 * the same format as ext4_get_branch() would do. We are calling it after
743 * we had read the existing part of chain and partial points to the last
744 * triple of that (one with zero ->key). Upon the exit we have the same
745 * picture as after the successful ext4_get_block(), except that in one
746 * place chain is disconnected - *branch->p is still zero (we did not
747 * set the last link), but branch->key contains the number that should
748 * be placed into *branch->p to fill that gap.
750 * If allocation fails we free all blocks we've allocated (and forget
751 * their buffer_heads) and return the error value the from failed
752 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
753 * as described above and return 0.
755 static int ext4_alloc_branch(handle_t
*handle
, struct inode
*inode
,
756 ext4_lblk_t iblock
, int indirect_blks
,
757 int *blks
, ext4_fsblk_t goal
,
758 ext4_lblk_t
*offsets
, Indirect
*branch
)
760 int blocksize
= inode
->i_sb
->s_blocksize
;
763 struct buffer_head
*bh
;
765 ext4_fsblk_t new_blocks
[4];
766 ext4_fsblk_t current_block
;
768 num
= ext4_alloc_blocks(handle
, inode
, iblock
, goal
, indirect_blks
,
769 *blks
, new_blocks
, &err
);
773 branch
[0].key
= cpu_to_le32(new_blocks
[0]);
775 * metadata blocks and data blocks are allocated.
777 for (n
= 1; n
<= indirect_blks
; n
++) {
779 * Get buffer_head for parent block, zero it out
780 * and set the pointer to new one, then send
783 bh
= sb_getblk(inode
->i_sb
, new_blocks
[n
-1]);
786 BUFFER_TRACE(bh
, "call get_create_access");
787 err
= ext4_journal_get_create_access(handle
, bh
);
794 memset(bh
->b_data
, 0, blocksize
);
795 branch
[n
].p
= (__le32
*) bh
->b_data
+ offsets
[n
];
796 branch
[n
].key
= cpu_to_le32(new_blocks
[n
]);
797 *branch
[n
].p
= branch
[n
].key
;
798 if (n
== indirect_blks
) {
799 current_block
= new_blocks
[n
];
801 * End of chain, update the last new metablock of
802 * the chain to point to the new allocated
803 * data blocks numbers
805 for (i
= 1; i
< num
; i
++)
806 *(branch
[n
].p
+ i
) = cpu_to_le32(++current_block
);
808 BUFFER_TRACE(bh
, "marking uptodate");
809 set_buffer_uptodate(bh
);
812 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
813 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
820 /* Allocation failed, free what we already allocated */
821 for (i
= 1; i
<= n
; i
++) {
822 BUFFER_TRACE(branch
[i
].bh
, "call jbd2_journal_forget");
823 ext4_journal_forget(handle
, branch
[i
].bh
);
825 for (i
= 0; i
< indirect_blks
; i
++)
826 ext4_free_blocks(handle
, inode
, new_blocks
[i
], 1, 0);
828 ext4_free_blocks(handle
, inode
, new_blocks
[i
], num
, 0);
834 * ext4_splice_branch - splice the allocated branch onto inode.
836 * @block: (logical) number of block we are adding
837 * @chain: chain of indirect blocks (with a missing link - see
839 * @where: location of missing link
840 * @num: number of indirect blocks we are adding
841 * @blks: number of direct blocks we are adding
843 * This function fills the missing link and does all housekeeping needed in
844 * inode (->i_blocks, etc.). In case of success we end up with the full
845 * chain to new block and return 0.
847 static int ext4_splice_branch(handle_t
*handle
, struct inode
*inode
,
848 ext4_lblk_t block
, Indirect
*where
, int num
,
853 ext4_fsblk_t current_block
;
856 * If we're splicing into a [td]indirect block (as opposed to the
857 * inode) then we need to get write access to the [td]indirect block
861 BUFFER_TRACE(where
->bh
, "get_write_access");
862 err
= ext4_journal_get_write_access(handle
, where
->bh
);
868 *where
->p
= where
->key
;
871 * Update the host buffer_head or inode to point to more just allocated
872 * direct blocks blocks
874 if (num
== 0 && blks
> 1) {
875 current_block
= le32_to_cpu(where
->key
) + 1;
876 for (i
= 1; i
< blks
; i
++)
877 *(where
->p
+ i
) = cpu_to_le32(current_block
++);
880 /* We are done with atomic stuff, now do the rest of housekeeping */
881 /* had we spliced it onto indirect block? */
884 * If we spliced it onto an indirect block, we haven't
885 * altered the inode. Note however that if it is being spliced
886 * onto an indirect block at the very end of the file (the
887 * file is growing) then we *will* alter the inode to reflect
888 * the new i_size. But that is not done here - it is done in
889 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
891 jbd_debug(5, "splicing indirect only\n");
892 BUFFER_TRACE(where
->bh
, "call ext4_handle_dirty_metadata");
893 err
= ext4_handle_dirty_metadata(handle
, inode
, where
->bh
);
898 * OK, we spliced it into the inode itself on a direct block.
900 ext4_mark_inode_dirty(handle
, inode
);
901 jbd_debug(5, "splicing direct\n");
906 for (i
= 1; i
<= num
; i
++) {
907 BUFFER_TRACE(where
[i
].bh
, "call jbd2_journal_forget");
908 ext4_journal_forget(handle
, where
[i
].bh
);
909 ext4_free_blocks(handle
, inode
,
910 le32_to_cpu(where
[i
-1].key
), 1, 0);
912 ext4_free_blocks(handle
, inode
, le32_to_cpu(where
[num
].key
), blks
, 0);
918 * The ext4_ind_get_blocks() function handles non-extents inodes
919 * (i.e., using the traditional indirect/double-indirect i_blocks
920 * scheme) for ext4_get_blocks().
922 * Allocation strategy is simple: if we have to allocate something, we will
923 * have to go the whole way to leaf. So let's do it before attaching anything
924 * to tree, set linkage between the newborn blocks, write them if sync is
925 * required, recheck the path, free and repeat if check fails, otherwise
926 * set the last missing link (that will protect us from any truncate-generated
927 * removals - all blocks on the path are immune now) and possibly force the
928 * write on the parent block.
929 * That has a nice additional property: no special recovery from the failed
930 * allocations is needed - we simply release blocks and do not touch anything
931 * reachable from inode.
933 * `handle' can be NULL if create == 0.
935 * return > 0, # of blocks mapped or allocated.
936 * return = 0, if plain lookup failed.
937 * return < 0, error case.
939 * The ext4_ind_get_blocks() function should be called with
940 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
941 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
942 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
945 static int ext4_ind_get_blocks(handle_t
*handle
, struct inode
*inode
,
946 ext4_lblk_t iblock
, unsigned int maxblocks
,
947 struct buffer_head
*bh_result
,
951 ext4_lblk_t offsets
[4];
956 int blocks_to_boundary
= 0;
959 ext4_fsblk_t first_block
= 0;
961 J_ASSERT(!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
));
962 J_ASSERT(handle
!= NULL
|| (flags
& EXT4_GET_BLOCKS_CREATE
) == 0);
963 depth
= ext4_block_to_path(inode
, iblock
, offsets
,
964 &blocks_to_boundary
);
969 partial
= ext4_get_branch(inode
, depth
, offsets
, chain
, &err
);
971 /* Simplest case - block found, no allocation needed */
973 first_block
= le32_to_cpu(chain
[depth
- 1].key
);
974 clear_buffer_new(bh_result
);
977 while (count
< maxblocks
&& count
<= blocks_to_boundary
) {
980 blk
= le32_to_cpu(*(chain
[depth
-1].p
+ count
));
982 if (blk
== first_block
+ count
)
990 /* Next simple case - plain lookup or failed read of indirect block */
991 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0 || err
== -EIO
)
995 * Okay, we need to do block allocation.
997 goal
= ext4_find_goal(inode
, iblock
, partial
);
999 /* the number of blocks need to allocate for [d,t]indirect blocks */
1000 indirect_blks
= (chain
+ depth
) - partial
- 1;
1003 * Next look up the indirect map to count the totoal number of
1004 * direct blocks to allocate for this branch.
1006 count
= ext4_blks_to_allocate(partial
, indirect_blks
,
1007 maxblocks
, blocks_to_boundary
);
1009 * Block out ext4_truncate while we alter the tree
1011 err
= ext4_alloc_branch(handle
, inode
, iblock
, indirect_blks
,
1013 offsets
+ (partial
- chain
), partial
);
1016 * The ext4_splice_branch call will free and forget any buffers
1017 * on the new chain if there is a failure, but that risks using
1018 * up transaction credits, especially for bitmaps where the
1019 * credits cannot be returned. Can we handle this somehow? We
1020 * may need to return -EAGAIN upwards in the worst case. --sct
1023 err
= ext4_splice_branch(handle
, inode
, iblock
,
1024 partial
, indirect_blks
, count
);
1028 set_buffer_new(bh_result
);
1030 ext4_update_inode_fsync_trans(handle
, inode
, 1);
1032 map_bh(bh_result
, inode
->i_sb
, le32_to_cpu(chain
[depth
-1].key
));
1033 if (count
> blocks_to_boundary
)
1034 set_buffer_boundary(bh_result
);
1036 /* Clean up and exit */
1037 partial
= chain
+ depth
- 1; /* the whole chain */
1039 while (partial
> chain
) {
1040 BUFFER_TRACE(partial
->bh
, "call brelse");
1041 brelse(partial
->bh
);
1044 BUFFER_TRACE(bh_result
, "returned");
1049 qsize_t
ext4_get_reserved_space(struct inode
*inode
)
1051 unsigned long long total
;
1053 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1054 total
= EXT4_I(inode
)->i_reserved_data_blocks
+
1055 EXT4_I(inode
)->i_reserved_meta_blocks
;
1056 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1058 return (total
<< inode
->i_blkbits
);
1061 * Calculate the number of metadata blocks need to reserve
1062 * to allocate @blocks for non extent file based file
1064 static int ext4_indirect_calc_metadata_amount(struct inode
*inode
, int blocks
)
1066 int icap
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
1067 int ind_blks
, dind_blks
, tind_blks
;
1069 /* number of new indirect blocks needed */
1070 ind_blks
= (blocks
+ icap
- 1) / icap
;
1072 dind_blks
= (ind_blks
+ icap
- 1) / icap
;
1076 return ind_blks
+ dind_blks
+ tind_blks
;
1080 * Calculate the number of metadata blocks need to reserve
1081 * to allocate given number of blocks
1083 static int ext4_calc_metadata_amount(struct inode
*inode
, int blocks
)
1088 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
)
1089 return ext4_ext_calc_metadata_amount(inode
, blocks
);
1091 return ext4_indirect_calc_metadata_amount(inode
, blocks
);
1094 static void ext4_da_update_reserve_space(struct inode
*inode
, int used
)
1096 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1097 int total
, mdb
, mdb_free
;
1099 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1100 /* recalculate the number of metablocks still need to be reserved */
1101 total
= EXT4_I(inode
)->i_reserved_data_blocks
- used
;
1102 mdb
= ext4_calc_metadata_amount(inode
, total
);
1104 /* figure out how many metablocks to release */
1105 BUG_ON(mdb
> EXT4_I(inode
)->i_reserved_meta_blocks
);
1106 mdb_free
= EXT4_I(inode
)->i_reserved_meta_blocks
- mdb
;
1109 /* Account for allocated meta_blocks */
1110 mdb_free
-= EXT4_I(inode
)->i_allocated_meta_blocks
;
1112 /* update fs dirty blocks counter */
1113 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, mdb_free
);
1114 EXT4_I(inode
)->i_allocated_meta_blocks
= 0;
1115 EXT4_I(inode
)->i_reserved_meta_blocks
= mdb
;
1118 /* update per-inode reservations */
1119 BUG_ON(used
> EXT4_I(inode
)->i_reserved_data_blocks
);
1120 EXT4_I(inode
)->i_reserved_data_blocks
-= used
;
1121 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1124 * free those over-booking quota for metadata blocks
1127 vfs_dq_release_reservation_block(inode
, mdb_free
);
1130 * If we have done all the pending block allocations and if
1131 * there aren't any writers on the inode, we can discard the
1132 * inode's preallocations.
1134 if (!total
&& (atomic_read(&inode
->i_writecount
) == 0))
1135 ext4_discard_preallocations(inode
);
1138 static int check_block_validity(struct inode
*inode
, const char *msg
,
1139 sector_t logical
, sector_t phys
, int len
)
1141 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), phys
, len
)) {
1142 ext4_error(inode
->i_sb
, msg
,
1143 "inode #%lu logical block %llu mapped to %llu "
1144 "(size %d)", inode
->i_ino
,
1145 (unsigned long long) logical
,
1146 (unsigned long long) phys
, len
);
1153 * Return the number of contiguous dirty pages in a given inode
1154 * starting at page frame idx.
1156 static pgoff_t
ext4_num_dirty_pages(struct inode
*inode
, pgoff_t idx
,
1157 unsigned int max_pages
)
1159 struct address_space
*mapping
= inode
->i_mapping
;
1161 struct pagevec pvec
;
1163 int i
, nr_pages
, done
= 0;
1167 pagevec_init(&pvec
, 0);
1170 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
1171 PAGECACHE_TAG_DIRTY
,
1172 (pgoff_t
)PAGEVEC_SIZE
);
1175 for (i
= 0; i
< nr_pages
; i
++) {
1176 struct page
*page
= pvec
.pages
[i
];
1177 struct buffer_head
*bh
, *head
;
1180 if (unlikely(page
->mapping
!= mapping
) ||
1182 PageWriteback(page
) ||
1183 page
->index
!= idx
) {
1188 if (page_has_buffers(page
)) {
1189 bh
= head
= page_buffers(page
);
1191 if (!buffer_delay(bh
) &&
1192 !buffer_unwritten(bh
))
1194 bh
= bh
->b_this_page
;
1195 } while (!done
&& (bh
!= head
));
1202 if (num
>= max_pages
)
1205 pagevec_release(&pvec
);
1211 * The ext4_get_blocks() function tries to look up the requested blocks,
1212 * and returns if the blocks are already mapped.
1214 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1215 * and store the allocated blocks in the result buffer head and mark it
1218 * If file type is extents based, it will call ext4_ext_get_blocks(),
1219 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1222 * On success, it returns the number of blocks being mapped or allocate.
1223 * if create==0 and the blocks are pre-allocated and uninitialized block,
1224 * the result buffer head is unmapped. If the create ==1, it will make sure
1225 * the buffer head is mapped.
1227 * It returns 0 if plain look up failed (blocks have not been allocated), in
1228 * that casem, buffer head is unmapped
1230 * It returns the error in case of allocation failure.
1232 int ext4_get_blocks(handle_t
*handle
, struct inode
*inode
, sector_t block
,
1233 unsigned int max_blocks
, struct buffer_head
*bh
,
1238 clear_buffer_mapped(bh
);
1239 clear_buffer_unwritten(bh
);
1241 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1242 "logical block %lu\n", inode
->i_ino
, flags
, max_blocks
,
1243 (unsigned long)block
);
1245 * Try to see if we can get the block without requesting a new
1246 * file system block.
1248 down_read((&EXT4_I(inode
)->i_data_sem
));
1249 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
1250 retval
= ext4_ext_get_blocks(handle
, inode
, block
, max_blocks
,
1253 retval
= ext4_ind_get_blocks(handle
, inode
, block
, max_blocks
,
1256 up_read((&EXT4_I(inode
)->i_data_sem
));
1258 if (retval
> 0 && buffer_mapped(bh
)) {
1259 int ret
= check_block_validity(inode
, "file system corruption",
1260 block
, bh
->b_blocknr
, retval
);
1265 /* If it is only a block(s) look up */
1266 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0)
1270 * Returns if the blocks have already allocated
1272 * Note that if blocks have been preallocated
1273 * ext4_ext_get_block() returns th create = 0
1274 * with buffer head unmapped.
1276 if (retval
> 0 && buffer_mapped(bh
))
1280 * When we call get_blocks without the create flag, the
1281 * BH_Unwritten flag could have gotten set if the blocks
1282 * requested were part of a uninitialized extent. We need to
1283 * clear this flag now that we are committed to convert all or
1284 * part of the uninitialized extent to be an initialized
1285 * extent. This is because we need to avoid the combination
1286 * of BH_Unwritten and BH_Mapped flags being simultaneously
1287 * set on the buffer_head.
1289 clear_buffer_unwritten(bh
);
1292 * New blocks allocate and/or writing to uninitialized extent
1293 * will possibly result in updating i_data, so we take
1294 * the write lock of i_data_sem, and call get_blocks()
1295 * with create == 1 flag.
1297 down_write((&EXT4_I(inode
)->i_data_sem
));
1300 * if the caller is from delayed allocation writeout path
1301 * we have already reserved fs blocks for allocation
1302 * let the underlying get_block() function know to
1303 * avoid double accounting
1305 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
1306 EXT4_I(inode
)->i_delalloc_reserved_flag
= 1;
1308 * We need to check for EXT4 here because migrate
1309 * could have changed the inode type in between
1311 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
1312 retval
= ext4_ext_get_blocks(handle
, inode
, block
, max_blocks
,
1315 retval
= ext4_ind_get_blocks(handle
, inode
, block
,
1316 max_blocks
, bh
, flags
);
1318 if (retval
> 0 && buffer_new(bh
)) {
1320 * We allocated new blocks which will result in
1321 * i_data's format changing. Force the migrate
1322 * to fail by clearing migrate flags
1324 EXT4_I(inode
)->i_state
&= ~EXT4_STATE_EXT_MIGRATE
;
1328 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
1329 EXT4_I(inode
)->i_delalloc_reserved_flag
= 0;
1332 * Update reserved blocks/metadata blocks after successful
1333 * block allocation which had been deferred till now.
1335 if ((retval
> 0) && (flags
& EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE
))
1336 ext4_da_update_reserve_space(inode
, retval
);
1338 up_write((&EXT4_I(inode
)->i_data_sem
));
1339 if (retval
> 0 && buffer_mapped(bh
)) {
1340 int ret
= check_block_validity(inode
, "file system "
1341 "corruption after allocation",
1342 block
, bh
->b_blocknr
, retval
);
1349 /* Maximum number of blocks we map for direct IO at once. */
1350 #define DIO_MAX_BLOCKS 4096
1352 int ext4_get_block(struct inode
*inode
, sector_t iblock
,
1353 struct buffer_head
*bh_result
, int create
)
1355 handle_t
*handle
= ext4_journal_current_handle();
1356 int ret
= 0, started
= 0;
1357 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
1360 if (create
&& !handle
) {
1361 /* Direct IO write... */
1362 if (max_blocks
> DIO_MAX_BLOCKS
)
1363 max_blocks
= DIO_MAX_BLOCKS
;
1364 dio_credits
= ext4_chunk_trans_blocks(inode
, max_blocks
);
1365 handle
= ext4_journal_start(inode
, dio_credits
);
1366 if (IS_ERR(handle
)) {
1367 ret
= PTR_ERR(handle
);
1373 ret
= ext4_get_blocks(handle
, inode
, iblock
, max_blocks
, bh_result
,
1374 create
? EXT4_GET_BLOCKS_CREATE
: 0);
1376 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
1380 ext4_journal_stop(handle
);
1386 * `handle' can be NULL if create is zero
1388 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
1389 ext4_lblk_t block
, int create
, int *errp
)
1391 struct buffer_head dummy
;
1395 J_ASSERT(handle
!= NULL
|| create
== 0);
1398 dummy
.b_blocknr
= -1000;
1399 buffer_trace_init(&dummy
.b_history
);
1401 flags
|= EXT4_GET_BLOCKS_CREATE
;
1402 err
= ext4_get_blocks(handle
, inode
, block
, 1, &dummy
, flags
);
1404 * ext4_get_blocks() returns number of blocks mapped. 0 in
1413 if (!err
&& buffer_mapped(&dummy
)) {
1414 struct buffer_head
*bh
;
1415 bh
= sb_getblk(inode
->i_sb
, dummy
.b_blocknr
);
1420 if (buffer_new(&dummy
)) {
1421 J_ASSERT(create
!= 0);
1422 J_ASSERT(handle
!= NULL
);
1425 * Now that we do not always journal data, we should
1426 * keep in mind whether this should always journal the
1427 * new buffer as metadata. For now, regular file
1428 * writes use ext4_get_block instead, so it's not a
1432 BUFFER_TRACE(bh
, "call get_create_access");
1433 fatal
= ext4_journal_get_create_access(handle
, bh
);
1434 if (!fatal
&& !buffer_uptodate(bh
)) {
1435 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
1436 set_buffer_uptodate(bh
);
1439 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
1440 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
1444 BUFFER_TRACE(bh
, "not a new buffer");
1457 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
1458 ext4_lblk_t block
, int create
, int *err
)
1460 struct buffer_head
*bh
;
1462 bh
= ext4_getblk(handle
, inode
, block
, create
, err
);
1465 if (buffer_uptodate(bh
))
1467 ll_rw_block(READ_META
, 1, &bh
);
1469 if (buffer_uptodate(bh
))
1476 static int walk_page_buffers(handle_t
*handle
,
1477 struct buffer_head
*head
,
1481 int (*fn
)(handle_t
*handle
,
1482 struct buffer_head
*bh
))
1484 struct buffer_head
*bh
;
1485 unsigned block_start
, block_end
;
1486 unsigned blocksize
= head
->b_size
;
1488 struct buffer_head
*next
;
1490 for (bh
= head
, block_start
= 0;
1491 ret
== 0 && (bh
!= head
|| !block_start
);
1492 block_start
= block_end
, bh
= next
) {
1493 next
= bh
->b_this_page
;
1494 block_end
= block_start
+ blocksize
;
1495 if (block_end
<= from
|| block_start
>= to
) {
1496 if (partial
&& !buffer_uptodate(bh
))
1500 err
= (*fn
)(handle
, bh
);
1508 * To preserve ordering, it is essential that the hole instantiation and
1509 * the data write be encapsulated in a single transaction. We cannot
1510 * close off a transaction and start a new one between the ext4_get_block()
1511 * and the commit_write(). So doing the jbd2_journal_start at the start of
1512 * prepare_write() is the right place.
1514 * Also, this function can nest inside ext4_writepage() ->
1515 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1516 * has generated enough buffer credits to do the whole page. So we won't
1517 * block on the journal in that case, which is good, because the caller may
1520 * By accident, ext4 can be reentered when a transaction is open via
1521 * quota file writes. If we were to commit the transaction while thus
1522 * reentered, there can be a deadlock - we would be holding a quota
1523 * lock, and the commit would never complete if another thread had a
1524 * transaction open and was blocking on the quota lock - a ranking
1527 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1528 * will _not_ run commit under these circumstances because handle->h_ref
1529 * is elevated. We'll still have enough credits for the tiny quotafile
1532 static int do_journal_get_write_access(handle_t
*handle
,
1533 struct buffer_head
*bh
)
1535 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1537 return ext4_journal_get_write_access(handle
, bh
);
1541 * Truncate blocks that were not used by write. We have to truncate the
1542 * pagecache as well so that corresponding buffers get properly unmapped.
1544 static void ext4_truncate_failed_write(struct inode
*inode
)
1546 truncate_inode_pages(inode
->i_mapping
, inode
->i_size
);
1547 ext4_truncate(inode
);
1550 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
1551 loff_t pos
, unsigned len
, unsigned flags
,
1552 struct page
**pagep
, void **fsdata
)
1554 struct inode
*inode
= mapping
->host
;
1555 int ret
, needed_blocks
;
1562 trace_ext4_write_begin(inode
, pos
, len
, flags
);
1564 * Reserve one block more for addition to orphan list in case
1565 * we allocate blocks but write fails for some reason
1567 needed_blocks
= ext4_writepage_trans_blocks(inode
) + 1;
1568 index
= pos
>> PAGE_CACHE_SHIFT
;
1569 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1573 handle
= ext4_journal_start(inode
, needed_blocks
);
1574 if (IS_ERR(handle
)) {
1575 ret
= PTR_ERR(handle
);
1579 /* We cannot recurse into the filesystem as the transaction is already
1581 flags
|= AOP_FLAG_NOFS
;
1583 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1585 ext4_journal_stop(handle
);
1591 ret
= block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
1594 if (!ret
&& ext4_should_journal_data(inode
)) {
1595 ret
= walk_page_buffers(handle
, page_buffers(page
),
1596 from
, to
, NULL
, do_journal_get_write_access
);
1601 page_cache_release(page
);
1603 * block_write_begin may have instantiated a few blocks
1604 * outside i_size. Trim these off again. Don't need
1605 * i_size_read because we hold i_mutex.
1607 * Add inode to orphan list in case we crash before
1610 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1611 ext4_orphan_add(handle
, inode
);
1613 ext4_journal_stop(handle
);
1614 if (pos
+ len
> inode
->i_size
) {
1615 ext4_truncate_failed_write(inode
);
1617 * If truncate failed early the inode might
1618 * still be on the orphan list; we need to
1619 * make sure the inode is removed from the
1620 * orphan list in that case.
1623 ext4_orphan_del(NULL
, inode
);
1627 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
1633 /* For write_end() in data=journal mode */
1634 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1636 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1638 set_buffer_uptodate(bh
);
1639 return ext4_handle_dirty_metadata(handle
, NULL
, bh
);
1642 static int ext4_generic_write_end(struct file
*file
,
1643 struct address_space
*mapping
,
1644 loff_t pos
, unsigned len
, unsigned copied
,
1645 struct page
*page
, void *fsdata
)
1647 int i_size_changed
= 0;
1648 struct inode
*inode
= mapping
->host
;
1649 handle_t
*handle
= ext4_journal_current_handle();
1651 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1654 * No need to use i_size_read() here, the i_size
1655 * cannot change under us because we hold i_mutex.
1657 * But it's important to update i_size while still holding page lock:
1658 * page writeout could otherwise come in and zero beyond i_size.
1660 if (pos
+ copied
> inode
->i_size
) {
1661 i_size_write(inode
, pos
+ copied
);
1665 if (pos
+ copied
> EXT4_I(inode
)->i_disksize
) {
1666 /* We need to mark inode dirty even if
1667 * new_i_size is less that inode->i_size
1668 * bu greater than i_disksize.(hint delalloc)
1670 ext4_update_i_disksize(inode
, (pos
+ copied
));
1674 page_cache_release(page
);
1677 * Don't mark the inode dirty under page lock. First, it unnecessarily
1678 * makes the holding time of page lock longer. Second, it forces lock
1679 * ordering of page lock and transaction start for journaling
1683 ext4_mark_inode_dirty(handle
, inode
);
1689 * We need to pick up the new inode size which generic_commit_write gave us
1690 * `file' can be NULL - eg, when called from page_symlink().
1692 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1693 * buffers are managed internally.
1695 static int ext4_ordered_write_end(struct file
*file
,
1696 struct address_space
*mapping
,
1697 loff_t pos
, unsigned len
, unsigned copied
,
1698 struct page
*page
, void *fsdata
)
1700 handle_t
*handle
= ext4_journal_current_handle();
1701 struct inode
*inode
= mapping
->host
;
1704 trace_ext4_ordered_write_end(inode
, pos
, len
, copied
);
1705 ret
= ext4_jbd2_file_inode(handle
, inode
);
1708 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1711 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1712 /* if we have allocated more blocks and copied
1713 * less. We will have blocks allocated outside
1714 * inode->i_size. So truncate them
1716 ext4_orphan_add(handle
, inode
);
1720 ret2
= ext4_journal_stop(handle
);
1724 if (pos
+ len
> inode
->i_size
) {
1725 ext4_truncate_failed_write(inode
);
1727 * If truncate failed early the inode might still be
1728 * on the orphan list; we need to make sure the inode
1729 * is removed from the orphan list in that case.
1732 ext4_orphan_del(NULL
, inode
);
1736 return ret
? ret
: copied
;
1739 static int ext4_writeback_write_end(struct file
*file
,
1740 struct address_space
*mapping
,
1741 loff_t pos
, unsigned len
, unsigned copied
,
1742 struct page
*page
, void *fsdata
)
1744 handle_t
*handle
= ext4_journal_current_handle();
1745 struct inode
*inode
= mapping
->host
;
1748 trace_ext4_writeback_write_end(inode
, pos
, len
, copied
);
1749 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1752 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1753 /* if we have allocated more blocks and copied
1754 * less. We will have blocks allocated outside
1755 * inode->i_size. So truncate them
1757 ext4_orphan_add(handle
, inode
);
1762 ret2
= ext4_journal_stop(handle
);
1766 if (pos
+ len
> inode
->i_size
) {
1767 ext4_truncate_failed_write(inode
);
1769 * If truncate failed early the inode might still be
1770 * on the orphan list; we need to make sure the inode
1771 * is removed from the orphan list in that case.
1774 ext4_orphan_del(NULL
, inode
);
1777 return ret
? ret
: copied
;
1780 static int ext4_journalled_write_end(struct file
*file
,
1781 struct address_space
*mapping
,
1782 loff_t pos
, unsigned len
, unsigned copied
,
1783 struct page
*page
, void *fsdata
)
1785 handle_t
*handle
= ext4_journal_current_handle();
1786 struct inode
*inode
= mapping
->host
;
1792 trace_ext4_journalled_write_end(inode
, pos
, len
, copied
);
1793 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1797 if (!PageUptodate(page
))
1799 page_zero_new_buffers(page
, from
+copied
, to
);
1802 ret
= walk_page_buffers(handle
, page_buffers(page
), from
,
1803 to
, &partial
, write_end_fn
);
1805 SetPageUptodate(page
);
1806 new_i_size
= pos
+ copied
;
1807 if (new_i_size
> inode
->i_size
)
1808 i_size_write(inode
, pos
+copied
);
1809 EXT4_I(inode
)->i_state
|= EXT4_STATE_JDATA
;
1810 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
1811 ext4_update_i_disksize(inode
, new_i_size
);
1812 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1818 page_cache_release(page
);
1819 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1820 /* if we have allocated more blocks and copied
1821 * less. We will have blocks allocated outside
1822 * inode->i_size. So truncate them
1824 ext4_orphan_add(handle
, inode
);
1826 ret2
= ext4_journal_stop(handle
);
1829 if (pos
+ len
> inode
->i_size
) {
1830 ext4_truncate_failed_write(inode
);
1832 * If truncate failed early the inode might still be
1833 * on the orphan list; we need to make sure the inode
1834 * is removed from the orphan list in that case.
1837 ext4_orphan_del(NULL
, inode
);
1840 return ret
? ret
: copied
;
1843 static int ext4_da_reserve_space(struct inode
*inode
, int nrblocks
)
1846 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1847 unsigned long md_needed
, mdblocks
, total
= 0;
1850 * recalculate the amount of metadata blocks to reserve
1851 * in order to allocate nrblocks
1852 * worse case is one extent per block
1855 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1856 total
= EXT4_I(inode
)->i_reserved_data_blocks
+ nrblocks
;
1857 mdblocks
= ext4_calc_metadata_amount(inode
, total
);
1858 BUG_ON(mdblocks
< EXT4_I(inode
)->i_reserved_meta_blocks
);
1860 md_needed
= mdblocks
- EXT4_I(inode
)->i_reserved_meta_blocks
;
1861 total
= md_needed
+ nrblocks
;
1864 * Make quota reservation here to prevent quota overflow
1865 * later. Real quota accounting is done at pages writeout
1868 if (vfs_dq_reserve_block(inode
, total
)) {
1869 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1873 if (ext4_claim_free_blocks(sbi
, total
)) {
1874 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1875 vfs_dq_release_reservation_block(inode
, total
);
1876 if (ext4_should_retry_alloc(inode
->i_sb
, &retries
)) {
1882 EXT4_I(inode
)->i_reserved_data_blocks
+= nrblocks
;
1883 EXT4_I(inode
)->i_reserved_meta_blocks
= mdblocks
;
1885 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1886 return 0; /* success */
1889 static void ext4_da_release_space(struct inode
*inode
, int to_free
)
1891 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1892 int total
, mdb
, mdb_free
, release
;
1895 return; /* Nothing to release, exit */
1897 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1899 if (!EXT4_I(inode
)->i_reserved_data_blocks
) {
1901 * if there is no reserved blocks, but we try to free some
1902 * then the counter is messed up somewhere.
1903 * but since this function is called from invalidate
1904 * page, it's harmless to return without any action
1906 printk(KERN_INFO
"ext4 delalloc try to release %d reserved "
1907 "blocks for inode %lu, but there is no reserved "
1908 "data blocks\n", to_free
, inode
->i_ino
);
1909 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1913 /* recalculate the number of metablocks still need to be reserved */
1914 total
= EXT4_I(inode
)->i_reserved_data_blocks
- to_free
;
1915 mdb
= ext4_calc_metadata_amount(inode
, total
);
1917 /* figure out how many metablocks to release */
1918 BUG_ON(mdb
> EXT4_I(inode
)->i_reserved_meta_blocks
);
1919 mdb_free
= EXT4_I(inode
)->i_reserved_meta_blocks
- mdb
;
1921 release
= to_free
+ mdb_free
;
1923 /* update fs dirty blocks counter for truncate case */
1924 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, release
);
1926 /* update per-inode reservations */
1927 BUG_ON(to_free
> EXT4_I(inode
)->i_reserved_data_blocks
);
1928 EXT4_I(inode
)->i_reserved_data_blocks
-= to_free
;
1930 BUG_ON(mdb
> EXT4_I(inode
)->i_reserved_meta_blocks
);
1931 EXT4_I(inode
)->i_reserved_meta_blocks
= mdb
;
1932 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1934 vfs_dq_release_reservation_block(inode
, release
);
1937 static void ext4_da_page_release_reservation(struct page
*page
,
1938 unsigned long offset
)
1941 struct buffer_head
*head
, *bh
;
1942 unsigned int curr_off
= 0;
1944 head
= page_buffers(page
);
1947 unsigned int next_off
= curr_off
+ bh
->b_size
;
1949 if ((offset
<= curr_off
) && (buffer_delay(bh
))) {
1951 clear_buffer_delay(bh
);
1953 curr_off
= next_off
;
1954 } while ((bh
= bh
->b_this_page
) != head
);
1955 ext4_da_release_space(page
->mapping
->host
, to_release
);
1959 * mpage_da_submit_io - walks through extent of pages and try to write
1960 * them with writepage() call back
1962 * @mpd->inode: inode
1963 * @mpd->first_page: first page of the extent
1964 * @mpd->next_page: page after the last page of the extent
1966 * By the time mpage_da_submit_io() is called we expect all blocks
1967 * to be allocated. this may be wrong if allocation failed.
1969 * As pages are already locked by write_cache_pages(), we can't use it
1971 static int mpage_da_submit_io(struct mpage_da_data
*mpd
)
1974 struct pagevec pvec
;
1975 unsigned long index
, end
;
1976 int ret
= 0, err
, nr_pages
, i
;
1977 struct inode
*inode
= mpd
->inode
;
1978 struct address_space
*mapping
= inode
->i_mapping
;
1980 BUG_ON(mpd
->next_page
<= mpd
->first_page
);
1982 * We need to start from the first_page to the next_page - 1
1983 * to make sure we also write the mapped dirty buffer_heads.
1984 * If we look at mpd->b_blocknr we would only be looking
1985 * at the currently mapped buffer_heads.
1987 index
= mpd
->first_page
;
1988 end
= mpd
->next_page
- 1;
1990 pagevec_init(&pvec
, 0);
1991 while (index
<= end
) {
1992 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1995 for (i
= 0; i
< nr_pages
; i
++) {
1996 struct page
*page
= pvec
.pages
[i
];
1998 index
= page
->index
;
2003 BUG_ON(!PageLocked(page
));
2004 BUG_ON(PageWriteback(page
));
2006 pages_skipped
= mpd
->wbc
->pages_skipped
;
2007 err
= mapping
->a_ops
->writepage(page
, mpd
->wbc
);
2008 if (!err
&& (pages_skipped
== mpd
->wbc
->pages_skipped
))
2010 * have successfully written the page
2011 * without skipping the same
2013 mpd
->pages_written
++;
2015 * In error case, we have to continue because
2016 * remaining pages are still locked
2017 * XXX: unlock and re-dirty them?
2022 pagevec_release(&pvec
);
2028 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2030 * @mpd->inode - inode to walk through
2031 * @exbh->b_blocknr - first block on a disk
2032 * @exbh->b_size - amount of space in bytes
2033 * @logical - first logical block to start assignment with
2035 * the function goes through all passed space and put actual disk
2036 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2038 static void mpage_put_bnr_to_bhs(struct mpage_da_data
*mpd
, sector_t logical
,
2039 struct buffer_head
*exbh
)
2041 struct inode
*inode
= mpd
->inode
;
2042 struct address_space
*mapping
= inode
->i_mapping
;
2043 int blocks
= exbh
->b_size
>> inode
->i_blkbits
;
2044 sector_t pblock
= exbh
->b_blocknr
, cur_logical
;
2045 struct buffer_head
*head
, *bh
;
2047 struct pagevec pvec
;
2050 index
= logical
>> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2051 end
= (logical
+ blocks
- 1) >> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2052 cur_logical
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2054 pagevec_init(&pvec
, 0);
2056 while (index
<= end
) {
2057 /* XXX: optimize tail */
2058 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
2061 for (i
= 0; i
< nr_pages
; i
++) {
2062 struct page
*page
= pvec
.pages
[i
];
2064 index
= page
->index
;
2069 BUG_ON(!PageLocked(page
));
2070 BUG_ON(PageWriteback(page
));
2071 BUG_ON(!page_has_buffers(page
));
2073 bh
= page_buffers(page
);
2076 /* skip blocks out of the range */
2078 if (cur_logical
>= logical
)
2081 } while ((bh
= bh
->b_this_page
) != head
);
2084 if (cur_logical
>= logical
+ blocks
)
2087 if (buffer_delay(bh
) ||
2088 buffer_unwritten(bh
)) {
2090 BUG_ON(bh
->b_bdev
!= inode
->i_sb
->s_bdev
);
2092 if (buffer_delay(bh
)) {
2093 clear_buffer_delay(bh
);
2094 bh
->b_blocknr
= pblock
;
2097 * unwritten already should have
2098 * blocknr assigned. Verify that
2100 clear_buffer_unwritten(bh
);
2101 BUG_ON(bh
->b_blocknr
!= pblock
);
2104 } else if (buffer_mapped(bh
))
2105 BUG_ON(bh
->b_blocknr
!= pblock
);
2109 } while ((bh
= bh
->b_this_page
) != head
);
2111 pagevec_release(&pvec
);
2117 * __unmap_underlying_blocks - just a helper function to unmap
2118 * set of blocks described by @bh
2120 static inline void __unmap_underlying_blocks(struct inode
*inode
,
2121 struct buffer_head
*bh
)
2123 struct block_device
*bdev
= inode
->i_sb
->s_bdev
;
2126 blocks
= bh
->b_size
>> inode
->i_blkbits
;
2127 for (i
= 0; i
< blocks
; i
++)
2128 unmap_underlying_metadata(bdev
, bh
->b_blocknr
+ i
);
2131 static void ext4_da_block_invalidatepages(struct mpage_da_data
*mpd
,
2132 sector_t logical
, long blk_cnt
)
2136 struct pagevec pvec
;
2137 struct inode
*inode
= mpd
->inode
;
2138 struct address_space
*mapping
= inode
->i_mapping
;
2140 index
= logical
>> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2141 end
= (logical
+ blk_cnt
- 1) >>
2142 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2143 while (index
<= end
) {
2144 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
2147 for (i
= 0; i
< nr_pages
; i
++) {
2148 struct page
*page
= pvec
.pages
[i
];
2149 index
= page
->index
;
2154 BUG_ON(!PageLocked(page
));
2155 BUG_ON(PageWriteback(page
));
2156 block_invalidatepage(page
, 0);
2157 ClearPageUptodate(page
);
2164 static void ext4_print_free_blocks(struct inode
*inode
)
2166 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
2167 printk(KERN_EMERG
"Total free blocks count %lld\n",
2168 ext4_count_free_blocks(inode
->i_sb
));
2169 printk(KERN_EMERG
"Free/Dirty block details\n");
2170 printk(KERN_EMERG
"free_blocks=%lld\n",
2171 (long long)percpu_counter_sum(&sbi
->s_freeblocks_counter
));
2172 printk(KERN_EMERG
"dirty_blocks=%lld\n",
2173 (long long)percpu_counter_sum(&sbi
->s_dirtyblocks_counter
));
2174 printk(KERN_EMERG
"Block reservation details\n");
2175 printk(KERN_EMERG
"i_reserved_data_blocks=%u\n",
2176 EXT4_I(inode
)->i_reserved_data_blocks
);
2177 printk(KERN_EMERG
"i_reserved_meta_blocks=%u\n",
2178 EXT4_I(inode
)->i_reserved_meta_blocks
);
2183 * mpage_da_map_blocks - go through given space
2185 * @mpd - bh describing space
2187 * The function skips space we know is already mapped to disk blocks.
2190 static int mpage_da_map_blocks(struct mpage_da_data
*mpd
)
2192 int err
, blks
, get_blocks_flags
;
2193 struct buffer_head
new;
2194 sector_t next
= mpd
->b_blocknr
;
2195 unsigned max_blocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
2196 loff_t disksize
= EXT4_I(mpd
->inode
)->i_disksize
;
2197 handle_t
*handle
= NULL
;
2200 * We consider only non-mapped and non-allocated blocks
2202 if ((mpd
->b_state
& (1 << BH_Mapped
)) &&
2203 !(mpd
->b_state
& (1 << BH_Delay
)) &&
2204 !(mpd
->b_state
& (1 << BH_Unwritten
)))
2208 * If we didn't accumulate anything to write simply return
2213 handle
= ext4_journal_current_handle();
2217 * Call ext4_get_blocks() to allocate any delayed allocation
2218 * blocks, or to convert an uninitialized extent to be
2219 * initialized (in the case where we have written into
2220 * one or more preallocated blocks).
2222 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2223 * indicate that we are on the delayed allocation path. This
2224 * affects functions in many different parts of the allocation
2225 * call path. This flag exists primarily because we don't
2226 * want to change *many* call functions, so ext4_get_blocks()
2227 * will set the magic i_delalloc_reserved_flag once the
2228 * inode's allocation semaphore is taken.
2230 * If the blocks in questions were delalloc blocks, set
2231 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2232 * variables are updated after the blocks have been allocated.
2235 get_blocks_flags
= (EXT4_GET_BLOCKS_CREATE
|
2236 EXT4_GET_BLOCKS_DELALLOC_RESERVE
);
2237 if (mpd
->b_state
& (1 << BH_Delay
))
2238 get_blocks_flags
|= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE
;
2239 blks
= ext4_get_blocks(handle
, mpd
->inode
, next
, max_blocks
,
2240 &new, get_blocks_flags
);
2244 * If get block returns with error we simply
2245 * return. Later writepage will redirty the page and
2246 * writepages will find the dirty page again
2251 if (err
== -ENOSPC
&&
2252 ext4_count_free_blocks(mpd
->inode
->i_sb
)) {
2258 * get block failure will cause us to loop in
2259 * writepages, because a_ops->writepage won't be able
2260 * to make progress. The page will be redirtied by
2261 * writepage and writepages will again try to write
2264 printk(KERN_EMERG
"%s block allocation failed for inode %lu "
2265 "at logical offset %llu with max blocks "
2266 "%zd with error %d\n",
2267 __func__
, mpd
->inode
->i_ino
,
2268 (unsigned long long)next
,
2269 mpd
->b_size
>> mpd
->inode
->i_blkbits
, err
);
2270 printk(KERN_EMERG
"This should not happen.!! "
2271 "Data will be lost\n");
2272 if (err
== -ENOSPC
) {
2273 ext4_print_free_blocks(mpd
->inode
);
2275 /* invalidate all the pages */
2276 ext4_da_block_invalidatepages(mpd
, next
,
2277 mpd
->b_size
>> mpd
->inode
->i_blkbits
);
2282 new.b_size
= (blks
<< mpd
->inode
->i_blkbits
);
2284 if (buffer_new(&new))
2285 __unmap_underlying_blocks(mpd
->inode
, &new);
2288 * If blocks are delayed marked, we need to
2289 * put actual blocknr and drop delayed bit
2291 if ((mpd
->b_state
& (1 << BH_Delay
)) ||
2292 (mpd
->b_state
& (1 << BH_Unwritten
)))
2293 mpage_put_bnr_to_bhs(mpd
, next
, &new);
2295 if (ext4_should_order_data(mpd
->inode
)) {
2296 err
= ext4_jbd2_file_inode(handle
, mpd
->inode
);
2302 * Update on-disk size along with block allocation.
2304 disksize
= ((loff_t
) next
+ blks
) << mpd
->inode
->i_blkbits
;
2305 if (disksize
> i_size_read(mpd
->inode
))
2306 disksize
= i_size_read(mpd
->inode
);
2307 if (disksize
> EXT4_I(mpd
->inode
)->i_disksize
) {
2308 ext4_update_i_disksize(mpd
->inode
, disksize
);
2309 return ext4_mark_inode_dirty(handle
, mpd
->inode
);
2315 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2316 (1 << BH_Delay) | (1 << BH_Unwritten))
2319 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2321 * @mpd->lbh - extent of blocks
2322 * @logical - logical number of the block in the file
2323 * @bh - bh of the block (used to access block's state)
2325 * the function is used to collect contig. blocks in same state
2327 static void mpage_add_bh_to_extent(struct mpage_da_data
*mpd
,
2328 sector_t logical
, size_t b_size
,
2329 unsigned long b_state
)
2332 int nrblocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
2334 /* check if thereserved journal credits might overflow */
2335 if (!(EXT4_I(mpd
->inode
)->i_flags
& EXT4_EXTENTS_FL
)) {
2336 if (nrblocks
>= EXT4_MAX_TRANS_DATA
) {
2338 * With non-extent format we are limited by the journal
2339 * credit available. Total credit needed to insert
2340 * nrblocks contiguous blocks is dependent on the
2341 * nrblocks. So limit nrblocks.
2344 } else if ((nrblocks
+ (b_size
>> mpd
->inode
->i_blkbits
)) >
2345 EXT4_MAX_TRANS_DATA
) {
2347 * Adding the new buffer_head would make it cross the
2348 * allowed limit for which we have journal credit
2349 * reserved. So limit the new bh->b_size
2351 b_size
= (EXT4_MAX_TRANS_DATA
- nrblocks
) <<
2352 mpd
->inode
->i_blkbits
;
2353 /* we will do mpage_da_submit_io in the next loop */
2357 * First block in the extent
2359 if (mpd
->b_size
== 0) {
2360 mpd
->b_blocknr
= logical
;
2361 mpd
->b_size
= b_size
;
2362 mpd
->b_state
= b_state
& BH_FLAGS
;
2366 next
= mpd
->b_blocknr
+ nrblocks
;
2368 * Can we merge the block to our big extent?
2370 if (logical
== next
&& (b_state
& BH_FLAGS
) == mpd
->b_state
) {
2371 mpd
->b_size
+= b_size
;
2377 * We couldn't merge the block to our extent, so we
2378 * need to flush current extent and start new one
2380 if (mpage_da_map_blocks(mpd
) == 0)
2381 mpage_da_submit_io(mpd
);
2386 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
)
2388 return (buffer_delay(bh
) || buffer_unwritten(bh
)) && buffer_dirty(bh
);
2392 * __mpage_da_writepage - finds extent of pages and blocks
2394 * @page: page to consider
2395 * @wbc: not used, we just follow rules
2398 * The function finds extents of pages and scan them for all blocks.
2400 static int __mpage_da_writepage(struct page
*page
,
2401 struct writeback_control
*wbc
, void *data
)
2403 struct mpage_da_data
*mpd
= data
;
2404 struct inode
*inode
= mpd
->inode
;
2405 struct buffer_head
*bh
, *head
;
2410 * Rest of the page in the page_vec
2411 * redirty then and skip then. We will
2412 * try to to write them again after
2413 * starting a new transaction
2415 redirty_page_for_writepage(wbc
, page
);
2417 return MPAGE_DA_EXTENT_TAIL
;
2420 * Can we merge this page to current extent?
2422 if (mpd
->next_page
!= page
->index
) {
2424 * Nope, we can't. So, we map non-allocated blocks
2425 * and start IO on them using writepage()
2427 if (mpd
->next_page
!= mpd
->first_page
) {
2428 if (mpage_da_map_blocks(mpd
) == 0)
2429 mpage_da_submit_io(mpd
);
2431 * skip rest of the page in the page_vec
2434 redirty_page_for_writepage(wbc
, page
);
2436 return MPAGE_DA_EXTENT_TAIL
;
2440 * Start next extent of pages ...
2442 mpd
->first_page
= page
->index
;
2452 mpd
->next_page
= page
->index
+ 1;
2453 logical
= (sector_t
) page
->index
<<
2454 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2456 if (!page_has_buffers(page
)) {
2457 mpage_add_bh_to_extent(mpd
, logical
, PAGE_CACHE_SIZE
,
2458 (1 << BH_Dirty
) | (1 << BH_Uptodate
));
2460 return MPAGE_DA_EXTENT_TAIL
;
2463 * Page with regular buffer heads, just add all dirty ones
2465 head
= page_buffers(page
);
2468 BUG_ON(buffer_locked(bh
));
2470 * We need to try to allocate
2471 * unmapped blocks in the same page.
2472 * Otherwise we won't make progress
2473 * with the page in ext4_writepage
2475 if (ext4_bh_delay_or_unwritten(NULL
, bh
)) {
2476 mpage_add_bh_to_extent(mpd
, logical
,
2480 return MPAGE_DA_EXTENT_TAIL
;
2481 } else if (buffer_dirty(bh
) && (buffer_mapped(bh
))) {
2483 * mapped dirty buffer. We need to update
2484 * the b_state because we look at
2485 * b_state in mpage_da_map_blocks. We don't
2486 * update b_size because if we find an
2487 * unmapped buffer_head later we need to
2488 * use the b_state flag of that buffer_head.
2490 if (mpd
->b_size
== 0)
2491 mpd
->b_state
= bh
->b_state
& BH_FLAGS
;
2494 } while ((bh
= bh
->b_this_page
) != head
);
2501 * This is a special get_blocks_t callback which is used by
2502 * ext4_da_write_begin(). It will either return mapped block or
2503 * reserve space for a single block.
2505 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2506 * We also have b_blocknr = -1 and b_bdev initialized properly
2508 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2509 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2510 * initialized properly.
2512 static int ext4_da_get_block_prep(struct inode
*inode
, sector_t iblock
,
2513 struct buffer_head
*bh_result
, int create
)
2516 sector_t invalid_block
= ~((sector_t
) 0xffff);
2518 if (invalid_block
< ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
))
2521 BUG_ON(create
== 0);
2522 BUG_ON(bh_result
->b_size
!= inode
->i_sb
->s_blocksize
);
2525 * first, we need to know whether the block is allocated already
2526 * preallocated blocks are unmapped but should treated
2527 * the same as allocated blocks.
2529 ret
= ext4_get_blocks(NULL
, inode
, iblock
, 1, bh_result
, 0);
2530 if ((ret
== 0) && !buffer_delay(bh_result
)) {
2531 /* the block isn't (pre)allocated yet, let's reserve space */
2533 * XXX: __block_prepare_write() unmaps passed block,
2536 ret
= ext4_da_reserve_space(inode
, 1);
2538 /* not enough space to reserve */
2541 map_bh(bh_result
, inode
->i_sb
, invalid_block
);
2542 set_buffer_new(bh_result
);
2543 set_buffer_delay(bh_result
);
2544 } else if (ret
> 0) {
2545 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
2546 if (buffer_unwritten(bh_result
)) {
2547 /* A delayed write to unwritten bh should
2548 * be marked new and mapped. Mapped ensures
2549 * that we don't do get_block multiple times
2550 * when we write to the same offset and new
2551 * ensures that we do proper zero out for
2554 set_buffer_new(bh_result
);
2555 set_buffer_mapped(bh_result
);
2564 * This function is used as a standard get_block_t calback function
2565 * when there is no desire to allocate any blocks. It is used as a
2566 * callback function for block_prepare_write(), nobh_writepage(), and
2567 * block_write_full_page(). These functions should only try to map a
2568 * single block at a time.
2570 * Since this function doesn't do block allocations even if the caller
2571 * requests it by passing in create=1, it is critically important that
2572 * any caller checks to make sure that any buffer heads are returned
2573 * by this function are either all already mapped or marked for
2574 * delayed allocation before calling nobh_writepage() or
2575 * block_write_full_page(). Otherwise, b_blocknr could be left
2576 * unitialized, and the page write functions will be taken by
2579 static int noalloc_get_block_write(struct inode
*inode
, sector_t iblock
,
2580 struct buffer_head
*bh_result
, int create
)
2583 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
2585 BUG_ON(bh_result
->b_size
!= inode
->i_sb
->s_blocksize
);
2588 * we don't want to do block allocation in writepage
2589 * so call get_block_wrap with create = 0
2591 ret
= ext4_get_blocks(NULL
, inode
, iblock
, max_blocks
, bh_result
, 0);
2593 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
2599 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
2605 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
2611 static int __ext4_journalled_writepage(struct page
*page
,
2612 struct writeback_control
*wbc
,
2615 struct address_space
*mapping
= page
->mapping
;
2616 struct inode
*inode
= mapping
->host
;
2617 struct buffer_head
*page_bufs
;
2618 handle_t
*handle
= NULL
;
2622 page_bufs
= page_buffers(page
);
2624 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bget_one
);
2625 /* As soon as we unlock the page, it can go away, but we have
2626 * references to buffers so we are safe */
2629 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
2630 if (IS_ERR(handle
)) {
2631 ret
= PTR_ERR(handle
);
2635 ret
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
2636 do_journal_get_write_access
);
2638 err
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
2642 err
= ext4_journal_stop(handle
);
2646 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bput_one
);
2647 EXT4_I(inode
)->i_state
|= EXT4_STATE_JDATA
;
2653 * Note that we don't need to start a transaction unless we're journaling data
2654 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2655 * need to file the inode to the transaction's list in ordered mode because if
2656 * we are writing back data added by write(), the inode is already there and if
2657 * we are writing back data modified via mmap(), noone guarantees in which
2658 * transaction the data will hit the disk. In case we are journaling data, we
2659 * cannot start transaction directly because transaction start ranks above page
2660 * lock so we have to do some magic.
2662 * This function can get called via...
2663 * - ext4_da_writepages after taking page lock (have journal handle)
2664 * - journal_submit_inode_data_buffers (no journal handle)
2665 * - shrink_page_list via pdflush (no journal handle)
2666 * - grab_page_cache when doing write_begin (have journal handle)
2668 * We don't do any block allocation in this function. If we have page with
2669 * multiple blocks we need to write those buffer_heads that are mapped. This
2670 * is important for mmaped based write. So if we do with blocksize 1K
2671 * truncate(f, 1024);
2672 * a = mmap(f, 0, 4096);
2674 * truncate(f, 4096);
2675 * we have in the page first buffer_head mapped via page_mkwrite call back
2676 * but other bufer_heads would be unmapped but dirty(dirty done via the
2677 * do_wp_page). So writepage should write the first block. If we modify
2678 * the mmap area beyond 1024 we will again get a page_fault and the
2679 * page_mkwrite callback will do the block allocation and mark the
2680 * buffer_heads mapped.
2682 * We redirty the page if we have any buffer_heads that is either delay or
2683 * unwritten in the page.
2685 * We can get recursively called as show below.
2687 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2690 * But since we don't do any block allocation we should not deadlock.
2691 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2693 static int ext4_writepage(struct page
*page
,
2694 struct writeback_control
*wbc
)
2699 struct buffer_head
*page_bufs
;
2700 struct inode
*inode
= page
->mapping
->host
;
2702 trace_ext4_writepage(inode
, page
);
2703 size
= i_size_read(inode
);
2704 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
2705 len
= size
& ~PAGE_CACHE_MASK
;
2707 len
= PAGE_CACHE_SIZE
;
2709 if (page_has_buffers(page
)) {
2710 page_bufs
= page_buffers(page
);
2711 if (walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
2712 ext4_bh_delay_or_unwritten
)) {
2714 * We don't want to do block allocation
2715 * So redirty the page and return
2716 * We may reach here when we do a journal commit
2717 * via journal_submit_inode_data_buffers.
2718 * If we don't have mapping block we just ignore
2719 * them. We can also reach here via shrink_page_list
2721 redirty_page_for_writepage(wbc
, page
);
2727 * The test for page_has_buffers() is subtle:
2728 * We know the page is dirty but it lost buffers. That means
2729 * that at some moment in time after write_begin()/write_end()
2730 * has been called all buffers have been clean and thus they
2731 * must have been written at least once. So they are all
2732 * mapped and we can happily proceed with mapping them
2733 * and writing the page.
2735 * Try to initialize the buffer_heads and check whether
2736 * all are mapped and non delay. We don't want to
2737 * do block allocation here.
2739 ret
= block_prepare_write(page
, 0, len
,
2740 noalloc_get_block_write
);
2742 page_bufs
= page_buffers(page
);
2743 /* check whether all are mapped and non delay */
2744 if (walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
2745 ext4_bh_delay_or_unwritten
)) {
2746 redirty_page_for_writepage(wbc
, page
);
2752 * We can't do block allocation here
2753 * so just redity the page and unlock
2756 redirty_page_for_writepage(wbc
, page
);
2760 /* now mark the buffer_heads as dirty and uptodate */
2761 block_commit_write(page
, 0, len
);
2764 if (PageChecked(page
) && ext4_should_journal_data(inode
)) {
2766 * It's mmapped pagecache. Add buffers and journal it. There
2767 * doesn't seem much point in redirtying the page here.
2769 ClearPageChecked(page
);
2770 return __ext4_journalled_writepage(page
, wbc
, len
);
2773 if (test_opt(inode
->i_sb
, NOBH
) && ext4_should_writeback_data(inode
))
2774 ret
= nobh_writepage(page
, noalloc_get_block_write
, wbc
);
2776 ret
= block_write_full_page(page
, noalloc_get_block_write
,
2783 * This is called via ext4_da_writepages() to
2784 * calulate the total number of credits to reserve to fit
2785 * a single extent allocation into a single transaction,
2786 * ext4_da_writpeages() will loop calling this before
2787 * the block allocation.
2790 static int ext4_da_writepages_trans_blocks(struct inode
*inode
)
2792 int max_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
2795 * With non-extent format the journal credit needed to
2796 * insert nrblocks contiguous block is dependent on
2797 * number of contiguous block. So we will limit
2798 * number of contiguous block to a sane value
2800 if (!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) &&
2801 (max_blocks
> EXT4_MAX_TRANS_DATA
))
2802 max_blocks
= EXT4_MAX_TRANS_DATA
;
2804 return ext4_chunk_trans_blocks(inode
, max_blocks
);
2807 static int ext4_da_writepages(struct address_space
*mapping
,
2808 struct writeback_control
*wbc
)
2811 int range_whole
= 0;
2812 handle_t
*handle
= NULL
;
2813 struct mpage_da_data mpd
;
2814 struct inode
*inode
= mapping
->host
;
2815 int no_nrwrite_index_update
;
2816 int pages_written
= 0;
2818 unsigned int max_pages
;
2819 int range_cyclic
, cycled
= 1, io_done
= 0;
2820 int needed_blocks
, ret
= 0;
2821 long desired_nr_to_write
, nr_to_writebump
= 0;
2822 loff_t range_start
= wbc
->range_start
;
2823 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2825 trace_ext4_da_writepages(inode
, wbc
);
2828 * No pages to write? This is mainly a kludge to avoid starting
2829 * a transaction for special inodes like journal inode on last iput()
2830 * because that could violate lock ordering on umount
2832 if (!mapping
->nrpages
|| !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
2836 * If the filesystem has aborted, it is read-only, so return
2837 * right away instead of dumping stack traces later on that
2838 * will obscure the real source of the problem. We test
2839 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2840 * the latter could be true if the filesystem is mounted
2841 * read-only, and in that case, ext4_da_writepages should
2842 * *never* be called, so if that ever happens, we would want
2845 if (unlikely(sbi
->s_mount_flags
& EXT4_MF_FS_ABORTED
))
2848 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2851 range_cyclic
= wbc
->range_cyclic
;
2852 if (wbc
->range_cyclic
) {
2853 index
= mapping
->writeback_index
;
2856 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2857 wbc
->range_end
= LLONG_MAX
;
2858 wbc
->range_cyclic
= 0;
2860 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2863 * This works around two forms of stupidity. The first is in
2864 * the writeback code, which caps the maximum number of pages
2865 * written to be 1024 pages. This is wrong on multiple
2866 * levels; different architectues have a different page size,
2867 * which changes the maximum amount of data which gets
2868 * written. Secondly, 4 megabytes is way too small. XFS
2869 * forces this value to be 16 megabytes by multiplying
2870 * nr_to_write parameter by four, and then relies on its
2871 * allocator to allocate larger extents to make them
2872 * contiguous. Unfortunately this brings us to the second
2873 * stupidity, which is that ext4's mballoc code only allocates
2874 * at most 2048 blocks. So we force contiguous writes up to
2875 * the number of dirty blocks in the inode, or
2876 * sbi->max_writeback_mb_bump whichever is smaller.
2878 max_pages
= sbi
->s_max_writeback_mb_bump
<< (20 - PAGE_CACHE_SHIFT
);
2879 if (!range_cyclic
&& range_whole
)
2880 desired_nr_to_write
= wbc
->nr_to_write
* 8;
2882 desired_nr_to_write
= ext4_num_dirty_pages(inode
, index
,
2884 if (desired_nr_to_write
> max_pages
)
2885 desired_nr_to_write
= max_pages
;
2887 if (wbc
->nr_to_write
< desired_nr_to_write
) {
2888 nr_to_writebump
= desired_nr_to_write
- wbc
->nr_to_write
;
2889 wbc
->nr_to_write
= desired_nr_to_write
;
2893 mpd
.inode
= mapping
->host
;
2896 * we don't want write_cache_pages to update
2897 * nr_to_write and writeback_index
2899 no_nrwrite_index_update
= wbc
->no_nrwrite_index_update
;
2900 wbc
->no_nrwrite_index_update
= 1;
2901 pages_skipped
= wbc
->pages_skipped
;
2904 while (!ret
&& wbc
->nr_to_write
> 0) {
2907 * we insert one extent at a time. So we need
2908 * credit needed for single extent allocation.
2909 * journalled mode is currently not supported
2912 BUG_ON(ext4_should_journal_data(inode
));
2913 needed_blocks
= ext4_da_writepages_trans_blocks(inode
);
2915 /* start a new transaction*/
2916 handle
= ext4_journal_start(inode
, needed_blocks
);
2917 if (IS_ERR(handle
)) {
2918 ret
= PTR_ERR(handle
);
2919 printk(KERN_CRIT
"%s: jbd2_start: "
2920 "%ld pages, ino %lu; err %d\n", __func__
,
2921 wbc
->nr_to_write
, inode
->i_ino
, ret
);
2923 goto out_writepages
;
2927 * Now call __mpage_da_writepage to find the next
2928 * contiguous region of logical blocks that need
2929 * blocks to be allocated by ext4. We don't actually
2930 * submit the blocks for I/O here, even though
2931 * write_cache_pages thinks it will, and will set the
2932 * pages as clean for write before calling
2933 * __mpage_da_writepage().
2941 mpd
.pages_written
= 0;
2943 ret
= write_cache_pages(mapping
, wbc
, __mpage_da_writepage
,
2946 * If we have a contigous extent of pages and we
2947 * haven't done the I/O yet, map the blocks and submit
2950 if (!mpd
.io_done
&& mpd
.next_page
!= mpd
.first_page
) {
2951 if (mpage_da_map_blocks(&mpd
) == 0)
2952 mpage_da_submit_io(&mpd
);
2954 ret
= MPAGE_DA_EXTENT_TAIL
;
2956 wbc
->nr_to_write
-= mpd
.pages_written
;
2958 ext4_journal_stop(handle
);
2960 if ((mpd
.retval
== -ENOSPC
) && sbi
->s_journal
) {
2961 /* commit the transaction which would
2962 * free blocks released in the transaction
2965 jbd2_journal_force_commit_nested(sbi
->s_journal
);
2966 wbc
->pages_skipped
= pages_skipped
;
2968 } else if (ret
== MPAGE_DA_EXTENT_TAIL
) {
2970 * got one extent now try with
2973 pages_written
+= mpd
.pages_written
;
2974 wbc
->pages_skipped
= pages_skipped
;
2977 } else if (wbc
->nr_to_write
)
2979 * There is no more writeout needed
2980 * or we requested for a noblocking writeout
2981 * and we found the device congested
2985 if (!io_done
&& !cycled
) {
2988 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2989 wbc
->range_end
= mapping
->writeback_index
- 1;
2992 if (pages_skipped
!= wbc
->pages_skipped
)
2993 printk(KERN_EMERG
"This should not happen leaving %s "
2994 "with nr_to_write = %ld ret = %d\n",
2995 __func__
, wbc
->nr_to_write
, ret
);
2998 index
+= pages_written
;
2999 wbc
->range_cyclic
= range_cyclic
;
3000 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
3002 * set the writeback_index so that range_cyclic
3003 * mode will write it back later
3005 mapping
->writeback_index
= index
;
3008 if (!no_nrwrite_index_update
)
3009 wbc
->no_nrwrite_index_update
= 0;
3010 if (wbc
->nr_to_write
> nr_to_writebump
)
3011 wbc
->nr_to_write
-= nr_to_writebump
;
3012 wbc
->range_start
= range_start
;
3013 trace_ext4_da_writepages_result(inode
, wbc
, ret
, pages_written
);
3017 #define FALL_BACK_TO_NONDELALLOC 1
3018 static int ext4_nonda_switch(struct super_block
*sb
)
3020 s64 free_blocks
, dirty_blocks
;
3021 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3024 * switch to non delalloc mode if we are running low
3025 * on free block. The free block accounting via percpu
3026 * counters can get slightly wrong with percpu_counter_batch getting
3027 * accumulated on each CPU without updating global counters
3028 * Delalloc need an accurate free block accounting. So switch
3029 * to non delalloc when we are near to error range.
3031 free_blocks
= percpu_counter_read_positive(&sbi
->s_freeblocks_counter
);
3032 dirty_blocks
= percpu_counter_read_positive(&sbi
->s_dirtyblocks_counter
);
3033 if (2 * free_blocks
< 3 * dirty_blocks
||
3034 free_blocks
< (dirty_blocks
+ EXT4_FREEBLOCKS_WATERMARK
)) {
3036 * free block count is less that 150% of dirty blocks
3037 * or free blocks is less that watermark
3044 static int ext4_da_write_begin(struct file
*file
, struct address_space
*mapping
,
3045 loff_t pos
, unsigned len
, unsigned flags
,
3046 struct page
**pagep
, void **fsdata
)
3048 int ret
, retries
= 0;
3052 struct inode
*inode
= mapping
->host
;
3055 index
= pos
>> PAGE_CACHE_SHIFT
;
3056 from
= pos
& (PAGE_CACHE_SIZE
- 1);
3059 if (ext4_nonda_switch(inode
->i_sb
)) {
3060 *fsdata
= (void *)FALL_BACK_TO_NONDELALLOC
;
3061 return ext4_write_begin(file
, mapping
, pos
,
3062 len
, flags
, pagep
, fsdata
);
3064 *fsdata
= (void *)0;
3065 trace_ext4_da_write_begin(inode
, pos
, len
, flags
);
3068 * With delayed allocation, we don't log the i_disksize update
3069 * if there is delayed block allocation. But we still need
3070 * to journalling the i_disksize update if writes to the end
3071 * of file which has an already mapped buffer.
3073 handle
= ext4_journal_start(inode
, 1);
3074 if (IS_ERR(handle
)) {
3075 ret
= PTR_ERR(handle
);
3078 /* We cannot recurse into the filesystem as the transaction is already
3080 flags
|= AOP_FLAG_NOFS
;
3082 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
3084 ext4_journal_stop(handle
);
3090 ret
= block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
3091 ext4_da_get_block_prep
);
3094 ext4_journal_stop(handle
);
3095 page_cache_release(page
);
3097 * block_write_begin may have instantiated a few blocks
3098 * outside i_size. Trim these off again. Don't need
3099 * i_size_read because we hold i_mutex.
3101 if (pos
+ len
> inode
->i_size
)
3102 ext4_truncate_failed_write(inode
);
3105 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
3112 * Check if we should update i_disksize
3113 * when write to the end of file but not require block allocation
3115 static int ext4_da_should_update_i_disksize(struct page
*page
,
3116 unsigned long offset
)
3118 struct buffer_head
*bh
;
3119 struct inode
*inode
= page
->mapping
->host
;
3123 bh
= page_buffers(page
);
3124 idx
= offset
>> inode
->i_blkbits
;
3126 for (i
= 0; i
< idx
; i
++)
3127 bh
= bh
->b_this_page
;
3129 if (!buffer_mapped(bh
) || (buffer_delay(bh
)) || buffer_unwritten(bh
))
3134 static int ext4_da_write_end(struct file
*file
,
3135 struct address_space
*mapping
,
3136 loff_t pos
, unsigned len
, unsigned copied
,
3137 struct page
*page
, void *fsdata
)
3139 struct inode
*inode
= mapping
->host
;
3141 handle_t
*handle
= ext4_journal_current_handle();
3143 unsigned long start
, end
;
3144 int write_mode
= (int)(unsigned long)fsdata
;
3146 if (write_mode
== FALL_BACK_TO_NONDELALLOC
) {
3147 if (ext4_should_order_data(inode
)) {
3148 return ext4_ordered_write_end(file
, mapping
, pos
,
3149 len
, copied
, page
, fsdata
);
3150 } else if (ext4_should_writeback_data(inode
)) {
3151 return ext4_writeback_write_end(file
, mapping
, pos
,
3152 len
, copied
, page
, fsdata
);
3158 trace_ext4_da_write_end(inode
, pos
, len
, copied
);
3159 start
= pos
& (PAGE_CACHE_SIZE
- 1);
3160 end
= start
+ copied
- 1;
3163 * generic_write_end() will run mark_inode_dirty() if i_size
3164 * changes. So let's piggyback the i_disksize mark_inode_dirty
3168 new_i_size
= pos
+ copied
;
3169 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
3170 if (ext4_da_should_update_i_disksize(page
, end
)) {
3171 down_write(&EXT4_I(inode
)->i_data_sem
);
3172 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
3174 * Updating i_disksize when extending file
3175 * without needing block allocation
3177 if (ext4_should_order_data(inode
))
3178 ret
= ext4_jbd2_file_inode(handle
,
3181 EXT4_I(inode
)->i_disksize
= new_i_size
;
3183 up_write(&EXT4_I(inode
)->i_data_sem
);
3184 /* We need to mark inode dirty even if
3185 * new_i_size is less that inode->i_size
3186 * bu greater than i_disksize.(hint delalloc)
3188 ext4_mark_inode_dirty(handle
, inode
);
3191 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
3196 ret2
= ext4_journal_stop(handle
);
3200 return ret
? ret
: copied
;
3203 static void ext4_da_invalidatepage(struct page
*page
, unsigned long offset
)
3206 * Drop reserved blocks
3208 BUG_ON(!PageLocked(page
));
3209 if (!page_has_buffers(page
))
3212 ext4_da_page_release_reservation(page
, offset
);
3215 ext4_invalidatepage(page
, offset
);
3221 * Force all delayed allocation blocks to be allocated for a given inode.
3223 int ext4_alloc_da_blocks(struct inode
*inode
)
3225 if (!EXT4_I(inode
)->i_reserved_data_blocks
&&
3226 !EXT4_I(inode
)->i_reserved_meta_blocks
)
3230 * We do something simple for now. The filemap_flush() will
3231 * also start triggering a write of the data blocks, which is
3232 * not strictly speaking necessary (and for users of
3233 * laptop_mode, not even desirable). However, to do otherwise
3234 * would require replicating code paths in:
3236 * ext4_da_writepages() ->
3237 * write_cache_pages() ---> (via passed in callback function)
3238 * __mpage_da_writepage() -->
3239 * mpage_add_bh_to_extent()
3240 * mpage_da_map_blocks()
3242 * The problem is that write_cache_pages(), located in
3243 * mm/page-writeback.c, marks pages clean in preparation for
3244 * doing I/O, which is not desirable if we're not planning on
3247 * We could call write_cache_pages(), and then redirty all of
3248 * the pages by calling redirty_page_for_writeback() but that
3249 * would be ugly in the extreme. So instead we would need to
3250 * replicate parts of the code in the above functions,
3251 * simplifying them becuase we wouldn't actually intend to
3252 * write out the pages, but rather only collect contiguous
3253 * logical block extents, call the multi-block allocator, and
3254 * then update the buffer heads with the block allocations.
3256 * For now, though, we'll cheat by calling filemap_flush(),
3257 * which will map the blocks, and start the I/O, but not
3258 * actually wait for the I/O to complete.
3260 return filemap_flush(inode
->i_mapping
);
3264 * bmap() is special. It gets used by applications such as lilo and by
3265 * the swapper to find the on-disk block of a specific piece of data.
3267 * Naturally, this is dangerous if the block concerned is still in the
3268 * journal. If somebody makes a swapfile on an ext4 data-journaling
3269 * filesystem and enables swap, then they may get a nasty shock when the
3270 * data getting swapped to that swapfile suddenly gets overwritten by
3271 * the original zero's written out previously to the journal and
3272 * awaiting writeback in the kernel's buffer cache.
3274 * So, if we see any bmap calls here on a modified, data-journaled file,
3275 * take extra steps to flush any blocks which might be in the cache.
3277 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
3279 struct inode
*inode
= mapping
->host
;
3283 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
) &&
3284 test_opt(inode
->i_sb
, DELALLOC
)) {
3286 * With delalloc we want to sync the file
3287 * so that we can make sure we allocate
3290 filemap_write_and_wait(mapping
);
3293 if (EXT4_JOURNAL(inode
) && EXT4_I(inode
)->i_state
& EXT4_STATE_JDATA
) {
3295 * This is a REALLY heavyweight approach, but the use of
3296 * bmap on dirty files is expected to be extremely rare:
3297 * only if we run lilo or swapon on a freshly made file
3298 * do we expect this to happen.
3300 * (bmap requires CAP_SYS_RAWIO so this does not
3301 * represent an unprivileged user DOS attack --- we'd be
3302 * in trouble if mortal users could trigger this path at
3305 * NB. EXT4_STATE_JDATA is not set on files other than
3306 * regular files. If somebody wants to bmap a directory
3307 * or symlink and gets confused because the buffer
3308 * hasn't yet been flushed to disk, they deserve
3309 * everything they get.
3312 EXT4_I(inode
)->i_state
&= ~EXT4_STATE_JDATA
;
3313 journal
= EXT4_JOURNAL(inode
);
3314 jbd2_journal_lock_updates(journal
);
3315 err
= jbd2_journal_flush(journal
);
3316 jbd2_journal_unlock_updates(journal
);
3322 return generic_block_bmap(mapping
, block
, ext4_get_block
);
3325 static int ext4_readpage(struct file
*file
, struct page
*page
)
3327 return mpage_readpage(page
, ext4_get_block
);
3331 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
3332 struct list_head
*pages
, unsigned nr_pages
)
3334 return mpage_readpages(mapping
, pages
, nr_pages
, ext4_get_block
);
3337 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
)
3339 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3342 * If it's a full truncate we just forget about the pending dirtying
3345 ClearPageChecked(page
);
3348 jbd2_journal_invalidatepage(journal
, page
, offset
);
3350 block_invalidatepage(page
, offset
);
3353 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
3355 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3357 WARN_ON(PageChecked(page
));
3358 if (!page_has_buffers(page
))
3361 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
3363 return try_to_free_buffers(page
);
3367 * O_DIRECT for ext3 (or indirect map) based files
3369 * If the O_DIRECT write will extend the file then add this inode to the
3370 * orphan list. So recovery will truncate it back to the original size
3371 * if the machine crashes during the write.
3373 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3374 * crashes then stale disk data _may_ be exposed inside the file. But current
3375 * VFS code falls back into buffered path in that case so we are safe.
3377 static ssize_t
ext4_ind_direct_IO(int rw
, struct kiocb
*iocb
,
3378 const struct iovec
*iov
, loff_t offset
,
3379 unsigned long nr_segs
)
3381 struct file
*file
= iocb
->ki_filp
;
3382 struct inode
*inode
= file
->f_mapping
->host
;
3383 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3387 size_t count
= iov_length(iov
, nr_segs
);
3391 loff_t final_size
= offset
+ count
;
3393 if (final_size
> inode
->i_size
) {
3394 /* Credits for sb + inode write */
3395 handle
= ext4_journal_start(inode
, 2);
3396 if (IS_ERR(handle
)) {
3397 ret
= PTR_ERR(handle
);
3400 ret
= ext4_orphan_add(handle
, inode
);
3402 ext4_journal_stop(handle
);
3406 ei
->i_disksize
= inode
->i_size
;
3407 ext4_journal_stop(handle
);
3412 ret
= blockdev_direct_IO(rw
, iocb
, inode
, inode
->i_sb
->s_bdev
, iov
,
3414 ext4_get_block
, NULL
);
3415 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
3421 /* Credits for sb + inode write */
3422 handle
= ext4_journal_start(inode
, 2);
3423 if (IS_ERR(handle
)) {
3424 /* This is really bad luck. We've written the data
3425 * but cannot extend i_size. Bail out and pretend
3426 * the write failed... */
3427 ret
= PTR_ERR(handle
);
3431 ext4_orphan_del(handle
, inode
);
3433 loff_t end
= offset
+ ret
;
3434 if (end
> inode
->i_size
) {
3435 ei
->i_disksize
= end
;
3436 i_size_write(inode
, end
);
3438 * We're going to return a positive `ret'
3439 * here due to non-zero-length I/O, so there's
3440 * no way of reporting error returns from
3441 * ext4_mark_inode_dirty() to userspace. So
3444 ext4_mark_inode_dirty(handle
, inode
);
3447 err
= ext4_journal_stop(handle
);
3455 static int ext4_get_block_dio_write(struct inode
*inode
, sector_t iblock
,
3456 struct buffer_head
*bh_result
, int create
)
3458 handle_t
*handle
= NULL
;
3460 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
3463 ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
3464 inode
->i_ino
, create
);
3466 * DIO VFS code passes create = 0 flag for write to
3467 * the middle of file. It does this to avoid block
3468 * allocation for holes, to prevent expose stale data
3469 * out when there is parallel buffered read (which does
3470 * not hold the i_mutex lock) while direct IO write has
3471 * not completed. DIO request on holes finally falls back
3472 * to buffered IO for this reason.
3474 * For ext4 extent based file, since we support fallocate,
3475 * new allocated extent as uninitialized, for holes, we
3476 * could fallocate blocks for holes, thus parallel
3477 * buffered IO read will zero out the page when read on
3478 * a hole while parallel DIO write to the hole has not completed.
3480 * when we come here, we know it's a direct IO write to
3481 * to the middle of file (<i_size)
3482 * so it's safe to override the create flag from VFS.
3484 create
= EXT4_GET_BLOCKS_DIO_CREATE_EXT
;
3486 if (max_blocks
> DIO_MAX_BLOCKS
)
3487 max_blocks
= DIO_MAX_BLOCKS
;
3488 dio_credits
= ext4_chunk_trans_blocks(inode
, max_blocks
);
3489 handle
= ext4_journal_start(inode
, dio_credits
);
3490 if (IS_ERR(handle
)) {
3491 ret
= PTR_ERR(handle
);
3494 ret
= ext4_get_blocks(handle
, inode
, iblock
, max_blocks
, bh_result
,
3497 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
3500 ext4_journal_stop(handle
);
3505 static void ext4_free_io_end(ext4_io_end_t
*io
)
3511 static void dump_aio_dio_list(struct inode
* inode
)
3514 struct list_head
*cur
, *before
, *after
;
3515 ext4_io_end_t
*io
, *io0
, *io1
;
3517 if (list_empty(&EXT4_I(inode
)->i_aio_dio_complete_list
)){
3518 ext4_debug("inode %lu aio dio list is empty\n", inode
->i_ino
);
3522 ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode
->i_ino
);
3523 list_for_each_entry(io
, &EXT4_I(inode
)->i_aio_dio_complete_list
, list
){
3526 io0
= container_of(before
, ext4_io_end_t
, list
);
3528 io1
= container_of(after
, ext4_io_end_t
, list
);
3530 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3531 io
, inode
->i_ino
, io0
, io1
);
3537 * check a range of space and convert unwritten extents to written.
3539 static int ext4_end_aio_dio_nolock(ext4_io_end_t
*io
)
3541 struct inode
*inode
= io
->inode
;
3542 loff_t offset
= io
->offset
;
3543 size_t size
= io
->size
;
3546 ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
3547 "list->prev 0x%p\n",
3548 io
, inode
->i_ino
, io
->list
.next
, io
->list
.prev
);
3550 if (list_empty(&io
->list
))
3553 if (io
->flag
!= DIO_AIO_UNWRITTEN
)
3556 if (offset
+ size
<= i_size_read(inode
))
3557 ret
= ext4_convert_unwritten_extents(inode
, offset
, size
);
3560 printk(KERN_EMERG
"%s: failed to convert unwritten"
3561 "extents to written extents, error is %d"
3562 " io is still on inode %lu aio dio list\n",
3563 __func__
, ret
, inode
->i_ino
);
3567 /* clear the DIO AIO unwritten flag */
3572 * work on completed aio dio IO, to convert unwritten extents to extents
3574 static void ext4_end_aio_dio_work(struct work_struct
*work
)
3576 ext4_io_end_t
*io
= container_of(work
, ext4_io_end_t
, work
);
3577 struct inode
*inode
= io
->inode
;
3580 mutex_lock(&inode
->i_mutex
);
3581 ret
= ext4_end_aio_dio_nolock(io
);
3583 if (!list_empty(&io
->list
))
3584 list_del_init(&io
->list
);
3585 ext4_free_io_end(io
);
3587 mutex_unlock(&inode
->i_mutex
);
3590 * This function is called from ext4_sync_file().
3592 * When AIO DIO IO is completed, the work to convert unwritten
3593 * extents to written is queued on workqueue but may not get immediately
3594 * scheduled. When fsync is called, we need to ensure the
3595 * conversion is complete before fsync returns.
3596 * The inode keeps track of a list of completed AIO from DIO path
3597 * that might needs to do the conversion. This function walks through
3598 * the list and convert the related unwritten extents to written.
3600 int flush_aio_dio_completed_IO(struct inode
*inode
)
3606 if (list_empty(&EXT4_I(inode
)->i_aio_dio_complete_list
))
3609 dump_aio_dio_list(inode
);
3610 while (!list_empty(&EXT4_I(inode
)->i_aio_dio_complete_list
)){
3611 io
= list_entry(EXT4_I(inode
)->i_aio_dio_complete_list
.next
,
3612 ext4_io_end_t
, list
);
3614 * Calling ext4_end_aio_dio_nolock() to convert completed
3617 * When ext4_sync_file() is called, run_queue() may already
3618 * about to flush the work corresponding to this io structure.
3619 * It will be upset if it founds the io structure related
3620 * to the work-to-be schedule is freed.
3622 * Thus we need to keep the io structure still valid here after
3623 * convertion finished. The io structure has a flag to
3624 * avoid double converting from both fsync and background work
3627 ret
= ext4_end_aio_dio_nolock(io
);
3631 list_del_init(&io
->list
);
3633 return (ret2
< 0) ? ret2
: 0;
3636 static ext4_io_end_t
*ext4_init_io_end (struct inode
*inode
)
3638 ext4_io_end_t
*io
= NULL
;
3640 io
= kmalloc(sizeof(*io
), GFP_NOFS
);
3649 INIT_WORK(&io
->work
, ext4_end_aio_dio_work
);
3650 INIT_LIST_HEAD(&io
->list
);
3656 static void ext4_end_io_dio(struct kiocb
*iocb
, loff_t offset
,
3657 ssize_t size
, void *private)
3659 ext4_io_end_t
*io_end
= iocb
->private;
3660 struct workqueue_struct
*wq
;
3662 /* if not async direct IO or dio with 0 bytes write, just return */
3663 if (!io_end
|| !size
)
3666 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3667 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3668 iocb
->private, io_end
->inode
->i_ino
, iocb
, offset
,
3671 /* if not aio dio with unwritten extents, just free io and return */
3672 if (io_end
->flag
!= DIO_AIO_UNWRITTEN
){
3673 ext4_free_io_end(io_end
);
3674 iocb
->private = NULL
;
3678 io_end
->offset
= offset
;
3679 io_end
->size
= size
;
3680 wq
= EXT4_SB(io_end
->inode
->i_sb
)->dio_unwritten_wq
;
3682 /* queue the work to convert unwritten extents to written */
3683 queue_work(wq
, &io_end
->work
);
3685 /* Add the io_end to per-inode completed aio dio list*/
3686 list_add_tail(&io_end
->list
,
3687 &EXT4_I(io_end
->inode
)->i_aio_dio_complete_list
);
3688 iocb
->private = NULL
;
3691 * For ext4 extent files, ext4 will do direct-io write to holes,
3692 * preallocated extents, and those write extend the file, no need to
3693 * fall back to buffered IO.
3695 * For holes, we fallocate those blocks, mark them as unintialized
3696 * If those blocks were preallocated, we mark sure they are splited, but
3697 * still keep the range to write as unintialized.
3699 * The unwrritten extents will be converted to written when DIO is completed.
3700 * For async direct IO, since the IO may still pending when return, we
3701 * set up an end_io call back function, which will do the convertion
3702 * when async direct IO completed.
3704 * If the O_DIRECT write will extend the file then add this inode to the
3705 * orphan list. So recovery will truncate it back to the original size
3706 * if the machine crashes during the write.
3709 static ssize_t
ext4_ext_direct_IO(int rw
, struct kiocb
*iocb
,
3710 const struct iovec
*iov
, loff_t offset
,
3711 unsigned long nr_segs
)
3713 struct file
*file
= iocb
->ki_filp
;
3714 struct inode
*inode
= file
->f_mapping
->host
;
3716 size_t count
= iov_length(iov
, nr_segs
);
3718 loff_t final_size
= offset
+ count
;
3719 if (rw
== WRITE
&& final_size
<= inode
->i_size
) {
3721 * We could direct write to holes and fallocate.
3723 * Allocated blocks to fill the hole are marked as uninitialized
3724 * to prevent paralel buffered read to expose the stale data
3725 * before DIO complete the data IO.
3727 * As to previously fallocated extents, ext4 get_block
3728 * will just simply mark the buffer mapped but still
3729 * keep the extents uninitialized.
3731 * for non AIO case, we will convert those unwritten extents
3732 * to written after return back from blockdev_direct_IO.
3734 * for async DIO, the conversion needs to be defered when
3735 * the IO is completed. The ext4 end_io callback function
3736 * will be called to take care of the conversion work.
3737 * Here for async case, we allocate an io_end structure to
3740 iocb
->private = NULL
;
3741 EXT4_I(inode
)->cur_aio_dio
= NULL
;
3742 if (!is_sync_kiocb(iocb
)) {
3743 iocb
->private = ext4_init_io_end(inode
);
3747 * we save the io structure for current async
3748 * direct IO, so that later ext4_get_blocks()
3749 * could flag the io structure whether there
3750 * is a unwritten extents needs to be converted
3751 * when IO is completed.
3753 EXT4_I(inode
)->cur_aio_dio
= iocb
->private;
3756 ret
= blockdev_direct_IO(rw
, iocb
, inode
,
3757 inode
->i_sb
->s_bdev
, iov
,
3759 ext4_get_block_dio_write
,
3762 EXT4_I(inode
)->cur_aio_dio
= NULL
;
3764 * The io_end structure takes a reference to the inode,
3765 * that structure needs to be destroyed and the
3766 * reference to the inode need to be dropped, when IO is
3767 * complete, even with 0 byte write, or failed.
3769 * In the successful AIO DIO case, the io_end structure will be
3770 * desctroyed and the reference to the inode will be dropped
3771 * after the end_io call back function is called.
3773 * In the case there is 0 byte write, or error case, since
3774 * VFS direct IO won't invoke the end_io call back function,
3775 * we need to free the end_io structure here.
3777 if (ret
!= -EIOCBQUEUED
&& ret
<= 0 && iocb
->private) {
3778 ext4_free_io_end(iocb
->private);
3779 iocb
->private = NULL
;
3780 } else if (ret
> 0 && (EXT4_I(inode
)->i_state
&
3781 EXT4_STATE_DIO_UNWRITTEN
)) {
3784 * for non AIO case, since the IO is already
3785 * completed, we could do the convertion right here
3787 err
= ext4_convert_unwritten_extents(inode
,
3791 EXT4_I(inode
)->i_state
&= ~EXT4_STATE_DIO_UNWRITTEN
;
3796 /* for write the the end of file case, we fall back to old way */
3797 return ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3800 static ssize_t
ext4_direct_IO(int rw
, struct kiocb
*iocb
,
3801 const struct iovec
*iov
, loff_t offset
,
3802 unsigned long nr_segs
)
3804 struct file
*file
= iocb
->ki_filp
;
3805 struct inode
*inode
= file
->f_mapping
->host
;
3807 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
)
3808 return ext4_ext_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3810 return ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3814 * Pages can be marked dirty completely asynchronously from ext4's journalling
3815 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3816 * much here because ->set_page_dirty is called under VFS locks. The page is
3817 * not necessarily locked.
3819 * We cannot just dirty the page and leave attached buffers clean, because the
3820 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3821 * or jbddirty because all the journalling code will explode.
3823 * So what we do is to mark the page "pending dirty" and next time writepage
3824 * is called, propagate that into the buffers appropriately.
3826 static int ext4_journalled_set_page_dirty(struct page
*page
)
3828 SetPageChecked(page
);
3829 return __set_page_dirty_nobuffers(page
);
3832 static const struct address_space_operations ext4_ordered_aops
= {
3833 .readpage
= ext4_readpage
,
3834 .readpages
= ext4_readpages
,
3835 .writepage
= ext4_writepage
,
3836 .sync_page
= block_sync_page
,
3837 .write_begin
= ext4_write_begin
,
3838 .write_end
= ext4_ordered_write_end
,
3840 .invalidatepage
= ext4_invalidatepage
,
3841 .releasepage
= ext4_releasepage
,
3842 .direct_IO
= ext4_direct_IO
,
3843 .migratepage
= buffer_migrate_page
,
3844 .is_partially_uptodate
= block_is_partially_uptodate
,
3847 static const struct address_space_operations ext4_writeback_aops
= {
3848 .readpage
= ext4_readpage
,
3849 .readpages
= ext4_readpages
,
3850 .writepage
= ext4_writepage
,
3851 .sync_page
= block_sync_page
,
3852 .write_begin
= ext4_write_begin
,
3853 .write_end
= ext4_writeback_write_end
,
3855 .invalidatepage
= ext4_invalidatepage
,
3856 .releasepage
= ext4_releasepage
,
3857 .direct_IO
= ext4_direct_IO
,
3858 .migratepage
= buffer_migrate_page
,
3859 .is_partially_uptodate
= block_is_partially_uptodate
,
3862 static const struct address_space_operations ext4_journalled_aops
= {
3863 .readpage
= ext4_readpage
,
3864 .readpages
= ext4_readpages
,
3865 .writepage
= ext4_writepage
,
3866 .sync_page
= block_sync_page
,
3867 .write_begin
= ext4_write_begin
,
3868 .write_end
= ext4_journalled_write_end
,
3869 .set_page_dirty
= ext4_journalled_set_page_dirty
,
3871 .invalidatepage
= ext4_invalidatepage
,
3872 .releasepage
= ext4_releasepage
,
3873 .is_partially_uptodate
= block_is_partially_uptodate
,
3876 static const struct address_space_operations ext4_da_aops
= {
3877 .readpage
= ext4_readpage
,
3878 .readpages
= ext4_readpages
,
3879 .writepage
= ext4_writepage
,
3880 .writepages
= ext4_da_writepages
,
3881 .sync_page
= block_sync_page
,
3882 .write_begin
= ext4_da_write_begin
,
3883 .write_end
= ext4_da_write_end
,
3885 .invalidatepage
= ext4_da_invalidatepage
,
3886 .releasepage
= ext4_releasepage
,
3887 .direct_IO
= ext4_direct_IO
,
3888 .migratepage
= buffer_migrate_page
,
3889 .is_partially_uptodate
= block_is_partially_uptodate
,
3892 void ext4_set_aops(struct inode
*inode
)
3894 if (ext4_should_order_data(inode
) &&
3895 test_opt(inode
->i_sb
, DELALLOC
))
3896 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3897 else if (ext4_should_order_data(inode
))
3898 inode
->i_mapping
->a_ops
= &ext4_ordered_aops
;
3899 else if (ext4_should_writeback_data(inode
) &&
3900 test_opt(inode
->i_sb
, DELALLOC
))
3901 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3902 else if (ext4_should_writeback_data(inode
))
3903 inode
->i_mapping
->a_ops
= &ext4_writeback_aops
;
3905 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
3909 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3910 * up to the end of the block which corresponds to `from'.
3911 * This required during truncate. We need to physically zero the tail end
3912 * of that block so it doesn't yield old data if the file is later grown.
3914 int ext4_block_truncate_page(handle_t
*handle
,
3915 struct address_space
*mapping
, loff_t from
)
3917 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
3918 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3919 unsigned blocksize
, length
, pos
;
3921 struct inode
*inode
= mapping
->host
;
3922 struct buffer_head
*bh
;
3926 page
= find_or_create_page(mapping
, from
>> PAGE_CACHE_SHIFT
,
3927 mapping_gfp_mask(mapping
) & ~__GFP_FS
);
3931 blocksize
= inode
->i_sb
->s_blocksize
;
3932 length
= blocksize
- (offset
& (blocksize
- 1));
3933 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
3936 * For "nobh" option, we can only work if we don't need to
3937 * read-in the page - otherwise we create buffers to do the IO.
3939 if (!page_has_buffers(page
) && test_opt(inode
->i_sb
, NOBH
) &&
3940 ext4_should_writeback_data(inode
) && PageUptodate(page
)) {
3941 zero_user(page
, offset
, length
);
3942 set_page_dirty(page
);
3946 if (!page_has_buffers(page
))
3947 create_empty_buffers(page
, blocksize
, 0);
3949 /* Find the buffer that contains "offset" */
3950 bh
= page_buffers(page
);
3952 while (offset
>= pos
) {
3953 bh
= bh
->b_this_page
;
3959 if (buffer_freed(bh
)) {
3960 BUFFER_TRACE(bh
, "freed: skip");
3964 if (!buffer_mapped(bh
)) {
3965 BUFFER_TRACE(bh
, "unmapped");
3966 ext4_get_block(inode
, iblock
, bh
, 0);
3967 /* unmapped? It's a hole - nothing to do */
3968 if (!buffer_mapped(bh
)) {
3969 BUFFER_TRACE(bh
, "still unmapped");
3974 /* Ok, it's mapped. Make sure it's up-to-date */
3975 if (PageUptodate(page
))
3976 set_buffer_uptodate(bh
);
3978 if (!buffer_uptodate(bh
)) {
3980 ll_rw_block(READ
, 1, &bh
);
3982 /* Uhhuh. Read error. Complain and punt. */
3983 if (!buffer_uptodate(bh
))
3987 if (ext4_should_journal_data(inode
)) {
3988 BUFFER_TRACE(bh
, "get write access");
3989 err
= ext4_journal_get_write_access(handle
, bh
);
3994 zero_user(page
, offset
, length
);
3996 BUFFER_TRACE(bh
, "zeroed end of block");
3999 if (ext4_should_journal_data(inode
)) {
4000 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
4002 if (ext4_should_order_data(inode
))
4003 err
= ext4_jbd2_file_inode(handle
, inode
);
4004 mark_buffer_dirty(bh
);
4009 page_cache_release(page
);
4014 * Probably it should be a library function... search for first non-zero word
4015 * or memcmp with zero_page, whatever is better for particular architecture.
4018 static inline int all_zeroes(__le32
*p
, __le32
*q
)
4027 * ext4_find_shared - find the indirect blocks for partial truncation.
4028 * @inode: inode in question
4029 * @depth: depth of the affected branch
4030 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4031 * @chain: place to store the pointers to partial indirect blocks
4032 * @top: place to the (detached) top of branch
4034 * This is a helper function used by ext4_truncate().
4036 * When we do truncate() we may have to clean the ends of several
4037 * indirect blocks but leave the blocks themselves alive. Block is
4038 * partially truncated if some data below the new i_size is refered
4039 * from it (and it is on the path to the first completely truncated
4040 * data block, indeed). We have to free the top of that path along
4041 * with everything to the right of the path. Since no allocation
4042 * past the truncation point is possible until ext4_truncate()
4043 * finishes, we may safely do the latter, but top of branch may
4044 * require special attention - pageout below the truncation point
4045 * might try to populate it.
4047 * We atomically detach the top of branch from the tree, store the
4048 * block number of its root in *@top, pointers to buffer_heads of
4049 * partially truncated blocks - in @chain[].bh and pointers to
4050 * their last elements that should not be removed - in
4051 * @chain[].p. Return value is the pointer to last filled element
4054 * The work left to caller to do the actual freeing of subtrees:
4055 * a) free the subtree starting from *@top
4056 * b) free the subtrees whose roots are stored in
4057 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4058 * c) free the subtrees growing from the inode past the @chain[0].
4059 * (no partially truncated stuff there). */
4061 static Indirect
*ext4_find_shared(struct inode
*inode
, int depth
,
4062 ext4_lblk_t offsets
[4], Indirect chain
[4],
4065 Indirect
*partial
, *p
;
4069 /* Make k index the deepest non-null offest + 1 */
4070 for (k
= depth
; k
> 1 && !offsets
[k
-1]; k
--)
4072 partial
= ext4_get_branch(inode
, k
, offsets
, chain
, &err
);
4073 /* Writer: pointers */
4075 partial
= chain
+ k
-1;
4077 * If the branch acquired continuation since we've looked at it -
4078 * fine, it should all survive and (new) top doesn't belong to us.
4080 if (!partial
->key
&& *partial
->p
)
4083 for (p
= partial
; (p
> chain
) && all_zeroes((__le32
*) p
->bh
->b_data
, p
->p
); p
--)
4086 * OK, we've found the last block that must survive. The rest of our
4087 * branch should be detached before unlocking. However, if that rest
4088 * of branch is all ours and does not grow immediately from the inode
4089 * it's easier to cheat and just decrement partial->p.
4091 if (p
== chain
+ k
- 1 && p
> chain
) {
4095 /* Nope, don't do this in ext4. Must leave the tree intact */
4102 while (partial
> p
) {
4103 brelse(partial
->bh
);
4111 * Zero a number of block pointers in either an inode or an indirect block.
4112 * If we restart the transaction we must again get write access to the
4113 * indirect block for further modification.
4115 * We release `count' blocks on disk, but (last - first) may be greater
4116 * than `count' because there can be holes in there.
4118 static void ext4_clear_blocks(handle_t
*handle
, struct inode
*inode
,
4119 struct buffer_head
*bh
,
4120 ext4_fsblk_t block_to_free
,
4121 unsigned long count
, __le32
*first
,
4125 int is_metadata
= S_ISDIR(inode
->i_mode
) || S_ISLNK(inode
->i_mode
);
4127 if (try_to_extend_transaction(handle
, inode
)) {
4129 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
4130 ext4_handle_dirty_metadata(handle
, inode
, bh
);
4132 ext4_mark_inode_dirty(handle
, inode
);
4133 ext4_truncate_restart_trans(handle
, inode
,
4134 blocks_for_truncate(inode
));
4136 BUFFER_TRACE(bh
, "retaking write access");
4137 ext4_journal_get_write_access(handle
, bh
);
4142 * Any buffers which are on the journal will be in memory. We
4143 * find them on the hash table so jbd2_journal_revoke() will
4144 * run jbd2_journal_forget() on them. We've already detached
4145 * each block from the file, so bforget() in
4146 * jbd2_journal_forget() should be safe.
4148 * AKPM: turn on bforget in jbd2_journal_forget()!!!
4150 for (p
= first
; p
< last
; p
++) {
4151 u32 nr
= le32_to_cpu(*p
);
4153 struct buffer_head
*tbh
;
4156 tbh
= sb_find_get_block(inode
->i_sb
, nr
);
4157 ext4_forget(handle
, is_metadata
, inode
, tbh
, nr
);
4161 ext4_free_blocks(handle
, inode
, block_to_free
, count
, is_metadata
);
4165 * ext4_free_data - free a list of data blocks
4166 * @handle: handle for this transaction
4167 * @inode: inode we are dealing with
4168 * @this_bh: indirect buffer_head which contains *@first and *@last
4169 * @first: array of block numbers
4170 * @last: points immediately past the end of array
4172 * We are freeing all blocks refered from that array (numbers are stored as
4173 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4175 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4176 * blocks are contiguous then releasing them at one time will only affect one
4177 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4178 * actually use a lot of journal space.
4180 * @this_bh will be %NULL if @first and @last point into the inode's direct
4183 static void ext4_free_data(handle_t
*handle
, struct inode
*inode
,
4184 struct buffer_head
*this_bh
,
4185 __le32
*first
, __le32
*last
)
4187 ext4_fsblk_t block_to_free
= 0; /* Starting block # of a run */
4188 unsigned long count
= 0; /* Number of blocks in the run */
4189 __le32
*block_to_free_p
= NULL
; /* Pointer into inode/ind
4192 ext4_fsblk_t nr
; /* Current block # */
4193 __le32
*p
; /* Pointer into inode/ind
4194 for current block */
4197 if (this_bh
) { /* For indirect block */
4198 BUFFER_TRACE(this_bh
, "get_write_access");
4199 err
= ext4_journal_get_write_access(handle
, this_bh
);
4200 /* Important: if we can't update the indirect pointers
4201 * to the blocks, we can't free them. */
4206 for (p
= first
; p
< last
; p
++) {
4207 nr
= le32_to_cpu(*p
);
4209 /* accumulate blocks to free if they're contiguous */
4212 block_to_free_p
= p
;
4214 } else if (nr
== block_to_free
+ count
) {
4217 ext4_clear_blocks(handle
, inode
, this_bh
,
4219 count
, block_to_free_p
, p
);
4221 block_to_free_p
= p
;
4228 ext4_clear_blocks(handle
, inode
, this_bh
, block_to_free
,
4229 count
, block_to_free_p
, p
);
4232 BUFFER_TRACE(this_bh
, "call ext4_handle_dirty_metadata");
4235 * The buffer head should have an attached journal head at this
4236 * point. However, if the data is corrupted and an indirect
4237 * block pointed to itself, it would have been detached when
4238 * the block was cleared. Check for this instead of OOPSing.
4240 if ((EXT4_JOURNAL(inode
) == NULL
) || bh2jh(this_bh
))
4241 ext4_handle_dirty_metadata(handle
, inode
, this_bh
);
4243 ext4_error(inode
->i_sb
, __func__
,
4244 "circular indirect block detected, "
4245 "inode=%lu, block=%llu",
4247 (unsigned long long) this_bh
->b_blocknr
);
4252 * ext4_free_branches - free an array of branches
4253 * @handle: JBD handle for this transaction
4254 * @inode: inode we are dealing with
4255 * @parent_bh: the buffer_head which contains *@first and *@last
4256 * @first: array of block numbers
4257 * @last: pointer immediately past the end of array
4258 * @depth: depth of the branches to free
4260 * We are freeing all blocks refered from these branches (numbers are
4261 * stored as little-endian 32-bit) and updating @inode->i_blocks
4264 static void ext4_free_branches(handle_t
*handle
, struct inode
*inode
,
4265 struct buffer_head
*parent_bh
,
4266 __le32
*first
, __le32
*last
, int depth
)
4271 if (ext4_handle_is_aborted(handle
))
4275 struct buffer_head
*bh
;
4276 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
4278 while (--p
>= first
) {
4279 nr
= le32_to_cpu(*p
);
4281 continue; /* A hole */
4283 /* Go read the buffer for the next level down */
4284 bh
= sb_bread(inode
->i_sb
, nr
);
4287 * A read failure? Report error and clear slot
4291 ext4_error(inode
->i_sb
, "ext4_free_branches",
4292 "Read failure, inode=%lu, block=%llu",
4297 /* This zaps the entire block. Bottom up. */
4298 BUFFER_TRACE(bh
, "free child branches");
4299 ext4_free_branches(handle
, inode
, bh
,
4300 (__le32
*) bh
->b_data
,
4301 (__le32
*) bh
->b_data
+ addr_per_block
,
4305 * We've probably journalled the indirect block several
4306 * times during the truncate. But it's no longer
4307 * needed and we now drop it from the transaction via
4308 * jbd2_journal_revoke().
4310 * That's easy if it's exclusively part of this
4311 * transaction. But if it's part of the committing
4312 * transaction then jbd2_journal_forget() will simply
4313 * brelse() it. That means that if the underlying
4314 * block is reallocated in ext4_get_block(),
4315 * unmap_underlying_metadata() will find this block
4316 * and will try to get rid of it. damn, damn.
4318 * If this block has already been committed to the
4319 * journal, a revoke record will be written. And
4320 * revoke records must be emitted *before* clearing
4321 * this block's bit in the bitmaps.
4323 ext4_forget(handle
, 1, inode
, bh
, bh
->b_blocknr
);
4326 * Everything below this this pointer has been
4327 * released. Now let this top-of-subtree go.
4329 * We want the freeing of this indirect block to be
4330 * atomic in the journal with the updating of the
4331 * bitmap block which owns it. So make some room in
4334 * We zero the parent pointer *after* freeing its
4335 * pointee in the bitmaps, so if extend_transaction()
4336 * for some reason fails to put the bitmap changes and
4337 * the release into the same transaction, recovery
4338 * will merely complain about releasing a free block,
4339 * rather than leaking blocks.
4341 if (ext4_handle_is_aborted(handle
))
4343 if (try_to_extend_transaction(handle
, inode
)) {
4344 ext4_mark_inode_dirty(handle
, inode
);
4345 ext4_truncate_restart_trans(handle
, inode
,
4346 blocks_for_truncate(inode
));
4349 ext4_free_blocks(handle
, inode
, nr
, 1, 1);
4353 * The block which we have just freed is
4354 * pointed to by an indirect block: journal it
4356 BUFFER_TRACE(parent_bh
, "get_write_access");
4357 if (!ext4_journal_get_write_access(handle
,
4360 BUFFER_TRACE(parent_bh
,
4361 "call ext4_handle_dirty_metadata");
4362 ext4_handle_dirty_metadata(handle
,
4369 /* We have reached the bottom of the tree. */
4370 BUFFER_TRACE(parent_bh
, "free data blocks");
4371 ext4_free_data(handle
, inode
, parent_bh
, first
, last
);
4375 int ext4_can_truncate(struct inode
*inode
)
4377 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
4379 if (S_ISREG(inode
->i_mode
))
4381 if (S_ISDIR(inode
->i_mode
))
4383 if (S_ISLNK(inode
->i_mode
))
4384 return !ext4_inode_is_fast_symlink(inode
);
4391 * We block out ext4_get_block() block instantiations across the entire
4392 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4393 * simultaneously on behalf of the same inode.
4395 * As we work through the truncate and commmit bits of it to the journal there
4396 * is one core, guiding principle: the file's tree must always be consistent on
4397 * disk. We must be able to restart the truncate after a crash.
4399 * The file's tree may be transiently inconsistent in memory (although it
4400 * probably isn't), but whenever we close off and commit a journal transaction,
4401 * the contents of (the filesystem + the journal) must be consistent and
4402 * restartable. It's pretty simple, really: bottom up, right to left (although
4403 * left-to-right works OK too).
4405 * Note that at recovery time, journal replay occurs *before* the restart of
4406 * truncate against the orphan inode list.
4408 * The committed inode has the new, desired i_size (which is the same as
4409 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4410 * that this inode's truncate did not complete and it will again call
4411 * ext4_truncate() to have another go. So there will be instantiated blocks
4412 * to the right of the truncation point in a crashed ext4 filesystem. But
4413 * that's fine - as long as they are linked from the inode, the post-crash
4414 * ext4_truncate() run will find them and release them.
4416 void ext4_truncate(struct inode
*inode
)
4419 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4420 __le32
*i_data
= ei
->i_data
;
4421 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
4422 struct address_space
*mapping
= inode
->i_mapping
;
4423 ext4_lblk_t offsets
[4];
4428 ext4_lblk_t last_block
;
4429 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
4431 if (!ext4_can_truncate(inode
))
4434 if (inode
->i_size
== 0 && !test_opt(inode
->i_sb
, NO_AUTO_DA_ALLOC
))
4435 ei
->i_state
|= EXT4_STATE_DA_ALLOC_CLOSE
;
4437 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
4438 ext4_ext_truncate(inode
);
4442 handle
= start_transaction(inode
);
4444 return; /* AKPM: return what? */
4446 last_block
= (inode
->i_size
+ blocksize
-1)
4447 >> EXT4_BLOCK_SIZE_BITS(inode
->i_sb
);
4449 if (inode
->i_size
& (blocksize
- 1))
4450 if (ext4_block_truncate_page(handle
, mapping
, inode
->i_size
))
4453 n
= ext4_block_to_path(inode
, last_block
, offsets
, NULL
);
4455 goto out_stop
; /* error */
4458 * OK. This truncate is going to happen. We add the inode to the
4459 * orphan list, so that if this truncate spans multiple transactions,
4460 * and we crash, we will resume the truncate when the filesystem
4461 * recovers. It also marks the inode dirty, to catch the new size.
4463 * Implication: the file must always be in a sane, consistent
4464 * truncatable state while each transaction commits.
4466 if (ext4_orphan_add(handle
, inode
))
4470 * From here we block out all ext4_get_block() callers who want to
4471 * modify the block allocation tree.
4473 down_write(&ei
->i_data_sem
);
4475 ext4_discard_preallocations(inode
);
4478 * The orphan list entry will now protect us from any crash which
4479 * occurs before the truncate completes, so it is now safe to propagate
4480 * the new, shorter inode size (held for now in i_size) into the
4481 * on-disk inode. We do this via i_disksize, which is the value which
4482 * ext4 *really* writes onto the disk inode.
4484 ei
->i_disksize
= inode
->i_size
;
4486 if (n
== 1) { /* direct blocks */
4487 ext4_free_data(handle
, inode
, NULL
, i_data
+offsets
[0],
4488 i_data
+ EXT4_NDIR_BLOCKS
);
4492 partial
= ext4_find_shared(inode
, n
, offsets
, chain
, &nr
);
4493 /* Kill the top of shared branch (not detached) */
4495 if (partial
== chain
) {
4496 /* Shared branch grows from the inode */
4497 ext4_free_branches(handle
, inode
, NULL
,
4498 &nr
, &nr
+1, (chain
+n
-1) - partial
);
4501 * We mark the inode dirty prior to restart,
4502 * and prior to stop. No need for it here.
4505 /* Shared branch grows from an indirect block */
4506 BUFFER_TRACE(partial
->bh
, "get_write_access");
4507 ext4_free_branches(handle
, inode
, partial
->bh
,
4509 partial
->p
+1, (chain
+n
-1) - partial
);
4512 /* Clear the ends of indirect blocks on the shared branch */
4513 while (partial
> chain
) {
4514 ext4_free_branches(handle
, inode
, partial
->bh
, partial
->p
+ 1,
4515 (__le32
*)partial
->bh
->b_data
+addr_per_block
,
4516 (chain
+n
-1) - partial
);
4517 BUFFER_TRACE(partial
->bh
, "call brelse");
4518 brelse(partial
->bh
);
4522 /* Kill the remaining (whole) subtrees */
4523 switch (offsets
[0]) {
4525 nr
= i_data
[EXT4_IND_BLOCK
];
4527 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 1);
4528 i_data
[EXT4_IND_BLOCK
] = 0;
4530 case EXT4_IND_BLOCK
:
4531 nr
= i_data
[EXT4_DIND_BLOCK
];
4533 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 2);
4534 i_data
[EXT4_DIND_BLOCK
] = 0;
4536 case EXT4_DIND_BLOCK
:
4537 nr
= i_data
[EXT4_TIND_BLOCK
];
4539 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 3);
4540 i_data
[EXT4_TIND_BLOCK
] = 0;
4542 case EXT4_TIND_BLOCK
:
4546 up_write(&ei
->i_data_sem
);
4547 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
4548 ext4_mark_inode_dirty(handle
, inode
);
4551 * In a multi-transaction truncate, we only make the final transaction
4555 ext4_handle_sync(handle
);
4558 * If this was a simple ftruncate(), and the file will remain alive
4559 * then we need to clear up the orphan record which we created above.
4560 * However, if this was a real unlink then we were called by
4561 * ext4_delete_inode(), and we allow that function to clean up the
4562 * orphan info for us.
4565 ext4_orphan_del(handle
, inode
);
4567 ext4_journal_stop(handle
);
4571 * ext4_get_inode_loc returns with an extra refcount against the inode's
4572 * underlying buffer_head on success. If 'in_mem' is true, we have all
4573 * data in memory that is needed to recreate the on-disk version of this
4576 static int __ext4_get_inode_loc(struct inode
*inode
,
4577 struct ext4_iloc
*iloc
, int in_mem
)
4579 struct ext4_group_desc
*gdp
;
4580 struct buffer_head
*bh
;
4581 struct super_block
*sb
= inode
->i_sb
;
4583 int inodes_per_block
, inode_offset
;
4586 if (!ext4_valid_inum(sb
, inode
->i_ino
))
4589 iloc
->block_group
= (inode
->i_ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
4590 gdp
= ext4_get_group_desc(sb
, iloc
->block_group
, NULL
);
4595 * Figure out the offset within the block group inode table
4597 inodes_per_block
= (EXT4_BLOCK_SIZE(sb
) / EXT4_INODE_SIZE(sb
));
4598 inode_offset
= ((inode
->i_ino
- 1) %
4599 EXT4_INODES_PER_GROUP(sb
));
4600 block
= ext4_inode_table(sb
, gdp
) + (inode_offset
/ inodes_per_block
);
4601 iloc
->offset
= (inode_offset
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
4603 bh
= sb_getblk(sb
, block
);
4605 ext4_error(sb
, "ext4_get_inode_loc", "unable to read "
4606 "inode block - inode=%lu, block=%llu",
4607 inode
->i_ino
, block
);
4610 if (!buffer_uptodate(bh
)) {
4614 * If the buffer has the write error flag, we have failed
4615 * to write out another inode in the same block. In this
4616 * case, we don't have to read the block because we may
4617 * read the old inode data successfully.
4619 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
4620 set_buffer_uptodate(bh
);
4622 if (buffer_uptodate(bh
)) {
4623 /* someone brought it uptodate while we waited */
4629 * If we have all information of the inode in memory and this
4630 * is the only valid inode in the block, we need not read the
4634 struct buffer_head
*bitmap_bh
;
4637 start
= inode_offset
& ~(inodes_per_block
- 1);
4639 /* Is the inode bitmap in cache? */
4640 bitmap_bh
= sb_getblk(sb
, ext4_inode_bitmap(sb
, gdp
));
4645 * If the inode bitmap isn't in cache then the
4646 * optimisation may end up performing two reads instead
4647 * of one, so skip it.
4649 if (!buffer_uptodate(bitmap_bh
)) {
4653 for (i
= start
; i
< start
+ inodes_per_block
; i
++) {
4654 if (i
== inode_offset
)
4656 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
4660 if (i
== start
+ inodes_per_block
) {
4661 /* all other inodes are free, so skip I/O */
4662 memset(bh
->b_data
, 0, bh
->b_size
);
4663 set_buffer_uptodate(bh
);
4671 * If we need to do any I/O, try to pre-readahead extra
4672 * blocks from the inode table.
4674 if (EXT4_SB(sb
)->s_inode_readahead_blks
) {
4675 ext4_fsblk_t b
, end
, table
;
4678 table
= ext4_inode_table(sb
, gdp
);
4679 /* s_inode_readahead_blks is always a power of 2 */
4680 b
= block
& ~(EXT4_SB(sb
)->s_inode_readahead_blks
-1);
4683 end
= b
+ EXT4_SB(sb
)->s_inode_readahead_blks
;
4684 num
= EXT4_INODES_PER_GROUP(sb
);
4685 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4686 EXT4_FEATURE_RO_COMPAT_GDT_CSUM
))
4687 num
-= ext4_itable_unused_count(sb
, gdp
);
4688 table
+= num
/ inodes_per_block
;
4692 sb_breadahead(sb
, b
++);
4696 * There are other valid inodes in the buffer, this inode
4697 * has in-inode xattrs, or we don't have this inode in memory.
4698 * Read the block from disk.
4701 bh
->b_end_io
= end_buffer_read_sync
;
4702 submit_bh(READ_META
, bh
);
4704 if (!buffer_uptodate(bh
)) {
4705 ext4_error(sb
, __func__
,
4706 "unable to read inode block - inode=%lu, "
4707 "block=%llu", inode
->i_ino
, block
);
4717 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
4719 /* We have all inode data except xattrs in memory here. */
4720 return __ext4_get_inode_loc(inode
, iloc
,
4721 !(EXT4_I(inode
)->i_state
& EXT4_STATE_XATTR
));
4724 void ext4_set_inode_flags(struct inode
*inode
)
4726 unsigned int flags
= EXT4_I(inode
)->i_flags
;
4728 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
4729 if (flags
& EXT4_SYNC_FL
)
4730 inode
->i_flags
|= S_SYNC
;
4731 if (flags
& EXT4_APPEND_FL
)
4732 inode
->i_flags
|= S_APPEND
;
4733 if (flags
& EXT4_IMMUTABLE_FL
)
4734 inode
->i_flags
|= S_IMMUTABLE
;
4735 if (flags
& EXT4_NOATIME_FL
)
4736 inode
->i_flags
|= S_NOATIME
;
4737 if (flags
& EXT4_DIRSYNC_FL
)
4738 inode
->i_flags
|= S_DIRSYNC
;
4741 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4742 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
4744 unsigned int flags
= ei
->vfs_inode
.i_flags
;
4746 ei
->i_flags
&= ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
4747 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|EXT4_DIRSYNC_FL
);
4749 ei
->i_flags
|= EXT4_SYNC_FL
;
4750 if (flags
& S_APPEND
)
4751 ei
->i_flags
|= EXT4_APPEND_FL
;
4752 if (flags
& S_IMMUTABLE
)
4753 ei
->i_flags
|= EXT4_IMMUTABLE_FL
;
4754 if (flags
& S_NOATIME
)
4755 ei
->i_flags
|= EXT4_NOATIME_FL
;
4756 if (flags
& S_DIRSYNC
)
4757 ei
->i_flags
|= EXT4_DIRSYNC_FL
;
4760 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
4761 struct ext4_inode_info
*ei
)
4764 struct inode
*inode
= &(ei
->vfs_inode
);
4765 struct super_block
*sb
= inode
->i_sb
;
4767 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4768 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
)) {
4769 /* we are using combined 48 bit field */
4770 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
4771 le32_to_cpu(raw_inode
->i_blocks_lo
);
4772 if (ei
->i_flags
& EXT4_HUGE_FILE_FL
) {
4773 /* i_blocks represent file system block size */
4774 return i_blocks
<< (inode
->i_blkbits
- 9);
4779 return le32_to_cpu(raw_inode
->i_blocks_lo
);
4783 struct inode
*ext4_iget(struct super_block
*sb
, unsigned long ino
)
4785 struct ext4_iloc iloc
;
4786 struct ext4_inode
*raw_inode
;
4787 struct ext4_inode_info
*ei
;
4788 struct inode
*inode
;
4789 journal_t
*journal
= EXT4_SB(sb
)->s_journal
;
4793 inode
= iget_locked(sb
, ino
);
4795 return ERR_PTR(-ENOMEM
);
4796 if (!(inode
->i_state
& I_NEW
))
4802 ret
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4805 raw_inode
= ext4_raw_inode(&iloc
);
4806 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
4807 inode
->i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
4808 inode
->i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
4809 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4810 inode
->i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
4811 inode
->i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
4813 inode
->i_nlink
= le16_to_cpu(raw_inode
->i_links_count
);
4816 ei
->i_dir_start_lookup
= 0;
4817 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
4818 /* We now have enough fields to check if the inode was active or not.
4819 * This is needed because nfsd might try to access dead inodes
4820 * the test is that same one that e2fsck uses
4821 * NeilBrown 1999oct15
4823 if (inode
->i_nlink
== 0) {
4824 if (inode
->i_mode
== 0 ||
4825 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) {
4826 /* this inode is deleted */
4830 /* The only unlinked inodes we let through here have
4831 * valid i_mode and are being read by the orphan
4832 * recovery code: that's fine, we're about to complete
4833 * the process of deleting those. */
4835 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
4836 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
4837 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
4838 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_64BIT
))
4840 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
4841 inode
->i_size
= ext4_isize(raw_inode
);
4842 ei
->i_disksize
= inode
->i_size
;
4843 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
4844 ei
->i_block_group
= iloc
.block_group
;
4845 ei
->i_last_alloc_group
= ~0;
4847 * NOTE! The in-memory inode i_data array is in little-endian order
4848 * even on big-endian machines: we do NOT byteswap the block numbers!
4850 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4851 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
4852 INIT_LIST_HEAD(&ei
->i_orphan
);
4855 * Set transaction id's of transactions that have to be committed
4856 * to finish f[data]sync. We set them to currently running transaction
4857 * as we cannot be sure that the inode or some of its metadata isn't
4858 * part of the transaction - the inode could have been reclaimed and
4859 * now it is reread from disk.
4862 transaction_t
*transaction
;
4865 spin_lock(&journal
->j_state_lock
);
4866 if (journal
->j_running_transaction
)
4867 transaction
= journal
->j_running_transaction
;
4869 transaction
= journal
->j_committing_transaction
;
4871 tid
= transaction
->t_tid
;
4873 tid
= journal
->j_commit_sequence
;
4874 spin_unlock(&journal
->j_state_lock
);
4875 ei
->i_sync_tid
= tid
;
4876 ei
->i_datasync_tid
= tid
;
4879 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4880 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
4881 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
4882 EXT4_INODE_SIZE(inode
->i_sb
)) {
4886 if (ei
->i_extra_isize
== 0) {
4887 /* The extra space is currently unused. Use it. */
4888 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
4889 EXT4_GOOD_OLD_INODE_SIZE
;
4891 __le32
*magic
= (void *)raw_inode
+
4892 EXT4_GOOD_OLD_INODE_SIZE
+
4894 if (*magic
== cpu_to_le32(EXT4_XATTR_MAGIC
))
4895 ei
->i_state
|= EXT4_STATE_XATTR
;
4898 ei
->i_extra_isize
= 0;
4900 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
4901 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
4902 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
4903 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
4905 inode
->i_version
= le32_to_cpu(raw_inode
->i_disk_version
);
4906 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4907 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4909 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
4913 if (ei
->i_file_acl
&&
4914 !ext4_data_block_valid(EXT4_SB(sb
), ei
->i_file_acl
, 1)) {
4915 ext4_error(sb
, __func__
,
4916 "bad extended attribute block %llu in inode #%lu",
4917 ei
->i_file_acl
, inode
->i_ino
);
4920 } else if (ei
->i_flags
& EXT4_EXTENTS_FL
) {
4921 if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4922 (S_ISLNK(inode
->i_mode
) &&
4923 !ext4_inode_is_fast_symlink(inode
)))
4924 /* Validate extent which is part of inode */
4925 ret
= ext4_ext_check_inode(inode
);
4926 } else if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4927 (S_ISLNK(inode
->i_mode
) &&
4928 !ext4_inode_is_fast_symlink(inode
))) {
4929 /* Validate block references which are part of inode */
4930 ret
= ext4_check_inode_blockref(inode
);
4935 if (S_ISREG(inode
->i_mode
)) {
4936 inode
->i_op
= &ext4_file_inode_operations
;
4937 inode
->i_fop
= &ext4_file_operations
;
4938 ext4_set_aops(inode
);
4939 } else if (S_ISDIR(inode
->i_mode
)) {
4940 inode
->i_op
= &ext4_dir_inode_operations
;
4941 inode
->i_fop
= &ext4_dir_operations
;
4942 } else if (S_ISLNK(inode
->i_mode
)) {
4943 if (ext4_inode_is_fast_symlink(inode
)) {
4944 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
4945 nd_terminate_link(ei
->i_data
, inode
->i_size
,
4946 sizeof(ei
->i_data
) - 1);
4948 inode
->i_op
= &ext4_symlink_inode_operations
;
4949 ext4_set_aops(inode
);
4951 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
4952 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
4953 inode
->i_op
= &ext4_special_inode_operations
;
4954 if (raw_inode
->i_block
[0])
4955 init_special_inode(inode
, inode
->i_mode
,
4956 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
4958 init_special_inode(inode
, inode
->i_mode
,
4959 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
4962 ext4_error(inode
->i_sb
, __func__
,
4963 "bogus i_mode (%o) for inode=%lu",
4964 inode
->i_mode
, inode
->i_ino
);
4968 ext4_set_inode_flags(inode
);
4969 unlock_new_inode(inode
);
4975 return ERR_PTR(ret
);
4978 static int ext4_inode_blocks_set(handle_t
*handle
,
4979 struct ext4_inode
*raw_inode
,
4980 struct ext4_inode_info
*ei
)
4982 struct inode
*inode
= &(ei
->vfs_inode
);
4983 u64 i_blocks
= inode
->i_blocks
;
4984 struct super_block
*sb
= inode
->i_sb
;
4986 if (i_blocks
<= ~0U) {
4988 * i_blocks can be represnted in a 32 bit variable
4989 * as multiple of 512 bytes
4991 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4992 raw_inode
->i_blocks_high
= 0;
4993 ei
->i_flags
&= ~EXT4_HUGE_FILE_FL
;
4996 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
, EXT4_FEATURE_RO_COMPAT_HUGE_FILE
))
4999 if (i_blocks
<= 0xffffffffffffULL
) {
5001 * i_blocks can be represented in a 48 bit variable
5002 * as multiple of 512 bytes
5004 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
5005 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
5006 ei
->i_flags
&= ~EXT4_HUGE_FILE_FL
;
5008 ei
->i_flags
|= EXT4_HUGE_FILE_FL
;
5009 /* i_block is stored in file system block size */
5010 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
5011 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
5012 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
5018 * Post the struct inode info into an on-disk inode location in the
5019 * buffer-cache. This gobbles the caller's reference to the
5020 * buffer_head in the inode location struct.
5022 * The caller must have write access to iloc->bh.
5024 static int ext4_do_update_inode(handle_t
*handle
,
5025 struct inode
*inode
,
5026 struct ext4_iloc
*iloc
)
5028 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
5029 struct ext4_inode_info
*ei
= EXT4_I(inode
);
5030 struct buffer_head
*bh
= iloc
->bh
;
5031 int err
= 0, rc
, block
;
5033 /* For fields not not tracking in the in-memory inode,
5034 * initialise them to zero for new inodes. */
5035 if (ei
->i_state
& EXT4_STATE_NEW
)
5036 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
5038 ext4_get_inode_flags(ei
);
5039 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
5040 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
5041 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(inode
->i_uid
));
5042 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(inode
->i_gid
));
5044 * Fix up interoperability with old kernels. Otherwise, old inodes get
5045 * re-used with the upper 16 bits of the uid/gid intact
5048 raw_inode
->i_uid_high
=
5049 cpu_to_le16(high_16_bits(inode
->i_uid
));
5050 raw_inode
->i_gid_high
=
5051 cpu_to_le16(high_16_bits(inode
->i_gid
));
5053 raw_inode
->i_uid_high
= 0;
5054 raw_inode
->i_gid_high
= 0;
5057 raw_inode
->i_uid_low
=
5058 cpu_to_le16(fs_high2lowuid(inode
->i_uid
));
5059 raw_inode
->i_gid_low
=
5060 cpu_to_le16(fs_high2lowgid(inode
->i_gid
));
5061 raw_inode
->i_uid_high
= 0;
5062 raw_inode
->i_gid_high
= 0;
5064 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
5066 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
5067 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
5068 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
5069 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
5071 if (ext4_inode_blocks_set(handle
, raw_inode
, ei
))
5073 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
5074 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
);
5075 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
5076 cpu_to_le32(EXT4_OS_HURD
))
5077 raw_inode
->i_file_acl_high
=
5078 cpu_to_le16(ei
->i_file_acl
>> 32);
5079 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
5080 ext4_isize_set(raw_inode
, ei
->i_disksize
);
5081 if (ei
->i_disksize
> 0x7fffffffULL
) {
5082 struct super_block
*sb
= inode
->i_sb
;
5083 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
,
5084 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
) ||
5085 EXT4_SB(sb
)->s_es
->s_rev_level
==
5086 cpu_to_le32(EXT4_GOOD_OLD_REV
)) {
5087 /* If this is the first large file
5088 * created, add a flag to the superblock.
5090 err
= ext4_journal_get_write_access(handle
,
5091 EXT4_SB(sb
)->s_sbh
);
5094 ext4_update_dynamic_rev(sb
);
5095 EXT4_SET_RO_COMPAT_FEATURE(sb
,
5096 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
);
5098 ext4_handle_sync(handle
);
5099 err
= ext4_handle_dirty_metadata(handle
, inode
,
5100 EXT4_SB(sb
)->s_sbh
);
5103 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
5104 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
5105 if (old_valid_dev(inode
->i_rdev
)) {
5106 raw_inode
->i_block
[0] =
5107 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
5108 raw_inode
->i_block
[1] = 0;
5110 raw_inode
->i_block
[0] = 0;
5111 raw_inode
->i_block
[1] =
5112 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
5113 raw_inode
->i_block
[2] = 0;
5116 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
5117 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
5119 raw_inode
->i_disk_version
= cpu_to_le32(inode
->i_version
);
5120 if (ei
->i_extra_isize
) {
5121 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
5122 raw_inode
->i_version_hi
=
5123 cpu_to_le32(inode
->i_version
>> 32);
5124 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
5127 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
5128 rc
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
5131 ei
->i_state
&= ~EXT4_STATE_NEW
;
5133 ext4_update_inode_fsync_trans(handle
, inode
, 0);
5136 ext4_std_error(inode
->i_sb
, err
);
5141 * ext4_write_inode()
5143 * We are called from a few places:
5145 * - Within generic_file_write() for O_SYNC files.
5146 * Here, there will be no transaction running. We wait for any running
5147 * trasnaction to commit.
5149 * - Within sys_sync(), kupdate and such.
5150 * We wait on commit, if tol to.
5152 * - Within prune_icache() (PF_MEMALLOC == true)
5153 * Here we simply return. We can't afford to block kswapd on the
5156 * In all cases it is actually safe for us to return without doing anything,
5157 * because the inode has been copied into a raw inode buffer in
5158 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5161 * Note that we are absolutely dependent upon all inode dirtiers doing the
5162 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5163 * which we are interested.
5165 * It would be a bug for them to not do this. The code:
5167 * mark_inode_dirty(inode)
5169 * inode->i_size = expr;
5171 * is in error because a kswapd-driven write_inode() could occur while
5172 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5173 * will no longer be on the superblock's dirty inode list.
5175 int ext4_write_inode(struct inode
*inode
, int wait
)
5179 if (current
->flags
& PF_MEMALLOC
)
5182 if (EXT4_SB(inode
->i_sb
)->s_journal
) {
5183 if (ext4_journal_current_handle()) {
5184 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5192 err
= ext4_force_commit(inode
->i_sb
);
5194 struct ext4_iloc iloc
;
5196 err
= ext4_get_inode_loc(inode
, &iloc
);
5200 sync_dirty_buffer(iloc
.bh
);
5201 if (buffer_req(iloc
.bh
) && !buffer_uptodate(iloc
.bh
)) {
5202 ext4_error(inode
->i_sb
, __func__
,
5203 "IO error syncing inode, "
5204 "inode=%lu, block=%llu",
5206 (unsigned long long)iloc
.bh
->b_blocknr
);
5216 * Called from notify_change.
5218 * We want to trap VFS attempts to truncate the file as soon as
5219 * possible. In particular, we want to make sure that when the VFS
5220 * shrinks i_size, we put the inode on the orphan list and modify
5221 * i_disksize immediately, so that during the subsequent flushing of
5222 * dirty pages and freeing of disk blocks, we can guarantee that any
5223 * commit will leave the blocks being flushed in an unused state on
5224 * disk. (On recovery, the inode will get truncated and the blocks will
5225 * be freed, so we have a strong guarantee that no future commit will
5226 * leave these blocks visible to the user.)
5228 * Another thing we have to assure is that if we are in ordered mode
5229 * and inode is still attached to the committing transaction, we must
5230 * we start writeout of all the dirty pages which are being truncated.
5231 * This way we are sure that all the data written in the previous
5232 * transaction are already on disk (truncate waits for pages under
5235 * Called with inode->i_mutex down.
5237 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
5239 struct inode
*inode
= dentry
->d_inode
;
5241 const unsigned int ia_valid
= attr
->ia_valid
;
5243 error
= inode_change_ok(inode
, attr
);
5247 if ((ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
) ||
5248 (ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
)) {
5251 /* (user+group)*(old+new) structure, inode write (sb,
5252 * inode block, ? - but truncate inode update has it) */
5253 handle
= ext4_journal_start(inode
, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode
->i_sb
)+
5254 EXT4_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
))+3);
5255 if (IS_ERR(handle
)) {
5256 error
= PTR_ERR(handle
);
5259 error
= vfs_dq_transfer(inode
, attr
) ? -EDQUOT
: 0;
5261 ext4_journal_stop(handle
);
5264 /* Update corresponding info in inode so that everything is in
5265 * one transaction */
5266 if (attr
->ia_valid
& ATTR_UID
)
5267 inode
->i_uid
= attr
->ia_uid
;
5268 if (attr
->ia_valid
& ATTR_GID
)
5269 inode
->i_gid
= attr
->ia_gid
;
5270 error
= ext4_mark_inode_dirty(handle
, inode
);
5271 ext4_journal_stop(handle
);
5274 if (attr
->ia_valid
& ATTR_SIZE
) {
5275 if (!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
)) {
5276 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5278 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
) {
5285 if (S_ISREG(inode
->i_mode
) &&
5286 attr
->ia_valid
& ATTR_SIZE
&& attr
->ia_size
< inode
->i_size
) {
5289 handle
= ext4_journal_start(inode
, 3);
5290 if (IS_ERR(handle
)) {
5291 error
= PTR_ERR(handle
);
5295 error
= ext4_orphan_add(handle
, inode
);
5296 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
5297 rc
= ext4_mark_inode_dirty(handle
, inode
);
5300 ext4_journal_stop(handle
);
5302 if (ext4_should_order_data(inode
)) {
5303 error
= ext4_begin_ordered_truncate(inode
,
5306 /* Do as much error cleanup as possible */
5307 handle
= ext4_journal_start(inode
, 3);
5308 if (IS_ERR(handle
)) {
5309 ext4_orphan_del(NULL
, inode
);
5312 ext4_orphan_del(handle
, inode
);
5313 ext4_journal_stop(handle
);
5319 rc
= inode_setattr(inode
, attr
);
5321 /* If inode_setattr's call to ext4_truncate failed to get a
5322 * transaction handle at all, we need to clean up the in-core
5323 * orphan list manually. */
5325 ext4_orphan_del(NULL
, inode
);
5327 if (!rc
&& (ia_valid
& ATTR_MODE
))
5328 rc
= ext4_acl_chmod(inode
);
5331 ext4_std_error(inode
->i_sb
, error
);
5337 int ext4_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
5340 struct inode
*inode
;
5341 unsigned long delalloc_blocks
;
5343 inode
= dentry
->d_inode
;
5344 generic_fillattr(inode
, stat
);
5347 * We can't update i_blocks if the block allocation is delayed
5348 * otherwise in the case of system crash before the real block
5349 * allocation is done, we will have i_blocks inconsistent with
5350 * on-disk file blocks.
5351 * We always keep i_blocks updated together with real
5352 * allocation. But to not confuse with user, stat
5353 * will return the blocks that include the delayed allocation
5354 * blocks for this file.
5356 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
5357 delalloc_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
5358 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
5360 stat
->blocks
+= (delalloc_blocks
<< inode
->i_sb
->s_blocksize_bits
)>>9;
5364 static int ext4_indirect_trans_blocks(struct inode
*inode
, int nrblocks
,
5369 /* if nrblocks are contiguous */
5372 * With N contiguous data blocks, it need at most
5373 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5374 * 2 dindirect blocks
5377 indirects
= nrblocks
/ EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
5378 return indirects
+ 3;
5381 * if nrblocks are not contiguous, worse case, each block touch
5382 * a indirect block, and each indirect block touch a double indirect
5383 * block, plus a triple indirect block
5385 indirects
= nrblocks
* 2 + 1;
5389 static int ext4_index_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
5391 if (!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
))
5392 return ext4_indirect_trans_blocks(inode
, nrblocks
, chunk
);
5393 return ext4_ext_index_trans_blocks(inode
, nrblocks
, chunk
);
5397 * Account for index blocks, block groups bitmaps and block group
5398 * descriptor blocks if modify datablocks and index blocks
5399 * worse case, the indexs blocks spread over different block groups
5401 * If datablocks are discontiguous, they are possible to spread over
5402 * different block groups too. If they are contiugous, with flexbg,
5403 * they could still across block group boundary.
5405 * Also account for superblock, inode, quota and xattr blocks
5407 int ext4_meta_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
5409 ext4_group_t groups
, ngroups
= ext4_get_groups_count(inode
->i_sb
);
5415 * How many index blocks need to touch to modify nrblocks?
5416 * The "Chunk" flag indicating whether the nrblocks is
5417 * physically contiguous on disk
5419 * For Direct IO and fallocate, they calls get_block to allocate
5420 * one single extent at a time, so they could set the "Chunk" flag
5422 idxblocks
= ext4_index_trans_blocks(inode
, nrblocks
, chunk
);
5427 * Now let's see how many group bitmaps and group descriptors need
5437 if (groups
> ngroups
)
5439 if (groups
> EXT4_SB(inode
->i_sb
)->s_gdb_count
)
5440 gdpblocks
= EXT4_SB(inode
->i_sb
)->s_gdb_count
;
5442 /* bitmaps and block group descriptor blocks */
5443 ret
+= groups
+ gdpblocks
;
5445 /* Blocks for super block, inode, quota and xattr blocks */
5446 ret
+= EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
5452 * Calulate the total number of credits to reserve to fit
5453 * the modification of a single pages into a single transaction,
5454 * which may include multiple chunks of block allocations.
5456 * This could be called via ext4_write_begin()
5458 * We need to consider the worse case, when
5459 * one new block per extent.
5461 int ext4_writepage_trans_blocks(struct inode
*inode
)
5463 int bpp
= ext4_journal_blocks_per_page(inode
);
5466 ret
= ext4_meta_trans_blocks(inode
, bpp
, 0);
5468 /* Account for data blocks for journalled mode */
5469 if (ext4_should_journal_data(inode
))
5475 * Calculate the journal credits for a chunk of data modification.
5477 * This is called from DIO, fallocate or whoever calling
5478 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5480 * journal buffers for data blocks are not included here, as DIO
5481 * and fallocate do no need to journal data buffers.
5483 int ext4_chunk_trans_blocks(struct inode
*inode
, int nrblocks
)
5485 return ext4_meta_trans_blocks(inode
, nrblocks
, 1);
5489 * The caller must have previously called ext4_reserve_inode_write().
5490 * Give this, we know that the caller already has write access to iloc->bh.
5492 int ext4_mark_iloc_dirty(handle_t
*handle
,
5493 struct inode
*inode
, struct ext4_iloc
*iloc
)
5497 if (test_opt(inode
->i_sb
, I_VERSION
))
5498 inode_inc_iversion(inode
);
5500 /* the do_update_inode consumes one bh->b_count */
5503 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5504 err
= ext4_do_update_inode(handle
, inode
, iloc
);
5510 * On success, We end up with an outstanding reference count against
5511 * iloc->bh. This _must_ be cleaned up later.
5515 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
5516 struct ext4_iloc
*iloc
)
5520 err
= ext4_get_inode_loc(inode
, iloc
);
5522 BUFFER_TRACE(iloc
->bh
, "get_write_access");
5523 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
5529 ext4_std_error(inode
->i_sb
, err
);
5534 * Expand an inode by new_extra_isize bytes.
5535 * Returns 0 on success or negative error number on failure.
5537 static int ext4_expand_extra_isize(struct inode
*inode
,
5538 unsigned int new_extra_isize
,
5539 struct ext4_iloc iloc
,
5542 struct ext4_inode
*raw_inode
;
5543 struct ext4_xattr_ibody_header
*header
;
5544 struct ext4_xattr_entry
*entry
;
5546 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
5549 raw_inode
= ext4_raw_inode(&iloc
);
5551 header
= IHDR(inode
, raw_inode
);
5552 entry
= IFIRST(header
);
5554 /* No extended attributes present */
5555 if (!(EXT4_I(inode
)->i_state
& EXT4_STATE_XATTR
) ||
5556 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
5557 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
5559 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
5563 /* try to expand with EAs present */
5564 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
5569 * What we do here is to mark the in-core inode as clean with respect to inode
5570 * dirtiness (it may still be data-dirty).
5571 * This means that the in-core inode may be reaped by prune_icache
5572 * without having to perform any I/O. This is a very good thing,
5573 * because *any* task may call prune_icache - even ones which
5574 * have a transaction open against a different journal.
5576 * Is this cheating? Not really. Sure, we haven't written the
5577 * inode out, but prune_icache isn't a user-visible syncing function.
5578 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5579 * we start and wait on commits.
5581 * Is this efficient/effective? Well, we're being nice to the system
5582 * by cleaning up our inodes proactively so they can be reaped
5583 * without I/O. But we are potentially leaving up to five seconds'
5584 * worth of inodes floating about which prune_icache wants us to
5585 * write out. One way to fix that would be to get prune_icache()
5586 * to do a write_super() to free up some memory. It has the desired
5589 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
5591 struct ext4_iloc iloc
;
5592 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5593 static unsigned int mnt_count
;
5597 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
5598 if (ext4_handle_valid(handle
) &&
5599 EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
5600 !(EXT4_I(inode
)->i_state
& EXT4_STATE_NO_EXPAND
)) {
5602 * We need extra buffer credits since we may write into EA block
5603 * with this same handle. If journal_extend fails, then it will
5604 * only result in a minor loss of functionality for that inode.
5605 * If this is felt to be critical, then e2fsck should be run to
5606 * force a large enough s_min_extra_isize.
5608 if ((jbd2_journal_extend(handle
,
5609 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
))) == 0) {
5610 ret
= ext4_expand_extra_isize(inode
,
5611 sbi
->s_want_extra_isize
,
5614 EXT4_I(inode
)->i_state
|= EXT4_STATE_NO_EXPAND
;
5616 le16_to_cpu(sbi
->s_es
->s_mnt_count
)) {
5617 ext4_warning(inode
->i_sb
, __func__
,
5618 "Unable to expand inode %lu. Delete"
5619 " some EAs or run e2fsck.",
5622 le16_to_cpu(sbi
->s_es
->s_mnt_count
);
5628 err
= ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
5633 * ext4_dirty_inode() is called from __mark_inode_dirty()
5635 * We're really interested in the case where a file is being extended.
5636 * i_size has been changed by generic_commit_write() and we thus need
5637 * to include the updated inode in the current transaction.
5639 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5640 * are allocated to the file.
5642 * If the inode is marked synchronous, we don't honour that here - doing
5643 * so would cause a commit on atime updates, which we don't bother doing.
5644 * We handle synchronous inodes at the highest possible level.
5646 void ext4_dirty_inode(struct inode
*inode
)
5648 handle_t
*current_handle
= ext4_journal_current_handle();
5651 handle
= ext4_journal_start(inode
, 2);
5655 jbd_debug(5, "marking dirty. outer handle=%p\n", current_handle
);
5656 ext4_mark_inode_dirty(handle
, inode
);
5658 ext4_journal_stop(handle
);
5665 * Bind an inode's backing buffer_head into this transaction, to prevent
5666 * it from being flushed to disk early. Unlike
5667 * ext4_reserve_inode_write, this leaves behind no bh reference and
5668 * returns no iloc structure, so the caller needs to repeat the iloc
5669 * lookup to mark the inode dirty later.
5671 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
5673 struct ext4_iloc iloc
;
5677 err
= ext4_get_inode_loc(inode
, &iloc
);
5679 BUFFER_TRACE(iloc
.bh
, "get_write_access");
5680 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
5682 err
= ext4_handle_dirty_metadata(handle
,
5688 ext4_std_error(inode
->i_sb
, err
);
5693 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
5700 * We have to be very careful here: changing a data block's
5701 * journaling status dynamically is dangerous. If we write a
5702 * data block to the journal, change the status and then delete
5703 * that block, we risk forgetting to revoke the old log record
5704 * from the journal and so a subsequent replay can corrupt data.
5705 * So, first we make sure that the journal is empty and that
5706 * nobody is changing anything.
5709 journal
= EXT4_JOURNAL(inode
);
5712 if (is_journal_aborted(journal
))
5715 jbd2_journal_lock_updates(journal
);
5716 jbd2_journal_flush(journal
);
5719 * OK, there are no updates running now, and all cached data is
5720 * synced to disk. We are now in a completely consistent state
5721 * which doesn't have anything in the journal, and we know that
5722 * no filesystem updates are running, so it is safe to modify
5723 * the inode's in-core data-journaling state flag now.
5727 EXT4_I(inode
)->i_flags
|= EXT4_JOURNAL_DATA_FL
;
5729 EXT4_I(inode
)->i_flags
&= ~EXT4_JOURNAL_DATA_FL
;
5730 ext4_set_aops(inode
);
5732 jbd2_journal_unlock_updates(journal
);
5734 /* Finally we can mark the inode as dirty. */
5736 handle
= ext4_journal_start(inode
, 1);
5738 return PTR_ERR(handle
);
5740 err
= ext4_mark_inode_dirty(handle
, inode
);
5741 ext4_handle_sync(handle
);
5742 ext4_journal_stop(handle
);
5743 ext4_std_error(inode
->i_sb
, err
);
5748 static int ext4_bh_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
5750 return !buffer_mapped(bh
);
5753 int ext4_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
5755 struct page
*page
= vmf
->page
;
5760 struct file
*file
= vma
->vm_file
;
5761 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
5762 struct address_space
*mapping
= inode
->i_mapping
;
5765 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5766 * get i_mutex because we are already holding mmap_sem.
5768 down_read(&inode
->i_alloc_sem
);
5769 size
= i_size_read(inode
);
5770 if (page
->mapping
!= mapping
|| size
<= page_offset(page
)
5771 || !PageUptodate(page
)) {
5772 /* page got truncated from under us? */
5776 if (PageMappedToDisk(page
))
5779 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
5780 len
= size
& ~PAGE_CACHE_MASK
;
5782 len
= PAGE_CACHE_SIZE
;
5786 * return if we have all the buffers mapped. This avoid
5787 * the need to call write_begin/write_end which does a
5788 * journal_start/journal_stop which can block and take
5791 if (page_has_buffers(page
)) {
5792 if (!walk_page_buffers(NULL
, page_buffers(page
), 0, len
, NULL
,
5793 ext4_bh_unmapped
)) {
5800 * OK, we need to fill the hole... Do write_begin write_end
5801 * to do block allocation/reservation.We are not holding
5802 * inode.i__mutex here. That allow * parallel write_begin,
5803 * write_end call. lock_page prevent this from happening
5804 * on the same page though
5806 ret
= mapping
->a_ops
->write_begin(file
, mapping
, page_offset(page
),
5807 len
, AOP_FLAG_UNINTERRUPTIBLE
, &page
, &fsdata
);
5810 ret
= mapping
->a_ops
->write_end(file
, mapping
, page_offset(page
),
5811 len
, len
, page
, fsdata
);
5817 ret
= VM_FAULT_SIGBUS
;
5818 up_read(&inode
->i_alloc_sem
);